11 research outputs found

    Development of Non Expensive Technologies for Precise Maneuvering of Completely Autonomous Unmanned Aerial Vehicles

    Get PDF
    In this paper, solutions for precise maneuvering of an autonomous small (e.g., 350-class) Unmanned Aerial Vehicles (UAVs) are designed and implemented from smart modifications of non expensive mass market technologies. The considered class of vehicles suffers from light load, and, therefore, only a limited amount of sensors and computing devices can be installed on-board. Then, to make the prototype capable of moving autonomously along a fixed trajectory, a “cyber-pilot”, able on demand to replace the human operator, has been implemented on an embedded control board. This cyber-pilot overrides the commands thanks to a custom hardware signal mixer. The drone is able to localize itself in the environment without ground assistance by using a camera possibly mounted on a 3 Degrees Of Freedom (DOF) gimbal suspension. A computer vision system elaborates the video stream pointing out land markers with known absolute position and orientation. This information is fused with accelerations from a 6-DOF Inertial Measurement Unit (IMU) to generate a “virtual sensor” which provides refined estimates of the pose, the absolute position, the speed and the angular velocities of the drone. Due to the importance of this sensor, several fusion strategies have been investigated. The resulting data are, finally, fed to a control algorithm featuring a number of uncoupled digital PID controllers which work to bring to zero the displacement from the desired trajectory

    A Realistic Model to Support Rescue Operations after an Earthquake via UAVs

    Get PDF
    In this paper, we consider the problem of completely flying over an area just hit by an earthquake with a fleet of Unmanned Aerial Vehicles (UAVs) to opportunely direct rescue teams. The cooperation between UAVs ensures that the search for possible survivors can be faster and more effective than the solutions currently implemented by civil protection. To study this scenario, we introduce the Cover by Multitrips with Priorities (CMP) problem, which tries to keep into account all the main real-life issues connected to the flight and coordination of the UAVs. We conduct a theoretical study to estimate the best number of UAVs and additional batteries, to give indications to the organization that leads the rescue teams to be able to guarantee rapid and effective rescue. Finally, based on some theoretical considerations, we propose some heuristics that tackle the problem of flying over the whole area with a fleet of UAVs in the shortest possible time. Simulations show that they work efficiently in both the proposed scenarios and provide better performance than previous solutions once they are arranged to work in our scenarios. The main advantages of our approach w.r.t. the current drone-based solutions used by the civil defense are that UAVs do not need drivers so the time of all available rescue workers can be invested in doing something else. In our model, we take into account that some sites (e.g. buildings with a high fire risk or schools and hospitals) have a higher priority and must be inspected first, and the possibility that UAVs can make a decision based on what they detect. Finally, our approach allows UAVs to collaborate so that the same sites will be flown over exactly once in order to speed up the rescue mission

    A survey of machine learning applications to handover management in 5G and beyond

    Get PDF
    Handover (HO) is one of the key aspects of next-generation (NG) cellular communication networks that need to be properly managed since it poses multiple threats to quality-of-service (QoS) such as the reduction in the average throughput as well as service interruptions. With the introduction of new enablers for fifth-generation (5G) networks, such as millimetre wave (mm-wave) communications, network densification, Internet of things (IoT), etc., HO management is provisioned to be more challenging as the number of base stations (BSs) per unit area, and the number of connections has been dramatically rising. Considering the stringent requirements that have been newly released in the standards of 5G networks, the level of the challenge is multiplied. To this end, intelligent HO management schemes have been proposed and tested in the literature, paving the way for tackling these challenges more efficiently and effectively. In this survey, we aim at revealing the current status of cellular networks and discussing mobility and HO management in 5G alongside the general characteristics of 5G networks. We provide an extensive tutorial on HO management in 5G networks accompanied by a discussion on machine learning (ML) applications to HO management. A novel taxonomy in terms of the source of data to be utilized in training ML algorithms is produced, where two broad categories are considered; namely, visual data and network data. The state-of-the-art on ML-aided HO management in cellular networks under each category is extensively reviewed with the most recent studies, and the challenges, as well as future research directions, are detailed

    The Design of Hotel Performance Management System in Padang

    Get PDF
    As a tourist place, Indonesia is supported by its beautiful natural scenaries and unique cultures. Actually most of Indonesia incomes came from tourism sectors. Padang as the administrative center of West Sumatra is one of tourism places in Indonesia. Unfortunately, all the facilities and touris actractions here need improvement, for example the hotels. Hotels in Padang need attention on the performance Hotels in Padang need attention on the performance This hotel depends on profit targets and classification of IHRA (Indonesian Hotel & Restaurant Association). For the increasement of this hotel, SWOT (Strength, Weakness, Opportunity, Threats) analysis and balanced scorecard method were applied. It began with the strategic information gathering based on interviewing the company, then continue processing it into a questionnaire which based on SWOT research. At this point, it is known that Premier Basko Hotel is in quadrant II (strength-threat) SWOT analysis diagram. So, this hotel needs to implement a diversification strategy. It also has 14 types of alternative strategies with strategic goals, 14 factors on Critical Success Factors (CSF), 38 indicators on Key Performance Indicators (KPI), and 38 pieces forms of performance management system. All of these are as the form of guidelines for the performance management system Premier Basko Hotel

    Edge Artificial Intelligence for Real-Time Target Monitoring

    Get PDF
    The key enabling technology for the exponentially growing cellular communications sector is location-based services. The need for location-aware services has increased along with the number of wireless and mobile devices. Estimation problems, and particularly parameter estimation, have drawn a lot of interest because of its relevance and engineers' ongoing need for higher performance. As applications expanded, a lot of interest was generated in the accurate assessment of temporal and spatial properties. In the thesis, two different approaches to subject monitoring are thoroughly addressed. For military applications, medical tracking, industrial workers, and providing location-based services to the mobile user community, which is always growing, this kind of activity is crucial. In-depth consideration is given to the viability of applying the Angle of Arrival (AoA) and Receiver Signal Strength Indication (RSSI) localization algorithms in real-world situations. We presented two prospective systems, discussed them, and presented specific assessments and tests. These systems were put to the test in diverse contexts (e.g., indoor, outdoor, in water...). The findings showed the localization capability, but because of the low-cost antenna we employed, this method is only practical up to a distance of roughly 150 meters. Consequently, depending on the use-case, this method may or may not be advantageous. An estimation algorithm that enhances the performance of the AoA technique was implemented on an edge device. Another approach was also considered. Radar sensors have shown to be durable in inclement weather and bad lighting conditions. Frequency Modulated Continuous Wave (FMCW) radars are the most frequently employed among the several sorts of radar technologies for these kinds of applications. Actually, this is because they are low-cost and can simultaneously provide range and Doppler data. In comparison to pulse and Ultra Wide Band (UWB) radar sensors, they also need a lower sample rate and a lower peak to average ratio. The system employs a cutting-edge surveillance method based on widely available FMCW radar technology. The data processing approach is built on an ad hoc-chain of different blocks that transforms data, extract features, and make a classification decision before cancelling clutters and leakage using a frame subtraction technique, applying DL algorithms to Range-Doppler (RD) maps, and adding a peak to cluster assignment step before tracking targets. In conclusion, the FMCW radar and DL technique for the RD maps performed well together for indoor use-cases. The aforementioned tests used an edge device and Infineon Technologies' Position2Go FMCW radar tool-set

    Feature Papers of Drones - Volume II

    Get PDF
    [EN] The present book is divided into two volumes (Volume I: articles 1–23, and Volume II: articles 24–54) which compile the articles and communications submitted to the Topical Collection ”Feature Papers of Drones” during the years 2020 to 2022 describing novel or new cutting-edge designs, developments, and/or applications of unmanned vehicles (drones). Articles 24–41 are focused on drone applications, but emphasize two types: firstly, those related to agriculture and forestry (articles 24–35) where the number of applications of drones dominates all other possible applications. These articles review the latest research and future directions for precision agriculture, vegetation monitoring, change monitoring, forestry management, and forest fires. Secondly, articles 36–41 addresses the water and marine application of drones for ecological and conservation-related applications with emphasis on the monitoring of water resources and habitat monitoring. Finally, articles 42–54 looks at just a few of the huge variety of potential applications of civil drones from different points of view, including the following: the social acceptance of drone operations in urban areas or their influential factors; 3D reconstruction applications; sensor technologies to either improve the performance of existing applications or to open up new working areas; and machine and deep learning development

    Improved handover decision scheme for 5g mm-wave communication: optimum base station selection using machine learning approach.

    Get PDF
    A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Information and Communication Science and Engineering of the Nelson Mandela African Institution of Science and TechnologyThe rapid growth in mobile and wireless devices has led to an exponential demand for data traf fic and exacerbated the burden on conventional wireless networks. Fifth generation (5G) and beyond networks are expected to not only accommodate this growth in data demand but also provide additional services beyond the capability of existing wireless networks, while main taining a high quality-of-experience (QoE) for users. The need for several orders of magnitude increase in system capacity has necessitated the use of millimetre wave (mm-wave) frequencies as well as the proliferation of low-power small cells overlaying the existing macro-cell layer. These approaches offer a potential increase in throughput in magnitudes of several gigabits per second and a reduction in transmission latency, but they also present new challenges. For exam ple, mm-wave frequencies have higher propagation losses and a limited coverage area, thereby escalating mobility challenges such as more frequent handovers (HOs). In addition, the ad vent of low-power small cells with smaller footprints also causes signal fluctuations across the network, resulting in repeated HOs (ping-pong) from one small cell (SC) to another. Therefore, efficient HO management is very critical in future cellular networks since frequent HOs pose multiple threats to the quality-of-service (QoS), such as a reduction in the system throughput as well as service interruptions, which results in a poor QoE for the user. How ever, HO management is a significant challenge in 5G networks due to the use of mm-wave frequencies which have much smaller footprints. To address these challenges, this work in vestigates the HO performance of 5G mm-wave networks and proposes a novel method for achieving seamless user mobility in dense networks. The proposed model is based on a double deep reinforcement learning (DDRL) algorithm. To test the performance of the model, a com parative study was made between the proposed approach and benchmark solutions, including a benchmark developed as part of this thesis. The evaluation metrics considered include system throughput, execution time, ping-pong, and the scalability of the solutions. The results reveal that the developed DDRL-based solution vastly outperforms not only conventional methods but also other machine-learning-based benchmark techniques. The main contribution of this thesis is to provide an intelligent framework for mobility man agement in the connected state (i.e HO management) in 5G. Though primarily developed for mm-wave links between UEs and BSs in ultra-dense heterogeneous networks (UDHNs), the proposed framework can also be applied to sub-6 GHz frequencies
    corecore