346 research outputs found

    Solid state transformer technologies and applications: a bibliographical survey

    Get PDF
    This paper presents a bibliographical survey of the work carried out to date on the solid state transformer (SST). The paper provides a list of references that cover most work related to this device and a short discussion about several aspects. The sections of the paper are respectively dedicated to summarize configurations and control strategies for each SST stage, the work carried out for optimizing the design of high-frequency transformers that could adequately work in the isolation stage of a SST, the efficiency of this device, the various modelling approaches and simulation tools used to analyze the performance of a SST (working a component of a microgrid, a distribution system or just in a standalone scenario), and the potential applications that this device is offering as a component of a power grid, a smart house, or a traction system.Peer ReviewedPostprint (published version

    Development of a Supercapacitor based Surge Resistant Uninterruptible Power Supply

    Get PDF
    Uninterruptible Power Supplies (UPSs) provide short-term power back-up to sensitive electronic and electrical equipments, where an unexpected power loss could lead to undesirable outcomes. They usually bridge the connected equipment between the utility mains power and other long term back-up power systems like generators. A UPS also provides a “clean” source of power, meaning they filter the connected equipment from distortions in electrical parameters of the mains power like noise, harmonics, surges, sags and spikes. A surge resistant UPS or SRUPS is one that has the capability to withstand surges, which are momentary or sustained increases in the mains voltage, and react quickly enough to offer protection to the connected equipment from the same. Usually UPSs run off battery power when the utility mains power is absent. But the SRUPS developed in this design project uses super capacitors instead of battery packs. The reason for this is that the high energy-densities and medium power-densities offered by super capacitors allow for it to serve two purposes. One is to provide the DC power to operate the UPS in the absence of mains power, as an alternative to batteries. Secondly, super capacitors can withstand heavy momentary high current/voltage surges due to its high energy-density characteristics. Also as the life-time of super capacitors is much higher than that of conventional batteries and as they do not need regular topping-up or inspection, the end result is a truly maintenance-free UPS. Most commercial UPSs do not have inherent surge protection capabilities. The UPS is one entity while a discrete surge protection module is inserted between the utility mains and the UPS to provide for transient surge suppression. In the proposed SRUPS, the super capacitor, because of their inherent capability to absorb transient surges, forms a protective front end to the actual UPS rather than needing to have the involvement of discrete protection devices

    A Simple Space Vector Modulation of High-Frequency AC Linked Three-Phase-to-Single-Phase/DC Converter

    Get PDF

    Soft-Switching Solid-State Transformer (S4T) With Reduced Conduction Loss

    Get PDF
    © 2020 IEEESolid-state transformers (SSTs) are a promising solution for photovoltaic (PV), wind, traction, data center, battery energy storage system (BESS), and fast charging electric vehicle (EV) applications. Traditional SSTs are typically three-stage, i.e., hard-switching cascaded multilevel rectifiers and inverters with dual active bridge (DAB) converters, which leads to bulky passives, low efficiency, and high EMI. This paper proposes a new soft-switching solid-state transformer (S4T). The S4T has full-range zero-voltage switching (ZVS), electrolytic capacitor-less dc-link, and controlled dv/dt which reduces EMI. The S4T comprises two reverse-blocking current-source inverter (CSI) bridges, auxiliary branches for ZVS, and transformer magnetizing inductor as reduced dc-link with 60% ripple. Compared to the prior S4T, an effective change on the leakage inductance diode is made to reduce the number of the devices on the main power path by 20% for significant conduction loss saving and retain the same functionality of damping the resonance between the leakage and resonant capacitors and recycling trapped leakage energy. The conduction loss saving is crucial, being the dominating loss mechanism in SSTs. Importantly, the proposed single-stage SST not only holds the potential for high power density and high efficiency, but also has full functionality, e.g., multiport DC loads integration, voltage regulation, reactive power compensation, unlike traditional single-stage matrix SST. The S4T can achieve single-stage isolated bidirectional DC-DC, AC-DC, DC-AC, or AC-AC conversion. It can also be configured input-series output-parallel (ISOP) in a modular way for medium-voltage (MV) grids. Hence, the S4T is a promising candidate of the SST. The full functionality, e.g., voltage buck-boost, multiport, etc. and the universality of the S4T for DC-DC, DC-AC, and AC-AC conversion are verified through simulations and experiments of two-port and three-port MV prototypes based on 3.3 kV SiC MOSFETs in DC-DC, DC-AC, and AC-AC modes at 2 kV.This work was supported by Power America Institute, ARPA-E under DE-AR0000899, and Center for Distributed Energy, Georgia Institute of Technology

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    Improved space vector modulation with reduced switching vectors for multi-phase matrix converter

    Get PDF
    Multi-phase converter inherits numerous advantages, namely superior fault tolerance, lower per-leg power rating and higher degree of freedom in control. With these advantages, this thesis proposes an improved space vector modulation (SVM) technique to enhance the ac-to-ac power conversion capability of the multi-phase matrix converter. The work is set to achieve two objectives. First is to improve the SVM of a three-to-seven phase single end matrix converter by reducing number of space vector combinations. Second is to use the active vector of the SVM to eliminate the common-mode voltage due to the heterogeneous switching combination of a dual three-to-five phase matrix converter. In the first part, the proposed technique utilizes only 129 out of 2,187 possible active space vectors. With the reduction, the SVM switching sequence is greatly simplified and the execution time is shortened. Despite this, no significant degradation in the output and the input waveform quality is observed from the MATLAB/Simulink simulation and the hardware prototype. The results show that the output voltage can reach up to 76.93% of the input voltage, which is the maximum physical limit of a three-to-seven phase matrix converter. In addition, the total harmonics distortion (THD) for the output voltage is measured to be below 5% over the operating frequency range of 0.1 Hz to 300 Hz. For the second part, the common-mode voltage elimination is based on the cancellation of the resultant vectors (that causes the common-mode to be formed), using a specially derived active vectors of the dual matrix converter. The elimination strategy is coupled with the ability to control the input power factor to unity. The proposed concept is verified by the MATLAB/Simulink simulation and is validated using a 5 kW three-to-five phase matrix converter prototype. The SVM switching algorithm itself is implemented on a dSPACE-1006 digital signal processor platform. The results prove that the common-mode voltage is successfully eliminated from the five-phase induction motor winding. Furthermore, the output phase voltage is boosted up to 150% of the input voltage in linear modulation range

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    Power Electronic Transformer with Open-End Winding Electric Drive for Wind Energy Conversion Systems

    Get PDF
    University of Minnesota Ph.D. dissertation. May 2016. Major: Electrical Engineering. Advisor: Ned Mohan. 1 computer file (PDF); xii, 187 pages.Power Electronic Transformers (PETs) provide a reduction in size over line frequency transformers by operating at much higher frequencies than line frequency or grid frequency. Due to their smaller size, they could be useful in renewable energy systems where an interface with the grid is needed. As the name suggests, a power electronic interface is needed to convert line frequency voltages to high frequency voltages before they can be fed to the transformer. A PET topology that has simple control and less number of high voltage devices would be considered desirable due to lower total device cost and easy control implementation. A push-pull based PET topology has been proposed in the past which contains only two high voltage controlled switching devices and the control of those two devices is very simple. This topology could be configured for single stage ac to dc power conversion, to which an open-end winding dc to ac converter could be connected. Alternatively, it could be configured for direct ac to ac power conversion using dual matrix converters. In the first part of this thesis, the aforementioned push-pull based power electronic topology has been studied for power conversion from ac to dc and vice versa. Both single phase ac to dc and three phase ac to dc variants of the topology have been analyzed for power transfer, rms currents and soft switching. They provide attractive features which include single stage ac to dc bidirectional power conversion, unity power factor operation in open loop and control of dc side voltage using simple PI controllers. The other part of this thesis deals with open-end winding drives for suppression of common mode voltages at machine terminals. Switching frequency Common Mode Voltages (CMV) are generated by conventional Pulse Width Modulated (PWM) drives at machine terminals, which cause shaft voltage build up leading to bearing currents. These bearing currents are harmful for the machine and also cause Electromagnetic Interference (EMI). Open-end winding drives consist of one electric drive connected on each end of a three phase electric motor with the stator neutral opened up to give three more terminals. Open-end winding drives can be controlled to suppress switching frequency CMV at machine terminals. In this thesis, open-end winding two level Voltage Source Inverter (VSI) drive and open-end winding two level Matrix Converter (MC) drives have been investigated. Carrier based PWM techniques have been proposed for each of these drives for suppressing CMV. In addition, an improved four step commutation method has been proposed for the open-end winding matrix converter drive to suppress CMV spikes during the commutation process. Finally, a circuit consisting of the reduced switch PET connected with an open-end winding MC drive has been studied for single stage ac to ac power conversion with open loop power factor control

    Optimization study of high power static inverters and converters Final report

    Get PDF
    Optimization study and basic performance characteristics for conceptual designs for high power static inverter

    IoT high-frequency electronic transformer with dimmable output voltage using PWM signals

    Get PDF
    This work presents the design, simulation, and implementation of a low-power electronic transformer, which output effective voltage can be controlled wirelessly through WIFI, via a user interface on a mobile phone. The methodology used in this project consists of 4 stages, a rectifier, an inverter, the inverter’s control system, and a ferrite reducer. The inverter has a full-bridge design and was implemented using MOSFET. The control system can vary the frequency and duty cycle of the output signals, by phase shifting the control signals, thus achieving the functionality of reducing the effective output voltage. Circuit design simulations were performed using PsPice Orcad. The implementation and the mathematical model of the built electronic transformer are carried out. The designed transformer operates with a maximum input voltage of 120 Vrms at 60 Hz at frequencies between 20 kHz and 30 kHz, which are controlled through the user interface; can reduce a 120 Vrms 60 Hz input signal to an effective voltage between 10 Vrms and 20 Vrms at a maximum power of 50 W. This project presents the feasibility of developing electronic transformers with variable output voltage, remotely controlled using IoT technology.This work presents the design, simulation, and implementation of a low-power electronic transformer, which output effective voltage can be controlled wirelessly through WIFI, via a user interface on a mobile phone. The methodology used in this project consists of 4 stages, a rectifier, an inverter, the inverter’s control system, and a ferrite reducer. The inverter has a full-bridge design and was implemented using MOSFET. The control system can vary the frequency and duty cycle of the output signals, by phase shifting the control signals, thus achieving the functionality of reducing the effective output voltage. Circuit design simulations were performed using PsPice Orcad. The implementation and the mathematical model of the built electronic transformer are carried out. The designed transformer operates with a maximum input voltage of 120 Vrms at 60 Hz at frequencies between 20 kHz and 30 kHz, which are controlled through the user interface; can reduce a 120 Vrms 60 Hz input signal to an effective voltage between 10 Vrms and 20 Vrms at a maximum power of 50 W. This project presents the feasibility of developing electronic transformers with variable output voltage, remotely controlled using IoT technology
    corecore