4,733 research outputs found

    Checkpointing as a Service in Heterogeneous Cloud Environments

    Get PDF
    A non-invasive, cloud-agnostic approach is demonstrated for extending existing cloud platforms to include checkpoint-restart capability. Most cloud platforms currently rely on each application to provide its own fault tolerance. A uniform mechanism within the cloud itself serves two purposes: (a) direct support for long-running jobs, which would otherwise require a custom fault-tolerant mechanism for each application; and (b) the administrative capability to manage an over-subscribed cloud by temporarily swapping out jobs when higher priority jobs arrive. An advantage of this uniform approach is that it also supports parallel and distributed computations, over both TCP and InfiniBand, thus allowing traditional HPC applications to take advantage of an existing cloud infrastructure. Additionally, an integrated health-monitoring mechanism detects when long-running jobs either fail or incur exceptionally low performance, perhaps due to resource starvation, and proactively suspends the job. The cloud-agnostic feature is demonstrated by applying the implementation to two very different cloud platforms: Snooze and OpenStack. The use of a cloud-agnostic architecture also enables, for the first time, migration of applications from one cloud platform to another.Comment: 20 pages, 11 figures, appears in CCGrid, 201

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Green Cloud - Load Balancing, Load Consolidation using VM Migration

    Get PDF
    Recently, cloud computing is a new trend emerging in computer technology with a massive demand from the clients. To meet all requirements, a lot of cloud data centers have been constructed since 2008 when Amazon published their cloud service. The rapidly growing data center leads to the consumption of a tremendous amount of energy even cloud computing has better improved in the performance and energy consumption, but cloud data centers still absorb an immense amount of energy. To raise company’s income annually, the cloud providers start considering green cloud concepts which gives an idea about how to optimize CPU’s usage while guaranteeing the quality of service. Many cloud providers are paying more attention to both load balancing and load consolidation which are two significant components of a cloud data center. Load balancing is taken into account as a vital part of managing income demand, improving the cloud system’s performance. Live virtual machine migration is a technique to perform the dynamic load balancing algorithm. To optimize the cloud data center, three issues are considered: First, how does the cloud cluster distribute the virtual machine (VM) requests from clients to all physical machine (PM) when each computer has a different capacity. Second, what is the solution to make CPU’s usage of all PMs to be nearly equal? Third, how to handle two extreme scenarios: rapidly rising CPU’s usage of a PM due to sudden massive workload requiring VM migration immediately and resources expansion to respond to substantial cloud cluster through VM requests. In this chapter, we provide an approach to work with those issues in the implementation and results. The results indicated that the performance of the cloud cluster was improved significantly. Load consolidation is the reverse process of load balancing which aims to provide sufficient cloud servers to handle the client requests. Based on the advance of live VM migration, cloud data center can consolidate itself without interrupting the cloud service, and superfluous PMs are turned to save mode to reduce the energy consumption. This chapter provides a solution to approach load consolidation including implementation and simulation of cloud servers

    Efficient resource management for Cloud computing environments

    Full text link

    Enabling virtualization technologies for enhanced cloud computing

    Get PDF
    Cloud Computing is a ubiquitous technology that offers various services for individual users, small businesses, as well as large scale organizations. Data-center owners maintain clusters of thousands of machines and lease out resources like CPU, memory, network bandwidth, and storage to clients. For organizations, cloud computing provides the means to offload server infrastructure and obtain resources on demand, which reduces setup costs as well as maintenance overheads. For individuals, cloud computing offers platforms, resources and services that would otherwise be unavailable to them. At the core of cloud computing are various virtualization technologies and the resulting Virtual Machines (VMs). Virtualization enables cloud providers to host multiple VMs on a single Physical Machine (PM). The hallmark of VMs is the inability of the end-user to distinguish them from actual PMs. VMs allow cloud owners such essential features as live migration, which is the process of moving a VM from one PM to another while the VM is running, for various reasons. Features of the cloud such as fault tolerance, geographical server placement, energy management, resource management, big data processing, parallel computing, etc. depend heavily on virtualization technologies. Improvements and breakthroughs in these technologies directly lead to introduction of new possibilities in the cloud. This thesis identifies and proposes innovations for such underlying VM technologies and tests their performance on a cluster of 16 machines with real world benchmarks. Specifically the issues of server load prediction, VM consolidation, live migration, and memory sharing are attempted. First, a unique VM resource load prediction mechanism based on Chaos Theory is introduced that predicts server workloads with high accuracy. Based on these predictions, VMs are dynamically and autonomously relocated to different PMs in the cluster in an attempt to conserve energy. Experimental evaluations with a prototype on real world data- center load traces show that up to 80% of the unused PMs can be freed up and repurposed, with Service Level Objective (SLO) violations as little as 3%. Second, issues in live migration of VMs are analyzed, based on which a new distributed approach is presented that allows network-efficient live migration of VMs. The approach amortizes the transfer of memory pages over the life of the VM, thus reducing network traffic during critical live migration. The prototype reduces network usage by up to 45% and lowers required time by up to 40% for live migration on various real-world loads. Finally, a memory sharing and management approach called ACE-M is demonstrated that enables VMs to share and utilize all the memory available in the cluster remotely. Along with predictions on network and memory, this approach allows VMs to run applications with memory requirements much higher than physically available locally. It is experimentally shown that ACE-M reduces the memory performance degradation by about 75% and achieves a 40% lower network response time for memory intensive VMs. A combination of these innovations to the virtualization technologies can minimize performance degradation of various VM attributes, which will ultimately lead to a better end-user experience

    Virtual Organization Clusters: Self-Provisioned Clouds on the Grid

    Get PDF
    Virtual Organization Clusters (VOCs) provide a novel architecture for overlaying dedicated cluster systems on existing grid infrastructures. VOCs provide customized, homogeneous execution environments on a per-Virtual Organization basis, without the cost of physical cluster construction or the overhead of per-job containers. Administrative access and overlay network capabilities are granted to Virtual Organizations (VOs) that choose to implement VOC technology, while the system remains completely transparent to end users and non-participating VOs. Unlike alternative systems that require explicit leases, VOCs are autonomically self-provisioned according to configurable usage policies. As a grid computing architecture, VOCs are designed to be technology agnostic and are implementable by any combination of software and services that follows the Virtual Organization Cluster Model. As demonstrated through simulation testing and evaluation of an implemented prototype, VOCs are a viable mechanism for increasing end-user job compatibility on grid sites. On existing production grids, where jobs are frequently submitted to a small subset of sites and thus experience high queuing delays relative to average job length, the grid-wide addition of VOCs does not adversely affect mean job sojourn time. By load-balancing jobs among grid sites, VOCs can reduce the total amount of queuing on a grid to a level sufficient to counteract the performance overhead introduced by virtualization

    Performance Controlled Power Optimization for Virtualized Internet Datacenters

    Get PDF
    Modern data centers must provide performance assurance for complex system software such as web applications. In addition, the power consumption of data centers needs to be minimized to reduce operating costs and avoid system overheating. In recent years, more and more data centers start to adopt server virtualization strategies for resource sharing to reduce hardware and operating costs by consolidating applications previously running on multiple physical servers onto a single physical server. In this dissertation, several power efficient algorithms are proposed to effectively reduce server power consumption while achieving the required application-level performance for virtualized servers. First, at the server level this dissertation proposes two control solutions based on dynamic voltage and frequency scaling (DVFS) technology and request batching technology. The two solutions share a performance balancing technique that maintains performance balancing among all virtual machines so that they can have approximately the same performance level relative to their allowed peak values. Then, when the workload intensity is light, we adopt the request batching technology by using a controller to determine the time length for periodically batching incoming requests and putting the processor into sleep mode. When the workload intensity changes from light to moderate, request batching is automatically switched to DVFS to increase the processor frequency for performance guarantees. Second, at the datacenter level, this dissertation proposes a performance-controlled power optimization solution for virtualized server clusters with multi-tier applications. The solution utilizes both DVFS and server consolidation strategies for maximized power savings by integrating feedback control with optimization strategies. At the application level, a multi-input-multi-output controller is designed to achieve the desired performance for applications spanning multiple VMs, on a short time scale, by reallocating the CPU resources and DVFS. At the cluster level, a power optimizer is proposed to incrementally consolidate VMs onto the most power-efficient servers on a longer time scale. Finally, this dissertation proposes a VM scheduling algorithm that exploits core performance heterogeneity to optimize the overall system energy efficiency. The four algorithms at the three different levels are demonstrated with empirical results on hardware testbeds and trace-driven simulations and compared against state-of-the-art baselines
    • 

    corecore