410 research outputs found

    A Single-Exponential Fixed-Parameter Algorithm for Distance-Hereditary Vertex Deletion

    Get PDF
    Vertex deletion problems ask whether it is possible to delete at most kk vertices from a graph so that the resulting graph belongs to a specified graph class. Over the past years, the parameterized complexity of vertex deletion to a plethora of graph classes has been systematically researched. Here we present the first single-exponential fixed-parameter tractable algorithm for vertex deletion to distance-hereditary graphs, a well-studied graph class which is particularly important in the context of vertex deletion due to its connection to the graph parameter rank-width. We complement our result with matching asymptotic lower bounds based on the exponential time hypothesis. As an application of our algorithm, we show that a vertex deletion set to distance-hereditary graphs can be used as a parameter which allows single-exponential fixed-parameter tractable algorithms for classical NP-hard problems.Comment: 43 pages, 9 figures (revised journal version; an extended abstract appeared in the proceedings of MFCS 2016

    An FPT algorithm and a polynomial kernel for Linear Rankwidth-1 Vertex Deletion

    Get PDF
    Linear rankwidth is a linearized variant of rankwidth, introduced by Oum and Seymour [Approximating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514--528, 2006]. Motivated from recent development on graph modification problems regarding classes of graphs of bounded treewidth or pathwidth, we study the Linear Rankwidth-1 Vertex Deletion problem (shortly, LRW1-Vertex Deletion). In the LRW1-Vertex Deletion problem, given an nn-vertex graph GG and a positive integer kk, we want to decide whether there is a set of at most kk vertices whose removal turns GG into a graph of linear rankwidth at most 11 and find such a vertex set if one exists. While the meta-theorem of Courcelle, Makowsky, and Rotics implies that LRW1-Vertex Deletion can be solved in time f(k)⋅n3f(k)\cdot n^3 for some function ff, it is not clear whether this problem allows a running time with a modest exponential function. We first establish that LRW1-Vertex Deletion can be solved in time 8k⋅nO(1)8^k\cdot n^{\mathcal{O}(1)}. The major obstacle to this end is how to handle a long induced cycle as an obstruction. To fix this issue, we define necklace graphs and investigate their structural properties. Later, we reduce the polynomial factor by refining the trivial branching step based on a cliquewidth expression of a graph, and obtain an algorithm that runs in time 2O(k)⋅n42^{\mathcal{O}(k)}\cdot n^4. We also prove that the running time cannot be improved to 2o(k)⋅nO(1)2^{o(k)}\cdot n^{\mathcal{O}(1)} under the Exponential Time Hypothesis assumption. Lastly, we show that the LRW1-Vertex Deletion problem admits a polynomial kernel.Comment: 29 pages, 9 figures, An extended abstract appeared in IPEC201

    Data Reduction for Graph Coloring Problems

    Full text link
    This paper studies the kernelization complexity of graph coloring problems with respect to certain structural parameterizations of the input instances. We are interested in how well polynomial-time data reduction can provably shrink instances of coloring problems, in terms of the chosen parameter. It is well known that deciding 3-colorability is already NP-complete, hence parameterizing by the requested number of colors is not fruitful. Instead, we pick up on a research thread initiated by Cai (DAM, 2003) who studied coloring problems parameterized by the modification distance of the input graph to a graph class on which coloring is polynomial-time solvable; for example parameterizing by the number k of vertex-deletions needed to make the graph chordal. We obtain various upper and lower bounds for kernels of such parameterizations of q-Coloring, complementing Cai's study of the time complexity with respect to these parameters. Our results show that the existence of polynomial kernels for q-Coloring parameterized by the vertex-deletion distance to a graph class F is strongly related to the existence of a function f(q) which bounds the number of vertices which are needed to preserve the NO-answer to an instance of q-List-Coloring on F.Comment: Author-accepted manuscript of the article that will appear in the FCT 2011 special issue of Information & Computatio

    Structural Rounding: Approximation Algorithms for Graphs Near an Algorithmically Tractable Class

    Get PDF
    We develop a framework for generalizing approximation algorithms from the structural graph algorithm literature so that they apply to graphs somewhat close to that class (a scenario we expect is common when working with real-world networks) while still guaranteeing approximation ratios. The idea is to edit a given graph via vertex- or edge-deletions to put the graph into an algorithmically tractable class, apply known approximation algorithms for that class, and then lift the solution to apply to the original graph. We give a general characterization of when an optimization problem is amenable to this approach, and show that it includes many well-studied graph problems, such as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum Maximal Matching, Chromatic Number, (l-)Dominating Set, Edge (l-)Dominating Set, and Connected Dominating Set. To enable this framework, we develop new editing algorithms that find the approximately-fewest edits required to bring a given graph into one of a few important graph classes (in some cases these are bicriteria algorithms which simultaneously approximate both the number of editing operations and the target parameter of the family). For bounded degeneracy, we obtain an O(r log{n})-approximation and a bicriteria (4,4)-approximation which also extends to a smoother bicriteria trade-off. For bounded treewidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w}))-approximation, and for bounded pathwidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w} * log n))-approximation. For treedepth 2 (related to bounded expansion), we obtain a 4-approximation. We also prove complementary hardness-of-approximation results assuming P != NP: in particular, these problems are all log-factor inapproximable, except the last which is not approximable below some constant factor 2 (assuming UGC)

    5-Approximation for ?-Treewidth Essentially as Fast as ?-Deletion Parameterized by Solution Size

    Get PDF
    The notion of ?-treewidth, where ? is a hereditary graph class, was recently introduced as a generalization of the treewidth of an undirected graph. Roughly speaking, a graph of ?-treewidth at most k can be decomposed into (arbitrarily large) ?-subgraphs which interact only through vertex sets of size ?(k) which can be organized in a tree-like fashion. ?-treewidth can be used as a hybrid parameterization to develop fixed-parameter tractable algorithms for ?-deletion problems, which ask to find a minimum vertex set whose removal from a given graph G turns it into a member of ?. The bottleneck in the current parameterized algorithms lies in the computation of suitable tree ?-decompositions. We present FPT-approximation algorithms to compute tree ?-decompositions for hereditary and union-closed graph classes ?. Given a graph of ?-treewidth k, we can compute a 5-approximate tree ?-decomposition in time f(?(k)) ? n^?(1) whenever ?-deletion parameterized by solution size can be solved in time f(k) ? n^?(1) for some function f(k) ? 2^k. The current-best algorithms either achieve an approximation factor of k^?(1) or construct optimal decompositions while suffering from non-uniformity with unknown parameter dependence. Using these decompositions, we obtain algorithms solving Odd Cycle Transversal in time 2^?(k) ? n^?(1) parameterized by bipartite-treewidth and Vertex Planarization in time 2^?(k log k) ? n^?(1) parameterized by planar-treewidth, showing that these can be as fast as the solution-size parameterizations and giving the first ETH-tight algorithms for parameterizations by hybrid width measures

    5-Approximation for H\mathcal{H}-Treewidth Essentially as Fast as H\mathcal{H}-Deletion Parameterized by Solution Size

    Full text link
    The notion of H\mathcal{H}-treewidth, where H\mathcal{H} is a hereditary graph class, was recently introduced as a generalization of the treewidth of an undirected graph. Roughly speaking, a graph of H\mathcal{H}-treewidth at most kk can be decomposed into (arbitrarily large) H\mathcal{H}-subgraphs which interact only through vertex sets of size O(k)O(k) which can be organized in a tree-like fashion. H\mathcal{H}-treewidth can be used as a hybrid parameterization to develop fixed-parameter tractable algorithms for H\mathcal{H}-deletion problems, which ask to find a minimum vertex set whose removal from a given graph GG turns it into a member of H\mathcal{H}. The bottleneck in the current parameterized algorithms lies in the computation of suitable tree H\mathcal{H}-decompositions. We present FPT approximation algorithms to compute tree H\mathcal{H}-decompositions for hereditary and union-closed graph classes H\mathcal{H}. Given a graph of H\mathcal{H}-treewidth kk, we can compute a 5-approximate tree H\mathcal{H}-decomposition in time f(O(k))⋅nO(1)f(O(k)) \cdot n^{O(1)} whenever H\mathcal{H}-deletion parameterized by solution size can be solved in time f(k)⋅nO(1)f(k) \cdot n^{O(1)} for some function f(k)≄2kf(k) \geq 2^k. The current-best algorithms either achieve an approximation factor of kO(1)k^{O(1)} or construct optimal decompositions while suffering from non-uniformity with unknown parameter dependence. Using these decompositions, we obtain algorithms solving Odd Cycle Transversal in time 2O(k)⋅nO(1)2^{O(k)} \cdot n^{O(1)} parameterized by bipartite\mathsf{bipartite}-treewidth and Vertex Planarization in time 2O(klog⁥k)⋅nO(1)2^{O(k \log k)} \cdot n^{O(1)} parameterized by planar\mathsf{planar}-treewidth, showing that these can be as fast as the solution-size parameterizations and giving the first ETH-tight algorithms for parameterizations by hybrid width measures.Comment: Conference version to appear at the European Symposium on Algorithms (ESA 2023

    On the (non-)existence of polynomial kernels for Pl-free edge modification problems

    Full text link
    Given a graph G = (V,E) and an integer k, an edge modification problem for a graph property P consists in deciding whether there exists a set of edges F of size at most k such that the graph H = (V,E \vartriangle F) satisfies the property P. In the P edge-completion problem, the set F of edges is constrained to be disjoint from E; in the P edge-deletion problem, F is a subset of E; no constraint is imposed on F in the P edge-edition problem. A number of optimization problems can be expressed in terms of graph modification problems which have been extensively studied in the context of parameterized complexity. When parameterized by the size k of the edge set F, it has been proved that if P is an hereditary property characterized by a finite set of forbidden induced subgraphs, then the three P edge-modification problems are FPT. It was then natural to ask whether these problems also admit a polynomial size kernel. Using recent lower bound techniques, Kratsch and Wahlstrom answered this question negatively. However, the problem remains open on many natural graph classes characterized by forbidden induced subgraphs. Kratsch and Wahlstrom asked whether the result holds when the forbidden subgraphs are paths or cycles and pointed out that the problem is already open in the case of P4-free graphs (i.e. cographs). This paper provides positive and negative results in that line of research. We prove that parameterized cograph edge modification problems have cubic vertex kernels whereas polynomial kernels are unlikely to exist for the Pl-free and Cl-free edge-deletion problems for large enough l

    A polynomial kernel for Block Graph Deletion

    Get PDF
    In the Block Graph Deletion problem, we are given a graph GG on nn vertices and a positive integer kk, and the objective is to check whether it is possible to delete at most kk vertices from GG to make it a block graph, i.e., a graph in which each block is a clique. In this paper, we obtain a kernel with O(k6)\mathcal{O}(k^{6}) vertices for the Block Graph Deletion problem. This is a first step to investigate polynomial kernels for deletion problems into non-trivial classes of graphs of bounded rank-width, but unbounded tree-width. Our result also implies that Chordal Vertex Deletion admits a polynomial-size kernel on diamond-free graphs. For the kernelization and its analysis, we introduce the notion of `complete degree' of a vertex. We believe that the underlying idea can be potentially applied to other problems. We also prove that the Block Graph Deletion problem can be solved in time 10k⋅nO(1)10^{k}\cdot n^{\mathcal{O}(1)}.Comment: 22 pages, 2 figures, An extended abstract appeared in IPEC201
    • 

    corecore