72 research outputs found

    Smartphone-Based Self Rescue System for Disaster Rescue

    Get PDF
    Recent ubiquitous earthquakes have been leading to mass destruction of electrical power and cellular infrastructures, and deprive the innocent lives across the world. Due to the wide-area earthquake disaster, unavailable power and communication infrastructure, limited man-power and resources, traditional rescue operations and equipment are inefficient and time-consuming, leading to the golden hours missed. With the increasing proliferation of powerful wireless devices, like smartphones, they can be assumed to be abundantly available among the disaster victims and can act as valuable resources to coordinate disaster rescue operations. In this paper, we propose a smartphone-based self-rescue system, also referred to as RescueMe, to assist the operations of disaster rescue and relief. The basic idea of RescueMe is that a set of smartphones carried by survivors trapped or buried under the collapsed infrastructure forms into a one-hop network and sends out distress signals in an energy-efficient manner to nearby rescue crews to assist rescue operations. We evaluate the proposed approach through extensive simulation experiments and compare its performance with the existing scheme TeamPhone. The simulation results show that the proposed approach can significantly reduce the schedule vacancy of broadcasting distress signals and improve the discovery probability with very little sacrifice of network lifetime, and indicate a potentially viable approach to expedite disaster rescue and relief operations

    Energy aware and privacy preserving protocols for ad hoc networks with applications to disaster management

    Get PDF
    Disasters can have a serious impact on the functioning of communities and societies. Disaster management aims at providing efficient utilization of resources during pre-disaster (e.g. preparedness and prevention) and post-disaster (e.g. recovery and relief) scenarios to reduce the impact of disasters. Wireless sensors have been extensively used for early detection and prevention of disasters. However, the sensor\u27s operating environment may not always be congenial to these applications. Attackers can observe the traffic flow in the network to determine the location of the sensors and exploit it. For example, in intrusion detection systems, the information can be used to identify coverage gaps and avoid detection. Data source location privacy preservation protocols were designed in this work to address this problem. Using wireless sensors for disaster preparedness, recovery and relief operations can have high deployment costs. Making use of wireless devices (e.g. smartphones and tablets) widely available among people in the affected region is a more practical approach. Disaster preparedness involves dissemination of information among the people to make them aware of the risks they will face in the event of a disaster and how to actively prepare for them. The content is downloaded by the people on their smartphones and tablets for ubiquitous access. As these devices are primarily constrained by their available energy, this work introduces an energy-aware peer-to-peer file sharing protocol for efficient distribution of the content and maximizing the lifetime of the devices. Finally, the ability of the wireless devices to build an ad hoc network for capturing and collecting data for disaster relief and recovery operations was investigated. Specifically, novel energy-adaptive mechanisms were designed for autonomous creation of the ad hoc network, distribution of data capturing task among the devices, and collection of data with minimum delay --Abstract, page iii

    Tactical Communications for Cooperative SAR Robot Missions

    Get PDF
    This chapter describes how the ICARUS communications (COM) team defined, developed and implemented an integrated wireless communication system to ensure an interoperable and dependable networking capability for both human and robotic search and rescue field teams and crisis managers. It starts explaining the analysis of the requirements and the context of the project, the existing solutions and the design of the ICARUS communication system to fulfil all the project needs. Next, it addresses the implementation process of the required networking capabilities, and finally, it explains how the ICARUS communication system and associated tools have been integrated in the overall mission systems and have been validated to provide reliable communications for real‐time information sharing during search and rescue operations in hostile conditions

    SmartDR: A Device-to-Device Communication for Post-Disaster Recovery

    Get PDF
    Natural disasters, such as earthquakes, can cause severe destruction and create havoc in the society.Buildings and other structures may collapse during disaster incidents causing injuries and deaths to victims trapped under debris and rubble. Immediately after a natural disaster incident, it becomes extremely difficult for first responders and rescuers to find and save trapped victims. Often searches are carried out blindly in random locations, which delay the rescue of the victims. This paper introduces a Smartphone Assisted Disaster Recovery (SmartDR) method for post-disaster communication using Smartphones. SmartDR utilizes the device-to-device (D2D) communication technology in Fifth Generation (5G) networks, which enables direct communication between proximate devices without the need of relaying through a network infrastructure, such as mobile access points or mobile base stations. We examine a scenario of multi-hop D2D communication where smartphones carried by trapped victims and other people in disaster affected areas can self-detect the occurrence of a disaster incident by monitoring the radio environment and then can self-switch to a disaster mode to transmit emergency help messages with their location coordinates to other nearby smartphones. To locate other nearby smartphones also operating in the disaster mode and in the same channel, each smartphone runs a rendezvous process. The emergency messages are thus relayed to the functional base station or rescue centre. To facilitate routing of the emergency messages, we propose a path selection algorithm, which considers both delay and the leftover energy of a device (a smartphone in this case). Thus, the SmartDR method includes: (i) a multi-channel channel hopping rendezvous protocol to improve the victim localization or neighbor discovery, and (ii) an energy-aware multi-path routing (Energy-aware ad-hoc on-demand distance vector or E-AODV) protocol to overcome the higher energy depletionrate at devices associated with single shortest path routing. The SmartDR method can guide search and rescue operations and increase the possibility of saving lives immediately aftermath a disasterincident. A simulation-based performance study is conducted to evaluate the protocol performance in post-disaster scenario. Simulation results show that a significant performance gain is achievable when a device utilises the channel information for the rendezvous process and the leftover energy

    Chapter Tactical Communications for Cooperative SAR Robot Missions

    Get PDF
    This chapter describes how the ICARUS communications (COM) team defined, developed and implemented an integrated wireless communication system to ensure an interoperable and dependable networking capability for both human and robotic search and rescue field teams and crisis managers. It starts explaining the analysis of the requirements and the context of the project, the existing solutions and the design of the ICARUS communication system to fulfil all the project needs. Next, it addresses the implementation process of the required networking capabilities, and finally, it explains how the ICARUS communication system and associated tools have been integrated in the overall mission systems and have been validated to provide reliable communications for real‐time information sharing during search and rescue operations in hostile conditions

    A survey of strategies for communication networks to protect against large-scale natural disasters

    Get PDF
    Recent natural disasters have revealed that emergency networks presently cannot disseminate the necessary disaster information, making it difficult to deploy and coordinate relief operations. These disasters have reinforced the knowledge that telecommunication networks constitute a critical infrastructure of our society, and the urgency in establishing protection mechanisms against disaster-based disruptions

    NA

    Get PDF
    Governments and local school systems continue to invest millions of dollars into educational technology. Most of these investments have not produced as promised and some are complete failures. The purpose of this thesis is to determine the state-of-the-art for the implementation of educational technology into the classroom and create a set of common lessons learned from these experiences. Also, an experiment using Microsoft Powerpoint is used to determine students specific likes and dislikes on the infusion of technology into their classroom. Two sections of the same class are used for the experiment. One is a control group that has the lecture material presented to them in the traditional manner (overhead transparencies and blackboard) and the second receive the same material plus additional information made possible by the abilities of Powerpoint. The students are then given a three part survey to express their feelings on the use of presentation technology. Overwhelmingly. the students prefer the use of presentation technology. They feel that the use of technology increases their ability to learn and adds flexibility for the professor and students. Also, the decreased time the instructor must spend writing notes on the blackboard is beneficial.http://archive.org/details/advancedmaterial1094532718NAU.S. Navy (U.S.N.) author.Approved for public release; distribution is unlimited

    Simulating a Post Disaster Scenario Through a Collaborative Peer-to-Peer App for Mobile Devices

    Get PDF
    In the wake of major disasters, the failure of existing communications infrastructure and the subsequent lack of an effective communication solution results in increased risk, inefficiencies, and damages to the people. One way to address this problem is to develop a distributed peer-to-peer system for mobile devices that relies on local communication such as Bluetooth technolog

    SECURITY AND PRIVACY ASPECTS OF MOBILE PLATFORMS AND APPLICATIONS

    Get PDF
    Mobile smart devices (such as smartphones and tablets) emerged to dominant computing platforms for end-users. The capabilities of these convenient mini-computers seem nearly boundless: They feature compelling computing power and storage resources, new interfaces such as Near Field Communication (NFC) and Bluetooth Low Energy (BLE), connectivity to cloud services, as well as a vast number and variety of apps. By installing these apps, users can turn a mobile device into a music player, a gaming console, a navigation system, a business assistant, and more. In addition, the current trend of increased screen sizes make these devices reasonable replacements for traditional (mobile) computing platforms such as laptops. On the other hand, mobile platforms process and store the extensive amount of sensitive information about their users, ranging from the user’s location data to credentials for online banking and enterprise Virtual Private Networks (VPNs). This raises many security and privacy concerns and makes mobile platforms attractive targets for attackers. The rapid increase in number, variety and sophistication of attacks demonstrate that the protection mechanisms offered by mobile systems today are insufficient and improvements are necessary in order to make mobile devices capable of withstanding modern security and privacy threats. This dissertation focuses on various aspects of security and privacy of mobile platforms. In particular, it consists of three parts: (i) advanced attacks on mobile platforms and countermeasures; (ii) online authentication security for mobile systems, and (iii) secure mobile applications and services. Specifically, the first part of the dissertation concentrates on advanced attacks on mobile platforms, such as code re-use attacks that hijack execution flow of benign apps without injecting malicious code, and application-level privilege escalation attacks that allow malicious or compromised apps to gain more privileges than were initially granted. In this context, we develop new advanced code re-use attack techniques that can bypass deployed protection mechanisms (e.g., Address Space Layout Randomization (ASLR)) and cannot be detected by any of the existing security tools (e.g., return address checkers). Further, we investigate the problem of application-level privilege escalation attacks on mobile platforms like Android, study and classify them, develop proof of concept exploits and propose countermeasures against these attacks. Our countermeasures can mitigate all types of application-level privilege escalation attacks, in contrast to alternative solutions proposed in literature. In the second part of the dissertation we investigate online authentication schemes frequently utilized by mobile users, such as the most common web authentication based upon the user’s passwords and the recently widespread mobile 2-factor authentication (2FA) which extends the password-based approach with a secondary authenticator sent to a user’s mobile device or generated on it (e.g, a One-time Password (OTP) or Transaction Authentication Number (TAN)). In this context we demonstrate various weaknesses of mobile 2FA schemes deployed for login verification by global Internet service providers (such as Google, Dropbox, Twitter, and Facebook) and by a popular Google Authenticator app. These weaknesses allow an attacker to impersonate legitimate users even if their mobile device with the secondary authenticator is not compromised. We then go one step further and develop a general attack method for bypassing mobile 2FA schemes. Our method relies on a cross-platform infection (mobile-to-PC or PC-to-mobile) as a first step in order to compromise the Personal Computer (PC) and a mobile device of the same user. We develop proof-of-concept prototypes for a cross-platform infection and show how an attacker can bypass various instantiations of mobile 2FA schemes once both devices, PC and the mobile platform, are infected. We then deliver proof-of-concept attack implementations that bypass online banking solutions based on SMS-based TANs and visual cryptograms, as well as login verification schemes deployed by various Internet service providers. Finally, we propose a wallet-based secure solution for password-based authentication which requires no secondary authenticator, and yet provides better security guaranties than, e.g., mobile 2FA schemes. The third part of the dissertation concerns design and development of security sensitive mobile applications and services. In particular, our first application allows mobile users to replace usual keys (for doors, cars, garages, etc.) with their mobile devices. It uses electronic access tokens which are generated by the central key server and then downloaded into mobile devices for user authentication. Our solution protects access tokens in transit (e.g., while they are downloaded on the mobile device) and when they are stored and processed on the mobile platform. The unique feature of our solution is offline delegation: Users can delegate (a portion of) their access rights to other users without accessing the key server. Further, our solution is efficient even when used with constraint communication interfaces like NFC. The second application we developed is devoted to resource sharing among mobile users in ad-hoc mobile networks. It enables users to, e.g., exchange files and text messages, or share their tethering connection. Our solution addresses security threats specific to resource sharing and features the required security mechanisms (e.g., access control of resources, pseudonymity for users, and accountability for resource use). One of the key features of our solution is a privacy-preserving access control of resources based on FoF Finder (FoFF) service, which provides a user-friendly means to configure access control based upon information from social networks (e.g., friendship information) while preserving user privacy (e.g., not revealing their social network identifiers). The results presented in this dissertation were included in several peer-reviewed publications and extended technical reports. Some of these publications had significant impact on follow up research. For example, our publications on new forms of code re-use attacks motivated researchers to develop more advanced forms of ASLR and to re-consider the idea of using Control-Flow Integrity (CFI). Further, our work on application-level privilege escalation attacks was followed by many other publications addressing this problem. Moreover, our access control solution using mobile devices as access tokens demonstrated significant practical impact: in 2013 it was chosen as a highlight of CeBIT – the world’s largest international computer expo, and was then deployed by a large enterprise to be used by tens of thousands of company employees and millions of customers
    • 

    corecore