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ABSTRACT

The rapid growth in mobile and wireless devices has led to an exponential demand for data traf-

fic and exacerbated the burden on conventional wireless networks. Fifth generation (5G) and

beyond networks are expected to not only accommodate this growth in data demand but also

provide additional services beyond the capability of existing wireless networks, while main-

taining a high quality-of-experience (QoE) for users. The need for several orders of magnitude

increase in system capacity has necessitated the use of millimetre wave (mm-wave) frequencies

as well as the proliferation of low-power small cells overlaying the existing macro-cell layer.

These approaches offer a potential increase in throughput in magnitudes of several gigabits per

second and a reduction in transmission latency, but they also present new challenges. For exam-

ple, mm-wave frequencies have higher propagation losses and a limited coverage area, thereby

escalating mobility challenges such as more frequent handovers (HOs). In addition, the ad-

vent of low-power small cells with smaller footprints also causes signal fluctuations across the

network, resulting in repeated HOs (ping-pong) from one small cell (SC) to another.

Therefore, efficient HO management is very critical in future cellular networks since frequent

HOs pose multiple threats to the quality-of-service (QoS), such as a reduction in the system

throughput as well as service interruptions, which results in a poor QoE for the user. How-

ever, HO management is a significant challenge in 5G networks due to the use of mm-wave

frequencies which have much smaller footprints. To address these challenges, this work in-

vestigates the HO performance of 5G mm-wave networks and proposes a novel method for

achieving seamless user mobility in dense networks. The proposed model is based on a double

deep reinforcement learning (DDRL) algorithm. To test the performance of the model, a com-

parative study was made between the proposed approach and benchmark solutions, including a

benchmark developed as part of this thesis. The evaluation metrics considered include system

throughput, execution time, ping-pong, and the scalability of the solutions. The results reveal

that the developed DDRL-based solution vastly outperforms not only conventional methods but

also other machine-learning-based benchmark techniques.

The main contribution of this thesis is to provide an intelligent framework for mobility man-

agement in the connected state (i.e HO management) in 5G. Though primarily developed for

mm-wave links between UEs and BSs in ultra-dense heterogeneous networks (UDHNs), the

proposed framework can also be applied to sub-6 GHz frequencies.

i



DECLARATION

I, Michael S. Mollel do hereby declare to the Senate of Nelson Mandela African Institution of

Science and Technology that this thesis is my original work and to the best of my knowledge

has not been submitted or presented to any other institution for similar or different award.

Michael S. Mollel 10.05.2021
Candidate Name and Signature Date

The above declaration is confirmed

Dr. Michael Kisangiri 10.05.2021
Name and Signature of Supervisor 1 Date

Dr. Shubi Kaijage 10.05.2021
Name and Signature of Supervisor 2 Date

ii



COPYRIGHT

This thesis is copyright material protected under the Berne Convention, the Copyright Act of

1999 and other international and national enactments, in that behalf, on intellectual property. It

may not be reproduced by any means, in full or in part, except for short extracts in fair dealings;

for research or private study, critical scholarly review or discourse with an acknowledgment,

without a written permission of the Deputy Vice Chancellor for Academic, Research and Inno-

vation, on behalf of both the author and the Nelson Mandela African Institution of Science and

Technology.

iii



CERTIFICATION

The undersigned certify that they have read and hereby recommend for acceptance by the Nel-

son Mandela African Institution of Science and Technology a research report entitled: Improved

Handover Decision Scheme for 5G Mm-wave Communication: Optimum Base Station Se-

lection using Machine learning Approach., in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Information and Communication Science and Engineering

of the Nelson Mandela African Institution of Science and Technology.

Dr Michael Kisangiri 10.05.2021
Name and Signature of Supervisor 1 Date

Dr. Shubi Kaijage 10.05.2021
Name and Signature of Supervisor 2 Date

iv



ACKNOWLEDGMENTS

I acknowledge with delight the assistance received from many people and appreciate all those

who assisted me during my studies at the Nelson Mandela African Institution of Science and

Technology (NM-AIST). To begin with, I must express my sincere gratitude to Dr. Michael

Kisangiri, Dr. Shubi Kaijage and Dr. Qammer H. Abbasi. They gave me the liberty to man-

age this research, enabled me to recognize research problems, offered valuable guidance and

instilled enthusiasm for solving problems into me. The have also enabled me to develop the

mindset, and acquire the relevant skills and experience needed to carry out quality engineering

research, which I did not have prior to the commencement my PhD studies. I also wish to thank

Dr. Ahmed Zoha, Dr. Sajjad Hussain, and Professor Muhammad Ali Imran for accepting me

into the Communnication, Sensing and Imaging (CSI) group during my tenure at the University

of Glasgow. They enabled me to know more about my research problem and future direction.

My thanks also go out to colleagues and friends in the CSI group and at the NM-AIST. I wish

to thank Metin Ozturk, Attai Abubakar, Kenechi Omeke, Aysenur Turkmen, Wasiwasi Mgonzo

and Oluwakayode Onireti for their valuable suggestions, discussions and contributions to my

articles. They also influenced my thinking and gave me motivation when I needed it most.

I would like to express my profound gratitude to African Development Bank (AfDB) for spon-

soring my studies and the Prevention and Combating of Corruption Bureau (PCCB) for granting

me the study leave to accomplish this study. My sincere gratitude goes to Mr Julius Lenguyana,

Ms Victoria Ndossi, Mr Japhet Laizer, Mr Humphrey Robert and the NM-AIST project team

for their spontaneous outpouring of support and cooperation.

Special thanks to my beautiful wife Amelia for her love, patience, and support throughout the

period of my research until the completion of my thesis. To my parents Samwel, and Elizabeth,

who made ensure that I had an excellent education, I am extremely grateful.

Finally, my uttermost gratitude goes to almighty God, who sustained my life, gave me under-

standing, vitality, and strength while on my path to the completion of this thesis.

Since it is not possible to mention everybody who has contributed to this work, allow me to

express my heartfelt appreciation to everybody who stretched my mind or hand towards this

study’s accomplishment.

v



DEDICATION

This thesis work is dedicated to my lovely wife, Amelia, who has been a constant source of

support and encouragement during graduate school and life challenges. I am deeply grateful for

having you in my life. This work is also dedicated to my children. You have made me stronger,

better and more fulfilled than I could have ever imagined. Lastly, this work is dedicated to

my parents and siblings, who have always loved me unconditionally and whose good examples

have taught me to work hard for the things I aspire to achieve.

vi



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

DECLARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

COPYRIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

CERTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF ABBREVIATIONS AND SYMBOLS . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTER ONE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Channel Characteristics of 5G Wireless Systems . . . . . . . . . . . . . 4

1.1.2 Heterogeneous Networks . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.4 Device-to-Device Communication . . . . . . . . . . . . . . . . . . . . 11

1.1.5 Vehicular Communications . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.6 High Speed Train Communication . . . . . . . . . . . . . . . . . . . . 13

1.1.7 Beyond 5G System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

vii



1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Rationale of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Significance of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Delineation of this Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

CHAPTER TWO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 5G System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Mobility Management in 5G . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Radio Resource Control State Machine . . . . . . . . . . . . . . . . . 23

2.2.2 Idle and Inactive State Mobility . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Connected State Mobility . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Handover Management in 5G and Beyond . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Types of Handover . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Handover Requirements and Key Performance Indicators . . . . . . . . 34

2.3.3 Handover and Radio Resource Management . . . . . . . . . . . . . . . 34

2.3.4 Dual Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.5 Handover Management in NR . . . . . . . . . . . . . . . . . . . . . . 35

2.3.6 Mobility and Handover Management in B5G . . . . . . . . . . . . . . 39

2.4 Machine Learning for Handover management . . . . . . . . . . . . . . . . . . 41

2.4.1 An Overview of Machine Learning Algorithms . . . . . . . . . . . . . 43

2.4.2 Machine Learning based Handover Optimization . . . . . . . . . . . . 47

CHAPTER THREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

viii



MATERIAL AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 System Models Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.1 5G Heterogeneous Network . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.3 Beamforming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.4 SINR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.5 Radio Link Failure Model . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.6 User and Traffic Models . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Handover as Combinatorial Optimization Problems . . . . . . . . . . . . . . . 61

3.2.1 Conditions for Initiating Handover based on 3GPP . . . . . . . . . . . 62

3.2.2 Handover Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.3 Trajectory and Service-aware Handover . . . . . . . . . . . . . . . . . 64

3.3 Benchmarks Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.1 Selection of Target HO BS in Sparse 5G Networks based on Clustering

of UDNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Proposed Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Proposed Solution for Handover Management using RL . . . . . . . . . 69

3.4.2 DRL-based optimal BS selection . . . . . . . . . . . . . . . . . . . . . 74

3.4.3 DDRL-based optimal BS selection . . . . . . . . . . . . . . . . . . . 77

CHAPTER FOUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.3 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



CHAPTER FIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

SUMMARY AND CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.1 Intelligent Handover Scheme . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.2 Benefits of the Developed Intelligent Handover Scheme . . . . . . . . . 92

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

RESEARCH OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

x



LIST OF TABLES

Table 1: Requirements of 5G and B5G —key performance indicators. . . . . . . . . 2

Table 2: Enabler to enhance capacity gain for cellular networks—5G and B5G ap-

proaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Table 3: Cell types in wireless networks in term of coverage and capacity . . . . . . 9

Table 4: Summary of the RRC State and mobility handling in 5G. . . . . . . . . . . 24

Table 5: Types of Machine Learning Algorithm. . . . . . . . . . . . . . . . . . . . . 45

Table 6: Summary of the State-of-the-art ML-based HO Optimization in 5G mm-

wave Communication Systems. . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 7: Radio link failure parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 8: Traffic model parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 9: Parameters for designing and developing DQN model . . . . . . . . . . . . 76

Table 10: Environment simulation parameters . . . . . . . . . . . . . . . . . . . . . . 81

xi



LIST OF FIGURES

Figure 1: An illustration of heterogeneous networks. . . . . . . . . . . . . . . . . . 8

Figure 2: Sensors and IoT use case. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 3: The 3GPP-5G architecture with reference points (3GPP, 2019). . . . . . . 20

Figure 4: Overall architecture of 5G system showing network elements and inter-

faces (3GPP, 2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 5: UE state machine and state transitions in 5G (3GPP, 2018b). . . . . . . . . 23

Figure 6: RAN Areas and Tracking Areas. . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 7: An illustration depicting intra-frequency HO in scenario 1 and inter-

frequency HO in scenario 2. . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 8: UE undergo HO from once cell to another with both cells use the same

RAT (intra-RAT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 9: Inter-RAT HO scenarios in distributed and centralized RAN architectures. . 33

Figure 10: Dual connectivity with HO scenarios in future communication networks. . 36

Figure 11: UE performs intra-gNB HO which involves the change of cells in the same

gNB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 12: UE performs inter-gNB HO, which involves the change of gNBs with same

UPF and AMF for scenario 1 and change of UPF for scenario 2. . . . . . . 38

Figure 13: UE performs inter-gNB HO with AMF change, involving the change of

gNBs while UPF is maintained in scenario 1 and change of UPF in scenario 2. 39

Figure 14: HO procedure in 5G-NR involving no change of AMF and UPF (3GPP,

2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 15: The system model of mm-wave UDN. . . . . . . . . . . . . . . . . . . . . 57

Figure 16: HO problem in the overlapping BSs coverage area . . . . . . . . . . . . . 65

Figure 17: Overview of generic RL algorithm . . . . . . . . . . . . . . . . . . . . . 69

Figure 18: DRL-based framework comprising environment, states, actions, and rewards. 74

Figure 19: The structure of the proposed DDRL - with double Q- networks . . . . . . 77

Figure 20: Number of HOs and γave as functions of td, for γth = 20 dB and λ=10 BSKm−2 83

Figure 21: Number of HOs as a function of γth for td = 0.7, 1, 2, 3 sec and λ = 10 BSkm−2 84

Figure 22: Number of HOs as a function of γth for td = 0.7, 1, 2, 3 sec and λ = 50 BSkm−2 85

Figure 23: Relationship between the number of HOs and UE velocity . . . . . . . . . 86

xii



Figure 24: HO performance showing the relationship between average system

throughput and UE velocity . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 25: Average running time as a function of number of mm-wave BSs . . . . . . 88

Figure 26: Ping Pong rate as a function of UE velocity . . . . . . . . . . . . . . . . . 89

Figure 27: Frequency of HOs as a function of mm-wave BS density . . . . . . . . . . 90

Figure 28: Average system throughput as a function of mm-wave BS density . . . . . 91

xiii



LIST OF APPENDICES

Appendix 1: Python codes for System Model . . . . . . . . . . . . . . . . . . . . . . 121

Appendix 2: Python codes for Agent Q-Neural Network . . . . . . . . . . . . . . . . 123

Appendix 3: Python codes for Main function . . . . . . . . . . . . . . . . . . . . . . . 124

xiv



LIST OF ABBREVIATIONS AND SYMBOLS

SYMBOLS

[. . .] iverson brackets, [P ]
.
= 1 if P is true, else 0

α learning rate parameter

arg maxx f(x) a value of x at which f(x) takes its maximal value

βc handover cost

γ signal to Noise ratio

1HO indicator function (1HO
.
= 1 if the HO occur is true, else 0)

∇Q̂(s, a, θ) column vector of partial derivatives of Q̂(s, a, θ) with respect to θ

ζ discount factor for weighting future rewards

ABBREVIATIONS

kNN k-nearest neighbour

3GPP 3rd Generation Partnership Project

4G Fourth Generation

5G Fifth Generation

6G Sixth Generation

A2C asynchronous actor-critic

AMF Access Mobility Function

ANN artificial neural networks

AS Access stratum

B5G Beyond 5G

BS Base Station

CMAB contextual Multi-Armed Bandit

CN Core network

CNN convolution neural networks

CSI channel state information

D2D Device-to-device

DBN deep belief networks

DDPG deep deterministic policy gradient

DDRL Double Deep Reinforcement Learning

DRL Deep Reinforcement Learning

xv



E-UTRA Evolved Universal Mobile Telecommunications System Terrestrial Ra-

dio Access

gNB Next-Generation NodeB

HetNet Heterogeneous Networks

HO Handover

HST High speed train

IoT Internet of Things

IP internet protocol

ISS Intra-Cluster Sum of Squares

KPI Key Performance Indicator

LIDAR Light Detection and Ranging

LOS Line of Sight

LTE Long Term Evolution

MAB Multi-Armed Bandit

MARL Multi-Agent Reinforcement Learning

MIMO Multiple-Input Multiple-Output

ML Machine learning

mm-wave Millimetre Wave

MME Mobility management entity

mMTC Massive Machine-Type Communications

MR Measurement report

NF Network Function

NG Next-Generation

NG-C Next-Generation control-plane part

NG-RAN NextGen Radio Access Network

NG-U Next-Generation user-plane part

NR New Radio

NSSF Network Slice Selection Function

PCF Policy control function

PPP Poisson Point Process

QoE Quality-of-Experience

QoS Quality-of-Service

xvi



RAI RAN area identifier

RAN Radio Access Network

RAT radio access technology

RBH Rate-based HO policy

ReLU Rectified Linear Unit

RIAI RRC Inactive assistant information

RL Reinforcement Learning

RLF Radio Link Failure

RNA RAN-based notification area

RNAU RAN-based Notification Area Update

RNN recurrent neural networks

RRC Radio resource control

RSRP Reference Signal Received Power

S-BS serving BS

SC Small Cell

SGW Serving Gateway

SHP Smart HO Policy

SMF Session Management Function

SNR signal to noise ratio

SVM support vector machine

T-BS target BS

TAI Tracking area identifier

THz TeraHertz

TTT Time-to-trigger

UAVs unmanned aerial vehicles

UDHN Ultra-Dense Heterogeneous Network

UDM Unified data management

UDN Ultra-dense network

UE User equipment

UPF User Plane Function

URLLC Ultra-Reliable Low-Latency Communications

V2X Vehicular-to-everything

xvii



CHAPTER ONE

INTRODUCTION

1.1 Background of the Problem

Wireless communication networks have been witnessing an unprecedented demand in terms of

bandwidth and number of connections in this so-called information age—in particular the age

of big data1 where data is regarded as new oil (Zhang & Letaief, 2020). It is reported in the

Ericsson Mobility Report that the mobile network traffic soared by 56% in the first quarter of

2020 (Ericsson, 2020), indicating the imminent issue that needs to be addressed. There are

strong evidence for the correlation between such growth in the global data traffic and the prolif-

eration of emerging applications, including tactile-internet, virtual reality, high-definition video

streaming. For example, we learnt from the same report (Ericsson, 2020) that video stream-

ing alone constitutes more than half of the mobile data traffic, and there is a tendency towards

higher resolutions—putting the issue at an alarming level in terms of data demand. This, in turn,

poses serious challenges to legacy networks and paves the way for the fifth generation of cellu-

lar networks (5G), which offers a thousandfold increase in capacity (Agiwal et al., 2016; Busari

et al., 2018; Tayyab et al., 2019). As such, enhanced mobile broadband has been included in

5G New Radio (5G-NR) as one of the scenarios—along with ultra-reliable low-latency commu-

nications (URLLC) and massive machine-type communications (mMTC)—in order to support

the aforementioned bandwidth-hungry applications (3GPP, 2017a). Table 1 summarizes expec-

tation and key performance indicators (KPI) for 5G and beyond (B5G) systems.

On the other hand, Internet of things (IoT) devices have already pervaded our daily life, as they

can be seen in numerous domains, including agriculture (Lashari et al., 2018), healthcare (Islam

et al., 2015), smart living (Pal et al., 2019; Meng et al., 2018; Mocrii et al., 2018), smart home,

smart industry, and smart city (Zanella et al., 2014), to name a few. In the case of smart city,

for example, city waste, building health monitoring, traffic, etc., are managed smartly using

IoT technology by deploying the IoT devices to the required places accordingly (Zanella et al.,

2014). A good example of this can be found in the publication by the Mayor of London on the

1Steve Lohr, The Age of Big Data, The New York Times, 11 Feb. 2012. Available online at

https://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html. Accessed on 25 Oct.

2020.
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Table 1: Requirements of 5G and B5G —key performance indicators.

Performance Indicator 5G B5G

Downlink Peak Rate 20 Gbps 1 Tbps

Uplink (UL) Peak Rate 10 Gbps 1 Tbps

Traffic Capacity 10 Mbps/m2 10 Gbps/m3

Latency 1 msec 0.1 msec

Energy Efficiency Not set 1 pJ/bit

road map for smart city agenda2 with the slogan “Smarter London Together”, which dictates

a heavy use of IoT technology in London to make the City more efficient and to boost the

standard of living of its residents. IoT technology owes this popularity to the promises in terms

of making our everyday life as well as industrial processes more manageable and efficient with

continuous monitoring and quick response (Xu et al., 2014; Lee et al., 2017; Akpakwu et al.,

2018). The alarming point here is that IoT devices are becoming more pervasive each year and

are projected to gain more dramatic prevalence in the near feature, albeit a slight deceleration

due to COVID-19 pandemic (Ericsson, 2020).

The challenges of 5G and B5G cellular communication networks, therefore, are primarily

twofold: a) the bandwidth demand due to more advanced smartphones with more computational

capabilities, and the rise in data demanding applications, such as online gaming, augmented re-

ality, etc. (Öztürk, 2020); b) the number of cellular connections that is exponentially growing

mainly due to IoT technology. Various solutions have already been proposed in order to com-

bat these issues: network densification and millimetre wave (mm-wave) communications are

among the most important candidates for network capacity enhancement (Shafi et al., 2017).

Network densification is a phenomenon, whereby the base station (BS) density in a given en-

vironment is increased in order to provide more radio access network (RAN) capacity. This

concept mainly uses the idea of frequency reuse, which states that the frequency spectrum of

one BS can be reused by other BSs as well only if they avoid interfering with each other. This

avoidance is provided by lowering the transmit power in order to reduce the footprints of BSs,

so that the overlapping regions are minimized—the less footprint of BSs results in more BSs

2The road map can be found at the following link. Accessed on 22/11/2020. Available online at

https://www.london.gov.uk/sites/default/files/smarter london together v1.66 - published.pdf.
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deployment opportunity, which then leads to more RAN capacity. mm-wave, on the other hand,

offers a great enhancement in the RAN capacity of cellular networks by exploiting the abundant

bandwidth available in the mm-wave frequency spectrum. Moreover, as antenna sizes reduce

with increasing carrier frequency, the use of mm-wave communication enables Multiple-Input

Multiple-Output (MIMO) technology, which in turn enhances the reliability and capacity of the

network (Jameel et al., 2017). In other words, the capacity enhancement supplied by mm-wave

communications are mainly due to two factors: a) increased bandwidth made available, and b)

MIMO technology (Rappaport et al., 2017; Jameel et al., 2017).

Even though these are sensible and effective methods of enhancing the capacity of cellular

networks, a serious side effect immediately emerges: mobility management (Öztürk, 2020).

The common ground for network densification and mm-wave communication concepts is that

both lead to more frequent handovers (HOs), which is defined as the user equipment’s (UE’s)

change of channel, resource, or cell 3 association while keeping an ongoing call or session.

The underlying reasoning behind this consequence is mainly due the reduction of the foot-

print of BSs. First, in the case of network densification, the footprint is deliberately reduced

with the use of small cells (SCs) in order to facilitate more BS deployments through frequency

reuse. Second, concerning the mm-wave communications, the footprint of BSs reduces due

to the higher propagation losses incurred at mm-wave frequencies (more dependency on line

of sight (LOS)). Furthermore, the increased amount of bandwidth also shortens the range of

mm-wave signals (Björnson et al., 2017).

As such, the frequency of HOs grows due to the smaller footprints of BSs: mobile UEs would

need to perform more HOs, given that there are now more BSs in a certain environment. Given

that the average throughput of a user is a function of the number of HOs with an inverse propor-

tionality (Arshad et al., 2016a), this issue has severe consequences in terms of communication

quality—degrades the quality-of-service (QoS). Besides, as service interruptions are experi-

enced during HOs, the user satisfaction rates are also affected negatively, undermining the great

promises of 5G networks. These adverse effects are mainly cause by two reasons: a) the number

of HO experienced during a call or data transfer session; and b) the HO cost incurred for each

HO experienced. In this regards, the research activities on HO management have predominantly

focused on these two aspects, such that minimizing the number of HOs and/or the cost incurred

3Cell and BS are interchangeably used throughout this work unless stated otherwise.
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per HO.

Although the figures in terms of the growing number of IoT devices and BSs along with in-

creasing demand for data-oriented applications have been discussed negatively so far, there are

some positive impacts as well. The volume of data being generated by cellular networks is also

growing considerably, making it a gold mine for network operators to exploit in such a way that

more efficient management can be facilitated (Sun et al., 2019b; Morocho Cayamcela & Lim,

2018; Zhang et al., 2019; Öztürk, 2020; Mollel et al., 021b). In other words, although growing

network sizes results in more complexity, the immense data volume generation becomes a key

to alleviate such complexity: this so-called challenge brings its own opportunity and solution.

In that regard, machine learning (ML) techniques have gained significant attention in the field of

wireless communications, since such amount of data can be very well utilized for training ML

models, which could help the networks gain experience and take proactive and more informed

actions.

With other introduced use-cases, the 5G aims to provide high system capacity as disscused

early, and Table. 2 summarizes approaches used to increase network capacity to accommodate

UEs and achieve the 5G requirement. Among different techniques, only those associated with

HO are discussed in the following subsection.

Table 2: Enabler to enhance capacity gain for cellular networks—5G and B5G approaches.

Approach Capacity Gain Reference

Frequency Division 5 (Balakrishnan, 2015)

Higher-order Modulation 5 (Balakrishnan, 2015)

IoT and Device-to-Device Communication ≥ 17 (Mustafa et al., 2015)

Access to higher frequency band ≥ 25 (Mollel et al., 020b)

Frequency reuse using more SCs 1600 (Huq et al., 2019a)

1.1.1 Channel Characteristics of 5G Wireless Systems

Table. 2 shows the increase of system capacity from using the high-frequency band and other

approaches. The new spectrum introduced in 5G is mm-wave, while for B5G is anticipated

to use the TeraHertz (THz) band (Chataut & Akl, 2020; Huq et al., 2019a). Nevertheless, the
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lower band — sub-1 and 6 GigaHertz (GHz) — continue to exist in the 5G and are expected

to exist in B5G for specific purposes. Compared to the sub-6 GHz band, the mm-wave band’s

advantages include more available bandwidth and small antennas in devices. Antenna size is

inversely proportional to frequency; therefore, mm-wave antennas for UE and BS are small

and can be placed in small devices. However, the mm-wave band has some drawbacks that

necessitate the use of sub-6 GHz frequencies in 5G. In this subsection, we present the rationale

for the co-existence of multiband frequencies in 5G and the characteristics and applications of

different spectrum bands from sub-1 GHz to mm-wave. We also emphasize the adverse effect

of each spectrum on HO in each subsection.

(i) Sub-1 GHz and Sub-6 GHz in 5G

In its early phases of implementation, 5G’s main spectrum options were around 3.5 GHz and

4.5 GHz for sub-6 GHz with time division duplexing technology. For the 3.5/4.5 GHz band, 5G

aims to use existing BSs to help in the roll-out and implementation(Schumacher et al., 2019).

The 3.5 GHz band provides comparatively less coverage than the 2 GHz band used in legacy

networks, and this is because radio propagation decreases as frequency increases. However, in-

troducing MIMO beam-forming antennas at 3.5 GHz and higher spectrum reduces propagation

losses, thereby significantly increasing coverage for 3.5/4.5 GHz. The effect of propagation loss

can be reduced by designing MIMO beam-forming antennas with a good receiver sensitivity,

and high antenna gains.

The sub-1 GHz bands are also used through frequency division duplex in 5G, especially for deep

indoor penetration (Nokia, 2017). With its broader coverage, low data rate IoT connectivity and

other critical communication like remote control or automotive applications can be introduced.

Therefore, extensive coverage becomes imperative for these new use cases which can be served

by the sub-1 GHz band. This frequency band is assigned at 700 MHz and potentially 900 MHz,

if communications service providers reduce the spectrum allocation for legacy radios in order to

make room for 5G (Nokia, 2017; Chen et al., 2018a; Yue et al., 2019). Generally, a sub-6 GHz

band has less impact on HO than using a higher frequency band due to high coverage, making

even heuristic solutions capable of solving the HO problem in the sub-6 GHz channel.
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(ii) mm-wave in 5G

The propagation of waves at mm-wave is more prone to adverse effects of obstacles which

can be caused by movement of people, presence of trees, foliage (outdoor scenario), furniture

and walls (indoor scenario). Since the mm-wave spectrum is severely affected by rain and

other atmospheric conditions, previous studies suggested that it was impractical to use this

frequency band for mobile communications. However, this has been proven to be wrong, as

recent studies have shown that atmospheric absorption does not create a significant loss when

used in picocells—coverage below 200 m from transmitter— (Attiah et al., 2020; Rangan et al.,

2014; Mollel et al., 2019). These studies also show that even under very extreme rainfall,

the rain attenuation would cause 1.4 dB and 2 dB loss at 28 GHz and 73 GHz, respectively.

The impact of rain attenuation on mm-wave propagation, especially in urban picocell areas,

will therefore become insignificant (Rangan et al., 2014). The short-range coverage of mm-

wave has both advantages and disadvantages. Spatial reuse of frequency band, strong multi-

path behaviour due to reflection are among the advantages of using mm-wave while one of the

disadvantages of using this band is that many SCs are required to provide coverage due to the

high propagation loss of mm-wave.

mm-wave is an inherently directional wave which means that there is a need for the transmitter

and receiver to focus the beam towards each other, this is commonly known as beam steering.

The main advantage of beam steering is to achieve high gain by focusing the transmitter and

receiver towards each other. The beam steering is completed through a beam training/tracking

process. Beam training is a process of finding the desired beam to connect the UEs in order

to reduce initial access delay. The beam training protocols (i.e., algorithms which carry out

beam tracking) developed for both the BS and UEs have to be run very frequently and fast

due to outage events and UE’s mobility. Another critical parameter to consider is sensitivity to

blockage. mm-wave has a higher frequency, making the size of its wavelength small compared

to many physical objects, and thus the low ability of mm-wave to diffract through large objects

makes it sensitive to blockage. For example, at the 60 GHz band, it is observed that there is a 20-

35 dB increase in the path-loss if an obstacle (e.g., humans or furniture) is introduced between

the mm-wave link (Rangan et al., 2014). Various studies have shown that human activities—

including UE rotation, human movement, etc.— contribute to the channel blockage. Due to

unavoidable activities such as signal blockage resulting from holding the UEs in the hand, the
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network reliability would become a challenging issue in NextGen mm-wave systems (Rangan

et al., 2014).

While it has been demonstrated that using mm-wave frequencies such as 28 GHz and 38 GHz is

possible even in complex urban environments, many challenges such as low throughput and high

signaling overheads associated with HO still needs to be addressed to realize the full potentials

of the mm-wave band (Rangan et al., 2014; Arshad et al., 2016b).

(iii) Co-existence of Sub-1 GHz, Sub-6 GHz and mm-wave

Given the rigid transmission efficiency standard for certain use cases such as vehicular net-

works, the use of mm-wave poses some significant difficulties in implementing reliable but high

data rate communication. Critical IoT applications, including remote healthcare systems (for

clinical remote monitoring and assisted living), traffic and industrial control (drone/robot/ve-

hicle), and tactile Internet, etc., require higher availability, higher reliability, safety, and lower

latency to ensure end-user experience as failure to satisfy these requirements would result in

severe consequences, such as vehicle collision, and accident (Akpakwu et al., 2018).

A control plane and user plane (UP) decoupled network is designed to circumvent these chal-

lenges by using the sub-6 GHz for the control plane and mm-wave frequencies for the UP (Yan

et al., 2019). This guarantees that signaling from the control plane reaches the UE with high

reliability by using the sub-6 GHz spectrum. On the other hand, the use of mm-wave frequen-

cies for UP provides unprecedented data speeds, due to the vast bandwidth availability at the

mm-wave spectrum. Therefore, the main purpose of sub-6 GHz and sub-1 GHz bands is to pro-

vide uninterrupted access to the control plane or to provide coverage for areas where mm-wave

cannot offer adequate coverage.

1.1.2 Heterogeneous Networks

Spatial reuse of more cell sites provides more orders of magnitude in terms of capacity gain;

the technique is among the various approaches showcased in Table. 2. This result in smaller

low-powered cellular layers that proliferated on top of the macrocell layer. These small, energy-

efficient cells include microcells, picocells, femtocells that can relay, among others, and Fig. 1

shows a scenario with macrocells overlaid with different small cell types. A heterogeneous net-

work (HetNet) is such a network that consists of many overlapping cellular layers, each with
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its own set of specific characteristics. HetNet supports aggressive spectrum spatial reuse and

enables dynamic traffic offloading from macrocell for several purposes, including network load

balancing, capacity boost or coverage extension. A summary of the types of cells in terms of

coverage and capacity is presented in Table 3. A macrocell is a BS used in cellular networks

Figure 1: An illustration of heterogeneous networks.

with the function of providing radio coverage to a large area of mobile network access for long

time. Currently, the macrocell overlaps several SCs, and it has high output power, usually in

the range of tens of watts and can provide coverage to a large area. However, the macrocell

suffers from interference caused by the use of sub-6 GHz, which can travel far by nature. While

the macrocell transmits radio waves over a long distance, if not managed properly, signal inter-

ference with other cells is very likely, which in turn could result in the degradation of network

performance (Ali et al., 2017). Nevertheless, macrocell has low spectral efficiency or area spec-

tral efficiency, typically measured in (bit/s/Hz) per unit area, which results in less bandwidth

and low data rate per UE. The data rate is the function of bandwidth, and SCs allows frequency

reuse due to limited range hence more bandwidth and data rate per UE. Therefore, to increase

the data rate, the idea of reducing BS footprint for macrocells was introduced (Hamed & Rao,

2018), led to more SCs.

As the BS footprint becomes smaller with smaller BSs, the use of mm-wave become more feasi-
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Table 3: Cell types in wireless networks in term of coverage and capacity

Cell type Coverage range(meter) Capacity

Femtocell 10-20 A few UEs

Picocell 200 20 - 40 UEs

Microcell 2000 > 100 UEs

Macrocell (3-3.5)×104 Many UEs

ble. The mm-wave frequency suffers from high penetration loss, enabling mm-wave frequency

in an indoor environment for femtocell. However, the drawback is the high number of HO for

the mm-wave link and the high chances of sub-optimally selecting BS as the serving BS (S-BS)

in ultra-dense network (UDN) if HO is required.

1.1.3 Internet of Things

In this modern era, various applications used by billions of people are daily made available via

the internet, thereby making the Internet an essential tool to interconnect these applications,

among which services like video streaming, file sharing, electronic commerce, etc. are increas-

ingly taking place online. The types of interconnected devices includes smart phones and IoT

devices such as sensors, wearables, etc. These IoT devices are able to communicate with each

other to share information with little or no human involvement. Fig 2 illustrates some common

IoT uses cases. As the number of IoT devices keep increasing, the traffic generated by these

devices also increases, hence, the underlying protocols that support IoT should be reconsidered

to support the massive interconnection of both new and conventional devices (Yilmaz et al.,

2016; Srinidhi et al., 2019). Conventional devices need to be made smarter by incorporating

advanced technologies such as ubiquitous computing, artificial intelligence, embedded devices,

different communication standards and technologies, various application services, and different

Internet standards. However, the problem is that these devices used in IoT are memory-limited

and energy-limited, so information should be routed efficiently, and the proper channel between

source and sink should be carefully chosen (Srinidhi et al., 2019). IoT has different use cases

such as smart cities, smart home, vehicular sensors, health monitoring, and sport & leisure sce-

narios. Several of these use cases are discussed in the following subsection, while focusing on

the differences in application domains requirements.
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Figure 2: Sensors and IoT use case.

(i) Smart Cities

This involves the use of smart technologies to provide relevant information and automated ser-

vices that would improve the standard of living of the people in a particular area. These smart

technologies include: deployment of sensors for traffic monitoring and management, smart grid,

waste management systems etc (Akpakwu et al., 2018). Some of these use cases are briefly dis-

cussed: a) vehicular traffic monitoring where sensors are deployed on the roads for the detection

of traffic jams, polluted or damaged roads, as well dynamically proposing rerouting options for

end-users who have GPS equipment in their vehicles and are able to receive such information,

b) Street lights can be equipped with sensors for detecting cars or human movement, and can

be dynamically turned on and off according to activity level around the area-of-interest. This

can assist in energy and monetary saving for the city, whilst ensuring security by preventing

unilluminated zones around people, and c) there could also be environmental sensors deployed

in various locations to detect pollution, water level, or fire. In this case, the early detection of

abnormal environmental situations can be used to alert the appropriate authorities in order to

enable them take the necessary actions when any incident occurs.
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(ii) Smart Home

This use case is sometimes classified as a part of smart cities. However, it is mostly limited to

user-oriented applications, particularly for home networks (Akpakwu et al., 2018). Different

services that can be classified under the smart home use-case include: a) Connected home

appliances, such as smart fridges which can automatically order for the restocking of the fridge

with food items or beverages when it detects that it is running out of supplies by checking a pre-

defined threshold for the amount of each item, and b) home video monitoring — homes can be

equipped with small cameras that are mounted in different locations, and can be used to stream

the video to the Internet for a remote monitoring. The sensors can also be used to send alarms

upon the detection of unusual movement or abnormal behavior, smoke, carbon monoxide, etc.

in the monitored area.

(iii) Healthcare/Telemedicine/Wearable

This use case is becoming more popular as more devices such as watches and other wearable

devices become increasingly available. Patients do not necessarily need to be monitored manu-

ally, but smart wearable devices track their health conditions for any abnormality. Such devices

send an alarm message to a nearby hospital as soon as they detect anomalies with the patients

being monitored.

All the use cases mentioned above face challenges that need to be addressed before IoT can

become very efficient and able to integrate heterogeneous devices—device with different com-

munication standards (protocols, technologies and hardware)—and applications envisaged for

5G (Uwaechia & Mahyuddin, 2020). These challenges include scalability, network manage-

ment, security and privacy, interoperability and heterogeneity, network congestion and over-

load, and network mobility and coverage. To interconnect a massive number of devices and ac-

commodate enormous traffic generated within 5G system, conventional sub-6 GHz is no longer

sufficient, hence the need for the utilization of a new frequency band (mm-wave) (Yilmaz et al.,

2016). This would led enhanced QoS for IoT devices.

1.1.4 Device-to-Device Communication

Device-to-device (D2D) communication involves the direct communication between two de-

vices without passing through a BS. These devices could be smartphones, vehicles, etc.
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This kind of communication usually occurs when both device are in close proximity to each

other (Astely et al., 2013). The introduction of D2D communication is necessary to cope with

the rise in the number of devices as well as the increase in demand for high speed connections.

It is one of the technologies that is being exploited in 5G and B5G networks as its use would

lead to enhanced link reliability, spectral efficiency, system capacity, energy efficiency and re-

duced network delays. It is also useful for offloading traffic from the core of the network (Asadi

et al., 2014).

The use of mm-wave in 5G would facilitate D2D communications as more direct links would

be supported, thereby enhancing the capacity of the network. In addition, due to the directional

nature of 5G antennas, it would be possible to support more simultaneous connections in mm-

wave systems. Both local and global D2D connections are supported by mm-wave 5G networks.

The later occurs between two devices within the coverage of the same BS while the former

occurs between devices under the coverage of different BSs (Gandotra & Jha, 2016). Despite

the inherent advantages of D2D communications, due to UE mobility, and the fact that the UEs

still need to connect to the BS in order to transmit control signals, the issue of HO needs to be

carefully considered in order to prevent ping-pong effects which results in frequent HOs (Lai

et al., 2020).

1.1.5 Vehicular Communications

Vehicular-to-everything (V2X) is a special case of D2D communication. It is a technology

that provides communication between vehicles and surrounding devices, including hand-held

devices, moving/stationary cars, and all other external IoT appliances. V2X is categorized

into two main components: vehicle-to-vehicle and vehicle-to-infrastructure. The former allows

communication between two or more vehicles. On the other hand, the latter deals with com-

munication between cars and other devices in its external environment, such as traffic/street

lights. A particular case of vehicle-to-infrastructur called vehicular ad-hoc network or network

on wheels, is used to provide communication between vehicular nodes (Abbasi & Shahid Khan,

2018).

The most common and popular communication protocol that supports vehicular networks is the

dedicated short-range communication, and it can support all V2X architecture. Dedicated short-

range communication uses 75 MHz bandwidth at 5.9 GHz band, and was expected to provide
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the data rate up to 27 Mb/s and a transmission range up to 1000 m (Abbasi & Shahid Khan,

2018). However, in practice, the data-rate reached only about 2–6 Mb/s. To increase the data

rate and extend the coverage, the coexistence of dedicated short-range communication and long

term evolution (LTE) has been suggested as a solution for V2X application (Ghafoor et al.,

2020).

As a result of the high mobility of vehicles, one of the major challenges that vehicular net-

works suffer from is HO. This occurs because in the course of the vehicles movement from

one location to another, the often move out of the coverage area of one network also known as

road side unit to another thereby leading to frequent change of connection from one road side

unit to another. This issue would become more pronounced with the use of mm-wave in 5G

as the coverage area of the road side units would become smaller (Ahmed & Alzahrani, 2019).

Hence, HO management must be carefully considered for fast moving vehicles in 5G mm-wave

communication networks in order to ensure seamless HO.

1.1.6 High Speed Train Communication

High speed train (HST) communications is one of the verticals that would be supported by 5G

networks. The availability of large spectrum in the mm-wave frequency band would make the

provision of enhanced mobile broadband services possible for passengers in high speed trains.

HST communications is needed to improve passenger safety and also enhance their on-board

experience. The services provided by HST communications includes closed-circuit television

surveillance, uninterrupted Internet, high definition video streaming, e-ticketing, communica-

tion between trains, etc. (Chen et al., 2018a).

HST communication networks basically encompasses two kinds of communications, namely:

critical and non-critical communications. The former is the communication between the HST

and its associated infrastructures and is necessary to control the speed and ensure the safety,

reliability and smooth functioning of the HST. The latter is required to provide services to the

passengers on-board such as high quality video, and other data services (Briso-Rodrı́guez et al.,

2017). Even though mm-wave has great potentials for application in HST communications,

due to the high mobility of trains, HST communication is often prone to frequent HOs and fast

fading channels, that potentially undermines its availability. As a result, some new technolo-

gies such as hybrid beamforming, beam management, network slicing, and distributed antenna
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system have been introduced in mm-wave communications to enhance its application in high

mobility applications such as HST communications (Yue et al., 2019).

1.1.7 Beyond 5G System

5G is game-changer as it can provide data rates up to tens of gigabits per second, which is far

beyond what is provided by legacy networks (Liu & Jiang, 2016). However, with the introduc-

tion of new use cases and applications such as virtual and augmented reality, remote surgery

and holographic projection, 5G would not be able to meet the projected explosion in wireless

data demands. As a result, research into higher frequency (beyond mm-wave) has risen, and

THz frequency has become the B5G researcher’s focus as the new spectrum for B5G systems.

Only frequency bands in the THz range can provide the large amount of bandwidth that is

needed to support the terabit-per-second data rates in order to support huge traffic types such

as uncompressed videos that is envisioned in B5G networks (Mumtaz et al., 2017; Huq et al.,

2019b).

The use of THz band in sixth generation (6G) is required to provide the reliable communication

that is required to support various critical applications, accommodate high data rates per area,

and support massive amounts of connected UEs. The THz frequency band has quite similar

characteristics to that of mm-wave. However, because it has a higher frequency compared to

mm-wave, this means that it would be prone to all the challenges facing mm-wave along side

additional challenges because it is a higher spectrum compared to mm-wave. Therefore, there

is a need for more advanced error control mechanisms, mobility management techniques, as

well as other new features to enable the utilization of this frequency band in mobile cellular

networks.

1.2 Problem Statement

A significant challenge in wireless 5G systems is achieving smooth and robust mobility, par-

ticularly in HetNets with BSs and UEs using mm-wave links. A comprehensive mobility per-

formance analysis for HetNets shows that the rate of HO failure, ping pong effects and other

unnecessary HO is much higher in mm-wave than in sub-6 GHz links (Tayyab et al., 2019). A

proper HO management scheme plays a vital role in the successful realization of the potential

gains of using mm-wave in HetNets because poorly managed HOs leads to more HO signalling
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which results in significant increase in latency during data transmission. In addition it is also

associated with high cost of recovery from HO failures. The HO process generally involves the

time delay from HO initiation to completion, resulting in high signalling overhead, latency, and

poor service quality.

5G aims at achieving ultra-low latency (possible < 1 ms) (Mollel et al., 021b) among several

other objectives. Thus, the unavailability of services during path switching must be reduced to

a minimum level. Since HO failures and unnecessary HO would be more prominent in HetNet

mm-wave networks, more robust frameworks for selecting target BSs (T-BS) that can minimize

HO and prolong UE to BS connection are required to mitigate the impact of HO in the system.

In this study, ML algorithms were employed to develop models that improve the performance

of HO management, achieve seamless mobility, and high UE throughput. In particular, rein-

forcement learning (RL) was used to model the trade-off between selecting the BS with the

best instantaneous metric such as signal to noise ratio (SNR) and the one that can sustain UE

connectivity for an extended period without initiating a new HO. The proposed model consid-

ered various features found in the wireless network environment, such as static and dynamic

blockages, devices with different service demands, etc.

1.3 Rationale of the study

Strategies for improving HO decision in ultra-dense heterogeneous networks have been pro-

posed in various studies such as (Mezzavilla et al., 2016; Arshad et al., 2016b; Arshad et al.,

2016; Mahira & Subhedar, 2017). However, these studies ignored some vital parameters that

are required for HO optimization in 5G mm-wave communication systems. Such parameters

include the speed of mobile UEs, UEs distribution, the presence of blockages, etc. Various

techniques have been proposed for HO management from heuristics Zang et al. (2017); Demar-

chou et al. (2018) to ML-based ((Wang et al., 2018; Alkhateeb et al., 2018; Sun et al., 2018))

approaches. Heuristic methods lack intelligence while deciding the choice of the best beam in

a cell or selecting the optimal T-BS among the available potential T-BSs while ML-based meth-

ods employ intelligence in deciding the optimal BS which results in more accurate selection

of a T-BS. However, most of the techniques proposed in the literature are either impractical or

have inefficient implementation in UDN-HetNets
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Therefore, this study aims to develop an intelligent approach based on deep RL (DRL) for

selecting the optimal BSs that would maximize the UE-BS connection duration to reduce HO

cost while guaranteeing user QoS. The developed solutions consider information regarding user

trajectory, network topology and network parameters to improve the accuracy of the model and

make it practically applicable to wireless environments. Such information includes: a) HO cost

along the UE trajectory, b) blocking probability due to environmental factors, c) a user’s QoS,

and d) probability of UE staying in a BS footprint (dwell time). HO is a critical limiting factor

that should be carefully considered when planning network densification in 5G. Therefore, the

optimal model for minimizing the HO rate is a crucial consideration for prior and post HO

optimization schemes.

1.4 Research Objectives

1.4.1 General Objective

To study the performance of various HO decision schemes for 5G and B5G networks that use

mm-wave links and propose a novel approach that uses ML to achieve seamless mobility for

users in an UDN environment.

1.4.2 Specific Objectives

(i) To perform a comprehensive review of existing HO decision methods that are used in

5G and B5G mm-wave communication systems.

(ii) To set up experiments and carry out signal measurements in a simulated 5G mm-wave

environment for mobile users.

(iii) To develop a model that can intelligently optimize HO rate by training agents to maxi-

mize throughput by maintaining connection to a BS for longer durations.

1.5 Significance of the Study

The results of this research are crucial for the development of an intelligent 5G wireless system,

as they focus on increasing the system throughput by improving the accuracy of HO decision in

5G mm-wave communication. Other essential outcomes are described as follows:

(i) This work paves the way for developing advanced intelligent HO decision-making so-
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lutions to use in 5G and B5G systems operating at mm-wave and THz frequencies.

(ii) To ensure the low latency is achieved by reducing the effect of HO delay.

(iii) To reduce the UEs power consumption by reducing the frequency with which it scans

and sends measurement reports to neighboring cells during the HO operation.

(iv) To improve the overall throughput of the mm-wave communications system by reduc-

ing the number of HOs and optimizing the BS selection during HO.

(v) This study is critical for infrastructure-to-infrastructure connectivity, such as vehicle-

to-vehicle and device-to-device communication, for fast HO decisions for high-speed

devices.

1.6 Delineation of this Study

This study uses advanced machine learning algorithms to effectively make informed choices

about selecting the next serving cell for a UE to HO to from a list of potential target cells. In

this research, various experiments were conducted using RL algorithms as an optimization tool

and the model developed proved efficient in terms of ensuring high QoS, less ping pong effects

and reducing unnecessary HOs. The developed model works efficiently under all assumptions

postulated in this thesis. The approaches considered are described as follows:

(i) The BSs are distributed in a square dimensional area following a Poisson Point Pro-

cess (PPP). Random waypoint user mobility model was used to simulate a more realis-

tic UE movement with a velocity set at a given mean and standard deviation (since the

velocity of the UE is not always constant).

(ii) It was assumed that UEs take a specific route (trajectory-aware). Moreover, a

trajectory-aware HO optimization approach was developed such that instead of using

the exact user location, i.e. geo-coordinates of the user’s location (since it is diffi-

cult to obtain), we correlate the user location to SNR values received from all BSs at

a particular point. The mapping of exact locations to SNR values considers various

kinds of obstacles that are found in a typical network environment, such as buildings,

trees, vehicles and human beings. This evaluation was done using wireless Insite soft-

ware™ (WI).
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(iii) Finally, an offline learning framework was developed to simulate the environment for

data collection. Then, a Double Deep Reinforcement Learning (DDRL) algorithm was

used to train an agent with the collected data as the data set. This was followed by test-

ing of the developed model with a new data set generated by altering some of the points

along the UE trajectory. This was done to test the robustness and generalization ability

of the developed model to select the optimal BS that maximizes the user-BS connec-

tion. By choosing the optimal BS, this process simultaneously reduces the number of

HOs per trajectory and guarantees high user throughput.
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CHAPTER TWO

LITERATURE REVIEW

2.1 5G System Architecture

The Next generation (NextGen) architecture is based on network function (NF) instead of a

network entity that is obtained in LTE, according to 3rd Generation Partnership Project (3GPP)

specification for LTE and new 5G systems (3GPP, 2020; Alsaeedy & Chong, 2018; 3GPP,

2017b). In LTE’s core network (CN) also known as evolved packet core (EPC), the appropriate

network protocols and interfaces are defined among the entities for each network entity (e.g.

serving gateway (SGW) and the mobility management entity (MME)). In contrast, network

protocols and interfaces in 5G CN (5G-CN) are specified for each NF. The NF is the process-

ing functionality in 5G networks, and it can be implemented in three ways (Alsaeedy & Chong,

2018): a) as a network element on dedicated hardware, b) as a software instance running on ded-

icated hardware, or c) as a virtualized function built on an appropriate platform, such as a cloud

infrastructure. The advantage of NF over NE is that it dramatically decreases latency. This is

achieved by carefully controlling the UE mobility (e.g. tracking and paging procedures) scheme

and separating the user plane from the control plane to ensure that each plane’s resources are

independently scaled and that more NF can be deployed in a distributed manner (3GPP, 2019).

Figure. 3 shows the 5G system architecture along with NFs and reference points. A reference

point shows the interaction between the services in two NFs (e.g. N4 is the reference point that

connects UPF and SMF).

The architecture includes the user plane carrying UE traffic and control plane carrying UE

signaling and control functions. The NF in the UP consists of user plane function (UPF) acting

as a gateway for the UE traffic passing through RAN to external networks such as the Internet.

It is responsible for packet routing and forwarding, packet inspection, QoS handling, packet

filtering, and traffic measurement.

Several components of NFs run in the control plane. Some of the components are: access

mobility function (AMF), session management function (SMF), network slice selection func-

tion (NSSF), unified data management (UDM), policy control function (PCF), authentication

server function.
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Figure 3: The 3GPP-5G architecture with reference points (3GPP, 2019).

AMF is responsible for control signaling between the CN and UE and provides additional func-

tionality such as access authentication, authorization, mobility management control, location

services, and integrity protection algorithms. SMF is primarily responsible for handling the

interaction between the decoupled planes (user and control plane) and other functions such

as internet protocol (IP) address allocation to UEs and policy enforcement. NSSF selects the

network slice instance based on information provided during UE attachment. The UE’s infor-

mation provided include bandwidth, capacity and latency requirements for the application to

be run on a network slice. Network slicing is a way of partitioning network resources to dis-

tinguish between the services provided to different UEs. UDM is responsible for credential

authentication and access authorization while PCF takes care of the unified policy framework

that governs network behaviour, and the policy rules for control plane function(s) that enforce

them. Furthermore, authentication server function is used to facilitate 5G security processes.

In addition, there are other components of the NF that are found in the control plane but have not

been depicted in Fig. 3. They include unstructured data storage function, unified data repository,

network exposure function, and NR repository function. However, all depicted NFs can interact

with the unstructured data storage function, unified data repository, network exposure function,

and NR repository function. For further information on this functions, the reader is referred
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Figure 4: Overall architecture of 5G system showing network elements and interfaces (3GPP,

2020).

to (3GPP, 2019).

Overall, 5G architecture is divided into two parts, as shown in Fig. 4. The first part is the CN

whose components have just been discussed while the second part is NextGen Radio Access

Network (NG-RAN). The NextGen NodeB (gNB) serves as the access point for the 5G net-

work, transmitting control plane and user plane traffic originating from N1, N2, N3 reference

interfaces as shown in Fig 3. The purpose of the ng-eNB is to provide Evolved Universal Mo-

bile Telecommunications System (UMTS) Terrestrial Radio Access (E-UTRA) user plane and

control plane protocol terminations for UEs. In addition, 5G technology also supports LTE via

ng-eNB. It allows existing 4G radio networks to coexist with the gNB. For example, if both

LTE and 5G radio coverage are available, a 5G UE may use either LTE and 5G radio resources.

Therefore, when there is no 5G coverage, LTE serves the 5G UE using the ng-eNB. The con-

nection interface between gNB and ng-eNB is known as an Xn interface, and NG interface is

the connection interface between gNB/ng-eNB and CN more specifically to the UPF the NG

user-plane part (NG-U) and to the AMF the NG control-plane part (NG-C). The last interface

that needs to be mentioned is the radio frequency interface, which is the circuit between the UE

and the active gNB or ng-eNB which is also known as Uu interface. This interface supports a
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broad spectrum from low to high frequencies (Ren et al., 2018).

5G is the first technology to introduce the use of high frequencies —above 6 GHz— intended for

use in terrestrial mobile access networks along with the use of the sub-6 GHz spectrum. This is

a real breakthrough that was made possible through different technological advances, including

massive MIMO combined with beamforming technologies, advancements in processing capa-

bility of chipsets, and overall RF front-end/antenna subsystem integration/innovation for BS

equipment and UE 4(Chataut & Akl, 2020).

2.2 Mobility Management in 5G

Mobility management in 5G is quite different from that of legacy networks (2G-4G) and in this

section, we present the concepts behind the radio access mobility in 5G cellular network. We

also briefly explain the mobility state procedures in 5G system that makes it more efficient than

legacy systems.

Definition 1 (Access stratum)

Access stratum (AS) is the set of protocols in 5G that contains the functionality associated with

the UE’s access to the RAN and the control of active connections between a UE and the RAN.

Definition 2 (Non-access stratum)

Non-access stratum (NAS) is the set of protocols in 5G that handles functionality operating

between UE and CN.

Definition 3 (RRC context)

The radio resource control (RRC) context are the parameters necessary for establishing/main-

taining communication between the UE and the CN.

Definition 4 (Cell selection)

Cell selection is the process of choosing a suitable cell5 for the UE to camp on. This process is

performed as soon as the UE is switched on (3GPP, 2018c).

Definition 5 (Cell re-selection)

Cell re-selection is the process of choosing a suitable cell after the UE camps on a cell and stays

in the idle or inactive state.
4Learn more about 5G mmWave Networks, Published on 20 Oct. 2020. Available online at

https://www.5gmmwave.com/tag/mmwave/. Accessed on 25 Nov. 2020.
5A cell with the measured cell attributes satisfy the cell selection criteria (3GPP, 2018e)
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Figure 5: UE state machine and state transitions in 5G (3GPP, 2018b).

2.2.1 Radio Resource Control State Machine

The radio resource control (RRC) protocol is in the IP-level (Layer 3 /Network Layer) and

is the protocol between UE and NG-RAN as specified by 3GPP (3GPP, 2018b). The RRC

protocol’s essential functions include: a) broadcast of system information, b) Control of the

RRC connection —this procedure includes paging, establishment, modification and release of

the radio bearer. It also involves establishing an RRC context, c) measurement configuration

and reporting, and other functions specified by 3GPP that can be summarized in (3GPP, 2018b;

Dahlman et al., 2018b). The RRC’s operation is guided by a state machine that defines specific

states where a UE may be present. The different states in this state machine have different

amounts of radio resources that can be utilized by the UE once it enters into a particular state.

Since different amounts of resources are available in different states, the state machine impacts

the QoS that the user experiences and the energy consumption of the UE (Ahmadi, 2019b). In

addition, RRC states provide a clear distinction between HO and cell (re-) selection. The UE can

be in one of the three RRC states, namely: RRC Idle, RRC Connected, and RRC Inactive state.

Figure. 5 depicts the UE state machine and state transitions in 5G while Table 4 summarizes the

RRC protocols and functions in each RRC state.
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Table 4: Summary of the RRC State and mobility handling in 5G.

RRC State

RRC protocal Idle Inactive Connected

Network selection/registration 3

Cell re-selection 3 3

5GC based Paging 3

NG-RAN based Paging 3

5G-RAN manages the UE RNA 3

5G-RAN knows UE serving cell 3

Keep 5GC/5G-RAN connection for UE 3 3

UE AS context stored in 5G-RAN and UE 3 3

(i) RRC Idle

In RRC Idle state, the UE is not registered to a particular cell; hence, it does not have an AS

context or receive any network information. This means that no specific link is established for

communication between the UE and CN, and the UE does not belong to any specific cell. From

the CN perspective, the UE is in the CN Idle state6, and the UE is in (a kind of) sleep mode

and wakes up periodically (according to a configured discontinuous reception (DRX cycle))

to listen for paging messages from the network through the downlink channel. During this

period, no data transfer takes place and the UE enters into sleep mode regularly to reduce battery

consumption. The network can reach the UEs in the RRC Idle state by sending paging messages

to notify them of changes in system information, warning messages such as earthquake and

tsunami warning service, and commercial mobile alert system which are send as short messages.

In this state, the UE manages mobility based on the network configurations via cell re-selections.

It also performs the neighbouring cell measurements needed for cell re-selection in order to

determine which cell it is to connect (explained in Section 2.2.2).

6UE is said to be in CN Idle state from CN perspective when no connection is established between UE and the

CN (Dahlman et al., 2018b; Kim et al., 2017).
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In legacy network (such as LTE), whenever the UE needs to connect to the network (e.g., when

some uplink data becomes available for transmission), it must transit from idle to the connected

state, and then return back to the idle state if there is no data to send. This process involves

RRC signaling and latency. Moreover, today’s UE needs to connect to the network very often,

thereby leading to regular idle-connected-idle state transitions. These frequent transitions lead

to increased network signalings and latency. To lower the network signaling overhead and

reduce the latency involved during the transition to RRC Connected state, the RRC Inactive

was introduced. In 5G, the network initiates the RRC release procedure to transit a UE from the

connected to the idle state. In addition, as UE moves from the idle to the connected state, both

the UE and the network establish the RRC context.

(ii) RRC Inactive

5G-NR introduced RRC Inactive state from lessons learned during the development of LTE.

The findings revealed that the transition of wireless devices from idle state to connected state is

the most frequent high-layer signaling event in existing LTE networks, occurring about 500 −

1, 000 times a day7. This transition involves a significant amount of signaling overhead between

the UE and the network, as well as between network nodes, which can lead to increased latency

and power consumption in the UE. The solution is to switch to RRC Inactive state which will

result in a significant reduction in both latency and UE battery consumption. When the UE is

in inactive state, its behaviour is similar to that in idle mode in term of power-saving. However,

unlike the idle state, in the inactive state, RRC context is kept in both UE and gNB, and the

UE is in CN Connected state 8 from the CN perspective, meaning that its connection to the CN

is kept intact. Different from RRC Idle state, the primary purposed of RRC Inactive state is

to reduce the network signaling load and latency involved during RRC Idle to RRC Connected

state transition. In RRC Inactive state, the network signaling becomes faster since the AS

context is stored in both the UE and gNB. While 5G CN connection is still retained - (UE

remains in CN Connected state), the UE in RRC Inactive state is in sleep mode and wakes

up repeatedly- according to configured DRX cycle (which in this case is controlled by the

7Meeting 5G latency requirements with inactive state, Published on 19 June. 2019. Available on-

line at https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/meeting-5g-latency-

requirements-with-inactive-state. Accessed on 25 Nov. 2020.
8CN Connected state is when the UE establishes connection to the CN (Dahlman et al., 2018b; Kim et al.,

2017).
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5G-RAN), and regularly monitors for paging messages from the network. The procedure for

notifying the UEs about any change of system information or warning message is the same as

that of the idle state.

In RRC Inactive state, UE remains in CN Connected state and moves freely within an area

configured by NG-RAN without notifying the RAN-based notification area (RNA). When it

becomes necessary to transmit data or signaling, the resume procedure is initiated to enable the

UE to switch from inactive to connected state. In this state, the UE controls mobility based on

network configuration through cell re-selection with the same procedure as in the idle state.

(iii) RRC Connected

In the RRC Connected state, the RRC context and all parameters needed to establish com-

munication between the UE and the RAN are known to all entities. The means that in

RRC Connected state, the network configures all required parameters for communication be-

tween the network and the UE. In RRC Connected state, the UE is in CN Connected state from

the CN point of view. The cell to which the UE belongs and the UE’s identity is known. In

addition, the cell radio-network temporary identifier (C-RNTI) used for signaling purposes be-

tween the UE and the CN is configured. The connected state is intended to transmit data to or

from the UE, and to minimize excessive power consumption of the UE. DRX is optimized while

maintaining user’s QoE (Liang et al., 2018). With a configured DRX cycle, the UE only moni-

tors downlink signaling when active, and then goes into sleep mode for the rest of the time with

the receiver circuitry turned off. This process allows significant power consumption reduction,

as the longer the DRX cycle, the lesser the power consumption. For exhaustive discussion on

how DRX reduces excess power consumption, please refer to (Dahlman et al., 2018a; Da Silva

et al., 2016). Also, the RRC context is established in gNB for the connected state, therefore,

data transmission/reception can commence relatively fast, as no connection setup, and signaling

is needed. In this state, the network manages mobility by the process known as HO, explained

in the Section 2.3.5

As regards cell re-selection when leaving RRC Connected state, the UE attempts to camp on a

suitable cell according to redirectedCarrierInfo when transitioning from RRC Connected state

to RRC Idle or RRC Inactive state (3GPP, 2018e). In the connected state, if the network initi-

ates the RRC release message or the UE and CN are no longer attached, the UE moves into an
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idle state, on the other hand, if the network initiates the RRC suspend procedure, the UE would

transit from connected to inactive state (3GPP, 2018e,b) (see Fig. 5).

One significant difference among the different states, as seen from the preceding discussions, is

the mobility mechanisms involved. Efficient mobility management is an essential aspect of any

mobile communication system. In the following subsections, we describe the different mobility

mechanisms including idle- and inactive-state mobility.

2.2.2 Idle and Inactive State Mobility

Most importantly, RRC states ensure that the mobile UE is accessible via network mobility

mechanisms, mainly when the UE is in the idle or inactive states, during which it has limited

connection to the network. The network, through paging, communicates with the UE occasion-

ally, and also sends short broadcast message which carries information about changes in the

system (3GPP, 2018e). The area over which a paging message is sent is an essential feature of

the paging process. Also, in both states, the device can switch from one cell to another via cell

re-selection. The UE scans for candidate cells for cell re-selection, and if the UE discovers a

cell with received power sufficiently higher than its current one, it deems this the best cell and

contacts the network through random access (3GPP, 2018e).

UE tracking needs to be intelligently carried out to avoid high overhead due to paging, and

signaling at the network and cell level respectively. High overhead would occur if the network

broadcasts the paging message from every cell in the network in order to track the target UE

as paging transmissions would occur even in cells that do not contain the target UE. On the

other hand, signaling would occur if only the cell which the UE is located broadcast the paging

message. In this case, the UE needs to inform the network whenever it moves from one cell’s

coverage to another. This would lead to high overhead due to the signaling required to notify

the network about the updated UE’s location. Hence, the cell-group level tracking system was

introduced in 5G-NR to tackle the challenge of high overhead due to signalling and paging.

Figure. 6 illustrates how tracking of UE in the idle and inactive state is carried out in 5G-NR. In

order to enable effective UE tracking, the cells are organized into cell groups, and the UEs are

only monitored on the cell-group level, as shown in Fig. 6. The network only receives new UE

location information when the UE moves into another cell group outside its previous cell-group.

In case of paging the UE, the broadcasted paging message is sent to all cells within the specific
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Figure 6: RAN Areas and Tracking Areas.

cell group — this is done to reduce the paging overhead. This is the primary tracking procedure

in the NR for both states. However, there is a difference in the way that cells are grouped in

both states as well as how paging is initiated.

For the idle state, cell groups are grouped into RAN areas, where a RAN area identifier (RAI)

identifies each RAN area. The RAN areas, in turn, are grouped into an even larger group known

as tracking areas, where a tracking area identifier (TAI) is used to identify tracking area. Thus,

each cell belongs to one cell group which also belongs to one RAN area as well as a tracking

area, and their respective identities are provided as part of cell system information.

Tracking areas are the basis for CN-based UE tracking, and the CN is responsible for managing

and initiating paging. The CN assigns each UE to a UE registration area, which consists of a list

of TAIs. When a UE enters a cell belonging to a tracking area outside its assigned registration

area, it accesses the CN and performs a non-access stratum registration update. The CN records

the UE’s location and updates the UE’s registration area, then it provides the UE with a new

TAI list that includes the TAIs that the UE has been assigned. The UE is assigned a set of

TAIs to avoid repeated non-access stratum registration updates in case the UE moves back and

forth between two neighbouring tracking areas. If the UE moves back to the old TAI within the
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updated UE registration area, no new update is needed.

In the inactive state, RAN Area becomes the basis for UE tracking, which is carried out in the

5G-RAN level. 5G-RAN is responsible for initiating the paging and managing RAN-based no-

tification area. UEs are assigned a RNA comprising the following: a list of cell identities, a list

of RAN areas, or a list of tracking areas. The RNA is assigned to a UE by its serving NG-RAN

based on the UE’s registration area and can cover a single or multiple cells (a subset of the track-

ing areas). As a result, the UE can move freely within the allocated RNA without contacting

the NG-RAN. However, if it moves to an area outside its current RNA, it initiates RAN-based

Notification Area Update (RNAU). Once the serving cell (ng-eNB or gNB) receives the RNAU

request from the UE, it may send the UE to one of the following RRC states: RRC Inactive,

RRC Connected, or RRC Idle. If UE remains in the inactive state, the serving NG-RAN may

continue to send a periodic RNAU timer to the UE, which is used to notify the network that the

UE is still active. The value of the RNAU time is assigned based on the RRC Inactive assis-

tant information (RIAI) (Alsaeedy & Chong, 2018). In summary, two levels of paging can be

applied for reaching the UE depending on its RRC state: CN-based paging for idle state and

5G-RAN-based paging for the inactive state (see Table 4).

2.2.3 Connected State Mobility

The connection between UE and network is established in the connected state. Connected-state

mobility aims to maintain connectivity without interruption or noticeable degradation as the

UE moves within the network. To maintain the connection between UE and network in the

connected state, the UE is continuously searching for new BSs to connect to. The BS search

is based on current carrier frequency (intra-frequency measurements) and different carrier fre-

quencies (inter-frequency measurements) from the UE perspective.

Cell search in the connected state results in HO if suitable condition are met while for idle

and inactive state, it results in cell re-selection. When it becomes necessary to perform HO

in the connected state, the UE is not responsible for the decision. Instead, the UE performs

signal measurement of the serving cell and neighbouring cells and generates the measure-

ment report (MR)—containing cell level measurement results such as reference signal received

power (RSRP), signal-to-interference-plus-noise ratio, reference signal received quality, etc.—

sent to the network. Based on this report, the network decides whether or not the UE is to HO
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to a new cell. The above procedure is not applied to the very small SCs (e.g 5G femtocell) that

are tightly synchronized to each other(3GPP, 2020; Ahmadi, 2019b).

2.3 Handover Management in 5G and Beyond

This section describes the step-by-step procedure for HO in 5G-NR, introduces the various

categories of HO, and also discusses HO requirements alongside its relationship with radio

resources management.

2.3.1 Types of Handover

There are two broad categories of HO, namely; intra-/inter- frequency and intra-/inter- radio

access technology (RAT) HO.

(i) Intra-/Inter-Frequency Handover

Intra-frequency and inter-frequency HO are the HOs types for which the carrier frequency is

the subject of interest. If the UE is to move to the target cell with the same frequency as that

in the serving cell, it is generally known as intra-frequency HO as seen in Fig. 7 Scenario

1. In contrast, inter-frequency HO occurs if the UE is to use a different carrier frequency in

the target cell as shown in Scenario 2 in Fig. 7. Event A3 and A6 initiate intra-frequency

HO. Both Event A3 and A6 are triggered when the neighbouring BSs RF condition is higher

than that of the S-BS. Moreover, Event A6 is used for intra-frequency HO of the secondary

frequency on which the UE camps. Event A4 and A5 are typically used for inter-frequency HO.

Event A4 is triggered when the RF condition of one of the neighbouring BSs is higher than the

threshold compared to that of the other BSs. On the other hand, Event A5 is triggered when

the S-BS RF condition becomes lesser than the lower threshold and the RF condition of one of

the neighbouring BS becomes higher than the upper threshold (where the threshold values are

parameters that are optimized based on the network) (3GPP, 2018d,b).

As mentioned in Section 2.2.1.iii, HO occurs in the connected state and in that state, UE

regularly sends the MR—containing cell level measurement results such as RSRP, signal-to-

interference-plus-noise, reference signal received quality, etc.— of all neighbouring cells to the

serving cell. Once the conditions for Event A3 or A4 are met, the serving cell communicate with

the target cell and starts the HO procedure. Intra-frequency HO is the most commonly selected
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Figure 7: An illustration depicting intra-frequency HO in scenario 1 and inter-frequency HO in

scenario 2.

choice of HO in mobile networks; however, there are certain instances where it is more prefer-

able to choose inter-frequency HO. Such instances include: a) when the serving frequency does

not have sufficient bandwidth to satisfy user service demands thereby resulting in poor QoS

or call failure, b) when the requested service cannot be supported by current serving cell e.g.

Voice over NR, and c) when the serving frequency is overloaded and load balancing becomes

necessary to reduce congestion (Zaidi et al., 2020). The UE essentially carries out the measure-

ments in the measurement gap at different frequencies for inter-frequency cases (3GPP, 2018d)

and (Tayyab et al., 2019). The measurement gap is necessary because without it, the UE would

not be able to measure the target carrier frequency while transmitting/receiving to/from the serv-

ing cell simultaneously. The measurement gap specifies the time interval when no downlink or

uplink signal is transmitted. The need for measurement gap in 5G-NR depends on the capability

of the UE, the active part of the UE bandwidth part and the current operating frequency (3GPP,

2018a).

5G-NR supports intra-frequency, inter-frequency, and inter-RAT measurement gaps. Unlike

intra-frequency HO in LTE, intra-frequency measurements in NR may require a measurement

gap for cases where the intra-frequency measurements are to be done outside the active band-
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Figure 8: UE undergo HO from once cell to another with both cells use the same RAT (intra-

RAT).

width part. That means that the measurement gap only applies to some cases of intra frequency

HO where enhanced UE coverage is not guaranteed to be aligned with the serving gNB’s cen-

tre frequency (3GPP, 2018d; Tayyab et al., 2019). However, the measurement gap is required

for all cases of the inter-frequency HO as specified in 3GPP (3GPP, 2018d). Researches are

concerned with fundamentals question on how the measuring gaps can be reduced, as large

measuring gap results in lower throughput and higher UE energy consumption.

(ii) Intra-/Inter-RAT Handover

In the case of intra-RAT HO, UE hands over from S-BS to the T-BS which both use the same

RAT. Intra-RAT HO is commonly referred to as horizontal HO (Tayyab et al., 2019) as shown

in Fig. 8. Intra-RAT HO can be either intra- or inter-frequency HO. Intra-RAT HO aims to

preserve the connectivity of the UE with the existing network and the primary reason for this

kind of HO can be attributed to load balancing or measurement trigger conditions. Once UE

HO occurs, it prefers to camp on the cell which provides the strongest received signal.

In contrast to intra-RAT HO, inter-RAT (or vertical) HO occurs when the UE hands over to a T-

BS which uses a different RAT from the S-BS. Unlike in intra-RAT HO where the cell with the
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Figure 9: Inter-RAT HO scenarios in distributed and centralized RAN architectures.

highest received signal is selected, in inter-RAT HO, other factors such as user mobility, service

type, as well as the network property and state are considered when selecting the target cell.

It also involves the switching of the logical interface between the two RATs (Ahmadi, 2019a).

The latency incurred during inter-RAT HO is still prohibitive for many application and services,

thus, it poses a severe problem in the NexGen mobile systems (Ahmadi, 2019a). In order to im-

prove the user experience, centralized architecture for inter-RAT HO, which integrates legacy

and NR network protocol was proposed (Ahmadi, 2019a). Figure. 9 demonstrates how the UE

performs inter-RAT HO. From the figure, it can be seen that both distributed, and centralized

CN architecture for multi-RATs are possible. The advantage of using centralized architecture

is that it can lead to a significant reduction in HO signaling and interruption time9. The central-

ized architecure comprises unified CN along with the baseband unit (BBU) and remote radio

head (RRH) separated through a transport mechanism such as optical fiber. In a C-RAN ar-

chitecture, the RRHs are connected to the BBU pool through high-bandwidth transport links

known as fronthaul.

Other HO schemes such as intra/inter cell layer HO, which is the HO between two different cell

layers (macro, micro and pico) and intra-/intra-operator HO, which is the HO that involves the

same operator or different operators (roaming) are not considered in this thesis as they already

fall into any of the two categories of HOs already discussed.

9Michael Wang, 5G, C-RAN, and the Required Technology Breakthrough, Published on 21 Jun.

2018. Available online at https://medium.com/@miccowang/5g-c-ran-and-the-required-technology-breakthrough-

a1b2babf774. Accessed on 25 Oct. 2020.
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2.3.2 Handover Requirements and Key Performance Indicators

Since HO has adverse effect on the overall performance of wireless networks, different features

and requirement are necessary to reduce the impact of HO. Also, various KPIs are used to

measure how the network performs during a HO. The various HO requirements and KPIs are

presented as follows:

(i) Seamless HO: a seamless HO occurs when UE perceives continuation of connection

during HO with little or no interruption during gNB switch. This guarantees the UE’s

active connection.

(ii) HO interruption time: is a period where the UE is not permitted to send user plane

packets to the BS.

(iii) HO failures rate: For any given UE trajectory or unit time, the HOs failure rate is the

number of HO failures—unsuccessful HOs—divided by the number of times the UE

experienced the HOs.

(iv) Ping-pong refers to situations in which the number of HOs over a specified period

reaches a predetermined threshold (TPP),for example, more than one HO in every

10 sec. The ping-pong effect degrades the QoS by introducing defections, includ-

ing throughput reduction, long HO delay, and high dropping probability due to these

unnecessary HOs.

(v) Signaling overhead: HO signaling overhead are the various data generated during the

process of HO to facilitate the operation. However, the HO process interrupts the data

flow and results in the reduction of the UE throughput (Zaidi et al., 2020).

There are other performance metrics that are essential to ensure optimal performance in wireless

networks, particularly for HO optimization. Further details is presented by Tayyab et al. (2019).

2.3.3 Handover and Radio Resource Management

In 5G, the term radio resource includes both traditional (from the legacy system) and extended

resource concept (Li et al., 2017). These legacy resources include energy consumption (cell and

UE transmitting power), frequency (channel bandwidth, frequency of the carrier) and antenna

configurations. In addition, the extended resource definition in 5G covers the hard resource
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(number/type/configuration of antennas, the existence of nomadic/unplanned nodes, or mobile

terminal relays) and soft resources (network node and UE software capabilities). It is also im-

portant to meet UE requirements such as QoS or QoE for all the UEs while properly managing

resources. On the other hand, proper resource management can help networks fulfill HO KPIs,

for example, by reducing the probability of HO failures while maintaining the QoE during and

after HO (Van Quang et al., 2012; Long, 2018). To increase wireless system efficiency, it is

necessary to address and take into account the fundamental issues related to HO and resource

management such as admission control, bandwidth and power control.

2.3.4 Dual Connectivity

Dual connectivity means that the UEs can establish connection to two different cells at the

same time (Shayea et al., 2020). Usually, in dual connectivity, UEs either connect to BSs of

different sizes (macro cell and SC) or two different RATs simultaneously (e.g. 4G and 5G

network), as illustrated in Fig. 10. Since the UE can be connected to two different RAT over

different frequency bands simultaneously, the interruption time is reduced to zero. However,

this would trigger an additional likelihood of HO where new HO cases are introduced rela-

tive to a single connection. These new HO scenarios (see Fig. 10) occur in two situations;

when the UE switches the connection either from SC to macrocell or from SC to SC. With the

introduction of mm-wave, the use of dual connectivity could lead to an increase in HO prob-

ability, thereby causing additional problems with mobility management, including an increase

in signaling overhead, synchronization complexity between RATs for multi-RAT connectivity,

simultaneous utilization of resources in multiple BSs, and reduction in battery lifespan. The

increase in signaling overhead is due to flow control between the RATs (Shayea et al., 2020;

Antonioli et al., 2018), and these issues could be addressed using intelligent approaches.

2.3.5 Handover Management in NR

NR physical layer uniquely differs from the legacy RAT with the following features: dual

connectivity, high-frequency spectrum, forward compatibility, ultra-lean design, use of mm-

wave and relay for devices (device-to-device). NR supports both multi-connectivity and single-

connectivity selection depending on the configuration set. For both configurations, hard HO

is used during path switching (Zaidi et al., 2020). In both licensed and unlicensed spectrum,

NR operates between 600 MHz and 73 GHz. Forward compatibility means designing radio-
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Figure 10: Dual connectivity with HO scenarios in future communication networks.

interface architecture that enables new service requirements and accommodate new technolo-

gies while supporting legacy network UEs. While the ultra-lean design principle aims to de-

crease the always-on transmissions (for example, signals for BS detection, broadcast of system

information) to achieve high data rates with low energy consumption in the network. The main

challenge for NR is the coverage due to the use of high frequency with high penetration loss

that makes the cell footprint to become smaller. In this section, we describe the NR HO with

a brief introduction of critical features and the entities involved in NR mobility. Also, a step

by step HO procedure is provided for intra-AMF/UPF. The types of HO in NR are described as

follows:

1) Intra-gNB HO: This occurs when both the source and target cells10 belong to the same gNB,

as shown in Fig. 11.

2) Inter-gNB HO without AMF Change: Inter-gNB HO generally occurs when serving and

target cells are from different gNBs. There are two different types of HO within inter-gNB HO

without AMF change, depending on whether the HO involves a change of UPF or not. However,

the inter-gNB HO discussed here does not include a change of AMF in both cases, as shown in

10Cell here means the part of sector gNB that has specific beams and covers the specific environment.
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Figure 11: UE performs intra-gNB HO which involves the change of cells in the same gNB.

Fig. 12. Inter-gNB with intra-UPF HO is presented in Fig 12 scenario 1 , where the HO involves

a cell change with the same UPF, while Fig. 12 scenario 2 presents inter-gNB with inter-UPF

HO where the cell switch involves a change of UPF.

3) Inter-gNB HO with AMF Change: In this case, the HO requires a change of AMF from

the source to the target AMF. However, the HO involves no change of SMF, and only the NG

interface is used as depicted in Fig. 13. There are two cases of inter-gNB HO with AMF change;

in the first case (Fig. 13 scenario 1), the same UPF is maintained while the second case (Fig. 13

scenario 2) involves a change of UPF during HO. The basic HO procedure in NR is shown in

Fig. 14 (3GPP, 2020; Tayyab et al., 2019). It consists of three phases, namely: HO preparation

(Steps 0-5), HO execution (Steps 6-8) and HO completion (Steps 9-12), which are described as

follows:

• Step 1: the UE measuring procedure is configured according to access restriction and

roaming information by the serving gNB (S-gNB), and the UE sends an MR to the target

gNB (T-gNB).

• Step 2: the S-gNB determines to HO the UE, based on the MR and radio resource man-

agement information.
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Figure 12: UE performs inter-gNB HO, which involves the change of gNBs with same UPF and

AMF for scenario 1 and change of UPF for scenario 2.

• Step 3: the S-gNB sends a HO request message to the T-gNB (which includes the neces-

sary information to prepare for HO to the T-gNB).

• Step 4: the T-gNB executes the admission control procedure if the T-gNB can grant the

resources.

• Step 5: the T-gNB sends a HO request acknowledgement to the S-gNB. As soon as

the S-gNB receives the HO request acknowledgement message, data forwarding may be

initiated.

• Step 6: S-gNB sends a HO command to the UE.

• Step 7: S-gNB sends the Sequence number status transfer message to the T-gNB.

• Step 8: UE detaches from the S-gNB and synchronizes with the T-gNB.

• Step 9: the T-gNB informs the AMF that the UE has changed the cell, through the Path

switch request message.

• Step 10: 5G-CN switches the downlink data path towards the T-gNB.
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Figure 13: UE performs inter-gNB HO with AMF change, involving the change of gNBs while

UPF is maintained in scenario 1 and change of UPF in scenario 2.

• Step 11: the AMF acknowledges the Path switch request.

• Step 12: the T-gNB informs the S-gNB that the HO was successful and triggers the

release of resources by the S-gNB by sending a UE Context Release message. Finally,

the S-gNB release the radio resources associated with the UE.

It is essential to point out that the above procedure is applied for HO between NR and NR

technologies.

2.3.6 Mobility and Handover Management in B5G

Researchers have anticipated some use cases and applications that make B5G to be different

from 5G. Some of these use cases include integrated unmanned aerial vehicles (UAVs) com-

munications, high mobility of devices (above 500 kmph), holographic projection, etc (Yang

et al., 2020). The high mobility of devices, UAVs, and other applications that use radio waves

at the mm-wave and THz spectrum presents unprecedented wireless communication challenges

in B5G. Among these challenges, mobility and HO management are anticipated to be the two

most challenging issues in B5G networks since B5G networks would be highly dynamic, and

39



Figure 14: HO procedure in 5G-NR involving no change of AMF and UPF (3GPP, 2020).
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multi-layered, which would lead to more frequent HO. High mobility of devices and UAVs re-

sults in uncertainties of their locations and keep in mind that high frequencies such as mm-wave

and THz that would be used in B5G can be easily blocked by humans, buildings, etc.

Heuristic and traditional HO methods would not be able to react quickly. An alternative solution

is to adopt artificial intelligence models in order to achieve mobility prediction and optimal

HO strategy in order to guarantee communication connectivity. Even though the introduction

of multi-connectivity is a very promising solution, the procedure still needs intelligent HO

management strategies to optimize the cell (re-)selection process in order to reduce signaling,

guarantee high data rate, high reliability, and low latency in the B5G (Yang et al., 2020). The

HO procedure for the B5G might be similar to that of 5G, but there are no standards for B5G

system yet.

2.4 Machine Learning for Handover management

The use of mm-wave and higher frequencies in 5G and B5G networks is going to introduce new

challenges and complexity to the HO management that would be difficult to handle by con-

ventional methods. Firstly, these frequency ranges suffer from severe attenuation (e.g., larger

penetration losses), which means their transmission distance will be small. As a result, more

BSs need to be deployed to cover the same area that would have been covered by those utilizing

the microwave frequencies (Xiao et al., 2017). This implies that the size and the complexity of

the network is going to greatly increase and the users will be prone to more frequent HOs which

would greatly affect their QoS, particularly for high mobility users and applications.

Secondly, due to the use of directional beams for transmission in mm-wave networks, the pres-

ence of obstacles on the path of the transmitted beam can partially or completely hinder the

user from gaining access to the network or negatively impact the signal quality. As such, in

mm-wave communication networks, the users are not only faced with the challenge of selecting

the optimal BS but also the optimal beam to connect to per time in order to maximize their

QoS. Hence, optimal beam selection has become another factor to consider in HO management

process which would further add more complexity to the HO process because of the massive

number of beams that the user has to select from during each HO instance (Kim et al., 2016;

Niu et al., 2015).
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Finally, there is also the need to provide some high mobility based essential services for emer-

gency scenarios such as medical services to patients in ambulances en-route hospital through

real-time consultations with the doctors that are situated in a remote hospital. Especially, in

the pandemic situation that we find ourselves in now, this kind of services may be needed to

sustain the lives of the patients in critical conditions before they get to the hospital to receive

proper medical attention (Usman et al., 2019; Abubakar et al., 2020). Intelligent HO optimiza-

tion would help predict the route of the ambulance, determine the optimal BSs to connect and

also pre-allocate the resources that will be needed at the BSs. This will help prevent intermit-

tent service interruptions and guarantee the QoS need to support the communication between

the paramedics in the ambulance and the doctors at the remote location (Tabassum et al., 2019;

Öztürk, 2020).

Therefore, effective HO optimization would enable the selection of the optimal BS and beam for

user connection that will maximize user connection, reduction of excessive or unnecessary HO,

the detection of obstacles and their avoidance. These are some of the issues that make HO op-

timization in mm-wave communications networks more challenging to handle compared to the

previous generation of cellular networks. Moreover, since the HO process involves various net-

work parameters that must be considered and optimized in real time in order to ensure seamless

HO, this would be very challenging for most conventional methods to handle. The challenge

with conventional methods of HO management is that they are computationally demanding to

implement, particularly when the network dimension becomes very large. As such, before they

can decide which T-BS to associate the user with, the user must have moved from that location.

This would result in sub-optimal HO decision and degradation in user QoS. In addition, they

cannot accurately capture certain details of the network such as the presence of different types

and sizes of obstacles, as well as the dynamic traffic demand patterns that are typical of 5G

and B5G networks, which are also important for making an optimal HO decision (Wang et al.,

2019c; Tabassum et al., 2019; Bui et al., 2017).

However, ML techniques can assist in bringing intelligence and helping the network to self-

optimize. ML techniques are able to learn various network characteristics from data generated

from the network, in order to optimize various aspects of the network. They are able to capture

hidden details and patterns in the network from the network data that cannot be represented by

analytical models (Wang et al., 2019c). They are self-adaptive and as such can react to changes
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in network environment and even predict future network or user demands before hand, thereby

enabling the network to adequately prepare to handle such demands when they occur (Tabassum

et al., 2019). They can be designed in a computationally efficient manner such that the training

phase of the algorithm, which is often computationally demanding, can be carried out offline,

and then the trained model deployed online to carry out real-time optimization after which the

model can be updated periodically, as it experiences new data (Hussain et al., 2020).

In this section, we first present an overview of the major categories and types of ML algorithms

used for HO optimization. Then, we delve into reviewing the state-of-the-art on ML-aided

HO management. A top-level taxonomy is followed while reviewing the state-of-the-art, such

that the ML-aided HO management methodologies are classified based on the source of the

data they utilize. As such, two broad categories are considered: visual data based and wire-

less data based HO management techniques. The major objective of this novel taxonomy is to

recognize the visual data aided HO management schemes—which has been long overlooked

in the literature—by giving it a special place along with the traditional wireless data driven

HO schemes. The visual aided wireless communications is an emerging research area in wire-

less communications where visual information (pictures/videos) captured from cameras, light

detection and ranging (LIDAR), etc., are combined with wireless sensory data for wireless net-

work optimization such as channel prediction, HO optimization, etc (Nishio et al., 2020; Tian

et al., 2020). This is necessary because mm-wave communication networks possess unique

challenges that would be difficult to handle using only wireless sensory data but with the assis-

tance of visual data, some of these challenges can be handled properly. On the other hand, for

the wireless data based HO management, the most recent works are extensively reviewed under

two use cases: beam selection and BS selection.

2.4.1 An Overview of Machine Learning Algorithms

It has become very important to include AI/ML in the BS’s and beam selection process during

HO, in order to achieve the primary objective of providing a seamless HO and to ensure that the

UE achieves maximum throughput during the entire duration of its connection to the network.

The HO optimization problem is a decision-making problem, and intelligence is imperative to

ensure that the optimal decision is taken at each HO instance in a more efficient and effective

manner.
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We begin by defining ML and discussing the various categories. According to Dey (2016),

ML is a set of computation procedures that evolved from formidable techniques in the field of

AI that allow the computer to self-learn, discover patterns, and generate models from historical

data without being explicitly programmed. The objective of ML is to identify features of a given

data set that are likely to influence an outcome of interest given the input, and then use those

learned features to predict the result in a new situation not previously encountered (Klaine et al.,

2017). A substantial collection of ML techniques (model and algorithms) has been created to

solve various challenges in different domains. These algorithms can be classified according to

how learning is performed. They have been broadly categorized into three major classes Sultan

et al. (2018). Table 5 presents an overview of ML approaches based on their learning styles.

Definition 6 (Labelled data set)

A labelled data set is a data set with clearly defined features (input) and target (output). The

features are usually related to the target and enables the ML algorithm to identify the target or

map the input to the output during the training phase. Labelled data sets are used for training

supervised learning algorithms.

Definition 7 (Unlabelled data set)

An unlabelled data set is a data set that does not have labels. That is, there is no clear description

of the features or targets in the data set. This kind of data set is used for training unsupervised

learning algorithms.

Definition 8 (Model training)

Model training is the process of exposing an ML algorithm to the training data set (i.e., labelled

or unlabelled data set) in order to enable it to learn the mapping between the features and the

target. Thereafter, a model is obtained that can correctly predict the right target, even when it is

feed with a new data set that it had not previously seen.

(i) Supervised Learning

As the name suggests, it is the learning technique which requires a labelled training set consist-

ing of inputs features and output. The learning model tries to search for a function that maps

the input to the desired output by minimizing both the bias and variance error of the predicted

results. After that, new data set is then applied to the trained model in order to predict the

output. Supervised learning is basically classified into regression—where the predicted output
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Table 5: Types of Machine Learning Algorithm.

Learning category Inference task Learning algorithms

Supervised learning Classification/Regresssion

SVM,

ANN,

extreme gradient boosting (XGBOOST),

kNN,

Decision tree,

Random forest

Unsupervised learning Clustering/anomaly detection

k-means

Principal Component analysis

Expectation maximization

Independent component analysis

Reinforcement learning Decision making

Q-learning

SARSA

Policy gradient

Proximal policy optimization

Actor-critic

Deep learning
Advanced feature extraction/

data representation

Convolution neural networks

Recurrent neural networks

Deep belief networks

Deep Q-learning

Deep deterministic policy gradient

is continuous—, and classification— where the predicted output is discrete or categorical. As

regards the classification, two types exist; namely, binary classification (output consists of only

two classes) and multi-classification (output comprises more than two classes). Examples of

supervised learning algorithms include: artificial neural networks (ANN), support vector ma-

chine (SVM), extreme gradient boosting (XGBOOST), k-nearest neighbour (kNN), decision

tree, random forest, etc, (Fourati et al., 2020).
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(ii) Unsupervised Learning

Different from supervised learning, in unsupervised learning, the training data set is unlabelled.

The learning model in this case, tries to find hidden patterns, structures, and correlations within

the training data set. They are mainly employed for anomaly detection, pattern recognition,

and the reduction of the dimension of a data set. Common examples of unsupervised learning

algorithms are k-means clustering, principal component analysis, expectation-maximization,

independent component analysis, etc (Wang et al., 2019a).

(iii) Reinforcement Learning

Unlike supervised and unsupervised learning that deal with continuous or discrete output pre-

diction and identification of hidden pattern or structures in data, RL is concerned with making

decisions in order to obtain an optimal policy in a given environment. It is a trial and error kind

of learning whereby an agent interacts with the environments, takes action and gets feedback in

terms of reward or penalty, depending on whether the action taken is good or bad for a given

objective. The goal of the agent is to maximize the total expected reward (Arulkumaran et al.,

2017). The outcome of RL is to learn the optimal policy that would enable the agent to make an

optimal decision at any given state of the environment. RL algorithms can be value-based (e.g.

Q-learning, SARSA), policy-based (e.g. policy gradient, proximal policy optimization (PPO)

and asynchronous actor-critic (A2C))(Luong et al., 2019).

There is also another branch of ML known as deep learning. These set of algorithms make use

of very sophisticated neural network architectures comprising multiple layers that have excel-

lent generalization ability and are capable of more advanced computation, feature extraction,

and data representation than classical ML algorithms. Examples of deep learning algorithms

are convolution neural networks (CNN), recurrent neural networks (RNN), deep belief net-

works (DBN), etc. (Chen et al., 2019; Zappone et al., 2019). Deep learning, when combined

with RL (deep RL (DRL)) generates a formidable solution to approximate the value function

in order to solve the curse of dimensionality problem that is prevalent in conventional RL ap-

proaches. Examples of DRL algorithms are deep Q-learning, double deep Q-learning, deep

deterministic policy gradient (DDPG), etc, (Arulkumaran et al., 2017).

46



2.4.2 Machine Learning based Handover Optimization

HO optimization is necessary when selecting the BS/beam that a user should connect to, in order

to minimize frequent HO due to the small footprint of mm-wave BSs in 5G and THz wave BSs

that are envisioned to be used in B5G. This is because frequent HOs increase the HO cost,

thereby reducing the network throughput. Throughout this work, we will refer to HO as defined

by Arshad et al. (2016b) which establish the term HO cost. With efficient HO optimization, the

network is able to select the best T-BS that will provide a higher throughput for UE.

Before ML came into play, classical methods for BS selection were based on specific parameter

measurement. These methods include selecting the T-BS based on distance, or the BS that

provides a higher KPI such as RSRP, received signal strength indicator, and signal-to-noise

ratio. In the measurement-based approaches, the channel state information (CSI) from the MR

of all neighbouring BSs is measured, and the one with the best CSI is selected as the potential

T-BS. These approaches are practical for sub-6 GHz frequencies; however, they are inefficient

solutions in mm-wave and THz application band due to severe path loss and susceptibility to

LOS blockage (Oguma et al., 2016).

ML techniques can play a significant role in HO optimization and BS station selection by re-

ducing delays, computational overhead, and frequent HOs. They help predict the T-BS and also

ensure that adequate resources are available at the T-BS before HO occurs in order to ensure

a seamless HO. In this section, we consider ML-based HO management in 5G networks from

the perspective of visual, and wireless data aided HO optimization. In Table 6, we present a

summary of the state-of-the-art ML-based HO optimization in 5G mm-wave communication

systems.

(i) Visual data aided handover optimization

Successive generations of cellular networks have mainly depended on wireless sensory infor-

mation such as CSI, received power, etc., for network design and optimization. However, the

use of mm-wave and THz frequencies in 5G and B5G networks would mean that BSs will have

many antennas, communication will be through a large number of LOS beams, which would

be subject to blockages of various types and would limit signal reception at the user end. In

addition, much signaling overhead would be involved in the selection of the optimal beam for
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user connection in mm-wave networks if only wireless sensory data are exploited for optimal

beam selection considering the massive number of beams that would be involved (Nishio et al.,

2020; Tian et al., 2020).

The vision assisted HO optimization has become necessary because of the complexity of the

mm-wave networks, and it might not be possible to capture all the conditions of the environ-

ments like obstacles, buildings, etc., using wireless sensory data. As a result, detecting or pre-

dicting the presence of obstacles that would block the received beam and reduce the throughput

at the user end is very difficult to achieve using only wireless sensory data. However, with

vision assisted HO optimization, visual data (image/video) is combined with wireless sensory

data to enable proactive obstacle prediction and optimized beam/BS selection that would help

enhance user QoS (Alrabeiah et al., 2020b). In addition, with the advancement in computer

vision, the training overhead that is normally associated with training ML models for optimal

beam selection can be greatly reduced by utilizing the images of networks in developing deep

learning algorithms for efficient HO operation (Alrabeiah et al., 2020a, 2019). In the following

paragraphs, we review the research works that have been proposed on the use of visual data for

HO optimization in mm-wave networks.

One application of visual data for HO optimization is the prediction of obstacles that might

affect the magnitude of the received power or data rate at the user end. In this regard, the

authors Koda et al. (2020b), proposed a cooperative sensing scheme for proactive HO in mm-

wave networks using a combination of images captured from multiple cameras and received

power. The idea is to map camera images with HO decision using DRL such that a proactive

HO decision can be initiated before the received signal is blocked by an obstacle. The advantage

of using multiple cameras is to cover areas that are inaccessible by other cameras so as to get

a complete view of the network environment. The camera images also enable the prediction of

obstacles that will affect the mm-wave links. The authors Koda et al. (2020a) developed a DRL

framework using camera images for optimizing the HO timing by predicting the future data rate

of mm-wave links and ensuring that proactive HO is performed before data rate degradation

occurs due to presence of obstacles.

Another application of visual data for HO optimization is the prediction or selection of the

optimal beam that the user should connect based on user mobility and the presence of obstacles

in the mm-wave network environment. Following this research direction, the authors in Klautau
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et al. (2019) demonstrated how data obtained from LIDAR sensors could be used to reduce

the overhead associated with mm-wave beam selection and LOS detection, and proposed a

decentralized architecture using deep CNN. Their work was extended by Dias et al. (2019)

as they developing a deep learning-based centralized architecture for beam selection and the

detection of the LOS in vehicular networks by combining location information and LIDAR

data. In (Xu et al., 2020b), the authors proposed a novel beams selection scheme that is capable

of predicting the optimal beam to connect to at any position in the cell using image-based 3D

reconstruction and CNN. They argue that the proposed method takes images from ordinary

cameras and is cheaper to implement compared to LIDAR-based approaches in (Klautau et al.,

2019; Dias et al., 2019).

The work by Alrabeiah et al. (2020b) considered the problem of beam selection and blockage

prediction using camera images, channel state, and deep learning for a single user commu-

nication in a mm-wave network. The beam selection problem was formulated as an image

classification problem such that the UEs are mapped to a class of beams having a unique beam

index, depending on their location in the image. However, to detect users that are blocked, the

images are matched with channel information due to the difficulty of detecting obstacles in still

images. The authors Alrabeiah et al. (2020a) first developed a realistic image data set for ML-

based mm-wave network optimization that considers many BSs, users, different obstacles, and

rich environmental dynamics. Then leveraging the image data set and information regarding

previously selected beams, a ML based vision-aided beam tracking framework was proposed to

predict the future beams of mobile users in a mm-wave communication system.

(ii) Wireless data aided handover optimization

Non-vision assisted HO optimization, on the other hand, does not involve the uses visual sen-

sory information such as images and videos for HO optimization. It uses the conventional

wireless sensory information such as received signal level and channel state, and user location

information to optimize the switching of user connection from one BS or beam to another. This

is the general technique that is commonly used in wireless communications systems. In this ses-

sion, we review the state-of-the-art in HO optimization in mm-wave communications networks

from the perspective of the BS and beam selection by exploiting the CSI and user mobility

information such as user location, trajectory, etc.
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a) Beam selection: Due to the high path loss and sensitivity to blockage experienced by mm-

waves, a large number of BSs comprising multiple directional antenna arrays have to be de-

ployed. The use of multiple antenna arrays enables the formation of narrow signal beams with

a high gain when the phase or amplitude of each antenna is adjusted. This approach, commonly

known as beamforming (Roh et al., 2014), enables the formation of directional links between

the BSs and UEs. However, because each BS comprises multiple beams, the challenge becomes

selecting the optimal beam that will serve the UE in order to satisfy its QoS. In the following

paragraphs, we review the most recent works on ML-based beam selection in mm-wave and

THz communication systems.

The beam selection problem is sometimes modeled as a multi-classification problem, after

which a supervised or deep learning algorithm is used to identify the beam class. In this regards,

the authors Long et al. (2018) proposed a data-driven approach for analog beam selection in hy-

brid MIMO systems. The beam selection problem was first formulated as a multi-classification

problem and then solved using SVM in order to obtain the optimal analog beam for each user.

The performance evaluation shows that the proposed method has similar data rate to that of

traditional methods but with lesser complexity. In (Antón-Haro & Mestre, 2019), the direction

of arrival information was leveraged to developed a ML scheme for beams selection in mm-

wave communications. The beam selection problem was expressed as a multi-class problem,

and three supervised learning algorithms namely kNN, SVM, and ANN were used to solve the

problem. The authors Ma et al. (2019), proposed a beam selection policy for THz systems based

on ML approach with low complexity. The beam selection problem was first formulated as a

multi-classification problem after which a random forest algorithm was used to determine the

optimal beam class.

In (Yang et al., 2019) and (Yang et al., 2020), a ML framework for analog beam selection was

proposed using SVM, which considers the transmit power of the SCs and channel information

as inputs while the model training was performed using sequential minimal optimization in

order to achieve high sum-rate at a lower computational complexity. A DNN model for beam

selection where channel knowledge is not required was developed by Lin et al. (2019). The

beam selection problem was modeled as an image reconstruction problem, after which the DNN

was used for interpolation. The proposed model was first trained offline—to reduce the training

overhead—before online implementation of the trained model was performed. A beam selection
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framework for mm-wave vehicular networks using different ML-based classification models

was proposed by Wang et al. (2018). The training data set comprised the vehicle location,

type of receiver vehicle and its surrounding vehicles as well previously selected beams. It

was observed that the random forest algorithm outperformed other classification algorithms

in terms of accuracy and efficiency. A neural network framework for beam selection in THz

communication networks was proposed by Li et al. (2019). The proposed model was trained

using data samples obtained from the THz channel based on the multi-classification approach.

The proposed model was able to determine the optimal beam for each user with low complexity

compared to the conventional exhaustive search method.

Another category of mm-wave beam selection technique exploits the CSI of sub-6 GHz to

minimize the search overhead involved in selecting the optimal beam as well as for initial beam

establishment. In this regards, the authors Jagyasi & Coupechoux (2020) proposed a DNN

based framework for selecting the optimal mm-wave SCs and beam in a HetNet involving mm-

wave SCs and sub-6 GHz macrocells. They utilized the CSI from sub-6 GHz macrocells for

both SCs and beam selection in order to minimize the latency resulting from using conventional

exhaustive search approach for beam selection. The authors Sim et al. (2020) introduced a deep

learning approach to mm-wave beam selection in 5G and B5G using sub-6 GHz CSI. They argue

that using the sub-6 GHz CSI for the mm-wave beam selection would help reduce the search

space required for establishing the initial beam. In (Alrabeiah & Alkhateeb, 2020), a deep

learning framework was proposed for predicting mm-wave beam and blockage while using sub-

6 GHz channel. They proved that under certain conditions, a mapping function exists, that can

be used to predict the optimal beam and blockages in any environment. Then they went further

to to show that this mapping function can be learnt using a large enough neural network after

which a DNN model was designed to perform both predictions. The work by Bian et al. (2020),

suggested a deep learning approach for the prediction of the optimal mm-wave downlink beam.

The developed DNN model takes as input a combination of features extracted from both the

sub-6 GHz channel and mm-wave band in order to enhance prediction accuracy and achievable

data rate.

RL techniques have also been applied to mm-wave beam selection in literature. In this regard,

different (deep) RL algorithms such as multi-armed bandit (MAB),Q-learning, deepQ-learning

approaches have been proposed. A novel ML-based beam tracking and alignment framework
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for a sparse and time-varying mm-wave channel was proposed by Booth et al. (2019). The chan-

nel tracking was performed using Bayesian learning and Kalman filtering after which the opti-

mal beam selection strategy was obtained using MAB. A fast ML algorithm for beam selection

in 5G mm-wave vehicular networks using contextual MAB (CMAB) was proposed by Asadi

et al. (2018) and Sim et al. (2018). The proposed model considers the traffic pattern and dif-

ferent types of blockages in order to select the optimal beam in real-time without prior training

of the model. In (Aykin et al., 2020), a beam tracking approach based on MAB is proposed to

determine the optimal beams and data rates of the beams in a mm-wave communication sys-

tem. The proposed model uses the beam quality information, and the feedback obtained from

users during initial access to determine the optimal beam and transmission rate during the next

transmission.

The authors Li et al. (2020) proposed an online learning algorithm for optimal beam selection

in mm-wave vehicular networks using CMAB. The developed algorithm is able to predict the

beam direction of the target mm-wave BS from the serving mm-wave BS depending on the

current traffic pattern while considering the user QoS requirements. In (Xu et al., 2020a) multi-

agent RL (MARL) approach for the joint optimization of user scheduling and beam selection

in mm-wave networks was developed. The proposed method ensures that the delays associated

with beam selection are minimized while ensuring that the users QoS are satisfied. The au-

thors Chiang et al. (2020) proposed a framework for mm-wave beam prediction in multi-UAV

communication systems using Q-learning. The proposed model exploits the received coupling

coefficients (a pair of analog beamforming vector from the transmitter and receiver side of the

channel) to determine the optimal beam that will maximize the received signal-to-interference-

plus-noise-ratio.

A learning-based approach for optimizing beam search in mm-wave BSs in an indoor network

environment while considering user mobility has been proposed by Chen et al. (2018b). The

proposed approach uses multi-state Q-learning while exploiting user trajectory-based data from

the radio. They argue that the proposed method is superior to traditional methods because it

jointly considers both BS and beam selection, can be adapted to different indoor environments

and user mobility and minimizes the delays due to beam search. A beam selection framework

for high mobility vehicular networks which aims at enhancing data rate, minimizing the num-

ber of HOs and disconnection time was proposed by Van Huynh et al. (2020). The proposed
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framework utilizes parallel Q-learning to determine the optimal beam for each vehicle. The

algorithm leverages the possibility of simultaneously collecting information from multiple ve-

hicles on the road to hasten its convergence to the optimal solution. In (Wang et al., 2019b), an

RL framework for beam selection in NLOS scenarios was introduced. The proposed framework

employsQ-learning to determine the optimal NLOS beam for each user based on the user’s QoS

requirement.

The user location can also be exploited in order to identify the optimal beam selection for user

association. The authors Rezaie et al. (2020), proposed a beam selection strategy based on

ML that considers the user position and receiver orientation to select the optimal beam pair,

thereby reducing the overhead associated with beam alignment. Moreover, since their approach

to beam selection is based on multi-classification, the neural network model is enriched with a

large amount of CSI to enable it not only to select the strongest beam based on the magnitude

of received signal but also an alternative beam. This makes the proposed approach resilient

against blockages. A hierarchical learning-based beam selection scheme was proposed by Wu

& Ai (2019) for multi-users in mm-wave vehicular networks. They developed a graph neu-

ral network (GNN) model for beam pair selection while considering CSI and user positions.

A deep learning model based on CNN architecture was proposed by Tauqir & Habib (2019)

for selecting the beam that gives the best communication performance to users in a massive

MIMO system while considering user position. In (Heng & Andrews, 2019), the authors de-

veloped a learning-based beam alignment scheme for mm-wave systems that can determine the

optimal BS while only exploiting the user position. The proposed scheme can predict the op-

timal BS and beam even with incomplete user location information with reduced search time.

A position-based online learning framework for optimal beam pair selection and refinement

was proposed by Va et al. (2019) while considering only user position. The beam selection

and refinement problem was first modeled as a continuum-armed bandit problem after which a

risk-aware greedy upper confidence bound (UCB) algorithm was developed for beam selection

while a hierarchical optimistic optimization was used for beam refinement. The observed that

where more information regarding the environment can be obtained from BS or user devices,

the training overhead can be further reduced.

b) Base station selection: A proactive HO framework that enable users to switch connection to

another BS before link disconnection was proposed by Alkhateeb et al. (2018). The proposed
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method uses deep learning to predict obstacles and trigger HO before link disconnection occurs,

thereby ensuring the reliability of the link and preventing data transmission delays due to link

disconnection. In (Sun et al., 2019a) and (Sun et al., 2019a), a HO mechanism for selecting the

optimal BS in mm-wave network based on MAB approach was developed in order to ensure

the user has a longer connection time with the BS after HO. The considered the user’s post-HO

trajectory, and the blockages along the LOS to predict future HO. A RL framework for mini-

mizing frequent HO while satisfying users QoS was proposed by Sun et al. (2018) using MAB.

The proposed framework takes into account the channel conditions and user QoS requirements

before triggering HO. Furthermore, two BS selection algorithms were also developed based on

user density for both single-user and multiply user HO scenarios, respectively.

An intelligent HO decision framework for BS selection was proposed by Mollel et al. (020b).

The proposed framework uses a DDRL algorithm to learn the optimal BS for user association

in order to minimize the number of HOs and optimize the average throughput along the user

trajectory. A distributed learning framework for HO optimization in dense mm-wave networks

was proposed by Sana et al. (2020a) and Sana et al. (2020b) in order to minimize frequent HO

and optimize user throughput. The framework employs MARL where each user was modeled as

an agent and takes an independent HO decision based on its local observation, thereby reducing

signaling overhead. The authors Yajnanarayana et al. (2020) introduced a HO optimization

algorithm based on RL for 5G systems. They modeled the HO problem as a CMAB, then

developed a Q-learning solution. In (Klus et al., 2020), the authors proposed a deep learning

model for user localization and proactive HO management, while considering user behaviour in

the network. The proposed model uses the received signal measurements to reduce the number

of unnecessary HOs and predict the user location while ensuring that the throughput of the

network is maintained.

A joint optimization framework for minimizing HO frequency and maximizing user throughput

was proposed by Guo et al. (2020). The HO and power allocation problem was modeled as a

cooperative multi-agent task, after which a MARL framework using proximal policy optimiza-

tion (PPO) was developed. The model training was performed in a centralized manner after

which decentralized policies were obtained for each user. The authors Khosravi et al. (2020a),

proposed a learning framework that jointly optimizes HO and beamforming for mm-wave net-

works. RL algorithm was employed to determine the optimal backup BSs along user trajectory
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that will help reduce the overhead signaling during channel estimation for user association and

minimize the number of HOs. This would ensure an enhanced data rate along the user trajec-

tory. A learning-based load balancing HO mechanism was proposed by Khosravi et al. (2020b).

The user association problem was modeled as a non-convex optimization problem, after which

a deep deterministic policy gradient (DDPG) RL algorithm was applied to solve the optimiza-

tion problem. The algorithm’s goal is to associate all the users in different trajectories in the

network environment to the optimal BSs in such a way that maximizes their sum rate as well as

reduces the number of HO occurrences.
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Table 6: Summary of the State-of-the-art ML-based HO Optimization in 5G mm-wave Com-

munication Systems.

Paper Visual data
Wireless data

ML algorithms
Beam Selection BS Selection

(Koda et al., 2020b), (Koda et al., 2020a) 3 DRL

(Klautau et al., 2019) 3 CNN

(Dias et al., 2019) 3 DNN

(Xu et al., 2020b) 3 CNN

(Alrabeiah et al., 2020b) 3 DNN

(Long et al., 2018) 3 SVM

(Antón-Haro & Mestre, 2019) 3 kNN,SVM, ANN

(Ma et al., 2019) 3 Random Forest

(Yang et al., 2020) 3 SVM

(Wang et al., 2018) 3 Random Forest

(Li et al., 2019) 3 ANN

(Jagyasi & Coupechoux, 2020) 3 DNN

(Booth et al., 2019) 3 MAB

(Li et al., 2020) 3 CMAB

(Xu et al., 2020a) 3 MARL

(Chiang et al., 2020) 3 Q-learning

(Chen et al., 2018b) 3 Q-learning

(Van Huynh et al., 2020) 3 Q-learning

(Alkhateeb et al., 2018) 3 DNN

(Sun et al., 2019a, 2020) 3 CMAB

(Sun et al., 2018) 3 MAB

(Mollel et al., 020a) 3 DDRL

56



CHAPTER THREE

MATERIAL AND METHODS

3.1 System Models Implementation

This study relies on simulations to generate the data for both the model’s training and evaluation.

At some point, we used third-party software such as Wireless Insite, and for the rest of the

work, we develop the environment either from Matlab or Python. The environment is based on

a discrete-time event simulator, and the parameters and models used in this thesis are presented

as follows.

Figure 15: The system model of mm-wave UDN.

3.1.1 5G Heterogeneous Network

We consider Fig. 15 as use-case for system model, which demonstrates a simplified 5G HetNet

wireless network system with mm-Wave SCs placed close to one another. A cellular network
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environment comprises a large number of mm-wave SCs and UEs, as shown in Fig. 15. The

network considers the presence of LOS signals, NLOS signals, blockages, and building reflec-

tors. The aim is to depict a natural urban environment with entirely distinct obstacles. Each

mm-wave SC is equipped with X antennas; all SCs are assumed to be connected to a BS central

controller (BSc). Multiple overlapping mm-wave SCs are randomly distributed in the network

to provide high throughput via LOS links. Additionally, macro BSs (MBSs) exist in the net-

work. They serve two purposes; firstly, to ensure reliable communication whenever there is no

LOS link between the mm-wave SCs and the UE, and secondly, to facilitate the transmission of

control signals to the BSc that acts as decision node in the network. Each mobile UE is assumed

to be equipped with a single antenna.

3.1.2 Channel Model

The ray-tracing model is used to model the wireless channel in this study. The ray-tracing model

is based on the superposition principle whereby all the reflected and LOS waves generated

by a transmitter are aggregated between the transmitter and the receiver. More specifically,

a geometric wide band mm-wave channel model (Rappaport et al., 2013) with N clusters is

adopted, where each cluster n ∈ N is assumed to produce a single ray with a finite time delay

τn ∈ R and angle of arrival (AoA) for elevation/azimuth φn, θn . We assume that each user has a

single antenna and that the path loss between the UE and mth BS is λm. The time delay channel

between the mth BS and the UE, sd,m, can be expressed as:

sd,m =

√
X

λm

N∑
n=1

αnp (dTp − τn) am (θn, φn) , (1)

where X symbolizes the number of antennas in the BS, am (θn, φn) represents the array response

vector of the mth BS at AoA (θn, φn), and p (dTr − τn) denotes the pulse shaping function of

the spacing signalling, Tp obtained at τ seconds (Schniter & Sayeed, 2014). From the time

delay channel in (1), the subcarrier, k and the frequency-domain channel model, sk,n can be

expressed as:

sk,m =
D−1∑
d=0

sd,me
−j 2πk

K
d. (2)

It is assumed that the block-fading channel model, {sk,m}Kk=1 is constant within the coherence

time of the channel, Tc, (Rappaport et al., 2013) which is dependent on the velocity of the user

as well as the multi-path components of the channel.
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3.1.3 Beamforming Model

We assume that the BSs are equipped with highly directional antennas with sectorized gain

patterns. Since the BS uses high-frequency mm-waves, it is easy to exploit beam-forming

techniques. The antenna gain from the main lobe is Ω while that of the side-lobes is ω. The

directional gain of the antenna is a function of θ as well as the steering angle and is given as:

G(θ) =

 Ω if | θ |≤ θb

ω otherwise,
(3)

with θb denoting the beam-width of the antenna and θ the angle between the UE and the mm-

wave BS. Highly sophisticated beam-tracking is deployed in WI™ to ensure that the definitive

association between the UE and mm-wave BS is successful. Therefore, the UE is always in the

main lobe, with main lobe gain connected in a given antenna, and UE experiences no interfer-

ence or any signals from other antennas.

3.1.4 SINR Model

One of the key metrics for measuring the performance of the wireless communication channels

is the SINR, which can be expressed as:

SINR =
S

I + σu
, (4)

where S represents the received signal power, σu denotes the noise component, and I denotes

the interference power from all surrounding BSs except the S-BS. Equation 4 can be further

expressed as

SINR =
PsΩsLs

σu +
∑M

i=1 P(i=t ∩ t6=s)ωiLi
, (5)

where Pt and Ps represent the power transmitted by surrounding and S-BSs respectively, ωi=ωt

and Ωs depict the antenna gain of surrounding and S-BSs, and Li=Lt and Ls is the path loss

gain of the surrounding and S-BSs respectively. Because mm-wave antennas form directional

beams (Eqn. 3), the contribution of inter-cell interference can be assumed to be negligible.

Hence, SNR is considered in this work for the mm-wave channel while SINR is used for the

sub-6 GHz channel.

3.1.5 Radio Link Failure Model

The term ”Radio Link Failure” (RLF) refers to a state in which a wireless connection between

a UE and a BS is considered lost. A connection is considered to be in RLF if the received
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SNR (γr(t)) is below a threshold γth for a certain period, denoted TRLF. If by any chance the

signal γr(t) exceeds the threshold γth during that time period— TRLF, the counter is reset and the

connection is considered good. If the signal remains below γth after TRLF, then communication

is considered to be in RLF and the connection is dropped. As a result, the user has to initiate a

new connection procedure— HO in this case— which can be time-consuming. Time consump-

tion during HO or reconnection time (td) is defined as the minimum time required by the UE to

establish a connection following a connection drop. Mathematically, RLF can be written as:

γr(t) < γth;∀t ∈ [t0 − TRLF, t0] , (6)

where γth denotes the minimum value, and TRLF denotes the time in which the link is broken.

Table 7: Radio link failure parameters.

Parameters Value

γth 15-25 [dB]

TRLF 50 ms

TTT {80, 100, 128, 160, 256, 320, 480, 512, 640, 1024} ms

Reconnection time td 0.7, 1, 2, 3 seconds

An additional vital parameter to note is the time-to-trigger (TTT) because it directly affects the

RLF (3GPP, 2018b). TTT is defined as the length of time for which the RSRP, or γs of the

S-BS is lower than that of the T-BS. The value set for the TTT can either increase or decrease

the RLF. This is because a higher value of TTT might lead to a connection drop between the

UE and BS before HO is triggered and hence RLF. In contrast, a lower value of TTT could lead

to multiple unnecessary HOs. Both of these affect the QoS and QoE of the UE. Generally, this

timer helps to avoid irregular measurements and HOs. Also, HO margin or hysteresis factor,

which is defined as the minimum RSRP difference between the serving and T-BSs needed to

start TTT count, is ignored in this work. The values used in this model are summarized in

Table. 7.

3.1.6 User and Traffic Models

A user is represented by its equipment, called a user equipment, UE. User mobility is defined

to follow a random waypoint model and bounce in a square area to ensure that all UEs stay
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within the simulated area. When the user reaches the edge of the area, it merely ”bounces” back

towards the simulated region at a random angle.

While the total number of UEs remains constant in the simulation, two distinct classes of UEs

are considered: random UEs and interested UEs. In the assisted UE-network HO strategy,

interested UEs are considered as agents or systems used for learning purposes, while random

UEs are used to generate random traffic within the simulated environment. UEs are considered

to connect to the BSs directly and are in the active state unless stated otherwise. As explained

before, a UE can also be in RLF if the received signal is too weak.

Varying size packets—headers included— are considered: 2 Mbps, 10 Mbps, and 100 Mbps.

The packet size distribution follows Poisson distribution, which means there is a high chance

of generating small packets than large ones. Two consecutive packets have completely distinct

distributions. The inter-arrival time is non-periodic and also modelled following an exponen-

tial distribution. Three seconds is set as the mean time between two packets. It is important

to note that the inter-arrival time distribution is unrelated to the packet size between two suc-

cessive packets. The File Transfer Protocol (FTP) is chosen to simulate data transfer, with the

minor modification of changing the packet size to realistically mimic various UE demands. The

complete summary of the traffic model is provided in Table. 8.

Table 8: Traffic model parameters.

Parameters Value

Traffic Type FTP

Size Distribution Exponential

File Size 2, 20, 100 Mbps

Size Probability 1/2, 3/10, 2/10

Mean Inter-arrival Time Exponential

Inter-arrival Time Distribution 3 secs

3.2 Handover as Combinatorial Optimization Problems

Combinatorial optimization problems require the finding of an ”optimal action” from a set of

finite actions. The optimal action is quantified according to the evaluation function that maps
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that action to either a reward or a penalty, and the objective is to select the action with maximum

reward or minimum penalty. Most practically interesting combinatorial optimization problems

(COPs from now on) are also very hard, in the sense that the number of objects in the set

increases extremely fast due to even small increases in the problem size, making exhaustive

search impractical. HO can be modelled as a combinatorial problem. This is because a UE

that moves in the given trajectory normally experiences link failure, and the choice of the best

S-BS among M potential T-BS is crucial to achieving a high system throughput. The reward

here is the throughput that the UE can experience throughout the trajectory while minimizing

unnecessary HOs.

This section presents the general conditions that trigger HO and essential criteria for choosing

a S-BS. We also present the reward and cost functions that can be used as trade-offs for making

decisions. The aim is to avoid a short-sighted decision by selecting a BS that temporarily

offers a higher SNR but in which the UE-BS connection is lost a few seconds after HO. The

findings from Mollel et al. (2019) show that HO event criteria alone from 3GPP (2018b) lead to

uncessesary HOs and results in a lower system throughput.

3.2.1 Conditions for Initiating Handover based on 3GPP

According to the 3GPP (2018b), six events are defined for initiating conventional HOs, where

events A2 and A3 are specified for intra-radio access technology (intra-RAT) HO. In contrast,

inter-RAT HO is described in event B2. These are the criteria for initiating and terminating

HOs:

Event A2 is entered when the S-BS becomes worse than the stipulated threshold in terms of

RSRP or SNR value; the opposite is true for the leaving state i.e., event A2 is exited for RSRP

or SNR values higher than the specified threshold. The authors Mollel et al. (2019) used the

SINR value as threshold value and analyzed its effect on HO in mm-wave networks. Their

study concluded that different use cases (service-aware) could have different HO rates in the

same trajectory. In this study, we adopt SNR as the triggering criteria and define event A2 as: γs < γth initiate HO

γs ≥ γth otherwise,
(7)

where γs is the SNR from the S-BS and γth is minimum SNR required by the UE to maintain

a connection based on the service type. We remove the hysteresis margin since the parameter
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itself needs optimization. However, removing the hysteresis margin might lead to an increase

in the number of ping pong and other unnecessary HOs, but the proposed model ensures that

HOs are reduced without a hysteresis margin. Details regarding the working principles of the

proposed model will be explained in a later section. Therefore, if the condition for HO is met,

the HO process commences and the UE needs to select a potential T-BS.

The condition for entering event A3 is defined when the neighbour BS offers an SNR value

greater than the HO margin compared to the S-BS. Regardless of how much power the UE

receives from the S-BS, the event looks for the offset value between the serving and neighbour

BSs, and if the condition is met, the HO process is initiated. In the proposed solution, we

neglect this event as it can sometimes lead to unnecessary HOs. Finally, the condition for event

B2 is the same as that of event A2 except that it involves inter-RAT HOs while A2 deals with

intra-RAT HOs.

3.2.2 Handover Cost

It is essential to have an objective function which is necessary for the optimization problem.

Here, we introduce the objective constraint, which is called the HO cost. It should be recalled

that this thesis is based on 5G networks, and unlike LTE networks which use soft HO, 5G

uses hard HO. The authors Christensen & Knape (2016) provide further details regarding the

complexity and the waste of resources in soft and softer HO. Therefore, this study focuses on

hard HOs unless stated otherwise. Because hard HO is considered in this study, the optimal

BS selection during HO becomes more critical since the connection is broken before a new

connection is established.

After the HO process is initialized in Eqn. 7 and shown in Fig. 14, it takes time to complete

the HO process for the UE to switch connection from the S-BS to the T-BS. During the HO

process, nothing is transmitted between the UE and either the S-BS or T-BS. The time spent to

complete a successful event, where the UE is switched from the S-BS to the T-BS without data

transmission, is known as HO delay time td. The accumulation of td has a significant effect

on the average throughput of the UE. The cumulative td and total number of HOs in a given

trajectory contributes to HO cost (βc). HO cost is a function of the number of HOs and the HO

delay time, and is expressed as presented by Arshad et al. (2016)

βc = min(Hl × v× td, 1), (8)
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where Hl is the total number of HOs per unit length (m), v is the velocity in (ms−1), and td is

the HO time delay in (sec).

The factor βc is evaluated as the total time wasted without useful data transmission due to HO

operations such as signalling and radio link switching between S-BS and T-BSs. The network

performance becomes zero if (Hl × v × td) ≥ 1 because the UE spends the entire time trans-

mitting HO signalling. The importance of βc is observed in the average throughput equation,

which is derived as follows from the Shannon capacity formula:

T = B × log2(1 + γ)× (1− βc), (9)

where B is the overall bandwidth, γ is the average experienced SNR, and T is the system

throughput. Hence, to obtain a high overall system throughput in a given trajectory, the factor βc

and γ play a vital role if B remains constant. Therefore, our objective is to maximize the system

throughput and avoid unnecessary HOs by intelligently selecting BSs with longer duration of

unobstructed LOS links. At the same time, to reduce redundant HOs, UE occasionally sacrifice

a connection to a BS with the highest SNR that would potentially result in HO after few seconds.

Yet, the average SNR must be above the threshold value to maintain the QoS of the user.

3.2.3 Trajectory and Service-aware Handover

Equation 9 has two parameters that can be varied as a trade-off to achieve the maximum average

throughput. In this study, we introduce a service-aware concept whereby the UE maintains a

connection to the S-BS if the γs experienced is above or equal to the threshold γth. This is to

guarantee the QoS of the UE, and we call it a service-aware strategy which also agrees with

event A2. That means, in the HO event, the UE does not need to select the T-BS that has the

highest γs; instead, the UE can select any BS with γs above γth. In addition, we introduce

the trajectory-aware strategy, meaning the complete path is known to the UE. By knowing the

trajectory of the UE and service type, the UE can carefully and intelligently select a BS with

γs above γth that guarantees long connection duration, and this far-sighted view helps to mini-

mize the possibility of incurring multiple HOs by selecting the optimal BSs. Nevertheless, the

combined strategy comes at the cost of sometimes sacrificing connection to a BS that provides

maximum SNR during HO (ignoring current instantaneous SNR) in favour of a BS that can

maintain extended connectivity along the UE trajectory.
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Figure 16: HO problem in the overlapping BSs coverage area

3.3 Benchmarks Solutions

In legacy networks, selecting a BS during a HO event mainly depended on using a heuristic

approach known as Rate-based HO (RBH). Throughout this thesis, this method is considered

one of the benchmark solutions. RBH relies on threshold values such as SNR or RSRP to

select a BS when a UE needs to perform a HO operation. The reader is referred to (3GPP,

2018b) for further details regarding the implementation of RBH, as well as Section 3.2.1 for

the HO event. Two additional benchmark schemes are considered in this thesis: a) smart HO

policy (SHP), proposed by Sun et al. (2018) and b) the developed HO management approach

for dense networks based on sparse network information, as shown in Section 3.3.1.

3.3.1 Selection of Target HO BS in Sparse 5G Networks based on Clustering of UDNs

In this proposed scheme, we address the HO problem for a UE moving in a crowded area with

overlapping BSs. The solution is based on clustering a dense network of BSs into sparse groups.

Since clustering is a widely discussed algorithm that can be found in various literature, this

section focuses on a concise discussion of the implementation, as there is a wealth of literature

on the topic.
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(i) Problem Formulation

Figure. 16 shows the effect of BSs densification within an area of interest. A UE moving within

the area is expected to be connected to one of the BSs. However, due to reflection, multiple ob-

stacles, and the nature of mm-waves in dense mm-wave networks, the HO rate becomes higher

than when the UE moves in a sparse mm-wave network (few BSs). The preceding statement is

only valid if the T-BS is not chosen intelligently. However, proper BS selection results in lower

HO events. The disadvantage of sparse networks is a considerably high occurrence of RLF and

outage probability due to insufficient coverage compared to dense mm-wave networks which

provide reliable coverage (Ge et al., 2016) for a given trajectory, given that both BSs in sparse

and dense deployments have the same transmission power. Besides, LOS and NLOS signals

and reflection increase signal fluctuations in dense mm-Wave networks. The UE might receive

excellent signals from a distant cell due to having a LOS channel with the cell, while the nearest

BS might not provide a high signal strength due to blockage by obstacles. This results in signal

fluctuations and with poor TTT configurations, increase the HO and RLF rates.

(ii) Solution based on Clustering

We assumed that for a given UE trajectory or area of interest where a UE is roaming, there are

a number of cells that can serve the UE with minimum HO rate and provide it a satisfactory

QoS. We refer to this network of a few BSs that can serve a UE with minimum HO as a sparse

network. For both the sparse and dense cases, the cells are deployed and positioned at specific

locations to improve the minimum received SNR in the area of interest (Li et al., 2016). During

simulation, an average minimum SNR of 0 dB and 3 dB are assigned, following the specification

for sparse and dense networks, respectively.

a) Clustering Dense Networks into Sparse Networks: We adopted the k-means algo-

rithm to partition the dense network into sparse networks. The k-means algorithm partitions an

unlabelled multidimensional data set into a set of k clusters, Ci = {C1, C2, . . . , Cki} , where

the desired number of clusters, k also corresponds to the number of sparse networks generated.

The objective here is to partition the network into a set of non-overlapping clusters so as to min-

imise the intra-cluster distance between the nodes (cells) and the centroid of the cluster while
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maximising the inter-cluster distance (Omeke et al., 2021)

Jmin =
k∑
j=1

∑
cn∈Ci

‖xi − µj‖2 , (10)

where each cluster, Ci contains nj cells, xi represents the i-th cell in the network; µj represents

the geometric centroid of the cells in a given cluster (Omeke et al., 2021) and is given by:

µj =

(
1

N

N∑
i=1

xi,
1

N

N∑
i=1

yi

)
. (11)

The elbow approach is used to determine the optimal number of clusters, k. This is done by

determining the intra-cluster sum of squares (ISS) for the data, where

ISS =
n∑
i=1

(xi − ci)2 . (12)

The above approach was adopted to cluster the BSs in the dense network into a sparse network.

After clustering, a number of points are sampled at regular intervals along the trajectory of the

UE. The metric for choosing the sampling frequency could be based on time or distance (e.g.

sample every two seconds or 5 meters) – similar results are obtained in both cases. The distance

between each BS and each sampling point is measured, and the results summed to obtain an

average sum BS-UE distance for each BS. The result obtained is then ranked in ascending order

for each cluster and stored in a table. The table is propagated to all the clusters and used for

selecting a T-BS.

b) Selecting a target BS: To select the best BS for HO, it is assumed that the UE trajectory

is known to the network. Two types of BSs are generated, which are hereby referred to as

normal and pillar BSs. A pillar BS is one that can maintain connectivity with the UE for a

long duration. In a sparse network, pillar BSs are obtained by selecting BSs with minimum

sum distances to the UE trajectory. This corresponds to BSs at the top of the ranked tables in

the previous subsection. The aforementioned table contains a list of the BSs in each cluster,

ranked in ascending order of their proximity to the UE trajectory (i.e., in order of increasing

sum distances). The first (top of the table) BS in each table is known as the first-level pillar

BS. The pillar level of BSs decreases as it moves away from the first level pillar BS down the

table. To HO, the UE selects the BS with the minimum sum distance from the list of first-level

pillar BS. The reason for doing this is that BSs with lower average sum distances to the UE have

a higher probability of providing a higher SNR and QoS than BSs which have higher average
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sum distances to the UE. Where two BSs have the same average sum distance from the UE, the

one in the direction of travel is chosen since it is likely to provide good coverage over a longer

interval. If the two BSs with the same average sum distance are both in the direction of travel,

one is selected at random. For the same reason (based on direction of travel), the proposed

scheme avoids selecting a BS that the UE had connected to before, since the UE is moving

away from it and will likely experience RLF if it hands over to such BSs.

This model employs the conventional heuristic method to determine whether a UE needs to

initiate HO based on Eqn. 7. However, unlike the legacy method which uses constant TTT (ref

Section 3.1.5) and always selects the BS with the highest SNR or RSRP as the T-BS, this

method uses a different value of TTT based on the BS level in the pillar-normal BS table.The

assignment of TTT is an optimization problem, and for the sake of simplicity, this work assigns

its values based on a previously conducted experiment. The values are assigned as follows: for

BS-level 1, TTT = 1024 ms; BS-level 2, TTT= 640 ms, decreasing progressively until BS-level

9 where TTT = 100 ms, following Table 7. If there are still more BS in the table (more than 9),

the remainder are all assigned a TTT value of 80 ms.

To select a T-BS, the developed scheme prioritizes BSs in the top-level of the pillar-normal BS

table that satisfy the condition γs ≥ γth. That is, instead of searching through the entire list of

qualifying BSs, this approach prioritises BSs that are in close proximity to the UE trajectory.

This has several advantages: it lowers the time taken to find candidate T-BSs for HO, reduces

energy consumed in sampling candidate BSs since only a small subset of BSs in the sparse

networks are prioritised as well as lowers the required computational resources since the search

space is smaller. In addition, it guarantees that the selected BS will provide an acceptable level

of QoS throughout the UE trajectory and eliminates frequent HOs or the ping-pong effect.

3.4 Proposed Solutions

Our problem mainly focuses on selecting a BS that can maintain more extended connectivity

along the user trajectory during HO event. This section presents a novel solution for the HO

decision optimization. The proposed solution is based on RL, and subsection 3.4.1 presents a

general introduction to RL as well as the problem formulation while the learning algorithms are

presented in the subsequent subsections.
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Figure 17: Overview of generic RL algorithm

3.4.1 Proposed Solution for Handover Management using RL

The problem of selecting a T-BS is modelled as a combinatorial problem, as discussed in Sec-

tion 3.2. Whenever a HO event is initiated, there is potentially more than one possible optimal

S-BS that the UE can choose to establish a connection with to guarantee reduced chances of the

UE entering into a HO event again, i.e., to prevent frequent HOs.

(i) Reinforcement Learning (RL) Framework

Learning in RL takes place through a series of interactions between an agent and an environ-

ment, with a reward given for each interaction according to how it performs against a preset

metric called the reward function. The authors Sutton & Barto (2018) have explained the re-

lationship between an agent, action (interaction) and the environment. They further illustrated

clearly and concisely how an agent learns the best policy through multiple interactions with the

environment, as shown in Fig. 17. Here, we first define the main elements of RL. At a time t,

the agent observes the state of the environment, st ∈ S, where S is a set of possible states. After

observing the state st, the agent takes an action, at ∈ A(st) where A(st) is the set of possible

actions at state st. Subsequent to the action at selected from state st, the agent receives an

immediate reward rt+1 from the state-action pair (st, at). The selected action in state st moves

the agent to a new state st+1 at time t + 1. It is important for the environment to have state

transition dynamics such that P(st+1|st, at) exists, also time (t) is the arbitrary successive stages
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of decision making and acting, which represent the situation and not the interval of real time in

seconds.

The strategy for selecting an action by an agent in a given state is known as a policy π. As

shown in Fig. 17, the agent learns the optimal policy π∗ by first observing the current state st,

and then taking action at following the current policy π. As a result, the environment state

changes from st to st+1 and the agent gets an immediate reward r(st, at). The agent repeatedly

updates policy π until it reaches an optimal policy π∗. The agent’s goal is to achieve the optimal

policy π∗ by maximizing the cumulative reward. Mathematically, the cumulative reward is the

sum of immediate reward and future rewards (Sutton & Barto, 2018) and is given as:

Gt , Rt + ζRt+1 + ζ2Rt+2 + ... =
∞∑
k=0

ζkRt+k, (13)

where Rt is the immediate reward per episode and k is the total number of episodes the agent

must navigate to obtain a full understanding of the environment. ζ ∈ (0, 1] is a discount factor

for weighting future rewards; its purpose is to make the sum of the rewards finite. The episode

is the complete sequence of states visited by an agent from the initial state to the terminal state.

With sufficient experience through episodes iterations, the agent can learn an optimal decision

policy π∗ that would maximize the long-term accumulated reward.

(ii) Problem Formulation

A significant number of BSs in the mm-wave environment are required to serve UE. However,

the presence of obstacles and the characteristics of mm-wave channels increase the probability

of having event A2. Consequently, when event A2 occurs, the UE is required to HO to maintain

the connection. The BS that results in minimum HO cost is selected, as shown in Eqn. 8.

Therefore, our proposed solution ensures that once event A2 is initiated, the UE switches to the

BS with longer unobstructed time for its LOS connection or intelligently skips the HO while

ensuring the maximum throughput along the UE trajectory.

Our problem of selecting the best BS during HO that can minimize the number of HO and

maximize the average throughput falls into the category of model-free learning where an agent

discovers its environment by trial-and error (Rummery & Niranjan, 1994). One of the most

common RL algorithms in the model-free method is Q-learning which is an off-policy algo-

rithm. In Q-learning, an action-value function Q(s, a) is defined as the long-term reward and
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is given as:

Qπ(s, a) , Eπ [Gt|st = s, at = a]

, E [Rt + ζGt+1|st = s, at = a]

,
∑
r,s

[
r + γ

∑
a′

Gt+1|st = s, at = a

]
,

(14)

where the optimal action-value function, Q(s, a) , maxπQ
π(s, a), obeys the Bellman optimal-

ity equation as shown in equation 15.

Q∗(s, a) = Es′

[
rt+1 + ζ max

a
Q∗(s′, a′)|s, a

]
(15)

The Q-learning algorithm updates the corresponding element in the Q-Table episodically ac-

cording to the equation,

Q(s, a) = (1− α)Q(s, a) + α(Rt+1 + ζ max
a
Qπ(s′, A)) (16)

where α is the learning rate, and s′ is the next state after the agent follows a policy π in state s.

Based on the number of decision points on a UE’s trajectory that the UE might pass and decide

whether to HO due to link failure, it becomes too difficult to individually learn all the action-

values in all the states for the HO management problem. Instead, we can learn a parameterized

value function Q (s, a;θt). The standard Q-learning update for the parameters after taking

action At in-state St and observing the immediate reward Rt+1 and resulting state St+1 is then

θt+1 = θt + α
(
Y Q
t −Q (St, At;θt)

)
∇θtQ (St, At;θt) (17)

where α is a scalar step size and the target Y Q
t is defined as

Y Q
t ≡ Rt+1 + ζ max

a
Q (St+1, a;θt) (18)

This update in Eqn. 17 resembles a stochastic gradient descent, and since it uses a neu-

ral network for value estimation, this type of Q-learning is commonly known as deep Q-

learning (DQN) or deep reinforcement learning (DRL)11. DQN is explained in section 3.4.2,

and in the latter section, we introduce DDRL, which improves the efficient of DQN. Up till

now, we have been presented the components of RL and introduced the HO management con-

cept. In the following, elements of RL that are vital to HO are described to associate these

elements to the problem.
11DQN and DRL are used interchangeably throughout this thesis unless stated otherwise. The same applies to

DDQN and DDRL.
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a) Action: An action represents the BS to connect to if A2 event occurs. We define an action

in an action space (a ∈ A(s)) as the scalar representation of the S-BS index at state s. The set

A(s) comprises all BS in the environment.

b) State Vector: Traditionally, mobility management and other BS association strategy consider

the location of the UE to associate it to the S-BS. This study, however, considers the combination

of the SNR received by the UE from all surrounding BSs to represent the location of interest

instead of the exact location of the UE (i.e. geo-coordinates of UE’s location). Getting the exact

location of the UE is impractical in reality; hence, we consider γ from all BSs along the UE

trajectory as representative of the point of interest instead of geo-coordinates.

Therefore, we correlate the current position of the UE to the channel quality from all surround-

ing BSs. We also assume constant SNR values are realised from all BSs at a particular point

based on the assumption that average SNR is used, and the combination of the average SNR is

uniquely sufficient to represent the geo-location coordinates at the specific position.

Hence, at the point, p with a total number of M BS, the state vector for the UE is given as

sp = {γ1, γ2, · · · , γi, · · · , γM,BSi}, (19)

where sp ∈ S is the state at point p, γn is the SNR value from the nth BS, and BSi is the index

of the S-BS at point p. The BS index is in one-hot encoded vector. One-hot encoding (Mollel

et al., 021a) is the vector representation of the integer variable into the binary value of all zero

except the index of the integer. For instance, if BSi is designated as BS three and there are total

of five BSs, then the equivalent one-hot encoding vector becomes BSi = [0, 0, 1, 0, 0].

However, since the agent has only a single snapshot of the channel quality at a particular point,

this partial observation presents a problem called perceptually aliased, i.e. it is impossible to

understand the current status of the channel using only the current (single) observation. For ex-

ample, if we consider only instantaneous SNR at the current point, then it becomes impossible

to know the direction of the UE or obtain information regarding the previous S-BS. Therefore,

Eqn. 19 is revised and the updated state equation considers a sequence of actions and observa-

tions, given by

st = {sp, sp−1, sp−2, sp−3}, (20)

where sp is the latest observation and sp−3 is the observation in the previous three steps. All
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observations in the environment are assumed to terminate in a finite number of time-steps, i.e.

at the end of the UE’s trajectory.

c) Reward Design: The reward design is used to motivate the agent to take actions that would

maximize the cumulative reward in the long run since our objective is to achieve maximum

system throughput (T ) for a given trajectory. Equation 9 shows that we can maximize T by

minimizing βc. To minimize βc, Eqn. (8) shows that for a given velocity (v) and HO time

delay (td), the parameterHl should be as small as possible. The parameter,Hl can be controlled

by implementing a HO skipping policy. Technically, the agent initiates indirect TTT without

setting a constant value, and this should be done intelligently to ensure that the UE can achieve

maximum throughput even if it skips some unnecessary HOs. This method has been used for

micro and macro BS before 4G, and the TTT parameter was manually determined. Additionally,

to minimise the value of βc while maximising T during HO, the agent can select BSs that have

few event A2 in the future, known as far-sighted HO decision, provided the constraint γs ≥ γth

is met.

In reward design, we avoid delayed rewards due to the problem of credit assignment (Sutton

& Barto, 2018). Therefore, we introduce the immediate reward function as the instantaneous

throughput and evaluate the immediate effect of the action taken to achieve the agent’s goal.

Such a reward is given as follows:

r (st+1, a, st) =

 B ×R× (1− βc) , if HO occurs

B ×R, otherwise
(21)

where B is the maximum bandwidth allocated, R = log2(1 + γs) is the spectral efficiency,

γs is the average instantaneous SNR the UE experiences from the S-BS at st obtained from

the simulated environment. For the proposed model to work accurately, information should be

collected that the agent can use for decision making.

d) Experience replay: The objective of experience replay is to overcome the instability of

the learning algorithm. Experience replay is used to update the deep Q-network in such a

way that both current and previous experiences are considered in the supervised learning-based

update process. This means that not only samples (s,a,r,s′) obtained from current online learning

network but also old experience tuples (s,a,r,s′) are considered in the training process. Hence,

experience replay store observed transitions for some time and sample uniformly from this

memory bank to update the network. Using experience replay improves the performance of the
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algorithm (van Hasselt et al., 2015).

3.4.2 DRL-based optimal BS selection

In this section, we present the challenges of applying tabular Q-learning to our problem, and

then provide a detailed explanation of how deep Q-learning can help to solve these challenges.

It is known that if the environment has many states such as if the number of states is of the

order of hundreds of states and hundreds of actions per state, this would result in a Q-table with

ten thousand cells, hence the learning process will quickly get out of control. This practically

infinite number of states and actions creates two problems. The first problem is that the amount

of memory required to store and update the state action table increases as the number of states

increases, and secondly, the time spent to explore each state in order to populate the Q-table

accurately (Sutton & Barto, 2018) becomes significantly high. Another limitation ofQ-learning

is that it only works in environments with discrete and finite state and action spaces, which

implies that Q-learning is unable to estimate Q-values for any unlearned states.

Figure 18: DRL-based framework comprising environment, states, actions, and rewards.

The DQN is a multi-layered neural network that maps an input state s to an action value Q,

where θ represents the parameters of the network. In the learning phase, we use offline learn-
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Algorithm 1: Deep Q-learning with Experience Replay

1 Initialize replay memory D to capacity N ;

2 Initialize action-value function Q with random weights;

3 for episode = 1, M do

4 Get Initialise state, s;

5 for t = 1, T do

6 With probability ε select a random action at;

7 otherwise select at = maxaQ
∗ (s, a; θ);

8 Execute action at in environment and observe reward rt;

9 Get new state, s′;

10 Store transition (st, at, rt, s
′) in D;

11 Sample random minibatch of transitions (s, a, r, s′) from D;

12 Set yj =

 rj for terminal t==T

rj + ζ maxa′ Q (sj+1, a
′; θ) otherwise

;

13 Perform a gradient descent step on (yj −Q (sj, aj; θ))
2 according to

equation 17

14 end

15 end

ing, whereby the agent gathers necessary information by simulating the UE trajectory in the

environment, as shown in Fig. 18. The agent simulates the trajectory from starting point to the

endpoint of the UE’s path, and then performs HO in a trial-and-error fashion. It is worth noting

that we assume trajectory aware HO. Therefore, the path taken by the UE is known, and during

HO, the agent can select any BS from among M BSs. The objective is to maximize cumulative

rewards. The complete DQN algorithm is presented in Algorithm 1

a) Data Preprocessing: Working directly with SNR information as observations can harm

learning since we use neural networks that require data processing, so we apply an essential

preprocessing step to improve the performance of the model by normalizing input features. The

raw data is processed by first finding the maximum achieved and minimum allowed SNR and

normalizing them using the max-min normalization technique in Eqn 22.

γi − γmin

γmax − γmin

(22)
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Table 9: Parameters for designing and developing DQN model

Parameter Value Parameter Value

Hidden layers 4 Neuron size 512× 256× 128× 64

Activation function hidden layers relu Activation function output layer linear

Initial exploration training 1 Final exploration training 0.01

Optimizer adam Output layer M BS

Learning rate, α and Discount Factor, ζ 0.001 , 0.96 Minibatch size 32

The min-max normalization technique has a significant downside: it does not deal very well

with outliers. We, therefore, set the ceiling γmax and floor γmin for our data. Thus, any γi above

the ceiling or below the floor is truncated to the ceiling γmax or floor γmin, respectively. As

described in Section 3.4.1, the final input representation of a state is obtained by inserting a

serving BS index before HO takes place, and then this preprocessing observation is carried out

on the last four history frames and stacked together to produce the Q-function input state.

b) Model Architecture: Our architecture considers the output layer, which has a separate unit

for every action possible. That means that there areM units corresponding to theM BSs. Using

the s state as an input, the output layer from the network estimates a value function, Q. The

importance of this architecture is shown by its ability to produce an estimatedQ-values of every

action in a given state.

The DNQ architecture can be described as follows: the input to the neural network is the state

described in Section 3.4.1.b and the number of input units reflects the state’s content. Then

four fully connected linear layers with 512 × 256 × 128 × 64 neural units are implemented as

the hidden layer using a Rectified Linear Unit (ReLU). The output layer is a fully connected

linear layer with a single output for each valid action. The number of valid actions depends

on the number of M th BS. We call this architecture DQN; a summary of the training and the

architecture is presented in Table 9.
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3.4.3 DDRL-based optimal BS selection

It was noted by van Hasselt et al. (2015) that for some games, the max operator in Eqn. 18

tends to select overestimated values resulting in over-optimistic values. To prevent this, the

decoupled architecture is introduced to yield the selection and evaluation network. This is the

underlying principle behind DDQ-learning (van Hasselt et al., 2015). The DDRL architecture

works by exploiting the advantages of previous models, that is, Q-learning and DQN. DDRL

is a DRL that uses and maintains two separate deep Q-Networks (DQN). According to van

Hasselt et al. (2015), the two separate networks for DDRL include a target network and an

online network. The target network, with parameter θ−, is the same as the online network

except that its parameters are updated from the online network every τ steps, such that θ−t =

θt and kept fixed on all other steps. DDRL reduces overestimation by decomposing the max

operation in the target network into action selection and action evaluation steps. Therefore, the

greedy policy is evaluated according to the online network while values are estimated in the

target network.

Figure 19: The structure of the proposed DDRL - with double Q- networks

Apart from the agent network having decoupled networks, the rest of the parameters and data

preprocessing for DDQN are the same as those for DQN presented in Section 3.4.2. The only
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Algorithm 2: Double Deep Q-learning

1 input : D− empty replay buffer; θ− initial network parameters, θ−− copy of θ;

2 input : Nr− replay buffer maximum size; Nb− training batch size; N− - target network

replacement freq.;

3 for episode = 1, M do

4 Get Initialise state, s;

5 for t = 1, T do

6 With probability ε select a random action at;

7 otherwise select at = maxaQ
∗ (s, a; θ);

8 Execute the action in the environment and observe the reward ri and the next

state (s′i).;

9 Store transition tuple (s, a, r, s′) to D, replacing the oldest tuple if |D| ≥ Nr;

10 Sample a minibatch of Nb tuples (s, a, r, s′) ∼ Unif(D);

11 Construct target values, one for each of the Nb tuples:;

12 Define amax (s′; θ) = arg maxa′ Q (s′, a′; θ)

yj =

 r if s′ is terminal

r + ζQ (s′, amax (s′; θ) ; θ−) , otherwise.
;

13 Do a gradient descent step with loss ‖yj −Q(s, a; θ)‖2;

14 Replace target parameters θ− ← θ every N− steps;

15 end

16 end

component added is the τ step which used to update the target network (the value was set to

40000 steps in this work). Figure. 19 shows the complete system environment for our proposed

model based on DDRL. The pseudo-code for the DDQN algorithm and how it works in regard

to the proposed solution is given in Algorithm. 2. It should be noted that vital elements in

Algorithm. 2 are the same as in Algorithms 1.

Since it is uncertain that DQN can work efficiently with any RL problem, a comparative study

of DQN and DDQN was performed to determine DQN efficiency in solving HO optimization

decisions compared to DDQN. The experiments were conducted in the same setup for both

DQN and DDQN. The main reason for doing this was to investigate if DDQN and DQN can
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lead to the same conclusion. The results of these experiments are presented in Fig. ?? and

Fig ??. Figure. ?? illustrates an example of DQN(red color)-induced overestimation during

training. It is critical to remember that DQN and DDQN agents are trained under identical seed

and environmental conditions. As shown by the red learning curves, DQN is often vastly over-

optimistic about the value of the current greedy policy. The average value estimate is calculated

for the trajectory during the training and evaluation phases. The equation for value estimates is

as follows:
1

T

T∑
t=1

maxQ (St, a;θ) (23)

where T is the number of steps used for evaluation, maxQ (St, a;θ) is the value estimate of

the online network. The figure illustrates more serious over-estimations and emphasizes how

highly unstable DQN is.

The average cumulative reward (score) against the training episodes for each training algorithm

is shown in Fig. ??. Generally, it can be seen that there are increases in value estimates for DQN

as shown in Fig. ??, which coincide with decreasing scores in Fig. ??. This demonstrates that

overestimations have a detrimental effect on the quality of the resulting policies. From Fig. ??,

it can be observed that the learning trend for DRL is quite similar to DDRL for some episodes,

which are from the start of training step to nearly 3 × 107 training steps. This implies that for

both algorithms, an agent equally learns and improves its policy at least for a given range of

the training steps. However, after certain steps—above 3 × 107, the learning curve for DRL

(shown in red) starts to drop while the learning curve for DDRL (shown in blue) remains high

with a stabilizing trend compared to that of DRL. The main reason for the decline in cumulative

reward is because DRL usually tends to over-estimate value functions during the training phase.

Therefore, judging from both curves, it is without a doubt that DDRL produces more accurate

value estimates, and better policies because of higher return and more stable learning throughout

the training process. For this reason, we do not show any further results to compare DDRL and

DRL as DDRL is guaranteed to perform better than DRL in all cases.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Performance Evaluation

This section presents a performance analysis of the proposed DDRL HO management solution

for 5G UDNs. It comprises three parts; a) the first part describes the simulation environment,

including the simulation setup, b) the performance metrics are presented in the second part,

which provides a brief insight into the measurement parameters used, c) while the third part

offers a comparative analysis that compares the proposed method with benchmarks solutions.

4.1.1 Simulation Setup

In both experiments, we consider the system model as described in Section 3.1. We consider a

square environment with an area of 1000(m)×1000(m), with randomly deployed BSs. We then

utilise the random waypoint model (Bettstetter et al., 2004) to generate user trajectory with an

average velocity of 8ms−1 for experiment 1. For other experiments, we vary the velocity with a

constant threshold SNR (γth) of 20 dB. The random way-point model was used to generate 10

trajectories and assign probability distributions to four directions (North, South, East, and West)

as follows; trajectories 1 - 5 were assigned the distribution [0.25, 0.25, 0.25, 0.25] while the other

trajectories were assigned [0.6, 0.2, 0.1, 0.1]. The cumulative HO time delay during HO process

td was set to [0.5, 0.75, 1, 2] sec (Arshad et al., 2016). However, many previous studies used

1 sec as the average HO time delay between mm-wave BSs. In this study, we deliberately

used more than one value of HO time delay to evaluate and quantify the effect of HO time

delay associated with a HO event. The observation time for UE mobility for all trajectories is

10000 secs, and the status of CSI is recorded at every 10 ms for both the training and evaluation

data sets. However, for evaluation, the starting position of the UE along the trajectory is time-

shifted to more closely approximate real life scenarios. All the states fed to the DDRL are

generated within this time period. Ultimately, we ignore the effect of interference as its effect is

negligible, as discussed in Section 3.1.3. Hence, we consider SNR as the parameter of interest.

We consider hyper-parameters for DDRL from (Koda et al., 2019) since systematic grid search

incurs a high computational cost. The complete parameters for the radio network environment

and the DDRL are given in Table. 10 and Table. 9, respectively.
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Table 10: Environment simulation parameters

Parameter Value

BS intensity 10 - 70 (BS/km2)

mm-wave frequency 28 GHz

mm-wave bandwidth 1 GHz

BS transmit power 30 dBm

Thermal noise density −174 dBm/Hz

Delay without data transmission td 0.75, 1, 2, 3 sec

4.1.2 Performance Metrics

The proposed method was evaluated using performance metrics such as system throughput,

average running time, number of ping-pongs and number of HOs. These are summarized as

follows:

(i) Experienced SNR

Experienced SNR is the average instantaneous SNR experienced by the user in a given trajec-

tory. The average SNR, denoted as γave, is given as:

γave =
1

T

T∑
t=1

γs=t, (24)

where T is the total number of locations where the UE exchanges data with the BS and γs=t is

the SNR value experienced from the serving BS at index t of such locations.

(ii) Number of HOs

Number of HOs (nHOs) is the sum of HO events a UE experiences from the starting point to the

destination in a given path. Mathematically, this is given by:

nHOs =
T∑
t=1

1HO, (25)

where 1HO is an indicator function (1HO
.
= 1 if the HO occurs and 0 otherwise) and T is the

total number of locations where the UE exchanges data with the BS.
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(iii) Ping-pong HO rate

Ping-pong HO rate is defined as the total number of ping-pong events to the total number of

HOs. Ping-pong effect is described in Section 2.3.2 as an event in which the number of HOs

over a specified period (TPP) exceeds a predetermined threshold (for this study more than 1

HO in Tpp). This study considers (TPP) equal to 100 ms, and ping-pong HO rate is described

mathematically as

Ping-pong rate =

∑T
t=0,nTpp,···

[∑t+Tpp
i=t 1HO > 1

]
nHOs

;∀t ∈ [t0, t0 + Tpp] , (26)

where n = 1, 2..., k; given that k satisfies kTpp ≤ T , and nHOs is the number of HOs the UE

experiences along the trajectory.

(iv) Average Throughput

Average throughput is the average data rates that are delivered to a UE or rate of successful

message delivery over a communication channel. The average throughput, denoted as T , is

defined as:

T = B × log2(1 + γave)× (1− βc), (27)

where B is the maximum bandwidth allocated, βc is the HO cost defined in Eqn. 8, and γave is

the average instantaneous SNR the UE experiences throughout the trajectory in the simulated

environment.

(v) Average execution time

The execution time is defined as the average time spent by the model to produce results based

on given inputs.

4.1.3 Comparative Analysis

This section compares the proposed solution to the heuristic RHB (3GPP, 2018b) approach,

the smart handoff policy (SHP) (Sun et al., 2018), and a benchmark HO policy named clus-

tering dense network to sparse networks to minimize HO in 5G mm-wave networks (CDSHO)

presented in Section 3.3.1 and in (Mollel et al., 2019).
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(i) Analysis of User-experienced SNR (γ) against HO interruption time (td)

In the first experiment, we consider the velocity of the UE to be 8 ms−1 for UE trajectories,

and then we analyse the relationship between the the experienced average SNR received γave

by the UE for the proposed model against td. Figure 20 shows the relationship between the γave

against HO interruption time td as parameter in RL reward function for λ=10 and 50 BSKm−2,

respectively. It can be seen clearly from Fig. 20 that as td increases, γave decreases but at a

very slow rate for both λ=10 and 50 BSKm−2. This behaviour illustrates how the agent can

sacrifice maximization of γave by selecting a BS that does not necessarily give γmax for some

time (but which may lead to a HO after only a short connection period) but the one which leads

to maximum throughput (by providing a longer connection period, even if at a lower γave), since

throughput maximization is an objective function of the algorithm.
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Figure 20: Number of HOs and γave as functions of td, for γth = 20 dB and λ=10 BSKm−2

It worth noting that in real environments, td varies randomly due to factors such as how sophis-

ticated the network equipment is, the channel response, and how easy it is to discover T-BSs.

Since td is part of the reward, it has a significant influence in determining the learning and selec-

tion of BS that will maximise the cumulative reward. Also, it should be noted that td is a random

parameter that is not constrained by design but dictated by the real environment. However, for

the sake of RL design, one can select td as a critical parameter in order to control the trade-off. It

can be clearly seen from Fig. 20 that changing the reward signal encourages the agent to select

actions that substantially reduce the number of HOs by sacrificing achieving γmax.
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(ii) Analysis of HO Interruption time td

This experiment aims to examine the relationship between the number of HOs and the SNR

threshold (γth) for various values of td as a reward in the proposed DDRL model, as illustrated

in Fig. 21 and Fig. 22 for 10 BSkm−2 and 20 BSkm−2, respectively. In this experiment, the

following set of parameters were considered for the simulation: a) average UE velocity of

8 ms−1, b) simulation time of 10000 sec.
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Figure 21: Number of HOs as a function of γth for td = 0.7, 1, 2, 3 sec and λ = 10 BSkm−2

From both figures, it can be understood that different values of td have a different contributions

towards reinforcing the agent to reduce the number of HOs. However, for specific values of

γth, there is a slight difference in the number of HOs for values of γth ranging from 10 - 18

when λ = 10 BSKm−2 and between 15 and 23 when λ equals 50 BSKm−2. On the other hand,

with increasing λ, the contribution of td in reinforcing the agent to reduce HO is observed.

Throughout this thesis, td = 3 sec unless otherwise stated.

Another interesting point observed in both figures is the fluctuation of the curves, meaning that

for different values of td and same values of γth, we can have the same or different number

of HOs. This is because during the evaluation, we set the value of exploration ε to 2 × 10−3,

although the trend can also be understood from the explanation given earlier. Therefore, an

agent may ignore selecting a BS that can result in maximum reward and choose to explore the
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Figure 22: Number of HOs as a function of γth for td = 0.7, 1, 2, 3 sec and λ = 50 BSkm−2

environment by selecting the BS with γmax or selecting a BS randomly. This effect can be

neglected if the agent can set the ε to 0 after the learning phase. The factors for selecting td may

vary depending on the agent’s objective. The agent does not consider factors such as network

response and intuitively, the network with the lower td provides a good QoS and QoE. However,

the agent can decide to use a higher td in the training phase if the objective is to minimize HOs

due to other advantages that the agent could gain by such a choice.

(iii) Effect of UE velocity on HOs

For the third experiment, we assess the performance of the proposed model by comparing it

with other benchmark solutions in terms of the number of HOs and the system throughput. The

parameters for the experiment were set as follows: td = 3 sec, γth = 20 dB and λ = 50 BSkm−2

while other parameters remain unchanged. Figure. 23 and Fig. 24 demonstrate the average

system throughput and the number of HOs for the three benchmarks as well as the proposed

HO management policies against UE velocity. From Fig. 23, it can be seen that the proposed

DDRL outperforms other policies. The general trend shows a slight and gradual increase in

number of HOs for the benchmark models as velocity increases.

Since the CDSHO has fewer BSs to select from at any given point, it automatically reduces the

number of HOs. In this regard, in the CDSHO solution, UEs are usually handed over to the sub-
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Figure 23: Relationship between the number of HOs and UE velocity

6 GHz channel if non of the mm-wave BSs in the cluster can accommodate the UE. In addition,

this has repercussions in terms of throughput since the capacity of sub-6 GHz is lower than that

of mm-wave links. The SHP technique relies on bandit RL which is an online learning method.

Hence, it will require some time to figure out the best BS to select at any given time in order to

reduce the number of HOs. This is the leading cause of the high number of HOs encountered in

the SHP solution. The RBH, on the other hand, is expected to have a high number of HOs since

it always selects the BS that provides a high data rate during HO decisions.

The most significant result is shown in Fig. 24 where the proposed model far outperforms other

models in terms of throughput, especially for high mobility UEs. Additionally, it can be ob-

served that as the UE velocity increases, the system throughput decreases due to rapid changes

in the channel quality. On the one hand, as expected, CDSHO shows a lower throughput com-

pared to other solutions. This is expected since the objective of CDSHO is to minimise HOs for

the UE without considering the trade-off of reducing QoS (throughput). That is, the CDSHO

algorithm limits the UE to select a target BSs from a specific cluster only. If none of the BSs

within the cluster satisfies the minimum γth, the UE HO to the sub-6 GHz macro-cell instead

of considering BSs in nearby clusters with higher throughput, which may result in lower aver-

age system throughput. In addition, the SHP and RBH schemes select T-BSs on a shortsighted

basis. For SHP, it aims to reduce the number of HOs but neither considers the UE trajectory

86



1 2 3 4 5 6 7 8 9 10
4

5

6

7

8

9

10

11

12

13

User Velocity (ms-1)

A
ve

ra
ge

T
hr

ou
gh

pu
t(

G
bp

s)

RBH
SHP
CDSHO
Proposed DDRL

Figure 24: HO performance showing the relationship between average system throughput and

UE velocity

nor maintains an extended connectivity of the chosen link while RBH only selects the BS with

the maximum γs whose connection to the UE might break after a few seconds. In contrast, the

proposed DDRL offers a high throughput compared to other benchmarks since it incorporates

trajectory awareness and training based on searching for the optimal combination of BS that

can maintain more extended connectivity, leading to both high a QoE and QoS.

(iv) Time complexity

The fourth experiment compares the average running time per single HO decision to the number

of mm-wave BSs for each of the four HO strategies. The simulation parameters are as follows:

td = 3 sec, UE velocity = 8 ms−1, and γth = 20 dB. As shown in Fig. 25, all the policies exhibit

a similar pattern. It can be observed that the proposed model takes more time to make a HO

decision compared to RBH; whereas it takes a significantly lower time compared to SHP and

CDSHO. Additionally, there is a linear relationship between an increase in the number of SCs

and the running time for all policies. For a small number such as λ = 10− 30 BSkm−2, the time

complexity of CDSHO is higher than the other three HO policies. However, as the BS density

increases (λ =≥ 40 BSkm−2), the time complexity of CDSHO becomes lower than SHP. This is

because the search space in CDSHO increases slowly due to clustering while that of SHP keeps
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increasing. It is worth noting that SHP is based on bandit algorithms, and as such, the time for

convergence increases as the number of actions increases. The proposed model outperforms

SHP and CDSHO since there is no computational complexity in training the neural network

where the only computation required is for predicting an output based on the given input. For

RBH, it is only an if statement, and as expected, the time for making the decision is lower than

other policies. The simulation shows that the maximum time required to make a HO decision
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Figure 25: Average running time as a function of number of mm-wave BSs

is 42 ms, which occurs when λ = 70 BS km−2 in the SHP HO policy. This finding suggests

that the decision time for HO is acceptable, as the selection of BS occurs within the minimum

permissible TRLF of 50 ms, as shown in Table. 7. Nonetheless, as the number of SCs increases,

the running time for making HO decisions increases proportionately and UEs can frequently

encounter RLF. The solution to this dilemma is beyond the scope of this work.

(iv) Effect of UE speed on the Ping-Pong rate

The analysis of the ping-pong rate considers the following simulation parameters: Tpp = 100 ms,

td = 3 sec, λ = 70 BS km−2. In this experiment, it is observed in Fig. 26 that the ping-pong rate of

the proposed method is low compared to the benchmark methods. This is because the proposed

method has an intelligent way of indirectly initializing TTT, which means avoiding taking HO

decisions unnecessarily (skipping HO). In addition, once HO occurs, the proposed approach
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selects the BS that can sustain communication for an extended period of time; this ensures a

low number of HOs and a low ping-pong rate. It is known that the velocity and high density of

SCs density significantly affects the ping-pong rate since the dwell time for the UE is low, but

the proposed method shows a slight increase in the ping-pong rate as the velocity increases, as

seen in Fig. 26.
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Figure 26: Ping Pong rate as a function of UE velocity

(v) Effect of BS Density

In this last experiment, we compare the performance of the benchmark HO policies with the

proposed HO policy by varying the number of mm-wave BSs. The parameters for this exper-

iment are as follows: UE velocity = 8 ms−1, γth = 20 dB while the other parameters remain

unchanged. The results of the evaluation are shown in Fig. 27 and in Fig. 28. It can be clearly

observed that the proposed DDRL solution outperforms the other HO policies.

From Fig. 27, it can be seen that the proposed HO policy has outstanding effect in reducing the

number HOs by 20% - 69% , 7% - 49%, and 5.7% - 21% compared to RBH, SHP, CDSHO,

respectively. This is because the proposed intelligent method considerably reduces the number

of unnecessary HOs (ping-pong and other HOs). In addition, the CDSHO benchmark offers the

next best performance after the proposed DDRL algorithm in terms of low number of HOs for

different BS densities. As previously mentioned, this approach achieves excellent performance

because it restricts UEs to a few BSs and switches to sub-6GHz BSs when γs of T-BS is less than
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Figure 27: Frequency of HOs as a function of mm-wave BS density

γth. Meanwhile, SHP incurs a high HO rate compared to the proposed model since it is based

on the bandit algorithm. Though the bandit algorithm and DDRL works on the same principle

to some extent (trial-and-error), DDRL uses offline learning while the bandit algorithm uses

online learning which requires the online agent to undergo trial during learning while deciding

at the same time. This contributes to the agent having a high HO rate before it learns the best

action for the given state.

As expected, Fig. 28 shows that the proposed model outperforms other models in terms of

system throughput, with a margin of 19% - 40%, 24% - 37%, and 25% - 43% compared to RBH,

SHP, and CDSHO, respectively. In terms of throughput performance, RBH comes second. This

is because during a HO decision, the RBH approach chooses the T-BS with the highest SNR,

which results in high throughput. However, the high number of HOs results in a low average

throughput compared to the proposed DDRL because the average throughput incorporates a HO

cost, which is a function of the number of HOs.
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Figure 28: Average system throughput as a function of mm-wave BS density
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CHAPTER FIVE

SUMMARY AND CONCLUSION

5.1 Summary

This thesis proposed a flexible and dynamic solution to HO management in 5G mm-wave com-

munication by demonstrating how ML-based algorithms can be used to develop an optimal so-

lution to a problem at hand. In this regard, the proposed solution, referred to as intelligent HO

management, was investigated considering various metrics, including its impact on reliability,

the number of HOs, execution time, and throughput.

5.1.1 Intelligent Handover Scheme

This thesis proposed a general framework for the optimization of HO decisions in UDNs. The

proposed model was developed using Q-learning algorithms. The learning objective was to

maximize user throughput while mitigating the negative impacts of HOs on the user QoE —

to reduce intermittent connections and excessive HOs. A solution based on DRL was first

developed, followed by a solution based on DDRL. The convergence efficiency of these two

models was evaluated, upon which it was discovered that DRL tends to overestimate action

value. Therefore, DDRL was chosen in this thesis for comparison with other state-of-the-art

solutions.

5.1.2 Benefits of the Developed Intelligent Handover Scheme

It was shown that the proposed intelligent solution can significantly enhance the system through-

put and simultaneously reduce unnecessary HOs. The decision time of the proposed model was

also evaluated for varying numbers of BSs and compared with other benchmark solutions. The

results confirm the superiority of the proposed novel solution over the benchmarks. However, it

is worth noting that at low UE speeds, both the proposed method and the benchmark solutions

show similar performance in terms of throughput. This is because, at low speeds, there are

fewer HOs and therefore, much intelligence is not required to decide whether to HO or not to

minimize the HO cost. By and large, HO has little effect on stationary UEs.

This thesis also investigated the impact of HO interruption time td as a factor in reward design

on the number of HOs for varying BS densities. The findings indicated that td has far less
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contribution towards minimizing the number of HOs for small SNR threshold than anticipated

and effect is observed for higher SNR threshold. This might be caused by the small contribution

of td to the HO cost. Thus, for a given threshold γth and a fixed number of BSs, the number

of HOs decreases slightly as td increases. Meanwhile, the number of HO events dramatically

increases as γth increases.

Finally, it was demonstrated that the proposed model outperforms benchmark models under

every given scenario. In particular, it outperforms benchmark models in terms of the number of

HOs for a small number of BSs and by user throughput when applied to a large number of BSs.

Hence, the proposed solution can be implemented in 5G UDNs where an enormous number of

BSs are expected to be deployed.

5.2 Conclusion

Different HO management frameworks were examined in this thesis and a novel HO optimiza-

tion scheme using ML presented and discussed.

Chapter one introduced the research area and outlined the background and rationale for the

present study. It provided a brief overview of the key enablers for 5G and discussed the chal-

lenges posed by these enablers in mobility management. The chapter subsequently described

the primary objective of the thesis, underscored the significance of the work, and ended with a

presentation of the scope of the thesis.

Chapter two gave a comprehensive discussion of the general architecture of 5G networks, mo-

bility and HO management in 5G, as well as a thorough review of various ML-based HO man-

agement schemes in 5G. The main takeaway of this review was that most of the existing ML

solutions perform better than heuristic approaches.

Chapter three presented novel methods for HO management. First, the models used for simula-

tion were presented, and in order to incorporate more realistic features, ray-tracing model was

employed to capture real-world data in the simulation. Two novel solutions were developed, one

based on clustering, used as a benchmark and the other based on RL as a proposed HO man-

agement solution. In terms of solutions based on RL, DRL was studied and its shortcomings

presented, leading to the development and use of DDRL.
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Chapter four presented the results obtained and offered extensive analyses of the results. Be-

cause DRL has more drawbacks compared to DDRL, this section concentrated on the model’s

analysis and performance based on benchmarks and DDRL. The results obtained from the

DDRL-based HO management model resulted in higher throughput for a given trajectory, and

thus DDRL was used in the proposed approach. Moreover, the proposed model has the ad-

vantage of being computationally adaptable and straightforward to implement in mm-wave 5G

wireless systems. Simulations were used to validate the model and the findings indicate a sig-

nificant improvement in throughput with fewer HOs. Additionally, the model was shown to be

scalable in terms of the number of BSs and proven to be adaptable to current wireless network

architectures. To the best of my knowledge, this is the first work that incorporated HO cost into

the RL reward design. In addition, this is the first attempt at estimating UE location by mapping

the UE position to the instantaneous SNR, which was used in defining the state of the DDRL

model.

Optimization of HO decisions is a critical challenge in mm-wave mobile wireless communica-

tion. Consequently, it is critical to properly manage the decision regarding which BS the UEs

hand over to, in order to reduce the adverse effects resulting from the use of mm-waves. The

main contribution of this thesis is the development of an intelligent HO optimization model for

5G mm-wave communications. The proposed model is based on RL and can handle the trade-

off between selecting the BS a) with the highest instantaneous SNR, and b) that can prolong

the BS-UE connection, thereby resulting in higher QoS and QoE for UEs. This model can be

applied to both mm-wave links and sub-6 GHz links.

Future works will focus on evolving HetNet architectures for 6G systems using THz communi-

cation links. While the vision of using THz frequency for SCs in future wireless systems would

certainly improve the UE throughput and overall device capability, HO will still be a significant

issue due to the propagation characteristics associated with high-frequency bands. Remarkably,

the effect of high propagation loss associated with high frequencies necessitates the use of ro-

bust LOS even for short-distance communications in order to efficiently receive THz signals at

the UE. If THz frequency is used by SCs in 6G networks, HO will become a more serious issue.

As a result, future work will investigate more heterogeneous architectures involving sub-6 GHz,

mm-wave, and THz cells, and suggest suitable intelligent HO schemes.
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APPENDICES

Appendix 1: Python codes for System Model

Deploying BS using PPP

import numpy as np

import scipy.stats

import matplotlib.pyplot as plt

#Simulation window parameters

xMin=0;xMax=1;

yMin=0;yMax=1;

xDelta=xMax-xMin;yDelta=yMax-yMin; #rectangle dimensions

areaTotal=xDelta*yDelta;

#intensity (ie mean density) of the Poisson process

def bs_generation(lambda0 = 10 ):

result_out = np.zeros((lambda0,2))

#Point process parameters

np.random.seed(4)

#Simulate Poisson point process

#Poisson number of points

numbPoints = scipy.stats.poisson( lambda0*areaTotal ).rvs()

#x coordinates of Poisson points

xx = xDelta*scipy.stats.uniform.rvs(0,100,((numbPoints,1)))+xMin

#y coordinates of Poisson points

yy = yDelta*scipy.stats.uniform.rvs(0,100,((numbPoints,1)))+yMin

if len(xx) > lambda0:

#randomRows = np.random.randint(len(xx), size=lambda0)

randomRows = np.random.choice(len(xx), lambda0, replace=False)

for i in range (lambda0):

result_out[i,0]= int((xx[randomRows[i]]))

result_out[i,1]= int((yy[randomRows[i]]))

else:

for i in range (xx):

result_out[i,0]= int((xx[i]))

result_out[i,1]= int((yy[i]))

return result_out
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Pathloss Model

import numpy as np

def pathlossmmwave(distance = 1):

alpha1 = 61.4

beta1 = 2

mu, sigma = 0, 5.8 # mean and standard deviation

path_loss = alpha1 + 10*beta1*np.log10(distance) + np.random.normal(mu

, sigma, 1)

return path_loss
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Appendix 2: Python codes for Agent Q-Neural Network

Agent Q-Network Function

# -*- coding: utf-8 -*-

"""

Created on Fri Aug 16 13:43:21 2019

@author: 2427060M

"""

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import Adam

class DeepNeuralNetowk:

def __init__(self, observation_space, action_space):

self.model = Sequential()

self.model.add(Dense(512, input_shape = (observation_space, ),

activation = "relu"))

self.model.add(Dense(256, activation = "relu"))

self.model.add(Dense(128, activation = "relu" ))

self.model.add(Dense(64, activation = "relu"))

self.model.add(Dense(action_space, activation = "linear"))

self.model.compile(loss = "mse", optimizer = Adam(lr = 0.001))

self.model.summary()
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Appendix 3: Python codes for Main function

Main function

# -*- coding: utf-8 -*-

"""

Created on Fri Aug 16 14:53:08 2019

@author: Michael Mollel

Env = Tensorflow 1.15, Keras 2.2.4

Functions = to run this file you also need to import files found in the

*https://github.com/msamwelmollel/HOMAN_V1*

"""

import numpy as np

import argparse

from data_models.ddqn_data_model import DDQNTrainer

from import_trajectory_information import process_sinr

from keras.utils import to_categorical

from data_models.reward.reward_logger1 import RewardLogger

from data_models.user_log.user_log1 import print_data

from data_models.average_module import average_data

from data_models.handover_performance import handover_performance as hper

from data_models.handover_performance import handover as handover_report

def solution_v1(user, delay_cost, min_SNR, bs_intensity):

ENV_NAME = ’handover’

antennas = bs_intensity

intensity = bs_intensity

model_path = ’./data_models/models/model_save_intensity_’+str(intensity

)+’_min_sinr_’+str(min_SNR)+’

_delay_cost_’+str(delay_cost)+’

_user_’+str(user)+’_.h5’

SNR, SNR_h, POSITION = process_sinr(intensity,antennas, user)

action_space = SNR.shape[1]

INPUT_SHAPE = 2 * action_space

data_model=DDQNTrainer(INPUT_SHAPE, action_space, model_path)
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reward_path= "./data_models/reward/intensity_"+str(intensity)+"_user_"+

str(user)+"_reward_delay_"+str(

delay_cost)+"_SNR_"+str(min_SNR)+

".csv"

position_path= "./data_models/reward/intensity_"+str(intensity)+"_user_

"+str(user)+"_position_delay_"+

str(delay_cost)+"_SNR_"+str(

min_SNR)+".csv"

reward_logger = RewardLogger(ENV_NAME,reward_path,position_path)

run = 0

total_step = 0

for j in range(1000):

terminal = False

step, score, hd, lf = 0, 0, 0, 0

run += 1

action= np.argmax(SNR[0,:])

current_state=np.reshape(np.append(SNR[0,:], to_categorical(action,

num_classes=SNR.shape[1])),[

1, INPUT_SHAPE])

current_state_h=np.reshape(np.append(SNR_h[0,:], to_categorical(

action, num_classes=SNR_h.

shape[1])),[1, INPUT_SHAPE])

for i in range(0,1000):

total_step += 1

step += 1

if i == 999:

terminal = True

if current_state[:, action] >= min_SNR:

action = action

else:

action = data_model.move(current_state)

hd = hd + 1

125



next_state = np.reshape(np.append(SNR[i+1,:], to_categorical(

action, num_classes=SNR.

shape[1])),[1,

INPUT_SHAPE])

if next_state[:, action] < min_SNR:

lf = lf+1

next_state_h = np.reshape(np.append(SNR_h[i+1,:],

to_categorical(action,

num_classes=SNR_h.shape[1

])),[1, INPUT_SHAPE])

if np.all(current_state[:, SNR.shape[1]:] == next_state[:, SNR.

shape[1]:]):

reward = np.multiply(1,np.log10(1+(10**((current_state[:,

int(action)])/10))))

else:

reward = (np.multiply(1,np.multiply(np.log10(1+(10**((

current_state_h[:,int

(action)])/10))),1)))

*(1-delay_cost)

score += reward

data_model.remember((current_state), action, reward, (

next_state), terminal)

current_state = next_state

current_state_h = next_state_h

data_model.step_update(total_step)

if ((j % 1 == 0) and (i % 999 == 0)):

handover_report(delay_cost,intensity, user)

a,b,c,d,e,f,g,h = hper(min_SNR, delay_cost, intensity, user

)
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print("Run Episode :"+ str(j) +" Position i = :"+

str(i) +" total step

"+ str(total_step) +

" Handover Q :"+

str(c) +"

handover N :"+str(

f) +" MSNRQ :"

+ str(d) + "

MSNRN :" +

str(g) +" REward

"+ str(score))

if j % 100== 0:

average_data(j, intensity,delay_cost)

if terminal:

break

if __name__ == "__main__":

bs_intensity = [10,20,..., 100]

min_snr= [20]

delay_cost = [3] # t_{d} = 0.75, 1, 2

for bs_intensity in bs_intensity:

for delay_cost in delay_cost:

for min_snr in min_snr:

for user in range(5,6):

solution_v1(user, delay_cost, min_snr, bs_intensity)
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