
Clemson University
TigerPrints

All Dissertations Dissertations

5-2010

Virtual Organization Clusters: Self-Provisioned
Clouds on the Grid
Michael Murphy
Clemson University, mamurph@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Murphy, Michael, "Virtual Organization Clusters: Self-Provisioned Clouds on the Grid" (2010). All Dissertations. 511.
https://tigerprints.clemson.edu/all_dissertations/511

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/511?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Virtual Organization Clusters:
Self-Provisioned Clouds on the Grid

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Computer Science

by
Michael A. Murphy

May 2010

Accepted by:
Dr. Sebastien Goasguen, Committee Chair

Dr. Jim Martin
Dr. Walt Ligon
Dr. Robert Geist

Abstract

Virtual Organization Clusters (VOCs) provide a novel architecture for overlaying dedicated

cluster systems on existing grid infrastructures. VOCs provide customized, homogeneous execution

environments on a per-Virtual Organization basis, without the cost of physical cluster construction

or the overhead of per-job containers. Administrative access and overlay network capabilities are

granted to Virtual Organizations (VOs) that choose to implement VOC technology, while the system

remains completely transparent to end users and non-participating VOs. Unlike alternative systems

that require explicit leases, VOCs are autonomically self-provisioned according to configurable usage

policies. As a grid computing architecture, VOCs are designed to be technology agnostic and are

implementable by any combination of software and services that follows the Virtual Organization

Cluster Model.

As demonstrated through simulation testing and evaluation of an implemented prototype,

VOCs are a viable mechanism for increasing end-user job compatibility on grid sites. On existing

production grids, where jobs are frequently submitted to a small subset of sites and thus experience

high queuing delays relative to average job length, the grid-wide addition of VOCs does not adversely

affect mean job sojourn time. By load-balancing jobs among grid sites, VOCs can reduce the total

amount of queuing on a grid to a level sufficient to counteract the performance overhead introduced

by virtualization.

ii

Dedication

This dissertation is dedicated to my grandparents: Marge Tyner, Jim and Edrie Murphy,

and the late Dr. Calvin Tyner. Throughout my entire academic career, from grade school through

university, my grandparents have provided the encouragement and support that has made this

journey to the doctorate possible, and to them I am exceedingly grateful.

iii

Acknowledgments

I would like to express my sincere thanks to my research committee for their assistance with

this project. My advisor, Prof. Sebastien Goasguen, has spent countless hours assessing my work,

providing assistance with the research, and reading my long-winded e-mail messages. His patient

guidance throughout this process, along with his encouragement to publish results in challenging

venues, has inspired me to pursue loftier objectives in my research. Prof. Jim Martin, Prof. Walt

Ligon, and Prof. Robert Geist have assisted in the process by dedicating their time and expertise to

reviewing and aiding in the improvement of my research and its presentation.

Outside my committee, I would also like to thank the faculty members who have assisted

me with research guidance, pursuit of funding, and day-to-day administration issues. Prof. Jason

Hallstrom, Prof. Chris Post, and Prof. Steve Stevenson have guided my past research projects, ad-

vised me on career and professional issues, and were instrumental in my securing the NSF Graduate

Research Fellowship. Prof. Wayne Madison not only assisted me with the fellowship pursuit but

also contributed significant time and effort to handling administrative issues, advising me through-

out my undergraduate and graduate careers, and providing me with teaching opportunities in the

School of Computing. Prof. Pradip Srimani graciously reviewed paper submissions and mathemat-

ical estimation work, providing helpful comments for improvement of the material. The late Prof.

Per Brinch Hansen of the Syracuse University Department of Electrical Engineering and Computer

Science encouraged me with insights in distributed computing and computational problem solving,

which greatly shaped my approaches to the research problems described in this dissertation.

For their assistance with numerous administrative and technical issues, I would like to thank

the staff of the Clemson University School of Computing. Scott Duckworth and Nell Kennedy have

provided exceptional assistance with the provisioning of networking and other services required to

support our prototype systems, hardware and vendor advice, and assistance with hardware orders.

iv

April Bowen, Lea Benson, and Kim Keasler have generously provided their assistance with school and

university policy compliance, fellowship administration, facilities support, and other administrative

issues.

Throughout the process of researching Virtual Organization Clusters and preparing this

work, I have been privileged to work with a team of graduate and undergraduate students, who

have assisted in the collection of data, administration of computer systems, and co-authoring of

papers. I would like to express my sincere appreciation to Linton Abraham, Michael Fenn, Lance

Stout, Brandon Kagey, Joshua Canter, and Emmett McQuinn for their contributions to this research

project and to the publications that have resulted from it.

During my entire academic career, I have been supported by my relatives and friends as

I have pursued challenging and often time-consuming courses of study. I would like to thank my

grandparents, to whom this dissertation is dedicated, my parents – Mark Murphy and Ginny Murphy,

and the remainder of my family for their support and encouragement. I also owe a debt of gratitude

to all my friends through graduate school, including Dru and Heather Sepulveda, Katelyn Howay,

Shawn Becker, Tim and Kristen Rabideau, James Bardoner, Claire Wellborn, Sarah Peck, Jordan

and Shana Upham, Ben Sterrett, Christine Marusich, Myric Lehner, and Shawna Martell.

Simulation data sets used in this work have been provided by the Grid Observatory (grid-

observatory.org). The Grid Observatory is part of the EGEE-III EU project INFSO-RI-222667.

This material is based upon work supported under a National Science Foundation Graduate

Research Fellowship. Any opinions, findings, conclusions or recommendations expressed in this

publication are those of the author(s) and do not necessarily reflect the views of the National Science

Foundation.

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . viii

List of Figures . ix

1 Introduction . 1
1.1 Vision . 2
1.2 Motivation . 5
1.3 Thesis Statement . 12
1.4 Dissertation Organization . 13

2 Grid Systems . 15
2.1 Computational Grids . 16
2.2 Composition of Grids . 18
2.3 Virtual Organizations . 20
2.4 Computational Jobs . 22
2.5 Service-Oriented Architecture . 24
2.6 Cloud Computing Systems . 25

3 Operating System Virtualization . 29
3.1 Levels of Virtualization . 31
3.2 Instruction Set Architecture Requirements . 32
3.3 Dynamic Recompilation . 34
3.4 Paravirtualization . 35
3.5 Hardware Virtual Machine Extensions . 38
3.6 Applications of Virtualization Technology . 41

4 Related Work . 44
4.1 Virtualization of Grid Systems . 44
4.2 Simulation Systems . 55
4.3 System Resources . 58
4.4 System Management . 64

5 Virtual Organization Cluster Model . 68
5.1 Separation of Administrative Domains . 69

vi

5.2 Terminology . 72
5.3 Definition of a Virtual Organization Cluster . 74
5.4 Self-Provisioned Clouds . 77

6 Simulator for Virtual Organization Clusters . 79
6.1 Motivation for Simulation . 80
6.2 Grid Trace Data . 83
6.3 Simulator Design . 84

7 Prototype Implementation . 90
7.1 Cluster Setup . 91
7.2 Dynamic Provisioning of Virtual Organization Clusters 94
7.3 Management of Systems . 97

8 Simulation Test Results . 103
8.1 Preliminary Simulations . 104
8.2 Input Data Processing . 106
8.3 Control Simulation . 106
8.4 Standard Grid Architecture . 107
8.5 Virtual Organization Cluster Architecture . 109
8.6 Effects of Virtualization Overhead . 111

9 Prototype Test Results . 117
9.1 Performance Tests . 117
9.2 Dynamic Provisioning System . 127
9.3 Overlay Scheduling . 133
9.4 Operational Tests . 138
9.5 System Management with Stoker . 140

10 Conclusions . 145
10.1 Utility and Viability of Virtual Organization Clusters 147
10.2 Direct Impacts . 148
10.3 Broader Impacts . 148
10.4 Future Work . 151

Appendices . 153
A Electronic Attachments . 154
B License Agreements . 155

Bibliography . 161

vii

List of Tables

3.1 Levels of Virtualization . 32
3.2 Common Linux Virtualization Systems . 41

5.1 Examples of VOC Component Technologies . 77

8.1 Simulation Results . 114

9.1 Observed Boot Times . 119
9.2 Performance Comparison Between Slackware Linux 12 and CentOS 5.1 120
9.3 Comparison of VOC and Physical System Performance 120
9.4 Compute-Bound Virtualization Overheads . 122
9.5 Network-Bound Virtualization Overheads (Dual-Core) 122
9.6 Network-Bound Virtualization Overheads (Single-Core) 123
9.7 Bandwidth and Latency on Physical and Virtual Clusters 126
9.8 Effects of Overlay Scheduling . 135

viii

List of Figures

1.1 Vision of a Virtual Organization Cluster . 3
1.2 Traditional Grid Systems . 6
1.3 Virtualized Grids . 8
1.4 Leasing Architectures . 9
1.5 Virtual Overlay Cluster on a Grid . 11

2.1 Traditional Grid Layers . 17
2.2 Cluster Systems . 18
2.3 Grid Systems as Networks of Clusters . 19
2.4 Abstract View of Grid Systems . 19
2.5 Virtual Organizations on the Grid . 21
2.6 Regular Jobs . 22
2.7 Pilot Jobs . 23
2.8 Service Oriented Architecture . 24
2.9 Cloud Computing . 27

3.1 Virtual Machines . 30
3.2 Popek and Goldberg Virtualization Requirements 33
3.3 Virtualization with Dynamic Recompilation . 34
3.4 Type I Paravirtualization System . 36
3.5 Full Virtualization with Hardware Support . 39
3.6 Staged Virtual Machine Images . 40
3.7 Non-Staged Image in KVM Snapshot Mode . 40

4.1 Leasing Model . 46
4.2 Autonomic Model . 51

5.1 Administrative Domains . 70
5.2 Virtual Organization Clusters on a Grid System . 76

6.1 High-level components of SimVOC . 85

7.1 Cluster Construction Process . 92
7.2 Initial Test Cluster Setup . 93
7.3 Watchdog Daemon Functions . 95
7.4 Overview of Stoker . 99
7.5 Integration of Stoker with DHCP and DNS Services 101
7.6 Overview of Pulley . 102

8.1 Simulation of 2 VOCs Sharing 16 CPUs . 105
8.2 Simulation of 2 VOCs Sharing 4 CPUs . 105
8.3 Control Simulation . 107

ix

8.4 Trace of the Control Simulation . 108
8.5 Standard Architecture Simulation . 109
8.6 Trace of the Standard Architecture Simulation . 110
8.7 Representative Trace of a VOC Simulation . 112
8.8 KVM Simulation without Target Level . 112
8.9 KVM Simulation with Target Level 1024 . 113
8.10 Xen Simulation without Target Level . 113
8.11 Xen Simulation with Target Level 1024 . 115

9.1 Average Boot Times . 119
9.2 Virtualization Overheads for Compute-Bound Processes (Single-Core) 121
9.3 Virtualization Overheads for Network-Bound Processes (Single-Core) 121
9.4 Virtualization Overheads for Network-Bound Processes (Dual-Core) 124
9.5 Virtual Machine Bridged Networking . 125
9.6 Prototype System Architecture . 127
9.7 Virtual Machine Boot Delays as Recorded by Condor 129
9.8 Direct Execution of Batches of Jobs . 131
9.9 Long-Period Direct Submission of 10 Jobs (10 Second Length) 131
9.10 Short-Period Direct Submission of 10 Jobs (10 Second Length) 131
9.11 Short-Period Direct Submission of 10 Jobs (1 Second Length) 131
9.12 Globus Execution of Batches of Jobs . 132
9.13 Long-Period Job Submission Through Globus . 132
9.14 Short-Period Job Submission Through Globus (10 Second Jobs) 132
9.15 Short-Period Job Submission Through Globus (1 Second Jobs) 132
9.16 Transparent VOC Performance without Overlay Scheduling 135
9.17 Participating VOC Performance with Overlay Scheduling 136
9.18 Performance of the Simple Greedy VOC Watchdog Algorithm 137
9.19 Performance of the Delayed Response VOC Watchdog Algorithm 137
9.20 Short Operational Test . 138
9.21 Transparent Operational VOC: Engage VO . 139
9.22 Transparent Operational VOC: NanoHub VO . 140
9.23 Stoker Performance on a Parallel Hostname Job . 141
9.24 Stoker Performance on a Parallel Sleep Job . 142
9.25 Overhead of Networking and SSH in Stoker . 142
9.26 Stoker on a High Latency Network . 143
9.27 Stoker SSH and Network Overheads on a High Latency Network 144

10.1 Revisiting the Virtual Organization Cluster Architecture 146

x

Chapter 1

Introduction

Grid computing systems enable users associated with a variety of application domains to run

large-scale computational tasks that would overwhelm the capabilities of locally available hardware.

In order to utilize these systems, users create and submit batch jobs to grid sites, which schedule the

jobs for execution. Users, jobs, and computational resources are connected together via middleware,

or software layers that facilitate interaction between different parts of the grid system. At a high

level, the combination of middleware, resources, and utilization methodology employed on a grid

system may be called a grid architecture. Existing grid architectures generally require the user to

select computational resources directly and manage issues of job compatibility between resources

manually, resulting in a system that is neither easy to use [33] nor truly transparent to the user in

distributed computing terms [53]. Moreover, since users typically favor a small subset of grid sites

when submitting jobs, the grid is not effectively load-balanced, leading to longer queuing delays

while jobs wait for computational resources to become available.

Virtualization technology has been proposed as a mechanism for improving the usability

of grid computing systems by providing environment customization to users or groups of users.

By using virtual machines to run user jobs, the environment in which jobs execute becomes de-

coupled from the underlying hardware, allowing any physical site with a compatible Instruction Set

Architecture (ISA) to supply any variety of code libraries required for current or legacy applications.

Each environment becomes an isolated container for user applications, providing better security and

resource control than is available with traditional grid systems. [57] To date, a key limitation in the

deployment of virtual environments for grid computing has been middleware integration and the

1

paradigm selected for user interaction. In particular, existing grid virtualization systems, such as

Shirako [78], Cluster on Demand [32], and Globus Nimbus [94], are designed around leasing models

that require the user to make explicit resource reservations. As is often the case with traditional

grid architectures, these lease-oriented systems compel the user to perform resource management

tasks that otherwise could be automated by the system.

This dissertation presents a novel grid computing architecture that is designed to deliver the

benefits of virtualized environments while simplifying grid utilization for the end user. The Virtual

Organization Cluster Model (VOC Model) describes a grid architecture that provides execution

environments that are homogeneous across grid sites, allowing applications to be run on any ISA-

compatible resource, including those resources that do not provide the necessary software libraries

to run user jobs directly on the hardware. VOCs remain transparent to end users and disinterested

entities, permitting the new architecture to be deployed in conjunction with, and without disrupting,

existing production grids. As demonstrated through simulation testing, large-scale deployment of

VOCs would provide the benefits of virtualized grid systems without adversely affecting aggregate

grid performance, since the overhead of virtualization systems would be offset by increased execution

parallelism, leading to a reduction in total job queuing.

The remainder of this chapter introduces the reasoning behind Virtual Organization Clusters

and the outcomes to be measured when VOCs are implemented and tested. Section 1.1 presents the

vision for VOCs, after which a more detailed description of the motivation for creating this autonomic

grid architecture is discussed in section 1.2. Specific features of the system to be demonstrated are

presented in section 1.3. Finally, the organization of the rest of the dissertation is described in

section 1.4.

1.1 Vision

Virtual Organization Clusters (VOCs) are autonomically managed virtual environments

that are homogeneous across sites, transparent to end users, implementable in a phased and non-

disruptive manner, optionally customizable by Virtual Organizations, and designed according to an

architectural specification. As implied by the nomenclature, VOCs are clusters in a computational

sense: each VOC can be represented as a star topology with a single head node and a collection of

compute nodes. User jobs arrive at the head node and are scheduled to execute on the compute

2

Figure 1.1: Two Virtual Organization Clusters on two different physical grid sites. Of the two Virtual
Organizations, VO1 does not utilize the VOC technology; as a result, the use of virtual machines is
completely transparent to this VO. In contrast, VO2 participates in the VOC technology and has its
own private resources, a private overlay network, and even control over job scheduling on its private
cluster. Both VOCs are completely transparent to end users, who submit jobs through existing,
unmodified grid middleware. User jobs are routed either to a physical cluster or to a VOC through
a Compute Element (CE) inteface between the grid and each cluster.

3

nodes by means of a private scheduler belonging to the virtual cluster. Like any computational

cluster, VOCs may be administered by means of distributed management tools that execute at run

time.

Unlike traditional computational clusters, VOC compute nodes are ephemeral, since they

are spawned from virtual machine instances that are scheduled on underlying physical hardware. In

addition, the network links between the nodes in a VOC are overlays on top of a Wide Area Network

with heterogeneous link capabilities between different systems, rendering VOCs less desirable for

High Performance Computing (HPC) applications. For High Throughput Computing (HTC) and

Many Tasks Computing (MTC) applications, however, VOCs provide cloud environments: software

systems that can be hosted entirely by off-site computational resources and accessed exclusively

through the network [163]. These clouds are autonomically managed by middleware, implying that

software agents manage, configure, and repair the virtual clusters without human involvement [96].

Furthermore, the software agents also adjust the size of VOCs in response to changing workload

demands and resource availability, resulting in a self-provisioned system.

Following the model of grid computing presented in Foster et al., 2001 [66], Virtual Organiza-

tion Clusters are dedicated to (and in non-transparent cases, owned by) a single Virtual Organization

(VO), which is a collection of entities with a common purpose. In the case of VOCs, these VOs

represent the end users, who are assumed to be domain experts, not computer scientists. VOs may

employ computing professionals, however, to design and administer custom VOCs.

Since design decisions and issues in a grid system are by definition distributed and at scale,

abruptly changing the architecture of an existing production grid would be impractical in terms of

cost and complexity. Thus, it is necessary for a new grid architecture to be deployable in a phased

manner that does not cause widespread disruption. As illustrated in figure 1.1, VOCs achieve phased

deployability by leveraging existing middleware and permitting participating and non-participating

(or transparent) deployments. In a participating deployment, a VOC is created for a single VO,

which assumes administrative responsibility for the VOC. All participating grid sites must permit

virtual machines to be spawned to create VOC compute nodes. Conversely, in a non-participating

deployment, a single grid site transparently provides VOCs for VOs authorized to run jobs on the

site, encapsulating the end-user workloads in local virtual environments. These non-participating

VOCs are managed by the site administrators, and it is not necessary that VOs or end users even

be made aware that VOCs are in use. In either case, middleware changes are needed only on the

4

sites that will host virtual machines. No changes to submission endpoint middleware (the software

operated by the end user) are required.

Participating VOCs achieve cross-site homogeneity by utilizing virtualization systems to

separate job execution environments from the underlying hardware. Each participating VOC pro-

vides a virtual cluster head node, which is exposed to the grid as a standard grid site. Users affiliated

with the Virtual Organization that owns the participating VOC then submit jobs to this one special

VOC-specific site, instead of selecting one of a potentially large number of possible target sites at

job submission time. By freeing the user from the requirement to select computational resources

manually for each task, the grid system becomes more accessible to the user.

1.2 Motivation

Existing grid systems require the user to adapt his or her application to run in the envi-

ronment provided at each grid site, and they require the grid site system administrators to install

software to support specific user groups or to maintain a common software stack. Users are con-

strained to specific and possibly outdated application support libraries, and administrators face the

challenge of trying to support multiple user groups with potentially conflicting software require-

ments. Software homogeneity across grid sites, while a desirable property, is essentially impossible

due to hardware constraints, site policies, and cost constraints. [47] As a result, users encounter

different software stacks on different grid sites, and they must ensure that jobs are submitted to grid

sites containing the libraries necessary for job execution.

Requiring users to target specific sites when submitting jobs to a grid system results in a

less transparent [53] system than would otherwise be possible with an autonomic system that selects

target sites for jobs automatically. Although metascheduling systems [10, 139] can perform auto-

matic site selection, these grid-level schedulers still require the user to specify extended information

about the nature of the job and its requirements. As is the case with any scheduling system that

matches requests to providers based on explicit information provided by either party, the omission

of important information could result in failure to match a job to a target site. Alternatively, the

job could be matched to a site that does not have the necessary software environment for actual job

execution, since the matching requirements could be erroneous or absent.

Existing grid systems require each physical site to maintain application support libraries as

5

Figure 1.2: In current grid systems, the user queries collective brokering services (1) to obtain an
interface to an abstract computational resource (2). The user submits jobs directly to these abstract
resources (3), which are actually software layers that communicate with actual physical resources
using a set of well-defined network protocols (4). In this example, the Static Application is compiled
statically with the Code Library and can run on any of the three sites in the Physical Fabric Layer.
However, the Dynamic Application is supported only on Site 3, since the other two sites do not have
the Code Library installed.

6

part of the local software stack. Since the number of applications that grid users desire to execute is

always increasing [63], the software stacks available at different sites may differ greatly in terms of

library support. When grid systems mandate common software stacks, user applications are limited

to programs that can be supported by the common system, which is likely to be outdated [47].

Consider a dynamically compiled user application that depends upon an external code library. In

the simple 3-site grid in figure 1.2, the user application is executable only on Physical Site 3, since

the required code library is missing from the other two sites. Assuming the user manually and

randomly submits her job to a site without a priori information about installed software at each

site, she will have a 33% chance of selecting the site capable of running her application. If she uses

a metascheduler instead of submitting her job directly, the metascheduler might select the proper

site automatically, provided the metascheduler matching criteria are set correctly in the user’s job

description and in each site’s local description. If the system administrator at Site 3 failed to add a

data tag indicating the presence of the code library, or the user failed to require the code library in

her job submission, then a failure would occur. Alternatively, the user could submit the application

along with the code library, statically compiled into a single executable. However, for a large code

library shared among several applications, this approach may not be practical due to the amount of

data that would have to be transferred between sites.

A solution to both site heterogeneity and outdated per-site software on the grid is to provide

virtual environments containing the software necessary to support the desired applications. Virtu-

alization of grid systems has been proposed as a mechanism for providing custom environments to

grid users, without imposing undue burdens on system administrators [57]. However, virtualized grid

systems to date have taken the approach that new middleware should be developed for the leasing of

physical resources on which to run virtual containers, since the existing middleware systems do not

have native support for starting virtual machines (figure 1.3). The most widely published systems –

Virtual Workspaces [94], In-VIGO [7], and Shirako [83] – all require the addition of system-specific

middleware at both the execution and submission endpoints to create leasing architectures (figure

1.4). In some cases, these systems require replacement of entire middleware stacks. With such

requirements imposed on both the hosting site and the user, these lease-oriented systems are not

transparent and cannot be deployed in a non-disruptive fashion. Moreover, the user is responsible

for instantiating his or her desired environment manually, which does not address the usability issue.

It is perhaps for these reasons that leasing systems have not seen widespread use.

7

Figure 1.3: In a virtualized grid, the user performs job submission (steps 1, 2, and 3) using exactly
the same procedures used in the current grid architecture (figure 1.2). However, the applications are
executed in virtual environments hosted by the physical sites, instead of directly on physical sites.
An issue with this architecture, as illustrated in step 4, is the method by which the virtual machines
are started on the physical systems.

8

Figure 1.4: In a leasing architecture, the user queries the collective brokering services (steps 1 and
2) to locate a resource that supports virtualization. The user initiates a lease through middleware,
which starts a virtual machine (step 3). Once the virtual machine has booted, the user interacts
with it directly, running the application in a manner similar to execution directly on a local system
(step 4). Note that the grid middleware is bypassed in the last step, violating the transparency
principle from [53].

9

If each user were to create a custom virtual environment – on the order of 10 GB – for each

application, and there were 1,000 replicas of a single application running on 1,000 different systems, a

total of 10 TB of data would have to be transferred to instantiate the environment across all virtual

machine hosts. Since transferring even one 10 GB virtual machine image over the Internet on a

frequent basis would be impractical, it would be desirable for virtual environments to be created and

administered by groups of users with similar interests, known as Virtual Organizations (VOs). Jobs

submitted by VO-affiliated users could be scheduled to execute in the virtual environments provided

by the VO. By utilizing this model, the example user’s dynamic application becomes executable on

all sites, since actual job execution occurs within a virtual machine instantiated on the site. The

virtual containers in this case are independent of the underlying hardware and effectively isolate end

user jobs from physical systems [57]. Moreover, moving the application layer software libraries into

the virtual systems eases administration for all groups on the grid, since a division of labor is created

between the virtual system administrators and the physical site administrators [69]. By requiring

that all virtual machine instances be spawned from copies of the same VM image, management of

the virtual environments is greatly simplified. Unfortunately, the addition of virtualization alone is

not sufficient to solve the problem of grid system usability, since the virtual environments must be

scheduled and run on the physical systems.

Improving ease of use for the end user necessitates the implementation of an autonomic [96]

middleware system to manage the virtual machine instances in which user jobs are executed. Since

these instances are spawned from the same virtual machine image, they are effectively homogeneous

from a software compatibility perspective. By adding an overlay network to the set of virtual

environments, a virtual cluster system is created. Private overlay scheduling is used to execute jobs

submitted to a dedicated server that functions as a head node for the virtual cluster. Since the set

of virtual resources is dedicated to, and managed by, a single Virtual Organization, this cluster is

called a Virtual Organization Cluster (VOC).

Virtual Organization Clusters improve the usability of the grid by providing a dedicated site

for the Virtual Organization that supplies the VOC. As illustrated in figure 1.5, the user submits

her application through the grid middleware, targeting the dedicated server provided by the VO.

The VO Server functions as a head node for the VOC and schedules the user’s jobs using an overlay

scheduler and a private overlay network that connects the head node to the compute nodes. Since the

VO Server manages the virtual machine instances, the user is liberated from the task of managing

10

Figure 1.5: Virtual Overlay Cluster on a Grid. In this use case, the user queries collective brokering
services to obtain a reference to the dedicated VO server, to which she submits her job. The VO
Server autonomically starts virtual machines using pilot jobs [143] on the grid, then schedules and
executes the user’s job through an overlay network with an overlay scheduler. Since the VM image
contains the code library, the dynamic application is supported.

computational resources. Moreover, since the user always submits her jobs to the dedicated site

provided by the VO with which she is affiliated, she is no longer required to select from a set of sites

each time she submits a job. Instead, the VOC middleware handles site selection by starting virtual

machines on grid sites and automatically routing jobs to the dynamically instantiated environments.

In addition, since the VO represents the interests of the user, it should be easier for her to request

installation of specific code libraries and tools required to run her application.

Two other important issues are illustrated in figure 1.5: homogeneity of the execution envi-

ronments and interoperability with existing middleware. Since each VM instance is spawned from

the same VM image, all compute nodes are homogeneous from a software compatibility perspective.

11

These VM instances are started through the use of pilot jobs, which effectively reserve a physical grid

resource and then start another process on that resource by means of a request to an external server

[143]. Pilot jobs are managed autonomically by the VOC middleware installed on the dedicated

VO server system, and they are submitted through the existing middleware already in use on the

grid, such as Globus [64]. Each physical site simply exposes a virtualization interface to the pilot

job, which permits VM instances to be started or stopped. VM instances remain associated with

their respective pilot jobs, permitting local site utilization policies to be enforced against the pilot

jobs in the same way they are enforced against any other job. If a pilot job is killed by the site, its

associated VM instance is terminated immediately.

Support for VOC implementations requires the addition of a virtualization interface on

physical grid sites, as well as the creation of a dedicated VO server system with VOC management

middleware installed. Importantly, no changes are required to the submission endpoint middleware

installed by end users: users submit their grid jobs to VOCs in exactly the same way they submit grid

jobs to physical sites. All required changes to the system are transparent to the users. Furthermore,

the addition of a virtualization interface to one site does not affect the operation of other sites on

the grid. Nor does the addition of a dedicated VO server for VOCs affect any other VOs on the grid.

Thus, VOCs may be deployed incrementally, without disrupting the overall operation of existing

production grids. Entities that choose not to support VOCs may continue to operate and coexist

on the grid.

Finally, Virtual Organization Clusters are designed to be technology-agnostic, permitting

the use of different virtualization technologies, networking systems, and computational grids. Since

these technologies all change rapidly, VOCs are defined as an architecture, not as a specific imple-

mentation. The requirements and properties of all Virtual Organization Clusters are specified by

the Virtual Organization Cluster Model (VOC Model).

1.3 Thesis Statement

Virtual Organization Clusters are dynamically self-provisioned virtual software environ-

ments that can improve usability of grid systems by enabling computational environments to be

matched to the needs of the user, instead of compelling the user to adapt his or her application

to the software available on the grid. The addition of VOCs to existing production grids does not

12

necessarily reduce aggregate performance, since the overhead introduced by virtualization systems

can be offset by a reduction in average job waiting time. VOC implementations can load balance

user jobs across a greater number of CPU cores than existing physical grid systems, since the overlay

environments can make each CPU core compatible with each user job, eliminating the need for users

to target specific grid sites to ensure job compatibility. Unlike leasing systems, users are not tasked

with managing virtual machines themselves. Instead, autonomic middleware adjusts resource allo-

cations in response to changing demands, allowing the user to focus on his or her particular domain

application.

Although this document divides the theoretical framework and empirical results into sep-

arate chapters, the actual research process used to create this dissertation was not an empirical

validation of existing theory. Instead, this process utilized an exploratory research model [2] to

develop a novel architecture for virtualizing grid systems by way of a “middle-out” design. Unlike

related grid virtualization projects (section 4.1), the objective of the Virtual Organization Cluster

Model was to specify properties common to all VOC implementations, as opposed to providing a

single implementation framework, in order to reach as broad an audience as possible by provid-

ing implementation flexibility. Thus, the primary objectives of the VOC research were to define

the model and then demonstrate that VOCs implemented according to the model could be viable

additions to existing production grids.

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents an overview

of grid computing systems, followed by a discussion of virtualization systems in chapter 3. These

topics provide a framework for the discussion of virtualized grid architectures. Related works are

then discussed in chapter 4.

Following the related work, a discussion of the design of Virtual Organization Clusters is

presented in chapter 5. The SimVOC simulator, designed to evaluate VOC properties using actual

grid trace data, is described in chapter 6. Descriptions of the components of a physical prototype

implementation of an Open Science Grid site with associated non-participating VOCs are provided

in chapter 7. Empirical test results are presented in chapters 8 and 9, using the SimVOC simulator

and a prototype implementation, respectively. Finally, chapter 10 concludes the main portion of the

13

dissertation.

Appendices to the dissertation describe the software and data sets that accompany the

published version of the document. Due to the considerable length of both the software code listings

and software documentation provided, these resources are provided electronically. Appendix A lists

the electronic attachments that accompany the dissertation. License agreements that apply to these

attachments are included in appendix B.

14

Chapter 2

Grid Systems

Grid systems, such as the Open Science Grid (OSG) [125], enable different entities to share

computational resources using a flexible and secure framework. These resources enable users to run

computational jobs that exceed the capabilities of the systems available at any single location. To

mitigate compatibility issues that result from resource heterogeneity, computational grids could be

designed as Service Oriented Architectures, in which grid-enabled applications do not interact with

low-level systems and resources directly. Instead, these applications communicate with abstract

service libraries, which are built on top of standard network communications protocols such as

TCP and IP. The services layer acts as a high-level operating system for the underlying physical

resources, providing both abstraction and arbitration functionality. Since co-scheduling physical

resources across sites is a complex task, such grid services are well-adapted for High Throughput

Computing (HTC) applications, which tend to be compute-bound and do not require completion

deadlines. [63] Bag-of-tasks applications, in which multiple parallel tasks are executed independently,

are a class of HTC applications especially well-suited to the grid environment [17]. As such, grids

do not replace High Performance Computing (HPC) systems and supercomputers [66] but can be

composed of such systems.

In this chapter, an overview of grid computing is presented. Section 2.1 describes the high-

level architecture of computational grids, after which section 2.2 discusses the components that

comprise a grid system. Virtual Organizations, the units around which grid transactions are coor-

dinated, are presented in section 2.3. Workloads submitted by users, in the form of computational

jobs, are discussed in section 2.4. Section 2.5 presents a vision of a grid system designed as a Service-

15

Oriented Architecture, where all grid-level operations are effected through services with well-defined

APIs. When services are utilized to create autonomically managed, dynamically provisioned execu-

tion environments, the resulting systems are examples of cloud computing, as described in section

2.6.

2.1 Computational Grids

Grid computing systems exist to permit different entities to share computational resources

in a well-defined and flexible manner. The sharing of computational resources in this context is

“more than simply document exchange” [66]: it is the provisioning of entire computing systems so

that third parties may run computational tasks. Providing local computing services to external

third parties requires a federated trust model, in which parties are organized into representative

units known as Virtual Organizations (see section 2.3). Since the task of providing login credentials

to each individual user across a large-scale distributed system is tedious, entities participating in

the grid define access limits and sharing policies on a per-Virtual Organization (VO) basis. VOs, in

turn, are responsible for managing their own user memberships. If a user is trusted by a VO, and

the VO is permitted access to a particular resource on the grid, then the user has access to that

resource. Resource sharing policies are not static and can change at any time. [66]

Resources on the grid are cataloged by collective brokering services, allowing users to discover

the existence of grid sites and services by querying a resource broker. Once a resource has been

located, a request to use the resource can submitted directly to the site or service desired. Tasks

on the grid run as they arrive. Due the complexity of providing advance reservation capabilities,

grid resources historically have been made available on a “best-effort” basis. [66] However, recent

advances in grid virtualization technology also permit pre-arranged leases on some systems [78, 94].

As depicted in figure 2.1, the services provided by grid system middleware may be de-

composed into three sub-layers: collective services, resource management services, and connectivity

protocols. Collective services provide resource accounting and brokering, enabling end users to locate

interfaces to available resources. Management services perform arbitration among the individual re-

sources, providing role-based access controls. Standard network protocols provide connectivity both

between services and to the underlying physical “fabric.” This low-level fabric includes servers, net-

working interconnects, storage devices, and the software systems that run directly on the hardware.

16

Figure 2.1: Conceptual layers in a traditional grid system. Applications do not interact directly
with hardware in this model but instead utilize resource abstractions, built on top of commodity
communications protocols, to provide and access services.

[66, 65, 63]

Since the grid is distributed and at scale, a wide variety of systems may be made available

by resource providers. The total collection of resources available on the grid at any time tends to

be heterogeneous, particularly with respect to software stacks. To overcome issues of compatibility

between different systems, grid applications ideally should be designed to utilize services instead

of direct operating system resources. Grid resources ideally should be provided as services that

are accessed through a narrow and well-defined set of protocols, such that the architecture of the

grid can be drawn in the shape of an hourglass, with a large number of applications accessing a

wide array of resources through a narrow set of services. [66] In practice, however, many grid

applications still require direct operating system support, and most grid resources are exposed to

users as computational environments at the operating system level.

17

Figure 2.2: A cluster system represented as a star network with a head node and multiple compute
nodes

2.2 Composition of Grids

Although the architecture of grid systems is typically conceptualized at a high level (or top-

down view), actual construction of grid systems is accomplished by joining component parts (which

may be viewed in a bottom-up model). The lowest level of granularity on a distributed system

such as a grid is typically the individual system that serves as a compute node. Compute nodes

are frequently Commercial Off The Shelf (COTS) systems that are linked together via a Local Area

Network (LAN) to form a cluster computing system. A cluster provides its own scheduling services

via a dedicated system known as a head node. Head nodes also may provide other services, such

as name resolution, address leasing, and centralized management [114]. Conceptually, clusters can

be represented as a star network, or as a rooted tree of depth one, as depicted in figure 2.2 [17].

Compute nodes within a cluster are typically uniform with respect to software configuration, varying

only by minor system configuration settings such as host name or Internet Protocol (IP) address.

These configuration details can be set dynamically at boot time, permitting the compute nodes to

be stateless systems and improving ease of maintenance. [122]

By themselves, cluster systems typically have high-speed interconnects between nodes, mak-

ing them suitable for High Performance Computing (HPC) applications [50]. In a grid system, mul-

tiple clusters share resources using Internet connections, which typically have high latency and low

bandwidth, reducing suitability for HPC tasks [65]. Hierarchies of cluster systems can be developed,

resulting in an arbitrary rooted tree topology for a grid system [17]. However, one simplification

that is useful for the discussion of Virtual Organization Clusters is that grid systems may be con-

ceptualized as a star network of clusters, where each cluster is a star network of systems (figure 2.3).

18

Figure 2.3: A grid system represented as a star network of cluster systems. Each cluster system
forms a site on the grid.

Figure 2.4: At a high level of abstraction, a grid system may be viewed as a star network of sites.

Each cluster within the grid system is known as a site, while the interface between the site and the

grid itself is often called a Computing Element (CE)1. Special software installed on the head node

of each cluster is used to connect the cluster to the grid.

From the user’s perspective, grid systems are accessed through middleware, or software that

implements resource discovery, access, and communications protocols. Individual compute nodes

are not directly visible to the user, since each grid site will implement its own scheduling and usage

policies that abstract away the low-level details of the physical implementation. This abstraction is

necessary, since each cluster system in the grid must support both its own local users and permitted

grid users, whose access is arbitrated by the grid middleware. [66] In this view, shown in figure 2.4,

the grid system itself becomes a star network. Unlike the cluster system, however, scheduling tasks

are generally performed at the sites, or at the leaves of the tree.
1This interface is also called a “Compute Element.”

19

One property of this cluster-based grid design is that it is difficult, if not impossible, for

any one cluster system to contain the necessary software libraries and resources to support the

diverse requirements of all VOs on the grid [57]. Enforcing a single software stack on each grid

site is impractical in terms of management and tends to result in outdated library and application

installations [47]. It is therefore not guaranteed that any particular software application will be able

to run on any arbitrary grid site. Users can query metadata catalogs, such as Inca [138], to identify

compatible sites, provided that site administrators maintain the accuracy of the catalog. However,

even with correct metadata available to users, applications that require specific libraries may be

limited to a subset of grid resources. For some applications, the size of this subset may be zero.

2.3 Virtual Organizations

Fundamental to the architecture of grid systems is the concept of a Virtual Organization

(VO), or a group of users with a common interest who organize themselves over a Wide Area

Network (WAN) such as the Internet. VOs on science-oriented grid systems like OSG typically

have a science-oriented mission, with areas as diverse as genome mapping, environmental modeling,

and nanoelectronics simulation. However, there is no fundamental requirement that VOs consist

only of scientists; industry groups working on a new product, artists requiring distributed rendering

capabilities, and engineers simulating behaviors of new structures are all examples of groups that

could form VOs and utilize grid services. [66] In addition, organizations that provide resources to

the grid are also organized into VOs, which try to deliver specific Quality of Service (QoS) targets

to consumer VOs. [65] Figure 2.5 depicts several VOs on a single grid.

A distinction between “consumer” and “provider” Virtual Organizations is not always clear.

For the purposes of discussing Virtual Organization Clusters, the provider and consumer designations

may be viewed as roles within the grid. It is possible for a group of scientists to form a VO for the

purpose of accessing grid resources to conduct scientific simulations, in which case the VO has the

role of a consumer. However, the same group of scientists may provide their own resources to the grid

for use by other VOs, thereby assuming a provider role. In the case of Virtual Organization Clusters,

the VO assumes a consumer role for the purpose of obtaining grid resources, while it functions as a

provider of administration services to its own users.

20

Figure 2.5: Virtual Organizations on the Grid: VOs may represent groups of consumers, groups of
resource providers, or groups that both provide and consume resources.

21

Figure 2.6: Regular jobs consist of a batch-style task submitted by the user to the grid Computing
Element (CE) at a grid site. These jobs may request data from a grid Storage Element (SE), but
the executable application is packaged with the job itself.

2.4 Computational Jobs

Computational jobs executed on grid systems may be classified either as regular jobs or pilot

jobs. Regular jobs, illustrated in figure 2.6, consist of a job description and application executable

transmitted together to a grid site. Once the job arrives at the Computing Element interface on the

site, it is placed into a scheduler pool for execution when resources become available. At execution

time, the job may require data from external sources, which can be transferred directly or via a grid

Storage Element. However, the actual application payload is contained within the job itself. Jobs

are submitted directly to sites in the general case, although metascheduling of jobs is also possible,

in which case jobs are sent to a grid metascheduler, which selects a site to which the job should

be submitted. If a metascheduled job fails to execute properly on a site, the metascheduler may

re-submit the job to a different site. [10]

Pilot jobs differ from regular jobs in that the actual application executable is not “pushed”

to the grid site with the job description. Instead, a simple executable task is sent to a grid site,

and this task borrows the computational resource from the site at execution time. The simple

task then contacts a remote server and retrieves (“pulls”) the actual workload to be executed, which

may require another network transaction to obtain data (figure 2.7). Most simple tasks submitted as

pilot jobs are machine-generated grid jobs produced by Workload Management Systems (WMS) that

22

Figure 2.7: Pilot jobs are submitted to grid Computing Elements in the same manner as regular
jobs. Once scheduled and executed, pilot jobs request one or more executable applications from an
external server. These applications are then run on the worker node leased from the grid site by the
pilot job, potentially transferring data via a Storage Element.

receive tasks directly from users, “-subverting the established accounting and auditing procedures”

[143]. Virtual Organizations frequently utilize these workload managers to share resources among

individual users, as regular grid middleware only arbitrates resource access among the VOs. WMS

mechanisms have become so popular on the Open Science Grid that pilot jobs now account for the

majority of grid jobs on OSG. As a result, sites are deploying additional accounting and security

mechanisms that are WMS-aware. [143]

Although grid jobs resemble the types of task that can be executed on a single cluster by

a regular scheduler, such as Condor [155], a fundamental property of grid systems is that the links

between grid sites have high latency and low bandwidth, since the commodity Internet is often used

for this purpose [65]. Thus, regardless of whether a task starts via a regular job or through a pilot

system, significant use of network resources will result in reduced task performance when compared

to execution on a cluster system. Bag-of-tasks applications, which consist of multiple tasks that

execute independently without communication among themselves, are considered ideal applications

for grid environments [17].

23

Figure 2.8: A grid system is an example of a Service Oriented Architecture, in which the low-level
details of the physical fabric are abstracted by common middleware that presents a uniform interface
to the applications.

2.5 Service-Oriented Architecture

“A service ... is defined solely by the protocol that it speaks and the behaviors that it

implements” [66]. A Service Oriented Architecture (SOA) is a mechanism for abstracting the details

of a collection of heterogeneous systems, so that the same interface may be used to access and utilize

resources across different domains. SOAs thus function as a type of high-level virtualization by

enabling applications to run on disparate platforms without modification. However, instead of using

individual operating-system level processes as application containers, SOAs utilize web services as

the basic components of the system. Complex systems are constructed by “orchestrating” simpler

web services, integrating them into a larger solution. When this model of computation is applied

to a grid system (figure 2.8), applications are constructed solely from abstract services, without

low-level operating system dependencies. [65]

As originally conceptualized in early models of the grid, the Open Grid Services Architec-

ture (OGSA) provides a framework for service-oriented application development based on the Web

Services Description Language (WSDL) and Simple Object Access Protocol (SOAP). The Globus

grid middleware is based on these technologies and includes the Grid Resource Allocation and Man-

agement (GRAM) and the Grid Security Infrastructure (GSI). GRAM provides the “gatekeeper”

mechanism required to implement a grid Computing Element, enabling resources to be connected

24

to the grid system, while GSI supplies authentication services for users. Additional web services

have been developed to move the grid into a large SOA-based resource. By implementing scientific

applications as sets of Globus-aware services using WSDL, applications theoretically would be able

to utilize a wide range of resources available on the grid. Since the services provided on a dynamic

grid system may change frequently, such collections of services must be adaptable to the chang-

ing environment. Providing Quality of Service guarantees in applications that aggregate services is

difficult. [65]

While grid systems constructed from collections of services are achievable, as evidenced by

In-VIGO [7], in practice most grid systems utilize service-oriented middleware to provide application

routing services to grid users [17]. These services include mechanisms for monitoring sites, submitting

computational jobs, checking job status, and transferring data across the grid. A widely used service

for job submission is Globus, which enables user jobs to be transferred to grid sites by means of

an XML-based web service. Prior to job submission, user credentials are authenticated by the GSI

middleware component of Globus, ensuring that users can send jobs only to authorized sites. Once

a user job reaches a grid site through Globus, it is received by the local scheduler and queued for

execution according to local scheduling policy. [64] Upon execution, the job runs as a regular process

at the operating system level. If the job is compatible with the system on which it executes, then

the execution should be successful, provided the job is not preempted by the local scheduler. Should

the job require a library or other software resource not present on the compute node, then the job

will fail. Thus, while the high-level grid may be considered to be an SOA, user applications are still

typically process-oriented instead of service-oriented.

2.6 Cloud Computing Systems

When computational systems are designed to be accessed entirely through a Service Oriented

Architecture, the resulting implementations are often marketed as forms of “cloud” computing. Cloud

computing is a somewhat nebulously defined concept, the meaning of which may vary in different

contexts. One definition of cloud systems follows directly from the decomposition of mainframe

systems into data centers constructed of Commercial Off The Shelf (COTS) components, where the

computational power of the data center is derived from the “cloud” of disparate systems used to

replace the monolithic mainframe. Another variation of the definition follows from the availability

25

of fast Internet connectivity, which permits the data centers to be located in areas of relatively low

energy cost, thereby maximizing the amount of computation that can be effected for the same amount

of money. Consolidation of the infrastructure at a potentially remote site results in a “cloud” in the

sense of an abstraction: computational tasks are sent away to the data center for remote execution.

[163]

Another iteration of the cloud computing definition results from the deployment of operating

system virtualization technologies (chapter 3). Large data centers are designed with excess capacity

for burst availability and redundancy, which results in a large number of spare computing cycles.

Virtualization permits these unused cycles to be harvested to perform useful work, provided that

tasks can be matched to free resources by means of a dynamic scheduling system that is adaptable

to changing workloads. Thus, the “cloud” becomes the collection of virtual machines, which provides

an abstraction for the lowest level of resources available in the system. The autonomic systems that

partition the workloads between virtual machines comprise a distributed system that performs the

functions of the middleware in a grid architecture. [163]

As illustrated in figure 2.9, excess computational cycles in the data center can be sold

to third parties to host virtual machines and associated applications. Large providers, including

Google and Amazon.com, offer dedicated application and virtual machine hosting services that

reduce wasted energy, since the exact resources required by an application can be provisioned in a

virtual environment (see section 3.6.2). In this sense, the “cloud” is a computing model in which all

the computational hardware, power distribution, cooling equipment, and maintenance are offered as

a demand-based service (Infrastructure as a Service, or IaaS). [163]

Another model of cloud computing, also illustrated in figure 2.9, extends the IaaS concept

to provide Software as a Service (SaaS). Since all processing, data storage, and complex software

systems are moved to the data center, users may interact with this type of cloud system using

a low-power device such as a thin client, netbook, or mobile phone. With resources and data

both stored in the cloud, users can access their applications, documents, and other data from any

location with Internet connectivity. One popular application of this type of cloud technology is web-

based e-mail, which frees the user from maintaining copies of the same e-mail messages on different

computer systems. Drawbacks to this model include availability resulting from limited network

capacity, along with privacy and security concerns that result from the remote storage of personal

information. Without enforced open standards for cloud systems, there is also the threat of vendor

26

Figure 2.9: Cloud computing systems provide computational resources, including processing capa-
bilities, data storage, and system support to users. Users may access these resources using relatively
low-power devices, allowing the bulk of energy and infrastructure costs to be centralized in less
expensive locations.

27

lock-in, since the remote provider supplies both the computation and data storage services. [163]

For the purpose of this dissertation, cloud computing is defined as computation that occurs

within an autonomic private software environment. Autonomic systems manage themselves via

software agents to create computational infrastructure that is self-configuring, self-optimizing, self-

healing, and self-protecting [96]. Thus, for the purposes of this discussion, cloud systems must adapt

to their execution environments automatically, allocating and returning computational resources in

response to changing application demands. Private software environments are realized through the

use of virtualization systems, which are described in the next chapter.

28

Chapter 3

Operating System Virtualization

Operating system virtualization enables one operating system to “host” a second “guest”

operating system. The guest system is provided virtualized hardware resources, as shown in figure

3.1, so that the guest appears to be indistinguishable from a regular physical system. Special software

known as a Virtual Machine Monitor (VMM) or hypervisor1 is installed on the host computer to

provide this illusion. Virtualization systems allow multiple guest operating systems to be run in

parallel on the same hardware, permitting legacy applications to be hosted on newer infrastructure.

In addition, the ability to control the resources of isolated guests permits untrusted operating systems

to be hosted inside a safe environment. Since these virtual environments become independent of

the host hardware, virtualization enables scalable application deployment in response to changing

resource requirements. [130] These same benefits can be realized on grid systems if virtualization

technologies are widely deployed [57].

Virtualization technologies originally were developed by IBM Corporation to multiplex ex-

pensive mainframe systems [132]. In 1964, a group of IBM engineers started the design of a research

system known as the CP-40, which featured the first implementation of virtualization software.

Despite the efforts of some IBM managers to kill the project, the implementation was released to

a small group of test customers for use on the IBM System/360 Model 67. Official support by

IBM, and widespread availability of the virtualization software, arrived in November 1972 after the

System/370 mainframe was released. [160] Although the System/370 was commercially successful,

virtualization technology remained limited to mainframe systems until the 1990’s, when VMWare
1In this document, the terms VMM and hypervisor are taken to be synonymous and are used interchangeably.

29

Figure 3.1: Virtual Machine (guest) hosted by a physical system (host). The guest system is pre-
sented with the same, or similar, hardware as the host by means of software emulation or multiplex-
ing. Aside from timing differences, application execution within the guest system is indistinguishable
from execution of the same application on the host.

Workstation and Microsoft Virtual PC became available for Intel desktop computers [56].

Since the original Intel x86 architecture was not virtualizable [130], dynamic recompilation

techniques were required to implement virtualization on the desktop. These dynamic recompilers

were not as efficient as their true virtualization counterparts on the mainframe, necessitating fast

processors to provide acceptable desktop performance [150]. During the final years of the 20th

century, significant clock speed increases occurred in commodity systems. Due to reliability concerns,

these systems often each hosted a single application, leading to a large number of wasted clock

cycles. Virtualization provided a mechanism for harvesting these cycles to run multiple applications

in isolated containers on the same hardware. [132]

At present, desktop virtualization systems can be loosely divided into four classes: operating

system containers, dynamic recompilers, paravirtualization systems, and hardware-assisted virtual-

ization extensions. Both dynamic recompilers and hardware-assisted virtualization systems are able

to execute unmodified guests that have an Instruction Set Architecture (ISA) supported by the

host. These two approaches differ in that certain instructions (see section 3.2) must be trapped and

substituted by a dynamic recompiler, while hardware extensions permit these instructions to run

directly on the processor, with possible traps to a hypervisor program. Paravirtualization systems

remove the need to trap these instructions by requiring that the guest operating system be modi-

fied to use the paravirtualization interface instead of the regular ISA. For practical purposes, this

30

modification requirement restricts the set of available guest systems to certain Linux distributions.

[14, 56, 150, 159]

Performance of applications executed within virtualized guest systems varies by hypervisor

and workload. To measure the overheads introduced by a particular hypervisor for a particular

type of workload, benchmarking tests are required. These tests use an application, such as High-

Performance Linpack (HPL), to measure the native execution speed of an application running di-

rectly on the host system (without virtualization). The same application is then executed, using the

same parameters, in the guest system. By dividing the relative difference in benchmark performance

by the host metric, an overhead of virtualization may be obtained for the hypervisor and workload

combination. [55, 54] These metrics are required to evaluate specific implementations of Virtual

Organization Clusters.

The remainder of this chapter is organized as follows. Section 3.1 provides an overview of the

relationships between the different levels of virtualization discussed in this document. Following this

discussion, section 3.2 describes the Popek and Goldberg requirements for efficiently virtualizable

Instruction Set Architectures. Three techniques of providing virtualization support on the x86 and

x86_64 architectures are then discussed: dynamic recompilation (section 3.3), paravirtualization

(section 3.4), and hardware virtual machine extensions (section 3.5). Finally, section 3.6 presents

several enterprise and cloud computing applications of virtualization technology.

3.1 Levels of Virtualization

Virtualization systems allow architecture-compatible software systems to be decoupled from

the underlying physical hardware implementation, thereby allowing computation to be location in-

dependent. [56] These systems can be loosely divided into four levels: operating system containers,

dynamic recompilers, paravirtualization, and hardware-assisted virtualization. The latter three sys-

tems can be termed “full virtualization systems,” since they permit entire operating systems, includ-

ing the kernel, to be hosted as guests. Since Virtual Organization Clusters are designed to contain

entire environments, including private kernel and networking services, full virtualization systems are

preferred. However, the different types of systems have different general properties, as illustrated in

table 3.1.

Containers isolate collections of guest processes that execute directly under the host system

31

Table 3.1: Levels of Virtualization. Different virtualization systems have varying support for separate
guest kernels, require (or do not require) modifications to the guest system, isolate the guest system
in different ways, and satisfy or do not satisfy the Popek and Goldberg efficiency requirements.
Level Guest Kernel Guest Modifications Isolation Efficient
Operating System Container Shared Not Applicable Userspace Yes
Dynamic Recompilation Separate Unnecessary Kernel No
Paravirtualization Separate Required Kernel Yes
Hardware-Assisted Virtualization Separate Unnecessary Kernel Yes

kernel with the same restrictions as any other process on the host. Example container systems

include OpenVZ, VServer, Virtuozzo, XR Enterprise, chroot jails, and Solaris Zones. [104, 161]

Container-based virtualization is subject to a phenomenon known as “QoS crosstalk,” which results

from imprecise kernel resource accounting when several containers are running on one host. As a

result, it is difficult to control guest resource allocations properly with containers. [14] Moreover,

the requirement that all guest processes run under a specific kernel limits their utility as a useful

virtualization abstraction on grid systems.

Of the full virtualization systems listed in table 3.1, hardware-assisted virtualization provides

the greatest potential for use in grid environments, since entire guest systems can be run efficiently

and without modification. Dynamic recompilation systems enable unmodified guests to execute, but

efficiency is compromised by the need to substitute instructions at execution time. Paravirtualization

systems are more efficient than dynamic recompilers, but modifications to the guest operating system

are required. Since Virtual Organization Clusters are to remain technologically agnostic, support for

guests that cannot readily be modified (such as proprietary operating systems) must be provided.

3.2 Instruction Set Architecture Requirements

A Virtual Machine, as defined in Popek and Goldberg, is “an efficient, isolated duplicate of

the real machine” [124]. VMs are efficient provided that a “statistically dominant subset of the virtual

processor’s instructions ... [are] executed directly by the real processor, with no software intervention

by the VMM” [124]. Execution of an application within a VM must be indistinguishable from

execution of the same application on the same host, except for differences in resource availability

and timing. The VMM maintains control of the resources allocated to the VM, but it does not

intercept or interpret every instruction executed by the guest: most guest instructions are passed

32

Figure 3.2: According to the Popek and Goldberg virtualization requirements, a machine is virtu-
alizable if its sensitive instructions are a subset of its privileged instructions, as shown in the Venn
diagram.

directly to the host CPU. In addition, the VMM isolates guests from the host, preventing guests

from changing host system state. A computer (or Instruction Set Architecture) for which an efficient

VMM can be constructed is called “virtualizable.” [124]

Instructions provided by an ISA may be classified as privileged or unprivileged, where privi-

leged instructions require the CPU to be in a supervisory or elevated privilege mode. If an attempt

is made to execute a privileged instruction in an unprivileged mode, a trap will occur, permit-

ting the operating system (or VMM) to intercept and handle the instruction. Instructions may

also be classified as sensitive or non-sensitive. Sensitive instructions are further subdivided into

behavior-sensitive instructions, which depend upon a physical resource setting, and control-sensitive

instructions, which change resource allocations. Since a VMM is designed to run in unprivileged

mode, and VMs should not change the state of the host system, the VMM process must be invoked

by the privilege trap to interpret privileged guest instructions. An ISA is virtualizable if the set

of sensitive instructions in the ISA is a subset of the privileged instructions in the same ISA, as

illustrated in the Venn diagram in figure 3.2. Furthermore, an ISA is recursively virtualizable if it

is virtualizable and a VMM without timing dependencies can be constructed for it. [124]

The Intel x86 ISA, as implemented on the original Pentium processor family, is not virtu-

alizable, due to the presence of 17 sensitive instructions that are not also privileged instructions

[130]. If a VMM as described in Popek and Goldberg is constructed for this family of processors,

the CPU will not trap when unprivileged sensitive instructions are executed, preventing the VMM

from delivering correct state information to guests. [132] Thus, implementation of virtualization on

33

Figure 3.3: Virtual machine architectures based on dynamic recompilation employ a hypervisor
application that runs as a process in the host operating system. Guest virtual machines are executed
within this process, which emulates the computer hardware seen by the guest. Since a hypervisor
process runs for each hosted virtual machine, this virtualization architecture is sometimes called a
“Type II” system.

the original x86 ISA requires either the construction of a less-than-efficient dynamic recompilation

system (next section) or the modification of guests to run in a restricted subset of the ISA (par-

avirtualization, as described in section 3.4). Subsequent extensions to the original x86 architecture

permit some newer x86 and x86_64 systems to provide a virtualizable ISA; these extensions are

discussed in section 3.5.

3.3 Dynamic Recompilation

In dynamic recompilation systems, illustrated in figure 3.3, the VMM is installed as a service

inside the host operating system, and the guests run as regular user-space processes on the host, using

special kernel-level drivers to intercept and dynamically recompile privileged instructions. The VMM

emulates hardware including video cards, disk devices, and networking interfaces. By emulating

common and well-supported hardware, such VMMs can support a wide range of unmodified guest

operating systems, at a cost of reduced performance. [56, 150] A VMM (also known as a hypervisor)

process runs for each hosted virtual machine, creating a setup known (controversially) as a Type II

hypervisor. [130]

Dynamic recompilation works by replacing both sensitive and privileged guest code with

equivalent, unprivileged host code that calls an interface provided by the VMM. This code replace-

ment occurs the first time a block of guest code is encountered, at which time the translated block

34

of equivalent code is stored in a data structure known as a trace cache. Future execution of the

same block of code results in a trace cache hit, substantially improving performance by amortizing

the cost of re-compilation over all the calls to the same code block. Translated code is designed to

be as efficient as possible: calls into the VMM are executed directly, without the overhead of traps

and associated context switches. [132] All guest state is maintained in the unprivileged code of the

VMM, bypassing the processor’s native state and privilege enforcement. [159]

Virtualized devices are provided to guest systems via a hosted architecture, in which em-

ulated implementations of common Input/Output (I/O) devices are provided. The VMM must

intercept and handle all guest I/O calls in the host operating system, resulting in substantial over-

heads. As an example, the VMWare Workstation virtualization system requires two context switches

(one in the host and one in the guest) for each network packet sent or received. Moreover, receiving

a packet into the VMM requires polling the network interface with a select statement, since packets

destined for each guest must be dispatched separately from those destined for other guests or for the

host. VMWare Workstation thus incurs substantially greater overhead when receiving packets than

when transmitting packets, which can result in an 80% performance degradation for network-bound

tasks when a large number of VMs are running. In contrast, when specific hardware is installed on

the host system, VMWare ESX server is able to bypass host I/O emulation for the network device,

greatly improving performance. [150]

3.4 Paravirtualization

Paravirtualization enables virtualization systems to be supported on non-virtualizable plat-

forms, such as the Intel x86 architecture, by exposing an alternate virtualizable interface to guests.

Unprivileged sensitive instructions are removed from the guest and replaced with instructions pro-

vided by the hypervisor, creating an overlay architecture that satisfies the Popek and Goldberg

virtualization requirements. These systems are typically (but not always) implemented as Type I

hypervisors, or virtualization layers installed directly on the computational hardware (figure 3.4).

All user-facing systems are then implemented as guests, where one or more guests have the ability

to manage other guests. [130, 132, 161]

One popular paravirtualization platform is Xen, which is engineered to support 100 guests

executing on a single host. Xen has significant performance advantages when compared to dynamic

35

Figure 3.4: Type I paravirtualization systems use a single hypervisor layer installed directly on the
hardware. Guest systems are modified to use the hypervisor interface.

recompilers and fault-dependent VMMs, due primarily to the direct sharing of hardware I/O devices.

For efficient use of the hardware Translation Look-aside Buffer (TLB), the Xen hypervisor directly

manages hardware page tables and associated page faults, requiring its implementation as a Type

I hypervisor system. As such, Xen replaces the host operating system with a relatively lightweight

hypervisor layer, which is managed by a special privileged guest called Domain0 (dom0) that persists

as long as the host is running. [14]

Xen implements a virtualizable system with user and supervisor privileges by porting priv-

ileged guest code to run in ring 1 on the x86 CPU. [14] Intel x86 and compatible platforms utilize

four “rings,” or CPU privilege levels, numbered 0 to 3. With the exception of IBM OS/2, recent

desktop operating systems utilize only rings 0 and 3 for privileged and unprivileged instructions,

respectively. By utilizing one of the unused privilege levels, Xen partly relies upon the built-in CPU

privilege checking to enforce guest security, avoiding the need to monitor guest instructions in user-

level code (ring 3) – a situation known to Intel engineers as ring compression. This design improves

performance when compared to dynamic recompilation systems. [159]

Host hardware is typically shared directly in Xen, although emulated devices are available

via code borrowed from the Qemu project. Only the hardware actually required by the host OS is

virtualized in Xen. [161] Shared hardware is made available to Xen guests via an I/O interface that

uses Direct Memory Access (DMA) for performance, with request security checking logic to enforce

36

isolation. I/O requests uses descriptor rings (circular buffers) that permit out-of-order execution

and host-guest communications without copying. Network packets are delivered to guests via these

same DMA buffers, which are allocated by the guest and provided to the host whenever a receive

operation is requested. Memory for guest systems is statically provisioned at guest initiation but

can be increased to a specified limit during execution. [14, 67]

Aside from Xen, several other paravirtualization systems exist, including Disco for the MIPS

platform [132] and User Mode Linux (UML) for the x86 platform. User-Mode Linux is a paravir-

tualization system that utilizes a host Linux kernel to run a guest Linux kernel directly [14]. Since

the host installation includes a full operating system, the architecture of UML is closer to that of a

Type II hypervisor than a Type I hypervisor.

Measured performance of paravirtualization systems typically exceeds that of dynamic re-

compilers. While CPU and memory management tend to scale well with increasing loads on most

VMMs, paravirtualization is typically advantageous when workloads involve a significant amount

of I/O [126]. The Xen hypervisor has execution overheads as low as 3% for some workloads and

network throughput overheads as low as 14% for some packet streams [14]. Tests of virtualization

systems in grid contexts yield execution overheads as low as 5% [61]. HPL tests conducted with

scaling show application throughput overheads of up to 30% with Xen for a 7x4 matrix. The same

overheads for a CPU-bound 1x1 matrix on a single VM are measured at 6.6% with Xen. [55][54]

Un-scaled HPL tests with User Mode Linux (UML) show a virtualization overhead of 20% in terms

of application throughput [133].

The most significant disadvantage to paravirtualization systems is the requirement that

guest operating systems be ported to run on the hypervisor. Backward-compatibility of system-

level code is a concern during code modification, and vendor cooperation is required for proprietary

operating systems. [132] While paravirtualization systems such as Xen do not require modification to

applications running within the guest [14, 132], required modifications to the guest can be significant.

Linux guests require approximately 3,000 lines of code changes, while Windows XP guests require

a substantially larger number of adjustments [14]. For these reasons, the long-term suitability of

paravirtualization systems for production applications is questionable, since “-adequate hardware

support can decrease overhead ... to the point that the value of having a fully compatible virtual

machine abstraction overrides any performance benefits from breaking compatibility” [132].

37

3.5 Hardware Virtual Machine Extensions

Hardware Virtual Machine (HVM) extensions, available on many newer Intel and AMD

processors, implement an extended x86/x86_64 instruction set that is virtualizable according to the

Popek and Goldberg requirements. The Intel Virtual Machine Extensions (VMX), first released in

November 2005 on the Intel Pentium 4 models 662 and 672 [81], add a top-level set of execution

modes to the CPU: host and guest. Within each mode, all privileged instructions run in privileged

rings (usually ring 0), while unprivileged instructions run in ring 3, eliminating ring compression.

Whenever the CPU needs to be switched between guests, or back to the host, a mode switch

operation is invoked by VM entry and exit instructions. These instructions save and restore state

information in the VM Control Structure (VMCS), allowing state information for the host and all

guests to be maintained by the hardware. Interrupt masking and other common operating system

support routines are implemented directly in the CPU, thus requiring mode switches back to the

hypervisor only for operations that cannot be handled directly by the CPU. [159] On CPUs with the

first generation of virtualization extensions, mode switching can be more expensive than dynamic

recompilation for some workloads [9].

In this hardware-assisted model, the user-space component resembles a Type II VMM and

emulates certain hardware devices available to the guests by means of a VMM process (figure 3.5).

[159] This device emulation has the same benefits of device uniformity available with dynamic

recompilation, with the same drawbacks in I/O performance. Some direct device sharing is possible

with code borrowed from paravirtualization systems, although this sharing is easier to accomplish

on channel-oriented devices such as USB and SCSI hardware. As originally implemented in the first

generation of virtualization extensions, shadow page tables are still implemented in software, which

reduces total memory performance. [132] Newer AMD and Intel CPUs implement hardware page

table virtualization to mitigate this problem [76]. Additional I/O performance improvements could

be obtained if hardware devices were designed to support direct access from guest systems [132], a

feature provided by some high-end network cards [106].

HVM capabilities have been added as an optional virtualization mode to Xen, allowing it

to run unmodified guests. However, a newer application called the Kernel-based Virtual Machine

(KVM) system relies on HVM extensions exclusively, eliminating dynamic recompilation and par-

avirtualization for features other than I/O. When requested, emulated hardware devices are provided

38

Figure 3.5: Full virtualization with hardware support. A hypervisor (VMM) process runs to manage
each guest and provide emulated hardware, but CPU virtualization extensions manage the majority
of guest instruction handling and sensitive instruction management.

by Qemu, one instance of which runs for each virtual machine hosted. Paravirtualized I/O devices,

including a network interface, are supported for Linux guests. [129]

A major benefit of KVM for use in grid computing is its “snapshot” mode, inherited from

Qemu. In this mode, KVM can spawn multiple instances of a virtual machine using a single image

file, eliminating the need to have one image file per instance. [129] For cluster computing systems,

this operating mode eliminates image staging to compute nodes (figure 3.6), a time-consuming

operation [51]. With snapshot mode enabled, multiple VM instances can be booted from a single

shared filesystem (such as PVFS [28]), as illustrated in figure 3.7. The shared image is maintained

in a read-only state, with write operations redirected to temporary files on each compute node.

The virtualization performance of KVM on hardware with first-generation virtualization

extensions is acceptable, although it is below that of Xen with paravirtualization. Scaled HPL

benchmark tests indicate network-bound overheads of up to 85% using a 7x4 matrix, compared

to 30% with Xen. Virtualization overheads for compute-bound processes, using a 1x1 matrix on

a single VM, are measured at 8.8% for KVM – slightly higher than the corresponding 6.6% Xen

measurement. It should be noted that a stable version of Xen is compared to an alpha version of

KVM in these tests. [55][54]

39

Figure 3.6: Virtual machine images used in read-write mode generally must be copied (staged) to
each host prior to VM instance invocation.

Figure 3.7: In KVM snapshot mode, a single VM image can be stored on a distributed filesystem
and booted directly by each VMM, without staging. The shared image is maintained in a read-only
state, with writes redirected to a temporary file on each local compute node.

40

Table 3.2: Some common virtualization systems supported by Linux hosts. Table adapted from
[14, 105, 129].

Virtualization System Type
VMWare Dynamic Recompilation / HVM

Xen Paravirtualization / HVM
KVM HVM
Qemu Dynamic Recompilation

VirtualBox Dynamic Recompilation / HVM
UML Paravirtualization

OpenVZ Container
VServer Container

3.6 Applications of Virtualization Technology

Virtualization technology enables the creation of customized environments for a wide range

of applications, including server consolidation [56], migratable containers [132], local containers

for experimental test procedures [141], grid-connected parallel computing systems [57], and cloud

computing implementations [132, 163]. A number of virtualization systems are available to support

these applications on x86 and x86_64 Linux hosts, as listed in table 3.2. In the remainder of this

chapter, two major classes of virtualization applications will be discussed briefly as examples: server

consolidation (section 3.6.1) and cloud computing (section 3.6.2).

3.6.1 Server Consolidation

One widely used application of virtualization is server consolidation, which involves the

migration of physical servers into virtual machines. Security and reliability are increased when vir-

tualization technology is used, since individual server applications are contained within their own

private environments. [56] Since physical machines frequently host single services to mitigate avail-

ability problems resulting from an unstable application, virtualization can improve system utilization

by allowing a single physical machine to host multiple highly available services. If one service be-

comes unstable and results in a system-wide error condition, that error will remain contained within

the virtual machine hosting the service. Other services will be unaffected by such an issue. Fur-

thermore, the hardware independence of virtual machines permits containers to be migrated from

system to system within the data center, thus improving system load balancing while decreasing the

need for redundant infrastructure. [132]

Server consolidation into single data centers also improves hardware utilization and energy

41

efficiency by reducing the number of wasted cycles. Since physical systems would otherwise host

single applications without virtualization, extra cycles on individual systems would be wasted. In

addition to the lost amortization of the hardware equipment cost, these wasted cycles also contribute

to energy demand both directly and through increased load on cooling infrastructure. Placing

virtual servers in such a way as to maximize utilization and minimize waste is thus a means to

cost savings. Moreover, when entire server farms can be centralized into data centers and made

geographically independent of corporate operations, the data centers can be located in areas with

relatively inexpensive electricity. Significant cost savings can be realized in such situations. [163]

3.6.2 Cloud Computing

Server consolidation into data centers reduces, but does not completely eliminate, wasted

computational cycles. Enterprise applications require a certain amount of redundancy and burst

capacity to maintain high availability, and this capacity is unused most of the time. By utilizing

virtualization to provision isolated environments, corporations can sell the excess capacity to third

parties. Several large corporations, notably Amazon, take this model further and provide entire

virtual machine hosting services for a fee. Companies that do not desire to maintain their own

computational resources and infrastructure may simply purchase these services on a fee-for-use

model, creating a cloud system (section 2.6). Energy and resource waste is minimized through

clouds, since environments can be provisioned to match the requirements of the workload. These

virtual environments provide burst capacity through on-demand resource reallocation. [163]

When virtualization systems are used to implement cloud computing services, the services

begin to resemble computational grids. Cloud systems enable applications to obtain resources beyond

those immediately available, just as grid computing promotes resource sharing for the same purpose.

The distinctions between individual systems in the cloud begin to diminish, as effective use of

cloud architectures requires middleware abstractions to dispatch workloads to different servers. By

definition, the process of dividing these workloads intelligently – and, preferably, autonomically – is

a distributed computing task. [163]

Cloud computing with virtual machines also provides a solution to the multi-core problem.

Since a large number of existing production applications are written for a single CPU core, several

single-core virtual machines can be hosted by one multi-core physical system, improving utilization

while reducing hardware costs. In cases where high speed Internet access is ubiquitous, entire user-

42

facing systems can be placed in the cloud and accessed from any location by means of a low-power

device (see figure 2.9). [132] With per-hour execution costs as low as ten cents on the Amazon

Elastic Compute Cloud [11], cloud-based Software as a Service (SaaS) may be practical for some

applications.

43

Chapter 4

Related Work

Since Virtual Organization Clusters comprise a new grid architecture, a fairly broad set of

research projects is related to VOC design and evaluation. This set can be loosely divided into grid

system virtualization (section 4.1), grid simulation (section 4.2), system resource analysis (section

4.3), and system management (section 4.4). Several of these broad areas may be further subdivided

into related projects. However, all areas are important to consider when evaluating VOCs in the

context of production grid systems.

4.1 Virtualization of Grid Systems

Virtualization of grid systems, first proposed in [57], offers substantial benefits to grid users

and system administrators. Users of virtualized systems can be granted administrative access rights

to their virtual machines, thereby allowing end-user customization of the software environment to

support current and legacy applications. These customization features can be granted without im-

posing additional workloads on the hardware administrators, making customization on a per-user

basis practical. Moreover, isolation of VMs from the underlying hardware can provide additional

security when compared to traditional shared multiprogramming systems. Since the hardware ad-

ministrators retain control of the Virtual Machine Monitors (VMMs) or hypervisors, coarse-grained

resource controls can be implemented on a per-VM basis, allowing hardware resources to be shared

among different VMs. [57]

A primary benefit of offering administrative access to VM users is that custom overlay sys-

44

tems can be developed, where the environment of each virtual system can be determined by its user

base. Such capabilities have existed since the early days of computing, when the Regnecentralen

RC4000 Monitor system enabled different users to run their own kernels with whichever process

scheduling algorithm each user chose [19]. Virtual Organizations on modern grid systems are in-

creasingly interested in performing their own resource management and scheduling functions, so that

individual communities have finer-grained control over communal resources [62]. Virtualization of

grid systems provides the needed mechanisms for community-specific customization [127].

Grid services, by definition, communicate with each other and with users via middleware, or

software layers interposed between physical fabric and applications [65, 66]. Such middleware may

include Globus [60], which is part of the standard middleware stack on the Open Science Grid [125],

as well as custom middleware used for specific applications like grid filesystem access [173]. Most of

the existing grid virtualization systems, described below, require all participating sites and users to

install and enable system-specific middleware.

Many existing grid virtualization systems can be classified into lease-oriented systems (sec-

tion 4.1.1) or autonomic systems (section 4.1.2). Related systems may then be grouped by project.

One unique project that relies more heavily on services and does not fit well into a leasing or

autonomic classification is In-VIGO, discussed in section 4.1.3.

4.1.1 Leasing Models

One approach to grid system virtualization is to treat grids as commodity sources of com-

putational resources, which can be obtained to run virtual machines directly. This model of leasing

systems, illustrated in figure 4.1, requires the user to make an explicit resource reservation to in-

stantiate a virtual grid node. Since each user manages his or her virtual environment directly, this

approach violates the transparency property [53] required of distributed systems. Several leasing

models have been proposed for grid computing, including Globus Virtual Workspaces (also known as

Globus Nimbus, section 4.1.1.1) and Shirako and its Cluster On Demand back-end (section 4.1.1.2).

4.1.1.1 Virtual Workspaces

Virtual Workspaces, implemented as part of the Globus Nimbus toolkit [77], are an exten-

sion of Dynamic Virtual Environments (DVE) – dynamically instantiated execution environments

designed to isolate individual grid users. Allocation of a DVE is accomplished in its simplest form

45

Figure 4.1: In a leasing architecture, the user queries the collective brokering services (steps 1 and
2) to locate a resource that supports virtualization. The user initiates a lease through middleware,
which starts a virtual machine (step 3). Once the virtual machine has booted, the user interacts
with it directly, running the application in a manner similar to execution directly on a local system
(step 4). Note that the grid middleware is bypassed in the last step, violating the transparency
principle from [53].

46

by dynamically adding a user account to the local system [93]. Extended DVEs can utilize VMWare

virtual machines as locally instantiated trusted containers, which must be trusted to return their

allocated resources once limits have been reached. Untrusted users therefore cannot be given admin-

istrative access to these VMs. [89] Virtual Workspaces further extend DVEs by using Xen virtual

machines to offer customized execution environments to the untrusted users, as Xen permits forcible

recovery of resources allocated to the guests [89, 172].

Virtual Workspaces provide a lease-oriented mechanism for sharing resources on grid sys-

tems with fine-grained control over resource allocation. A Virtual Workspace (abbreviated VW) is

allocated from a description of the hardware and software requirements of an application, allowing

the workspace to be instantiated and deployed on a per-application basis. From the perspective of

the end user, deployment of a VW first requires the explicit construction of the VW environment as

a Xen VM, which is automated through user-provided specifications to a “VW Factory.” Following

the construction of the environment, the VW must be explicitly deployed on a host site, after which

it can be directly accessed to run computational jobs. [94]

The primary motivation for Virtual Workspaces is to provide high-level, fine-grained resource

management to deliver specific Quality of Service (QoS) guarantees to different applications [90].

Resources managed by VWs are provided directly to the end user, who is responsible for initiating his

or her own workspace VM for the job or set of jobs he or she desires to run on the grid. These leases

allow for individual jobs or applications to be given different QoS priorities, such as best-effort or

pre-reserved allocations [148]. Provisioning of workspace services directly to Virtual Organizations,

instead of directly to end users, has been discussed only at the level of sharing workspace-hosted

edge services [128] between multiple VOs [69].

Aggregation of Virtual Workspaces into Virtual Workspace Clusters has been proposed

in [172], [61], and [95]. These clusters are constructed by aggregating sets of homogeneous VW

descriptions into heterogeneous outer sets. The outer sets are then matched to physical resources

in an aggregated operation, permitting the cluster to be scheduled. [95] In practice, creation of

a VW Cluster requires a single VM image per cluster node. While VM images can be created

using the standard VW tools, inefficiencies would result if multiple copies of the same image were

transferred across the grid to a workspace hosting site. To reduce this wide-area copy overhead, an

image staging system at each cluster site to make copies of the image for each hypervisor instance

has been proposed [172]. Staging time is related to the size of the virtual cluster and reaches at

47

least 400 seconds for a VW Cluster with 8 virtual nodes, leading to the conclusion that staging is

an operation to be measured in “minutes ... rather than seconds” [172]. Using shared nodes on a

standard Network File System (NFS) share (without staging) was found to be impractical, owing to

the large amount of bidirectional traffic involved with reading from and writing to the Xen images

[61]. While the importance of the staging system is expressed in [172], [61], and [95], in-situ updates

to the core workspace images are not discussed except to state their necessity [18]. Presumably,

any changes to the Virtual Workspace Cluster environment would be effected by transmitting and

staging a new image. Also, modifications to the cluster scheduling algorithm have been proposed as

a mechanism for scheduling staging as a part of preparing the workspace for execution [148].

Selection and final customization of VM appliances to match the requirements of individual

jobs are accomplished via “contextualization,” a process by which job requirements are used to make

minor configuration changes, such as network and DNS settings, to an existing appliance [18, 92].

Contextualization is done once per VM invocation, just prior to boot time, and involves injecting

configuration data into the VM image prior to initialization of the instance. A centralized “context

broker” provides an XML description of the configuration parameters to be set on a per-appliance

basis. [91] This contextualization process may occur during workspace scheduling [68].

For performance reasons, workspace jobs should have sufficient run length so as to make

the overhead of leasing and starting a workspace relatively small. Given the non-trivial data copy

overheads involved with constructing a workspace, it has been proposed that overhead be treated

as a property of the job execution site, instead of charging the overhead to the user as part of the

resource allocation [146]. Total execution overhead for Virtual Workspaces has not been measured;

instead, the potential benefits of Workspaces as cloud computing containers have been demonstrated

through comparison of local performance to the performance of a larger, more powerful system

made available via the grid [80]. Providing a combination of pre-arranged and best-effort leases has

been shown to have better aggregate performance than a traditional best-effort scheduler without

task preemption, while approaching the performance of a traditional best-effort scheduler with task

preemption [147][148].

Virtual Organization Clusters differ from Virtual Workspaces, in that the VO assumes

responsibility for the creation, configuration, and maintenance of the virtualized execution envi-

ronment. These VOCs are then autonomically scheduled on participating physical fabric sites,

eliminating the need for the explicit leases used in VWs. VOCs are therefore transparent to the end

48

user, who submits jobs using standard grid middleware. A single VOC requires only one VM image

to spawn as many compute nodes as are needed.

4.1.1.2 Shirako and Cluster-On-Demand

Shirako [44] and Cluster-On-Demand (COD) [43] are related projects that implement a lease

scheduling mechanism and back-end cluster provisioning system, respectively. Shirako utilizes a lease

system that enables resource providers and consumers to negotiate resource allocations through

automated brokers [83], which are designed around a self-recharging currency model [82]. COD

provides back-end provisioning of physical resources, so that physical sites may be divided among

different user groups. This division is accomplished either by reinstalling the physical compute

nodes with user-specific software [32] or by virtualizing the installations using Xen guests [78]. In

either case, a customized software load is installed onto the provisioned compute elements, using a

user-supplied resource provisioning request [32]. Xen VMs installed in this manner may be migrated

between physical systems for load-balancing purposes [78].

An application of Shirako, called the Grid Resource Oversight Coordinator (GROC), per-

mits physical resources to be leased by individual Virtual Organizations for the purpose of deploying

completely virtualized grids. VO users interact with these virtual grids using existing middleware

tools for job submission and retrieval, resulting in submission endpoint transparency. However,

GROC adds a new layer of software and scheduling to existing physical systems, essentially con-

structing a new overlay grid on top of the existing grid. Hosted virtual grids utilize a virtual head

node on each physical grid site, without spanning of individual clusters across grid sites. These

virtual grids are scheduled for execution on physical fabric by means of Shirako leases, which may

be best-effort or pre-arranged with temporal guarantees. Back-end provisioning of physical resources

for hosting the virtualized grids is performed using COD, with virtual grids running directly on the

hardware or in Xen containers. [127]

Virtual Organization Clusters differ from Shirako-leased systems, including GROC, in both

design and intent. VOCs are clusters of virtual systems, which can span multiple grid sites on existing

infrastructures, while GROC creates overlay grid sites on single physical sites without spanning.

Shirako is also fundamentally a leasing model, like Globus Virtual Workspaces, while VOCs provide

no mechanism for prearranged resource leases. In this regard, VOCs are designed to be strictly

“best-effort” systems that can be deployed in a manner completely transparent to the users and

49

optionally transparent to the VOs. GROC permits user-level transparency, but it requires the

explicit participation of both VOs and physical sites. In addition, VOCs require the use of VMs as

containers, while the COD back-end in GROC makes container use optional.

4.1.2 Autonomic Models

In contrast to leasing systems, autonomic grid virtualization models are transparent to

the user. Whenever the user submits a job, the system automatically provisions itself to handle

the workload, as depicted in figure 4.2. Existing autonomic grid virtualization systems include

VioCluster (section 4.1.2.1), Dynamic Virtual Clustering (also presented in section 4.1.2.1), and

Violin (4.1.2.2). As VioCluster and Dynamic Virtual Clustering have the same general objective,

they are presented together, although they are developed by unrelated groups.

4.1.2.1 VioCluster and Dynamic Virtual Clustering

Two similar projects from unrelated groups are VioCluster and Dynamic Virtual Clustering,

both of which are designed to improve the utilization of independent research clusters within the

same organization. The earlier project, VioCluster, is based on the concept of dividing each cluster

into a physical and a virtual domain, where the virtual domain may be borrowed and administered

by another research group. Virtual domains are transparently and autonomically resized by means

of a broker application, which trades machine allocations between groups by following explicitly

configured policies. This brokering process is transparent to end-users, permitting the virtualized

cluster to be used as if it were a regular physical cluster. User Mode Linux (UML) provides virtu-

alization capabilities, while the Violin overlay network (see section 4.3.3) joins the borrowed virtual

nodes to the borrower’s physical cluster, providing a seamless private network. [134]

VioCluster base images are pre-staged onto the physical hosts to be borrowed, and these

images are essentially permanent in nature. At lease initiation time, a small (on the order of 200 KB)

binary patch file is transmitted to the physical hosts. This file contains configuration information for

the virtual cluster, and it is applied to the static configuration image using a copy-on-write (COW)

technique. COW allows the VM to be terminated by means of killing the containing virtualization

process, resulting in fast shutdown performance. Boot times are measured to be 40 seconds, with

shutdown times of 16 seconds. Execution overheads of 15% are observed using the High Performance

Linpack (HPL) benchmark. [134]

50

Figure 4.2: In an autonomic grid architecture, the user submits jobs exactly as she would submit
them to a traditional grid architecture (steps 1, 2, and 3). An autonomic management system
automatically starts and manages virtual machine instances according to some algorithm. User jobs
are then automatically routed into the virtual environments by some method, perhaps an extension
to existing middleware.

51

Like VioCluster, Dynamic Virtual Clustering allows clusters of virtual machines to be in-

stantiated on a per-job basis for the purpose of providing uniform execution environments across

clusters co-located on a single research campus. Xen is used as a hypervisor, with a modified version

of Moab employed for scheduling [48]. DVC facilitates sharing of different research clusters in a

Campus Area Grid (CAG) by allowing for temporary software environment customization through

virtualization, as well as forwarding and spanning jobs between clusters. [50] Clusters constructed

with DVC can support VM-level checkpointing that is transparent to the job being executed, thus

providing fault recovery without modifications to the application [49].

A distinguishing design element of DVC is the concept of the Campus Area Grid, which

is defined as “a group of clusters in a small geographic area . . . connected by a private, high-

speed network” [50]. Latency and bandwidth properties of the private network are considered to be

favorable for HPC jobs, thereby allowing a combination of spanned clusters to function as a single

high-performance cluster for job execution. However, the software configurations of the different

component clusters may differ, as the component clusters may belong to different entities with

different management. DVC permits Xen VMs with homogeneous software to be run on federated

clusters on the same CAG whenever the target cluster is not in use by its owner, thereby allowing

research groups to increase the sizes of their clusters temporarily. In terms of performance, spanned

clusters using DVC were found to have 20% overheads on the PTRANS benchmark and negligible

overheads on the HPL benchmark (matrix sizes were not provided). Use of DVC permitted a

synthetic test load of long-running jobs to achieve a 57% throughput increase with a corresponding

33% reduction in turnaround time. [47]

Like Virtual Workspaces, In VIGO, and Shirako, DVC clusters utilize one VM image per

compute node, and this image is staged onto the host machine prior to booting the VM instance.

Image staging is built into the modified Moab scheduler, which is also responsible for scheduling

both the VMs and user jobs. Due to the need to stage a VM image and boot a VM instance on

a per-job basis, overheads of up to 60% in terms of throughput, and 80% in terms of turnaround

time, were observed for short-running “transactional” jobs. Compared to the 118 seconds required

to stage an image, 23 seconds required to boot an instance, and 11 seconds needed to terminate a

VM, these transactional jobs would run for only 5 to 10 seconds. An optimization to improve this

behavior would be to pre-arrange a lease for a VM dedicated to the execution of short jobs, thereby

avoiding the image management overhead. [50] Caching a VM image for a fixed period time after

52

first use could reduce overheads substantially [51].

Unlike VioCluster and DVC clusters, Virtual Organization Clusters are explicitly designed

for use on wide-area grid systems, which lack high-bandwidth, low-latency interconnects between

physical sites. VOCs are ideally designed to use a distributed filesystem for a single VM image,

which is shared among all VM instances on the local site. This combination eliminates both image

staging and the need to perform an orderly shutdown, which would save 129 seconds of overhead if

employed in DVC (16 seconds in VioCluster). In addition, the VOC Model is designed to support

High Throughput Computing (HTC) applications instead of High Performance Computing (HPC)

applications, reducing concerns about job turnaround times. Like VioCluster, VOC nodes may share

a private network across sites through the use of an overlay network, as described in section 4.3.3.

4.1.2.2 Violin

Although primarily a network overlay system, Virtual Internetworking on Overlay Infras-

tructures (Violin) is extended for provisioning isolated networks of virtual machines hosted on a

physical cluster system. Violin and VioCluster are designed by the same research group, but Violin

focuses on using an overlay network to span multiple sites, while VioCluster focuses on sharing

resources at the same physical site. [133, 134] Violin-enabled virtual clusters may use either User

Mode Linux (UML) or Xen as the underlying virtualization technology [136]. Violin clusters may

be created on demand, customized for specific applications, and used to isolate virtual systems from

physical systems. High Performance Linpack (HPL) benchmarking results show a virtualization

overhead of 20% with UML; however, the matrix sizes used in the calculations are not scaled with

increasing cluster sizes. [133]

Clusters constructed with Violin are capable of autonomic adaptation to their execution en-

vironments. Local autonomy is achieved through the use of monitoring daemons, which dynamically

adjust CPU and memory allocation to individual VMs. Distributed autonomy is effected by means

of live VM migration, permitting a running VM to be moved from one physical host to another. As

is the case with other virtual clustering technologies based on Xen, Violin requires the use of a single

VM image per VM instance, and that image may be live-migrated between physical hosts during

execution. Performance improvements are observed for workloads that require or can utilize excess

computational resources beyond those initially allocated at VM creation time. Autonomic increases

in resource allocation, and migration of virtual execution hosts to more powerful hardware, permit

53

a reduction in total job execution time for these workloads. [135, 166]

Virtual Organization Clusters share some design similarity with Violin. VOCs are designed

to be autonomically deployable across different grid sites, but the desired autonomy in VOCs arises

from the ability to shrink or expand the total size of a VOC, rather than adjusting the resource

allocations of its component VMs. While VOC nodes will use an overlay network to span physical

sites, the design emphasis of the VOC Model is not the networking layer itself, while Violin is

primarily a networking layer that supports the creation of virtual environments. VOCs may utilize

any overlay networking technology, including Violin.

4.1.3 In-VIGO

The In Virtual Information Grid Organizations (In-VIGO) project attempts to raise the level

at which grid middleware operates from sharing physical systems to sharing virtualized resources

on physical systems. As presented in [7], In-VIGO conceptually defines three major benefits of

grid virtualization: multiplexing, manifolding, and polymorphism. Virtualized systems can appear

as multiple different systems (manifolding) with potentially different capabilities (polymorphism)

through multiplexing physical systems to support multiple simultaneous virtual machines. Three

separate layers are specified in the In-VIGO design: low-level operating system virtualization to

create virtual machines, grid middleware to connect application interfaces to the back-end VMs,

and a top-level application layer to present the specific Grid-enabled scientific application to the

end user. To provide data and connectivity to these applications, In-VIGO specifies per-application

virtual filesystems and overlay networks. [7] Virtual filesystems are realized through the use of the

Grid Virtual File System (GVFS) [174], while overlay networking is provided by ViNe [109, 158].

Virtual machines used by In-VIGO are constructed using VMPlants [99], an automated

VM installation and cloning mechanism. A VMPlant is a system that prepares and installs VM

images using a cost model to provide a “bid” to a centralized coordinator called a VMShop. The

user sends an XML specification with the desired properties of the installed system to the VMShop,

which collects bids from the various VMPlants and schedules construction of the individual VMs

via a minimum-cost algorithm. Different VMPlants have different image stores, and partial images

are collected over time on each VMPlant system. Thus, one VMPlant may be able to produce

a desired VM configuration at a much lower cost than another VMPlant, due to the ability to

re-use existing image components when producing a new image. VMPlant-generated VMs have a

54

flexible configuration selectable from a pre-determined allocation of “golden” images, which consist

of VM images with manually preinstalled operating systems. Actions specified in the VMShop XML

specification are partially ordered so that the VMPlant construction process can emulate that of a

human system administrator at coarse granularity. [99]

Once instantiated, In-VIGO systems are directly accessed by the end user via a Web-based

portal that permits data transfer into and out of the the system [175] and enforces permissions on

shared resources through the use of a single sign-on short-term credential mechanism [8]. While an

In-VIGO application can be targeted to a single Virtual Organization, such as NanoHub [59], each

individual application is typically realized as a separate In-VIGO instance with application-specific

virtual systems [7, 59, 110]. Multiple applications can be co-scheduled on shared hardware via

best-effort multiplexing [7] or through the use of a fault-tolerant per-application deadline scheduler

[167].

A key distinction between In-VIGO and Virtual Organization Clusters is that In-VIGO

provides a per-application end-to-end system with which the end user directly interacts via a custom

interface. Virtual Organization Clusters provide services to end users transparently: that is, end

users run applications using existing grid middleware technologies and existing grid interfaces. VOCs

provide services to individual Virtual Organizations and multiplex physical resources to permit

multiple VOs to share the same hardware. Individual VOCs are then multiplexed among the different

end-user jobs by means of scheduling systems installed in the VOCs. Dedicated VOC administrators

are responsible for making configuration decisions, including specification of VM image contents and

virtual network overlays. The VOC Model does not specify a single mechanism for VM image

creation, so VMPlants could be used to prepare the system image for any given VO. Moreover, the

VOC Model does not limit the choice of middleware systems to be installed on either the physical

or virtual systems. Thus, it would be possible to implement an application-level grid computing

system such as In-VIGO by using Virtual Organization Clusters as a back-end.

4.2 Simulation Systems

Simulation systems for modeling grid architectures and testing solutions to grid-related

problems may be classified into a taxonomy as described in [152]. This taxonomy, hereinafter

called the Sulistio Taxonomy, consists of a set of sub-taxonomies that address specific features of

55

the simulation design. Of particular importance are the distinctions between static and dynamic

simulations, discrete and continuous output, serial and multithreaded execution, deterministic and

non-deterministic (probabilistic) behavior, trace-driven and event-driven simulation kernels, entity-

based and event-based grid models, and the software interface utilized to run the simulation. Static

simulations ignore the passage of time, emphasizing changes in the overall system from one state

to another state, while dynamic simulations are time-driven and report measurements over time.

These measurements may consist of discrete observations from a finite set of possible values, or of a

measurement from a continuous range. Execution of a simulation experiment may be serial (single-

threaded) or multithreaded. Simulation results may be deterministically reproducible or randomly

variable from run to run. Internally, the simulator cores may be driven by discrete events or by

input traces, while the grid systems under simulation may be internally modeled by software entities,

events that represent communications between entities, or a combination of both. Finally, simulation

systems may be further classified by the interfaces they present to users, which may consist of a

library of components designed for programmers or a custom simulation language that encapsulates

the simulator into a stand-alone application. The software architecture of the system is especially

important in the case of simulation libraries; the Sulistio Taxonomy classifies this architecture as

either structured or object-oriented. [152]

Among the grid simulation systems classified in Sulistio et al. [152] is SimGrid [29, 30, 70,

162]. SimGrid is a static, serialized, deterministic, trace-driven discrete event simulation system

with both an entity-based and an event-based model [152]. SimGrid is implemented as a structured

code library, around which different simulation experiments are implemented using the C or Java

programming language [30, 152]. Four core Application Programming Interfaces are exposed to

client applications: SimDag, for investigating task graph scheduling heuristics; MSG, for simulating

concurrent sequential processes; SMPI, for simulating MPI applications; and GRAS, for emulating

a grid system to run actual grid applications under simulation [30]. As originally designed, SimGrid

provides a framework for evaluating different grid scheduling models [29] while simultaneously pro-

viding realistic macro-scale simulation of network behavior, particularly for Transmission Control

Protocol (TCP) communications streams [70, 162].

Another simulation system for modeling grid scheduling is GridSim [25], which operates at

a higher level of abstraction than SimGrid. GridSim is a static, multithreaded, deterministic, event-

driven discrete event simulator, with both entity-based and event-based models, accessible either

56

by programming a driver using an Object-Oriented library or by utilizing a form-based Graphical

User Interface [152]. GridSim is implemented in Java and provides core components for modeling

computational resources and costs, including detailed simulations of process execution behavior.

Networking aspects of the grid are abstracted to communications speeds between node sites. [25]

GridSim has been extended to model the transmission and staging of large amounts of scientific data

in a Data Grid architecture [151]. Further refinements to scheduling simulations are implemented in

the Alea [98] simulator. A recent extension to GridSim, called CloudSim, enables the simulation of

virtualized data centers to assess resource allocation algorithms, virtual machine migration for reli-

ability concerns, and scalable resource management beyond what is available with existing physical

cloud implementations [26].

The Bricks simulator [154] models scheduling algorithms for global High Performance Com-

puting (HPC) applications. According to the Sulistio Taxonomy, Bricks is a static, serialized, deter-

ministic, event-driven discrete event simulator. Bricks can utilize both entity-based and event-based

models, and operation of the simulation system is performed by scripting experiments using a cus-

tom Object-Oriented interface. [152] Implemented in Java, Bricks simulates network and processing

resources at a high degree of fidelity, for the purpose of testing different global scheduling algorithms.

At the opposite end of the spectrum from application simulators are grid system emulators.

MicroGrid [145, 165] is an emulator for unmodified Globus [64] applications. The simulation kernel

of MicroGrid is implemented as a dynamic, multithreaded, deterministic, event-driven discrete event

simulator with continuous sampling. Entity-based and event-based models are supported for simu-

lation drivers written to utilize a custom structured interface. [152] MicroGrid virtualizes resources

such that Globus applications are presented with the same environment present on an actual grid

system. Test results from micro-benchmark suites run against Globus applications both on actual

grid systems and in the simulated environment indicate high simulation fidelity at the application

level. [145] Globus applications, written in a wide variety of languages, can be tested on a wide

variety of simulated grid systems to measure performance characteristics [165].

Other purpose-designed simulation systems are not classified in [152]. BeoSim is a simulation

system for local grids created from different clusters on the same research campus, where compute

nodes on each cluster are borrowed for use with other clusters [86, 85]. GSSIM [100] enables multilevel

scheduler simulation using actual cluster traces in the Standard Workload Format or Grid Workload

Format. OptorSim [27] is designed to simulate grid job and file interactions, so that scheduling

57

and file replication tasks may be optimized. GangSim [45] is yet another grid scheduling simulator,

which emphasizes interactions between grid-level job scheduling interfaces and local site scheduling

and resource allocation policies.

While each of these simulation systems has the capability to model scheduling algorithms

for different grid architectures, a new simulation system has been developed in this dissertation

for testing VOCs: the Simulator for Virtual Organization Clusters (SimVOC), which is designed to

model the aggregate behavior of an existing grid system that uses commodity scheduling algorithms.

As SimVOC is able to execute simulations both with and without the addition of virtual machines

and extra middleware, differences between existing grid systems and grid systems with deployed

Virtual Organization Clusters may be evaluated. Although SimVOC is a purpose-driven simulation

system, its Object-Oriented implementation using the Python language permits extensibility to other

simulation tasks.

Utilizing the Sulistio Taxonomy [152], SimVOC is a dynamic simulation system with con-

tinuous output capabilities. By providing a centralized random source with user seeding support,

the serialized SimVOC kernel is able to provide both deterministic and non-deterministic execution,

depending upon the requirements of each simulation experiment. While the SimVOC kernel is fun-

damentally event-driven, a subset of events directly corresponds to an input trace. Grid models used

within the simulator are hybrid entities capable of both creating and receiving events. SimVOC is

presented to simulation consumers as a modular, object-oriented Python library.

4.3 System Resources

Whether computational jobs are executed in virtual machines or directly on physical sys-

tems, hardware resources ultimately must be provisioned and assigned first to specific user groups,

and then to individual jobs. Dynamic provisioning of resources is desirable, as it allows resource

allocations to match job requirements more closely. However, resource allocation is a difficult issue

because application resource demands change during the course of execution, typically exhibiting

multiple phase transitions [171]. Ideally, provisioning should be both dynamic and autonomic, elim-

inating the requirement to specify resource needs in explicit lease requests. This dichotomy in

resource provisioning is characterized by competing solutions such as Violin (autonomic allocation)

[135] and Virtual Workspaces (leasing) [94].

58

Regardless of the resource provisioning scheme, several classes of resources are needed to

effect virtualized clustering with site spanning. These resources include networking, migration capa-

bilities, and distributed filesystem support for image hosting. The scheduling of jobs to utilize these

resources is important, as the choice of scheduling system can have significant impacts on overall

system performance. In the remainder of this section, scheduling is discussed (subsection 4.3.1),

followed by a survey of pilot job frameworks (subsection 4.3.2). Descriptions of available technolo-

gies for implementing VOCs follow, including overlay networking (subsection 4.3.3), live migration

(subsection 4.3.4), and distributed storage (subsection 4.3.5).

4.3.1 Scheduling Resource Use

Sharing cluster resources requires allocating those resources to individual jobs on a short-

term basis, temporally multiplexing the resources over the set of jobs. High Throughput grid jobs

may be viewed as a bag of tasks, where each task is an independent component of a common

parallel application. Scheduling bag-of-tasks applications in order to minimize the makespan, or

time from the start of the first job in the bag to the completion of the final job, is known to be

NP-hard in the general case [13]. For systems representable by a star network, which includes most

cluster systems with a single head node and multiple compute nodes, both makespan minimization

(HPC) and throughput maximization (HTC) are NP-complete scheduling problems [102]. When

different resource quantities can be scheduled for different users with different utilities, the problem

of provisioning is an NP-hard knapsack problem [78].

A desirable alternative to makespan minimization scheduling is steady-state scheduling,

which attempts to optimize resource usage for high performance over a period of time by adjusting

fractional usage of specific resources by individual jobs [16]. While this type of scheduling shows ben-

efits for high-performance applications, steady-state throughput maximization is still NP-complete

in the general case [15]. When the computational resource has the form of a tree of depth greater

than one, distributed scheduling becomes an alternative to centralized scheduling. In the distributed

case, individual non-leaf child nodes in the tree perform local scheduling for the star network con-

sisting of leaf nodes rooted at that tree. Although distributed scheduling may be preferable to

centralized scheduling in terms of algorithmic complexity, testing indicates that centralized schedul-

ing, when possible, is still more efficient. [17] Effective testing of general scheduling algorithms can

be performed within grid simulation systems, instead of on actual grids, with reasonable accuracy

59

and much greater flexibility [103].

In practice, applications known to fit a bag-of-tasks model may not always be executed on

grid systems, owing to the complexities inherent with matching application requirements to available

systems through a manual job submission process. A solution to this problem is presented in [33],

which describes MyGrid, a custom grid implementation for running bag-of-tasks applications on

whatever hardware is available to the user. MyGrid features a replicated work queue scheduler,

which matches tasks to available processors in an arbitrary order, without a priori knowledge of the

environment [33]. The MyGrid middleware is Java-based, portable, and capable of interfacing with

Globus for general purpose grid connectivity. However, it does not utilize virtualization. [36]

Virtual Organization Clusters appear to be ideally suited for bag-of-tasks applications with

current technologies, as virtual machine performance testing has shown that overhead minima tend

to occur in compute-bound situations [14, 54, 55], and communications within bag-of-tasks appli-

cations are generally limited to task initiation and completion [17]. However, future advances in

virtualization technology may improve performance for other classes of applications.

4.3.2 Pilot Job Frameworks

Pilot job frameworks are a mechanism for leasing computational resources by means of

submitting a grid job that contacts a server at execution time, retrieving a workload from that

server and thus bypassing the normal mechanisms for running jobs on the grid (section 2.4). Users

of grid systems, particularly those from the High Energy Physics (HEP) community, often prefer to

submit jobs to Workload Management Systems (WMS) instead of directly to grid sites, since the

WMS autonomically matches the job to a site. Since this process bypasses normal grid accounting

and security systems, an accounting system for pilot frameworks has been developed for the Open

Science Grid (OSG). This system essentially places a grid gatekeeper on each compute node, checking

the authorization of each pilot job arriving from the WMS. [143]

Several Workload Management Systems have been developed for different grid applications,

including DIRAC, Condor Glideins, and PanDA. DIRAC (Distributed Infrastructure with Remote

Agent Control) is deployed at CERN as part of the LHCb project charged with large-scale simulation

of data associated with the Large Hadron Collider. DIRAC is designed to support High Throughput

Computing (HTC) applications using a pull model that finds jobs appropriate for available resources,

instead of locating resources to match to jobs. A central WMS server is deployed at CERN, to which

60

user jobs are submitted. Each worker node using DIRAC runs an agent that functions as the pilot

job, retrieving matching workloads from the WMS. [157] Condor Glideins support similar HTC

applications on commodity grid systems, except that jobs are submitted to a local Condor pool and

matched to compatible systems on the grid using Condor-G. [142]

PanDA differs from DIRAC and Glideins in that it chiefly supports High Performance

Computing (HPC) applications. Used by the ATLAS High Energy Physics Virtual Organization,

PanDA receives jobs into its WMS via a Python client. In the base implementation of the WMS

technology, PanDA uses a pilot framework with Condor and Condor-G to find matching resources

on which jobs are executed. [5] PanDA supports virtualization with the Xen hypervisor, using a

CERN-developed interface called the VIrtualization Resource Management (VIRM) API to request

resources. In turn, VIRM uses the CERN vGrid layer to lease a physical node and start a virtual

machine. VIRM is extensible to several back-ends including Globus Nimbus. [97] Coupled with the

autonomic leasing back-end provided by PanDA, this technology provides a rudimentary Virtual

Organization Cluster to the ATLAS VO.

4.3.3 Network Overlays

Several networking libraries have been developed for virtual machines, which permit virtual

clusters to use networks logically isolated from the underlying physical hardware. Virtual Distributed

Ethernet (VDE) [38], Virtuoso [153], and ViNe [158] provide low-level virtualized networks that can

be utilized for interconnecting VMs. Wide-area connectivity of VMs can be achieved through the

use of overlay networks such as Wide-area Overlays of virtual Workstations (WOW) [73, 164, 74] or

IP over P2P (IPOP) [72].

Virtual Internetworking on Overlay Infrastructures (Violin) enables the creation of isolated

virtual private networks through the use of virtual hosts, virtual switches, and virtual routers.

Violins are isolated from the underlying IP network and are recursively layerable, thereby allowing

one Violin to be hosted within another. Virtualized networks inside Violins have their own routing

and protocol stacks, allowing for wide discretion in network configuration. Throughput overheads

are measured at 5% using TCP data streams. [84] Traffic bounds and quality of service adjustments

may be made on a per-virtual host basis [133].

IP over P2P (Internet Protocol over Peer-to-Peer: IPOP) is an overlay network that provides

scalability, resistance to single bad links, and NAT traversal. IPOP works by encapsulating IP traffic

61

inside the Brunet peer-to-peer networking system. Brunet implements a version of the Address

Resolution Protocol (ARP) to permit IP address mobility within IPOP, improving support for live

migration of VMs connected to the overlay. Within a Local Area Network (LAN), IPOP performs

poorly, with an order-of-magnitude increase in packet Round-Trip Time (RTT) and a reduction of

available bandwidth to 29% of the physical total bandwidth. However, over a Wide Area Network

(WAN), the packet RTTs are increased by only 33%, and available bandwidth is up to 75% of

physical total bandwidth. [72]

For latency-sensitive applications such as MPI [108], network performance is a substantial

concern when virtualizing cluster systems. As presented in [71], measurements of network perfor-

mance obtained within VMs may be skewed by the virtualization process itself. Context switches,

which occur whenever packets arrive at a network interface and generate interrupts, have a negative

impact on network and system performance as a whole. Strategies for improving network perfor-

mance include enabling interrupt coalescence and larger frame sizes [75], as well as bypassing the host

operating system when delivering network packets to a virtualized guest [106]. Networking issues

are less important for high-throughput bag-of-tasks applications, which have limited communications

requirements [17].

4.3.4 Virtual Machine Migration Support

Live migration between physical nodes permits a virtual machine to be transferred from one

physical host to another without terminating the VM or the applications running within the VM,

allowing virtual grid systems to implement features such as checkpointing [49] or autonomic resource

adaptation [136]. This migration is performed using an incremental memory copy procedure, and

it produces only a momentary pause in VM execution on the order of a few tens to hundreds

of milliseconds. [34] One limitation of live VM migration is that both the origin endpoint and

the target endpoint must be on the same subnetwork, so that the VM does not lose networking

connectivity during the migration process. This subnet limitation can be avoided by using IPv6 with

mobility extensions to permit VMs to be migrated over a wide-area network such as the Internet

[79]. Alternatively, use of an overlay network may allow a VM to remain in the same private subnet,

even though it is migrated to a completely new network, as is possible with VMs that use the Violin

overlay [135].

The Virtual Organization Cluster Model does not require, nor does it prohibit, the avail-

62

ability of live VM migration. Since individual VOC nodes are given a static resource allocation, and

the mechanism for increasing the total resource allocation for a VOC is to expand the size of the

VOC by booting additional VMs, there is no need for live migration for the purpose of increasing

allocated resources. However, a VOC might use live migration to implement checkpointing or to

move jobs to more optimal hardware if such hardware becomes available after a job starts. Specific

implementations of VOCs may choose to provide or require migration capabilities.

4.3.5 Distributed Filesystems

A distributed filesystem allows virtual clusters to avoid staging images onto host machines,

eliminating the delay caused by the image copy operation. Distributed image stores have been

recommended since the first paper on grid system virtualization [57], but most grid virtualization

systems still rely on one locally staged VM image per VM instance. Even where the hypervisor

technology requires a single image per instance, reading the images directly from a Network File

System (NFS) share, without staging, may show performance gains [175]. Since NFS shares single

disks, and single disks may become bottlenecked under multiple concurrent reads, a multiple-disk

parallel filesystem may provide better scalability. The Lustre filesystem [144], equipped with high-

speed interconnects [169], could be used for this purpose. Other parallel filesystems, such as the

Parallel Virtual File System (PVFS) [28], may also be used.

The Virtual Organization Cluster Model does not require the use of a distributed filesys-

tem (DFS), but use of a DFS is recommended for improved performance when VOC sizes change

frequently. Ideally, each physical grid site provides a DFS from which copy-on-write images may

be accessed directly, with read-only permissions. All writes are non-persistent and are performed

to the local disk on which the VM instance is executing. Any distributed filesystem may be used

as an image store, as long as the read speeds are shown to be sufficient when multiple VMs are

booted simultaneously from the same shared image file. As a result of testing the relative ease of

maintenance of both Lustre and PVFS on the prototype cluster used for this research, PVFS has

been chosen as the distributed filesystem for the prototype implementation.

63

4.4 System Management

Related work on system management can be divided into three categories: physical system

installation (subsection 4.4.1), virtual cluster construction (subsection 4.4.2), and post-installation

management (subsection 4.4.3). Physical fabric is needed to host Virtual Organization Clusters,

and these physical clusters must be configured with software for virtualization, network connec-

tivity, and possibly other support services. Construction of virtual clusters may be simplified by

exploiting the single-image property of VOCs. For both administrative domains, post-installation

management of the cluster systems will be needed to update installed software and add or change

existing functionality to adapt to the changing needs of the hardware site or Virtual Organization.

4.4.1 Installation of Physical Systems

Among the most popular physical system installation toolkits is NPACI Rocks [131]. The

core of the Rocks system consists of a rapid installer for an underlying Red Hat-derived Linux

distribution along with cluster-specific tools packaged for rapid installation. Rocks is designed to

minimize the scalability issues inherent with managing a cluster system by centralizing configuration

on the head node and treating compute nodes as stateless systems. [122] Entire clusters can be

installed with Rocks in a matter of hours, provided the basic setup of the cluster hardware is

suitable for the installation [123]. Standard tools, such as Red Hat Kickstart, are leveraged by

means of an XML-based specification, so that clusters can be automatically configured according

to a pre-specified design [88], which can be modified and extended to permit customized installs

for specific cluster applications [137]. Rocks provides a mechanism for easy addition of software

application groups via “rolls,” or meta-packages of related programs and libraries, grouped according

to software dependency graphs [20].

Other systems for rapid physical cluster installation include the OSCAR meta-package sys-

tem, RISE, and Cluster-On-Demand. OSCAR is an automated installer that uses groups of packages

(“meta-packages”) to add software to cluster compute nodes in a manner similar to Rocks rolls [112].

RISE is a Web services-based system imaging suite, which propagates binary software images to

cluster compute nodes using the Preboot eXecution Environment (PXE) [101]. Cluster-On-Demand

(COD) permits dynamic reinstallation of all or part of a physical cluster, allowing the cluster to be

split into multiple virtual cluster slices [32].

64

Each of these systems provides rapid installation and initial configuration of physical com-

pute fabric, provided the hardware to be used is supported by the rapid installer. Experiential tests

with some of these systems, particularly Rocks and OSCAR, has led to intractable failures when

the hardware was not fully supported by the installation suite. Furthermore, these systems make

little provision for the ongoing maintenance and updating of cluster systems, short of performing

complete reinstallations.

Virtual Organization Clusters require little in the way of support from the host operat-

ing system: virtualization support, access to shared storage, and networking connectivity are the

principal requirements of the virtual machine. As a result, VOCs can be run on simplistic host in-

stallations using lightweight distributions such as Slackware Linux [55]. Many of the meta-packages

managed by Rocks, OSCAR, and similar systems are simply unnecessary on physical hardware that

will support VOCs. The software complexity arising from the various scientific software package

sets is moved into the virtual machine space, eliminating the need for the vast majority of cluster

software to be installed directly on the hardware.

4.4.2 Installation of Virtual Systems

Virtual Machine installation systems tend to be designed to produce a large number of

identical, or mostly identical, VM images for use with virtualized grids. VMPlants generates a set

of customized VMs by means of a directed acyclic graph specification. A cluster of VM-producing

systems is used for actual image creation, with load balancing accomplished via a bid-cost model. [99]

Virtual Workspaces may be created by a factory system using an XML specification for customization

[94]. Factory systems themselves may be realized by specification-driven installers that permit

software customization either at install time or by using standard grid tools [168]. Performance

of these factory systems may be enhanced by using aggressive image and partial image caching

strategies, significantly reducing installation time [120].

VM installation for Virtual Organization Clusters could be automated, and in such a case,

one of these existing solutions could be utilized to produce the VM image. However, a single VOC

uses only one compute node image, the creation of which would not be sufficient to produce full

utilization of a cluster-based installer. Since the single image will be used to boot as many instances

as are needed, and replication will occur only when the same image is used at multiple different

physical sites, manual installation of the image will be practical. The only requirements for a VOC

65

image are that it be in a format compatible with the virtualization system in use, and that it be

capable of dynamic configuration of its networking properties, such as IP address and hostname, at

boot time using DHCP.

4.4.3 Post-Installation Management

Once a system is installed and operational, it is necessary to perform updates and make

configuration changes as required for system security, stability, and feature additions. Software and

configuration changes can be made through several mechanisms, such as the addition of ROCKS

rolls [20], or the use of remote command execution systems such as the Cluster Command and Con-

trol Suite [58] or Tentakel [156] to push changes to the compute nodes. Alternatively, nodes can

be completely re-imaged using a tool such as the System Installation Suite [37]. All these “tradi-

tional” techniques are best suited for the management of physical systems within a single site. With

the exception of the ability of the Cluster Command and Control Suite to handle multiple individ-

ual clusters [58], these tools tend to focus on batch management of entire systems simultaneously,

omitting fine-grained targeting of individual systems. Moreover, a standard practice for upgrading

existing cluster systems is complete re-imaging of the compute nodes, which are presumed to be

stateless [122].

A non-imaging mechanism for post-installation management of systems is Cfengine [24],

which utilizes a descriptive language to configure autonomous agents. These agents communicate

with a central policy server to effect configuration changes via a convergent process [22] in which each

machine tends to move toward a desired state. Although Cfengine allows different groups of systems

to be targeted by specifying policies around system classes, it is still designed around the concept of

single-site management. Cfengine also requires dedicated services and transports to operate, which

might cause difficulties when spanning grid sites. [24] However, Cfengine is able to detect and correct

configuration anomalies [21], and it uses a hybrid feedback loop to move the system configuration

toward the desired state [23]. Applications of Cfengine include middleware deployment and file

synchronization [111], as well as network device management with added components based on the

Simple Network Management Protocol (SNMP) [140].

An alternative agent-based configuration management system is Quattor. Developed by

entities related to the Large Hadron Collider project at the European Organization for Nuclear

Research (CERN), Quattor is capable of both automated installation (via Red Hat Kickstart) and

66

post-installation management. Quattor is designed around a large set of small agent components,

each of which performs a single configuration task. The Pan language is used to specify configura-

tions, while target machines may be specified in plain text, XML, HyperGraph, or GraphViz format.

A central database aggregates configurations into profiles for retrieval by the Quattor-managed sys-

tems. [31]

Another automated mechanism for change detection and configuration updates is Bcfg2 [12],

which was developed to unify the management of compute and service nodes in cluster systems [42].

Unlike Cfengine, which uses a custom descriptive language for expressing configuration states, Bcfg2

utilizes “generator” sub-applications to produce remote configuration specifications [39], which are

matched to system groups expressed in an XML format [87]. Bcfg2 accommodates changes over time

through integration with Subversion repositories and other change management tools, improving

flexibility [40]. However, despite an explicit design goal of simplicity in comparison with other tools

[39], a full-scale test deployment of Bcfg2 still required 4 months [41].

The division of administrative space that occurs with Virtual Organization Clusters presents

new issues for system management. Virtual clusters are not tied to specific hardware or specific sites,

but individual VOCs may be long-lived and require in-place updates to address security concerns

or adjust capabilities. Complete reconstruction of a virtual cluster, while feasible given the single-

image nature of VOCs, may not be desirable for small changes due to the need to propagate a large

image over a wide area network. Moreover, simplification of the physical administrative domain may

obviate the need for extensive change-management systems, instead suggesting simpler strategies for

updates and reconfiguration.

67

Chapter 5

Virtual Organization Cluster Model1

The Virtual Organization Cluster Model (VOC Model) describes a novel grid architecture

that provides execution environments that are homogeneous across grid sites, allowing applications to

be run on any ISA-compatible resource, including those resources that do not provide the necessary

software libraries to run user jobs directly on the hardware. VOCs remain transparent to end users

and disinterested entities, permitting the new architecture to be deployed in conjunction with, and

without disrupting, existing production grids. Since design decisions and issues in a grid system are

by definition distributed and at scale, abruptly changing the architecture of an existing production

grid would be impractical in terms of cost and complexity. Thus, it is necessary for a new grid

architecture to be deployable in a phased manner that does not cause widespread disruption. VOCs

achieve phased deployability by leveraging existing middleware and permitting participating and

non-participating (or transparent) deployments. In a participating deployment, a VOC is created

for a single VO, which assumes administrative responsibility for the VOC. All participating grid

sites must permit virtual machines to be spawned to create VOC compute nodes. Conversely, in

a non-participating deployment, a single grid site transparently provides VOCs for VOs authorized

to run jobs on the site, encapsulating the end-user workloads in local virtual environments. These

non-participating VOCs are managed by the site administrators, and it is not necessary that VOs or

end users even be made aware that VOCs are in use. In either case, middleware changes are needed

only on the sites that will host virtual machines. No changes to submission endpoint middleware

(the software operated by the end user) are required.
1Portions of this chapter will appear in Future Generation Computer Systems.

68

Virtual Organization Clusters are formally defined according to a set of abstract specifica-

tions, which are presented in this chapter. This set of specifications is intended to be flexible, so that

actual implementations of VOCs can be accomplished using a wide variety of technologies for virtu-

alization, networking, job scheduling, and autonomic adaptation. Any implementation that satisfies

the requirements of the Virtual Organization Cluster Model is a Virtual Organization Cluster. In

other words, the term “Virtual Organization Cluster” describes a concept as opposed to a specific

implementation or product.

A description of the Virtual Organization Cluster Model (VOC Model) depends upon a

separation of administrative domains (section 5.1), which conceptually divides responsibility for the

computational environments between the physical resource provider and the Virtual Organization

or its representative (which may be the physical resource provider in transparent implementations).

Definitions of terminology necessary to the model are presented in section 5.2. The abstract definition

of Virtual Organization Clusters is presented in section 5.3. Finally, section 5.4 explains how VOCs

are self-provisioned cloud systems.

5.1 Separation of Administrative Domains

The Virtual Organization Cluster Model specifies the high-level properties of systems that

support the assignment of computational jobs to virtual clusters dedicated to single VOs. Central

to this model is a fundamental division of responsibility between the administration of the physical

computing resources and the virtual machine(s) implementing each VOC, permitting a division

of labor between physical and virtual system administrators [69]. For clarity, the responsibilities

of the hardware owners are said to belong to the Physical Administrative Domain (PAD), while

responsibilities delegated to the VOC owners are part of the Virtual Administrative Domain (VAD)

of the associated VOC. Although this model of domain separation builds upon the concept of physical

and virtual domains described by the Violin project [136], a central distinction between the PAD

and VAD is that both domains represent independent policy spaces, where decisions made by the

administrators of each domain do not require cross-domain coordination. Each physical cluster has

exactly one PAD and zero or more associated VADs. Figure 5.1 illustrates an example system

designed using the VOC Model.

69

Figure 5.1: Implementations of Virtual Organization Clusters divide the grid into two administrative
spaces: each grid site has Physical Administrative Domain (PAD) that includes the hardware and
software services needed to execute virtual machines. Each VOC is an isolated Virtual Adminis-
trative Domain, into which scientific software applications, computational libraries, and supporting
programs are installed. Different administrative domains in this model may have different adminis-
trative staff.

70

5.1.1 Physical Administrative Domain

VOCs are hosted on physical computing fabric made available by affiliated organizations,

and perhaps third parties, over a standard grid computing platform such as the Open Science Grid

[121]. Each of these physical sites is an isolated Physical Administrative Domain (PAD), managed

independently from the VOCs it hosts. The PAD contains the physical computer hardware (see

figure 5.1), which comprises the host computers themselves, the physical network interconnecting

those hosts, local and distributed storage for virtual machine images, power distribution systems,

cooling, and all other infrastructure required to construct a cluster from hardware. Also within this

domain are the host operating systems and central physical-level management systems and servers.

Fundamentally, the hardware cluster provides the hypervisors needed to host the VOC system images

as guests.

An efficient physical cluster implementation requires some mechanism for creating multiple

compute nodes from a single VO-submitted image file. One solution is to employ a hypervisor with

the ability to spawn multiple virtual machine instances from a single image file in a read-only mode

that does not persist VM run-time changes to the image file. Another solution would be to use a

copy-on-write filesystem layer to allow the hypervisor to read from the centrally stored image, while

writing to a temporary local file.

5.1.2 Virtual Administrative Domain

Each Virtual Administrative Domain (VAD) consists of a set of virtual machine images for

a single Virtual Organization (VO). A VM image set contains one or two virtual machine images,

depending upon the target physical system(s) on which the VOC system will execute. In the general

case, two virtual machine images are required: one for the head node of the VOC, and one that

will be used to spawn all the compute nodes of the VOC. For transparent implementations, only a

compute node image with a compatible job scheduler interface is required.

VMs configured for use in VOCs may be accessed by the broader Grid in one of two ways.

For participating implementations, the head node of the VOC functions as a gatekeeper between

the VOC and the Grid. In transparent implementations, the VOC is constructed using a single

image and needs to be configured with a scheduler interface compatible with the physical site. The

physical fabric will provide the gatekeeper between the Grid and the VOC (figure 5.1), and jobs will

71

be matched to the individual VOC.

A major benefit of the VOC Model design is that few constraints are placed on the VM. The

VO has great flexibility in selecting the operating system and software environment best suited to

the requirements of its users. Of the few constraints that do exist, the primary ones are as follows:

• Image Compatibility. The VM image must be in a format usable by the Virtual Machine

Monitor (VMM) or hypervisor software in use at the physical site(s) where the VOC will be

executed.

• Architecture Compatibility. The operating system running in the VM must be compatible

with the system architecture exposed by the VMM or hypervisor.

• Dynamic Reconfigurability. The guest system inside the VM must be able to have certain

properties, such as its MAC address, IP address, and hostname, set at boot time.

• Scheduler Compatibility. When a transparent VOC is used with a shared scheduler pro-

vided by the physical site, the scheduler interface used by the VM must be compatible with

the shared scheduler.

5.2 Terminology

To provide a framework for defining a Virtual Organization Cluster and evaluating its behav-

ior, some preliminary terminology is necessary. These terms are presented in abstract grid computing

contexts to avoid circular definitions.

Definition 5.1. A grid technology is transparent to an entity if the entity can utilize the technology

through existing grid middleware services that are installed as part of a standard grid interconnection

system, without the addition of any extra middleware. This definition extends that presented in

Enslow [53], which requires that access to the technology must be accomplished via services and not

by direct connection to specific systems.

Transparency is a key contribution of VOC research compared to prior and related grid

virtualization work. Most virtualized grid systems require the addition of specific middleware, and

perhaps replacement of existing middleware, at both the execution endpoint and the submission

endpoint in order to utilize virtualization capabilities through the acquisition of leases [7, 83, 94].

72

As a result, implementing these systems requires a substantial investment of resources for both clus-

ter administrators and cluster users, along with substantial planning, coordination, and associated

political will. Moreover, requiring users to access leased environments directly violates the original

principle of transparency required in Enslow [53]. By extending the concept of transparency in def-

inition 5.1 to include middleware, systems that claim this property must be usable by an end-user

equipped only with the standard grid access tools in existence and installed before the addition of

the new technology. Ideally, the user would also be unaware of the existence of the new system. If

this property can be satisfied, then administrative action is only required at the computational sites

where the system is to be deployed, minimizing disruption to the existing grid infrastructure.

Definition 5.2. A job is compatible with a cluster if the job is executable using the hardware,

operating system, and software libraries installed on the cluster. The cluster in this case may be

physical or virtual.

For a given cluster system, the compatible fraction of jobs belonging to an entity is the ratio

of compatible jobs belonging to that entity to the total number of jobs on the grid belonging to that

entity. An entity is compatible with a cluster if the compatible fraction of jobs belonging to that

entity is non-zero on the cluster.

Compatibility refers to the ability of a cluster system, whether physical or virtualized, to

run a job with the available hardware (or virtual hardware) and installed software. Several differ-

ent measures of compatibility may be considered when evaluating virtualized clusters, including the

breadth of compatible VOs and the total proportion of compatible jobs across all VOs. Implementa-

tion of a new cluster technology might enable the cluster to support a larger number of different VOs;

however, such an implementation might simultaneously reduce the previously compatible fraction of

jobs for VOs already supported, reducing the total proportion of grid jobs that are compatible with

the cluster. A trade-off may arise between these two measures for certain design decisions.

It is important to note that compatibility does not necessarily imply that a cluster is willing

to run jobs from all compatible VOs. Local policies may restrict cluster usage to a specific subset

of VOs, even though the cluster is compatible with a larger set of VOs. This distinction between

capability and policy is formalized by the following definition:

Definition 5.3. An entity is authorized on a specific cluster if local cluster policies permit the entity

to run jobs on the cluster. An unauthorized entity is denied use of a cluster system only by policy

73

and not by an insufficiency of mechanism.

The main purpose of definition 5.3 is to separate mechanism from policy when defining and

evaluating technologies such as VOCs. It would be incorrect to treat a VO as incompatible if VO

jobs were rejected by the cluster simply because local policy did not provide execution services to

that VO. Technical compatibility, or the ability to run jobs within particular environments, is a

separate issue from that of authorization to use a particular resource.

Definition 5.4. An entity is termed to be participating in a grid-enabled technology if the entity

chooses to utilize the specific capabilities of the technology, including, but not limited to, the use

of specific middleware or specific configuration settings. Entities that choose not to deploy the

technology under discourse are termed non-participating.

In order to facilitate transparency and enable partial deployment of new grid-enabled tech-

nologies such as VOCs, it is necessary to accommodate the different schedules upon which different

entities may choose to deploy the technology. Moreover, some entities may choose not to deploy the

technology due to technical or policy constraints. Achieving interoperability of VOCs with existing

grid systems requires that the grid remain able to support both participating and non-participating

entities.

Definition 5.5. A grid technology is conservative with respect to jobs if jobs are neither created

nor destroyed by the system. A grid technology is conservative with respect to user jobs if user jobs

are neither created nor destroyed by the system.

Definition 5.5 implies that all jobs originate externally relative to a totally conservative grid

technology. A grid technology that is conservative with respect to user jobs may create and destroy

pilot jobs or utility jobs, but all user jobs originate outside the technology and are not destroyed by

the technology.

5.3 Definition of a Virtual Organization Cluster

Utilizing the previous definitions, a Virtual Organization Cluster may be formally defined

as a set of homogeneous computational resources that:

• Consists entirely of virtual machines that are scheduled and hosted by commodity physical

resources on the grid;

74

• Autonomically changes size in response to changing workload demands;

• Is owned by, or dedicated to, exactly one Virtual Organization;

• Is transparent to end users;

• Is transparent to non-participating virtual organizations;

• Is conservative with respect to user jobs;

• Provides a Virtual Administrative Domain to participating VOs; and

• Optionally permits participating VOs to utilize a private overlay network to span resources

across physical sites, receive jobs from a remote scheduler, and access private resources.

A VOC is effectively a set of compute nodes in the traditional cluster computing sense. The schedul-

ing of jobs on these compute nodes may be performed by a shared local scheduler on the same

physical site as the VOC, by a dedicated virtual head node on the same physical site as the VOC,

or by a central scheduler accessible via an overlay network. The flexibility afforded by this defini-

tion permits a wide range of VOC deployments, from a transparent system provided on behalf of a

Virtual Organization without any involvement of the VO itself, to a fully overlaid environment with

a private scheduling and policy domain directly manageable by the VO.

Figure 5.2 depicts two VOCs dedicated to two separate VOs. In this case, VO1 is non-

participating and thus chooses not to deploy VOCs or any related middleware. Nevertheless, Site

2 provides VO1 with a transparent VOC, so that all VO1 user jobs on Site 2 run within virtual

machines. Simultaneously, VO2 chooses to utilize a VOC with a private overlay network. End user

jobs from users affiliated with VO2 are submitted directly to the private head node owned by VO2,

and VOC nodes are autonomically started on both sites in response to the size of the scheduler

queue. VO2 user jobs are then privately scheduled and routed by means of an overlay network.

It should be noted that the VOC Model is intentionally designed to be as technology-

agnostic as possible, particularly with respect to the choice of virtualization system, network overlay,

distributed filesystem, and grid middleware. Although the prototype implementation described in

chapter 7 uses KVM for the virtual machine monitor, IPOP for the network overlay, PVFS for the

distributed filesystem, and Globus for the purpose of connecting to the Open Science Grid, a cluster

implemented according to this model should be deployable using any combination of services on any

75

Figure 5.2: Virtual Organization Clusters on a grid system. In this example, Site 2 transparently
provides a VOC to VO1, which does not deploy its own VOCs. VO2 chooses to deploy VOCs and
has a customized environment with private scheduling and resource control.

76

Table 5.1: Examples of virtualization systems, network overlays, and distributed filesystems that
may be used to implement Virtual Organization Clusters. This table is for illustrative purposes and
is not an exhaustive survey of available systems.

Virtualization Systems Network Overlays Distributed Filesystems
VMWare IPOP Lustre

Xen Violin PVFS
KVM ViNe GlusterFS

computational grid, provided the above constraints can be met. Table 5.1 lists a small set of possible

services that could be used to construct a VOC.

5.4 Self-Provisioned Clouds

In traditional grid terms, Virtual Organization Clusters fill the role of Workload Manage-

ment Systems from regular pilot infrastructures (section 4.3.2), in that they simplify the task of

sending a job to a grid site for execution by providing a dedicated computational cluster for each

Virtual Organization. End users simply submit jobs to the VOC as they would to any other cluster

connected to the grid. Since there is assumed to be a single VOC for each VO, the user is not

required to select from a potentially large number of grid sites to which a job may be submitted.

Instead, all jobs associated with a particular VO are simply submitted to its corresponding VOC.

As the user is not required to have any specialized software to send jobs to the VOC, the VOC

head node must be connected to the grid for accessibility via standard middleware. It should be

noted, however, that the provisions of the VOC Model do not prohibit VOC implementations from

providing alternate mechanisms for user job submission, such as Web portals, provided that jobs

also can be received via standard middleware. Furthermore, users could run local instances of the

VM used to create the VOC and submit jobs directly to the VOC scheduler, bypassing the grid

entirely.

Virtual Organization Clusters are cloud computing systems, since they are customized over-

lay clusters that do not require dedicated hardware. In the same way that virtual machines permit

cloud services to be hosted by remote data centers (section 3.6.2), VOCs enable dedicated clusters to

be hosted using the physical fabric provided by grid systems (chapter 2). Virtual Organizations are

provided custom environments with administrative access, without the associated equipment and

infrastructure costs that accompany physical cluster systems. By utilizing the grid as a commodity

77

source of computational infrastructure, smaller VOs that would otherwise be constrained by existing

resources have access to the same level of environment customization available to larger VOs with

dedicated infrastructure. In turn, these VOs can provide better service to end users by improving

administrative responsiveness.

Unlike leasing systems that require users to make explicit resource reservations (section

4.1.1), Virtual Organization Clusters are autonomically self-provisioned. Implementations of VOCs

must increase the size of the VOC to handle increased workloads automatically. Similarly, whenever

workloads fall below some level specified by the management policy in a VOC implementation, the

system must decrease the size of the VOC and return the excess resources to the grid. Regardless of

the mechanism used to implement this dynamic sizing behavior (an example is presented in section

7.2), it must be autonomic and part of the VOC implementation.

78

Chapter 6

Simulator for Virtual Organization

Clusters1

Testing new paradigms for distributed computing at scale can be complex and expensive

when a single entity owns the computing system. When the system consists of a large collection

of resources owned by federated entities, such as the Open Science Grid (OSG) or Enabling Grids

for E-sciencE (EGEE), reserving the entire grid for disruptive large-scale tests becomes impossible.

Simulation testing provides a means by which large-scale tests may be run in a repeatable manner

without the need to interfere with existing production applications [30]. When a research application

requires substantial replacement of middleware, major changes to grid or site policy, or the addition

of a common software stack to each grid site, simulation testing provides a means to evaluate the

behavior of the proposed application prior to actual deployment.

One research area in which actual physical testing is challenging is that of grid architectures,

where “architecture” refers to the combination of middleware, resources, and utilization methodology

used to run end-user computational jobs across different grid sites. Since a major architectural change

to a production grid, such as the system-wide addition of virtualization systems and virtual overlay

clusters, could change the way the grid is used by its consumers, a priori assessment of the impacts

of such a change is desirable from both research and management perspectives. Evaluation of the

impacts of high-level architectural changes requires a high-level – or aggregate – assessment of a grid
1Portions of this chapter have been published in [113]. Other portions have been submitted to the 24th

ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation (PADS 2010).

79

system as a single entity. Component parts of the system, such as the networking behavior and

individual site scheduling algorithms, must be abstracted for reasons of simulation performance and

result accessibility.

This chapter describes a novel discrete-event simulation system for assessing the aggregate

impacts of changing the high-level architecture of an operational grid system. Specifically, the mo-

tivation for this simulation system is to describe the behavior of a production grid in which Virtual

Organization Clusters (VOCs) [115] are utilized to execute all end-user jobs across all available hard-

ware. Although VOCs are designed to be deployed non-disruptively with existing grid middleware,

simultaneous grid-wide deployment would be impractical due to the inter-entity coordination that

would be required to perform a large-scale test. Thus, the Simulator for Virtual Organization Clus-

ters (SimVOC) has been developed to provide an evaluation environment in which actual grid trace

data is utilized to instantiate dynamic simulated grids with replaceable architectures. By enabling

repeatable experiments to be run from the same trace data, self-normalizing grid architecture ex-

periments can be effected using a commodity workstation or laptop computer. SimVOC is available

free of charge under an open-source license [3].

In the remainder of this chapter, the motivation for simulation is discussed in section 6.1.

A short discussion of issues with available grid trace data for use as simulator input follows in

section 6.2. Finally, the design of the SimVOC simulation system is presented in section 6.3. Results

obtained from tests conducted using SimVOC are presented in chapter 8.

6.1 Motivation for Simulation

At a high level of abstraction, a typical production grid system has a “standard” architec-

ture consisting of a collection of discrete computational resources to which end users may submit

computational jobs. Access to these resources is controlled via policies specified by the entities –

known as Virtual Organizations (VOs) – representing the resource providers. End users also orga-

nize themselves into VOs, typically according to research domains, and these consumer VOs obtain

resource access by negotiating with the provider VOs. If an end user belongs to a consumer VO that

is authorized to use resources on a site by the provider VO, then his or her jobs will be accepted

for scheduling on the site. [66] However, acceptance of a job for scheduling at a site does not guar-

antee (or even predict) that the job will run correctly. Since each site may have its own software

80

stack, a job may arrive at a site on which the necessary software libraries are not present to enable

proper execution. It is therefore the responsibility of the end user to select compatible sites for job

submission.

Virtualization of grid systems is a possible mechanism for improving the usability of the grid

by improving the job compatibility of execution environments [57]. Several virtual grid architectures

are available and are based on the concept of explicit resource leases. These systems include Shirako

[83], Cluster-On-Demand [32], and Virtual Workspaces via the Globus Nimbus middleware [94].

While these systems provide fine-grained resource control and provide each user with a customized

execution environment, they each require additional middleware to be installed both at the execution

and job submission endpoints.

Virtual Organization Clusters (VOCs) represent a different architecture for grid computing

that is compatible with existing submission endpoint middleware. Instead of executing end-user

jobs directly on the computational fabric, virtual cluster environments are instantiated for each VO,

and user jobs are scheduled and executed within the virtual environments [115]. Since VOCs are

constructed from virtual machines (VMs), and VM instances can be spawned from a single image,

VOC environments are nominally homogeneous (and therefore software compatible) across grid

sites. VOCs are autonomically managed and self-provisioned without explicit resource reservation

requests from end users [117]; users instead simply submit jobs directly to a dedicated virtual grid

site provided by the associated VO. Different technologies can be utilized to implement VOCs, since

a VOC is simply an implementation of a system that conforms to the specifications presented in the

VOC Model [115]. Thus, multiple mechanisms for VOC creation are possible. In the simple case,

VOCs can be constructed by using pilot jobs [143] to lease resources from schedulers on existing grid

sites, provided user-level virtualization systems (such as KVM [129]) are installed. Alternatively,

VOCs may be created by autonomically managing leases from Shirako, Cluster-On-Demand, Nimbus,

Amazon EC2 [11], or another leasing provider. Evaluating the viability of grid-wide VOCs is the

primary motivation for developing SimVOC.

Unlike existing simulation systems (section 4.2), SimVOC is designed for the purpose of

observing the aggregate behavior of an existing grid system using commodity scheduling algorithms.

As SimVOC is able to execute simulations both with and without the addition of virtual machines

and extra middleware, differences between existing grid systems and grid systems with deployed

Virtual Organization Clusters may be evaluated. Key features of the system include:

81

• SimVOC is able to model dynamic grids that change over time. The internal grid representation

within SimVOC is not limited to a static snapshot. Instead, sites, clusters, and CPU cores can

join or leave the grid at any time during the simulation.

• SimVOC is designed to track the aggregate effects of adding dynamic overlay clusters to a

production grid. Support for dynamic overlays is provided with the core simulator distribution.

Per-overlay and per-entity resource allocation policies are supported.

• Unlike existing simulation systems, SimVOC contains explicit support for pilot jobs.

• SimVOC models machine capabilities, such as support for hosted virtual machines and file

access resources, for each physical machine and virtual machine in the simulation.

• The SimVOC distribution includes models for both interval schedulers, such as Condor and

the Load Sharing Facility (LSF), and generic scheduling systems such as the Portable Batch

Scheduler (PBS).

• SimVOC provides a simple grid-level metascheduler that enables jobs to be dynamically routed

to simulated grid sites based on site-reported resource availability.

• High-level simulations of data file transfers over Wide Area Networks are supported.

• SimVOC includes facilities for job and scheduler fault injection and system fault modeling.

• Input files to SimVOC are provided to the simulator core in an easy-to-use text-based input

format that is designed for human readability. Conversion filters for Enabling Grids for E-

sciencE (EGEE) trace data sets (which may be obtained from the Grid Observatory [46]) are

supplied with the SimVOC distribution.

• Output is produced by SimVOC using a flexible processing pipeline that allows results to be

filtered, post-processed, aggregated, and directed into either plain text or SQLite database [4]

files.

Following the Sulistio Taxonomy [152] (see section 4.2), SimVOC is a dynamic simulation system

with continuous output capabilities. By providing a centralized random source with user seeding

support, the serialized SimVOC kernel is able to provide both deterministic and non-deterministic

execution, depending upon the requirements of each simulation experiment. While the SimVOC

82

kernel is fundamentally event-driven, a subset of events directly corresponds to an input trace. Grid

models used within the simulator are hybrid entities capable of both creating and receiving events.

SimVOC is presented to simulation consumers as a modular, object-oriented Python library.

6.2 Grid Trace Data

SimVOC utilizes a simple text-based input format for grid map, job trace, and observed

Virtual Organization information. Each input file is time-based, and inputs are read at simulation-

time whenever the simulator clock reaches the time stamp of the next input block. Thus, all inputs

to the simulation system are completely dynamic. In particular, the grid map may change over time,

with cluster sizes increasing and decreasing, and grid sites appearing and disappearing. Also, new

VOs may appear later in the simulation, representing the addition of newly formed VOs to actual

grid systems.

Although the input format to the simulator is simple enough that experimental grids could

be designed by hand, it is expected that many simulations will utilize trace data mechanically

converted from an existing production grid system. A mechanism has been developed to utilize

trace data from the Grid Observatory [46], which provides monitoring and topological information

about the Enabling Grids for E-sciencE (EGEE) production grid system. The input conversion

mechanism included with SimVOC is also easily extended to other input formats.

6.2.1 Grid Map Information

Information about the presence and size of grid sites is obtained from the Grid Observatory

using gLite [52] data collected by the GRIF/LAL (Groupe Grilles du LAL, part of the Grille de

Recherche d’Ile de France) organization. These files are distributed as compressed tape archives (tar

files) and are formatted in a modified LDAP Data Interchange Format (LDIF). Each LDIF entry

in each base-level file provides information about entities observed on the grid, including grid sites

and their associated processor (CPU) counts.

Since multiple grid sites may share the same hardware to fill the resources properly, the

same CPUs are reported multiple times within the data set. Without any more detailed information

about the underlying physical systems, it is necessary to apply some CPU count reduction heuristics

when processing the input data, in order to reduce the amount of over-count. The first of these

83

heuristics detects multiple Computing Elements (CEs, or grid sites) sharing the same underlying

hardware by detecting duplicate sites with the same domain name and the same CPU count. A

second heuristic is then applied to the processed data, in which all sites (which now have distinct

CPU counts) on the same domain are presumed to be sharing the same hardware. The largest CPU

count from the set of such sites is selected as the actual cluster size for the underlying physical

system. Although this heuristic is trivially incorrect, since it is quite possible to have two different

clusters from the same domain attached to the grid, the additional over-count reduction has been

found to be beneficial (see section 8.2). Without these heuristics, the grid appears to be largely

under-utilized, which is not the case [1].

6.2.2 Job Traces

Job trace data sets are obtained from the Grid Observatory as observed by the EGEE Real-

Time Monitoring (RTM) system. These traces are provided in a compressed tar archive containing

tab-delimited information fields. As the RTM system records jobs from the time of submission, the

data set must be filtered to select only jobs registered as having completed, since a priori length

information is needed for simulation purposes. Jobs are also filtered to select those with valid

(nonzero) submission timestamps, which further reduces the number of jobs from the trace that

are actually usable in the simulator. It should be noted that the contents of the (unfiltered) job

traces do not agree with the published grid utilization information from available accounting systems

[1], for unknown reasons. The RTM trace sets always contain fewer jobs than are reported by the

accounting systems, and only a fraction of jobs in the RTM traces have valid timestamps.

6.3 Simulator Design

SimVOC is fundamentally designed to model dynamic grids that change over time, with

dynamic overlay clusters (Virtual Organization Clusters) allocated using pilot jobs to obtain simu-

lated physical resources. Abstract scheduling facilities are provided, which model common cluster

scheduling systems at a high level. The simulation system is divided into several top-level compo-

nents (figure 6.1): the simulator core, input format handlers, simulation drivers, and utilities. The

core contains the simulation kernel and objects that work with the kernel to implement simulated

grid computing technologies including schedulers, file caches, compute nodes, and virtualization sys-

84

Figure 6.1: High-level components of SimVOC

tems. In addition, the core also provides the mechanisms needed to monitor the simulations and to

collect results. To provide input data for the simulations, the input format handlers parse files in

various formats to extract information about the architecture of grid systems to be modeled, as well

as job-specific data such as simulation time and run length. Raw input files are preprocessed into

intermediate files using utility programs; driver programs are then used to join these intermediate

files with the simulator core to effect simulation experiments.

6.3.1 Simulation Kernel

SimVOC utilizes a generic, reusable discrete-event simulation kernel as the central mecha-

nism for dispatching events and receiving results. This kernel is dependent only upon other classes

and functions within the same module and modules available in the standard Python library. As

such, the simulation kernel can be reused easily in other simulation projects implemented in the

85

Python language. Central to the kernel is a main event loop, which runs until the kernel event

queue is empty. At execution time, each event invokes a function call, the return value of which

(if any) is directed to the simulator output processing pipeline. Periodic trace information is also

collected during event execution.

Simulator events are flexible enough to adapt to a wide variety of requirements. However,

in practice, three types of events are used frequently: regular events, external events, and periodic

events. Regular and external events have a flag set in the simulator kernel, which causes the total

number of these types of events to be counted separately. In contrast, periodic events do not set

this flag. As the name suggests, periodic events are designed to support components that need

to re-schedule events on a regular basis; by detecting the absence of regular events in the event

queue, these periodic processes determine when the end of simulation input has been reached. To

prevent infinite event loops, it is necessary for periodic client code to stop re-scheduling periodic

events once the simulator has reached an empty steady state. Among non-periodic events, the only

distinction between a regular event and an external event is that the current time and a reference to

the simulator object are passed to the function invoked by a regular event, while an external event

invokes an external function that is not necessarily simulator-aware.

6.3.2 Job Model

All jobs in the SimVOC system are uniquely identifiable objects containing methods for

starting, stopping, and killing themselves. At start time, regular jobs schedule their own completions

using a priori length information encoded in the job object. In addition, jobs may experience random

errors, which are determined at start time using the centralized simulator random source and a

specified error probability. Full job records are recorded in the simulation output at completion time.

Completion of a job, with error status, may be effected at any time prior to scheduled completion

by invoking the job kill method, which simulates a system-induced abnormal termination.

In contrast to regular jobs, pilot jobs [143] are a special subclass of jobs that do not have a

priori length information. Instead, these jobs invoke a callback function at start time. The callback

function initiates a simulated process representing a workload transmitted to the remote system

executing the job. Whenever the process is complete, it notifies the pilot job via a termination

method, which schedules job completion. Random pilot job initiation errors may be injected at

start time, inhibiting execution of the callback function. Execution of the kill method on a pilot job

86

results in transmission of a kill signal to the external process via the callback function, simulating the

procedure by which processes are killed on Unix systems. Pilot job simulation is a key distinguishing

feature of SimVOC.

6.3.3 Resource Representations

Within the simulation system, machines comprise the lowest level of granularity. For sim-

plicity, each machine is assumed to contain a single CPU core, such that there is always a one-to-one

correspondence between machines and cores. Each machine can be claimed by a single scheduler to

run at most one job; however, multiple schedulers may target a single machine. Machines can be

shut down, at which point they no longer permit job execution. Furthermore, machines are extensi-

ble through the addition of capabilities, which are named references to objects that provide specific

functionality, such as simulated Virtual Machine Monitors (or hypervisors). At job execution time,

machines may dynamically adjust the length of the job to simulate the addition of execution over-

head introduced by various software stacks. This property is used by the Virtual Machine subclass

to simulate virtualization overheads using adjustable overhead bounds, which is a novel capability

of the system.

Clusters consist of collections of machines, along with their associated schedulers. Each

cluster may be resized from the top down, using methods to create or remove machines in a dynamic

simulation. Virtual Organization Clusters are implemented by subclassing the base cluster definition,

using pilot jobs to lease regular machines for the purpose of spawning virtual machines. In the process

of instantiating virtual machines, pilot jobs must query the physical machine for a virtualization

capability, request the virtual machine image from an associated file cache (obtained from a scheduler

resource broker, next section), and then instruct the virtual machine image to boot. Once booted,

the new virtual machine image joins the parent VOC and its scheduler pool. At any step within the

boot process, faults may be simulated by making resources or host machine capabilities unavailable,

resulting in abnormal pilot job termination. Although the VOC component implements the pilot

job mechanism, a separate component – called a watchdog [117] – implements the autonomic VOC

management policy.

Data files, including virtual machine images, are simulated by specifying the file size in bytes.

Abstract network components simulate transfers of these files from stores (servers) to caches (clients)

by computing the transfer time as a function of file size and link speed. At higher levels within

87

the simulation, site objects collect resources to simulate grid compute elements, which primarily

provide a named interface to a single scheduler on a cluster. A grid object forms the top level

of the simulation, which collects site objects, receiving and routing jobs from the job trace input

mechanism.

6.3.4 Scheduling Models

Two primary scheduling models are implemented within the simulator: greedy first-come,

first-served scheduling, and interval scheduling with machine property matching. The former type

of scheduling is non-periodic except when no free scheduler slots are available, at which time the

scheduler periodically re-checks its targets in case a machine becomes available. Since multiple

schedulers may target the same machines, there is no guarantee that a machine will be available

to any one scheduler at any given time. The second type of scheduling is implemented as a purely

periodic scheduler, which only performs property-based matching of jobs to machines at regular

scheduling intervals. This scheduler is designed to simulate the Condor [155] High Throughput

Computing system, with simplified ClassAds.

Another type of scheduler, known as a metascheduler, is available at the grid level. This

scheduler does not start jobs directly on machines. Instead, the metascheduler selects a grid site to

which the job should be submitted, based solely upon a ranking algorithm designed to favor sites

with at least one free core. When grid jobs are submitted to the metascheduler, they are immediately

submitted to the best-ranked site for execution. Should a job fail to start on a particular site within

a given period of time, the metascheduler will cancel the job submission and re-submit the job to a

different site. As jobs are sent to sites, the metascheduler utilizes a circular queue to load-balance

submissions among all sites on the grid.

In addition to providing scheduling services, the schedulers in SimVOC also provide resource

brokering, local statistics collection, and fault simulation support. Resource brokering permits a

scheduler to provide a named interface to an object providing a specific resource, such as a file

cache, that is to be made available to running jobs. Statistics collection routines are implemented

as a set of self-aggregations that maintain continuous counts of jobs waiting, running, completed,

and in an error condition, both scheduler-wide and for all Virtual Organizations represented by all

jobs observed by the scheduler. When a target machine is abruptly terminated, as is the case when

a pilot job running a virtual machine is killed, scheduler fault behavior is reproduced by allowing

88

the scheduler to attempt to claim machines that are no longer available. When such faults occur,

the schedulers must recover from the fault by selecting a different target.

6.3.5 Input and Output

Inputs to SimVOC are provided in a simple, extensible text input format that is designed

for both human accessibility and simple machine generation. Three categories of input are provided:

grid map data, job traces, and Virtual Organization records. Grid maps specify the sizes of clusters

at any given time in the simulation, as well as the names of sites and schedulers that utilize the

clusters. Job traces provide submission time, job name, VO affiliation, length, and (optionally)

observed queuing delay information for each job in the trace. Virtual Organization records provide

the names of each VO observed in the job trace data, along with optional policy configurations

used by the watchdog component in VOC simulations. All three input types are time-oriented, and

time-specific blocks of input are read only when the simulator clock reaches the time specified in the

block.

SimVOC utilizes a pipeline model for simulator output processing. Pipeline components

include filters, duplicate data reduction mechanisms, data aggregation components, and file output

handlers. The primary file format utilized by the initial release of SimVOC is the SQLite database

format [4], version 3. External scripts, supplied with the SimVOC distribution, are used to query

the database and extract data for analysis purposes. In addition, external programs may read the

SQLite databases directly to generate plots or perform statistical analysis.

89

Chapter 7

Prototype Implementation

In order to evaluate the actual components required to implement Virtual Organization Clus-

ters, and to measure the overheads introduced by virtualization, a physical cluster was constructed

for use as a test bed. Several prototype installations were performed using different software stacks,

so that the cluster could be adapted to changing research needs. In the initial configuration, the

prototype cluster utilized a minimal installation of Slackware Linux 12 on the hardware, placing the

end-user software stack in a set of CentOS 5.1 virtual machines. When it was later determined that

a 64-bit host operating system was required for memory block allocation reasons, CentOS 5.2 was

installed on the hardware. Over time, both the host and guest operating systems were upgraded to

CentOS 5.3.

Several system management challenges were encountered during the test bed installations

and maintenance operations. Due to the heterogeneity of the compute nodes and storage nodes

within the same cluster, existing batch administration tools were difficult to use. Regular clus-

ter services, such as the Dynamic Host Configuration Protocol (DHCP) and Domain Name System

(DNS) servers, required duplication of configuration information, resulting in errors whenever config-

urations required adjustment. To address these problems, a cluster configuration tool called Stoker

was developed to centralize all configuration settings in a Lightweight Directory Access Protocol

(LDAP) database. For management of ephemeral virtual machine instances, a second tool – named

Pulley – was envisioned to deliver configuration settings whenever a system became available. Due to

the development of commercial applications for performing similar management tasks in virtualized

data centers [170], the Pulley project was discontinued.

90

Both the prototype implementation and management systems are discussed in the remain-

der of this chapter. Section 7.1 describes the initial cluster configuration with Slackware Linux 12

hosts and CentOS guests. Section 7.2 discusses the process of refining the cluster services to sup-

port dynamically provisioned Virtual Organization Clusters. Finally, section 7.3 presents system

management issues, Stoker, and Pulley.

7.1 Cluster Setup1

An initial cluster implementation was performed to test the Virtual Organization Cluster

Model. This section presents in detail the procedure (figure 7.1) that was followed to set up the

physical cluster, configure the physical fabric to support virtualization, and to construct the VOC

itself. The physical test cluster used the Kernel-based Virtual Machine (KVM) hypervisor, which

was installed on physical hosts running Slackware Linux 12. A Virtual Organization Cluster was

constructed around a single virtual machine image into which CentOS 5.1 had been installed. In this

particular implementation, the head node for the VOC was provided as part of the physical fabric,

even though it was actually implemented inside a virtual machine. This head node was connected

to the Open Science Grid Integration Testbed.

7.1.1 Physical Cluster Construction

The hardware cluster for the test installation consisted of sixteen nodes: fifteen Dell Pow-

erEdge 860 1U rackmount systems, and one Dell PowerEdge 2970 2U rackmount server. One Pow-

erEdge 860 system was employed to host the VOC head node, while the other fourteen were each

prepared to host two VOC virtual compute nodes. Each PowerEdge 860 machine used in this test

was configured with a 2.66 GHz dual-core Intel Xeon CPU, 4 GiB of RAM, and an 80 GB hard

disk drive. The 2U PowerEdge 2970 server was employed to host installation images, user home

directories, network services, and a shared VM image store exported via a Network File System

server. Prior benchmarks and considerable network test results [116] were obtained using a previous

CentOS 5.0 installation on the same hardware.

To provide hypervisor services, the Kernel-based Virtual Machine (KVM) was installed

on each compute node and on the physical head node. KVM was chosen primarily due to its
1The contents of this section have been published in [115] and [55].

91

Figure 7.1: Process of constructing the original prototype physical cluster and hosted Virtual Orga-
nization Cluster. The VOC represented an independent administrative domain and was constructed
separately.

compatibility with the most recent kernel release at cluster construction time, as the most recent

drivers were needed for optimal performance of certain hardware components.

Network access was provided to each virtual machine by means of bridging the physical

Ethernet card in each physical compute node both to the physical node itself and to each guest

machine (two guests per host). Thus, three logical devices shared each physical device. MAC

addresses were assigned to each VM instance by KVM, using a custom script to generate the MAC

addresses deterministically based on the host machine. On the physical head node, two separate

bridges were employed: one to the cluster’s private LAN, the other to the University network and

public Internet. Network Address Translation and iptables firewalls were implemented on both the

physical head node and utility system, allowing them to serve as edge routers for the entire private

LAN. Since each VM obtained an IP address from the DHCP server, and each IP address was part

of the same subnetwork without regard to physical or virtual host status, each VM instance had

both Internet access and local connectivity to other VMs in the VOC.

In the test cluster, a common VOC head node was provided as part of the PAD. For admin-

istrative simplicity, this CentOS 5.1 node was implemented as a virtual machine that was bridged

92

Figure 7.2: Initial Test Cluster Setup. Each physical compute node hosted a VOC node as a virtual
machine, using the KVM hypervisor. The single VM image file resided on a network filesystem that
was provided by other hardware connected to the cluster. Job scheduling in the transparent VOC
was performed using Condor.

to the public Internet. To supply job scheduling, Condor 7.0.0 was installed on the shared VOC

head node as well as on all compute nodes. Open Science Grid Integration Testbed membership was

achieved by installing the OSG Virtual Data Toolkit (VDT) and connecting to OSG by configuring

an OSG compute element. The compute element that ran Globus GRAM was set up as a shared

head node for both the physical and virtual compute nodes. Differentiation between the PAD and

VAD was done through the attributes advertised by each compute node’s Condor startd. This setup,

shown in figure 7.2, provided a transparent VOC to the Engage VO.

7.1.2 Virtual Cluster Construction

Constructing the Virtual Organization Cluster for the test system was a straightforward

task, since only 1 Virtual Machine image was required to implement the whole VOC. CentOS 5.1

was installed into a VM image, then Condor was installed and configured to run a startd process

to enable jobs to be scheduled. The VM image was configured for DHCP networking, and the

93

primary assumptions made about the underlying Physical Administrative Domain were that jobs

would arrive via the Condor scheduler and that the KVM hypervisor would be used to execute the

VMs.

As a result of the hardware emulated by KVM, implicit low-level requirements were imposed

upon the VOC system. In practice, these requirements were not substantial, since the Linux system

used in the VOC was generic enough to support the emulated hardware. However, a different

choice of guest operating system might have required additional configuration steps for the VO

administrator. In particular, KVM could execute only 32-bit, x86-compatible operating systems.

7.2 Dynamic Provisioning of Virtual Organization Clusters2

Virtual Organization Clusters are configured and started on the physical compute fabric by

middleware installed in the Physical Administrative Domain. Such middleware can either receive a

pre-configured virtual machine image (or pair of images) or provision a Virtual Organization Cluster

on the fly using an approach such as VMPlants [99] or installation of nodes via virtual disk caches

[120]. Middleware for creating VOCs can exist directly on the physical system, or it can be provided

by another (perhaps third-party) system. To provide participating VOs with full administrative

access, VM images also can be created manually and uploaded to the physical fabric with a grid

data transfer mechanism.

Once the VM image is provided by the VO to the physical fabric provider, instances of the

image can be started to form virtual compute nodes in the VOC. Since only one VM image is used

to spawn many virtual compute nodes in efficient implementations, the image must be read-only.

Run-time changes made to the image are stored in RAM or in temporary files on each physical

compute node and are thus lost whenever the virtual compute node is stopped. Since changes to

the image are non-persistent, data corruption is not an issue, and VM instances started in this

way can be safely terminated without regard to the machine state. As an example, VM instances

started with the KVM hypervisor are abstracted on the host system as standard Linux processes.

These processes can be safely stopped (e.g. using the SIGKILL signal) instantly, eliminating the

time required for proper operating system shutdown in the guest. Since there is no requirement

to perform an orderly shutdown, no special termination procedure needs to be added to a cluster
2The contents of this section have been published in [117].

94

Figure 7.3: A watchdog process monitored the size of the job queue on the shared gatekeeper node
(1), booting virtual machines to expand the size of the Virtual Organization Cluster as necessary
(2-4). Jobs from the Condor queue on the shared gatekeeper were executed on the VOC nodes as
they became available (5). This process was repeated until either the VOC was large enough to run
all the jobs (6-11) or no more physical hosts were available to run VOC nodes.

process scheduler to remove a VM from execution on a physical processor.

Once mechanisms are in place to reserve physical resources and start VMs, entire virtual

clusters can be started and stopped by the physical system. VOCs thus can be scheduled on the

hardware following a cluster model: each VOC would simply be a job to be executed by the physical

cluster system. Once a VOC is running, jobs arriving for that VOC can be dispatched to the VOC.

The size of each VOC could be dynamically expanded or reduced according to job requirements and

physical scheduling policy. Multiple VOCs could share the same hardware using mechanisms similar

to sharing hardware among different jobs on a regular physical-level cluster.

In order to provision Virtual Organization Clusters dynamically, grid-enabled middleware

95

was developed. This middleware enables physical systems to host VOCs that are connected to the

Open Science Grid. Grid jobs arrive via Globus [64, 66] and are deposited in a job queue on a

gatekeeper system, where the Condor job scheduler [155] runs. A watchdog process (illustrated in

figure 7.3) periodically samples the Condor queue and starts virtual machines that belong to the

VO with which each job is associated. As the number of jobs in the queue for a particular VO

increases, the watchdog will attempt to start additional VMs to increase the size of the respective

VOC, subject to the limitations imposed by the hardware and by site policy. When the watchdog

observes fewer jobs in the queue than there are executing VOC nodes for a particular VO, VMs

belonging to the VOC are terminated. This process ensures that provisioning of physical resources

dynamically adapts to the job loads of the VOs supported by the grid site, without any manual

intervention or need for external middleware.

7.2.1 Job Tagging

Upon the arrival of a grid job, a corresponding Condor job is created by Globus. The

dynamic VOC system modifies the Condor ClassAd to add a requirement that the target system

match the VO with which the grid job is associated. Within the ClassAd, this additional requirement

takes a simple name equals value form, in which the name of the VO is prefixed to form the name,

while the Boolean condition of truth is used as the value.

As an example, the Requirements field for a job associated with the Engage VO, targeting

a 32-bit Linux system, might have the form:

Requirements = (Arch == “INTEL”) && (OpSys == “LINUX”) && (VO_ENGAGE == TRUE)

One requirement imposed upon each VOC compute node VM is that its Condor interface

expose a corresponding ClassAd field to match the VO. Thus, a VOC node that is owned by the

Engage VO should include the following field in its ClassAd:

VO_ENGAGE = TRUE

With this mechanism, the Condor scheduler will handle the matching process of a grid

job to a corresponding VM belonging to an associated VO. The dynamic provisioning middleware,

however, is still responsible for starting the VM. Only after a VM has booted and joined the pool

does Condor proceed to run the job.

96

7.2.2 VOC Management

Management of the VM instances comprising the individual VOCs is performed entirely by

the watchdog, using the Condor queue as its data source. As the watchdog observes an increasing

number of jobs associated with a particular VO, it attempts to start additional VMs in order to

increase the size of the corresponding VOC. The maximum number of available slots in which to

start VMs is known to the watchdog, and it will not exceed the number of slots pre-specified by the

system administrator. Furthermore, the total number of slots available across the physical fabric at

a single site may be further subdivided among the VOs supported by that site. Thus, administrators

can enforce flexible site policies to balance resource usage among different VOs.

Whenever the watchdog observes that a single VOC has more running VMs than there are

jobs belonging to the corresponding VO in the queue, the watchdog will reduce the size of the VOC

by terminating VMs that are not claimed by Condor. Since the VOC model [115] specifies the use

of a single read-only disk image to spawn all VMs in a VOC, termination of VMs is accomplished

instantly by means of killing the virtual machine monitor process. Once a VM has been terminated,

its slot is re-claimed by the watchdog and added to the pool of unclaimed physical Condor slots.

7.3 Management of Systems3

In order to instantiate Virtual Organization Clusters, underlying physical hardware is needed

to run virtualization software and host the VOC nodes. While this hardware could be owned by

the Virtual Organizations themselves, a cloud computing model would favor the use of specialized

hosting providers that make physical fabric resources available on a grid system. Each hosting

provider would thus be responsible for the acquisition and maintenance of all the hardware necessary

to construct physical clusters, including the computing systems, local storage, network systems,

power conditioning and distribution, and cooling infrastructure. Physical site administrators would

be responsible for local site policies and maintenance tasks, but their administrative responsibility

would extend only to the physical fabric at the specific site. Thus, each individual physical site

would be a separate administrative domain, known as a Physical Administrative Domain (or PAD).

A simplifying assumption made about each physical site is that physical resources are de-

voted exclusively to hosting VOCs: no scientific jobs are executed directly on the hardware. As a
3The contents of this section have been published in [114].

97

result, the software set required on each compute node is minimal and consists of the host operating

system, virtualization applications, and any needed driver software to support installed hardware.

Standard networking technologies, such as the Dynamic Host Configuration Protocol (DHCP) and

Domain Name System (DNS), are employed in a centralized manner to enable connectivity between

systems, while simultaneously maintaining the scalability of the physical cluster as a whole. By

centralizing host-specific settings, such as the IP address and host name of each compute node,

management inside the PAD is simplified.

One issue that does arise when using standard networking services is the replication of

identical information across different services. For example, if fixed IP and host name assignments

are to be made using DHCP, then the same mapping of host names to IP addresses must be entered

into the DNS records for resolution of host information to work correctly within the system. A

solution to avoiding this replication is to centralize the duplicate information, using an external

database such as a Lightweight Directory Access Protocol (LDAP) server. Services utilizing the

information in the database are then configured to use the external database directly, provided the

services have the required integration capability. Otherwise, the services are adapted, through the

use of middleware layers, to update their local configurations from the centralized database upon

request.

7.3.1 Stoker

Stoker is a scalable remote management tool, whose overall architecture is shown in figure

7.4. Stoker differs from prior management tools such as Tentakel [156] and the Cluster Command

and Control Suite [58] in that it can obtain system information directly from a centralized database

with system grouping capabilities, thereby avoiding replication of host information in a configuration

file. Stoker also has an extensible, modular design with three major components: warehouses, core,

and actors. These components handle retrieving configuration information for a node or group of

nodes, spawning and joining actor threads, and performing some type of action on the target nodes.

Stoker Warehouses

Stoker can use multiple data sources or warehouses to gather data about target nodes.

Central to the warehouse data retrieval task is the concept of a resolver. Resolvers take as input a

logical node or group name and return a data structure containing addressing information potentially

98

Figure 7.4: Overview of Stoker. Multiple configuration warehouses may be used to provide target
machine information, including LDAP databases, MySQL databases, and text configuration files.
Stoker uses SSH to run commands on machines described by these warehouses.

including, but not limited to, hostnames, IP addresses, and MAC addresses. Stoker’s grouping

feature allows machines to be organized into arbitrary groups and subgroups for the convenience of

the administrators.

A separate resolver is required for each type of data warehouse. Resolvers currently exist for

LDAP databases, MySQL databases, and plain text files. An administrator wishing to implement

a new resolver needs only to write a small Python class that retrieves the information from the

warehouse and inserts it into a simple data structure defined by Stoker.

Stoker Core

A design goal of the Stoker core was to encapsulate the complexity inherent in a multi-

threaded application, thus allowing a system administrator to extend or create, with minimal effort,

new warehouses and actors to meet his or her needs. The primary function of the core is to invoke

resolvers and spawn an actor thread for each target. The core then manages each thread, collecting

any output from the actor, and generates an activity report for the user.

Since the core does not have a priori knowledge of whether or not a user-supplied target

is a single node or a group of nodes, it must be flexible enough to handle a situation in which the

99

user inadvertently specifies a target multiple times. For example, if a user toggles a configuration

option on two groups of machines with overlapping membership, the core must ensure that the

configuration option is toggled exactly once on each system.

Stoker Actors

Stoker actors are analogous to Stoker warehouses in the sense that they are (potentially)

simple scripts that perform a simple task at the direction of the core. Actors execute in their own

threads and have well-defined data structures that specify all known information about a single

target. The actor’s task is to apply its argument, also provided by the core, to its target. Actors

supplied by the core Stoker distribution perform such tasks as remote command invocation via SSH,

ping, Wake-on-LAN, and local (relative to the user’s machine) command invocation. New actors are

easily created by the system administrator to perform new functions.

7.3.2 DHCP and DNS Middleware

When managing physical clusters, it is convenient to have a single repository for all node-

specific information. Unfortunately, many software packages do not include support for a centralized

configuration repository, requiring instead a product-specific configuration file. To eliminate need-

less data duplication and possible inconsistencies between services that share data, database-aware

middleware was developed (illustrated in figure 7.5) using a Lightweight Directory Access Protocol

(LDAP) server as the data source. As a proof of concept, two network services were adapted to use

this middleware: ISC dhcpd, a Dynamic Host Configuration Protocol (DHCP) server; and dnsmasq,

a Domain Name System (DNS) server.

The middleware is implemented as a Python script that accesses the LDAP database and

writes a configuration file for the given software package. This script is then integrated with the

service initialization scripts so that every time the software package is started or restarted, the

configuration file will be regenerated from the LDAP database, ensuring that any changes will be

propagated throughout the system.

100

Figure 7.5: Automatic integration of Stoker with DHCP and DNS services when an LDAP database
is available as a warehouse

7.3.3 Management of Virtual Machines4

Unlike the physical fabric systems, which are comprised of single, isolated sites, the Virtual

Organization Clusters potentially execute on arbitrary sites, or even across physical sites. As a re-

sult, it is not practical to assume that virtual machines will necessarily always be directly reachable,

since physical sites may be constructed using private networks with Network Address Translation

(NAT) used on routers connecting the private networks to the commodity Internet. Without com-

plex arrangements for forwarding connections to individual VOC nodes, the use of client-initiated

transports like SSH is not feasible. As a result, configuration tools that operate on a “push” model,

such as Stoker, are not suited for managing these virtual clusters.

An alternate system that can traverse NAT boundaries automatically is in the initial design

stages. This middleware utility, called Pulley, will use a central database and application server to

publish virtual cluster node configurations on the Internet. Client VMs will periodically poll the

application server using standard HTTP Web service mechanisms. Since the polling requests will

originate from the VMs themselves, they will be able to traverse NAT and firewall boundaries at

the physical sites, without requiring any additional software or services to be made available on the
4This section is presented as originally published in [114]. Since that time, the Pulley project has been discontinued.

101

Figure 7.6: Overview of Pulley, which consists of a configuration database, a configuration server,
and clients located on each VOC node. Each client periodically polls the Pulley server, making a
connection through the NAT router and across the Internet. The Pulley server responds with con-
figuration data obtained from the Pulley database, enabling the Pulley client to effect configuration
changes on the VOC node.

physical fabric. This design is illustrated in figure 7.6.

Since Pulley is in a formative stage of design, the exact mechanism of its management

functionality is not yet known. Two models of operation are planned for investigation. One of these

possible architectures would be to adapt Stoker actors to draw operational information directly from

the configuration database via middleware, instead of relying on human system administrators to

provide command input. The second potential architecture would be to implement a policy-based

mechanism such as Cfengine, adapting the agent-based system to operate across Grid sites via

middleware protocols. It is even possible that a hybrid of both architectures will be used in the final

system. In the meantime, simple management scripts that obtain configuration information from an

HTTP server are in use to install extra packages, set package repository priorities, and make firewall

changes.

102

Chapter 8

Simulation Test Results1

Although the prototype system was available for testing, its size (reaching a maximum of

16 compute nodes with a total of 32 CPU cores) limited investigation of the aggregate performance

of production grid systems with VOCs widely deployed. Since an actual physical deployment of

an experimental architecture across an entire production grid was impractical, a simulation system

was developed, called the Simulator for Virtual Organization Clusters (SimVOC) [3]. Following

the taxonomy provided by Sulistio et al. [152], SimVOC was designed to be a dynamic, trace-driven,

discrete-event simulation system with continuous output, hybrid grid model, and a serialized (single-

threaded) kernel. As utilized in the experiments described here, SimVOC was operated via Python

driver applications in a deterministic execution mode. For simplicity, the simulation system did

not model cross-site authentication and authorization. Instead, it was assumed that each physical

grid site permitted jobs from users affiliated with any Virtual Organization observed in the trace

inputs. For the purpose of simulating VOCs, a synthetic VO named “_pilot_” was created, and it

was assumed that every grid site would accept virtualization jobs from the “_pilot_” VO.

A number of simulation experiments were performed to evaluate the viability of VOCs on

the production Enabling Grids for E-sciencE (EGEE) system. All simulation experiments were

effected using a commodity Dell Latitude E6400 laptop computer with an Intel Core 2 Duo P8400

CPU at 2.26 GHz clock speed and a reported 4523.39 BogoMIPS per core. A total of 4 GiB physical

system memory was installed, and virtual memory swapping behavior was not observed during any
1Portions of this chapter have been published in [113]. Other portions have been submitted to the 24th

ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation (PADS 2010).

103

simulation run. The software environment of the system consisted of a 64-bit installation of Arch

Linux, with Python 2.6.2 utilized as the interpreter for the SimVOC code.

In this chapter, the results of early small-scale simulation tests are presented in section

8.1. Processing steps required to handle input trace data are discussed in section 8.2, followed by

a description of the control simulation used to evaluate the raw data in section 8.3. Simulation

test results are presented for standard grid architectures in section 8.4 and the VOC architecture in

section 8.5. A discussion of the effects of virtualization overhead concludes the chapter in section

8.6.

8.1 Preliminary Simulations

Early discrete-event simulation results were obtained through the use of a preliminary ver-

sion of the discrete event simulator discussed in chapter 6. A synthetic workload was engineered,

along with a simple greedy scheduling algorithm, to test the process of sharing a single physical

site among several Virtual Organization Clusters. This workload contained 8 jobs of varying length,

divided into three jobs of 200 seconds in length for the Engage VO, three jobs of 400 seconds in

length for the Engage VO, and two jobs of 600 seconds in length for the NanoHub VO.

As depicted in figure 8.1, both VOCs could be started and expanded to a sufficient size so

as to provide execution capacity for all eight jobs in parallel, since the physical site had capacity

for 16 virtual machines. When jobs completed, the sizes of each VOC could be reduced at the next

watchdog interval, and eventually all VOC nodes were removed when all jobs finished. The total

execution time for the makespan was 1200 seconds.

When the number of virtual machine slots available to run the VOCs was reduced to four

(figure 8.2), the total time for completion of the makespan was increased to 2100 seconds. Both the

Engage and NanoHub VOCs were able to claim 2 slots at the first watchdog cycle, permitting the

NanoHub VOC to execute both NanoHub jobs in parallel as soon as the corresponding VOC nodes

booted. The Engage VOC was able to execute two jobs in parallel until the NanoHub VOC com-

pletely vacated the physical cluster, after which the Engage VOC started a third node. Parallelism

was increased only briefly, as completion of the third job led to the removal the third node after

only 300 seconds. As the remaining two Engage jobs completed, the Engage VOC nodes terminated,

leading to a stair-step pattern in the graph.

104

Figure 8.1: Sharing 16 virtual machine slots among two distinct Virtual Organization Clusters

Figure 8.2: Sharing 4 virtual machine slots among two distinct Virtual Organization Clusters

105

8.2 Input Data Processing

Before simulation of a full production grid, input data sets were obtained from the Grid

Observatory [46] and converted into the text input format supported by SimVOC. The traces con-

sisted of a dynamic map of the Enabling Grids for E-sciencE (EGEE) grid; the set of jobs, including

submission times, lengths, and VO relationships, observed on EGEE by the gLite middleware [52]

from 00:00 UTC on December 8, 2008, to 23:59 UTC on May 10, 2009; and a dynamic list of Virtual

Organizations found on the grid over the same time period. Prior to application of the CPU over-

count reduction heuristics described in section 6.2, an initial CPU count of 314,547 was observed in

the map data. Once the heuristics were applied, the initial CPU count was reduced to 107,396. A

total of 258,097 jobs from the associated job trace were found to have been registered as complete

with valid time stamp data, as shown in table 8.1. This count represented a fraction of the approx-

imately 4 million jobs present in the raw trace data; however, both valid time stamps and a priori

job length information were required for simulation purposes.

An additional data issue resulted from the timing of job arrival and Virtual Organization

registration, relative to the grid map data. Since the job and VO data were derived from the job

traces, while the map data were extracted from a different data set, some discrepancies were found

in the timing. In particular, jobs could not always be matched to target sites or to affiliated VOs,

resulting in jobs receiving a zero execution length and an error status, since the simulator was unable

to find the resources on which the jobs were supposed to run.

8.3 Control Simulation

To check the non-scheduler portion of the simulated grid model, a control simulation was

effected, in which the actual job start and finish times from the EGEE job input trace were used to

start and stop jobs on sites. As illustrated in figure 8.3 and table 8.1, most jobs executed on the

actual EGEE grid were compelled to wait in the queue for some period of time, averaging 2,740 s,

before starting execution. Combining the wait time and service time, jobs experienced an average

sojourn time (time from submission to completion) of 11,700 s. However, the median sojourn time

was only 402 s. This time discrepancy, along with the substantially smaller median service time

compared to the mean service time, indicated that the distribution of job lengths was right-tailed,

with an abundance of short jobs. Issues with the trace data also resulted in an absence of jobs

106

Figure 8.3: Control Simulation: Job scheduling was based upon observed time stamp information
in the trace data. Simulated schedulers were not used, and multiple jobs could run on individual
machines.

between December 29, 2008 and January 18, 2009, as evidenced between hours 500 and 1000 in

figure 8.3.

As illustrated in figure 8.3, most jobs were queued for some period of time prior to processing.

No valid jobs were found to be present in the trace data between December 29, 2008, and January 18,

2009 (approximately 500 to 1000 hours into the trace), resulting in non-utilization of the simulated

grid during that period. The control simulation procedure for the six-month trace period required 484

seconds to execute, with the simulator kernel processing a total of 893,805 events. Event processing

was consistently variable throughout the length of the simulation, as depicted in figure 8.4.

8.4 Standard Grid Architecture

Significant differences were observed between the simulator and the EGEE data once the

scheduling portion of the simulated grid model was enabled. Results of this “standard” simulation,

illustrated in figure 8.5 and summarized in table 8.1, indicated greatly increased job queuing behav-

ior, with an order of magnitude increase in observed job waiting time and an attendant increase in

job sojourn time. The greatly reduced performance of the simulated grid in this case was determined

107

Figure 8.4: Control Trace: Behavior of the simulator during the control simulation. Event processing
rates fluctuated throughout the simulation.

to have been caused by several factors. A naive implementation of the simulated Condor scheduler,

which had to be suspended and resumed on each site to maintain simulator performance, resulted

in a mean wait time increase for those sites utilizing Condor. Furthermore, the control simulation

permitted multiple jobs to run on single machines, while the simulated schedulers would not start

a job on a machine that was marked as busy. Grid sites using the Condor scheduler were modeled

using an interval scheduler optimized for High-Throughput Computing (HTC) applications, whereas

sites specifying other schedulers were modeled using a zero-interval scheduler optimized for High-

Performance Computing (HPC). Thus, the median wait time was reduced to zero as a large number

of jobs targeted at sites with non-Condor schedulers started instantly. Nevertheless, the reduced

performance of the simulated Condor scheduler resulted in a larger amount of aggregate queuing,

indicating poorer performance than was actually observed on the physical EGEE grid.

In the standard architecture simulation, only the job submission time and length information

was utilized for scheduling purposes. Simulated scheduler components were utilized to match jobs

to free machines and simulate execution. Average job queuing delays increased to 4,470 seconds

relative to the control simulation (table 8.1). This additional delay changed the alignment of the

job trace and grid map data, permitting a total of 156,804 jobs to execute – an increase of 231 from

108

Figure 8.5: Standard Architecture Simulation: Jobs were scheduled directly onto the simulated
hardware using simulated schedulers. At most one job was permitted to run on any machine at one
time.

the control simulation. These additional jobs were slightly longer than the other jobs in the set,

as evidenced by the increase in average job length from 9,000 s to 9,020 s. Average sojourn times

increased to 13,500 s.

Aggregate scheduling behavior for the standard architecture simulation (figure 8.5) revealed

a general increase in total job queuing compared to the control simulation, which contributed to the

increased waiting and sojourn times. Peak counts of simultaneous job executions remained similar.

Fewer simulator kernel events (816,075) were required to execute this simulation, resulting in a

simulation experiment execution time of 388 s. Both the maximum event queue size and maximum

event processing rate were observed near the middle of the simulation run, as illustrated in figure

8.6.

8.5 Virtual Organization Cluster Architecture

A final set of simulation experiments were run to evaluate the behavior of Virtual Orga-

nization Clusters applied to the grid. In these simulations, the same simulated physical grid is

constructed, but every machine connected to the physical grid supports virtualization technology –

109

Figure 8.6: Standard Architecture Simulation Trace. Peak processing rates were observed near the
middle of the run.

either the Kernel-based Virtual Machine (KVM) [129] or Xen [14], depending upon the experiment.

Instead of submitting jobs directly to sites, the grid was configured to send jobs to the dedicated

VOC created for each Virtual Organization present in the input data. A watchdog component (de-

scribed in chapter 7.2) monitored the scheduler queue size on each VOC and determined when the

VOC should be expanded or shrunk. VOC expansion was effected by submitting pilot jobs through a

top-level grid metascheduler, which routed the pilot job to a site with free resources. Upon booting,

virtual machines spawned by these pilot jobs joined the VOC scheduler pool and became available

to run user jobs.

One simulated VOC was constructed for each Virtual Organization observed in the input

job trace, for a total of 50 VOCs. Each VOC utilized the simulated Condor scheduler, again with a

naive implementation, and was given a unique grid Compute Element (CE) named with a prefixed

version of the VO name. Jobs from the EGEE input trace were modified so as to be submitted to

the unique CE corresponding to the job VO, instead of submission directly to a simulated grid site.

Each VO CE was equipped with a simulated watchdog, and experiment sets were constructed using

both a naive greedy VOC adjustment algorithm and a greedy algorithm with a minimum target

level set to 1024. Although this target level was regarded as high, the total number of physical CPU

110

cores that would be utilized at the target level for all 50 VOCs running simultaneously would have

been 51,200, slightly under 50% of the CPU cores present in the simulated grid. Each set of VOC

experiments was repeated for both the KVM and Xen hypervisors, using 8.8% and 6.6% overheads

(respectively) for compute-bound jobs as measured in prior work [54].

As illustrated in figures 8.8 through 8.11 and summarized in table 8.1, the addition of

VOCs to the grid was found to reduce total job queuing significantly. Average wait times for user

jobs decreased to 457 s for both the KVM and Xen simulation tests. Since all sites in the simulated

grid supported VOCs, and it was assumed that a VOC was always compatible with user jobs from

associated VOs, the majority of user jobs could be executed. Sojourn times for end-user jobs

remained similar to the standard architecture simulation, at 13,500 s for the KVM simulation and

13,300 s for the Xen test. Average job lengths increased to 13,100 s for the KVM simulation, and

12,800 s for the Xen simulation. Length increases occurred due to a combination of the addition of

virtualization overhead and an increase in the average length of the jobs executed. Simulation run

times increased to 912 s for the KVM test and 881 s for the Xen test, with higher event rates observed

in the earlier phases of both tests (represented in figure 8.7). These simulation time increases were

due to the greatly increased number of kernel events processed to effect the simulations: 1,922,895

and 1,924,227 for KVM and Xen, respectively.

An interesting result of the VOC simulation tests, shown in table 8.1, was that the addition

of the minimum target level did not generally improve the mean job sojourn time when compared

to the naive greedy algorithm. Modest increases (under 1.5%) were observed in this metric using

either hypervisor. The cause of this sojourn time increase was attributed to the increased number of

user jobs executed by both target level systems. Since the simulated grid accepted a job whenever

the specified grid site existed, the earlier creation and persistence of the target level VOCs further

reduced the negative effects of timing interdependencies between the VO data and job data in the

input trace. As evidenced by the increased service times, this change resulted in an increased mean

job length, which yielded an increased mean sojourn time.

8.6 Effects of Virtualization Overhead

The addition of virtualization overhead did increase both the mean and median job service

(execution) times, as expected. However, the increase in service times was largely offset by the

111

Figure 8.7: VOC Simulation Trace (KVM). The highest event rates were observed in the earlier
portions of the trace.

Figure 8.8: KVM simulation without the target level set. Note that a larger number of user jobs
were executed, compared to the standard and control simulations.

112

Figure 8.9: KVM simulation with the watchdog target level set to 1024. Higher peak utilization of
the grid was observed due to the minimum target level.

Figure 8.10: Xen simulation without the target level set. As in the KVM simulation, a larger set of
jobs was executed relative to the standard and control simulations.

113

Table 8.1: Measured statistics for simulation experiments. Values are exact for job counts and to 3
significant figures for time measurements. All time measurements are in seconds. KVM-0 and Xen-0
refer to simulations without target levels set, while KVM-1024 and Xen-1024 refer to simulations
with target levels set to 1024. Since jobs were recorded whenever jobs finished, and pilot jobs for
target-level VOC simulations were left running when above the target level, pilot job counts for
these simulations were not recorded.

Measure Control Standard KVM-0 KVM-1024 Xen-0 Xen-1024
User Jobs 258,097 258,097 258,097 258,097 258,097 258,097
Pilot Jobs 0 0 149,888 N/M 150,189 N/M
User Jobs Discarded 101,524 101,293 9,151 120 8,939 115
User Jobs Executed 156,573 156,804 248,946 257,977 249,158 257,982
Min Wait Time 0.00 0.00 0.00 0.00 0.00 0.00
Median Wait Time 206 0.00 316 164 316 164
Max Wait Time 823,000 2,380,000 462,000 462,000 462,000 2,090,000
Mean Wait Time 2,740 4,470 457 417 457 418
Stddev Wait Time 15,100 62,800 6,240 6,400 6,240 7,610
Min Service Time 0.00 0.00 0.00 0.00 0.00 0.00
Median Service Time 111 111 885 1,000 878 982
Max Service Time 478,000 478,000 919,000 919,000 901,000 901,000
Mean Service Time 9,000 9,020 13,100 13,300 12,800 13,000
Stddev Service Time 23,200 23,200 31,900 32,300 31,400 31,700
Min Sojourn Time 0.00 0.00 0.00 0.00 0.00 0.00
Median Sojourn Time 402 111 1,190 1,200 1,180 1,170
Max Sojourn Time 1,040,000 2,430,000 920,000 919,000 901,000 2,090,000
Mean Sojourn Time 11,700 13,500 13,500 13,700 13,300 13,400
Stddev Sojourn Time 30,300 68,100 32,600 33,200 32,200 32,900

114

Figure 8.11: Xen simulation with the watchdog target level set to 1024. Peak grid utilization was
observed near the center of the trace but was still less than 10% of the total number of CPU cores
on the simulated grid.

decrease in waiting time, resulting in the same mean job sojourn time for both the KVM VOC

(without target levels) and standard architecture simulations. A slight decrease in sojourn times was

observed when the Xen hypervisor was simulated, as would be expected with the lower virtualization

overhead of Xen. At scale, the addition of target levels demonstrated little performance improvement

over the naive greedy watchdog algorithm, with an observed increase in mean sojourn times observed

for both KVM and Xen. As noted in table 8.1, maximum sojourn times for any job decreased

relative to the standard simulation whenever VOCs were in use. However, one job experienced an

exceptionally long queuing delay when the Xen VOC test was conducted with target levels set.

To lease the simulated physical grid resources, pilot jobs were required. These jobs had

the effect of doubling the utilization of the grid at any time at which user jobs were running, since

there was a 1-to-1 correspondence between user jobs and pilot jobs when the naive greedy watchdog

algorithm was used. Pilot job requirements for either hypervisor were determined to be nearly

identical based on the experiments (table 8.1), with approximately 150,000 jobs required in both

cases. This number was less than the total number of user jobs executed in either case due to re-use

of existing virtual machines whenever possible. Since the simulation system recorded job results

only upon completion of the jobs, and the simulations ended without completion of the pilot jobs

115

in cases where target levels were set, the total number of pilot jobs utilized was not measured when

the target level watchdog algorithm was employed.

Another effect of adding Virtual Organization Clusters to the grid was that 58% more user

jobs were able to run, as recorded in table 8.1. With VOCs, user jobs were not submitted to

physical grid sites; instead, these jobs were submitted to virtual grid sites created for each Virtual

Organization observed in the trace. As a result, discrepancies between the grid map data and job

trace data did not result in job errors. However, timing issues between VO registration (which

resulted in associated VOC head node creation) and job arrival did result in a small set of user jobs

failing to execute (3.5% in the worst case, compared to 39% in the standard simulation). Since a

greater number of jobs executed, while total queuing across the grid was substantially decreased, it

was determined that the primary contributor to queuing on the actual grid system was a result of

jobs targeting specific grid sites instead of being load-balanced among all sites.

116

Chapter 9

Prototype Test Results1

Following completion of the prototype test bed (chapter 7), performance tests were con-

ducted using synthetic and operational workloads. The purpose of synthetic workload testing was

to observe the behavior of both the underlying physical system and hosted Virtual Organization

Clusters when engineered tasks with specific properties were run on the system. To provide more

robust results based upon real workloads, several VOCs were deployed operationally onto the Open

Science Grid, where they transparently received and processed end-user jobs.

In this chapter, basic performance tests are presented in section 9.1. Test results from the

dynamic VOC provisioning system are described in section 9.2, after which the addition of overlay

scheduling to hosted VOC systems is discussed in section 9.3. Results from operational testing

are presented in section 9.4. Finally, scalability tests on the Stoker management application are

presented in section 9.5.

9.1 Performance Tests

Several tests were conducted to ensure that the performance of Virtual Organization Clusters

was not unreasonable. In order to evaluate the behavior of the transparent test VOC, two major

installations were performed: a Slackware Linux 12 installation directly on the physical hardware

and a CentOS 5.1 installation into a virtual machine image. Following the installations, boot times

were measured for both the physical and virtual systems. A High Performance Linpack (HPL)
1Most of this chapter has been published in [54, 114, 115, 117].

117

benchmark was performed on the physical compute nodes, followed by a second HPL benchmark

on the VOC. Several different process grid sizes were used in the benchmark tests. To determine

the cause of observed poor performance with HPL on the prototype VOC, a set of network tests

was conducted. These tests included bandwidth measurement and ping Round-Trip Time (RTT)

measurements to assess network latency.

To effect the performance tests, the High Performance Computing Challenge (HPCC) bench-

mark suite was used, which included HPL. Boot times were measured manually for the physical boot

procedure, while a simple boot timing server was constructed to measure VM booting time. Network

bandwidth was measured using both the Iperf bandwidth measurement tool and the RandomRing

bandwidth assessment in the HPCC suite. Latency in network communications under load also was

assessed using the RandomRing benchmark. Measurement of Round-Trip Time (RTT) of ICMP

Echo packets generated by the UNIX ping tool was used as an additional measure of network la-

tency both under load (with the HPCC suite running) and without computational load on the

VOC.

9.1.1 System Performance

Following system installation, boot times were recorded for both the physical and virtual

systems. Since VM startup was scripted, automated means were devised to measure the VM boot

times. A simple server was deployed on the physical utility node, which received boot starting

notifications from the physical nodes and boot complete notifications from the associated virtual

nodes. Timing of the boot process was performed at the server side, avoiding any clock skew

potentially present between physical and virtual nodes, but possibly adding variable network latency.

Boot times for the physical nodes were subject to greater variation, as these were measured manually.

Results of the boot time tests have been summarized in table 9.1 and figure 9.1. For the

physical system, the boot process was divided into three phases: a PXE timeout, a GRUB timeout,

and the actual kernel boot procedure. While total boot times ranged from 160 to 163 seconds, 105

to 107 seconds of that time were utilized by the PXE timeout, and 10 seconds were attributed to the

GRUB timeout. Thus, the actual kernel boot time ranged from 43 to 46 seconds. In contrast, the

virtual compute nodes required 61.2 to 70.2 seconds to boot. These virtual machines were configured

with a different operating system (CentOS 5.1) and started approximately 10 additional processes

at boot time, compared to the physical systems. As a result, not all the boot time discrepancy could

118

Figure 9.1: Average boot times of physical nodes (Slackware 12) and VMs (CentOS 5.1). Total
physical boot times are increased due to BIOS and embedded controller menu access timeouts.

Table 9.1: Boot Times (seconds) for both the physical systems (Slackware 12) and virtual machines
(CentOS 5.1). The physical system boot process involved several timeouts, including delays for the
Power-On Self Test, disk controller management interface, Preboot eXecution Environment (PXE)
for network booting, and a bootloader management menu.

Physical Node VM
Statistic PXE Timeout Total Boot Actual Boot VM Boot
Minimum 105 160 43 61.2
Median 106 160.5 44 65.4
Maximum 107 163 46 70.2
Average 106.4 160.9 44.5 65.5
Std Deviation 0.63 1.03 1.09 2.54

119

Table 9.2: Performance of Slackware 12 compared to CentOS 5.1 when installed directly on the
hardware.

Process Grid (PxQ) 14x2
Problem Size 77,000
CentOS GFLOPS 115.6
Slackware GFLOPS 129.6
Performance Increase 12.11%

Table 9.3: Physical Cluster vs. VOC performance for original cluster implementation (Slackware
12) with CentOS 5.1 VOC.

Process Grid (PxQ) 1x1 7x2 7x4
Problem Size 10,300 38,700 54,800
Physical GFLOPS 7.29 74.39 143.45
VOC GFLOPS 6.57 29.74 63.09
Virtualization Overhead 9.86% 60.02% 56.02%

be attributed to virtualization overhead. Nonetheless, the overhead was small enough that booting

the VOC did not require an inordinate amount of time.

Following the boot procedures, HPL benchmark data were obtained for both the physical

and operational VOC nodes (tables 9.2 and 9.3). First, an HPL benchmark previously conducted on

the prior CentOS physical installation was performed on the Slackware hosts. A 12% performance

increase was noted as a result of the Slackware installation. Although the cause of this increase

could not be conclusively determined, it was believed that the customization of the installation –

including Linux kernel optimization – and minimization of unnecessary services contributed to the

additional performance. This result showed that keeping the host configuration as lightweight and

simple as possible not only made it easier for the cluster administrator to maintain but also increased

the overall performance, thereby benefiting all VOs using the cluster.

One limitation of the original implementation was the inability to allocate a large, contiguous

block of memory for the KVM guest process on the Slackware 12 compute nodes. Although the

version of KVM in use at the time permitted up to 2 GiB of RAM to be assigned to the guest, a

segmentation fault was observed when attempting to map more than 1.2 GiB to the process. An

investigation determined that the 32-bit host system was mapping its shared object libraries into the

middle of the userspace region. Thus, while 3 GiB of virtual memory was available to processes, the

memory space was bisected by the shared objects and was thus non-contiguous. In order to retain

the ability to perform a contiguous mapping (for performance and locality of reference reasons), a

120

Figure 9.2: Compute-bound application performance as measured on the revised installation (Cen-
tOS 5.2 on both the physical system and VOC).

Figure 9.3: Single-Core VOC Performance (28 VOC Nodes on 14 Physical Nodes, CentOS 5.2
installed on both)

121

Table 9.4: Physical system performance compared to a VM for a compute-bound single HPCC MPI
process (CentOS 5.2).

Process Grid 1x1 Physical 1x1 Xen VOC Xen Overhead 1x1 KVM VOC KVM Overhead

Problem Size 10300 10300 N/A 10300 N/A
G-HPL (GFLOPS) 7.913 7.393 6.566% 7.218 8.771%
G-PTRANS (GB/s) 0.729 0.588 19.415% 0.635 12.946%
G-Random Access (GUP/s) 0.002 0.001 35.519% 0.002 15.818%
G-FFTE (GFLOPS) 0.799 0.658 17.733% 0.461 42.370%
EP-STREAM Sys (GB/s) 3.866 3.375 12.704% 3.808 1.491%
EP-STREAM Triad (GB/s) 3.866 3.375 12.704% 3.808 1.491%
EP-DGEMM (GFLOPS) 8.348 7.689 7.892% 7.682 7.977%
RandomRing Bandwidth (GB/s) N/A N/A N/A N/A N/A
RandomRing Latency (µs) N/A N/A N/A N/A N/A

Table 9.5: Physical System vs. VOC, One Dual-Core VM per Physical Node (32 processes, CentOS
5.2)

Process Grid 7x4 Physical 7x4 Xen VOC Xen Overhead 7x4 KVM VOC KVM Overhead

Problem Size 58600 58600 N/A 58600 N/A
G-HPL (GFLOPS) 169.807 118.067 30.470% 25.178 85.173%
G-PTRANS (GB/s) 0.867 0.496 42.818% 0.069 91.985%
G-Random Access (GUP/s) 0.014 0.009 35.910% 0.004 73.082%
G-FFTE (GFLOPS) 2.287 1.717 24.899% 0.399 82.556%
EP-STREAM Sys (GB/s) 59.046 62.678 -6.151% 82.599 -39.889%
EP-STREAM Triad (GB/s) 1.845 1.959 -6.151% 2.581 -39.889%
EP-DGEMM (GFLOPS) 8.271 7.669 7.269% 6.901 16.559%
RandomRing Bandwidth (GB/s) 0.023 0.017 23.425% 0.007 67.419%
RandomRing Latency (µs) 74.444 150.831 102.611% 290.463 290.179%

64-bit operating system was installed on the host systems. Since Slackware Linux was available only

in a 32-bit architecture, 64-bit CentOS 5.2 was chosen as the new host OS.

Following the host software change, the High Performance Computing Challenge (HPCC)

benchmark suite[107], which includes HPL, was executed on the host systems and in the VOC,

repeating the previous tests with process grid dimensions of 1x1 and 7x4. These tests were conducted

using both the KVM and Xen hypervisors, and these tests made use of the multicore guest support

features of both systems, allowing for both single-core and dual-core guests. The results of these

tests, published in [54], are presented in figures 9.2, 9.3, and 9.4, and in tables 9.4, 9.5, and 9.6.

HPL and HPCC tests were performed on both the physical machines and the VOC, using the

same process grid layouts and problem sizes across administrative domains. These tests were roughly

divided into three categories: compute-bound, embarrassingly parallel, and latency-sensitive. The

first of these categories, compute-bound, represented High-Throughput Computing (HTC) jobs –

122

Table 9.6: Physical System vs. VOC, Two Single-Core VMs per Physical Node (32 processes, CentOS
5.2)

Process Grid 7x4 Physical 7x4 Xen VOC Xen Overhead 7x4 KVM VOC KVM Overhead

Problem Size 58600 58600 N/A 58600 N/A
G-HPL (GFLOPS) 169.807 130.862 22.935% 81.401 52.063%
G-PTRANS (GB/s) 0.867 0.830 4.302% 0.447 44.968%
G-Random Access (GUP/s) 0.014 0.011 22.941% 0.004 70.643%
G-FFTE (GFLOPS) 2.287 0.746 67.380% 1.751 23.449%
EP-STREAM Sys (GB/s) 59.046 62.382 -5.650% 73.110 -23.818%
EP-STREAM Triad (GB/s) 1.845 1.949 -5.650% 2.285 -23.818%
EP-DGEMM (GFLOPS) 8.271 7.726 6.588% 7.114 13.979%
RandomRing Bandwidth (GB/s) 0.023 0.007 68.779% 0.027 -17.148%
RandomRing Latency (µs) 74.444 125.258 67.259% 228.383 206.787%

the type of job that would run in a “vanilla” Condor universe. As shown in table 9.3, the original

virtualization overhead in terms of HPL observed throughput was only 9.86% for this type of job,

using Slackware host systems. Under CentOS 5.2 host systems (table 9.4), the overhead decreased

to 8.77% with the KVM hypervisor. Xen was slightly more efficient, at 6.57%.

Embarrassingly parallel jobs (represented by EP prefixes in tables 9.4, 9.5, and 9.6) exhibited

better performance inside virtual machines than they did when run directly on the physical hardware,

except for the 1x1 process grid size. These jobs had good spatial locality of reference in data accesses,

but low temporal locality [107]. KVM outperformed Xen on this job class. This result was attributed

to the fact that KVM emulates all its hardware devices, including the hard disks, while Xen shares

the physical system hard disk with extra buffering [14]. Since the emulated disk could be located in

host system RAM, its performance would have been higher than the physical drive.

MPI jobs that utilized inter-node communications (HPL, Random Access, Fast-Fourier

Transform, and RandomRing) incurred substantial performance overheads on VMs for a 7x4 pro-

cess grid. With HPL, these overheads were observed to be 52% for the single-core KVM test, 23%

for the single-core Xen test, 85% for the dual-core KVM test, and 30% for the dual-core Xen test.

Network latency was suspected for this observed overhead, as latency has been implicated as a cause

of performance reduction in prior studies involving MPI [108, 107], and RandomRing latencies were

over 100% higher than the physical systems for all tests except single-core Xen (67%). With MPI

applications comprising a significant fraction of all scientific computing endeavors, it was desirable

to be able to deploy a VOC that had good MPI performance. Additional network investigations

were undertaken to determine the source of the latency.

123

Figure 9.4: Dual-Core VOC Performance (14 VOC Nodes on 14 Physical Nodes)

9.1.2 Network Performance

Several networking issues were suspected in the initial setup. Two VMs shared a single Linux

TUN/TAP bridge to a single physical Gigabit Ethernet port, which was also shared by the host for

host-level network connectivity (figure 9.5). Each KVM instance also emulated an Intel 82540EM

Gigabit Ethernet Network Interface Card (NIC), which was presented to the guest OS and utilized

as if the card were an actual physical device. The physical NIC on the host was configured in

promiscuous mode, bypassing the internal NIC packet filtering code and offloading the low-level

network processing onto the host CPU. Furthermore, the bridge component of the kernel and NIC

emulation components of KVM also relied upon the host CPU to effect communications. As a result,

the host CPU was taxed not only with the computationally-intensive HPL routines, but also with

low-level networking operations typically carried out in the NIC hardware.

Table 9.7 summarizes the results of cluster network testing using Iperf, ping, and the

Random-Ring bandwidth and latency benchmarks in HPCC. Iperf showed 941 Mbps of available

bandwidth when the cluster was not under load, decreasing to 882 Mbps when HPL benchmarks

124

Figure 9.5: Virtual Machine Bridged Networking: The physical hardware NIC was operated in
promiscuous mode, allowing the virtual machines layer 2 connectivity to the physical network.

were running on the hosted VOC. This decrease could be attributed to inter-node MPI communi-

cations, which would have consumed a portion of the network resources. The decrease in measured

bandwidth between VMs was more significant, dropping from 708 Mbps to 636 Mbps for communi-

cations between VMs hosted by different physical nodes. Communications between two VMs sharing

the same bridge were found to have substantially lower available bandwidth, with only 499 Mbps

(roughly half the nominal bandwidth of Gigabit Ethernet) available when not under load. During

the HPL tests, this intra-bridge bandwidth fell to an available level of 206 Mbps. Bandwidth as mea-

sured under load by the Random-Ring benchmarking was substantially lower in all cases: 544 Mbps

for the physical hosts, and 24 Mbps to 32 Mbps for the VMs. Lower bandwidth was observed when

the MPI rings included intra-bridge links (SB column of the table) than when only inter-bridge links

(links between VMs hosted by different physical systems) were included in the MPI rings. Unlike the

Iperf tests, the Random-Ring test data for bandwidth across intra-bridge links is also averaged with

the available bandwidth between bridges; without this averaging, it is likely that the intra-bridge

links would have shown lower available bandwidth, based upon the Iperf tests.

Latency between nodes was found to be higher between virtual hosts than between the

underlying physical hosts. Measuring the Round-Trip Time (RTT) of the ping (ICMP echo) oper-

ation yielded an average of 106 µs without load, increasing to 191 µs under load. Ping operations

across a single bridge (intra-bridge) required longer times to execute: 215 µs in the absence of load,

increasing to 360 µs under load. RTTs for ping operations between VMs on different hosts were

the longest, beginning at 312 µs and increasing to 484 µs under load, suggesting that inter-bridge

125

Table 9.7: Bandwidth and latency (ping RTT) as measured on the physical and virtual clusters.
Condition No-Load Under Load
Parameter P SB BTB P SB BTB
Iperf (Mbps) 941 499 708 882 206 636
RRB (Mbps) N/A 544 24 32
Ping RTT (µs) 106 215 312 191 360 484
RRL (µs) N/A 54 379 233

Key: P – Physical, SB – Virtual links across the Same Bridge, BTB – Virtual links from one bridge
(physical host) to another, RRB – RandomRing Bandwidth, RRL – RandomRing Latency

communications incurred the greatest latency. However, the Random-Ring benchmarks indicated

greater latency between VMs sharing a single bridge, with bridge-to-bridge latencies 146 µs lower

at 233 µs. Both VM latency figures were an order of magnitude higher than the measured 54 µs

latency on the physical network.

One significant limitation of the network architecture used for the first implementation was

identified as a result of the test procedures. Two VMs and one physical host were configured to share

one physical Ethernet NIC on each physical node. Thus, parallel communication between two pairs of

VMs on two separate physical hosts would have been converted to sequential networking operations,

with packet queuing needed either at the bridges or at the physical switch. Queuing, in turn, could

have introduced added latency into the communications, which may have reduced MPI performance.

Moreover, an increase in queuing could have increased packet transmission time, thus causing the

TCP protocol used by MPI to place more packets in flight to fill the sliding sender window. Such

an increase in packet saturation on the network used in the test cluster has been shown to increase

queuing delays, thereby increasing latency and further aggravating communications difficulties [116].

The combination of virtual machine overhead, latency introduced by the bridged networking,

and delay properties of the underlying physical network resulted in a network environment that could

not support MPI or other latency-sensitive applications inside VOCs. Latency in the underlying

physical network was already on the order of 50 µs for one-way unicast traffic. VOC traffic latency

was greatly increased as a result of the addition of the emulated NIC, the use of the Linux bridge

facility, and the reassignment of low-level network processing from the physical NIC to the host CPU.

The unsatisfactory performance results obtained from this experiment indicated that an alternative

mechanism for providing network connectivity to VMs, such as VMM-bypass networking [106], would

be needed if VOCs were to support HPC jobs.

126

Figure 9.6: Testbed architecture for the dynamic provisioning tests

9.2 Dynamic Provisioning System

A prototype of the dynamic Virtual Organization Cluster scheduler was implemented, and

tests of the system were conducted using synthetic workloads. For analytical simplicity, the system

only supported a single VO, with a single virtual machine slot per physical host, for a total limit

of 16 slots. This simplifying design assumption permitted the use of a minimalistic physical system

policy, so that the performance and behavior of the unrestricted mechanism could be observed. As

a further simplification, the VMs used for the VOC in this test were all spawned from a single 20

GB image on a shared filesystem. Figure 9.6 depicts the architecture of the test system hardware.

Several sets of tests were conducted using the prototype system, the first of which was an

analysis of the approximate time required to boot each VOC such that it joined the Condor pool.

Since all VMs started from an identical state — the result of using a single virtual disk image to

spawn all VMs — the boot times were assumed to be constant for all members of the same VOC.

Two test suites were employed to observe job scheduling behavior. In the first suite, jobs were

submitted locally: that is, directly to the Condor queue, without any use of Globus. Globus was

used as the vehicle for job submission in the second suite, allowing its effects to be observed.

Each test suite consisted of five tests, in which the periodicity of job submission, size of each

job group submission, and run length of each job were varied. These tests were arranged as follows:

127

• Two submission groups of 50 jobs each were submitted with sufficient temporal separation so

as to execute the vast majority of jobs from the first submission group, prior to execution of

the second submission group. This test was designed to simulate submitting large groups of

jobs in which the results of the first group were retrieved before submitting the second group.

• Periodic submission of 10 jobs, each with a 10-second execution time, 90 seconds apart

• Periodic submission of 10 jobs, each with a 10-second execution time, 30 seconds apart

• Periodic submission of 10 jobs, each with a 1-second execution time, 30 seconds apart

The purpose of the latter three tests was to observe the behavior of the system under regular periodic

loads, with variations in the period, job size, and per-job execution time. Execution times were varied

in order to determine the sensitivity of the system to the boot time latency, while period and size

variations were performed to test the responsiveness of the watchdog.

9.2.1 VM Boot Times

Tests were performed using local job submission (directly to the Condor queue) to measure

the boot times for the VMs comprising the VOC. Submissions were performed in groups of 10 one-

second jobs, with a period of 30 seconds between groups. The boot process for a VM was considered

to be complete once it joined the Condor pool, as observed by the watchdog. As shown in figure 9.7,

the first VM booted in response to incoming jobs joined the pool approximately 60 seconds after the

first job was submitted, or about 55 seconds after the watchdog observed the first job and started

the VM.

Since the watchdog required approximately 6 seconds to start all 10 initial VMs, a corre-

sponding delay of approximately 7 seconds was observed between the time at which the first VM

joined the Condor pool and the time at which the tenth VM joined the Condor pool. At a test wall

time of approximately 38 seconds, the watchdog responded to the second batch of submitted jobs

and began to increase the size of the VOC, continuing until the 44 second mark, at which point the

16 VM slots were exhausted. The additional 6 VMs joined the Condor pool between wall clock times

of 92 and 101 seconds, corresponding to boot times in the range of 54 to 57 seconds. No additional

VMs could be started once the slots were exhausted at 101 seconds, after which point the 16 running

VMs were able to complete the remaining 1-second jobs quickly.

128

Figure 9.7: Virtual Machine boot delays relative to job submission time. VMs are started in response
to jobs arriving in the queue. Since each VM is a virtual Linux machine, there is a boot delay between
VM start time and the time at which the VM joins the Condor pool and is ready to accept jobs.
The total count of these booted machines corresponds to the size of the Condor pool for the VOC.

Variations in VM boot time were expected, owing to dynamic processes that must occur

during VM boot. These processes include the allocation of memory to the VM, initialization of the

VM kernel, acquisition of a DHCP lease by the VM, and the starting of run-time services. Based on

the test results, a conservative upper bound of 60 seconds was attributed to the VM boot process.

9.2.2 Jobs Submitted Locally

To effect completion of the first test suite, batches of jobs were submitted locally. The first

test utilized two groups of 50 jobs each, with a sufficiently long delay between submission to allow

all but two of the first batch to complete before submitting the second batch. As shown in figure

9.8, the watchdog started the maximum number of VOC nodes by 20 seconds into the test. The

majority of the first set of jobs completed rapidly between 162 and 198 seconds wall clock time, or

about 178 seconds after submission. Given the 60-second boot time assumption, the total run time

for 48 10-second jobs on 16 VMs was approximately 118 seconds. Between sets, the watchdog was

observed to reduce the size of the VOC from 16 VMs to 2 VMs. The second set of jobs completed

in approximately half the time as the first, with a clear “step-down” pattern observed in the Condor

queue between 280 and 310 seconds. While this pattern might have been partly attributed to the

need to reboot the VMs that were stopped during VOC contraction, it is important to remember that

129

Condor only schedules jobs on a periodic basis, as it is designed for high job throughput, not high

performance. Therefore, some of the “step-down” behavior could have been attributed to Condor

simultaneously starting fewer jobs than were slots available.

As shown in figures 9.9 through 9.11, the watchdog continued to exhibit predictable behavior

similar to that observed in the first test. Whenever the number of jobs waiting in the queue dropped

below the number of running VMs in the VOC, the VOC was contracted by terminating VMs.

Conversely, whenever more jobs were waiting than VMs were running, as long as VM slots remained

available, the watchdog expanded the VOC by adding VMs. A noticeable delay between queue size

and VM count was observed in both cases, which was the exact behavior expected from the periodic

sampling done by the watchdog. Longer delays were observed between initial job submission and

job completion, owing to the time required to boot the VMs.

The effect of extremely short jobs, or exceptionally long periods related to job execution

length, were evident in the results, as illustrated in figures 9.9 and 9.11. Since the watchdog employed

a simplistic VM scheduling policy, it terminated VMs as soon as VOC sizes were found to exceed

queue sizes. This aggressive VM termination had a negative effect on throughput, as illustrated

by comparing figure 9.9 to figure 9.10 and figure 9.10 to figure 9.11. In the case of relatively

long periodicity relative to execution time, it was necessary to re-expand the previously contracted

VOC, thereby incurring VM boot delays. For exceptionally short-running jobs submitted regularly,

the initial cluster of submissions completed quickly, allowing the entire VOC to be removed from

operation. Two interesting, but mutually disadvantageous, phenomena were observed after the next

group of jobs arrived in the queue (figure 9.11 at approximately 130 seconds wall time). Due to

caching of the virtual machine monitor process, and its initial read-only VM data, on the physical

host, the VOC nodes were able to boot somewhat faster during VOC re-start. However, the rapid

job execution and simplistic scheduling algorithm in the watchdog combined to limit the total size

of the VOC to 10 nodes following the re-start. The result of this combination of properties was

exceptionally low throughput following the restart.

9.2.3 Jobs Submitted Through Globus

A second suite of identical tests was executed using the Globus job manager as the submis-

sion vehicle. In order to avoid Globus errors resulting from multiple simultaneous job submissions,

it was necessary to introduce a small delay of two seconds between the submissions of individual

130

Figure 9.8: Two submissions of 50 jobs, 10-second execution time, submitted locally

Figure 9.9: Submitted 10 jobs every 90 seconds, 10-second execution time, submitted locally

Figure 9.10: Submitted 10 jobs every 30 seconds, 10-second execution time, submitted locally

Figure 9.11: Submitted 10 jobs every 30 seconds, 1-second execution time, submitted locally

131

Figure 9.12: Two submissions of 50 jobs, 10-second execution time, submitted through Globus

Figure 9.13: Submitted 10 jobs every 90 seconds, 10-second execution time, submitted through
Globus

Figure 9.14: Submitted 10 jobs every 30 seconds, 10-second execution time, submitted through
Globus

Figure 9.15: Submitted 10 jobs every 30 seconds, 1-second execution time, submitted through Globus

132

jobs. As a result, the process of submission of a batch of jobs through the Globus system was longer

than the process of local submission, resulting in the slower queue size growth visible in figures 9.12

through 9.15. In addition, some non-constant delays were observed between submission of jobs to

Globus and the time at which the jobs were delivered to Condor. This delay, especially evident

in the queue size jitter shown in figure 9.13, was not particularly alarming, once again due to the

emphasis taken by both systems on high throughput, as opposed to high performance.

Although net throughput was slightly reduced by the late arrival of the last set of jobs, the

addition of Globus as a “buffer” reduced the extremity of the VOC contraction. While the size of

the VOC was reduced, necessitating the rebooting of some nodes, the VOC was never completely

removed from operation as it was in the local test. This buffering effect was not observed with

extremely short jobs, as depicted in figure 9.15, where the VOC was briefly completely terminated.

9.3 Overlay Scheduling

Although the overhead of adding virtualization to grid systems had previously been evalu-

ated [54], and the overhead of using the IPOP network overlay had been independently studied [72],

the combination of both overheads in an overlaid scheduling environment with Virtual Organization

Clusters had not been measured. Since the overhead of virtualization would primarily affect job

service time in a grid system with sufficient physical resources to handle all jobs concurrently, a

chief concern was the amount of latency that might be added by the overlay scheduling system,

which necessitated the use of an overlay network. In order to ensure that this overlay overhead

would not have unexpected detrimental impacts on compute-bound jobs running within the virtual

machines, tests were conducted using an Open Science Grid (OSG) [125] site configured to support

virtualization. The OSG grid site was configured with 16 dual-core compute nodes, each with an

Intel Xeon 3070 CPU and 4 binary gigabytes (GiB) of Random Access Memory (RAM), with the

Kernel-based Virtual Machine (KVM) [129] hypervisor running within a 64-bit installation of Cen-

tOS 5.2. Virtual machine images were configured with 32-bit CentOS 5.2 and located on a shared

Parallel Virtual FileSystem (PVFS) [28] store. Virtual machine instances were booted directly from

the image located on the shared filesystem, without first staging the image to the local compute

nodes, using the “snapshot” mode of KVM. These shared images were made available in a read-only

configuration, with non-persistent writes redirected to a temporary file on local disk storage at each

133

compute node. Internet connectivity for the test site was provided by an edge router using Network

Address Translation (NAT), with the physical compute nodes isolated in a private IPv4 subnetwork.

OSG connectivity was provided through the standard OSG software stack including Globus [64].

A VOC head node was constructed using a virtual machine hosted by an off-site laboratory

workstation. Condor [155] was installed on the head node to serve as a scheduler, and synthetic

workload jobs were submitted directly to the VOC local pool. A watchdog daemon process, using

the naive greedy watchdog algorithm with added support to maintain a minimum number of running

VMs at all times, was run on the same head node. This watchdog created pilot jobs, which were

submitted through a Globus client to the OSG test site, in response to the arrival of synthetic

workload jobs in the VOC Condor queue. The pilot jobs started virtual compute nodes, which

joined an IPOP network anchored at the workstation by contacting its bootstrap service. Once

connected to the private IPOP network, the virtual compute nodes joined the Condor pool created

by the collector on the VOC head node (the workstation-hosted virtual machine, also joined via

IPOP), and Condor scheduled and executed the actual test jobs. Whenever the watchdog daemon

determined that an excess number of pilot jobs were running in comparison to the size of the Condor

queue, the pilot jobs were instructed to terminate, causing the virtual machines to be terminated.

9.3.1 Overlay Scheduling and Networking

To measure the relative performance difference of using a VOC with overlay scheduling and

IPOP overlay networking, two sets of tests were conducted. A synthetic workload consisting of a 10-

minute sleep procedure was devised, in order to approximate compute-bound jobs without incurring

potential variations in service times that could result from running an actual compute-bound job

within a virtual machine. In the control trials, a batch of 50 sleep jobs was submitted directly to

the local scheduler on the physical grid site head node. For the experiment trials, the same batch

of 50 jobs was submitted directly to the Condor central manager running within the VOC. Total

makespan times were collected for both sets of trials, and each trial was repeated 10 times to reduce

the effects of random variation in observed makespan lengths. Descriptive and relative statistics were

computed for the makespan times. Throughput measures in jobs per second were also computed.

Results of the trials, summarized in table 9.8, indicated a slight increase in average makespan

time (less than one half of one percent) for jobs submitted through the overlay scheduling system,

compared to jobs submitted directly to the physical cluster scheduler. This increased makespan

134

Table 9.8: Observed makespan lengths and system throughputs for 10 overlay experiment trials
Test Overlay Change

None IPOP Absolute Relative
Minimum Makespan (s) 2706 2714 8.000 0.2956 %
Median Makespan (s) 2709 2720 11.00 0.4061 %
Maximum Makespan (s) 2710 2737 27.00 0.9963 %
Mean Makespan (s) 2708 2722 13.50 0.4985 %
Makespan Standard Deviation (s) 1.414 7.735 6.321 447.0 %
Minimum Throughput (Jobs · s−1) 1.845× 10−2 1.827× 10−2 −1.820× 10−4 - 0.9865 %
Median Throughput (Jobs · s−1) 1.846× 10−2 1.839× 10−2 −7.467× 10−5 - 0.4045 %
Maximum Throughput (Jobs · s−1) 1.848× 10−2 1.842× 10−2 −5.447× 10−5 - 0.2948 %
Mean Throughput (Jobs · s−1) 1.846× 10−2 1.837× 10−2 9.000× 10−5 - 0.4954 %
Throughput Standard Deviation 9.644× 10−6 5.207× 10−5 4.243× 10−5 439.9 %

Figure 9.16: Autonomic VOC size adjustment behavior when executing long jobs without an overlay
network (average of 10 repetitions of the experiment).

length corresponded to a similarly small decrease in job throughput resulting from the addition of the

overlay. In the worst case observed in all trials, the maximum makespan and minimum throughput

were affected by less than one percent. Variations in makespan and throughput observations between

trials was substantially increased by over 400% when the overlay scheduler and network were added,

likely due to the addition of a second layer of interval scheduling with the additional Condor pool

overlaid on top of the physical Condor pool. Plotted traces of mean observations (figures 9.16 and

9.17) further confirmed the minimal overhead of the VOC overlay system.

9.3.2 VOC Adjustment Policy

A second experiment was performed to evaluate the behavior of the watchdog daemon when

monitoring the private scheduler queue and adjusting the size of the Virtual Organization Cluster.

As illustrated in figure 9.18, the simple greedy watchdog algorithm proved to be over-responsive

when batches of microbenchmark (10-second) jobs were submitted to the scheduler. The VOC was

135

Figure 9.17: Autonomic VOC size adjustment behavior when executing short jobs privately sched-
uled using the IPOP overlay network (average of 10 repetitions of the experiment).

rapidly expanded to use all 16 available processor cores at the first watchdog interval. A delay of

approximately 60 seconds was observed while the VOC nodes booted, after which the short user

jobs quickly ran to completion. Even though additional jobs arrived in the queue while the VOC

nodes were booting, all jobs from the first two batches had completed within 140 seconds. At this

time, the size of the VOC was shrunk to zero, causing the virtual machines to vacate the physical

systems completely. When another batch of short jobs arrived at 180 seconds into the test, all 16

virtual machines had to be restarted, resulting in another boot delay.

To provide a buffer against excessively short jobs, a Delayed Response adaptation algorithm

was devised. This policy resulted in the immediate creation of a pair of VOC nodes to remain active

at all times for the handling of instantaneously short (by design or by failure) jobs. In addition,

the VOC was expanded by only one node at a time, and expansion only occurred if the size of the

Condor scheduler queue exceeded the VOC size for at least 10 watchdog intervals. Similarly, the

VOC was decreased by one node at a time, to a minimum size of two nodes, only when the size of

the VOC exceeded the size of the Condor queue for at least 10 watchdog intervals. The results of

submitting two batches of short jobs have been illustrated in figure 9.19, which shows a slow increase

in the number of VOC nodes in response to the first batch of jobs. A slow decrease in the number

of VOC nodes was observed between batches, followed by another slow increase as the second batch

of jobs arrived. Once all jobs from the second batch completed, the VOC size slowly declined to the

minimum size (two) specified by the policy.

136

Figure 9.18: Simple Greedy Algorithm for autonomic VOC size adjustment: VMs are started when-
ever there are excess jobs in the scheduler queue and free physical nodes available. Once the jobs
complete and the queue size decreases, VMs are terminated quickly.

Figure 9.19: Delayed Response Algorithm for autonomic VOC size adjustment: a minimum of 2
VMs are kept in operation at all times, and VMs are started and stopped in response to queue size
trends over a time series of samples.

137

Figure 9.20: Short operational test (44 hours) with the physical cluster configured to support a
16-node Virtual Organization Cluster dedicated to the Engage Virtual Organization.

9.4 Operational Tests

After completion of the prototype performance tests with synthetic workloads, the prototype

cluster was configured for operational tests. In these experiments, Virtual Organization Clusters were

transparently provided to specific Virtual Organizations on the Open Science Grid, and jobs from

those VOs were executed in 32-bit CentOS virtual machines. On June 1, 2009, a short operational

test was started, in which a single VOC was placed into service on behalf of the Engage VO, using

the delayed response watchdog provisioning algorithm with a minimum of two VMs and a maximum

of sixteen VMs. After approximately 44 hours of testing, the VOC was removed from service on

June 3, 2009. As visualized in figure 9.20, several bursts of jobs arrived during the test period, and

these bursts were accommodated by increasing the size of the VOC to the maximum specified level

(16 nodes).

Following the short operational test, a long operational deployment – approximately two

months in length – was effected using the same watchdog algorithm. Two VOCs were attached to

the Open Science Grid, with one VOC dedicated to the Engage VO and the other VOC dedicated

to the NanoHub VO. Both VOCs were set to a minimum size of two VMs and a maximum size of

sixteen VM, which resulted in utilization of all 32 physical CPU cores whenever both VOCs were at

138

Figure 9.21: Long operational test: Engage VO. A second operational VOC, dedicated to the
NanoHub VO, was sharing the same hardware.

maximum size. The long-running operational experiment commenced on June 4, 2009 and completed

on August 17, 2009.

As illustrated in figure 9.21, jobs associated with the Engage VO continued to arrive in bursts

for the first two thirds of the test period, resulting in temporary increases in VOC size. Bursts of jobs

associated with the NanoHub VO (figure 9.22) were less frequent, significantly smaller in size, and

limited to the first third of the test period. Subsequent analysis determined that most NanoHub jobs,

and an increasingly larger number of Engage jobs, required 64-bit operating environments. Since

the prototype VOCs provided 32-bit environments, fewer jobs were sent to the prototype system as

August approached.

After completion of the operational tests, the prototype system became obsolete for research

purposes. The Intel Xeon processors installed in the physical compute nodes were equipped with

the first generation of virtualization extensions, which did not include extended page tables or vir-

tualized Input/Output devices. Rather than immediately discarding the hardware, a single Virtual

Organization Cluster was deployed for the STAR VO [6], using a custom virtual machine image

provided by the VO administrators. In this deployment, the VOC was still provided transparently

on OSG by the system, although the VO provided the software stack in a sort of “semi-transparent”

139

Figure 9.22: Operational test: NanoHub VO. A second operational VOC, dedicated to the Engage
VO, was sharing the same hardware.

arrangement. Thus, the prototype implementation was converted into a production system, and it

was still in service as of October 2009.

9.5 System Management with Stoker2

Once the prototype system was constructed and placed into operational service, ongoing sys-

tem maintenance was performed using the Stoker remote administration tool. In order to measure

overhead created by the resolution and threading management processes and to assess the perfor-

mance improvement of parallelizing the Stoker command execution process, several tests were con-

ducted. The first test, with results shown in figure 9.23, parallelized a short-running /bin/hostname

task. Parallel execution was found to be of limited utility beyond 4–6 threads in this case due to

the extremely short run time of the program (≈ 0.001s) relative to the total time necessary to

spawn a thread and execute a remote command via SSH (≈ 0.225s). This test was conducted on a

low-latency network inside a private computing cluster.

The next test (figure 9.24) involved a longer running job: a ten-second process sleep that

was engineered to simulate the restart procedure of a network service. This test was conducted on
2The contents of this section have been published in [114].

140

0 2 4 6 8 10 12 14 16 18

Number of Threads

0.000

1.000

2.000

3.000

4.000

T
im

e
 (

s)

hostname

Figure 9.23: Stoker performance on a low-latency 16-node cluster when parallelizing a hostname job

the same private, low-latency cluster as the first test. Performance was measured to the limit of one

thread per target (16 nodes in this case). It should be noted that no performance improvement was

measured for 8–15 threads.

Since the 10-second sleep procedure had a known run time, network and SSH overhead

could be measured. As shown in figure 9.25, these overheads generally decreased in an absolute

sense until 14 threads were utilized. Beyond this point, the overhead of spawning new threads began

to increase. However, overhead as a percentage of the total time remained constant until 16 threads,

the limit for this test, were utilized.

To determine whether overheads would be more significant across a higher latency network,

another 10-second sleep test was conducted on 27 public laboratory workstations. Results of this

test, summarized in figure 9.26, showed improvements in performance as threads increased from 1 to

6. Performance improvements declined beyond 6 threads, even through 27 machines were targeted

with the 10-second sleep job. After further testing, including manual execution of the same job using

shell scripts instead of Stoker, it was determined that SSH authentication latency was increasing as

the number of simultaneous SSH processes was increased. The root cause of this behavior was found

to be serialization of the SSH authentication requests resulting from the use of a single Network File

System (NFS) share for storing the SSH keys used for authentication. Since the single NFS server

was also utilized for unrelated purposes, additional latency was added to the authentication process.

As shown in figure 9.27, overhead as a percentage of total execution time increased with increasing

141

0 2 4 6 8 10 12 14 16 18

Number of Threads

0.000

50.000

100.000

150.000

200.000

T
im

e
 (

s)

sleep (10s) Overhead of Network and SSH

Figure 9.24: Stoker performance on a low-latency 16-node cluster when parallelizing a 10-second
sleep operation

0 2 4 6 8 10 12 14 16 18

Number of Threads

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

P
e
rc

e
n
ta

g
e

Normalized Overhead Overhead Relative to Total Time

Figure 9.25: Comparative overheads of network and SSH with respect to the remote job being
executed on a low-latency 16-node cluster. The normalized overhead is expressed as a percentage
of the maximum observed overhead, which occurred when the number of threads was equal to 1.
Relative overhead is expressed as the percentage of network and SSH overhead present in the total
execution time of a 10-second sleep job.

142

0 5 10 15 20 25 30

Number of Threads

0

100

200

300

400

T
im

e
 (

s)

sleep (10s) Overhead of Network and SSH

Figure 9.26: Stoker performance on a high-latency group of 27 public laboratory workstations

parallelism, effectively negating the benefits of additional Stoker actor threads.

143

0 5 10 15 20 25 30

Number of Threads

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

P
e
rc

e
n
ta

g
e

Normalized Overhead Overhead Relative to Total Time

Figure 9.27: Comparative overheads of network and SSH with respect to the remote job being
executed on a high-latency 27-node group of public workstations.

144

Chapter 10

Conclusions

Virtual Organization Clusters provide a mechanism by which individual Virtual Organiza-

tions may operate and administer virtual computational clusters that support the computing needs

of VO-affiliated users. As re-illustrated in figure 10.1, VOCs are deployable in both transparent

(non-participating) and participating contexts. In the transparent case, grid sites are able to sepa-

rate the complexity of user-facing software stacks from the underlying services required to provide

network connectivity and basic computational services. When VOs choose to make use of VOCs

directly, pilot jobs are used to lease resources from physical sites, and the leased resources are joined

via an overlay network to form a virtual cluster. Within this overlay cluster, the VO is able to

make scheduling and resource allocation decisions for its users, who submit jobs to a dedicated VOC

Computing Element.

Virtual Organization Clusters enable the execution of long-lived customized computational

environments, which may span Grid sites to make best use of available physical fabric to provide

cloud computing resources for user applications. Although VOCs will directly benefit users by im-

proving job compatibility across sites, the implementation details of this new architecture will remain

transparent to the users. Instead of forcing users to create and manage explicit leases, VOCs auto-

nomically adapt to changing resource demands, allowing users to focus on their own domain-specific

research. Since these systems consist entirely of dynamically allocated virtual environments execut-

ing on remote grid infrastructure, Virtual Organization Clusters exist as self-provisioned clouds on

the grid.

Conclusions regarding the utility and viability of VOCs are presented in section 10.1. Sec-

145

Figure 10.1: The architecture of Virtual Organization Clusters, revisited.

146

tion 10.2 describes the direct impacts of VOCs on grid systems, after which section 10.3 discusses

the broader impacts of this research. Finally, section 10.4 provides a brief overview of related op-

portunities for future research. Information about the software packages included as attachments to

this dissertation follows in the appendices.

10.1 Utility and Viability of Virtual Organization Clusters

As demonstrated by the prototype results (chapter 9), VOCs can execute High-Throughput

Computing (HTC) grid jobs with reasonable overheads under 9%. Although High Performance

Computing (HPC) applications that use latency-sensitive MPI library routines experience substan-

tially greater overheads, VOCs still enable execution on physical sites that lack MPI support. This

overhead represents a trade-off between performance and environment flexibility: whenever a job is

directly compatible with the physical system environment at a grid site, the addition of the VOC

layer will reduce execution performance for that job. However, when the requirements of a job

cannot be met by the environment present on the physical site, the addition of the VOC

layer enables job execution when it would be otherwise impossible, as demonstrated by the

simulation results (chapter 8). The reduced execution performance in this case would be superior

to the lack of execution that would otherwise occur.

The use of pilot jobs and IPOP overlay networking enables the provisioning of

Virtual Organization Clusters with overlay scheduling, permitting each Virtual Orga-

nization to make resource allocation and job priority decisions within its private virtual

environment (chapters 6 and 7). In this regard, VOCs are similar to pilot job frameworks used

by High-Energy Physics (HEP) experiments (section 4.3.2). As demonstrated through tests using

the prototype grid-connected system, the added overhead of the scheduling and network overlay is

negligible for compute-bound grid jobs. Simulation results using actual trace data from the En-

abling Grids for E-sciencE (EGEE) grid indicate that widespread VOC deployment on a grid system

would not adversely affect the aggregate behavior of the grid, even though virtualization systems

add execution overhead. VOCs reduce total aggregate queuing by making all jobs compatible with

all sites composed of machines with the same instruction set architecture. Moreover, the virtual

head node for each VOC creates a single submission point for all jobs affiliated with a particular

VO, simplifying job submission for grid users.

147

10.2 Direct Impacts

Virtual Organization Clusters are a promising mechanism for delivering the benefits of grid

virtualization systems, including environment customization, VO isolation, and legacy application

support [57], to existing production grids without large-scale disruption. Through the use of overlay

scheduling, individual VOs would be able to make resource allocation decisions for their members,

allowing site and VO policies to be independent. Furthermore, the customization capabilities of-

fered by virtualization would empower VOs to provide the software stacks required by their users,

instead of forcing users to adapt applications to the available software environments installed by site

administrators. As a result, existing computational grids could be made more useful for domain ap-

plications and more accessible to domain experts, without forcing users into system administration

roles.

VOCs enable VOs to create and customize entire computational clusters for end users,

which must be reachable through existing middleware. However, since the VOC Model does not

proscribe other interfaces for submitting workloads to VOCs, a VO could provide a computational

cloud directly to a set of users. Submission of jobs through an alternate interface to this cloud

could bypass the existing grid middleware altogether, further simplifying the experience for end

users. However, such a mechanism also would bypass the existing grid accounting and security

mechanisms, in the same way such mechanisms can be bypassed by pilot job frameworks [143].

Thus, the new paradigm of grid utilization provided by this architecture requires a

new conceptualization of the grid as a provider of resource abstractions. Instead of

providing full computational services to end users, a grid system using VOCs could provide back-

end computational fabric to VOs, which would then serve users directly.

10.3 Broader Impacts

The deployment of Virtual Organization Clusters on accessible grid systems would have

broader impacts on the scientific community and society at large. As defined by the National Science

Foundation [119], these impacts can be classified into five main areas: integration of research and

education, broadening participation, enhancing infrastructure, broad dissemination, and benefits to

society.

Virtual Organization Clusters can be used to integrate research with education by enabling

148

cluster construction in the classroom environment. Students would be able to construct computa-

tional clusters on top of grid systems using nothing more than a laptop with commodity Internet

access and virtualization software. The dedicated hardware, cooling, power, networking, and other

physical infrastructure required to construct a physical computational cluster, along with the soft-

ware challenges inherent with its setup, are not present. Instead, students would be able to construct

a VOC image within a few class periods, after which they would be able to instantiate virtual clusters

on a commodity grid or a dedicated educational grid. Computational jobs spanning a wide range

of disciplines, from computer science to the physical sciences, can be submitted by different student

groups as part of an educational experience that demonstrates the benefits grid computing provides

to diverse disciplines.

A second benefit to the modest requirements of VOCs hosted by cloud systems is that

VOCs would be widely accessible to a large audience, regardless of the availability of cluster hard-

ware or specialized networking at any given site. VOCs are therefore suitable for all educational

institutions, from research universities to technical and community colleges, without requiring the

availability of infrastructure, space, or dedicated support staff. This technology is ideal for broad-

ening participation among institutions that might not otherwise have access to customized parallel

computing resources, including rural institutions, institutions primarily serving underrepresented mi-

nority groups, and institutions participating in the EPSCoR program [118]. Moreover, the modest

requirements of VOCs would enable participation at the K-12 level, allowing teachers and students to

deploy custom services to support specific lesson plans. Use of VOC technologies at the preparatory

level would have the benefit of exposing young people to the breadth and power of cloud comput-

ing, increasing awareness and interest in computational technologies as key enablers in both future

scientific discoveries and future industries. VOCs enable the creation of internationally distributed

systems by individuals or small groups, enabling creative opportunities that could appeal to both

genders equally while crossing cultural, ethnic, and racial barriers.

VOCs would provide new mechanisms to enhance and extend current grid infrastructures,

without requiring disruptive middleware and system replacements. Existing physical cluster systems

could be multiplexed among different custom virtual clusters instead of using a shared multiprogram-

ming model to multiplex hardware-based systems among users. The resulting customization would

increase the utility of these systems to end users, since the environments used by the domain sci-

entists would contain self-selected libraries and application software sets. Domain scientists would

149

thus be able to match the systems to their needs, instead of adapting their research applications to

the capabilities provided by the system. Moreover, the lower technical entry barriers of VOCs would

enable groups of domain scientists could form new, highly specialized Virtual Organizations that

are focused on narrow problem areas. The resulting increased collaboration among such scientists

would yield greater research productivity.

Both VOCs and the research behind them are designed for broad dissemination. VOCs

themselves exist in the cloud and may be replicated across a wide range of systems, effectively be-

coming a new form of scientific communication. Dissemination of initial software and VOC research

results has already occurred. The Stoker distributed management system [35] and SimVOC simula-

tor [3] are freely available under open-source licenses. In addition, the following publications have

resulted from VOC and related research:

• M. Murphy and S. Goasguen. “Virtual Organization Clusters: Self-Provisioned Clouds on the

Grid.” To appear, Future Generation Computer Systems.

• M. Murphy, L. Abraham, M. Fenn, and S. Goasguen. “Autonomic Clouds on the Grid.”

Journal of Grid Computing, 8(1): 1-18, 2009. [113]

• L. Stout, M. Murphy, and S. Goasguen. “Kestrel: An XMPP-based Framework for Many Task

Computing Applications.” MTAGS 2009. [149]

• M. Fenn, M. Murphy, and S. Goasguen. "A Study of a KVM-based Cluster for Grid Comput-

ing." ACMSE ’09. [54]

• M. Murphy, B. Kagey, M. Fenn, and S. Goasguen. "Dynamic Provisioning of Virtual Organi-

zation Clusters." CCGrid ’09 (21% acceptance rate). [117]

• M. Murphy, M. Fenn, L. Abraham, J. Canter, B. Sterrett, and S. Goasguen. "Distributed

Management of Virtual Cluster Infrastructures." SMTPS ’09. [114]

• M. Murphy, M. Fenn, and S. Goasguen. "Virtual Organization Clusters." PDP 2009 (42%

acceptance rate). [115]

• M. Fenn, M. Murphy, J. Martin, and S. Goasguen. "An Evaluation of KVM for Use in Cloud

Computing." ICVCI ’08. [55]

150

• E. Harney, S. Goasguen, J. Martin, M. Murphy, and M. Westall. “The Efficacy of Live Virtual

Machine Migrations over the Internet.” VTDC ’07. [79]

Additionally, two journal articles and one additional conference proceeding, all directly related to

Virtual Organization Clusters, are under review at the time of this writing.

If widely deployed, Virtual Organization Clusters would have profound positive impacts on

society. By separating parallel computational environments from the underlying physical hardware,

it would be possible to locate computational clusters in geographic areas that optimize the use of

energy resources and minimize carbon production. Since VOCs can be moved between physical sites,

it would be possible to respond to changing resource availability, enabling optimal use of renewable

energy. For example, with future efficient photovoltaic technologies, it might be possible to migrate

grid computing jobs world-wide on a constant basis, exclusively utilizing solar energy. With existing

energy technologies, virtualized cluster systems can be located in areas with higher nuclear and

renewable components to grid power, minimizing the fraction of computing performed using fossil

fuels. Similarly, VOCs can be migrated geographically to take advantage of excess energy available

during regional off-peak periods. In addition to these environmental benefits, the direct benefit of

software environments customized for domain scientists will be better results from scientific modeling

and prediction systems, which will in turn translate into discoveries that improve quality of life.

10.4 Future Work

Virtual Organization Clusters provide a new architecture for grid computing, which improves

the usability of grid resources through the addition of virtualization technology. However, this new

architecture and VOC research to date raise new questions that are not answered by the VOC Model

itself. These issues may be loosely aggregated into four major areas: evaluation of the impact of

VOCs, efficiency of VOC implementations, system security, and migration of the VOC concept to

generic cloud systems that are not part of a grid architecture.

Although the VOC Model provides a foundation for reasoning about the performance im-

pacts of VOCs, a priori evaluation of the impacts of VOC deployment in specific situations is still

difficult, while large-scale VOC deployments are not likely to be embraced on federated grid systems

without some performance assurances. Improved simulation systems and the creation of analytical

models could provide a more accurate estimate of VOC impacts than the current model and imple-

151

mentation of SimVOC are able to produce. Better heuristics for mapping production grids would

improve simulation fidelity, as would a more accurate implementation of simulated scheduler com-

ponents. Although simulation is the preferred mechanism for evaluating experimental architectures

in the grid community [25], a rigorous analytical model based on queuing theory also could provide

insight into the effects of virtualization overhead and overlay scheduling on production grids.

Implementations of VOCs could benefit from further research into optimal VOC sizing and

adjustment algorithms, which would balance sizing responsiveness with the costs of booting virtual

machines. More efficient virtualization systems and mechanisms for bypassing the hypervisor when

performing I/O operations would reduce the performance impacts of VOCs. An adaptive, fault-

tolerant scheduling system that is robust to continuously changing environments and tuned for

VOC use would enable more efficient scheduling of user jobs within the cloud. In terms of human

factors, the design of best practices for VO system administration could optimize procedures for

managing the software stacks made available to end users, thus improving user experience.

Another major area of research opportunity for grid systems utilizing the VOC architecture

– and for cloud computing systems in general – is that of security, authorization, and data privacy.

The addition of virtual machines to a production grid site may raise security concerns when inse-

cure services, such as the Network File System, are made available on the local private network.

Mechanisms for enforcing isolation of VMs will be needed to address the concerns of physical sys-

tem administrators. Procedures and systems for validating VM images provided by the VOs will

be needed, in order to ensure that a VM image is not compromised by an intermediate attacker.

Infrastructure for ensuring the privacy of potentially sensitive end user data will be necessary before

VOCs (or other cloud systems) could be used for sensitive activities.

Finally, an ultimate objective of research into self-provisioned clouds for scientific computing

would be to move the virtual clusters to generic cloud computing hosts, eliminating reliance upon the

grid entirely. Although scientific clusters constructed in this way would not be VOCs according to the

definition presented in chapter 5, the same transparency and autonomic management principles could

be used to create entity-dedicated clusters without incurring direct hardware expenses. These clouds

would utilize readily available hosting services, such as Amazon EC2 [11], to provide compatible

environments for large-scale simulations and other domain-specific applications, leading to improved

productivity for end users and decreased costs for system stakeholders.

152

Appendices

153

Appendix A Electronic Attachments

Several software applications and data sets are provided as electronic attachments to this

dissertation. These attachments include:

• A copy of the Stoker distributed management application, in Python source form

• A copy of the SimVOC simulation system, in Python source form

• Pre-processed trace data sets for the Enabling Grids for E-sciencE (EGEE) production system,

for use with SimVOC

• Operational data logs from the Clemson University Cyberinfrastructure Research Group’s

Furnace cluster with transparent VOCs deployed

License agreements for these attachments are provided in the next appendix. Both Stoker and

SimVOC are released under the Apache License, version 2 (appendix B.3). EGEE trace data is

provided under a license required by the Grid Observatory, which is listed in appendix B.1. Finally,

the operational data logs are licensed under an MIT-style license, provided in appendix B.2.

154

Appendix B License Agreements

EGEE simulation data sets are provided by the Grid Observatory subject to the agreement

in section B.1. Trace data from the Furnace cluster is supplied by the Cyberinfrastructure Research

Group in the Clemson University School of Computing. Data are copyright 2008-2009 Clemson

University and released under an MIT-style license (section B.2).

The Stoker and SimVOC applications that accompany this dissertation are released under

the Apache License, version 2. A copy of this license is provided in section B.3.

B.1 Grid Observatory Data

The following conditions apply to data provided from the Grid Observatory:

All information, software and documentation are provided "as-is". The use of the material

is restricted to scientific research. Significant use of the material for publication requires acknowl-

edgement by the following citation: The datasets used in this work have been provided by the Grid

Observatory (www.grid-observatory.org). The Grid Observatory is part of the EGEE-III EU project

INFSO-RI-222667.

B.2 MIT License

Data sets provided by the Clemson University Cyberinfrastructure Research Group are

released under the following license:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the "Software"), to deal in the Software without restriction,

including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do

so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-

CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN

NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

155

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-

WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

B.3 Apache License, version 2.0

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as

defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that

is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control,

are controlled by, or are under common control with that entity. For the purposes of this definition,

"control" means (i) the power, direct or indirect, to cause the direction or management of such

entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the

outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted

by this License.

"Source" form shall mean the preferred form for making modifications, including but not

limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation

of a Source form, including but not limited to compiled object code, generated documentation, and

conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available

under the License, as indicated by a copyright notice that is included in or attached to the work (an

example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based

on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or

other modifications represent, as a whole, an original work of authorship. For the purposes of this

License, Derivative Works shall not include works that remain separable from, or merely link (or

156

bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work

and any modifications or additions to that Work or Derivative Works thereof, that is intentionally

submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or

Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this

definition, "submitted" means any form of electronic, verbal, or written communication sent to the

Licensor or its representatives, including but not limited to communication on electronic mailing

lists, source code control systems, and issue tracking systems that are managed by, or on behalf of,

the Licensor for the purpose of discussing and improving the Work, but excluding communication

that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a

Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a

Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each

Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,

irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly

perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each

Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,

irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell,

sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by

combination of their Contribution(s) with the Work to which such Contribution(s) was submitted.

If You institute patent litigation against any entity (including a cross-claim or counterclaim in a

lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct

or contributory patent infringement, then any patent licenses granted to You under this License for

that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works

thereof in any medium, with or without modifications, and in Source or Object form, provided that

You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this

157

License; and

(b) You must cause any modified files to carry prominent notices stating that You changed

the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all

copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding

those notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative

Works that You distribute must include a readable copy of the attribution notices contained within

such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in

at least one of the following places: within a NOTICE text file distributed as part of the Derivative

Works; within the Source form or documentation, if provided along with the Derivative Works;

or, within a display generated by the Derivative Works, if and wherever such third-party notices

normally appear. The contents of the NOTICE file are for informational purposes only and do not

modify the License. You may add Your own attribution notices within Derivative Works that You

distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such

additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide ad-

ditional or different license terms and conditions for use, reproduction, or distribution of Your

modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and

distribution of the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution

intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms

and conditions of this License, without any additional terms or conditions. Notwithstanding the

above, nothing herein shall supersede or modify the terms of any separate license agreement you

may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks,

service marks, or product names of the Licensor, except as required for reasonable and customary

use in describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Li-

censor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, includ-

158

ing, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MER-

CHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for

determining the appropriateness of using or redistributing the Work and assume any risks associated

with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including

negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly

negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including

any direct, indirect, special, incidental, or consequential damages of any character arising as a result

of this License or out of the use or inability to use the Work (including but not limited to damages

for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial

damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative

Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty,

indemnity, or other liability obligations and/or rights consistent with this License. However, in

accepting such obligations, You may act only on Your own behalf and on Your sole responsibility,

not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each

Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by

reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with

the fields enclosed by brackets "[]" replaced with your own identifying information. (Don’t include

the brackets!) The text should be enclosed in the appropriate comment syntax for the file format.

We also recommend that a file or class name and description of purpose be included on the same

"printed page" as the copyright notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file

except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the

License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF

159

ANYKIND, either express or implied. See the License for the specific language governing permissions

and limitations under the License.

160

Bibliography

[1] EGEE Accounting Portal. [Online]. Available: http://www3.egee.cesga.es

[2] Models in the research process. [Online]. Available: http://www2.uiah.fi/projects/metodi/
177.htm

[3] SimVOC. [Online]. Available: http://code.google.com/p/simvoc

[4] SQLite. [Online]. Available: http://www.sqlite.org/

[5] The PanDA Production and Distributed Analysis System. [Online]. Available: https:
//twiki.cern.ch/twiki/bin/view/Atlas/PanDA

[6] The STAR Experiment. [Online]. Available: http://drupal.star.bnl.gov/STAR/

[7] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul, A. Matsunaga, M. Tsug-
awa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu, “From virtualized resources to virtual computing
grids: the In-VIGO system,” Future Generation Computer Systems, vol. 21, no. 6, pp. 896–909,
June 2005.

[8] S. Adabala, A. Matsunaga, M. Tsugawa, R. Figueiredo, and J. Fortes, “Single sign-on in In-
VIGO: Role-based access via delegation mechanisms using short-lived user identities,” in 18th
International Parallel and Distributed Processing Symposium (IPDPS 2004), 2004.

[9] K. Adams and O. Agesen, “A comparison of software and hardware techniques for x86 vir-
tualization,” in Twelfth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’06), San Jose, CA, 2006.

[10] J. M. Alonso, V. Hernandez, and G. Molto, “Towards on-demand ubiquitous metascheduling
on computational grids,” in 15th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP ’07), Naples, Italy, February 2007.

[11] Amazon Web Services, “Amazon elastic compute cloud (amazon EC2).” [Online]. Available:
http://aws.amazon.com/ec2/

[12] Argonne National Laboratory, “Bcfg2.” [Online]. Available: http://trac.mcs.anl.gov/projects/
bcfg2

[13] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert, “Scheduling
strategies for master-slave tasking on heterogeneous processor platforms,” IEEE Transactions
on Parallel and Distributed Systems, vol. 15, no. 4, pp. 319–330, April 2004.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield, “Xen and the art of virtualization,” in Nineteenth ACM Symposium on Operating
Systems Principles, 2003.

161

http://www3.egee.cesga.es
http://www2.uiah.fi/projects/metodi/177.htm
http://www2.uiah.fi/projects/metodi/177.htm
http://code.google.com/p/simvoc
http://www.sqlite.org/
https://twiki.cern.ch/twiki/bin/view/Atlas/PanDA
https://twiki.cern.ch/twiki/bin/view/Atlas/PanDA
http://drupal.star.bnl.gov/STAR/
http://aws.amazon.com/ec2/
http://trac.mcs.anl.gov/projects/bcfg2
http://trac.mcs.anl.gov/projects/bcfg2

[15] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert, “Assessing the impact and limits of
steady-state scheduling for mixed task and data parallelism on heterogeneous platforms,” in
3rd International Workshop on Parallel and Distributed Computing/Third International Sym-
posium on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Networks,
5–7 July 2004, pp. 296–302.

[16] ——, “Steady-state scheduling on heterogeneous clusters: why and how?” in Proc. 18th Inter-
national Parallel and Distributed Processing Symposium, 26–30 April 2004, p. 171.

[17] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal, and Y. Robert, “Centralized
versus distributed schedulers for bag-of-tasks applications,” IEEE Transactions on Parallel
and Distributed Systems, vol. 19, no. 5, pp. 698–709, May 2008.

[18] R. Bradshaw, N. Desai, T. Freeman, and K. Keahey, “A scalable approach to deploying and
managing appliances,” in TeraGrid 2007, Madison, WI, June 2007.

[19] P. Brinch Hansen, “The nucleus of a multiprogramming system,” Communications of the ACM,
vol. 13, no. 4, pp. 238–242, 1970.

[20] G. Bruno, M. J. Katz, F. D. Sacerdoti, and P. M. Papadopoulos, “Rolls: Modifying a standard
system installer to support user-customizable cluster frontend appliances,” in IEEE Interna-
tional Conference on Cluster Computing, September 2004.

[21] M. Burgess, “Recent developments in Cfengine,” in Unix.nl Conference, Waardenburg, Nether-
lands, 2001.

[22] ——, “A tiny overview of Cfengine: Convergent management agent,” in 1st International
Workshop on Multi-Agent and Robotic Systems, 2005.

[23] ——, “A control theory perspective on configuration management and Cfengine,” ACM
SIGBED Review, vol. 3, no. 2, pp. 12–16, April 2006.

[24] M. Burgess and R. Ralston, “Distributed resource administration using Cfengine,” Software –
Practice and Experience, vol. 27, no. 9, pp. 1083–1101, 1997.

[25] R. Buyya and M. Murshed, “GridSim: A toolkit for the modeling and simulation of distributed
resource management and scheduling for grid computing,” Journal of Concurrency and Com-
putation: Practice and Experience (CCPE), vol. 14, pp. 1175–1220, 2002.

[26] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of scalable cloud com-
puting environments and the CloudSim toolkit: Challenges and opportunities,” in 7th High
Performance Computing and Simulation Conference (HPCS 2009), Leipzig, Germany, June
2009.

[27] D. G. Cameron, A. P. Millar, C. Nicholson, R. Carvajal-Schiaffino, F. Zini, and K. Stockinger,
“OptorSim: a simulation tool for scheduling and replica optimisation in data grids,” in Com-
puting in High Energy and Nuclear Physics (CHEP 2004), Interlaken, Switzerland, September-
October 2004.

[28] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur, “PVFS: A parallel file system for Linux
clusters,” in ALS’00: Proceedings of the 4th annual Linux Showcase and Conference, 2000.

[29] H. Casanova, A. Legrand, and L. Marchal, “Scheduling Distributed Applications: the SimGrid
Simulation Framework,” in Third IEEE International Symposium on Cluster Computing and
the Grid (CCGrid’03), 2003.

162

[30] H. Casanova, A. Legrand, and M. Quinson, “SimGrid: a Generic Framework for Large-Scale
Distributed Experiments,” in 10th IEEE International Conference on Computer Modeling and
Simulation, March 2008.

[31] CERN, “The quattor system administration toolsuite,” March 2009. [Online]. Available:
http://www.quattor.org

[32] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E. Sprenkle, “Dynamic virtual clusters
in a grid site manager,” in HPDC ’03: Proceedings of the 12th IEEE International Symposium
on High Performance Distributed Computing, June 2003.

[33] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauve, F. Silva, C. O. Barros,
and C. Silveira, “Running bag-of-tasks applications on computational grids: The MyGrid
approach,” in Proceedings of the 32nd International Conference on Parallel Processing, 2003.

[34] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield,
“Live migration of virtual machines,” in Proceedings of the 2nd ACM/USENIX Symposium on
Networked Systems Design and Implementation, Boston, MA, May 2005, pp. 273–286.

[35] Clemson University Cyberinfrastructure Research Group, “Stoker home page.” [Online].
Available: http://code.google.com/p/cu-stoker

[36] L. B. Costa, L. Feitosa, E. Araújo, G. Mendes, R. Coelho, W. Cirne, and D. Fireman, “MyGrid
– a complete solution for running bag-of-tasks applications,” in 22nd Brazilian Symposium on
Computer Networks, Gramado, RS, Brazil, May 2004.

[37] S. Dague, “System Installation Suite: Massive installation for Linux,” in Ottawa Linux Sym-
posium, 2002.

[38] R. Davoli, “VDE: Virtual Distributed Ethernet,” in First International Conference on Testbeds
and Research Infrastructures for the Development of Networks and Communities (Tridentcom
2005), Trento, Italy, February 2005.

[39] N. Desai, “Bcfg2: A pay as you go approach to configuration complexity,” in 2005 Australian
Unix Users Group (AUUG2005), Sydney, Australia, October 2005.

[40] N. Desai, R. Bradshaw, J. Hagedorn, and C. Lueninghoener, “Directing change using Bcfg2,”
in Twentieth Large Install System Administration Conference (LISA XX), Washington, DC,
December 2006.

[41] N. Desai, R. Bradshaw, S. Matott, S. Bittner, S. Coghlan, R. Evard, C. Leunighhoener,
T. Leggett, J. Navarro, G. Rackow, C. Stacey, and T. Stacey, “A case study in configuration
management tool deployment,” in Nineteenth Large Install System Administration Conference
(LISA XIX), San Diego, CA, December 2005.

[42] N. Desai, A. Lusk, R. Bradshaw, and R. Evard, “Bcfg: A configuration management tool
for heterogenous environments,” in 5th IEEE International Conference on Cluster Computing
(CLUSTER ’03), 2003.

[43] Duke Systems, “COD: Cluster-On-Demand.” [Online]. Available: http://nicl.cod.cs.duke.edu/
cod/index.html

[44] ——, “Shirako home page.” [Online]. Available: http://nicl.cod.cs.duke.edu/cereus/shirako.
html

[45] C. Dumitrescu and I. Foster, “GangSim: A simulator for grid scheduling studies,” in IEEE
Cluster Computing and Grid 2005 (CCGrid ’05), Cardiff, UK, May 2005.

163

http://www.quattor.org
http://code.google.com/p/cu-stoker
http://nicl.cod.cs.duke.edu/cod/index.html
http://nicl.cod.cs.duke.edu/cod/index.html
http://nicl.cod.cs.duke.edu/cereus/shirako.html
http://nicl.cod.cs.duke.edu/cereus/shirako.html

[46] EGEE, “Grid observatory.” [Online]. Available: http://grid-observatory.org/

[47] W. Emeneker, “Dynamic virtual clustering,” Master’s thesis, Arizona State University, April
2007.

[48] W. Emeneker, D. Jackson, J. Butikofer, and D. Stanzione, “Dynamic virtual clustering with
Xen and Moab,” in Workshop on XEN in HPC Cluster and Grid Computing Environments
(XHPC), 2006.

[49] W. Emeneker and D. Stanzione, “Increasing reliability through dynamic virtual clustering,” in
High Availability and Performance Computing Workshop (HAPCW 2006), 2006.

[50] ——, “Dynamic virtual clustering,” in 2007 IEEE International Conference on Cluster Com-
puting, 2007.

[51] ——, “Efficient virtual machine caching in dynamic virtual clusters,” in Third Workshop on
Scheduling and Resource Management for Parallel and Distributed Systems (SRMPDS 2007),
2007.

[52] Enabling Grids for E-sciencE, “gLite.” [Online]. Available: http://glite.web.cern.ch/glite/

[53] J. Enslow, P.H., “What is a ‘distributed’ data processing system?” Computer, vol. 11, no. 1,
pp. 13–21, January 1978.

[54] M. Fenn, M. A. Murphy, and S. Goasguen, “A study of a KVM-based cluster for grid comput-
ing,” in 47th ACM Southeast Conference (ACMSE ’09), Clemson, SC, March 2009.

[55] M. Fenn, M. A. Murphy, J. Martin, and S. Goasguen, “An evaluation of KVM for use in cloud
computing,” in 2nd International Conference on the Virtual Computing Initiative (ICVCI ’08),
Durham, NC, May 2008.

[56] R. Figueiredo, P. A. Dinda, and J. Fortes, “Resource virtualization renaissance,” Computer,
vol. 38, no. 5, pp. 28–31, May 2005.

[57] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes, “A case for grid computing on virtual
machines,” in 23rd International Conference on Distributed Computing Systems, 2003.

[58] R. Flanery, A. Geist, B. Luethke, and S. L. Scott, “Cluster Command & Control (C3) tools
suite,” in 3rd Austrian-Hungarian Workshop on Distributed and Parallel Systems (DAPSYS
2000), 2000.

[59] J. A. B. Fortes, R. J. Figueiredo, and M. S. Lundstrom, “Virtual computing infrastructures for
nanoelectronics simulation,” Proceedings of the IEEE, vol. 93, no. 10, pp. 1839–1847, October
2005.

[60] I. Foster, “Globus toolkit version 4: Software for service-oriented systems,” in IFIP Interna-
tional Conference on Network and Parallel Computing, Springer-Verlag LNCS 3779, 2005, pp.
2–13.

[61] I. Foster, T. Freeman, K. Keahey, D. Scheftner, B. Sotomayor, and X. Zhang, “Virtual clusters
for grid communities,” in 6th IEEE International Symposium on Cluster Computing and the
Grid (CCGrid 2006), Singapore, May 2006.

[62] I. Foster, K. Keahey, C. Kesselman, E. Laure, M. Livny, S. Martin, M. Rynge, and G. Singh,
“Embedding community-specific resource managers in general-purpose grid infrastructure,”
Argonne National Laboratory, Tech. Rep. ANL/MCS-P1318-0106, January 2006.

164

http://grid-observatory.org/
http://glite.web.cern.ch/glite/

[63] I. Foster, “The grid: A new infrastructure for 21st century science,” Physics Today, vol. 55,
no. 2, pp. 42–47, February 2002.

[64] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure toolkit,” International
Journal of Supercomputing Applications, vol. 11, no. 2, pp. 115–128, 1997.

[65] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “The physiology of the Grid,” June 2002.
[Online]. Available: http://www.globus.org/alliance/publications/papers/ogsa.pdf

[66] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the Grid: Enabling scalable virtual
organizations,” International Journal of Supercomputing Applications, vol. 15, no. 3, pp. 200–
222, 2001.

[67] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M. Williamson, “Safe hardware
access with the Xen virtual machine monitor,” in 1st Workshop on Operating System and
Architectural Support for the On Demand IT Infrastructure, 2004.

[68] T. Freeman and K. Keahey, “Flying low: Simple leases with Workspace Pilot,” in Euro-Par
2008, Las Palmas de Gran Canaria, Spain, August 2008.

[69] T. Freeman, K. Keahey, I. Foster, A. Rana, B. Sotomayor, and F. Wuerthwein, “Division of
labor: Tools for growth and scalability of grids,” in 4th International Conference on Service
Oriented Computing (ICSOC 2006), Chicago, IL, December 2006.

[70] K. Fujiwara and H. Casanova, “Speed and accuracy of network simulation in the SimGrid
framework,” in Proceedings of the First International Workshop on Network Simulation Tools
(NSTools), Nantes, France, October 2007.

[71] F. Galan, D. Fernandez, J. Ruiz, O. Walid, and T. de Miguel, “Use of virtualization tools in
computer network laboratories,” in FIfth International Conference on Information Technology
Based Higher Education and Training (ITHET 2004), 2004.

[72] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo, “IP over P2P: Enabling self-
configuring virtual IP networks for grid computing,” in 20th International Parallel and Dis-
tributed Processing Symposium (IPDPS 2006), 2006.

[73] ——, “WOW: Self-organizing wide area overlay networks of virtual workstations,” in 15th
IEEE International Symposium on High Performance Distributed Computing, 2006.

[74] A. Ganguly, D. Wolinsky, P. O. Boykin, and R. Figueiredo, “Decentralized dynamic host
configuration in Wide-area Overlays of virtual Workstations,” in IEEE International Parallel
and Distributed Processing Symposium IPDPS 2007, 2007.

[75] R. Geist, J. Martin, J. Westall, and V. Yalla, “Performance tuning of gigabit network inter-
faces,” in 31st Annual International Conference of the Computer Measurement Group (CMG
2005), Orlando, FL, December 2005.

[76] M. Gillespie. (2008) Best practices for paravirtualization enhancements from intel R© virtualiza-
tion technology: Ept and vt-d. [Online]. Available: http://software.intel.com/en-us/articles/
best-practices-for-paravirtualization-enhancements-from-intel-virtualization-technology-ept-and-vt-d/

[77] Globus Alliance, “Nimbus.” [Online]. Available: http://workspace.globus.org/

[78] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase, “Virtual machine hosting for networked clus-
ters: Building the foundations for ‘autonomic’ orchestration,” in First International Workshop
on Virtualization Technology in Distributed Computing (VTDC ’06), Tampa, FL, November
2006.

165

http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://software.intel.com/en-us/articles/best-practices-for-paravirtualization-enhancements-from-intel-virtualization-technology-ept-and-vt-d/
http://software.intel.com/en-us/articles/best-practices-for-paravirtualization-enhancements-from-intel-virtualization-technology-ept-and-vt-d/
http://workspace.globus.org/

[79] E. Harney, S. Goasguen, J. Martin, M. Murphy, and M. Westall, “The efficacy of live virtual
machine migrations over the Internet,” in Second International Workshop on Virtualization
Technology in Distributed Computing (VTDC ’07), Reno, NV, November 2007.

[80] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, and J. Good, “On the
use of cloud computing for scientific workflows,” in 3rd International Workshop on Scientific
Workflows and Business Workflow Standards in e-Science (SWBES 2008), Indianapolis, IN,
December 2008.

[81] Intel Corporation. (2005, November) Intel Pentium 4 Processor 6xx Sequence and
Intel Pentium 4 Processor Extreme Edition Datasheet. [Online]. Available: http:
//www.intel.com/design/pentium4/datashts/306382.htm

[82] D. Irwin, J. Chase, L. Grit, and A. Yumerefendi, “Self-recharging virtual currency,” in Third
Workshop on Economics of Peer-to-Peer Systems (P2PEcon), Philadelphia, PA, August 2005.

[83] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. Yocum, “Sharing network
resources with brokered leases,” in USENIX Technical Conference, Boston, MA, June 2006.

[84] X. Jiang and D. Xu, “VIOLIN: Virtual Internetworking on OverLay INfrastructure,” Purdue
University, Tech. Rep. CSD TR 03-027, July 2003.

[85] W. M. Jones, L. W. Pang, D. Stanzione, andW. B. Ligon, “Job communication characterization
and its impact on meta-scheduling co-allocated jobs in a mini-grid,” in 18th International
Parallel and Distributed Processing Symposium (IPDPS 2004), Santa Fe, New Mexico, April
2004.

[86] W. M. Jones, L. W. Pang, and D. Stanzione, “Computational mini-grid research at clemson uni-
versity,” Clemson University, Clemson, SC, Documentation PARL-2002-009, November 2002.

[87] M. Jung and R. Gogolok, “Bcfg2 - konfigurationsmanagement für heterogene umgebungen,” in
German Unix User Group’s Frühjahrsfachgespräch 2007, March 2007.

[88] M. J. Katz, P. M. Papadopoulos, and G. Bruno, “Leveraging standard core technologies to pro-
grammatically build Linux cluster appliances,” in IEEE International Conference on Cluster
Computing (Cluster 2002), April 2002.

[89] K. Keahey, K. Doering, and I. Foster, “From sandbox to playground: Dynamic virtual en-
vironments in the Grid,” in 5th International Workshop on Grid Computing (Grid 2004),
Pittsburgh, PA, November 2004.

[90] K. Keahey, I. Foster, T. Freeman, and X. Zhang, “Virtual Workspaces: Achieving quality of
service and quality of life in the Grid,” Scientific Programming, vol. 13, no. 4, pp. 265–275,
2005.

[91] K. Keahey and T. Freeman, “Contextualization: Providing one-click virtual clusters,” in 4th
IEEE International Conference on e-Science, Indianapolis, IN, December 2008.

[92] K. Keahey, T. Freeman, J. Lauret, and D. Olson, “Virtual Workspaces for scientific applica-
tions,” in Scientific Discovery through Advanced Computing, Boston, MA, June 2007.

[93] K. Keahey, M. Ripeanu, and K. Doering, “Dynamic creation and management of runtime
environments in the Grid,” in Workshop on Designing and Building Web Services, Global Grid
Forum 9, Chicago, IL, October 2003.

[94] K. Keahey, I. Foster, T. Freeman, X. Zhang, and D. Galron, “Virtual workspaces in the Grid,”
in 11th International Euro-Par Conference, Lisbon, Portugal, September 2005.

166

http://www.intel.com/design/pentium4/datashts/306382.htm
http://www.intel.com/design/pentium4/datashts/306382.htm

[95] K. Keahey, J. Chase, and I. Foster, “Virtual playgrounds: managing virtual resources in the
grid,” in 20th International Symposium Parallel and Distributed Processing (IPDPS ’06), 2006.

[96] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer, vol. 36,
no. 1, pp. 41–50, 2003.

[97] O. Khalid, R. J. Anthony, P. Nilsson, K. Keahey, M. Schulz, K. Parrot, and M. Petridis,
“Enabling and optimizing pilot jobs using Xen based virtual machines for the HPC grid appli-
cations,” in Proceedings of the 3rd International Workshop on Virtualization Technologies in
Distributed Computing (VTDC ’09), Barcelona, Spain, June 2009.

[98] D. Klusacek, L. Matyska, and H. Rudova, “Alea – grid scheduling simulation environment,” in
Seventh International Conference on Parallel Processing and Applied Mathematics, Gdansk,
Poland, September 2007.

[99] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J. Figueiredo, “VMPlants: Providing
and managing virtual machine execution environments for grid computing,” in ACM/IEEE
Conference on Supercomputing, 2004.

[100] K. Kurowski, J. Nabrzyski, A. Oleksiak, and J. Weglarz, “Grid scheduling simulations with
GSSIM,” in Third International Workshop on Scheduling and Resource Management for Par-
allel and Distributed Systems (SRMPDS ’07), Hsinchu, Taiwan, December 2007.

[101] J. Lee, K. Jeong, H. Lee, I. Lee, S. Lee, D. Park, C. Lee, and W. Yang, “RISE: A grid-based
self-configuring and self-healing remote system image management environment,” in Second
IEEE International Conference on e-Science and Grid Computing (e-Science ’06), December
2006.

[102] A. Legrand, O. Beaumont, L. Marchal, and Y. Robert, “Master slave scheduling on hetero-
geneous star-shaped platforms with limited memory,” in IEEE International Conference on
Cluster Computing, September 2004.

[103] A. Legrand, L. Marchal, and H. Casanova, “Scheduling distributed applications: the SimGrid
simulation framework,” in 3rd IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid ’03), Tokyo, Japan, May 2003.

[104] Linux Virtualization Wiki, “TechOverview,” January 2007. [Online]. Available: http:
//virt.kernelnewbies.org/TechOverview

[105] ——, “TechComparison,” April 2008. [Online]. Available: http://virt.kernelnewbies.org/
TechComparison

[106] J. Liu, W. Huang, B. Abali, and D. K. Panda, “High performance VMM-bypass I/O in virtual
machines,” in USENIX Annual Technical Conference, June 2006.

[107] P. Luszczek, D. Bailey, J. Dongarra, J. Kepner, R. Lucas, R. Rabenseifner, and D. Takahashi,
“The HPC Challenge (HPCC) benchmark suite,” in Supercomputing ’06, 2006.

[108] M. Matsuda, T. Kudoh, and Y. Ishikawa, “Evaluation of MPI implementations on grid-
connected clusters using an emulated WAN environment,” in IEEE International Symposium
on Cluster Computing and the Grid (CCGrid03), 2003.

[109] A. Matsunaga, M. Tsugawa, M. Zhao, L. Zhu, V. Sanjeepan, S. Adabala, R. Figueiredo,
H. Lam, and J. A. Fortes, “On the use of virtualization and service technologies to enable
grid-computing,” in 11th International Euro-Par Conference, August 2005.

167

http://virt.kernelnewbies.org/TechOverview
http://virt.kernelnewbies.org/TechOverview
http://virt.kernelnewbies.org/TechComparison
http://virt.kernelnewbies.org/TechComparison

[110] A. M. Matsunaga, M. O. Tsugawa, S. Adabala, R. J. Figueiredo, H. Lam, and J. A. B.
Fortes, “Science gateways made easy: the In-VIGO approach,” Concurrency and Computation:
Practice and Experience, vol. 19, no. 6, pp. 905–919, April 2007.

[111] C. Morey, “Use of Cfengine for deploying LCG/gLite middle-ware,” in International Conference
on Computing in High Energy and Nuclear Physics, 2007.

[112] J. Mugler, T. Naughton, and S. L. Scott, “OSCAR meta-package system,” in 19th International
Symposium on High Performance Computing Systems and Applications, May 2005.

[113] M. A. Murphy, L. Abraham, M. Fenn, and S. Goasguen, “Autonomic clouds on the grid,”
Journal of Grid Computing, vol. 8, no. 1, pp. 1–18, March 2010.

[114] M. A. Murphy, M. Fenn, L. Abraham, J. A. Canter, B. T. Sterrett, and S. Goasguen, “Dis-
tributed management of virtual cluster infrastructures,” in Fifth International Workshop on
System Management Techniques, Processes, and Services (SMTPS ’09), Rome, Italy, May
2009.

[115] M. A. Murphy, M. Fenn, and S. Goasguen, “Virtual Organization Clusters,” in 17th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2009),
Weimar, Germany, February 2009.

[116] M. A. Murphy and H. K. Harton, “Evaluation of local networking in a Lustre-enabled virtual-
ization cluster,” Clemson University, Tech. Rep. CU-CILAB-2007-1, 2007.

[117] M. A. Murphy, B. Kagey, M. Fenn, and S. Goasguen, “Dynamic provisioning of Virtual Orga-
nization Clusters,” in 9th IEEE International Symposium on Cluster Computing and the Grid
(CCGrid ’09), Shanghai, China, May 2009.

[118] National Science Foundation, “Experimental program to stimulate competitive research
(EPSCoR).” [Online]. Available: http://www.nsf.gov/div/index.jsp?org=EPSC

[119] ——, “Merit review broader impacts criterion: Representative activities.” [Online]. Available:
http://www.nsf.gov/pubs/gpg/broaderimpacts.pdf

[120] H. Nishimura, N. Maruyama, and S. Matsuoka, “Virtual clusters on the fly - fast, scalable,
and flexible installation,” in Seventh IEEE International Symposium on Cluster Computing
and the Grid (CCGRID 2007), May 2007.

[121] Open Science Grid, “Open Science Grid.” [Online]. Available: http://www.opensciencegrid.org

[122] P. M. Papadopoulos, M. J. Katz, and G. Bruno, “NPACI Rocks: Tools and techniques for
easily deploying manageable Linux clusters,” in IEEE International Conference on Cluster
Computing (Cluster 2001), October 2001.

[123] P. M. Papadopoulos, C. A. Papadopoulos, M. J. Katz, W. J. Link, and G. Bruno, “Configuring
large high-performance clusters at lightspeed: A case study,” in Clusters and Computational
Grids for Scientific Computing 2002, December 2002.

[124] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third generation ar-
chitectures,” Communications of the ACM, vol. 17, no. 7, pp. 412–421, 1974.

[125] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery, K. Blackburn,
T. Wenaus, F. Würthwein, I. Foster, R. Gardner, M. Wilde, A. Blatecky, J. McGee, and
R. Quick, “The Open Science Grid: Status and architecture,” in International Conference on
Computing in High Energy and Nuclear Physics (CHEP ’07), 2007.

168

http://www.nsf.gov/div/index.jsp?org=EPSC
http://www.nsf.gov/pubs/gpg/broaderimpacts.pdf
http://www.opensciencegrid.org

[126] B. Quetier, V. Neri, and F. Cappello, “Selecting a virtualization system for Grid/P2P large
scale emulation,” inWorkshop on Experimental Grid Testbeds for the Assessment of Large-scale
Distributed Applications and Tools (EXPGRID’06), Paris, France, June 2006.

[127] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. Irwin, A. Yumerefendi, and J. Chase, “Toward
a doctrine of containment: Grid hosting with adaptive resource control,” in 19th Annual
Supercomputing Conference (SC ’06), Tampa, FL, November 2006.

[128] A. S. Rana, F. Würthwein, K. Keahey, T. Freeman, A. Vaniachine, D. Malon, E. May, S. Mar-
tin, R. Gardner, B. Sotomayor, B. Holzman, R. Pordes, D. Skow, T. Wenaus, R. Popescu,
J. Shank, E. Laure, I. Bird, M. Schulz, M. Litmaath, S. Campana, D. Smith, B. Blumenfield,
K. De, M. Vranicar, P. Smith, and S. Wang, “An Edge Services Framework (ESF) for EGEE,
LCG, and OSG,” in Computing in High Energy and Nuclear Physics (CHEP ’06), Mumbai,
India, February 2006.

[129] Red Hat, “Kernel-based Virtual Machine.” [Online]. Available: http://www.linux-kvm.org

[130] J. S. Robin and C. E. Irvine, “Analysis of the Intel Pentium’s ability to support a secure virtual
machine monitor,” in USENIX Security Symposium, 2000.

[131] Rocks Development Team, “Rocks clusters,” Website. [Online]. Available: http:
//www.rocksclusters.org

[132] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: Current technology and future
trends,” IEEE Computer, vol. 38, no. 5, pp. 39–47, May 2005.

[133] P. Ruth, X. Jiang, D. Xu, and S. Goasguen, “Virtual distributed environments in a shared
infrastructure,” Computer, vol. 38, no. 5, pp. 63–69, 2005.

[134] P. Ruth, P. McGachey, and D. Xu, “VioCluster: Virtualization for dynamic computational
domains,” in IEEE International Conference on Cluster Computing, Boston, MA, September
2005.

[135] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen, “Autonomic live adaptation of vir-
tual computational environments in a multi-domain infrastructure,” in IEEE International
Conference on Autonomic Computing (ICAC ’06), June 2006.

[136] ——, “Enabling autonomic adaptation of virtual computational environments in a shared
distributed infrastructure,” Purdue University, Tech. Rep. CSD TR 06-004, January 2006.

[137] F. D. Sacerdoti, S. Chandra, and K. Bhatia, “Grid systems deployment and management using
ROCKS,” in IEEE International Conference on Cluster Computing, September 2004.

[138] San Diego Supercomputing Center. Inca: User level grid monitoring. [Online]. Available:
http://inca.sdsc.edu/

[139] J. M. Schopf. (2001, July) Ten actions when superscheduling. Open Grid Forum Scheduling
Working Group. [Online]. Available: http://www.ogf.org/documents/GFD.4.pdf

[140] J. Schönwälder, V. Marinov, and M. Burgess, “Integrating cfengine and scli: Managing network
devices like host systems,” in Network Operations and Management Symposium (NOMS 2008),
Salvador, Bahia, Brazil, April 2008.

[141] S. Seetharaman and K. Murthy, “Test optimization using software virtualization,” IEEE Soft-
ware, vol. 23, no. 5, pp. 66–69, 2006.

169

http://www.linux-kvm.org
http://www.rocksclusters.org
http://www.rocksclusters.org
http://inca.sdsc.edu/
http://www.ogf.org/documents/GFD.4.pdf

[142] I. Sfiligoi, “Making science in the Grid world: using glideins to maximize scientific output,” in
IEEE Nuclear Science Symposium Conference Record (NSS ’07), Honolulu, HI, 2007.

[143] I. Sfiligoi, G. Quinn, C. Green, and G. Thain, “Pilot job accounting and auditing in Open
Science Grid,” in 9th IEEE/ACM International Conference on Grid Computing (Grid ’08),
2008.

[144] S. C. Simms, G. G. Pike, and D. Balog, “Wide area filesystem performance using Lustre on
the TeraGrid,” in TeraGrid 2007 Conference, Madison, WI, June 2007.

[145] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and A. Chien, “The Micro-
Grid: A scientific tool for modeling computational grids,” in IEEE Supercomputing (SC2000),
Dallas, TX, November 2000.

[146] B. Sotomayor, K. Keahey, and I. Foster, “Overhead matters: A model for virtual resource
management,” in 2nd International Workshop on Virtualization Technologies in Distributed
Computing (VTDC ’06), Tampa, FL, November 2006.

[147] B. Sotomayor, K. Keahey, I. Foster, and T. Freeman, “Enabling cost-effective resource leases
with virtual machines,” in HPDC 2007 Hot Topics, Monterey Bay, CA, June 2007.

[148] B. Sotomayor, K. Keahey, and I. Foster, “Combining batch execution and leasing using vir-
tual machines,” in 17th International Symposium on High Performance Distributed Computing
(HPDC 2008), 2008.

[149] L. Stout, M. A. Murphy, and S. Goasguen, “Kestrel: An XMPP-based framework for many
task computing applications,” in 2nd Workshop on Many-Task Computing on Grids and Su-
percomputers (MTAGS 2009), Portland, OR, November 2009.

[150] J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Virtualizing I/O devices on VMware Work-
station’s hosted virtual machine monitor,” in USENIX 2001, 2001.

[151] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, and R. Buyya, “A toolkit for modelling and
simulating data grids: An extension to GridSim,” Concurrency and Computation: Practice
and Experience (CCPE), vol. 20, no. 13, pp. 1591–1609, September 2008.

[152] A. Sulistio, C. S. Yeo, and R. Buyya, “A taxonomy of computer-based simulations and its map-
ping to parallel and distributed systems simulation tools,” International Journal of Software:
Practice and Experience, vol. 34, no. 7, pp. 653–673, June 2004.

[153] A. I. Sundararaj and P. A. Dinda, “Towards virtual networks for virtual machine grid com-
puting,” in Third Virtual Machine Research and Technology Symposium, San Jose, CA, May
2004.

[154] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U. Nagashima, “Overview of a perfor-
mance evaluation system for global computing scheduling algorithms,” in Eighth International
Symposium on High Performance Distributed Computing, 1999.

[155] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor – a distributed job scheduler,”
in Beowulf Cluster Computing with Linux, T. Sterling, Ed. MIT Press, October 2001.

[156] Tentakel Development Team, “Tentakel homepage.” [Online]. Available: http://tentakel.
biskalar.de/

[157] A. Tsaregorodtsev, V. Garonne, and I. Stokes-Rees, “DIRAC: A Scalable Lightweight Archi-
tecture for High Throughput Computing,” in Fifth IEEE/ACM International Workshop on
Grid Computing (GRID ’04), Pittsburgh, PA, November 2004.

170

http://tentakel.biskalar.de/
http://tentakel.biskalar.de/

[158] M. Tsugawa and J. A. B. Fortes, “A virtual network (ViNe) architecture for grid computing,”
in 20th International Parallel and Distributed Processing Symposium (IPDPS 2006), 2006.

[159] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V. Anderson, S. M. Bennett,
A. Kagi, F. H. Leung, and L. Smith, “Intel virtualization technology,” IEEE Computer, vol. 38,
no. 5, pp. 48–56, May 2005.

[160] M. Varian, “VM and the VM community, past present, and future,” in SHARE 89, 1997.
[Online]. Available: http://www.princeton.edu/~melinda/25paper.pdf

[161] S. J. Vaughan-Nichols, “New approach to virtualization is a lightweight,” Computer, vol. 39,
no. 11, pp. 12–14, 2006.

[162] P. Velho and A. Legrand, “Accuracy study and improvement of network simulation in the
SimGrid framework,” in 2nd International Conference on Simulation Tools and Technique
(SIMUTools’09), Rome, Italy, March 2009.

[163] A. Weiss, “Computing in the clouds,” netWorker, vol. 11, no. 4, pp. 16–25, 2007.

[164] D. Wolinsky, A. Agrawal, P. O. Boykin, J. Davis, A. Ganguly, V. Paramygin, P. Sheng, and
R. Figueiredo, “On the design of virtual machine sandboxes for distributed computing in Wide-
area Overlays of virtual Workstations,” in First International Workshop on Virtualization
Technology in Distributed Computing, 2006.

[165] H. Xia, H. Dail, H. Casanova, and A. Chien, “The MicroGrid: Using online simulation to
predict application performance in diverse grid network environments,” in Challenges of Large
Applications in Distributed Environments (CLADE’04), Honolulu, Hawaii, June 2004.

[166] D. Xu, P. Ruth, J. Rhee, R. Kennell, and S. Goasguen, “Autonomic adaptation of virtual
distributed environments in a multi-domain infrastructure,” in 15th IEEE International Sym-
posium on High Performance Distributed Computing (HPDC’06), Paris, France, June 2006.

[167] J. Xu, S. Adabala, and J. A. B. Fortes, “Towards autonomic virtual applications in the In-
VIGO system,” in 2nd IEEE International Conference on Autonomic Computing (ICAC ’05),
Seattle, WA, June 2005.

[168] S. Yamasaki, N. Maruyama, and S. Matsuoka, “Model-based resource selection for efficient
virtual cluster deployment,” in 3rd International Workshop on Virtualization Technology in
Distributed Computing (VTDC ’07), Reno, NV, 2007.

[169] W. Yu, R. Noronha, S. Liang, and D. K. Panda, “Benefits of high speed interconnects to
cluster file systems: a case study with Lustre,” in 20th International Parallel and Distributed
Processing Symposium (IPDPS 2006), 2006.

[170] Zenoss, Inc. Zenoss: Commercial Open-Source Application, Systems, and Network
Monitoring. [Online]. Available: http://www.zenoss.com/

[171] J. Zhang, M. Yousif, R. Carpenter, and R. J. Figueiredo, “Application resource demand phase
analysis and prediction in support of dynamic resource provisioning,” in Fourth International
Conference on Autonomic Computing (ICAC ’07), 2007.

[172] X. Zhang, K. Keahey, I. Foster, and T. Freeman, “Virtual cluster workspaces for grid applica-
tions,” Argonne National Laboratory, Tech. Rep. ANL/MCS-P1246-0405, April 2005.

[173] M. Zhao, V. Chadha, and R. J. Figueiredo, “Supporting application-tailored grid file system
sessions with WSRF-based services,” in 14th IEEE International Symposium on High Perfor-
mance Distributed Computing, July 2005.

171

http://www.princeton.edu/~melinda/25paper.pdf
http://www.zenoss.com/

[174] M. Zhao, J. Xu, and R. J. Figueiredo, “Towards autonomic grid data management with virtu-
alized distributed file systems,” in IEEE International Conference on Autonomic Computing
(ICAC ’06), June 2006.

[175] M. Zhao, J. Zhang, and R. Figueiredo, “Distributed file system support for virtual machines
in grid computing,” in 13th IEEE International Symposium on High Performance Distributed
Computing (HPDC 2004), 2004.

172

	Clemson University
	TigerPrints
	5-2010

	Virtual Organization Clusters: Self-Provisioned Clouds on the Grid
	Michael Murphy
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Vision
	Motivation
	Thesis Statement
	Dissertation Organization

	Grid Systems
	Computational Grids
	Composition of Grids
	Virtual Organizations
	Computational Jobs
	Service-Oriented Architecture
	Cloud Computing Systems

	Operating System Virtualization
	Levels of Virtualization
	Instruction Set Architecture Requirements
	Dynamic Recompilation
	Paravirtualization
	Hardware Virtual Machine Extensions
	Applications of Virtualization Technology

	Related Work
	Virtualization of Grid Systems
	Simulation Systems
	System Resources
	System Management

	Virtual Organization Cluster ModelPortions of this chapter will appear in Future Generation Computer Systems.
	Separation of Administrative Domains
	Terminology
	Definition of a Virtual Organization Cluster
	Self-Provisioned Clouds

	Simulator for Virtual Organization ClustersPortions of this chapter have been published in Murphy2010. Other portions have been submitted to the 24th ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation (PADS 2010).
	Motivation for Simulation
	Grid Trace Data
	Simulator Design

	Prototype Implementation
	Cluster SetupThe contents of this section have been published in Murphy2009 and Fenn2008.
	Dynamic Provisioning of Virtual Organization ClustersThe contents of this section have been published in Murphy2009a.
	Management of SystemsThe contents of this section have been published in Murphy2009b.

	Simulation Test ResultsPortions of this chapter have been published in Murphy2010. Other portions have been submitted to the 24th ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation (PADS 2010).
	Preliminary Simulations
	Input Data Processing
	Control Simulation
	Standard Grid Architecture
	Virtual Organization Cluster Architecture
	Effects of Virtualization Overhead

	Prototype Test ResultsMost of this chapter has been published in Fenn2009,Murphy2009b,Murphy2009,Murphy2009a.
	Performance Tests
	Dynamic Provisioning System
	Overlay Scheduling
	Operational Tests
	System Management with StokerThe contents of this section have been published in Murphy2009b.

	Conclusions
	Utility and Viability of Virtual Organization Clusters
	Direct Impacts
	Broader Impacts
	Future Work

	Appendices
	Electronic Attachments
	License Agreements

	Bibliography

