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ABSTRACT The paper proposes an intelligent data sensing and geo-localization algorithm, based on
an innovative mobile computing system that measures the power level of RF sources through a 2G/5G
femtocell-UAV system. In natural disasters (mainly earthquakes and floods) the system can identify any
missing persons under the rubble within a range of precision between 1 to 2 meters. In this paper, more
specifically, the algorithm allows classifying the terminal even in the presence of obstacles that cause
anisotropic propagation of radio signals, through a series of power measurements based on the Reference
Signal Received Power (RSRP). An attenuation model that takes into account the different types of
materials is introduced, and a method for optimizing the drone’s flight path and duration is proposed. The
performances, expressed in terms of accuracy in identifying the mobile terminal and in terms of position
estimation average error, are evaluated according to the material’s density and its attenuation.

INDEX TERMS Femtocell/UAV system, geo-localization technique, 2G/5G radio technologies, reference
signal received power (RSRP), mobile terminal classification/positioning algorithm, energy consumption.

I. INTRODUCTION
The recent development of the Internet of Things (IoT), has
enabled new types of sensors that can be easily interconnected
through the Internet. In the near future, this will have a
significant impact on the management of natural disasters
(mainly earthquakes and floods), when the aim is improving
effectiveness in research, identifying and recovering missing
persons, and therefore increasing the possibility of saving
lives [1]–[5].

In [6], [7], we proposed an innovative technique for
searching and identifying missing persons in natural disas-
ter scenarios by employing a new UAV-femtocell mobile
computing system. The algorithm is capable of locating any
mobile terminals in any given area monitored through the
use of UAV (Unmanned Aerial Vehicle) systems. The idea
consists in being able to create coverage through the presence
of a femtocell on board a drone, which can then move freely
and approach the user terminal, giving the possibility to locate
any mobile terminals that may still be working under the
rubble.

This paper is concerned with the study of a high-precision
(lower than 2 meters) geolocation technique for mobile
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terminals under the rubble, using a 4G femtocell aboard a
drone system. The paper contributes the following:

– a new criterion for classification and geolocation in
the presence of non-isotropic radio signal propagation; The
algorithm allows to classify the terminal inside or outside the
monitoring area and, subsequently, to identify the position
with a certain precision, even in the presence of obstacles
that act in such a way as to render the radio signal’s prop-
agation anisotropic. A complete identification analysis of the
terminals under the rubble is proposed in scenarios where
the collapsed material represents an anisotropic medium with
characteristics that change according to thematerial’s density,
the height of the rubble, and the femtocell’s transmission
power;
– the introduction of a random term that defines the

attenuation due to different types of materials and the
distance between the terminal and the femtocell;

– a method for optimizing the drone’s flight path and
duration;

– a post-earthquake scenario simulator that allows to
analyze performance when the following parameters
vary: debris height, collapsed material density,
transmitted power and random attenuation component
extra;
The paper is organized as follows: Section 2 briefly

summarizes themain localization and positioning techniques,
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followed by section 3 which illustrates the radiomobile signal
propagation and material attenuation; Section 4 describes
the propounded smart femtocell-UAV data sensing system;
Sections 5 and 6 highlight the proposed technique which
is divided into two phases: classification, and localization;
Section 7 presents a performance analysis in terms of accu-
racy when identifying the mobile terminal and in terms of
position estimation average error; finally Section 8 is devoted
to conclusions.

II. STATE OF THE ART ON LOCALIZATION TECHNIQUES
The localization of a mobile terminal by RF signal is a topic
often addressed in the literature [8]–[10]. In fact, there are
several studies that deal with localizing terminals which are
found in disaster areas or more generally in the presence
of obstacles, through the analysis and measurement of radio
signals. In [11], some different types of attenuation of RF
signal were studied. The attenuation of the signal due to
the presence of rubble and, therefore, of different types of
materials is estimated, considering a signal at 1.8 GHz. The
results of this study show, that in a post-earthquake disaster
scenario, the losses, compared to free space, are 13dB greater
than the losses that occur in an indoor environment, which are
equal to about 5 dB.

In [12], the frequency response of the radio channel is
studied on different frequency ranges, and the signal atten-
uation is measured for two types of material: ceramic and
brick. First, the 1.8 GHz attenuation is about 4.5 dB more
than 900 MHz in the case where the obstacles are arranged
evenly around the receiving antenna, and 17.5 dB more when
the obstacles are arranged in a less uniform way around the
antenna. This implies that a higher frequency signal suf-
fers more attenuation and that the obstacles placed in an
irregular manner induce even more attenuation, compared
to the case in which they are arranged in a more uniform
manner.

Thanks to the features of high mobility and easy
deployment, many studies use drones as a means of mak-
ing on-demand communication services provision possible
[13], [14].

More recently, the growing need to connect and cover areas
affected by natural disasters has led to the commissioning
of multiple studies concerning the use of drone-femtocell
systems as an alternative to the classic radio base stations
when these are out of service [15]–[19].

In [20], the optimal altitude of the UAV-based base sta-
tion was analyzed for maximal communication coverage.
In [21], an efficient UAV 3D placement with the purpose of
maximizing the covered users based on the optimal altitude
was proposed. In [22], the authors studied a novel 3D UAV
placement with the objective of maximizing the number of
covered users according to different requirements of quality
of service (QoS).

In these papers, in particular, new solutions are propounded
to guarantee coverage and connection to users engaged in
rescue operations.

III. RADIOMOBILE SIGNAL PROPAGATION AND
MATERIAL ATTENUATION
The transmission of signals in the mobile radio environment
is obtained by means of a transmitting antenna, which emits
the signal, and a receiving antenna, which receives it.

The mobile terminal, therefore, provides service within
the coverage range of a base radio station to which it is
docked. In general, the signal can be shielded from the
environment, physical obstacles or artefacts limiting the
diffusion/propagation of electromagnetic waves.

In particular, three totally different circumstances must be
distinguished:
• Signal propagation in a vacuum;
• Signal propagation within the Earth’s atmosphere;
• Signal propagation within the Earth’s atmosphere and in
the presence of materials.

A. SIGNAL PROPAGATION IN A VACUUM
The femtocell generates an electromagnetic wave which in
free space presupposes the following properties:
• Isotropic and homogeneous medium;
• Medium without losses;
• Transmission without obstacles or reflections

In this case the only attenuation of the signal is that due to
free space, and is expressed by the following formula:

Ao =
(
4πd
λ

)2

(1)

while the transmission power is given by the Friis’s formula:

PT = PR ∗ GT ∗ GR ∗
(

λ

4πd

)2

(2)

where:
• PT is the power transmitted by the femtocell;
• PR is the power received from the mobile terminal;
• GT , GR are the antenna gains, respectively, in
transmission and reception;

• λ is the wavelength of the electromagnetic signal
• d is the distance between antenna in Tx and Rx.
This formula is not applicable to real cases where there is

a non-isotropic medium that attenuates the signal.

B. SIGNAL PROPAGATION WITHIN THE EARTH’S
ATMOSPHERE
In this case, the situation is much more complex. Since the
air we breathe is neither an isotropic nor a homogeneous
medium, and since there are other obstacles (hills, palaces,
trees, rain, fog, snow etc.) that shield an electromagnetic
radio-mobile signal, the connection is often rendered possible
only through reflections and diffractions.

Given that propagation conditions in the atmosphere
strongly depend on the type of environment, it is very difficult
to find an equation of the trafficking for mobile radio systems
since, these waves, are continuously subject to attenuation,
dispersion, reflection, refraction and diffraction.
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TABLE 1. Attenuation for different obstacle.

C. SIGNAL PROPAGATION WITHIN THE EARTH’S
ATMOSPHERE AND IN THE PRESENCE OF MATERIALS
In this case, the scenario becomes muchmore complex, as the
propagation takes place in the terrestrial atmosphere, where
Friis’s formula is no longer valid, and through obstacles made
of different types of materials, different shapes and densities.

The study of the signal attenuation effect in presence of
different materials has been the subject of numerous scientific
publications.

For example, [10], presents a study of the attenuation
that a WiFi radio signal undergoes when it crosses various
obstacles (panels) of different materials, placed at various
distances. It was found that the losses depend on the distance
between the transmitter and the panel, as well as the number
of panels and panel material.

This dependence has a non-linear character and, therefore,
it is difficult to describe it with existing methods of mod-
elling the propagation of radio waves within a transmission
medium.

Instead, an overview of the attenuation of some materials
that can compose a building is provided in [23]. Also, in this
study, the frequency in question is that of the 2.4 GHz WiFi
signal. Table 1 demonstrates the attenuation presented by
some types of materials.

IV. A SMART FEMTOCELL-UAV DATA SENSING SYSTEM
The elements of the data sensing system proposed in this
paper are integrated as shown in Fig. 1.

The system includes a drone with a femtocell aboard and
a Raspberry Pi board to locally perform an intelligent anal-
ysis of the data, which are subsequently sent to a client
(e.g. a tablet) to allow for visual analysis by an operator
who determines the coordinates relative to the presence of a
mobile terminal.

Considering the power supply and payload this system is
fully sustainable, as:
• The drone allows a total payload of 2.5 kg, and a fully
programmable control unit;

• The load on the drone is made up of the femtocell
(550 g), a power bank to power it (550 g) and a process-
ing unit (100 g), so the total weight of the load is 1.2 kg;

FIGURE 1. Connection/communication scheme of the proposed data
sensing system.

• The drone [24] supports the autonomy of 40 minutes
with a load of 1.55kg and the amperage 7.67 Ah per
battery (it requires 2 batteries);

• Section IV illustrates a fast localization algorithm in
which the drone identifies the mobile terminal in less
than 30 minutes;

• In the instance ofmultiple terminals or larger monitoring
areas it is necessary to replace the batteries or organize
multiple flights with multiple drones.

Considering the functionality of the system, the femtocell
receives the power value RSRP (Reference Signal Received
Power) measured by the terminal, in a common control
channel. The power data, relative to each individual terminal
connected, is sent to a single board computer (e.g. Raspberry
Pi) via an Ethernet cable connected to the LAN port of the
femtocell and to the Ethernet port of the Raspberry.

To obtain information about the points of the area with
pre-set GPS coordinates the drone must reach to make power
measurements, it is necessary to connect the Raspberry to the
drone’s GPS coordinate system via network interface. This
is how it is possible to associate the position assumed by
the drone with the power value that the femtocell receives
at that particular point. The data collected at the end of the
process are analyzed, the classification algorithm is applied
to them, and, subsequently, geolocation is carried out. The
analyzed information is subsequently sent to a client via a
wireless network generated by the WiFi module inserted in
the Raspberry Pi, which also acts as an access point for the
clients.

V. CLASSIFICATION ALGORITHM
The first step in identifying missing persons under the rubble
is to classify the terminals within the selected monitoring
area.

It is therefore assumed that the area in which the collapse
occurred was incorporated into a parallelepiped of AX , AY ,
HR (length, width and height). Fig. 2 shows the supposed
monitoring area.

The hypotheses underlying the classification algorithm are
the following:
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FIGURE 2. Monitoring area.

1. The size of the monitoring area is AX , AY , HR, meters,
the monitoring area is formed by S = (AX∗AY ∗HR)

27 under
areas of size 3× 3× 3 m3;

2. The flight of the drone takes place at height HR, equal to
the height of the rubble;

3. The drone takes different positions, which we will indi-
cate with the term ‘‘DPositionk ’’. The k-th positions are
defined at the center of each sub-area S at height Hr with
k = 1, . . . , (AX3 ∗

AY
3 );

4. The mobile terminals, defined as MS i for i = 1, . . . , S,
are positioned at the points Ci = (CX

i ,C
Y
i ,C

Z
i ), or in the

centroid of the i-th sub area Si;
5. For each k-th position of the drone, power received by the

i-th MS is given by the following formula:

Pi−k =PT+ GT+ GR − di−k ∗ A0(di−k )

−Dr ∗ di−k ∗ Ar− ri−k (3)

where:
• PT (dBm) is the transmission power generated by the
femtocell;GT (dB) andGR (dB) are the antenna gains
supposed to be zero;

• di−k (m) is the distance between the position of each
terminal and the k-th position of the femtocell;

• A0 (di−k) is the attenuation in dB in free space, a
function of the distance of di−k ;

• Dr is the density of the material in the interval [0,
1], in the following graphs it will be expressed in
percentage [0% ÷ 100%];

• Ar is the material attenuation coefficient [dB/m];
• ri−k is a random value in dB to simulate an additional
non-isotropic attenuation between MS i and DPositionk ,
given by the following formula:
ri−k = rand[0, (di−k ∗ Ar ∗W ∗ (0.1+ 0.9 ∗ Dr )]

(4)

where W = [0,1] with default weight of 0.5 (50%).
6. The terminals that will be hooked by the femtocell will be

those whose power value will be above a certain threshold,
hereinafter referred to as Pth:

Pth = −120[dBm] (5)

The connected terminals will therefore be all terminals
whose power is greater than Pth:
if Pi−k ≥ Pth then Pi−k ∈ Phoocked
Once the working hypotheses have been defined and

the terminals are generated, it is possible to introduce the

classification algorithm. We define the set of terminals
hooked Phooked , without repetition and for each position
taken by the drone within the monitoring area, such as {A}.

Some terminals are hooked by the femtocell but are not
internal to the monitoring area, so these terminals represent
the ‘‘false positive’’ value. So to reduce false positives it
was thought to turn the femtocell around the perimeter of
the monitoring area with a distance from the perimeter equal
to its coverage radius. This further enables hooking all the
terminals present outside the monitoring area, creating the set
{E}, that is the set of terminals outside the monitoring area.

In the set {E} there will be terminals that are also present
in the set {A}.

Thus the intersection of the two sets creates the set {X}.
This set is therefore formed by:

X = A ∩ E (6)

The set {X}must be subtracted from the set {A} to have the
set of terminals considered as internal to the monitoring area.
Therefore, the set {I} is given by:

I = A− X (7)

Once the terminals inside the monitoring area have been
defined, it is possible to proceed to the localization phase.

VI. LOCALIZATION ALGORITHM
The localization phase can be implemented using two differ-
ent algorithms:

1. Proximity algorithm;
2. Cluster-based fast proximity algorithm.

A. PROXIMITY ALGORITHM
The localization algorithm is based on the hypotheses made
previously, in the classification phase.

The localization phase involves estimating the position of
the MS i terminal in the MSEstimatedi point, on the Z plane (in
2D), where this terminal has greater power.

In fact, after defining the terminals classified as IN, having
memorized, in the first phase, the Pi−k power measurements
for each DPositionk it is possible to obtain a power grid in the
surface of the monitoring area for each terminal, with which
it is possible to estimate the position of the terminal at the grid
point where maximum power is obtained for that terminal.

The localization error is expressed in meters and is esti-
mated by calculating the distance between the two vertical
axes passing through the positions of MS i and DPositionk in
which the drone measures the maximum power received by
the mobile terminal MS i, then assuming that the error along
the Z axis is zero. The error is based on the following formula:

∈= dvert [MSPositioni ,DPositionk ] (8)

where dvert (Point i,Pointk) represents the distance between
the vertical lines passing through Pointi and Pointk .
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B. CLUSTER-BASED FAST PROXIMITY ALGORITHM
In the real post-earthquake scenarios of a lost person localiza-
tion times are very important. It is of fundamental importance
to be fast in the rescue times to minimize the drone’s energy
consumption [25], [26] and that of the mobile devices.

The reduction in flight time and energy consumption has
been studied by several researchers. In [27], the propul-
sion energy consumption model of the fixed-wing UAV was
derived and an efficient trajectory maximizing the UAV’s
energy efficiency was designed.

In addition, energy efficient schemes have attracted wide
attention due to the battery technology limitation of mobile
devices and UAVs. The authors in [28], studied the mini-
mization problem of the weighted sum energy consumption
of the UAV and users. The computation resource scheduling,
the bandwidth allocation and the trajectory of the UAV were
optimized in the minimization problem.

In this paper the proposed method to reduce energy
consumption is based on the optimization of the drone flight.
It will be positioned on certain points according to the
algorithm that will be hereinafter illustrated.

It is supposed that terminals are not distributed in a
non-uniform way within the monitoring area. There will be
an area with higher density of terminals unlike another area
with lower density. For this reason, it is possible to apply the
‘‘Cluster-based Fast Proximity Algorithm’’ to select one sub-
area, rather than another, where larger quantities of terminals
with greater power are detected.

The algorithm includes the following steps:

1. Determination of the minimum resolution of the location
error to be obtained (1m, 2m, 3m, etc.);

2. Estimation of the monitoring area so that it can be divided
into 4 quadrants for each phase;

3. Selection of 9 grid positions where the drone is stationed.
4 of these positions are represented by the vertices of the
monitoring area and another 4 by the median positions of
each side, finally the last position is represented by the
centroid. From the second phase onwards, the points are
reduced to 5 (the middle 4 of the sides of the subarea and
the relative centroid);

4. Identification of the number of terminals for each sub-
area. This is done by evaluating which terminals, at the
different points defined above, have the highest power
value;

5. Once the number of terminals identified in the various
sub-areas has been defined, it is possible to intervene in the
point with several terminals and therefore the whole pro-
cedure is repeated, starting from point 2, for the sub-area
in question;

6. The phases are F and depend on the size of the monitoring
area.

The algorithm uses the subdivision in phases for the opti-
mization of the trajectory of the drone, which is defined as
‘‘2’’ or ‘‘serpentine’’. In particular, hypotheses are made for
simplicity:

• The grid must be an MxM matrix in which:

M = 2n + 1 (9)

where n = 2, 3, . . . ,N ;
• The matrix must not be 2×2 or 3×3, since there would
be no optimization of the trajectory and therefore no
energy/time saving;

• The number of iteration phases of the algorithm must be
given by the following formula:

F = log2 (M − 1) (10)

From this formula it can be understood that n = F .
Once the initial hypotheses are defined, it is possible to

provide a series of definitions:
• ENOtot is the total energy not optimized;
• EOtot is the total energy optimized;
• TNOP−tot is the total non-optimized point processing time;
• TOP−tot is the total point processing time optimized;
• TNOV−tot is the total flight time of the non-optimized drone;
• TOV−tot is the total flight time of the non-optimized drone;
• P it is the power that the drone uses to stay in flight;
• tp it is the processing time, i.e. the time required for the
detection of the power received by the mobile terminal;

• δt is the time it takes the drone to fly from one point to
another on the grid;

It is now possible to define the non-optimized total energy
as:

ENOtot = P ∗ (TNOP−tot + T
NO
V−tot ) (11)

where:

TNOP−tot = tp ∗M2 (12)

TNOV−tot = δt ∗ (M
2
− 1) (13)

While the total optimized energy can be expressed in the
following way:

EOtot = P ∗ (TOP−tot + T
O
V−tot ) (14)

where:

TOP−tot = tp ∗ (5 ∗ F + 4) (15)

TNOV−tot = δt ∗

[
2F ∗

(
4+

FMAX∑
F=2

2
2F−2

)]
(16)

The flight and total processing time depend on the route
iteration phases and on the size of the matrix (also linked with
the number of phases). Moreover, to define the previous for-
mulas, we adopted the worst scenario, in which the selected
quadrant (in which the terminal is present) is on the opposite
side to the last position taken by the drone. Fig. 3 represents
an example of the process of iteration and path optimization.

VII. PERFORMANCE EVALUATION
In this section we will illustrate the performance results of the
algorithms described above.
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FIGURE 3. Optimized root.

FIGURE 4. Accuracy versus rubble level (Dr = 50%).

A. CLASSIFICATION ALGORITHM
As far as the classification phase is concerned, it is possible
to evaluate the performance’s accuracy to vary some param-
eters. The hypotheses made for the performance simulation
are:
• Area Size: 30× 30 m2

• Weight (W ) of 50%
• Transmission power PT of −57 dBm;
• Power threshold Pth of −120 dBm;
• Sub area resolution of 3 m3

The Fig. 4, 5 and 6 represent the accuracy of the clas-
sification as the level of the rubble increases and change
respectively Ar , PT e Dr .

In this graph the density of the material Dr is assumed to
be at a value equal to 50% and the curves are shown rela-
tively to the different levels of additional attenuation of the
material Ar .

It may be noticed that as the quantity of rubble increases the
accuracy visibly decreases, especially, in cases where there is
an attenuation due to the material greater than 5 dB/m.

In this graph, obtained by assuming Ar = 20 dB/m and the
density of the material at 50%,represents the curves relating
to the different transmission power levelsPt.. Also in this case
it is clear that accuracy decreases with the increase of rubble,
and, in particular, that the curve defined by a transmission
power level of −30 dBm decreases more than that relative to
the transmission power level equal to −10 dBm.

FIGURE 5. Accuracy versus rubble level (Ar = 20 dB/m, Dr = 50 %).

FIGURE 6. Accuracy versus rubble level (Ar = 20 dB/m).

FIGURE 7. Accuracy versus power level (Ar = 20 dB/m, Dr = 50%).

In this graph, obtained by considering Ar = 20 dB/m,
the curves are represented as the density of the material Dr
changes. Also in this last case the accuracy decreases as the
rubble increases, and, particularly, where the density of the
material is higher the accuracy will be very low, compared
to the case in which the material has lower density. This
is because with the same transmission power, with more
material, there is more additional attenuation and, therefore,
the number of terminals hooked up will be lower.

The Fig. 7, 8 and 9 represent the accuracy of the classifica-
tion as the level of the transmission signal’s strength increases
PT and varies according to HR, Ar e Dr .

The graph in Fig. 7, obtained by assuming a material
density of 50% and a Ar = 20 dB/m, the curves are shown
relative to the different heights of the rubble. It may be noticed
how as the signal power level increases in transmission,
the level accuracy grows visibly. In particular, for a drone
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FIGURE 8. Accuracy versus power level (HR = 15 m, Dr = 50%).

FIGURE 9. Accuracy versus power level (HR = 15 m, Ar = 20 dB/m).

height of 3 and 6 meters, accuracy is 100%. This means that
the femtocell manages to hook all the terminals present in the
monitoring area and classify them as ‘‘IN’’.

The graph in Fig. 8, obtained by assuming the density of the
material to be at 50% and the height of the drone Az at 15m,
the curves for the different levels of additional attenuation are
represented Ar . Also in this case, it is clear that the accuracy
increases with the increase in power, and, in particular, that
the curve defined by an attenuation level of 10 dB/m leads to
a much higher accuracy than that relative to Ar = 30 dB/m.

In Fig. 9, obtained with the hypothesis of Ar = 20 dB/m
and HR at 15 m, the curves are represented as the density of
the material changes Dr . Also in this last case the accuracy
increases with the increase of the power level. In particular,
where the density of the material is higher, the accuracy will
be very low, compared to the case in which the density of the
material is lower, thus, allowing more terminals to be hooked.

Fig. 10 represents the accuracy of the classification as the
density of the material increases Dr and to vary the Ar . From
the graph it can be seen that by presuming the drone’s flight
height to be at 15m, accuracy decreases as the density of
the material increases and, also, the additional attenuation
increases.

B. PROXIMITY ALGORITHM
In this sectionwewill illustrate the performance of the ‘‘Prox-
imity Algorithm’’ to depict the average error of the estimated
position.

In Fig. 11, 12 and 13 the average error is represented by
varying one of the 3 parametersHR, PT and Ar . In Fig. 11 the

FIGURE 10. Accuracy versus material density (HR = 15 m).

FIGURE 11. Average error versus rubble level (Ar = 20 dB/m, Dr = 50%).

FIGURE 12. Average error versus rubble level and density level (Ar =
20 dB/m).

additional attenuation is assumed at 20 dB/m and the density
of the material at 50% and the curves relating to different
values of PT are represented. In this case, there is an increase
in the average localization error as the rubble increases, and,
above all, with incrementing transmission power.

This occurs because as PT increases, more terminals are
hooked on which the localization algorithm must then be
performed, so having more terminals, in the presence of
attenuation and 50% material density, an error will occur at a
higher location, but still between 0 and 1.3m.

In Fig. 12, a material with an attenuation coefficient of
20 dB/m is assumed, and the curves relating to the different
levels of material density are represented. Again, in this
case, the average error increases as the rubble grows and the
material density decreases. The average error decreases as the
density of the material increases, because this increase leads
to a situation of isotropic attenuation, and, therefore, reduces
the localization error.
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FIGURE 13. Average error versus transmission power (Ar = 20 dB/m and
Dr = 50%).

FIGURE 14. Average error versus transmission power and Dr (Ar = 20
dB/m, HR = 15m).

Fig. 13 shows the average error as both the transmission
power and the Hr increase, assuming an Ar attenuation
of 20 dB/m and the density of the material at 50%. As can be
seen from the figure, when we are at the height of the rubble
at 3m, by varying the transmission power, it is possible to
make zero error. As the height of the rubble increases, for
transmission powers between [−60 dBm, −50 dBm] there is
an error from 40 to 50 cm. For the remaining power values,
the average error increases more when we are at different
heights. The increase in error as transmission power increases
is due to the fact that the femtocell hooks up more terminals,
i.e. those deeper down.

Finally, in Fig. 14, as in the previous one, the average
error is evaluated as the transmission power increases. In
particular, the level of the rubble is assumed to be at 15m and
the additional attenuation at 20 dB/m and the curves relating
to the different levels of material density are represented.

The average error, in this case, again, increases as the
transmitted power increases and the density of the material
decreases.

C. CLUSTER-BASED FAST PROXIMITY ALGORITHM
In this subsection we evaluate the performance of the
‘‘Cluster-based fast proximity algorithm’’. Placing ourselves
in the conditions described in the previous section, in which
this algorithm is introduced and illustrated, we show graphs
that relate the optimized and non-optimized flight time and
to processing time, and therefore also the optimized and
non-optimized energy expenditure, to vary of the size of the
monitoring area.

Fig. 15, 16 and 17 show that this trajectory optimization
algorithm provides considerable energy saving.

Table 2 shows, as the size of the matrix varies,
the ‘‘reduction to’’ and the ‘‘reduction in’’, in percentage,
of energy.

FIGURE 15. Comparison between the curve defined by T O
P−tot and T NO

P−tot .

FIGURE 16. Comparison between the curve defined by T O
V−tot and T NO

V−tot .

FIGURE 17. Comparison between the curve defined by EO
tot and ENO

tot .

TABLE 2. Percentage energy optimization.

VIII. CONCLUSION
The paper presents a new data sensing system based on an
innovative mobile computing system based on the joint use
of UAVs and Femtocells. The application for which this study
is proposed concerns geolocation, and, therefore, the search
for people dispersed in a post-earthquake scenario through
an innovative algorithm for coupling mobile terminals. The
paper describes, in detail, the classification and geolocation
algorithm and presents a performance analysis in terms of
accuracy (i.e. number of terminals hooked up) and average
error of the estimated position in complex scenarios that take
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into account different materials’ densities and their attenua-
tion, height of the rubble, transmission power of the femto-
cell. Considering the typical conditions of a real application
scenario, the accuracy obtained is greater than 60% with an
average error in estimating the position of about 1 meter.
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