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Abstract

The key enabling technology for the exponentially growing cellular

communications sector is location-based services. The need for location-

aware services has increased along with the number of wireless and

mobile devices. Estimation problems, and particularly parameter es-

timation, have drawn a lot of interest because of its relevance and

engineers’ ongoing need for higher performance. As applications ex-

panded, a lot of interest was generated in the accurate assessment of

temporal and spatial properties.

In the thesis, two different approaches to subject monitoring are thor-

oughly addressed. For military applications, medical tracking, indus-

trial workers, and providing location-based services to the mobile user

community, which is always growing, this kind of activity is crucial.

In-depth consideration is given to the viability of applying the An-

gle of Arrival (AoA) and Receiver Signal Strength Indication (RSSI)

localization algorithms in real-world situations. We presented two

prospective systems, discussed them, and presented specific assess-

ments and tests. These systems were put to the test in diverse con-

texts (e.g., indoor, outdoor, in water...). The findings showed the

localization capability, but because of the low-cost antenna we em-

ployed, this method is only practical up to a distance of roughly 150

meters. Consequently, depending on the use-case, this method may



or may not be advantageous. An estimation algorithm that enhances

the performance of the AoA technique was implemented on an edge

device.

Another approach was also considered. Radar sensors have shown to

be durable in inclement weather and bad lighting conditions. Fre-

quency Modulated Continuous Wave (FMCW) radars are the most

frequently employed among the several sorts of radar technologies for

these kinds of applications. Actually, this is because they are low-cost

and can simultaneously provide range and Doppler data. In compar-

ison to pulse and Ultra Wide Band (UWB) radar sensors, they also

need a lower sample rate and a lower peak to average ratio. The

system employs a cutting-edge surveillance method based on widely

available FMCW radar technology. The data processing approach

is built on an ad hoc-chain of different blocks that transforms data,

extract features, and make a classification decision before cancelling

clutters and leakage using a frame subtraction technique, applying

DL algorithms to Range-Doppler (RD) maps, and adding a peak to

cluster assignment step before tracking targets. In conclusion, the

FMCW radar and DL technique for the RD maps performed well to-

gether for indoor use-cases. The aforementioned tests used an edge

device and Infineon Technologies’ Position2Go FMCW radar tool-set.
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Chapter 1

Introduction

Location-based services are the primary enabling technology in the wireless com-

munications industry, which is expanding at an exponential rate. From short-

range Bluetooth and ad-hoc to long-range telecom networks, location-based ser-

vices (LBS) are available. In a broad sense, location-based services are thought

to give users of the services the most basic information about their whereabouts

by exploiting the location of wireless devices within the network. The latter is

the most important factor for the device’s unique identification.

As the number of mobile and wireless devices has expanded, so has the demand

for location-aware services. For instance, in the area of medical science, patient

management and movement [1; 2; 3], concept of smart spaces that enable physical

space and human interaction [4; 5; 6], in the area of logistics for the transportation

of goods [7; 8], inventory management and warehousing [9; 10], environmental

monitoring services use sensor networks for real-time weather predictions and to

determine the source of pollutants that are present in air and water [11], and

content sharing using social media platforms [12; 13].

A device that uses logic and arithmetic-based processes, computers were cre-

ated in the past 70 years thanks to advancements in electronics. Powerful com-
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puter systems that could do computations in logic and arithmetic faster than

humans were made possible by further development. Artificial intelligence, one

of the fields of computer science, researches how to create intelligent systems that

might decide based on input parameters and prior information. The development

of semi- and fully autonomous decision-making systems has been made feasible by

advances in artificial intelligence during the past 15 years. One of these systems

is an automated surveillance system that can find nearby objects, classify them,

and estimate their properties.

One of the more sophisticated automatic surveillance systems allows for the

automatic classification of targets to determine the type of object. Such a system

conducts surveillance simultaneously for numerous target situations over broad

areas. For instance, it may predict traffic conditions, determine the number and

location of people within buildings, open doors automatically, turn on lights, alert

the community to an invasion, and more. Sensory equipment is used to ”sense”

or comprehend the environment. Some sensors, such as radar sensors, are more

sensitive than human senses, making them ideal for robotic surveillance.

The developments in a number of application scenarios, such as subsurface

prospection [14; 15; 16], non-destructive testing [17; 18], and transportation in-

frastructure monitoring [19], also significantly contribute to the creation of new

systems. The most promising technologies for use in these systems now are op-

tical and radar sensors [20]. The energy of optical light is measured by optical

sensors. These inexpensive sensors are capable of recreating images experienced

by the human eye. In good lighting, it facilitates object recognition and removes

obstructions. A wide vision, short-range surveillance system or a limited view,

far-field surveillance system could be built using camera sensors. Good perfor-

mance, however, can only be attained in favorable weather. Rain or fog could

make them less effective.

2



1.1 Motivations

Moreover, processing huge amounts of data necessitates the use of powerful

gear. Contrarily, radar sensors rely on the reflection of electromagnetic waves.

With the use of precise distance measurements, it is able to estimate the target’s

radial velocity in the highfrequency range. Radar sensors also operate in prac-

tically all weather and lighting conditions, and their capacity to pass through

objects and have a vast range of operation are also advantages.

Short-range radars [21] are particularly intriguing within this framework due

to their resistance to inclement weather and insensitivity to lighting issues [22],

which can have a significant negative impact on video-based devices [23]. Appli-

cations for target detection and categorization used a variety of radar types.

1.1 Motivations

Due to its applicability and the engineers’ constant need for better performance,

estimation problems, and specifically parameter estimation, have attracted a lot

of attention. The precise estimation of temporal and geographical characteristics

attracted a lot of interest as applications grew. Sensor array processing has been

an area of active research during the past decade because of the requirement to

gather data from all sensors to provide an estimation. The processing of an array

sensor depends on prior knowledge of the shape, properties, and quantity of the

array’s elements. The most regarded achievement of this method is the source

location estimation using radars and sonars.

The classical beamformer approach is one of the early angle of arrival (AoA)

techniques that was proposed in 1961 [24]. According to the core idea behind this

technique, each antenna element should be given an equal amount of weighting

when creating the steering vector [25].

Many efforts and attempts have been done to improve performance and in-

3



1.2 Aims, Objectives and Contributions

crease resolution of the conventional methods that requires environment-specific

fine tuning. Short-range radars [21; 26] are particularly intriguing in this context

because to their resistance to bad weather and insensitivity to illumination issues

[22; 27], which can have a significant negative impact on antenna or video-based

devices. Applications for target detection and categorization used a variety of

radar types.

In particular, the FMCW radar technology has been widely adopted in the

production of cost-effective and compact systems for several applications. On

the one hand, unlike monostatic pulsed radars, these radars do not have the

severe blind range problems that they often do [28]. On the other hand, they are

typically less expensive and have a wider field of view than LIDAR and long-wave

infrared (LWIR) sensors [22]. They can also deliver both range and velocity at

the same time. Such information can be obtained through different processing

schemes, e.g., by using a 2D FFT technique [29]. Moreover, unlike pulse and

Ultra-Wide Band (UWB) radars, FMCW systems require lower sampling rates

and lower peak-to-average power ratio to detect the distance and speed of multiple

moving targets [30; 31].

1.2 Aims, Objectives and Contributions

The aim of this research is to make a system-level contribution to the analysis,

design, and implementation of system components for tracking devices that can

be utilized to improve location-based services and the user or asset location es-

timation. The angle estimation technique and the FMCW radar method are the

system level components that are the subject of this work. Objectives identified

towards this aim were to:

• Objective 1 - Review and comprehend the uses of location-aware services

4



1.2 Aims, Objectives and Contributions

as well as their significance

• Objective 2 - Model and simulate current estimate strategies while com-

prehending the parameter estimation challenge

• Objective 3 - Contribute new techniques that enhance the capability of

the chosen localization frameworks

• Objective 4 - Design a novel processing chain for multi-target classification

The major contributions of this work are

• An overview of localization-aware services is presented in Chapter 2

• An experimental evaluation for moving target localization method using the

Angle of Arrival and RSSI signal is presented in Chapter 3.5

• A new system that uses the Angle of Arrival signal estimation technique

for localizing targets in a maritime environment is proposed in Chapter

3.6. Simulations and measurements have been carried out to evaluate the

performance of the proposed system and the results prove that the proposed

system can indeed localize targets under some known limitations

• A novel CNN based method for discriminating shadowed targets using an

FMCW radar is presented in Chapter 4.4. The proposed solution is based

on a CNN model that classifies the spectrogram images, obtained after a

time-frequency analysis of the radar data, among one of two classes: One

Target vs. Two Targets. The proposed solution achieves an accuracy of

92.2%

• An edge multi class action recognition system based on DL is also dis-

cussed in Chapter 4.5. This method used sequences of range-Doppler maps
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1.3 Outline of the Thesis

extracted from a low-cost FMCW radar. The results showed that the model

achieved the best accuracy (93.2%) in the 5-class classification case. More-

over, the same model distinguished fall from non-fall actions with an accu-

racy of 96.8% and a false-negative rate of 5.5%.

1.3 Outline of the Thesis

The thesis is structured as follows:

• Chapter 2 provides an introduction of the location based services. It de-

scribes the different positioning systems, including indoor positioning sys-

tems. Then a brief review of the used systems is provided

• Chapter 3 depicts the proposed localization system that uses the received

Angle of Arrival signal. An experimental assessment for moving targets

using AoA and RSSI in section 3.5. A maritime localization system that is

based on IoT is proposed in section 3.6. Finally, in section 3.7, the patent

claims and the proof of concept product are detailed

• Chapter 4 explains the proposed real-time target monitoring system that

uses the FMCW radar. A CNN based method for discriminating shadowed

targets is explained in section 4.4. In section 4.5, an edge multi-class action

recognition system based on DL is proposed

• Chapter 5 summarizes the thesis and provides the outcomes of this research.

This chapter discusses the findings drawn from each chapter and how the

work may be expanded
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Chapter 2

State of the Art

2.1 Introduction

To safeguard oneself from outside disturbance, knowledge and comprehension of

our environment are crucial. For many years, people have built defense mecha-

nisms to safeguard their possessions. Monitoring the environment around us is

a crucial component of defense because it enables guardians to be ready for any

unwelcome intrusion into their domain. There may be a wide range of civil ap-

plications for surveillance systems. For instance, knowing the amount of people

inside buildings and their placements can help prevent and put out fires more ef-

fectively. Additionally, automatic door-opening and light-switching devices that

use sensors could conserve resources. Drivers may be able to avoid collisions

by paying attention to road conditions. However, the ”human factor” may lead

human-performed monitoring to be inexact ”which might have unpredicted ef-

fects. Furthermore, a person’s ability to perceive their environment is constrained.

The ”human element” auxiliary gadgets or assistance systems may help to lessen

this.

A device that uses logic and arithmetic-based operations, computers were
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2.1 Introduction

created in the past 70 years thanks to advancements in electronics. Powerful

computing systems that could perform computations in logic and arithmetic faster

than humans were made possible by further development. Artificial intelligence,

one of the fields of computer science, researches how to create intelligent systems

that could decide based on input parameters. The development of semi- and

fully autonomous decision-making systems has been made possible by advances

in artificial intelligence during the past 30 years. One of these systems is an

automatic surveillance system that can find nearby objects, classify them, and

estimate their properties.

One of the more sophisticated automatic surveillance systems allows for the

automatic classification of targets to determine the type of object. Such a system

conducts surveillance simultaneously for numerous target situations over broad

areas. For instance, it may predict traffic conditions, determine the number and

location of people within buildings, open doors automatically, turn on lights, alert

the community to an invasion, and more. Sensory equipment is used to ”sense”

or comprehend the environment. Some sensors, such as radar sensors, are more

sensitive than human senses, making them ideal for robotic surveillance.

The creation of dependable monitoring and surveillance tools for use in ur-

ban settings and near-critical zones has recently attracted increased focus [32;

33; 34; 35]. For instance, the development of autonomous driving automobiles

and continual improvements in the technology of autonomous vehicles sparked

study into the creation of a pedestrian detection system to protect the safety of

pedestrians [36; 37; 38; 39]. Additionally, the threat of domestic terrorism and

criminal activity is currently seen as the primary impetus for researchers to create

more dependable surveillance systems to be put in metropolitan locations [32].

The developments in a number of application scenarios, such as subsurface

prospection [14; 15; 16], non-destructive testing [17; 18], and transportation in-
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2.1 Introduction

frastructure monitoring [19; 40; 41], also significantly contribute to the creation

of new systems. The most promising technologies for use in these systems now

are optical and radar sensors [20]. The energy of optical light is measured by

optical sensors. These inexpensive sensors are capable of recreating images ex-

perienced by the human eye. In good lighting, it facilitates object recognition

and removes obstructions. A wide vision, short-range surveillance system or a

limited view, far-field surveillance system could be built using camera sensors.

Good performance, however, can only be attained in favorable weather. Rain or

fog could make them less effective.

Additionally, Wireless Sensor Network (WSN) continues to draw the interest

of the telecom industry. They promise a wide range of potential uses, including

traffic control and surveillance. Data collected by sensors for the majority of these

applications should be linked to sensor placements because it is useless without

knowledge of where it came from [42]. For the implementation of a WSN, precise

node localisation is essential. In addition to being an essential component of the

sensory context, positional information is also necessary for the localization of

mobile radio nodes that use static nodes as a reference, as detailed in [43].

WSN is made up of numerous tiny sensor nodes with computing power, com-

munication abilities, and sensing capabilities. Each sensor node is capable of de-

tecting a variety of physical phenomena, including temperature, vibration, light,

electromagnetic strength, humidity, and others, and transmitting the sensed data

to the sink node via a network of numerous intermediary nodes. The WSN has

been extensively utilized in numerous fields, including military operations, health-

care, and environmental inspection, due to its strong and functional capabilities.

In many applications, in addition to the sensed data, the sensor node’s location

information is desirable. Additionally, routing efficiency can be increased by using

the deployed sensor nodes’ locations.
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2.1 Introduction

Thus, one of the most important problems in WSNs is how to locate or de-

termine the placements of sensor nodes [44]. Our interaction with the physical

environment has been facilitated by the development of WSNs. A WSN is made

up of numerous widely dispersed sensor nodes, each of which has limited resources

and is typically inexpensive. The network is frequently set up so that there must

be several hops in order for the sensor nodes and base stations to communicate.

Without knowing the locations of the corresponding sensor nodes, the data ac-

quired in many WSN applications, such as monitoring and tracking, is useless

[45].

Due to the enormous dimensions of directional antennas, Angle of Arrival

(AoA) algorithms are rarely taken into account for WSNs; however, several sys-

tem configurations are researched that can be easily implemented in pocket-size

wireless devices. Finding the AOA of various multipath components is highly

helpful since it enables antenna radiation pattern optimization and can be used

to find and track phones that are active in a specific cell. Similar to this, un-

derstanding the AOA permits the design of antennas with optimized radiation

patterns for on-body communications. This allows for determining the position

of the antennas in relation to one another. The multipath impact can be reduced

if diversity reception is used at one or both of the terminals. Using well-known

methods like ESPRIT and MUSIC, as well as Ray-tracing techniques, the AOA

may be calculated from the measured diversity data [46]. There haven’t been any

attempts, though, to use this for on-body AOA estimate using RSSI.
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2.2 Angle of Arrival

2.2 Angle of Arrival

The distance between two WSN nodes is estimated using the Received Signal

Strength Indicator (RSSI), which displays the signal strength at the receiving

end. As an overview, localization’s core concept is as follows. The fixed anchor

nodes are able to detect the beacon signal that is emitted by a tracked node with

an unknown location. The received signal strength (RSS), time of arrival (ToA),

or angle of arrival (AoA) of the received signal are the three characteristics that

the anchor nodes measure [45]. An algorithm that identifies the general location

of the tracked node uses these measurements as inputs. Each anchor node in

the AoA estimates idea looks for the mobile node, or vice versa. As a result,

the transmitted scanning beam must include both azimuth and elevation angles.

To apply angle of arrival estimates, however, azimuth and elevation angle details

were not covered in detail in earlier studies [45]. The theoretical relationship

between RSSI values and distance between two nodes is inverse. Therefore, it is

crucial to know the precise azimuth and elevation values, the angle between two

nodes. Another study suggests a localization system that uses AoA estimates and

more than one antenna for scanning and reading the RSSI value, which would

raise the cost of creating the system [47; 48]. To achieve the highest RSSI value

in [43; 49; 50], stepped motors are proposed. Stepped motor capable of rotating

scanning beam 360 degrees. Nevertheless, the use of stepper motors increases

power consumption while also raising system costs. Stepper-motor time delays

also contribute to overall system inefficiency when using WSN AoA estimation

algorithms.

In wireless networks, localisation based on Angle of Arrival (AoA) measure-

ments has gained substantial popularity [51; 52; 53; 54; 55; 56]. This technique

allows for the calculation of the characteristics that define the direction of radio

wave propagation on the antenna array. Geodesic location or mobile geolocation
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2.2 Angle of Arrival

are examples of AoA uses [57]. A base station’s many receivers can determine

the AoA of the mobile’s signal and determine the location of the mobile. Finding

the position of military or spy radio transmitters is another purpose for AoA. In

submarines, it is also utilized to locate objects with active or passive ranging.

Additionally, interferometry in optics uses it. AoA placement is an easy tech-

nique. The base stations in mobile communications assess the AoA in relation

to an absolute reference, such as north, for instance 28 [58; 59]. The user’s posi-

tion (xu, yu) can be estimated by transecting two lines that pass across the base

stations with the measured angles, keeping in mind that the location of the base

station (xb, yb) is known and the absolute angles can be measured [60].

With more space separating the positioning device from the mobile, the AoA

positioning accuracy drops. As a result, AoA might not be appropriate for many

positioning applications. When using Wireless Local Area Network (WLAN),

access points close to the mobile device can provide precise positioning when

compared to time-based solutions with a comparable signal bandwidth [61]. Angle

of Arrival measurements include a number of drawbacks, including the usage of

numerous sensors (microphones, antennas and ultrasonic sensors). Arrays are

thought to be unsuited for integration due to their size and high cost, but as

radio communications reach higher frequencies, the dimensions of the antenna

get smaller and Micro-electromechanical systems (MEMS) technology advances.

When array-enabled node platforms are present, integration becomes feasible.

By incorporating multiple antennas in the same dimensions, a platform can be

designed using four antenna elements, which does not cost very much.
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2.3 Frequency Modulated Continuous Wave radar

2.3 Frequency Modulated ContinuousWave radar

Moreover, processing huge amounts of data necessitates the use of powerful gear.

Contrarily, radar sensors rely on the reflection of electromagnetic waves. With

the use of precise distance measurements, it is able to estimate the target’s radial

velocity in the high frequency range. Radar sensors also operate in practically all

weather and lighting conditions, and their capacity to pass through objects and

have a vast range of operation are also advantages.

Short-range radars [21; 26] are particularly intriguing within this framework

due to their resistance to inclement weather and insensitivity to lighting issues

[27], which can have a significant negative impact on video-based devices [23]. Ap-

plications for target detection and categorization used a variety of radar types.

Particularly, the Frequency Modulated Continuous Wave (FMCW) radar technol-

ogy has been widely used to create affordable and portable systems for a variety

of applications [62; 63; 64; 65; 66].

On the one hand, unlike monostatic pulsed radars, these radars do not have

the substantial blind range problems that they often do [67]. On the other hand,

they are typically less expensive and have a wider field of view than LIDAR and

long-wave infrared (LWIR) equipment [22]. They can also deliver both range and

velocity at the same time. Such information can be acquired utilizing a variety of

processing techniques, such as the 2D FFT approach [29]. Additionally, FMCW

systems require lower peak-to-average power ratios and sampling rates than pulse

and Ultra-Wide Band (UWB) radars to identify the distance and speed of several

moving targets [31; 68].

In the literature, the shadow effect has been targeted only by a few [69; 70; 71;

72; 73; 74; 75; 76; 77; 78]. The authors proposed non-scalable solutions, thus re-

quiring expert intervention for applying their methods in different environments.

In this paper, we propose a novel solution for solving the issue of target identifi-
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2.3 Frequency Modulated Continuous Wave radar

cation in the shadow region and we adopt Deep Learning (DL) techniques. This

method is quantitatively analyzed and results are presented in Section 4.4.4. It

benefits from the promising achievements presented in the literature of applying

AI techniques on post-processed radar data. These techniques can help to dy-

namically learn suitable filters. This proposed solution is also scalable and does

not need expert intervention.

In general, DL methods have proven to be very efficient in real-world image

classification [79]. Moreover, DL techniques that use radar input are adopted for

a wide range of applications, such as target classification [80], object tracking [23],

and gesture recognition applications [81]. Among DL techniques, Convolutional

Neural Networks (CNNs) are particularly suited for addressing image processing

problems [82; 83]. Our proposed method uses a lightweight CNN model based

on ImageNet (i.e., convolutional filters have been pre-learned based on ImageNet

data [84]) to target the discrimination of shadowed targets, fine-tuning only the

weights of the last layer (i.e., dense layer). The convolutional layers perform

the feature extraction without any prior knowledge of the user. To validate the

proposed solution, we address a two-class classification problem: one target vs.

two targets. In the latter, one target is in the shadowing region of the other.

Four models have been tested using the collected dataset. The best model in

terms of accuracy is the MobileNet V3 Large version; it achieves a generalization

performance on the test set of 92.2%. The results encourage us to extend the

adoption of CNNs in applications such as identifying and tracking more shad-

owed targets. In recent years, the application of radars for target detection at

short and medium ranges has become ubiquitous [85]. The use of short-range

Ultra-Wide-Band (UWB) and Continuous-Wave (CW) radars is becoming an

attractive solution for localization purposes. Some radar systems applications

include through-wall and through-fire detection [74; 86], the tracking of moving
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2.3 Frequency Modulated Continuous Wave radar

targets during security operations [87], the detection of trapped people after an

avalanche or earthquake [88], and the detection, tracking, and classification of

multiple targets passing through a security gate [89].

Up to now, the bi-static radars (with at least one transmitting antenna and at

least one receiving antenna) have resolved the detection and localization of a single

stationary target, yet the problem of multi-stationary target detection has been

less addressed. The bi-static radars are able to accurately detect targets that are

closer to the radar antennas, whereas the greater the distance of the targets from

the radar, the lower the accuracy of the detection [70]. This is mainly attributed

to two factors. Firstly, as the transmission distance increases, the energy of the

electromagnetic wave is attenuated; hence, the energy of electromagnetic waves

reaching farther targets is inevitably smaller than that reaching the closest target.

Secondly, some targets, named recessive targets, can lie in the shadowed region

of a dominant target (i.e., the closest to the radar). Thus, because the highest

energy of the electromagnetic waves is reflected from the dominant target to the

radar, the electromagnetic illumination of the recessive targets could decrease to

the point where they are not detected [71]. Therefore, radar systems suffer from

what is called the shadowing effect. This effect occurs when two targets stand

in front of the antenna, one in the shadowing region of the other. The radar is

usually not reliably capable of detecting the target that is standing in the shadow

region [70]. This problem is common for most radar technologies, particularly,

Ultra-Wide-Band (UWB) radar [74] and Frequency-Modulated Continuous-Wave

(FMCW) radar [90]. Unlike pulse and Ultra-Wide-Band (UWB) radars, FMCW

systems require lower sampling rates and lower peak-to-average power ratios to

detect the distance and speed of multiple moving targets [30; 31]. Accordingly,

the FMCW radar is a good solution for detection and localization purposes but

performs poorly whenever the shadow effect occurs. The shadow effect is more
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relevant in low-cost radars. This is due to their lower resolution compared to the

high-end radars (higher range and velocity resolution) [91].

In [69], the shadow effect and its removal using PCL radar is investigated. A

study on PCL radar performance under the shadowing effect is presented, when

a distant, weak target echo is shadowed by strong echoes. In [70; 71], the authors

outlined an origin of the shadow effect as the impact of the mutual shadowing of

targets at the multiple persons tracking scenario. This explanation is confirmed

by the experimental measurements. Other researchers investigated the shadow-

ing effect for the purposes of person detection and tracking by UWB radars [72].

The results confirms the existence of additional attenuation within the shadow

zones. In [73], a technique based on wavelet entropy is proposed because of the

significant difference in frequency ratio components between the echo signal of

the tested target and that of the masked target generated by dynamic clutter.

Wavelet entropy can accurately detect multiple human targets in the presence of

dynamic clutter, even if the distant human targets are in the shadow area of the

closer target, as compared to the reference techniques of adaptive line enhance-

ment and energy accumulation. In [74], a significant difference of frequency have

been detected between the echo signal of the human target and that of noise in

the shadowing region. The authors concluded that the target detection using the

power spectrum is not effective. Therefore, an auto-correlation algorithm is ap-

plied to the pre-processed signals in order to compute the wavelet entropy. Results

showed that the proposed approach is capable of detecting a shadowed target.

Other application were addressed in the literature [75; 76; 77; 78]. In general,

none of previous works presented a scalable solution for solving the shadowing

effect. In fact, those solutions requires expert intervention for applying them in

different environments.

Several works involving the use of FMCW radar has been reported in the liter-
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ature. In [81], the authors introduced a novel system for dynamic continuous hand

gesture recognition based on a frequency-modulated continuous wave radar sen-

sor. They employed a recurrent 3D CNN to perform the classification of dynamic

hand gestures and achieved a recognition rate of 96%. In [92], the authors pro-

posed a prototype of a FMCW radar system for classification of multiple targets

passing through a road gate. The classification covered four classes: pedestrians,

motorcycles, cars, and trucks and achieved an accuracy of 88.4%. Many other ap-

plications were tackled in the literature [90; 93; 94; 95; 96; 97; 98; 99; 100]. Most

of the systems presented in the aforementioned works suffer from the shadow

effect. However, none of them proposed a solution for it.

Deep learning classification techniques for radar target classification has also

been adopted in the literature. A practical classification of moving targets sys-

tem, based on automotive radar and deep neural networks is presented in [101].

The study presents results for classification of different classes of targets using

automotive radar data and different neural networks. In addition, A Human-

Robot classification system based on 25 GHz FMCW radar using micro-Doppler

features was introduced in [102]. The raw Range-Doppler images were directly fed

a CNN resulting in a performance of 99% accuracy for identifying humans from

robots. Many other applications that uses neural networks for radar problems

were tackled in the literature [103; 104; 105; 106; 107].

Indoor falls are a major public health concern and the main cause of acci-

dental death in the senior population worldwide. Timely and accurate detection

permits immediate assistance after a fall and, thereby, reduces complications of

fall risk [108]. Edge-based approaches are essential to support time-dependent

healthcare applications [109]. Due to the advantages of portability, low cost,

and availability, wearable devices are regarded as one of the key types of sensors

for fall detection and have been widely studied [110; 111; 112; 113]. The main
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drawback of these systems is the battery life which can limit the usability of the

wearable devices. The second drawback is that the monitored subjects must al-

ways wear them, causing obvious discomfort, especially for elderly. Vision-based

fall detection is another prominent method. Extensive effort in this direction has

been demonstrated, showing promising results [114; 115; 116]. Although cam-

eras are not as portable as wearable devices, they offer other advantages which

deem them as decent options depending on the scenario: most static RGB cam-

eras are not intrusive and wired, hence there is no need to worry about battery

limitations. One major inconvenience of vision-based detection is the potential

violation of privacy due to the levels of detail that cameras can capture, such as

personal information, appearance, and visuals of the living environment. In addi-

tion, vision-based approach could introduce issues related to color bias [117]. The

ambient sensors (e.g., ultrasonic, WiFi antennas, radars, etc.) provide another

non-intrusive means of fall detection. Ambient sensing is drawing more attention

which can be attributed to being device-free for users and can solve the problem

of people’s privacy and color bias. Ultrasonic sensor network systems are one of

the solutions for fall detection [118]. In [119], a fall detection approach uses WiFi

signals, showing impressive results in detecting falls.

Non-contact indoor monitoring using radars is getting popular in recent years

[120]. In [121; 122; 123], the human action recognition is performed by a machine

learning (ML) algorithm trained on hand-crafted features extracted from the

radar signals. The main drawback of these techniques is the time and effort

required for the processing of the data and the features extraction operation.

Some other works propose deep neural networks (DNNs) to automatically extract

features for human actions recognition and fall detection. In [124], stack auto-

encoders (AEs) are used to automatically extract the features from the gray-

scale spectrogram and to classify four activities including the fall. In [125], the
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authors combine convolutional neural networks (CNNs) and AEs to classify twelve

actions based on micro-Doppler signatures. In [126], two DNNs automatically

extract the features from the time series corresponding to the fast time of an

ultra-wideband (UWB) radar return signals and classify fall actions. In [127],

bidirectional long short-term memory (LSTM) networks classify activities, in real-

time, based on the fusion of data collected using radar and wearable devices. In

[128], LSTMs with and without bi-directional neurons classify the activities based

on the micro-Doppler spectrograms. The data are considered as a continuous

temporal sequence. In [129], the authors adopt a generative adversarial network

(GAN) to enrich with synthetic samples a dataset containing a low number of

micro-Doppler signatures representing human actions. Using this method, the

capability of generalizing on new data is increased. In [130], a DNN takes binary-

masked spectrograms as input. Those are computed on the signals of the UWB

radar, classifying falls. In [131], the authors propose an algorithm to extract the

optimal range bin from the range-Doppler spectrograms of a moving target for

the subsequent time-frequency analysis, then a DNN built upon a pre-trained

model classifies the falls based on the optimal resulted spectrograms.
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Chapter 3

Real-time Target Monitoring

using Received Angle of Arrival

Signal

3.1 Summary

This chapter is arranged as follows, in section 3.2 the Angle of Arrival method is

introduced. In section 3.3, we explain the localization technology using AoA and

Received Signal Strength (RSSI). In section 3.4 the hardware components used

in this study are presented. In section 3.5 the experimental assessment of moving

targets localization performance is detailed. In section 3.6 a maritime localization

system is proposed and the results are examined. In section 3.7 we get a brief

look on the patent claims. Finally, in section 3.8, this chapter is concluded.
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3.2 Angle of Arrival Use Cases

The problem of determining the spatial relationship between various things is one

that is receiving a lot of attention due to recent technological advancements and

customer demand. Localization is the term for this process, which has several

widespread uses [132; 133; 134]. Geolocation is the process of using the earth as

the reference frame in localization procedures.

However, without precise transmitter node position data, the data gathered

for these applications is meaningless. Future smart antenna technology will rely

heavily on direction-finding algorithms because the Global Positioning System

(GPS) has limitations due to the need for Line of Sight (LOS) between the satellite

and the GPS receiver [135].

For both military and non-military services, these techniques are necessary

to accurately predict the bearing angle on the receiver array. When it comes

to the emergency response services, the accuracy of these algorithms is crucial.

An increased interest in the topic of direction finding (DF) has been sparked

by the significant advancement in smart antenna technology over the past ten

years. Using Digital Signal Processing (DSP), numerous antenna elements can

be coupled in smart antenna technology to adapt the antenna radiation pattern

per neighboring channel.

Through beam steering, these intelligent antenna systems can increase the

capacity of cellular wireless networks [136]. The correct estimate of the user po-

sition must be calculated in order to send the beam toward the appropriate user

who is demanding access to the network resources. The authors of [137; 138; 139]

have supplied comprehensive references and quantification of the effectiveness of

the current localization approaches. Numerous applications, such as autonomous

mobile robot navigation [140; 141; 142; 143], underwater navigation [144], pub-

lic health and social media [145; 146; 147], emergency services, etc., have used
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localization techniques.

3.3 Direction of Arrival Estimation Algorithms

Using Antenna Arrays

The calculation of (ϕ, θ), where ϕ denotes the azimuthal angle and θ denotes the

elevation angle of the impinging planar wave on an antenna or array of antennas,

is related to the direction of arrival problem.

The plane wave is thought to have infinite parallel wave fronts with constant

amplitudes and to have a constant frequency. The estimate problem is reduced

to merely estimating the azimuthal angle ϕ in a one-dimensional plane. The

expression for the plane wave impinging at point x at time t is given as follows:

S(x, t) = Aej(β·x−ωt) (3.1)

Figure 3.1: Geometry representing the DOA of the signal as an azimuth and
elevation angle pair on an antenna array

where A is the peak amplitude, β = 2π
λ

is the wave factor, λ = c/f the

wavelength of frequency f , c is the speed of light and is the angular frequency
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defined as ω = 2πf .

Using the above equation 3.1, the arriving signal at an antenna located at

(x1, x2, x3) with origin (0, 0, 0) can be defined as:

s(x, t) = s(0, t)ejβ(x1 cosφ sin θ+x2 sinφ sin θ+x3 cos θ ) (3.2)

If there are M omnidirectional isotropic antennas that have a unity gain ar-

ranged in a Uniform Linear Array (ULA) with uniform spacing d between them

on the x1−axis then the arriving signal at the mth element can be described as:

sm(t) = s((md, 0, 0), t) = s(0, t)am(φ, θ) (3.3)

where, am is the steering factor of the mth element and is equal to:

am(φ, θ) = ejβm d cosφ sin θ (3.4)

The above equation 3.4 describes a progressive phase shift

βmd cosφ sin θ =
2π

λ
md cosφ sin θ = 2πf

md cosφ sin θ

v = fλ
= ωtd (3.5)

Equation 3.5 represents the time td it will take the plane wave to propagate

md cosφ sin θ in the direction of the incident wave. Now for the case of Uniform

Circular Array (UCA) with element spacing of 2πR
M

arranged on a circle of radius

R the arriving signal at the mth element can be described as

sm(t) = s
(

Re
j2πm
M , t

)
= s(0, t)am(φ, θ) (3.6)

where in this case, the antenna factor for the mth antenna can be described

as:
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am(φ, θ) = ejβRsin θ cos(φ− 2πm
M ) (3.7)

For simplicity from here onward unless otherwise stated it is assumed that

the elevation angle θ = 90 making sin θ = 1.

3.3.1 Interferometry

According to the interferometry principle, if a plane wave approaches an antenna

array at an angle, two separate elements will receive it with a temporal delay

because of the difference in the length of the path. Signals received by antennas

have a phase difference as a result of this variation in travel length.

∆φ =

(
2π

λ

)
d cosφ sin θ (3.8)

Some baselines should be established in order to determine the angles. Three

antenna elements, which can be arranged in an equilateral triangle, are required

to create two baselines. The methods for measuring phases include the Fourier

transform, digital, and analog methods.

In correlative interferometry, the reference phase differences for the direction-

finding (DF) antenna are compared to the measured phase differences at each

wave angle. The values with the highest correlation are taken into account as the

measured phase angle column is passed through the matrix of reference phase

angles. The angle at which the incoming signal arrives is represented by this

value.

During the calibration procedure, a model is created to comprehend the be-

havior of the antennas, and the reference phase differences, or ”array manifold,”

are measured. The non-ideal elements of the system must be taken into account

while creating a theoretical model in order to increase the accuracy of the practi-
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Figure 3.2: Correlative Interferometer

cal systems because the theoretical array response values may differ significantly

from the practical values. Regular azimuthal and frequency stepping, along with

known locations, are used to convey a signal to the receiver. A calibration table

is then created using the differential phase and amplitude measurements. Figure

3.2 shows a correlative interferometry demonstration in action. The columns in

the data matrix represent the direction and are utilized to create a comparison

vector. The data set comes from a 5-element antenna array. The upper data

vector includes the measured phase discrepancies. Each column in the reference

and measurement vector matrices is correlated with the other matrix. As a re-

sult, the correct angle will be the one that has the greatest correlation with the

comparison vector matrix.
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3.4 Hardware components

In this section, the hardware components that are using during the following

phases are presented and detailed.

The proposed systems are mainly based on the AoA Booster Pack (BOOSTXL-

AoA) [148]. The Angle of Arrival BoosterPack kit (BOOSTXL-AOA) is an easy-

to-use plug-in module equipped with antenna arrays suitable for evaluation of

Angle of Arrival applications. The 2 orthogonal antenna arrays each consist of 3

dipole antennas tuned for operation at 2.4 GHz. The antennas are selected with

RF switches and then connected to a single JSC connector. The JSC Series con-

nector is used to connect to an AoA compatible RF receiver like the CC2640R2

LaunchPad. Figure 3.3 depicts the Texas Instruments-designed antenna, and

Figure 3.4 the corresponding block diagram.

Figure 3.3: BOOSTXL AoA Antenna
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Figure 3.4: BOOSTXL AoA Antenna block diagram

The key features of this antenna are the following:

• Two antenna arrays with three 2.4 GHz dipole antennas on each side

• RF switches to switch between the different antennas

• JSC RF connector

The BOOSTXL-AoA board contains two orthogonal arrays, each with three

dipole antennas. Each antenna array can theoretically cover an angle on the

incoming signal up to ±90°. When using both arrays combined, a coverage of up

to ±135° is achievable (The two antenna arrays overlap 45° on each side). Dipole

antennas are by nature differential and needs to be fed with a balanced signal. A

balanced signal is created using a marchand balun that is integrated in the PCB.

The single ended side of the baluns are fed to the antenna switches (U2 and U3).

The array switch, U1, is used to connect each array to the JSC connector.

This antenna is mounted on a LaunchPad that should be configured to use

an external antenna. The CC2640R2 LaunchPad kit (LAUNCHXL-CC2640R2)
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[149] brings easy Bluetooth low energy (BLE) connectivity to the LaunchPad

ecosystem with the SimpleLink ultra-low power CC2640R2F wireless MCU.

The CC2640R2F is a wireless MCU targeting Bluetooth 5 (single-mode BLE)

and proprietary applications. The CC2640R2F device contains a 32-bit ARM®

Cortex®-M3 processor running at 48 MHz as the main processor, in addition

to a 2nd programmable CPU ideal for ultra low-power sensor reading and data

processing. It can run independently of the main ARM® Cortex®-M3 MCU

and handle sensor polling using just a few µA of average current.

The CC2640R2 LaunchPad kit is supported by the SimpleLink Starter app

for iOS and Android. This app connects your LaunchPad to a smartphone using

Bluetooth. The Starter app supports reading the LaunchPad buttons, controlling

LEDs and all I/O signals on the BoosterPack™ connectors. It also supports setting

up cloud connectivity to the IBM Quickstart server or to any cloud service via

MQTT. This enables a cloud view where you can control your LaunchPad from

any web browser in minutes after setting it up.

The CC2640R2 LaunchPad kit can also be upgraded to the latest firmware

version with the over-the-air (OTA) upgrade from the SimpleLink Starter app.

Figure 3.5 shows the antenna designed by Texas Instruments.

Figure 3.5: CC2640R2F LaunchPad
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The key features of this LaunchPad are the following:

• Onboard emulation tool (XDS110) for flashing debugging firmware on the

target CC2640R2F device

• 40-pin dual-gender BoosterPack connectors

• CC2640R2F Microcontroller device

• Access to all GPIO pins of the CC2640R2F device

• 8 Mbit serial (SPI) flash memory for firmware updates

The wireless MCU LaunchpadTM SensorTag LPSTK-CC1352R [150] is the

beacon taken into account in this investigation. With integrated environmental

and motion sensors, multiband wireless connectivity, and simple-to-use software,

the TI LaunchPadTM SensorTag kit makes it simple to prototype connected

applications. Developers may quickly construct connected apps with one kit that

support Bluetooth® Low Energy, Bluetooth mesh, Zigbee, Thread, and custom

protocols on both 2.4 GHz and Sub-1 GHz frequencies for versatility.

By providing a fully contained, battery-operated kit that enables rapid proto-

typing, this new offering enhances the TI LaunchPad ecosystem and enables IoT

developers to test out new product ideas without having to create any hardware

or software from scratch. With this ready-to-use hardware, designers can get

started quickly with four built-in sensors, battery operation, and the option to

add many more through the TI BoosterPackTM ecosystem and additional parts.

Because it is based on the CC1352R multi band wireless MCU, which is a com-

ponent of the SimpleLinkTM microcontroller platform and offers all the building

blocks for a secure and low-power connected topology, the LaunchPad SensorTag

kit is more distinctive. Developers may easily combine hardware to build the de-

sired topology using the LaunchPad development ecosystem and a wide range of

29



3.4 Hardware components

wireless connectivity stacks to link everything and everything. It is simple to port

applications created for the LaunchPad SensorTag kit to additional SimpleLink

CC13x2 and CC26x2 wireless MCUs.

Figure 3.6: LPSTK-CC1352R LaunchPad

The main features introduced by this beacon are:

• Enables the developer to operate simultaneously across several wireless

stacks (Bluetooth Low Energy, Bluetooth Mesh, Sub-1 GHz, Thread, Zig-

bee®, and 802.15.4) with a radio that is FCC, CE, and IC certified for 2.4

GHz and Sub-1 GHz

• Supports the TI 15.4-Stack, Wireless M-Bus, MIOTY® technology, IPv6-

enabled smart objects (6LoWPAN), IEEE 802.15.4g, and other proprietary

technologies (Sub-1 GHz)

• Features four on-board low power sensors: accelerometer, temperature and

humidity, hall effect, and ambient light (OPT3001)

• Operates off AAA batteries, with the option of adding a coin cell battery

holder and using a CR2032 for applications requiring less power.
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• Compatible with TI BoosterPack Ecosystem and a variety of additional

hardware parts to increase capabilities to suit your design

• Demonstrates the Integrated Passive Component (IPC), which was created

expressly to work with the CC1352R MCU and allows for design simpli-

fication by decreasing the number of RF passive components from 23 to

3
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3.5 Experimental assessment of moving targets

localization performance based on Angle of

Arrival and RSSI

Localization based services are in the process of being ubiquitous, it is then essen-

tial to find a low-cost and low-energy solution for localization of moving targets.

Bluetooth-based solutions for indoor localization have become increasingly pop-

ular in recent years. In addition to its availability (e.g., BLE is available on

most modern smart devices), Bluetooth Low Energy technology is an economical

and simple solution to the industry. To the best of our knowledge, none of the

existing indoor localization systems use both Angle of Arrival and Received Sig-

nal Strength Indication. This chapter presents the experimental assessment of a

single device localization system that uses Angle of Arrival and Received Signal

Strength Indication for localization of moving targets using Bluetooth. The re-

sults demonstrate that the developed system is an important step towards a new

generation of real-time indoor localization systems that can locate targets with

high accuracy (e.g., AoA accuracy: 89.2 %), and an improvement concerning the

cost of the implementation.

With the widespread of the Internet of Things (IoT), wireless localization

technology is gaining importance due to its low-cost and ubiquitous availability.

Because of its excellent identification ability, Global Navigation Satellite Systems

(GNSS) such as Global Positioning System (GPS) have made great success in

map navigation, people and objects tracking, etc. However, GNSS are unavail-

able when building localization systems for indoor environments because of the

great attenuation of the satellite signal causing by the obstruction from buildings.

Nevertheless, with the fast development of the IoT, there is a growing demand

for indoor Location Based Services (LBS). Indoor LBS applications (e.g., shop-
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ping navigation, and fire rescue, etc.) provide services relying on the target’s

location, which is the key factor for the performance, accuracy, reliability of LBS

applications.

Many indoor localization methods were previously assessed, including In-

frared (IR) systems, Ultrasonic (US) systems [151], and Optical-based frame-

works. These systems share several common underlying properties, such as being

sensitive to multipath effects, high costs, and complexity. Consequently, the focus

of researchers has been shifted to Radio Frequency (RF) indoor localization tech-

nologies, including Radio-Frequency Identification (RFID) [152], ZigBee [153],

Wi-Fi, Bluetooth Low Energy (BLE), and Ultra-Wide Band (UWB). Several

notable factors should be considered in selecting base technology for develop-

ing an indoor localization system, such as cost, accuracy, robustness, scalability,

power requirements, reliability, and coverage. Over the last few decades, there

has been a significant surge of interest for BLE-based technologies, as one of the

most reliable RF-based localization frameworks due to its availability, low power

consumption, and low cost.

BLE [154] is a range-based localization, it performs localization by estimating

the distance between a target sensor node and reference nodes. BLE has been

studied intensively for localization and user tracking in recent years. Its low

complexity due to the availability of Received Signal Strength Indication (RSSI)

measurements [155], the low power consumption, low cost, and the ease of device

deployment make it an attractive technology for localization. In addition, Angle

of Arrival (AoA) localization is a nonlinear estimation problem. It determines the

source position based on the propagation direction of an incident radio frequency

wave from an antenna array, such as Switch Antenna Array (SAA), which has

been an active research field for several decades [? ]. Both localization methods

(AoA and RSSI), generate a new localization strategy that can dynamically locate
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targets.

3.5.1 Adopted localization methods

Bluetooth proximity solutions and positioning systems were used to date using

signal strength to estimate distance. The new direction-finding feature in Blue-

tooth Core Specification v5.1 makes it possible for Bluetooth devices to determine

the direction of Bluetooth signal transmission. In addition, Bluetooth 5.1 spec-

ification allows low-energy transmissions to sacrifice data rate for more range.

Next, the used localization methods will be explained.

3.5.1.1 Angle of Arrival

Bluetooth 5.1 AoA measures the angle or direction a BLE transmitted signal

approaches a Bluetooth receiver. To calculate the AoA, two or more antennas

are required to measure the phase of an incoming signal.

Figure 3.7: Transmitter Phase Measured by Antenna Array

Figure 3.7 explains how the phase measurements from each antenna are used

to calculate the AoA and determine the direction of the transmitted signal. To

calculate the AoA, the incoming RF carrier phase must be measured with minimal
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impact to the signal phase of the carrier itself using two or more co-located

antennas. Phase Difference (Φ) is measured by connecting at least two antennas

to the same receiver sequentially (more antennas can be added). Figure 3.7 shows

the constellation diagram which illustrates signal vectors from two antennas. Last

step is converting the phase shift (Φ) back to AoA (θ). This way, the direction

of the target will be known.

3.5.1.2 Received Signal Strength Indication

It is an estimated measure of power level that an RF client device is receiving

from an access point, router, or antenna. RSSI indicates the power level being

received after any possible loss at the antenna and cable level. The higher the

RSSI value, the stronger the signal. When measured in negative numbers, the

number that is closer to zero usually means a better signal. As an example, -50

is a pretty good signal, -75 is reasonable, and -100 is no signal at all.

Having beacons placed at fixed known location and by measuring distances

based on signal strength, a smartphone can calculate a location using trilateration

technique as described below. The first step is to convert the measured signal

strength (RSSI value) to distance. This is usually done using the formula based on

the physical property of the radio waves that their energy decreases exponentially

with distance. Based on this, the distance can be calculated as:

d = 10((P − S)/10N) (3.9)

Where

• d-estimated distance in meters

• P - beacon broadcast power in dBm at 1 m (Tx Power)

• S - measured signal value (RSSI) in dBm
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• N - environmental factor (usually value between 2 and 4 )

Once the distances to known beacons are estimated, the device can calculate

its position in relation to those beacons using technique called trilateration.

3.5.1.3 Locate the target

The eligible question now is, how would it be possible to locate the target af-

ter collecting AoA and RSSI values? After measuring the phase different and

converting it to anlge. The direction of the target is now known. The only miss-

ing feature is distance. This is where we convert the measured RSSI value to a

distance estimation using the Equation 3.9.

3.5.2 Proposed System architecture

This testing system is based on the AoA Booster Pack (BOOSTXL-AOA) that

is mounted on top of the CC26X2R board. The Booster Pack (antenna) is re-

sponsible for determining the direction (AoA) and the RSSI of the target and

sending this data to the CC26X2R board. The CC26X2R board is responsible

for sending the received data using USB to a Raspberry Pi board that is pre-

programmed to watch the UART connection and wait for incoming data stream

(from the CC26X2R board). This data is then stored and transmitted using

MQTT protocol to a Mongo database for later use. On the other side, the multi-

band CC1352R wireless MCU Launchpad Sensor Tag kit (LPSTK-CC1352R) by

Texas Instruments is used as an RF target.

The Texas Instruments Angle of Arrival Booster Pack (BOOSTXL-AoA) as-

sesses the performance of the AoA and RSSI localization methods using BLE

5.1. The BOOSTXL-AoA board contains two orthogonal arrays, each with three

dipole antennas. Each antenna array can theoretically cover an angle on the in-

coming signal up to ±90°. When using both arrays combined, coverage of up to
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±135° is achievable (The two antenna arrays overlap 45° on each side). Dipole

antennas are by nature differential and need to be fed with a balanced signal. A

balanced signal is created using a march and balun that is integrated into the

PCB. The single-ended side of the baluns is fed to the antenna switches (U2 and

U3). The array switch, U1, is used to connect each array to the JSC connector.

3.5.3 Experimental Assessment Procedure

In this section, experiments using the antenna and several RF tags are presented.

The experiments have been conducted in different scenarios to assess different

aspects of the system. The accuracy of the AoA and RSSI values are the most

important metrics for this system (to ensure localization quality). In addition,

it is important to measure the duty cycle, latency, coverage area, and power

consumption of the proposed system to prove that the proposed system is reliable.

The testing protocol is presented in this section where the results are presented

in the following section.

3.5.3.1 Experimental Setup

As described in the previous section, the testing setup was built as a proof of

concept of the reliability of the system. As shown in Figure 3.8 below, all the

components of the system were installed on a base structure and connected to a

touch monitor screen to see the results in real-time.
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Figure 3.8: Testing Setup

3.5.3.2 Experimental methods

A testing protocol was chosen for each experiment following the specification of

each measured metric. Such protocols are explained below.

Received Signal Strength Indication

To start with, a user moves away from the base station to test the maximum radio

transmission range of the node, which was thirty meters. Since an RSSI value

cannot be a decimal or a fraction, it cannot offer enough resolution to distinguish

fine-grained changes in distances. Instead, it can only provide resolution to dis-

tinguish between distances that are large enough to cause at least a unit change

in dBm of the signal power at the receiving node. Therefore, it is unnecessary to

test RSSI values by using small increments in distances. In this experiment, the

RSSI value is tested every meter, each test lasting for 30 seconds. By averaging

all the values obtained during this time, the valid RSSI at each testing location

can be calculated. There are different scenarios to be covered to fairly quantify
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the performance of the antenna with what concerns the RSSI measure. For ex-

ample, elevation between the antenna and the target is an important factor that

certainly affects the performance of the RSSI measurement. The experiment was

being carried out in a long corridor made up of two concrete walls. The testing

platform was used as a base station directly connected to a 7” monitor screen

via an HDMI cable to retrieve data. The RF target was mounted on three dif-

ferent elevations with reference to the coordinator. Both nodes operated with a

full battery. No additional obstacles were standing in the communication path

between the two nodes during the experiment. Thereafter, three scenarios were

tested. For each scenario, we will take five measurements for each distance from

one to thirty meters, equally distributed with a one-meter difference: Antenna

higher than the target - Antenna lower than the target - Antenna and target on

the same level. For each of the previously mentioned cases where the antenna and

target are in the line of sight without additional obstacles, measures for thirty

seconds were performed for each distance, and they were averaged to provide a

fair result.

Angle of arrival

Measurement of AoA can be done by determining the direction of propagation of a

radio-frequency wave incident on an antenna array or determined from maximum

signal strength during antenna rotation. The performance of AoA was tested in

an indoor situation. These tests were conducted in a large empty closed room

where the AoA antenna was positioned on a table, and a set of different angles

orientations of the RF tag was tested. Those tests covered the 200 degrees range

of the antenna. Since an AoA value cannot be a decimal or a fraction, but only a

number between minus one hundred to plus one hundred. It cannot offer enough

resolution to distinguish fine-grained changes in angle. Therefore instead, it can
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only provide resolution to distinguish between angles that are large enough to

cause at least a unit change in angle. Therefore, it is unnecessary to test AoA

values by using small increments in angle. In our experiment, the AoA value

was tested every ten degrees for a five meters distance, each test lasting for 30

seconds. By averaging all the values obtained during this time, the valid AoA at

each testing location was calculated. The antenna and target were in the line of

sight, same elevation, and without additional obstacles.

Duty Cycle

The duty cycle is the number of localization messages that are sent/received

per minute. A localization message includes AoA and RSSI measures. The

measurement of this factor was assessed by counting the number of received

messages for ten minutes and finally averaging them.

Coverage Area

The radius of the area that is covered by the antenna, considering that the antenna

only covers a 135 degrees space. To assess the maximum coverage distance, an

outdoor test was needed (large empty car parking space). A person holding the

RF tag walked away from the antenna, when the connection stopped between

the RF tag and the antenna, the measure between the antenna and the person

holding the RF tag was measured. This test was repeated five times and the

distance was eventually averaged. This value is presented in meters.

Latency

The latency is the time needed by the system to detect a new target that enters

the coverage area. To test the latency, we used a large empty outdoor area

(car parking space), and placed the target on a distance that is larger than the
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coverage area, where is antenna cannot detect it. Then, and while the antenna

was looking for targets, a person holding the RF tag entered the coverage area.

The time between the RF tag entering the coverage area and its detection was

calculated using a stopwatch and repeated twenty times before averaging the

results. This value was represented in seconds.

Power Consumption

The amount of power used by each of the components of the system (Antenna

and Raspberry™ Pi). This factor was assessed using a USB multi-meter that

indicates the amount of energy consumed by the USB attached to it.

3.5.4 Experimental Results

The results of the predefined metrics are divided into two sections. The first

section presents the performance of the proposed system as a localization method.

The second section presents the results of the evaluation metrics that are relevant

to the proposed system.

Localization

The localization method used consists of two elements: AoA and RSSI. Both

elements should give a reasonable performance so that the localization system

works well. Figure 3.9 shows the average RSSI received along thirty meters of

the indoor range. It shows three different lines, each represents an elevation state

between the antenna and the target.
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Figure 3.9: Received RSSI results

With reference to the AoA calculation, Figure 3.10 shows the AoA received

with comparison to the real angle. The RF tag was placed five meters away from

the antenna for each angle measurement. The RF tag was placed on the same

elevation as the antenna. Each triangular point in the graph below is respective

to one of the twenty-one trials that were done for different angles; the incoming

stream of data was collected for thirty seconds and averaged.

Figure 3.10: Received AoA results

Alongside the localization performance, it was important to track the perfor-

mance of key metrics (latency, power consumption, scalability, etc.). The duty

cycle was 4.28 seconds, which means that the system sends fourteen localization
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messages every minute. With reference to the proposed method, the accuracy was

between 0.5 and 1 meters for the presented scenario, the implementation cost was

very low (twenty dollars for an antenna), and the system is easily scalable.

Figure 3.9 shows that the value of RSSI and the distance are inversely propor-

tional, which is the expected pattern from an RSSI receptor. Regarding the AoA,

Figure 3.10 shows that the real and incoming AoA over 21 trials (measurements)

are consistent. The average accuracy per trial is around 89.2% which is reason-

able [156]. Therefore, the BLE 5.1 localization technology that uses AoA and

RSSI was effective under the presented circumstances and scenarios. In addition,

with comparison to the state-of-the-art technologies, BLE 5.1 has a respectively

lower accuracy than the Ultrasonic Based (UWB), but on the other hand, BLE

5.1 is lower in cost, has a larger coverage area, has less latency, and has a very

low power consumption.

3.5.5 Conclusion

This section presented a wireless system for the indoor localization of targets

using a single wireless device. The system uses new BLE 5.1 features based on

AoA and RSSI methods. The time latency and accuracy of the system have been

measured. The proposed system operates in real time with 1.5-2 s delay and with

an accuracy of 89.2%. Although more extensive experimentation is needed to

fully evaluate our system, with respect to available systems in the literature, the

proposed system is reliable, has low power consumption, low-cost, scalable and

covers around 100 m. The results of this study are important for future design

of new indoor localization systems and scenarios. The future work will involve a

finer analysis of the BLE 5.1 performance with the existence of obstacles.
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3.6 Maritime localization system based on IoT

Localization-based services in the safety maritime domain are in the process of

being ubiquitous, it is then essential to find a low-cost and effective solution for

localization of moving targets that is efficient for indoor and outdoor scenarios.

This chapter presents a maritime localization system for indoor and outdoor

scenarios. The system is based on Bluetooth 5.1 and uses the incident angle of

arrival and received signal strength indicator to locate a target equipped with a

radio frequency tag. The system features a web service map that dynamically

visualizes the radio frequency tag and the reference nodes. To demonstrate the

feasibility, the system has been tested by running localization experiments. The

experiments demonstrated that the system is efficient for indoor and outdoor

scenarios (localization accuracy: 1.1 m for indoor localization whereas, 7.3 m for

the outdoor scenario). The system is low-cost and can locate multiple moving

targets while consuming 7 watts, opening interesting perspectives for efficient

localization systems.

The evolution of wireless communication systems has promoted various ap-

plications that require user positions in various environments including indoor,

maritime, and aerial environments. This progress also brought advances to wire-

less location tracking schemes for many purposes such as accident prevention,

facility management, and military. The development of a safe evacuation and

monitoring system of large passenger ships is a vital need for the maritime in-

dustry. Due to recent maritime disasters, a localization system that can be easily

installed and monitored on both cruise ships and Search and Rescue (SAR) ves-

sels is needed in order to simultaneously locate a larger number of passengers

during emergencies. The existing rescue and localization systems that already

exist in the market have many limitations e.g., localization accuracy, high power

consumption, and high implementation cost.
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Nevertheless, with the fast development of the IoT, there is a growing demand

for indoor Location Based Services (LBS) that are also effective for outdoor sce-

narios. Most of the contemporary localization solutions either depend on Satellite

Positioning Systems, SATNAV or passenger localization [157] or on a Wi-Fi net-

work around the cruise ship where location data are sent in regular bursts [158].

The use of satellite positioning systems is restricted for outdoor scenarios and

limited by the satellite coverage. Similarly, the use of a Wi-Fi network requires

the placement of several static nodes around the cruise ship and has a limited

coverage area. Other localization systems rely on risk-aware wireless positioning

schemes, where the position information is required for safety [159]. Furthermore,

a different approach to ensure maritime safety for ship passengers uses an over-

board localization system based on measuring the Received Signal Strength Indi-

cator (RSSI) between smart lifejacket tags and one interrogator station mounted

inside an Unmanned Aerial Vehicle (UAV) [157]. Researchers also proposed an

application that can localize the vessel who has launched a rescue request and

to plan the most effective path for rescue assets [160]. Table 3.1 [161] presents a

comparison of different localization techniques. It shows the specification of most

available localization techniques.

Table 3.1: Comparison of Different Localization Techniques

Technique Cost Accuracy Energy efficient Hardware size
GPS High High Less Large

TDOA Low High High Less complex, may be large
APIT Medium Medium High Medium
RSSI Low Medium High Small
AoA Low Medium Medium Large

Many maritime localization solutions already exist in the market; however,

it is important to find a low-cost and lowenergy solution for the localization of

moving targets for both indoor and outdoor scenarios. Bluetooth-based (BLE)
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solutions for localization have become increasingly popular in recent years. It has

been studied intensively for localization and user tracking. Its low complexity

due to the availability of RSSI measurements [155], low power consumption, low

cost, and the ease of device deployment make it an attractive technology for

localization.

In this section, a new localization system based on BLE 5.1 is presented. The

system is based on measuring the Angle of Arrival (AoA) and RSSI to dynamically

locate multiple targets. The system features a dynamic map visualization on

a web service to monitor the target’s location. In which it uses the MQTT

communication protocol to transfer the localization data to the cloud database.

With respect to previous systems presented in the literature [157; 159; 160] the

proposed system is effective for indoor and outdoor scenarios. It is low-cost,

has low power consumption, and is a standalone system that can locate multiple

targets. The system could be extended to many other applications that require

indoor and/or outdoor localization.

3.6.1 Localization Methods

BLE is a wireless communication protocol that covers range-based localization

[154]; it is used to estimate the distance between a target sensor node and ref-

erence node(s). The new feature in BLE Core Specification version 5.1 makes it

possible for BLE devices to determine the direction of an incoming BLE signal

transmission (AoA); it is called the direction-finding feature. In addition, BLE

5.1 specification allows low-energy transmissions to sacrifice data rate for more

range. In the current study, two localization methods are implemented.
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Triangulation

Figure 3.11 illustrates the triangulation method used to locate moving and still

target(s). The triangulation method is based on measuring the angles between

two reference nodes and the RF tag. For that reason, it could be used only in the

cases where two or more reference nodes are present in the range of the target

tag.

Figure 3.11: Triangulation

This method uses the Trigonometric laws to estimate the RF tag position,

knowing that the reference node and the RF tag share the same elevation. The

direction is known from multiple reference nodes to an RF target node. AoA is

the measure of angle from the receiver (reference node) to the transmitter (RF

tag). To locate the RF tag, trigonometric laws 3.10-3.11 are applied to find its

coordinates x and y. Knowing the coordinates of two reference nodes F1, F2

(illustrated in Fig. 3.11) and the angles θ1 and θ2. The following equations

3.10-3.11 are used to determine the location of the RF tag.

y =
y2 · tan (θ2) − x2

tan (θ2) − tan (θ1)
(3.10)

x = y · tan (θ1) (3.11)
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Unilateration

In the single reference node scenario (as shown in Fig. 3.12), the triangulation

method is not capable of locating the target. For that reason, a new method

is implemented. The unilateration method measures the AoA and RSSI from

the reference node to the RF tag to locate the target. AoA is responsible for

determining the target’s direction. In Fig. 3.12, the AoA is θ angle, it is the

difference between the orientation of the reference node (0 degrees) and the actual

direction of the RF tag (θ). Trigonometric laws 3.12-3.13 are applied to find the

coordinates of the RF tag. The distance between the reference node and the

target is estimated by measuring the RSSI. The higher the RSSI value, the closer

is the target. In Figure 3.12, the RSSI value which represents the estimated

distance is indicated by the rho (ρ) symbol.

Figure 3.12: Unilateration

Assuming that the reference node and the RF tag are on the same elevation,

trigonometric laws are applied to find the coordinates x, y of the RF tag, knowing

the coordinates of the reference node and the relevant theta (θ), and rho (ρ). The

following equations 3.12-3.13 are used to find the coordinates of the RF tag.
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y = ρ · cos(θ) (3.12)

x = ρ · sin(θ) (3.13)

3.6.2 Proposed System Architecture

Figure 3.13 shows the block diagram of the developed system. The system uses

the localization methods described earlier. The system includes:

• RF tag

• Baseboard and AoA antenna

• Raspberry Pi

• Data Management Cloud Architecture

The Raspberry Pi collects the localization data coming from the RF tag and

computed by the AoA antenna and its mainboard. Then, the collected data are

sent to an online dataset that visualizes the rescue vessels and RF tags on an

online dynamic map.

Figure 3.13: Block Diagram of the Proposed System
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RF Tag

The RF tag is a multi-band CC1352R wireless MCU Launchpad Sensor Tag

kit (LPSTK-CC1352R) (Texas Instruments, US) [150]. The kit offers integrated

environmental and motion sensors, multi-band wireless connectivity, and easy-to-

use software for prototyping connected applications. Using the kit, it is possible

to create connected applications featuring BLE 5.1. The RF tag represents the

target (wearable).

Baseboard and AoA Antenna

The localization system uses an antenna and a baseboard to determine the di-

rection (AoA) and distance (RSSI) from its location to the target (RF tag). The

hardware uses the AoA Booster Pack (BOOSTXL-AOA) [148; 149] as the antenna

(Texas Instruments, US). The BOOSTXL-AoA board contains two orthogonal

arrays, each with three dipole antennas. Each antenna array can theoretically

cover an angle on the incoming signal up to ±90°. When using both arrays, cov-

erage of ±135° is achievable (the two antenna arrays overlap 45° on each side).

The antenna is mounted on top of the baseboard CC26X2R (Texas Instruments,

US) [149]. This board manages the data transfer from the antenna to the USB

port. Both localization methods are developed and implemented in the CC26X2R

board using C language.

Raspberry Pi

The Raspberry Pi is the heart of the system. It has many functionalities, and

it has Raspbian OS installed on it. The Raspberry Pi reads and collects two

incoming data streams from USB ports. The first is the AoA and RSSI data

coming from the CC26X2R board (mounted by the AoA antenna). The second

stream is the reference localization data coming from the attached BN-880 model.
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This model has an embedded GPS and digital compass. This is needed in the

system to locate the rescue boats and every moving rescue station. The GPS only

exists on moving reference nodes. These data are then saved on the Raspberry Pi.

This procedure is monitored by a seven inches monitor attached to the system.

The collected data is then filtered, cleaned, saved, and sent using MQTT protocol

to the cloud database using the Python 3.9 custom-developed firmware.

Data Cloud Piepline and Map

The process of sending the acquired data is done through the MQTT protocol.

This protocol requires messages published on a hierarchical and free topic. The

used topics nomenclature is: username/ClientID. The payload represents an

update of the device’s status. Two main types of payloads are defined. The

first one is the payload of messages related to the localization data. This type of

message is sent to the platform when an RF tag signal is detected. The second

type of payload is the messages related to the position of the boat. This message

is sent to the platform periodically by the boat to update its current position and

bearing even if no RF tag is detected.

When a boat sends a message, it is registered on the database (MongoDB) in

the collection of logged messages. If the localization message is from a previously

logged RF tag, its situation will be updated. Otherwise, it will be added as a new

RF tag that has been discovered. The database then subscribes to all messages

received from the message broker (topic). A workflow implemented in NodeRed

historicizes the message on the DB. Another workflow extracts some information

from the received message, namely the ClientID of the device and the status

update. The NodeRed platform then searches the DB for the registered device. If

it already exists, it updates its status by integrating the new information received

in the last message.
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A management GUI that represents a dynamic map visualization for the reg-

istered devices is implemented to monitor the status and the messages received in

real time. The GUI is updated in real time via WebSocket whose operating logic

is implemented in a separate NodeRed workflow. The GUI was used to monitor

the position of the boats and the RF tags.

3.6.3 Experimental Validation

A series of experiments is conducted to demonstrate the functionality of the

system and the complete data pipeline. The experiments are divided into two

parts. The first part is testing the functionality of the localization methods. The

second part is an outdoor on-site experiment that is conducted in order to prove

the functionality of the data pipeline from the RF tag to the visualization on the

map. Testing scenarios are explained below.

Localization Method Validation

In this part, experiments using the AoA antenna, and one RF tag are presented.

The target is to measure the accuracy of the AoA and RSSI values, which are

the most important metrics for this system, to ensure localization quality. The

testing protocol is presented in this part whereas the results are presented in the

following section. Figure 3.8 shows the experimental setup where all the blocks

are deployed on a common base structure.
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Figure 3.14: Experimental setup: Indoor Scenario

In order to accurately assess the performance of the localization method, the

experiments are divided into two parts. The first part is the assessment of the

AoA localization. The second is the accuracy of the RSSI distance estimation.

For each of the aforementioned parts, the antenna and target are in the line of

sight without any obstacles in between. Both nodes operated with a full battery.

During the RSSI experiment, a user moves away from the testing platform

to test the maximum indoor radio transmission range of the node. In addition,

the RSSI value is measured every one meter along a thirty meters long hallway.

RSSI data is collected for thirty seconds period. By averaging all the values

obtained during this time, the valid RSSI at each testing location is calculated.
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The experiment is carried out in a long corridor made up of two concrete walls

as shown in Fig. 3.14. The RF tag was mounted for three different elevations

with reference to the reference node. Elevation between the antenna and the

target is an important factor that certainly affects the performance of the RSSI

measurement. Thereafter, three scenarios were tested. For each scenario, several

measurements are taken for each distance from one to thirty meters: Antenna

higher than the target (1.5 meters difference) - Antenna lower than the target

(1.5 meters difference) - Antenna and target on the same level.

The performance of AoA is tested in an indoor situation. These tests are

conducted in a large empty closed room where the AoA antenna is positioned on

a table, and a set of different angles orientations of the RF tag is tested. Those

tests covered the 135 degrees range of the antenna. During the experiment, the

AoA value was regulated every ten degrees for a five meters distance, each test

lasting for 30 seconds. The valid AoA at each testing position was calculated

by averaging all the values obtained during the 30 seconds. Each time the user

changes the location of the RF target the system records and saves the measured

data.

Pipeline Validation

In this part, the pipeline of the proposed system is validated by an experiment

that is conducted in a similar environment to the real deployment scenario. The

experiment was performed at the coast side of Chiavari, Italy. Two testing plat-

forms were placed on the coast. The platforms should locate two RF tags that are

in water. The data is then transmitted using MQTT to the database. Finally, it

was presented on the dynamic GUI map. Both localization methods were tested.

First the AoA and RSSI localization method was experimented using a single

testing platform and a single RF tag. Then two testing platforms performed a
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triangulation mesh to locate two RF tags.

Figure 3.15: Experimental setup: Outdoor Scenario 1

Figure 3.16: Experimental setup: Outdoor Scenario 2
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Figure 3.17: Experimental setup: Outdoor Scenario 3

3.6.4 Experimental Results

The results of the experiments are presented in this section. The results are

divided into two parts. The first one shows the results of localization methods

experiments. These experiments happened indoors, as described in the previ-

ous Section. The accuracy of the AoA and RSSI values are the most important

metrics for this system, to ensure localization quality. The second part presents

the concluded evaluation metrics that were collected during the different experi-

ments including the ones that happened outdoors in Chiavari, Northwest Italian

Rivera. These experiments concluded the evaluation metrics thus the system

specifications.

Localization Method Experimental Results

Figure 3.9 shows the average RSSI received along thirty meters of the indoor

range. It shows three different lines, each represents an elevation value between

the antenna and the target. The overall pattern of the three lines is decedent,

as expected. Because the RSSI measures the received power level, and as the

56



3.6 Maritime localization system based on IoT

distance goes higher, the RSSI decreases [157]. With reference to the AoA cal-

culation, Figure 8 shows the AoA measured with comparison to the real angle.

Red line is the one measured while the black line is the real angle. The RF tag

was placed on the same elevation as the antenna. Each triangular point in Fig.

3.10 represents one of the twenty-one trials that was done for a certain angle;

the incoming stream of data was collected for thirty seconds and averaged. The

figure also shows a minimal error between the real and measured values of AoA

for the 200 degrees measured range (AoA accuracy: 87%). This shows that the

implemented AoA localization method is effective under the presented circum-

stances.

Evaluation Metrics Experimental Results

The accuracy of the localization methods in the outdoor scenario is calculated

using a GPS (as a reference) that is close to the RF tag. Therefore, the measured

accuracy error is the difference between the value given by the GPS and the one

measured during the experiments (using either of the localization methods) in

meters. The system uses around 1.4A of power with a 5V input (using a power

bank). The price of one standalone system is around 112$. In addition, the

duty cycle (i.e., the number of localization messages that are sent per minute) is

measured. The measured latency is the time needed by the system to detect a

new target that enters the coverage area. Finally, the coverage area of the system

is measured in meters for both indoor and outdoor scenarios. These values have

been measured for outdoor scenario and indoor scenarios. Table 3.2 summarizes

the specifications of the developed system.
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Table 3.2: Concluded System Specifications

Accuracy(m) Power(W ) Range(m) Latency(s) DutyCycle
Indoor 1.1 7 56 7 18

Outdoor 3.4 7 152 11 18

3.6.5 Conclusion

An indoor and outdoor maritime localization system is presented in this chapter.

The system is based on Bluetooth 5.1 and uses the incident AoA and RSSI to

locate a target equipped with a RF tag. The system uses the new BLE 5.1 lo-

calization feature based on AoA and RSSI methods. The system has been tested

during different experiments that covered the indoor and outdoor scenarios. The

results showed that the proposed system is reliable and capable of localizing mul-

tiple moving targets with 87% accuracy and an acceptable latency ( 9 seconds).

The concluded system, with its relevant specifications, paves the way for interest-

ing perspectives for an efficient localization system. Furthermore, this work will

be extended by conducting more experiments in the goal of achieving a compact

system design.
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3.7 Patent and Proof of Concept Product

After the previous testing phases, a patent has been submitted and was granted.

As a summary, the patent consists of the following points:

• Device for locating one of more targets in an environment

• Comprises a RF receiver

• Configured to detect RF signal emitted by beacon

• The receiver is configured to provide an assessment of:

– Direction of reception of RF signal with respect to the main device

– Distance to RF signal source with respect to the main device

3.7.1 Description of the Industrial Invention

Title: Device for locating one or more targets in an environment

The present invention relates to a device for locating one or more targets in an

environment comprising a RF receiver configured to detect a RF signal emitted by

said target. Advantageously, the device object of the present patent application

provides the possibility of evaluating, preferably in combination:

• The direction of reception of the RF signal with respect to said device, said

direction being established by evaluation of the Arrival Angle (AoA) of said

RF signal

• The distance of said target with respect to said device, said distance being

established by evaluation of the Received Signal Power Indicator (RSSI) of

said RF signal
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Advantageously, the said device object of the present patent application ex-

ploits the new Bluetooth 5.1 specifications. According to an embodiment, the

said RF receiver is configured to receive / detect the RF signal emitted by the

tag placed on the moving target; in particular, the RF signal is detected by the

RF receiver when the RF signal passes over the at least two antennas of said

antenna array.

Consequently, in the present patent application, with the term ”evaluation of

the arrival angle of said RF signal and power indicator of the received signal of

said RF signal” or with the term ”evaluation of arrival angle and power indicator

Reference is preferably made to the data relating to the phase difference of the

RF signal detected by the antennas of said receiver and to the power value (s) of

the RF signal detected by the antennas of said receiver.

The power value of the signal detected by the antennas is variable according

to the distance of the said target with respect to the said device; consequently,

by means of a first calibration of the device, prior to the measurement aimed

at locating the target, it is possible to proceed to correlate the possible distance

values that may exist between target and device to determined values of received

signal power. Said first calibration therefore consists in:

• Evaluate, in a phase prior to the actual localization, the maximum radio

transmission range of the signal

• Progressively approach and / or move away a target to / from the device

which is the subject of the patent application

CLAIMS OF THE PATENT:

Device (1) according to one or more of the preceding claims, comprising a pro-

cessing unit (5) configured to provide a localization of target (2) with respect
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to device (1) on the basis of the evaluation of the angle of arrival and of power

indicator of signal detected by radio frequency receiver (3).

Device (1) according to one or more of the preceding claims in which process-

ing unit (5) provides localization of target (2) following a previous first calibration

of device (1), first calibration being configured to correlate the power value of the

signal received by receiver (3) to a distance value of target (2) with respect to

device (1).

Device (1) according to one or more of the preceding claims comprising first

wireless or wired connection means (M ’), means (M’) being configured to provide

a sharing of arrival angle evaluation and power indicator of the RF signal from

the receiver (3) towards the processing unit (5).

Device (1) according to one or more of the preceding claims comprising a

display (6) and second wireless or wired connection means (M ”), display (6)

being configured to provide a graphical representation in real time of the location

of the target (2) with respect to device (1), location being shared to display (6)

by processing unit (5) by means of second connection means (M ”).

Device (1) according to one or more of the preceding claims comprising at

least one hardware and / or software neural network (7) configured to evaluate

the influence of external parameters in the localization of target (2).

Device (1) according to claim 7, wherein hardware and / or software neural

network (7) is configured to perform evaluation on the basis of a previous second

calibration by localization with GPS signal and / or triangulation system indoor.

Device (1) according to any one of the preceding claims of the portable type,

being housed on a single frame provided with a handle (8) that can be gripped

by a user.
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Figure 3.18: Proof of Concept Product 1

Figure 3.19: Proof of Concept Product 2
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Figure 3.20: Proof of Concept Product 3
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3.8 Summary and Conclusions

In-depth analysis of location-based services has been provided in this chapter.

It is employed in both the public and private sectors to provide services. These

include, among others, tracking services for the elderly and disabled, patient

health monitoring, airport navigational services, traffic telematics, fleet manage-

ment, inquiry and information services, crime fighting, toll systems, marketing,

geographic mark-up, and community services.

In this chapter, a detailed approach to assess the feasibility of implementation

of AoA and RSSI localization methods in real-world situations is implemented.

Two proposed systems were detailed and discussed. These systems were tested

in different environments (e.g., indoor, outdoor, in water...). Results showed that

the localization capability is there but this method is limited to around 150 meters

of distance for the antenna that we had, which is cheap. Therefore, depending

on the use-case this method could or could not be beneficial.

I proposed a device (1) for locating one or more targets (2) in an environment

comprising a RF receiver (3) configured to detect a RF signal emitted by target

(2) characterized by the fact that receiver is configured to provide an evaluation

of:

• Direction of reception of RF signal with respect to device

• Distance of target with respect to device

The receiver device, RF receiver, comprises at least one array comprising at

least two antennas connected to each other, array being configured to provide an

evaluation of the Arrival Angle (AoA) of signal at radio frequency and Indicator

Power of the Received Signal (RSSI) of radio frequency signal.
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Chapter 4

Real-time Target Monitoring

using FMCW Radar

4.1 Summary

In this chapter, the use of the low-cost Frequency-Modulated Continuous-Wave

(FMCW) radar is investigated. The goal of this application is to localize and

monitor the real-time movement of a target in an indoor environment. The use

of Deep Learning (DL) techniques is also taken into consideration to increase the

performance of the proposed system. Two approaches were considered during

this phase:

• Discriminating shadowed targets using FMCW radar

The radar shadow effect prevents reliable target discrimination when a target

lies in the shadow region of another target. In this work, this issue is addressed

in the case of FMCW radars, which are low-cost and small-sized devices with

an increasing number of applications. A novel method is proposed. It is based

on Convolutional Neural Networks (CNNs) that take as input the spectrograms
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obtained after a Short-Time Fourier Transform (STFT) analysis of the radar-

received signal. The method discerns whether a target is or is not in the shadow

region of another target. The proposed method achieves test accuracy of 92%

with a standard deviation of 2.86%.

• Multi-Class Action Recognition System Based on Deep Learning

In this work, we propose a low-cost edge radar-based action recognition system

that uses Deep Neural Networks (DNNs), capable of recognizing falls among daily

life actions in real-time. Range-Doppler maps, derived from five everyday actions

performed in the Field of View (FoV) of the radar, are fed into a novel Neural

Network (NN) architecture that is deployed on an edge device. The results show

that the proposed system can recognize the five actions with an accuracy of 93.2%

with real-time edge inference. Concerning the problem of binary classification,

i.e. falls vs non-falls, our method achieves an accuracy of 96.8% while maintaining

a low false-negative rate. The Energy Precision Ratio (EPR) is a guideline for

both accurate and energy-efficient models for edge deployment. The best trade-off

achieves a 1.04 EPR
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4.2 FMCW Radar Use Cases

In the recent years, the radar technology, once used predominantly in the military,

has started to emerge in numerous civilian applications. One of the areas that

this technology appeared is the Real-Time Localization Services (RTLS).

On construction and industrial sites, technology for estimating the placement

of targets in enclosed spaces has been researched for ease and accident avoidance.

As part of the fourth industrial revolution, indoor localisation systems are also

being developed [162; 163; 164]. An indoor localization system, for instance,

can avoid mishaps by determining the worker’s location and alerting them if

they attempt to enter a hazardous area. Additionally, a new manufacturing

trend identified human-robot collaboration, in which human employees and robots

combine their expertise for flexible manufacturing [165]. However, it is believed

that the implementation of safe human-robot collaboration requires the use of an

indoor localization system.

Indoor localization systems employing radio signals, such as Wi-Fi, Zigbee,

RFID, Bluetooth, Ultra-Wide Bandwidth (UWB) radar, and frequency-modulated

continuous wave (FMCW) radar, have been developed because a global naviga-

tion satellite system is not accessible indoors [166; 167; 168; 169; 170; 171; 172].

The multilateration approach and the fingerprint method, which employ radio

signals like Wi-Fi, Zigbee, RFID, and Bluetooth, are both well-known localiza-

tion strategies. The effectiveness of the multilateration method’s localization

depends on how well the target’s distance is measured because it is reliant on

range estimation [173]. The fingerprint approach, on the other hand, collects

the received signal intensity of radio signals at all places of interest, and then

correlates the real-time data at a particular spot with the precollected data to

estimate its location [174]. The range and localization accuracy of Wi-Fi, Zig-

Bee, and Bluetooth-based multilateration and fingerprint localization techniques
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are known to be less accurate than those that employ radars, which offer high

temporal resolution for calculating distances and positions [172; 175; 176; 177].

It is also known that the UWB radar has less coverage than the FMCW radar,

which determines the target’s distance by computing the difference between the

transmission and reception frequencies caused by the time delay [178]. Indoor

localization using FMCW radars is introduced with various bandwidths (e.g.,

24 GHz, 77 GHz, etc.), and the performance varies depending on the frequency

band. The hardware is often adjusted to improve target detection accuracy with

high bandwidth.
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4.3 Hardware Components

The hardware components utilized in the creation of the suggested systems are

described in this section. The hardware elements and the means of connecting

them are discussed first. The generated software’s operational logic and the

specifics of each of its processing units are then illustrated.

The proposed system are mainly based on the FMCW radar: Position2Go by

Infineon [179]. The radar device is based on a demo board developed by Infineon,

which is composed of two parts:

• Radar main board

• Debugger board

The transmitting and receiving arrays of microstrip patch antennas on the

radar main board each have a 12 dBi gain with 20° 40° beamwidths. The radar

transceiver is a BGT24MTR11 device (defining in this way the Field of View,

FOV). On the same PCB are integrated the antennas that are used for electro-

magnetic field transmission and reception (dedicated to the two channels). These

antennas, in particular, are planar arrays made up of 4 2 elements (rectangular

patch antennas).

A frequency control component is also included on the board to regulate the

timing and quantity of sent chirps. A quadrature down-conversion mixer and

an analog amplification component for signal filtering and amplification are also

present in the receiving stage. Last but not least, it includes an XMC4200 micro-

controller that manages every aspect of the radar board’s operational functioning.

In particular, it controls data transmission between the board and the computer

and may be used to carry out basic online signal processing operations (provided

that a proper firmware is adopted).
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The developed solution makes advantage of the board’s default firmware,

which allows it to just record raw radar data without performing any extra

processing. On the control PC, MATLAB has been used to implement each

processing chain, including the FMCW radar processing. Through a USB con-

nection, serial communication is used to communicate between the PC and the

radar board. The XMC microcontroller may be programmed using the debugging

board.

4.3.0.1 Radar Module Configuration Parameters

The following radar module settings have been predetermined by the manufac-

turer and cannot be changed (except for changes to the XMC software and/or

board circuits):

Trd = 200µs

Tpll−s = 400µs

M = 6144 byte

Pout,max = 10dBm

(4.1)

Trd is the interval between the transmitted up-chirp and the down-chirp (an

abrupt transition from the maximum frequency of the up-chirp to the minimum

frequency of the subsequent up-chirp can cause various problems including the

generation of spurious signals). Tpll−s is the recovery time (steady-state time)

required by the PLL before generating the next up-chirp. M is the memory

available to the microcontroller ADCs to digitally store the radar echo. Pout,max

is the maximum transmitted power. It is important to note that no data samples

are collected during the Trd and Tpll−s periods.

The following parameters, in contrast to the values shown above, may be

changed by sending commands to the board via the serial interface; however,
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if they are set to values other than those reported and deemed optimal by the

manufacturer, they may cause a significant deviation of the digitized signal from

what is suggested by the theoretical models relating to the operation of FMCW

radars:

Tc = 1500µs

B = 200MHz
(4.2)

Where, Tc is the duration of the up-chirp and B is the relative band. In par-

ticular, the frequency modulation covers the frequency range [f0, f0 +B] with f0

= 24.025 GHz. The theoretical resolution that can be achieved for measurements

of the radar-target distance (range) may be calculated using the band value:

∆R =
c

2B
= 75 cm (4.3)

where c is the speed of light in vacuum.

In addition, to have a maximum unambiguous detection distance of the targets

equal to Rmax = 25 m, an appropriate number of samples Ns equally spaced over

time must be selected with which to digitize the radar echo based on the following

relationship:

Ns ≥
4BRmax

c
= 67 (4.4)

The decision was made to adopt a number of samples equal to a power of

two, or Ns = 64, while accepting a minor reduction in the maximum achievable

distance. This was done in order to optimize the execution of the FFTs that are

required for the processing of the received signal. In fact, it is not feasible to adopt

the next two power (128) since this would result in issues with the constrained

memory on the XMC, such as the drastic reduction in chirps per frame (Nc)
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between 24 and 12, which would impair the Doppler spectrum resolution.

Additionally, adopting Ns = 128 would suggest an unreasonably large upper

bound on the energy range (also known as the instrumental range) [180], i.e., big-

ger than the greatest distance actually detectable by the radar given the emitted

power and that reflected by the target.

The numbers shown above meet the crucial requirement that:

Tc ≥
2Rmax

c
(4.5)

In order to prevent ambiguity in the interpretation of the demodulated signal,

it is necessary that the duration of the up-chirp be longer than the maximum

round-trip time, or the time it takes the electromagnetic wave to travel to a

target placed at the maximum distance before returning to the antenna.

Due to the limited memory availability of the microcontroller, the number of

chirps transmitted and collected in a single frame is equal to Nc = 24. In the

first implementation of the system, due to some limitations in the interface of the

Raspberry mini-PC with the control PC, this number was reduced to Nc,eff =

21. This value implies the following performances relating to the radial velocities

directly observable by the Doppler component of the radar echo:

|vr,max| =
λ0

4TPRT

∼= 5.3
km

h

∆vr =
λ0

2TCPI,eff

∼= 0.53
km

h

(4.6)

where |vr,max| is the maximum absolute value of the detectable radial speed.

TPRT = Tc+Trd+Tpll−s is the Pulse Repetition Time (PRT). λ0 is the wavelength

in vacuum. The complete set of radar sensor parameters are presented in Table

4.1
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Symbol Description Value
B Sweep Bandwidth 200MHz
f0 Center Frequency 24.025GHz
fs Sampling Frequency 42667 Hz

Rmax Maximum Range 25 m
Vmax Maximum Velocity 5.4Km/hr
∆R Range Resolution 0.75 m
∆V Velocity Resolution 0.4Km/hr
Ns Number of Samples/Chirp 64
Nc Number of Chirps/Frame 21
Tc Up-Chirp Time 1.5 ms
a Chirp Slope 133MHz/s

TPRT Pulse Repetition Time 2100µs

Table 4.1: Radar Sensor Parameters

73



4.4 A CNN-Based Method for Discriminating Shadowed Targets in
FMCW Radar Systems

4.4 A CNN-Based Method for Discriminating

Shadowed Targets in FMCW Radar Sys-

tems

Up to now, the bi-static radars (with at least one transmitting antenna and at

least one receiving antenna) have resolved the detection and localization of a single

stationary target, yet the problem of multi-stationary target detection has been

less addressed. The bi-static radars are able to accurately detect targets that are

closer to the radar antennas, whereas the greater the distance of the targets from

the radar, the lower the accuracy of the detection [70]. This is mainly attributed

to two factors. Firstly, as the transmission distance increases, the energy of the

electromagnetic wave is attenuated; hence, the energy of electromagnetic waves

reaching farther targets is inevitably smaller than that reaching the closest target.

Secondly, some targets, named recessive targets, can lie in the shadowed region

of a dominant target (i.e., the closest to the radar). Thus, because the highest

energy of the electromagnetic waves is reflected from the dominant target to the

radar, the electromagnetic illumination of the recessive targets could decrease to

the point where they are not detected [71]. Therefore, radar systems suffer from

what is called the shadowing effect. This effect occurs when two targets stand

in front of the antenna, one in the shadowing region of the other. The radar is

usually not reliably capable of detecting the target that is standing in the shadow

region [70]. This problem is common for most radar technologies, particularly,

Ultra-Wide-Band (UWB) radar [74] and Frequency-Modulated Continuous-Wave

(FMCW) radar [90]. Unlike pulse and Ultra-Wide-Band (UWB) radars, FMCW

systems require lower sampling rates and lower peak-to-average power ratios to

detect the distance and speed of multiple moving targets [30; 31]. Accordingly,

the FMCW radar is a good solution for detection and localization purposes but
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performs poorly whenever the shadow effect occurs. The shadow effect is more

relevant in low-cost radars. This is due to their lower resolution compared to the

high-end radars (higher range and velocity resolution) [91].

This section is organized as follows: In Section 4.4, the problem statement

is explained. Section 4.4.2 presents and discusses the methodology adopted to

identify and solve the shadowing effect. The experimental setup is considered in

Section 4.4.3, explaining the data acquisition process, time frequency analysis,

and training process. The experimental results and discussion are presented in

Section 4.4.4. Finally, the conclusions and some proposals for future work are

provided in Section 4.4.5.

4.4.1 Problem statement

4.4.1.1 FMCW radar device

Multi-chirp FMCW algorithm is considered the standard for detecting and mea-

suring range and speed of multiple targets [28]. The concept of multi-chirp is to

send a frame containing multiple number of chirps (Nc) in saw-tooth modulation

and in a short period, with a chirp time (Tc) being very small (in µs), where Tf

is the time of the data frame (Tf is in ms). In the current scenario, the “Posi-

tion2Go” [181] cheap radar is used. It is an FMCW radar board developed by

Infineon technologies. This development kit allows the user to implement and

test several sensing applications at the 24 GHz ISM band such as tracking and

collision avoidance. This is possible by using fast chirp FMCW and two receive

antennas to get the angle, distance, speed, and direction of motion. The radar

is equipped with a pair of arrays of microstrip patch antennas (one transmitting

and two for receiving) characterized by a 12 dBi gain and 19 × 76 degrees beam-

widths, defining the Field of View (FoV). The kit consists of the BGT24MTR12

transceiver MMIC and a XMC4700 32-bit ARM® Cortex®-M4 for signal pro-
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cessing and communication via USB. The radar is connected via USB to a PC

that is running MATLAB. A MATLAB script sends the order to the radar to

initiate the data acquisition procedure through USB port. Table 4.6 shows the

radar sensor parameters.

Table 4.2: Position2Go radar specifications.

Parameters Value
Sweep Bandwidth 200 MHz
Center Frequency 24 GHz
Up-Chirp Time 300 µs

Number of samples/chirp (Ns) 128
Number of chirps/frame (Nc) 32

Maximum Range 50 m
Maximum Velocity 5.4 km/h
Range Resolution 0.75 m

Velocity Resolution 0.4 km/h
Sampling rate 42 KHz

4.4.1.2 Shadow effect

Figure 4.1 shows different cases of targets detection using a radar. In particular,

Figure 4.1(a) illustrates the case of a single target standing in the range of the

radar, Figure 4.1(b) depicts two targets both detectable by the radar, while Figure

4.1(c) represents the shadowing effect where the target B is masked by the target

A, thus target B is not visible to the radar. Figure 4.2 shows a photograph of the

measured setup where one target is in the range of the radar.
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(a) One target in range of the
radar

(b) Two targets in range of
radar, both visible to the

radar

(c) Two targets in range of
radar, only one visible to the

radar

Figure 4.1: Illustration of the data collection setup
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Figure 4.2: Photograph of measured setup - One target in range of the radar

The shadowing effect creates a region behind the target (Target A in Figure

4.1(c)) where the electromagnetic waves emitted by the radar transmitting an-

tenna or reflected by another object are not able to propagate. In fact, computing

the power spectrum on the multi-chirp data acquired by the FMCW radar, it is

possible to detect the masked target, but the detection is accompanied with a lot

of variability in the measurements. The reason of such variability is that a few

radar waves penetrate and slips through the shadowing target to the masked one,

reflecting to the radar with a very low intensity. These waves in particular cause

a huge variability that can affect the detection parameters of both targets in the

Field of View (FoV) of the radar. Figure 4.3 shows three examples of the range
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representation obtained after the fast time FFT (range-FFT) on multi-chirp sig-

nals [28], positioning the radar 1.5m from the floor. Each target on the spectrum

is represented by a peak. A fixed target detection threshold (red horizontal line),

is used to determine the valid target identifications, i.e., each target passing in

the FoV of the radar with a peak higher than the fixed threshold is considered

a valid detection by the radar. The threshold is a user-defined parameter that

affects radar performance directly by causing a trade-off between detection ac-

curacy and false alarm probability. If it is chosen to be too high, the algorithm

will fail to identify some targets. If it is too low, the algorithm will detect many

artifacts as targets. Figure 4.3(a) shows only one peak at a distance of 7m, this

situation is illustrated in Figure 4.1(a) where only one target is in front of the

radar (d1 = 7m). In Figure 4.3(b), two peaks appear at distances of 7m and

10m, respectively; this spectrum is the result of a trial where two people were

standing in different positions (i.e., d1 = 7m and d2 = 10m) with no shadow

effect on each other, as illustrated in Figure 4.1(b). The magnitude of the peak

at a 10m is smaller than that at 7m because of the attenuation of the electromag-

netic wave of the radar as the distance increases. In Figure 4.3(c), the maximum

peak appears at a distance of 7m, which corresponds to the location of target A

(d1 = 7m). However, target B (d2 = 10m) cannot be detected, since he stood in

the shadowing region. An example is illustrated in Figure 4.1(c).

Therefore, the traditional spectrum method is not reliable for detecting mul-

tiple targets where the shadow effect occurs. The shadowed targets are hardly

detected. This fact is dependent on the chosen power threshold, Radar Cross

Section (RCS) of the shadowing target [182], and the environmental clutters.

In the case when target B is not fully shadowed by target A, target B is

expected to be detected with a weak signal, based on how much it is shadowed by

target A. However, this detection is also relative to the chosen detection threshold.
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The radar is capable of discontinuously detect Target B when it is not completely

aligned with Target A [70]. Although, the detection of Target B is not reliable,

the partial shadow effect was excluded from our testing campaign because it

represents a simplified version of the full shadow effect illustrated in Figure 4.1(c).

(a) One target (b) Two unmasked targets

(c) Two targets, one masked

Figure 4.3: Range-FFT power spectrum

The horizontal red line is the target detection threshold. Radar is positioned

1.5m from the floor. (a) Only Target A (d1 = 7m), (b) Two targets A (d1 = 7m)

and B (d2 = 10m) without shadowing effect, (c) Target B (d2 = 10m) is shadowed

by Target A (d1 = 7m)

4.4.2 Methodology

To address the shadow effect, a novel approach is proposed. The idea is that a

slight portion of the waves are slipped through or around the shadowing target

(Target A in Figure 4.1(c)) towards the shadowed target (Target B in Figure
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4.1(c)). The masked target is receiving and reflecting those slithered electromag-

netic waves, thus making a slight but noticeable variation in the waves received

by the radar. Those reflections are used to identify whether there is a masked

target or not. This goal could be achieved using time frequency analysis to con-

struct images (i.e. spectrograms) that feed CNNs, addressing a two class image

classification problem (One Target vs Two Targets).

4.4.2.1 Time frequency analysis

Spectrograms are a popular signal processing tool used to reveal the instantaneous

spectral contents of the time-domain signal. They also show the variations of the

spectral content over time. A spectrogram is obtained by applying the squared

magnitude of the STFT computed over a discrete input signal. The STFT can

be formalized as:

STFT{x[n]} = X(m, k) =
∞∑

n=−∞

x[n]w[n−m]e−j2πkn/N (4.7)

where x[n] is the discrete signal, w[n] is the discrete window function, which is

non-zero in [0...N ] and zero elsewhere, N is the number of samples in the window,

and k is the discrete frequency. The window’s location is indicated by the index

m. The spectrogram can be generated by continuously computing the STFT with

increasing m by a step size ∆m. The step size ∆m can be used to achieve an

overlap between two consecutive analysis windows, resulting in a smoother time

dimension output. Eventually, to use the computationally quicker Fast Fourier

Transform (FFT), a power of 2 must be selected for N , or N can be zero padded

to a power of 2. As a rule of thumb, large window size indicates a high resolution

in the time domain and low resolution in the frequency and vice versa.
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4.4.2.2 Deep Neural Network Models

To address the shadowing effect problem in its most simplified form, only two

classes were considered in this study (One Target and Two Targets). To address

the two class classification problem, we employed CNNs trained over the spec-

trogram images. The CNNs proved to be very efficient in images classification.

In particular, MobileNet models are suitable for the deployment on embedded

systems since they achieve similar accuracies in the object classification problem,

while requiring less parameters than ResNets and VGGs. The peculiarity of the

MobileNets is the adoption of the depth-wise separable convolution [183], i.e.,

the standard convolution operator is replaced by two separate layers: the first

layer involves one convolutional filter per input channel, while the second is a

point-wise convolution. For an input of size H×W ×D, and a 2-D convolutional

layer presenting Nk kernels of size K × K, the computational cost CSC of the

standard convolution is:

CSC = H ×W ×D ×Nk ×K ×K (4.8)

while using the depth-wise separable convolution, the cost CDSC is:

CDSC = H ×W ×D × (K2 + Nk) (4.9)

which is significantly smaller than (4.8).

Table 4.3 shows a comparison of some state-of-the-art MobileNet models (i.e.,

V2 and Small V3) with ResNet50 and VGG19 networks [184], all trained on the

Imagenet dataset. The first column reports the models, the second represents the

number of parameters, the third shows the generalization accuracy on the Ima-

genet dataset, the fourth displays the model sizes in megabytes, while the last

column presents the average inference time of the models running on GPU Tesla
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A100. The table demonstrates that the MobileNets can achieve similar general-

ization performances, employing few parameters with respect to more complex

models.

Table 4.3: Sample of the available models.

Model
Num of params Top-1 Size Inference Time

(Million) accuracy (%) (MB) (ms) on GPU
ResNet50 25.6 74.9 98 4.55
VGG19 143.6 71.3 549 4.38

MobileNet V2 3.53 71.3 14 3.83
Small MobileNet V3 2.0 73.8 12 3.57

Following the results of Table 4.3, four different MobileNet-based architectures

were compared. The four models were pre-trained on the Imagenet dataset,

thus the weights and biases have been statically loaded, before eventually fine-

tuning the last trainable Dense layer using the collected dataset. Hence, the

convolutional layers of the MobileNets provide the filters, learned on the Imagenet

dataset, to process the input image. Eventually, the features extracted by the

convolutional layers are fed to the Dense layer that classifies the data among the

two possible classes (One target vs Two targets). The data collection procedure

is presented in Section 4.4.3.1.

4.4.3 Experimental setup

Four persons were involved in a series of experiments with the aim of collecting

data to validate the proposed solution. In the following section, the data retrieval

process is described. In addition, the spectrograms hyperparameters choice is

explained. Finally, the CNN training phase is spelled out. The block diagram of

the proposed system is illustrated in Figure 4.4.
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Figure 4.4: Block diagram of the proposed system

4.4.3.1 Data acquisition

In order to overcome the possible problem of multi-path effect, a clutter removal

technique proposed in [92] was used to cancel the environmental clutters (i.e., the

potential ghost effect) from the source.

Two sets of experiments were carried out for this study. Measurements took

place in thirty meters long and three meters wide corridor. The corridor envi-

ronment was chosen because it maximizes the clutter, thus makes it harder for

the radar to detect the shadowed target. The goal of the experiments is to de-

tect all human targets standing in range of the radar. The radar was placed

one and a half meters from the ground. Figure 4.5 schematizes the experimental

environment.

Figure 4.5: Illustration of the corridor data collection environment

As illustrated in Figure 4.4, data is collected and pre-processed to reach a

spectrogram format (i.e., image). These spectrograms are then fed to the CNN

classifier. Figure 4.6 shows the data processing pipeline from the raw radar out-
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come towards the spectrogram format. The data corresponding to chirps are

stored as the rows of a matrix of dimension Nc×Ns (i.e, Nc is number of chirps

and Ns is the number of samples of each chirp). To convert the data type, an

Analog to Digital Converter (ADC) was used. Range FFT is then applied on

each row, it results in a range representation. Multiple slices (Slices = 50 in this

study) of this matrix are then collected to form a tensor (Nc×Range× Slices).

The slices are collected consecutively: as soon as the n − th slice is collected,

the radar immediately starts to collected the slice n − th + 1. Finally, STFT is

applied on this 3D tensor to obtain the spectrogram.

Figure 4.6: Data processing pipeline

For the first experiment, illustrated in Figures 4.1(a), a single target (Target

A) stood in the range of the radar. The target was standing in different positions

gradually through all reference positions d1 along eleven meters range. Four

different human targets were involved in this experiment to increase the data

diversity. One hundred and fifty measurements were collected for each target.

Therefore, for the first experiment, six hundred measurements were collected.
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This dataset is called: One Target (OT) class.

For the second experiment, illustrated in Figure 4.1(c), two targets A and B

stood in the range of the radar. Target A, who was closer to the radar antennas,

was standing gradually through all reference positions d1 along eleven meters

range in front of the antennas, and target B who was farther away from the

antennas stood in the shadowing region of target A (setup is illustrated in Figure

4.1(c)), two meters behind him. Three persons were involved in this experiment,

exchanging their mutual positions. Six hundred measurements were collected

during this experiment; this dataset is called: Two Targets (TT) class. To sum up,

the complete collected dataset consists of one thousand and two hundred samples.

Divided in half among the two classes. The extracted dataset is formalized in:

D = {(X, y)i; Xi ∈ RNc×Ns×Slices, yi ∈ {OT, TT}; i = 1, ..., Z = 1200} (4.10)

where Nc = 32, Ns = 128, and Slices = 50.

Table 4.4 summarizes the data collection setup. The first column represents

the class (One Target vs. Two Targets). The second and the third columns

presents the distances from each target to the radar (i.e., Target A and Target

B respectively). The last column displays the number of measurements acquired

for each combination of the targets involved in the experiments. In case of the

One Target class, 4 persons have been involved (i.e., four combinations for each

d1 distance), thus 30 acquisitions per combination. For the Two Targets class,

measurements have been obtained on 3 persons exchanging their mutual position

(i.e., 6 possible combinations for each pair [d1, d2]), hence 20 acquisitions per

combination.
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Table 4.4: Data collection Setup

Class
Distance of Distance of Num of meas.

Target A (d1) [m] Target B (d2) [m] per comb.

One Target

3 - 30
5 - 30
7 - 30
9 - 30
11 - 30

Two Targets

3 5 20
5 7 20
7 9 20
9 11 20
11 13 20

4.4.3.2 Spectrogram

Accordingly to Section 4.4.2.1, a time-frequency analysis is carried out on D to

extract spectrograms in order to feed CNNs. To obtain a continuous spectrogram,

a large window size was chosen with N = 2048, with a 50% overlapping (∆m =

1024). Two samples of the obtained results are illustrated in Figure 4.7.

(a) One Target. (b) Two Targets.

Figure 4.7: Spectrogram examples

The spectrograms of the 1200 collected samples are generated. The original

dimensions of each spectrogram was (875, 656, 3); each down-sampled and zero
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padded to fit the input size of our CNN, with the dimension (224, 224, 3). The

dataset containing spectrograms can be formalized as:

S = {(X̂, y)i; X̂i ∈ N224×224×3, yi ∈ {OT, TT}, i = 1, ..., Z = 1200}. (4.11)

Figure 4.7(a) shows an example of the generated spectrogram for the One Target

class as illustrated in Figure 4.1(a). In this example, the target was standing five

meters away from the radar. Figure 4.7(b) shows an example for the Two Targets

class as illustrated in Figure 4.1(c). In this example, the Target A was five meters

away from the radar while Target B was two meters behind target A, so seven

meters away from the radar. If inspected carefully, a difference is visible between

Figure 4.7(a) and 4.7(b), this difference represents the passive electromagnetic

waves reflected from the Target B and received by the radar antenna.

4.4.3.3 Training

In line with the outcomes shown in Table 4.3, MobileNet-based architectures de-

livered outcomes on par with those of other neural networks with significantly

more parameters. Therefore, the author adopted the four most common im-

plementations of the MobileNets architectures. The number of neurons in the

trainable Dense layer is set to 128 for each network, using the ReLU as non-

linear activation function. Moreover, Stratified K-Fold technique was adopted to

ensure fair results. Stratified sampling consists of splitting the data of the original

labeled dataset (i.e., the population) in subsets, having the same proportion of

data as in the population. The subgroups are called ‘strata’. Thus, by adopting

the stratified method in cross-validation guarantees that the training and test sets

contain the same proportion of labeled dataset in each fold, leading to a close

approximation of the generalization error on the test set. In each of ‘K’ iterations
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of the K-fold cross-validation technique, where the data have been split into ‘K’

groups, one portion is used as the test set, while the remaining portions are used

for training. In the current situation, ‘K’ was chosen to be equal to five. There-

fore, five folds were generated, and results will be presented in the next section as

an average of the five results from each of the folds. In this way, 80% of the data

have been used for training and 20% for test in each iteration run. Actually, the

test data has been split into two parts (validation and test sets) having the same

number of samples. An early stopping criterion was implemented during training

over the validation set, fixing the patience parameter to 10. All the results have

been averaged over the 5-folds. The Adam optimizer function is used with a

learning rate of 1/2000. Regarding the loss function, categorical cross entropy is

used. Models are trained for one hundred epochs for each split.

4.4.4 Experimental results and Discussion

The results achieved using the proposed approach are presented in Table 4.5. The

first column provides the four adopted model architectures, the second shows the

number of parameters, the third column reports the average accuracy computed

on the test set of the 5-folds and the standard deviation for each model, the fourth

column depicts the average inference time of the model running on a RTX-2080Ti

GPU, while the last column presents the saved models sizes.
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Table 4.5: Results over the four different models

Model
Num of params Average test Inference Time Size

(Million) acc (%) ± STD (ms) on GPU (MB)
MobileNet V2 2.3 81.5 ± 4.36 2.35 7.2

MobileNet V3
3.2 92.2 ± 2.86 2.23 18.2

Large

MobileNet V3
1.6 90.9 ± 1.4 1.91 6.8

Small

MobileNet V3
1.06 88.7 ± 2.39 1.64 5.0

Small Minimalistic

The table shows that all the MobileNet V3 based networks generally perform

better than MobileNet V2. It could be explained by the introduction of the hard-

swish activation function and the implementation of a squeeze-and-excitation

module [183]. Among the three MobileNet V3 versions (Large, Small, and Small

Minimalistic), testing accuracy results are directly proportional to the number of

parameters used in the architecture: the higher the number of parameters, the

higher testing accuracy is achieved.

A compromise should be taken when choosing the model. This compromise

would be highly dependent on the application scenario. If the application scenario

is critical and the accuracy is the main interest, Large MobileNet V3 would be

chosen. If the goal is to deploy on the edge, then memory and inference time would

be the main goal, Small Minimalistic MobileNet V3 would be chosen. Usually,

the main interest of using a low-cost radar is the possibility of edge deployment,

and the main constraint of edge deployment is the number of parameters, thus

the model size. Therefore, the Small Minimalistic MobileNet V3 best suits the

proposed use-case.

Under the proposed circumstances, where either one or two targets are in

the detection range of the radar, the model’s choice (i.e., number of parameters,
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architecture, etc.) affects the performance of the proposed algorithm. In addition,

the radar parameters and hardware specifications (i.e., Number of chirps, memory

capacity, etc.) influence the performance of the algorithm; those parameters were

chosen according to [181].

As introduced in the Section 4.4, authors in [74] proposed an algorithm based

on the wavelet entropy for shadowing effect removal of human targets using UWB

radars. This method proved to be effective in detecting two stationary human tar-

gets despite one person being in the shadowing region of the other. Hence, static

filters (i.e., wavelet) are used. For each new possible deployment environment, an

on-site adjustment is required: the number of filter levels and the wavelet func-

tion need to be tuned to accurately fit the application scenario. Therefore, the

solution is not easily scalable because it needs an expert intervention whenever a

new context occurs. On the other hand, our proposal uses filters (i.e., weights of

the Convolutional layers) learned on a massive dataset (i.e., Imagenet dataset).

This guarantees a high level of scalability and ease of deployment for different en-

vironments. Particularly it is not required to retrain the filters for new problems:

only one Dense layer needs to be fine-tuned for the incoming dataset, preserving

the same structure of the pre-trained architecture, without requiring any expert

intervention.

4.4.5 Conclusion and Future works

In the case of multi-target detection using an FMCW radar, the target closest

to radar antennas partially reflects the energy of the electromagnetic wave, the

person farther from the radar antennas is not detected continuously, especially

when in the shadowing region of the closest person. In this chapter, a novel so-

lution for the radar shadowing effect has been proposed. The solution is based

on a CNN model that classifies the spectrogram images, obtained after a time-
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frequency analysis of the radar data, among one of two classes: One Target vs.

Two Targets. The model is based on MobileNet and is loaded with the Imagenet

weights. The best solution in terms of testing accuracy achieved 92.2% with a

standard deviation of 2.86%. Whilst the lightest (i.e., 1.06 million parameters)

model attained 88.7% with a standard deviation of 2.39% over five splits of input

data. The latter model uses 1.06 million parameters only and having a size of

5 MB. The inference time using a GPU is 1.64ms. In future research, the au-

thors plan to deploy the proposed solution on a Raspberry Pi and test the model

in a real scenario. In addition, the distance between the visible target and the

masked target should be assessed using a regression model. The proposed solution

could be extended to different types of targets (e.g. cars, robots, pedestrians...).

This novel solution uses a supervised learning method, in other words, it already

knows all the possible classes (One Target or Two Targets). If the situation of

multiple shadowed targets needs to be addressed, it is theoretically possible by

collecting enough data for every possible class. This method might not be prac-

tical because the number of classes could not be predicted beforehand. Therefore

the recommended procedure would be to shift the problem into an unsupervised

problem.
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4.5 On Edge Human Action Recognition Using

Radar-Based Sensing and Deep Learning

This section proposes a system for human action recognition based on deep learn-

ing (DL). The blocks of the system are designed for edge deployment. The data

are collected using a low-cost FMCW radar connected to the edge device. The

device transforms the signals into range-Doppler maps, treated as a series of im-

ages by the DNN. The performance of the system is evaluated both in terms

of generalization accuracy and computational cost measured on the edge device.

This evaluation covered the multi-class classification (i.e., 5 human action classes)

and binary classification (i.e., fall vs non-fall classes).

The following are the novel contributions of this chapter:

• The system is low-cost and deployed on the edge.

• The proposed DNN classifies a series of range-Doppler maps through the

medium of a time distributed layer (TDL).

• The DNN size achieves real-time edge inference.

The remainder of this section is organized as follows. In Section 4.5.1, the

multi-class human action recognition method is described. In Section 4.5.2, the

radar specifications, data collection, training procedure, and edge deployment

procedure are detailed. In Section 4.5.3, experimental results including both

model and edge system assessment are presented. Finally, Section 4.5.4 concludes

this section.

4.5.1 Methodology

In this section, the author present the multi-class action recognition system. Fig-

ure 4.8 presents the block diagram of the action elaboration since signals are
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acquired until the classification. The block diagram consists of four stages after

that the radar receives the signals. In the following, all the stages are detailed.

Figure 4.8: Block diagram of the action elaboration

During the online inference, all the stages are deployed on an edge device.

Thus, a trade-off between generalization accuracy and the time for retrieving the

action label gets crucial.

4.5.1.1 2D FFT

In the 2D FFT stage, the signals received by the Position2Go FMCW radar [185]

are processed by edge device (i.e., the Raspberry Pi 4) to obtain range-Doppler

matrices, also known as range-Doppler maps [28]. The radar receiver antenna

receives a delayed and attenuated copy of the transmitted wave. An I/Q mixer

demodulates the received wave and returns an intermediate frequency (IF) signal.

The signal is sampled by an analog-to-digital converter (ADC) and organized in a

2D matrix. Following the notation adopted in [186], the matrix can be represented

as:

qIF (ns, nc) = AIF e
j2π(fbTsns−fDncTPRI) with

ns = 0, ..., Ns − 1; nc = 0, ..., Nc − 1
(4.12)
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where AIF is proportional to the strength of the received echo, Ts is the

sampling period, fD is the Doppler frequency shift, fb is the beat frequency, TPRI

is the pulse repetition interval, Nc is the number of chirps with Ns samples per

chirp. According to equation 4.12 in [186], the signals in qIF are filtered producing

a filtered matrix u(ns, nc). The range-Doppler (RD) map is computed as:

RD(Ksf )(nb, nD)

= FND
D

{
FNR
r

{
u× ω

(Ksf )
r

}
× ω

(Ksf )
D

}
(nb, nD)

(4.13)

where u is the filtered matrix after removing the clutters [28], ω
Ksf
r and ω

Ksf

D

are Kaiser windows to be applied on the beat frequency and Doppler dimensions

with a shape factor Ksf , and FNR
r and FND

D are the range-FFT and Doppler-FFT

outputting sequences of length NR and ND, respectively. After the processing,

the RD map has dimension NR ×ND. In this work, NR = ND = 256.

Since a RD map is a 3D tensor, it can be considered as an image and can be

formalized as RD ∈ NNR×ND×C as in Fig. 4.8, where NR and ND represent the

height and width of the image, while C represents the number of channels (e.g.,

C = 1 in a gray-scale image and C = 3 in a RGB format).

4.5.1.2 Image Transformation Stage

A transformation can be applied to an image to convert it from one domain

to another. Viewing an image in different domains enables the identification

of features that may not be as easily detected in the initial domain. Among

the image transformation techniques, edge detectors proved to increase accuracy

in deep learning applications [187]. In this chapter, five transformations have

been applied to the RD maps (RD in Fig. 4.8), three of which are based on

edge detectors (i.e., Canny, Sobel, and Roberts). During the transformation, the
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RD maps are also resized to cope with the dimension of the input tensor of the

classifier. Figure 4.9 shows the different transformations applied on an exemplary

RD map. The RD map format is a RGB image (Fig. 4.9(a)). As aforesaid, this

image is a 3D tensor of dimension NR × ND × C. The applied transformations

are the following:

• Gray (Fig. 4.9(b)) decreases the number of channels C to 1, reducing also

the color dependency.

• Canny (Fig. 4.9(c)) uses a multi-stage algorithm to detect a wide range of

edges in images.

• Sobel (Fig. 4.9(d)) convolves the image with a small, separable, and

integer-valued filter in the horizontal and vertical directions.

• Roberts (Fig. 4.9(e)) approximates the gradient of an image through dis-

crete differentiation which is achieved by computing the sum of the squares

of the differences between diagonally adjacent pixels.

• Binary (Fig. 4.9(f)) image is obtained by first applying the k-means clus-

tering algorithm to a RD map, obtaining a gray-scale image. The clusters

of pixels are then passed through a median filter to remove the outliers and

setting the non-outlier pixels to white.
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(a) Original (b) Gray (c) Canny

(d) Sobel (e) Roberts (f) Binary

Figure 4.9: Example of image transformations applied to the original image (a):
(b) Gray scale, (c) Canny, (d) Roberts, (e) Sobel, and (f) Binary

A transformed and resized RD map can be formulated as R̃D ∈ NN×M×C

(Fig. 4.8).

4.5.1.3 Image Sequence Collection

RD maps vary in time. Therefore, the sequence of RD maps is time-dependent.

To classify the action, T R̃D images of each action performed in the FoV are

collected as a 4D tensor datum, as shown in Figure 4.10. The 4D tensor can be

formalized as X ∈ NN×M×C×T .

The adoption of sequences of RD maps results in an advantage in terms of

classification accuracy over the single-image one, as demonstrated for human ac-

tions recognition in [107]. By contrast, a image sequence classification approach

would increase the computational cost of the classifier. Hence, the edge device’s

computational capacity needs to be taken into consideration during the develop-

ment of the system. Thus, a trade-off between accuracy and computational cost

of the elaboration system gets crucial.
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Figure 4.10: Example of a 4D tensor representing an action

4.5.1.4 Classifier

Figure 4.11 shows the proposed DNN (Classifier in Fig. 4.8) used to classify the

sequence of images.

Figure 4.11: Proposed DNN

A Time Distributed Layer (TDL) applies the same layer(s) to every time step

of the input. In this work, the TDL uses a CNN to extract T feature maps from

the T images of the 4D input tensor. Thus, the output of the TDL is a sequence

of feature maps. A LSTM layer learns the dependencies between the sequence of

feature maps. Finally, two dense layers are the output layers of the DNN. The

first one represents a fully connected network with a ReLU activation function.
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The second is made of Neu neurons, where Neu is the number of classes involved

in the training process with a Softmax activation function to assign the action

label.

Three CNNs are designed to extract features from the 4D inputs. The use of

CNNs aims to automatically extract features by learning the kernels (i.e. filters)

that convolve with the data. This practice is adopted to topple the domain-

specific feature extraction, which is usually crafted manually by subject-matter

experts. The CNNs have been designed as a proof of concept for the feasibility

of the action recognition system. Therefore, future works will address exhaustive

benchmarks with state-of-the-art architectures.

Figure 4.12 shows the CNN basic architecture (called CNN2). The CNN2

comprises six main blocks: the first one, B1, consists of six 2D convolutional

layers taking as input a 3D tensor of dimension N × M × C, where N and M

represent the dimension of the frame and C is the number of channels. In this

section, the range-Doppler maps (Fig. 4.9(a)) have number of channels C = 3,

while all the transformed images (Fig. 4.9(b)-(f)) have C = 1. Each one of the five

blocks (i.e., B2, B3, B4, B5, B6) consists of a Batch Normalization layer followed

by a 2D Average Pooling and a dynamic number of 2D convolutional layers (the

number of convolutional layers decreases by one along with the blocks). The last

block, B6, contains only one convolutional layer. Following this block, a Batch

Normalization and Global Average Pooling layers are added. In particular, the

Global Pooling flattens the last feature map.
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Figure 4.12: CNN2 architecture

Two different variations of the CNN2 architecture are also examined. CNN1

has an architecture similar to CNN2 but with a lower number of layers: it contains

five blocks instead of six, each block has a convolutional layer less than CNN2,

and the Global Pooling is applied to the output of the fifth block (the last one

in this case). On the opposite, CNN3 has one more convolutional layer in each

block with respect to CNN2, thus presenting seven main blocks. The results of

the performances in terms of generalization accuracy and computational cost are

presented in Section 4.5.3.

4.5.2 Experimental Setup

4.5.2.1 FMCW Radar Specifications

The radar used in the experiments is the Position2Go FMCW radar model op-

erating on the 24 GHz ISM band, by Infineon Technologies [185]. The radar is

equipped with a pair of arrays of micro-strip patch antennas (one for transmitting

and two for receiving) characterized by a 12 dbi gain and 19 × 76 degree beam

widths, defining the Field of View (FoV) in both elevation and azimuth axes re-

spectively. The sampling rate used for the data collection is 213 kHz to detect

the high-frequency components of the signal that appear when different actions

occur (around 60 Hz) [107]. This development kit allows the user to implement
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and test several sensing applications at the 24 GHz ISM bands, such as localizing,

tracking, and collision avoidance [185]. Table 4.6 lists the radar parameters that

are set for the data collection procedure.

Table 4.6: Position2Go radar specifications.

Parameters Value
Sweep Bandwidth 200 MHz
Center Frequency 24 GHz
Up-Chirp Time 300 µs

Number of Samples/Chirp (Ns) 64
Number of Chirps/Frame (Nc) 64

Maximum Range 48 m
Maximum Velocity 10.5 km/h
Range Resolution 0.75 m

Velocity Resolution 0.4 km/h
Sampling Rate 213.33 KHz

4.5.2.2 DNNs Parameters

According to Fig. 4.12, the CNN input has dimensions N ×M × C. We chose

N = M = 224 and C = 3 in case of an RGB image (i.e., Fig. 4.9(a)) and

C = 1 for all the other transformations (i.e., Fig. 4.9(b)-(f)). As mentioned in

Sec. 4.5.1.2, since the original RD maps (i.e., RD in Fig. 4.8) have dimension

256 × 256 × 3, all the images have been resized to 224 × 224 × 3 before applying

the transformations. In B1 block of all the models, the number of filters F is set

equal to 8 while, in the further blocks, F is doubled while N and M are reduced

by 50%. As a result, in the last block of CNN2 in Fig. 4.12 (i.e. B6 for CNN2)

the output has dimension 7 × 7 × 256. Consequently, the output of CNN1 has

dimensions 14×14×128, while the output of the CNN3 has dimensions 3×3×512.

The LSTM layer that follows the TDL layer in Fig. 4.11 has 128 neurons for all

the models. The first dense layer has 64 neurons in all the models. The output

layer has five neurons, corresponding to the five classes. Table 4.7 presents the
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total number of parameters for each model. Model1 refers to the architecture

of Fig. 4.11 using CNN1. Equally, Model2 and Model3 use CNN2 and CNN3,

respectively.

Table 4.7: Number of parameters of the three models

Model Number of parameters
Model1 304,117
Model2 862,509
Model3 2,962,533

4.5.2.3 Data Collection

The data have been collected in two different environments at the University of

Genova, Italy. The environments contain clutters such as desks, PCs, and metal

lockers, as shown in Fig. 4.13.

(a) Environment 1 (b) Environment 2

Figure 4.13: Environments for data collection

A data sample consists of 15 consecutive range-Doppler maps acquired during

3 seconds of an action performed in the FoV of the radar. The data samples are

presented in RGB format as shown in Fig. 4.9(a). The dataset contains 5 classes:

• Fall: the subject falls from a walking or standing state on a mattress.

• Bed-Fall (Bed): a couch (Fig. 4.13(b)) is used to represent a bed. It is

moved around the environment to perform the ‘fall from bed’ action from

different angles with respect to the radar’s FoV.
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• Sit: the subject sits down on the couch or chairs positioned in different

locations of the environment.

• Stand: the subject stands up from the couch or chairs positioned in differ-

ent locations of the environment.

• Walk: the subject walks in the FoV of the radar.

The goal of collecting data samples for the last three classes is to prove the

ability to distinguish among actions. The actions have been performed by five

healthy subjects aged between 25 and 30. Only one subject performed one action

at time. To eliminate possible data-collection selection bias, the subject executed

the same action in different ways (e.g., change the starting and/or ending posi-

tions with respect to the radar, perform the action faster/slower, etc.). In total,

one hundred data samples, i.e. twenty per subject, have been collected for each

class (50 for each environment). The dataset is formalized as:

DOrig =
{

(X, y)i ;Xi ∈ N224×224×3×15; yi ∈ {Fall,

Bed, Sit, Stand, Walk} ; i = 1, ..., 500
} (4.14)

Table 4.8 summarizes the collected data. The first column shows the per-

formed actions, the second column depicts the class corresponding to each action,

and the last column reports the number of data acquired in each environment

per class.
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Table 4.8: Collected Dataset Summary

Actions Classes Names Num of samples
Falling from a walking/

Fall 100
standing position

Falling from a
Bed-Fall 100

laying on a couch position
Sitting down on a

Sit 100
chair/couch

Standing up from a
Stand 100

chair/couch
Walking Walk 100

Five datasets have been generated from the DOrig dataset by applying the

transformation techniques described in Sec. 4.5.1.1. These datasets can be for-

malized as:

Dd =
{

(X, y)i ;Xi ∈ N224×224×1×15; yi ∈ {Fall,

Bed, Sit, Stand, Walk} ; i = 1, ..., 500
} (4.15)

with d ∈ {Gray, Canny, Sobel, Roberts, Binary}.

Each of the three models is trained using the six datasets (4.14) and (4.15).

The generalization accuracies are evaluated and compared in Sec. 4.5.3.1.

4.5.2.4 Training Procedure

The training procedure has been hosted off-line by a desktop PC with a Nvidia

GeForce RTX 2080Ti GPU. All the models are trained with the following param-

eters:

• Adam optimizer with a learning rate lrstart = 7e−5;

• Number of epochs ep = 200;
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• Batch size bs = 10;

• Loss function lf = categorical cross entropy;

• Early stop on validation accuracy with patience p = 10.

The stratified K-fold technique is adopted to provide fair results. According

to the technique, a labeled dataset (population) is split into K parts containing

the same proportion of data per class as in the population. This mechanism

guarantees that the training and test sets contain the same proportion of data

in each fold without affecting the approximation of the generalization accuracy.

Each k-th part is used, in turn, as the test set. The remaining K−1 folds compose

the training set. In our experiments, K is set to 5. In this way, each fold contains

100 data samples, 20 per class. The generalization accuracy results presented in

the next section are averaged over the five folds.

Early stop criterion is adopted: from the K−1 folds used during the training,

a validation set using a ratio of 1/4 over the number of training data is extracted

randomly. Eventually, a learning rate decay is adopted: during the training pro-

cess, the learning rate is reduced every 10 epochs, multiplying it by 0.9. When the

early stop criterion is satisfied (i.e. the validation accuracy decreases continuously

for p epochs), the training procedure ends.

4.5.2.5 Edge Deployment Procedure

After the training procedure, the trained models need to be deployed on the edge

device. Depending on the application requirements, a trade-off between model

size, latency, and accuracy needs to be evaluated. Therefore, model optimiza-

tion options must be considered during the conversion of the model for the edge

deployment.
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TensorFlow Lite (TF-Lite) is used to deploy deep learning models on mobile

and edge devices (e.g., dev boards, micro-controller), offering optimization options

for converting a TF model into the TF-Lite format. The adopted optimization

option is quantization. It represents the model with lower precision (e.g., floating-

point 16 (FP16) instead of the default floating-point 32 (FP32) representation),

reducing the memory occupied by the model and the inference time. In this

work, two quantization options have been used: no quantization, i.e. the model

parameters are represented as FP32; FP16, the parameters are converted in FP16

cutting across the model size without affecting the inference time. The third

possible option, i.e. integer 8 (INT8) quantization, is not adopted because the

CPU of the edge device does not support the INT8 operations.

The device considered for this study is the Raspberry Pi4, including a high-

performance 64-bit quad-core processor, and 4GB of RAM. The 4 GB version of

the Raspberry Pi has indeed proved to be a reliable edge computing device for

the elaboration of signals collected by an FMCW radar [186; 188].

4.5.3 Results and Discussion

When introducing Edge AI systems, it is crucial to assess two complementary

aspects of it. The first side is the model effectiveness considering the goal of the

activity, i.e. the classification accuracy of actions. The second side is the efficiency

of the proposed Edge AI system (e.g., inference time, power consumption, energy

precision ratio, etc).

4.5.3.1 Classification Accuracy

In this section, the results in terms of accuracy are presented. At first, the

accuracy of the multi-class classification problem is assessed. Secondly, some

performance metrics are evaluated in a binary classification problem. In this
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case, the classes Fall and Bed-Fall are considered fall actions (i.e., harmful), and

the other classes are considered non-fall actions. The performance is computed on

the multi-class classification results, by grouping the predicted labels into harmful

and non-harmful classes.

Multi-class classification

Table 4.9 shows the average accuracy on the test set computed over the K folds

for each of the three DNNs. The first column indicates the datasets, the other

three columns report the average accuracy with their standard deviation. The

accuracies, computed on the test sets, are averaged over the five folds. The

best accuracy for each DNN is emboldened. Concerning DNN1, which contains

the lowest number of parameters accordingly to Table 4.7, DCanny presents the

highest accuracy. For both DNN2 and DNN3, the best accuracies are achieved

on the DGray dataset. The overall best accuracy (i.e. 93.2%), is obtained by

DNN3 which contains the largest number of parameters (Table 4.7), therefore

the highest memory occupation and power consumption on an edge device.

Figure 4.14 shows the confusion matrices for the best DNNs, emboldened in

Table 4.9, i.e, DNN1 trained with DCanny, DNN2 and DNN3 trained with DGray.

The predicted labels of the 5 folds have been merged, resulting in a hundred test

samples for each class. The most reliable DNN for detecting falls, which coincides

with the classes named Fall and Bed-Fall as described in Section 4.5.2.3, is DNN3.

DNN2 shows a lower accuracy in detecting the Fall class. As one can notice from

the first row in DNN3, the miss-classified samples are mostly classified as Sit.

This is possibly due to the similarity between Fall and Sit actions.
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Table 4.9: Average accuracy on the 5-Folds

Dataset
Average Accuracy ± Standard Deviation

DNN1 DNN2 DNN3
DOrig .730 ± .044 .920 ± .026 .930 ± .028
DGray .768 ± .065 .926 ± .022 .932 ± .029
DCanny .828 ± .044 .892 ± .037 .864 ± .022
DSobel .740 ± .054 .916 ± .038 .884 ± .026
DRoberts .764 ± .071 .880 ± .021 .886 ± .037
DBinary .700 ± .072 .860 ± .042 .858 ± .017

(a) Model1 trained on
DCanny

(b) Model2 trained on
DGray

(c) Model3 trained on
DGray

Figure 4.14: Confusion matrices of the three best models computed over the five
folds

Binary Classification

Indoor safety can be addressed as a binary problem. It consists of generating

a notification whenever a harmful action happens. Thus, the classes Fall and

Bed-Fall are considered as Fall actions (i.e., harmful), and the other classes are

considered as Non-Fall actions. The previously trained models are assessed in a

binary approach, without retraining, by grouping the labels into two classes (i.e.,

Harmful and Non-Harmful).

The following notation is used: True Positives (TP) are fall actions correctly

classified, False Positives (FP) are non-fall actions incorrectly classified as Fall,

True Negatives (TN) are non-fall actions correctly classified, False Negatives (FN)
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are fall actions incorrectly classified as Non-Fall.

The following metrics are then adopted:

• Precision (PR), PR = TP
TP+FP

• Recall or sensitivity (SE), SE = TP
TP+FN

• Specificity (SP), SP = TN
TN+FP

• False Positive Rate (FPR), FPR = FP
FP+TN

• False Negative Rate (FNR), FNR = FN
FN+TP

• F-score, F = 2 × PRxSE
PR+SE

Table 4.10 presents the classification metrics obtained following the binary

classification approach, assessed on the three best performing models of Table 4.9.

The results presented in Table 4.10 prove that the proposed system is capable of

distinguishing harmful from non-harmful actions. In particular, the FNR, which

represents the percentage of harmful actions that do not activate the alarm since

they are classified as non-harmful, is low, especially in DNN3. In general, DNN3

presents the best performance for all the metrics with respect to DNN1 and

DNN2.

Table 4.10: Metrics computed for the best performing models

Models Acc PR SE SP FPR FNR F
Model1 DCanny .930 .927 .900 .950 .055 .100 .911
Model2 DGray .960 .956 .945 .970 .050 .100 .950
Model3 DGray .968 .962 .960 .973 .030 .055 .960

To further investigate the performance of the three best performing models

(in terms of accuracy) the Receiver Operating Curves (ROC) and the Area Under

Curves (AUC) are computed on each fold is plotted. The ROC curve plots the
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True Positive Rate (TPR) against the False Positive Rate (FPR), varying the

threshold for the score (i.e., the probability) computed on the output neurons.

The AUC represents the area under the ROC curve. It is equivalent to the

probability that a randomly chosen positive instance is ranked higher than a

randomly chosen negative instance. The AUC can be considered as an indicator

of the performance of a classifier: the higher the value the higher the prediction

accuracy. Figure 4.15 reports the ROC and the AUC for the three best models. In

each plot, we present seven lines: five colored lines refer to the ROC in each fold,

the blue dotted line represents the average ROC curve, and the black dashed line

corresponds to the baseline classifier where FPR is equal to TPR. In the legend,

we report the AUC corresponding to each fold and the average.

(a) Model1 trained on DCanny (b) Model2 trained on DGray (c) Model3 trained on DGray

Figure 4.15: ROC and AUC computed over the folds of the best performing
models

DNN3 presents the highest average AUC value. In general, DNN3 trained on

DGray is a reliable model for detecting fall actions, achieving the highest accuracy

in the multi-class classification problem, the lowest false negative rate in the

binary classification problem, and the highest AUC value. Also, DNN2 could be

a valuable option: despite it presenting slightly lower generalization performance

with respect to DNN3, it contains less the one-third of the parameters than DNN3

(Table 4.7). Thus, it is expected that, when deploying the models on the edge

device, the computational cost of DNN2 is lower than the DNN3 one. In fact,

during the deployment not only the generalization performance is important, but
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also the computational cost. In this chapter, the computational cost is measured

keeping into consideration all the stages of data elaboration (Fig. 4.8).

4.5.3.2 Edge System Assessment

The computational cost is evaluated as the inference time, power consumption,

size of the model, and energy-precision ratio. Power consumption is estimated

using a USB multi-meter that is attached to the power supply of the edge device

while running the inference. The Energy-Precision Ratio (EPR) can be com-

puted as EPR = Error × EPI, where Error represents the classification error

and EPI is the energy consumption per classified data item (Energy Per Item).

According to Sec. 4.5.2.5, two TF-Lite optimization methods are applied during

the conversion of the three best DNNs in TF-Lite models. These classifiers and

the previous stages are deployed on the Raspberry Pi4.

Table 4.11 shows the computational cost and the classification accuracy of the

quantized DNNs. All the results are averaged on the 500 test data used also to

evaluate the classification performance in the previous section. The first column

depicts the models, the second column reports the quantization applied to each

model for the deployment, and from the third, to the last column, the table shows

the five metrics averaged on 100 test samples over the 5 folds.

Table 4.11: Edge AI system assessment on Raspberry Pi4

Models Quant
Avg Time Power Size EPR
Acc T (s) (W) (MB) (PoS)

Model1 FP16 0.830 1.964 5.67 0.64 1.86
DCanny FP32 0.828 1.967 5.80 1.2 1.96
Model2 FP16 0.928 2.415 6.03 1.8 1.04
DGray FP32 0.926 2.415 6.13 3.5 1.09

Model3 FP16 0.932 2.945 6.20 6.0 1.24
DGray FP32 0.932 2.948 6.16 11.9 1.23

As expected, the first model (i.e., DNN1) has the lowest inference time and
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energy consumption, because of the lowest number of parameters that affect the

model size. Straightforwardly, DNN3 presents the highest inference time and

energy consumption. As can be noticed, the quantization to FP16 in DNN1 and

DNN2 slightly improves the classification accuracy because it can act as a filter

removing bits related to noise.

The best trade-off between generalization accuracy and inference time is achieved

by DNN2, following EPR column of the table. The inference time of all the stages,

with DNN2 as a classifier, is 2.4 seconds, thus guaranteeing to generate an alarm

in less than 6 seconds also considering 3 seconds for data acquisition.

4.5.3.3 Discussion

In this section, the proposed system is compared with the SoA systems that

concern human action (including fall) classification using radar-based sensing and

machine learning [123; 124; 125; 126; 127; 128; 129; 130; 131]. Table 4.12 presents

a comparison between the proposed system and the one proposed in [126] where

the inference time is reported while running on a PC equipped with a GPU. The

classification accuracies of the SoA systems are comparable with the proposed

approach. None of the inference time nor the power consumption of the other

SoA systems has been measured using an edge device: a model that achieves

high accuracy, while requiring high computational power, might not be deployed

on the edge. Moreover, the proposed system requires less time for acquiring the

data with respect to the other ones, except in [127; 128]. In these two works,

the data are acquired and classified continuously. In a real deployment scenario,

the continuous elaboration of data is not efficient from the computational cost

point of view, especially for edge deployment where the device is generally battery

supplied.

Concluding, the proposed multi-class classification system presented encour-
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Table 4.12: Comparing the proposed system with SoA

Ref
Number of

Accuracy
Acquisition Inference

Classes Time (s) Time (s)
[126] 2 0.958 15 2.36 (PC)

This work
5 0.932

3 2.95 (Edge)
2 0.968

aging results, it proved a high accuracy in classifying 5 human actions using

a low-cost edge device with low inference time. The system also proved to be

effective in generating an alarm whenever a harmful action occurs.

4.5.4 Conclusion

In this article, the deployment on the edge of a radar-based action recognition

system using deep learning has been proposed. This system used sequences of

range-Doppler maps extracted from a low-cost FMCW radar. A time distributed

layer has been used to process the sequence of range-Doppler maps. The re-

sults showed that the model with the highest number of parameters (i.e., DNN3)

achieved the best accuracy (93.2%) in the 5-class classification problem using

grayscale data transformation. Moreover, the same model distinguished harmful

from non-harmful actions with an accuracy of 96.8% and a false-negative rate of

4%. Using a radar that has higher performance would certainly help reduce the

classification error and the false negative rate. The proposed system has been

deployed on a Raspberry Pi4 to assess the performance in terms of accuracy and

computational cost. The results showed that the system that uses DNN2 achieved

the best trade-off, with a small drop in accuracy, i.e., lower than 1%, with respect

to DNN3 and an inference time lower than 2.5s.

Future works will address the multi-target classification problem, the assess-

ment of the performances while training the model in one environment and testing

113



4.5 On Edge Human Action Recognition Using Radar-Based Sensing
and Deep Learning

it in different environments, and the deployment of the system on other edge de-

vices that endorse accelerators for deep learning (e.g., Coral Dev Board).
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4.6 Summary and Conclusion

Target classification systems occasionally put the welfare of the general public

first. Such technologies, for instance, are employed in autonomous vehicles to

guarantee the security of pedestrians. In this application, the two main rivals

are radars and vision sensors. Radar sensors, on the other hand, have shown to

be more durable in inclement weather and poor lighting. FMCW radars are the

most frequently employed among the several types of radar technologies for these

kinds of applications. In fact, this is due to their capacity to deliver range and

Doppler data simultaneously. In comparison to pulse and UWB radar sensors,

they also need a lower sampling rate and a lower peak to average ratio.

In this chapter, two systems were proposed.

• Method for discriminating shadowed targets

• Edge cost-efficient multi-action classification system

The system utilizes a cutting-edge surveillance method based on affordable FMCW

radar technology. The data processing method is based on an ad-hoc chain made

up of various blocks that remove clutter and leakage using a frame subtraction

technique, apply DL algorithms to Range-Doppler maps, introduce a peak to

cluster assignment step before tracking targets, transform data, extract features,

and finally make a classification decision.

To conclude, the use of an FMCW radar along with a DL approach for the

RD maps proved to be effective for indoor use-cases. The aforementioned tests

used the Position2Go FMCW radar toolkit by Infineon Technologies along with

an edge device (i.e., Raspberry Pi 4).
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

Real-time geodata is used by location-based services (LBS) to offer information,

entertainment, or security. LBS is the primary enabling technology in the wire-

less communication sector and is growing exponentially. LBS encompasses a wide

range of techniques, tools, and strategies. The basic objective of all these tech-

niques is to precisely pinpoint a specific target in real time. This target could be

a robot, a person, or anything else that moves.

Two potential methods for subject monitoring are examined in-depth in the

presentation. This kind of activity is very important for military applications,

medical tracking, industrial workers, and for offering location-based services to

the community of mobile users, which is constantly expanding.

Estimation problems, and particularly parameter estimation, have drawn a

lot of interest because of their applicability and the consumer’s ongoing demand

for higher performance. As applications expanded, a lot of interest was generated

in the accurate assessment of temporal and spatial properties. In-depth analyses

of the two most promising subject monitoring strategies were reported in this

article. Considering the performance, intrusiveness, and low cost constraints.

The suggested systems underwent extensive testing in various settings.
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The practicality of implementing the AoA and RSSI localization algorithms

in practical settings is evaluated in depth. We discussed and provided details for

two potential systems. These systems underwent testing in various settings (e.g.,

indoor, outdoor, in water...). The localization capacity was demonstrated by the

results, but this method is only effective up to a distance of about 150 meters

due to the low-cost antenna we used. Therefore, this strategy may or may not

be advantageous depending on the use-case.

In this investigation, a different strategy was taken into account. Radar sen-

sors have proven to be resilient in bad weather and dim light. Among the several

types of radar technologies, FMCW radars are the most frequently used for these

kinds of applications. In actuality, this is because of their ability to concurrently

give range and Doppler data. They also require a lower sample rate and a lower

peak to average ratio than pulse and UWB radar sensors. The system makes use

of an advanced surveillance technique based on easily accessible FMCW radar

technology. The data processing method is based on an ad-hoc chain of various

blocks that transform data, extract features, and make a classification decision

before clearing clutter and leakage using a frame subtraction technique, applying

DL algorithms to Range-Doppler maps, introducing a peak to cluster assignment

step before tracking targets. Conclusion: For interior use-cases, the combination

of an FMCW radar with a DL method for the RD maps worked well. The afore-

mentioned tests made use of an edge device and the Position2Go FMCW radar

toolkit from Infineon Technologies (i.e., Raspberry Pi 4).

5.2 Future Works

There is always room for improvement because subject monitoring is such a broad

topic and because market expectations are constantly rising. The following is a

list of some of the subjects that might be worth more investigation.
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• The suggested angle of arrival estimation technique can be improved to in-

corporate 3D angle of arrival estimation and used to assess the effectiveness

of angle of arrival estimation with more antenna designs.

• Future improvements to the FMCW radar technique can be researched

with the intention of including more sophisticated processing blocks, such

as tracking schemes based on probabilistic models of relationships.

• Additionally, efforts will be made to integrate improved radar boards, tack-

ling the multi-target classification problem. The improved radar boards

can provide target positions through the directions of arrival of reflected

signals or operate at higher frequencies, in order to improve classification

capabilities, particularly when there are numerous targets nearby.

• A key consideration whenever Deep Learning solutions are employed is the

evaluation of the performances of trained systems when the model is being

trained in one environment and tested in another.

• Last but not least, the system’s implementation on various edge devices

that support deep learning accelerators is also an interesting point to look

into. This strategy should incorporate edge devices that are less expensive

(e.g., Raspberry Pi Pico), more sophisticated (e.g., Coral Dev Board), and

comparable to those employed in this work.
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