1,711 research outputs found

    A Simple Way to Compute the Number of Vehicles That Are Required to Operate a Periodic Timetable

    Get PDF
    We consider the following planning problem in public transportation: Given a periodic timetable, how many vehicles are required to operate it? In [Julius Paetzold et al., 2017], for this sequential approach, it is proposed to first expand the periodic timetable over time, and then answer the above question by solving a flow-based aperiodic optimization problem. In this contribution we propose to keep the compact periodic representation of the timetable and simply solve a particular perfect matching problem. For practical networks, it is very much likely that the matching problem decomposes into several connected components. Our key observation is that there is no need to change any turnaround decision for the vehicles of a line during the day, as long as the timetable stays exactly the same

    Integration, Decentralization and Self-Organization:Towards Better Public Transport

    Get PDF

    Integration, Decentralization and Self-Organization:Towards Better Public Transport

    Get PDF

    Cost-Minimal Public Transport Planning

    Get PDF
    In this paper we discuss what a cost-optimal public transport plan looks like, i.e., we determine a line plan, a timetable and a vehicle schedule which can be operated with minimal costs while, at the same time, allowing all passengers to travel between their origins and destinations. We are hereby interested in an exact solution of the integrated problem. In contrast to a passenger-optimal transport plan, in which there is a direct connection for every origin-destination pair, the structure or model for determining a cost-optimal transport plan is not obvious and has not been researched so far. We present three models which differ with respect to the structures we are looking for. If lines are directed and may contain circles, we prove that a cost-optimal schedule can (under weak assumptions) already be obtained by first distributing the passengers in a cost-optimal way. We are able to streamline the resulting integer program such that it can be applied to real-world instances. The model gives bounds for the general case. In the second model we look for lines operated in both directions, but allow only simplified vehicle schedules. This model then yields stronger bounds than the first one. Our most realistic model looks for lines operated in both directions, and allows all structures for the vehicle schedules. This model, however, is only computable for small instances. Finally, the results of the three models and their respective bounds are compared experimentally

    A New Sequential Approach to Periodic Vehicle Scheduling and Timetabling

    Get PDF
    When evaluating the operational costs of a public transport system, the most important factor is the number of vehicles needed for operation. In contrast to the canonical sequential approach of first fixing a timetable and then adding a vehicle schedule, we consider a sequential approach where a vehicle schedule is determined for a given line plan and only afterwards a timetable is fixed. We compare this new sequential approach to a model that integrates both steps. To represent various operational requirements, we consider multiple possibilities to restrict the vehicle circulations to be short, as this can provide operational benefits. The sequential approach can efficiently determine public transport plans with a low number of vehicles. This is evaluated theoretically and empirically demonstrated for two close-to real-world instances

    Integrated Periodic Timetabling and Vehicle Circulation Scheduling

    Get PDF
    Periodic timetabling is one of the most well researched problems in the public transport optimization literature. However, the impact timetabling has on the number of required vehicles, which directly translates to operator costs, is rarely considered. Therefore, in this paper, we consider the problem of jointly optimizing the timetable and the vehicle circulation schedule, which specifies the cyclic sequences of trips vehicles perform. In order to be able to solve realistic instances, we improve an earlier proposed formulation by contraction techniques, valid inequalities and symmetry-breaking constraints. Ultimately, this allows us to explore the trade-off between the number of vehicles and the attractiveness of the timetable from the passengers' perspective. An extensive computational stu

    Robust Routing in Urban Public Transportation: How to Find Reliable Journeys Based on Past Observations

    Get PDF
    We study the problem of robust routing in urban public transportation networks. In order to propose solutions that are robust for typical delays, we assume that we have past observations of real traffic situations available. In particular, we assume that we have "daily records" containing the observed travel times in the whole network for a few past days. We introduce a new concept to express a solution that is feasible in any record of a given public transportation network. We adapt the method of Buhmann et al. [Buhmann et al., ITCS 2013] for optimization under uncertainty, and develop algorithms that allow its application for finding a robust journey from a given source to a given destination. The performance of the algorithms and the quality of the predicted journey are evaluated in a preliminary experimental study. We furthermore introduce a measure of reliability of a given journey, and develop algorithms for its computation. The robust routing concepts presented in this work are suited specially for public transportation networks of large cities that lack clear hierarchical structure and contain services that run with high frequencies
    • …
    corecore