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Abstract
In this paper we discuss what a cost-optimal public transport plan looks like, i.e., we determine
a line plan, a timetable and a vehicle schedule which can be operated with minimal costs while,
at the same time, allowing all passengers to travel between their origins and destinations. We
are hereby interested in an exact solution of the integrated problem. In contrast to a passenger-
optimal transport plan, in which there is a direct connection for every origin-destination pair,
the structure or model for determining a cost-optimal transport plan is not obvious and has not
been researched so far.
We present three models which differ with respect to the structures we are looking for. If lines
are directed and may contain circles, we prove that a cost-optimal schedule can (under weak
assumptions) already be obtained by first distributing the passengers in a cost-optimal way. We
are able to streamline the resulting integer program such that it can be applied to real-world
instances. The model gives bounds for the general case. In the second model we look for lines
operated in both directions, but allow only simplified vehicle schedules. This model then yields
stronger bounds than the first one. Our most realistic model looks for lines operated in both
directions, and allows all structures for the vehicle schedules. This model, however, is only
computable for small instances. Finally, the results of the three models and their respective
bounds are compared experimentally.

2012 ACM Subject Classification Mathematics of computing→ Discrete mathematics, Applied
computing → Transportation

Keywords and phrases Public Transport Planning, Integer Optimization, Line Planning, Vehicle
Scheduling

Digital Object Identifier 10.4230/OASIcs.ATMOS.2018.8

Funding This work was partially supported by DFG under SCHO 1140/8-1 and by the Simulation
Science Center Clausthal/Göttingen.

© Julius Pätzold, Alexander Schiewe, and Anita Schöbel;
licensed under Creative Commons License CC-BY

18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2018).
Editors: Ralf Borndörfer and Sabine Storandt; Article No. 8; pp. 8:1–8:22

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160826567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:j.paetzold@math.uni-goettingen.de
mailto:a.schiewe@math.uni-goettingen.de
mailto:schoebel@math.uni-goettingen.de
http://dx.doi.org/10.4230/OASIcs.ATMOS.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


8:2 Cost-Minimal Public Transport Planning

1 Introduction

Public transport planning is a challenging task since it consists of several stages: network
design, line planning, timetabling, vehicle- and crew scheduling. In this paper we look for
a line plan in combination with a timetable and a vehicle schedule, i.e., a public transport
plan. Apart from the different subproblems that need to be solved in an integrated way,
there are also different objectives to be considered. A public transport plan should be
passenger-friendly (mostly reflected by a short traveling time for the passengers) but also
have low operating costs. For individual planning stages such as line planning or vehicle
scheduling there exist models and algorithms but finding an integrated solution to this
multi-stage problem is more challenging. Surprisingly, only few papers even evaluate both
cost and traveling time for integrated public transport plans. A first approach in which line
plans, timetables and vehicle schedules have been evaluated together under different criteria
has been given in [16]. More recently, [13] proposes to measure the costs and the traveling
time, and evaluates public transport plans under these criteria (cf. Figure 4).

The goal of integrated planning is to find the set of Pareto solutions with respect to costs
and traveling time and then to choose a solution from this set that is affordable and good for
the passengers. From an academic point of view it is interesting to find theoretical bounds
on the two objective function values of the Pareto solutions, i.e. finding the best achievable
traveling time for the passengers, and finding the minimal costs (under the condition that
all passengers can be transported). The former problem can be solved by a taxi-solution,
providing a direct and fast connection for each origin-destination pair. Nevertheless, what a
cost-optimal transportation plan would look like has not been studied so far and does not
seem to be obvious. Given a line pool, [4] determine a line plan such that all origin-destination
pairs can travel. The costs for the lines, however, are only approximated and not determined
by the vehicle schedule. Furthermore, capacities are neglected. In contrast to this work, we
now take an integrated point of view and propose models for finding cost-optimal public
transport plans, including lines, timetables, and vehicle schedules.

In this paper we propose models for finding cost-optimal public transport plans. More
precisely, we assume that the public transport network with its stops and direct connections
is given, and that the passengers’ demand is known in form of an origin-destination (OD)
matrix. For a homogeneous fleet with a given capacity for each vehicle we then design a line
plan, a timetable, and a vehicle schedule under the constraint that all passengers can be
transported, i.e., for each passenger there exists a possible (maybe non-optimal) connection
from their origin to their destination such that none of the vehicles is overloaded. We aim at
solving the integrated system exactly, meaning that we do not provide iterative heuristics as
in [7, 34, 37] or a sequential approach as the one in [25]. This becomes possible because we
neglect the traveling time and only look at the costs meaning that the computationally hard
step of timetabling becomes irrelevant.

For the single planning stages line planning, timetabling, and vehicle scheduling, models
and algorithms are well-researched. For line planning, cost-oriented models (e.g. [10, 18, 38])
and passenger-oriented models (e.g. [2, 8, 35]) are known, see [33] for a survey. (Periodic)
timetabling focuses on the passengers and is the hardest of the three problems. Exact
approaches to this problem can be found in [36, 23, 29, 19] and heuristics in [24, 17, 26] and
references therein. Integrating the passengers’ routes in timetabling is an ongoing problem,
see [3, 32, 15]. For vehicle scheduling we refer to the survey in [6].
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2 A cost-optimal LTS-plan

In this section we formally describe what a feasible public transport plan (LTS-plan),
consisting of a line plan (L), a timetable (T), and a vehicle schedule (S), is and how its
quality can be evaluated. We restrict ourselves to periodic LTS-plans (including the vehicle
scheduling) in this paper.

I Notation 1. The following input data is needed:
a public transport network PTN = (V,E) with a set of stops V and direct connections E
between them,
for every edge e ∈ E:

a length (in kilometers) lengthe,
a lower bound on the traveling time along the edge Ldrive

e ,
a lower bound Lwait for the time vehicles have to wait at every stop,
a minimal turnaround time for vehicles Lturn, denoting the minimal time a vehicle has to
wait at the end of a line. We assume that Lwait ≤ Lturn.
an OD-matrix W with entries Wuv for each pair of stops u, v ∈ V , denoting how many
passengers want to travel from an origin u to the destination v in a representative time
period. A pair of stations u, v ∈ V with Wuv > 0 is called an OD-pair.
a capacity Cap being the maximal number of passengers each vehicle can transport,
cost parameters
ctime costs per hour for a vehicle driving,
clength costs per kilometer for a vehicle driving.

We assume that the fixed costs (cost of a vehicle, administration, etc.) are included in the
costs per hour and the costs per kilometer, as is often done in practice.
With this input data we then look for an LTS-plan, whose objects are described next.

Line plan L

A line is a path through the PTN. A line plan is a set of lines L, each of them operated
once in the planning period (often an hour). A line plan is feasible if every passenger can be
transported, i.e., if for every OD-pair (u, v) there exist

a set of directed paths Puv from u to v, Pall =
⋃
u,v∈V Puv, and

weights wp for each path p ∈ Puv
such that

∑
p∈Puv

wp = Wuv and such that for every edge e it holds that

∑
p∈Pall:e∈p

wp ≤ Cap · |{l ∈ L : e ∈ l}|. (1)

Note that feasibility does not require the paths Puv to be good paths for the passengers, but
only that all passengers can be transported.
We furthermore assume that lines are simple paths and that every line is operated in both
directions. We do not forbid identical lines, i.e., there may be multiple lines with the same
path. In our setting we allow any path as a possible line (as also done in [2]) in contrast to
many papers which require a line pool of limited size.

ATMOS 2018
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Timetable T

Given a set of lines L, a timetable assigns a time to every departure and arrival of each line
at its stops. Determining a (periodic) timetable is the hardest of the three problems line
planning, timetabling, and vehicle scheduling, and even finding a feasible timetable that
respects the upper and lower bounds on driving, waiting, transfer and turnaround activities
is intractable. Since we neglect the passengers, no upper bounds on transfer activities
are needed, and hence a feasible timetable exists for every possible line plan L (since the
timetable for each line can then be determined separately.). Since we are only interested
in minimizing the costs we furthermore need not care about optimizing the traveling time
of the passengers, meaning that any feasible timetable is sufficient. More precisely, we can
neglect the timetabling as a separate planning stage in cost-optimal planning and simply use
the arrival and departure times which are determined by the vehicle schedule.

Vehicle schedule S

Given a line plan a vehicle schedule determines the number of vehicles and the exact routes
of the vehicles for operating the lines. We construct a set of trips L′ which contains two
directed lines for every (undirected) line l ∈ L, one in forward and the other in backward
direction.
A route of a vehicle is given by the sequence of (directed) lines it passes,

r = (l′1, . . . , l′k), l′i ∈ L′

whereby we require that the l′i, i = 1, . . . , k are pairwise distinct. We assume that after
having taken the last trip l′k in a route, the vehicle starts again with l′1.

This sequence r is interpreted as follows: A vehicle starts with operating line l′1 at some
point in time, x. At the end of line l′1 it drives to the start point of line l′2, operates this
line, and so on. At the end of line l′k the vehicle returns to the start point of l′1 and starts
from the beginning of the next time period. In order to ensure the required periodicity of
the schedule, the vehicle needs to start after an integer multiple of the period T , i.e., at a
time y = x+ dr · T , whereby the integer dr is the number of periods needed for a complete
operation of the route r.

A vehicle schedule thus consists of a set of routes R. It is feasible if each directed line in L′
is contained in exactly one route, i.e., if

| {r ∈ R : l′ ∈ r} | = 1 ∀l′ ∈ L′. (2)

With these assumptions in place we can then define what an LTS-plan is.

I Definition 2. An LTS-plan is a tuple (L,R), such that
L is a feasible line plan, i.e., it satisfies (1),
R is a feasible vehicle schedule for the directed lines L′, i.e., it satisfies (2).

Costs of an LTS-plan

The costs of an LTS-plan are given by the distance driven by all vehicles and its total duration.
Since we compute a periodic schedule, we consider the costs per planning period T .
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A vehicle route r consists of (directed) lines l′ ∈ L′. Hence, we first determine time and
duration of a line l′, namely,

lengthl =
∑
e∈l

lengthe (3)

durl = (|l| − 1)Lwait +
∑
e∈l

Ldrive
e , (4)

where |l| := {e ∈ E|e ∈ l} and (4) uses the fact that it is always cheaper to operate a line as
fast as possible. For the empty rides between a pair of lines l′1 and l′2 we can use the PTN to
determine the parameters

lengthl′1,l′2 = length when driving from the last station of l′1 to the first station of l′2
timel′1,l′2 = time for driving from the last station of line l′1 to the first station of l′2

The minimum turnaround time (usually accounting for a driver’s break) has to be added to
the duration of an empty ride. This yields

durl′1,l′2 = Lturn + timel′1,l′2 . (5)

The number of kilometers a given LTS-plan covers is determined by summing up the kilometers
of each single route, i.e.,

length(L,R) =
∑
l′∈L′

lengthl′ +
∑

r=(l′1,...,l′kr
)∈R

kr∑
i=1

lengthl′
i
,l′

i+1

=
∑
l∈L

2 · lengthl +
∑

r=(l′1,...,l′kr
)∈R

kr∑
i=1

lengthl′
i
,l′

i+1

with l′kr+1 := l′1. The duration of a route r = (l′1, . . . , l′kr
) ∈ R is measured by the number of

time periods durr needed. This can be formally computed by

durr =
⌈
kr∑
i=1

durl′
i

+ durl′
i
,l′

i+1

⌉
T

(6)

with daeT := min{n ∈ N|n · T ≥ a} for any a ∈ R and l′kr+1 := l′1 . The overall duration is
hence given as

dur(L,R) =
∑
r∈R

durr. (7)

Finally, the cost function is defined as

g(L,R) := ctime · dur(L,R) + clength · length(L,R). (8)

Note that the number of required vehicles is determined by the total duration, i.e., by
dur(L,R)

T . The fixed costs per vehicle γ can be included by adding γ
T to ctime. Since this

does not change the structure of the cost function we assume the vehicle costs to be already
included in ctime.
The cost function defined above allows us to define the optimization problem we are concerned
with in this paper.

Problem (cost-opt LTS): Given the input data from Notation 1, find a feasible
LTS-plan (L,R) with minimal costs g(L,R).

ATMOS 2018
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Model 1: Load Generation

Model 2: Integrating up to Line Planning

Model 3: Integrating up to Timetabling and Vehicle Scheduling, i.e., solving it all

Figure 1 Three proposed models for solving (cost-opt LTS).

Traditionally, calculating an LTS-plan consists of solving a series of problems in a sequential
order, as can be seen in [9, 11, 21]. A sequential approach, however, is flawed, since the
costs are mainly determined by the vehicle schedule, which constitutes the last step of the
planning process. Nevertheless, this has been tackled in [25] by a heuristic approach. The
aim of our paper, however, is to find the exact cost minimum of the integrated problem. In
order to address this issue we present three different models for minimizing the costs of the
resulting LTS-plan (see Figure 1).
The first model aims at distributing the OD-pairs in a cost-optimal way (called load gen-
eration). Although it only concerns this very first step we can show that this determines
the minimal costs of an integrated LTS-plan under certain conditions. The second model
integrates load generation and line planning, minimizing a cost function that approximates
(now in greater detail) the costs of a resulting LTS-plan. Finally, the third model presents
an IP formulation for integrating load generation, line planning, timetabling, and vehicle
scheduling; it hence provides an exact model for (cost-opt LTS).

3 Model 1: Creating a cost-efficient load

Line planning is often decomposed into two steps. In the first step, all OD-pairs (u, v) are
routed through the PTN resulting in paths Puv, Pall =

⋃
u,v∈V Puv, and weights wp for every

path p ∈ Puv (with
∑
p∈Puv

wp = Wuv). This data is then used to define the loads

fmin
e =


∑

p∈Pall:e∈p
wp ·

1
Cap


specifying how often an edge e ∈ E in the PTN has at least to be served by some vehicle. In
the second step, the line planning problem is solved using these minimal frequencies.
Normally the fmin

e are calculated assuming that all passengers travel on their shortest path in
the PTN to their destination. Since we are interested in finding a cost-minimal LTS-plan, we
do not want to work with that assumption. In our system we require just enough capacities
so that every passenger has some possibility to travel to their destination. We use this insight
to find a load that eventually even leads to a cost-minimal LTS-plan.
Of course, in this early planning stage we do not yet have all information to exactly determine
the costs of the resulting LTS-plan, since they depend on the line plan and the vehicle schedule.
Nevertheless, we can already approximate the costs with the following model.
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I Model 1. Given the input data from Notation 1, calculate a load (i.e., fmin
e for all e ∈ E)

that aims at minimizing the cost of an LTS-plan.

min ctime · dur · T + clength
∑
e∈E

2 · lengthe · fmin
e (9)

s.t.
∑
e∈E

2fmin
e (Ldrive

e + Lwait) ≤ T · dur (10)∑
u∈V

f(i,j),u ≤ fmin
e · Cap ∀i, j ∈ V with {i, j} ∈ E (11)∑

i∈V :{i,v}∈E

f(i,v),u = Wuv +
∑

i∈V :{v,i}∈E

f(v,i),u ∀u ∈ V ∀v ∈ V \{u} (12)

∑
i∈V :{u,i}∈E

f(u,i),u =
∑
v∈V

Wuv ∀u ∈ V (13)

Variables:
f(i,j),u – number of passengers starting from stop u ∈ V traveling on arc (i, j) for some
i, j ∈ V with {i, j} ∈ E (non-negative, continuous)
fmin
e – how often edge e has to be covered (integer)
dur – total duration (counted in periods) (integer)

In this model we define from every stop u ∈ V in the PTN some passenger flow going to all
destinations v ∈ V . In order not to mix up passengers starting from different stations we
accordingly have to define |V | different flows. The constraints (12) and (13) describe the flow
conservation constraints. In order to restrict the number of passengers traveling on a certain
edge in the network we defined the capacity constraints (11). Note that the flow variables
f(i,j),u for u ∈ V are defined on directed edges (i, j) whereas the minimal frequencies fmin

e

are defined on undirected edges {i, j} = e ∈ E. Finally constraint (10) rounds the minimal
duration up to the next multiple of a time period T and the objective function gives the
costs which are needed in the best case, namely for a vehicle schedule without any empty
ride and as few time loss (through the periodicity) as possible.

The following theorem shows that Model 1 is indeed an approximation of (cost-opt LTS), as
its optimal solution yields a lower bound.

I Theorem 3. The optimal objective value of Model 1 is a lower bound on the optimal
objective value of (cost-opt LTS).

Proof. See Appendix B. J

For large problem instances a speed-up of the solution process is possible by adding the
following valid inequalities to Model 1.

I Lemma 4. Let (X, Y ) be some cut, i.e., some disjoint partition of all nodes in the PTN
with Ecut = {{i, j} = e ∈ E|i ∈ X and j ∈ Y } being all cut edges. Then it holds that∑

u∈X

∑
v∈Y

Wuv ≤ Cap ·
∑

e∈Ecut

fmin
e .

Proof. See Appendix B. J

In the computational experiments (Section 6) we investigated adding these valid inequalities,
which resulted in an improvement of the runtime of up to 50%.
Model 1 does not only yield some lower bound, but we can even construct an optimal solution
to (cost-opt LTS) if a particular assumption is met.

ATMOS 2018



8:8 Cost-Minimal Public Transport Planning

I Theorem 5. Let Lwait = Lturn and let the graph G = (V, Ē) with Ē = {e ∈ E : fmin
e > 0}

for an optimal solution fmin
e of Model 1 be connected. Then the optimal objective of Model 1

is equal to the optimal objective of (cost-opt LTS).

Proof. For every solution to Model 1, i.e., for some feasible fmin
e with e ∈ E, we can construct

some feasible solution (L,R) to (cost-opt LTS) as follows: We define the line plan L that
contains for each edge e ∈ E exactly fmin

e lines containing exactly this one edge e, i.e.,
L := {e1, . . . , ef

min
e : e ∈ E}. Since fmin

e = |{l ∈ L|e ∈ l}| and fmin
e admits a feasible load,

the line plan L is feasible.
For this line plan we now generate a vehicle schedule R that consists of only one large route.
To this end, we consider the resulting set of directed lines L′

L′ =
{

(i, j)1, . . . , (i, j)f
min
e , (j, i)1, . . . , (j, i)f

min
e : e = {i, j} ∈ E

}
which contains fmin

e copies of both directions of every edge e ∈ E. This is a set of directed
edges which creates a directed multigraph (V,L′). Due to the assumption in the theorem,
this graph is strongly connected and every node in (V,L′) has the same indegree as outdegree.
Hence we can find an Eulerian Cycle on it (see e.g. [12]). This means that we can form a
route containing all directed lines r = (l′1, . . . , l′k) (with |r| = |L′|) such that lengthl′

i
,l′

i+1
= 0

and timel′
i
,l′

i+1
= 0. So we set the vehicle schedule R = {r} to contain exactly this route r.

We hence have constructed some solution (L,R) to (cost-opt LTS) with

length(L,R) =
∑
l∈L′

lengthl +
∑

r=(l′1,...,l′kr
)∈R

kr∑
i=1

lengthl′
i
,l′

i+1︸ ︷︷ ︸
=0

=
∑
l∈L

2 · lengthl =︸︷︷︸
fmin

e ={e∈L|e∈l}

∑
e∈E

2lengthefmin
e

and

dur(L,R) =
∑
r∈R

durr =︸︷︷︸
|R|=1

⌈∑
l∈L′

(durl + Lturn)
⌉
T

=︸︷︷︸
fmin

e ={e∈L|e∈l}

⌈∑
e∈E

2fmin
e (Ldrive

e + Lturn)
⌉
T

=︸︷︷︸
Lturn=Lwait

⌈∑
e∈E

2fmin
e (Ldrive

e + Lwait)
⌉
T

= dur · T.

Hence, for every solution to Model 1 we can construct a solution (L,R) to (cost-opt LTS) such
that g(L,R) = ctimedur · T + clength

∑
e∈E 2lengthe · fmin

e . Together with Theorem 3 (L,R)
is optimal for (cost-opt LTS)and hence Model 1 has the same objective value as (cost-opt
LTS). J

In case the assumption Lwait = Lturn does not hold, we still get a feasible solution and
therefore an upper bound for (cost-opt LTS), when we slightly modify Model 1.



J. Pätzold, A. Schiewe, and A. Schöbel 8:9

v1 v2 v3 v4 v5

1 8

7

2 3 4

56910

Figure 2 Solution of Model 1 for Example 9.

I Definition 6. We define an adjusted version of Model 1, where Lwait is replaced by Lturn

in constraint (10), to be Model 1*.

I Corollary 7. The solution (L,R) constructed in the proof of Theorem 5 is an upper bound
for (cost-opt LTS) and can be found by solving Model 1*.

If we allow that lines do not have to be bidirectional and simple paths in the PTN, we can
always obtain an optimal solution to (cost-opt LTS) by just solving Model 1. This can be
done by converting the Eulerian Cycle constructed the proof of Theorem 5 into one big line.

I Corollary 8. Let Lwait ≤ Lturn. Then the optimal objective value of Model 1 is equal to
the optimal objective of (cost-opt LTS) if we allow directed and non-simple lines.

This, of course, may lead to non-practical lines, as can be seen in the following example.

I Example 9. We examine the solution provided by Corollary 8 on a small example.
Consider the PTN given in Figure 2, with Cap passenger traveling from v1 to v5 and 1
passenger traveling from v2 to v3. Then the solution provided by Model 1 is given by lower
bounds of [1, 2, 1, 1] and the vehicle schedule of Corollary 8 is depicted in Figure 2, where
the edges are numbered in the order of their usage. As can be seen here, the resulting line
structure is not suitable for a practical public transport system, since it contains a cycle.

4 Model 2: Integrating load generation and line planning

Although we can already find a cost-optimal solution using Model 1, this only works in the
special case of Lwait = Lturn. We have seen that for Lwait < Lturn the resulting line plan
consists of directed lines (without their symmetric counterparts) and the lines may contain
circles. We therefore further explore the next steps for obtaining an LTS-plan in which the
lines satisfy the usual requirements. To this end, we combine the load generation of Model 1
with line planning to improve the approximation of the cost objective of the overall LTS-plan.
This idea is approached by the following model.

I Model 2. Given the input data from Notation 1, calculate a load fmin
e and a line plan L

that aim at minimizing the costs of an LTS-plan.

ATMOS 2018



8:10 Cost-Minimal Public Transport Planning

min ctime · dur · T + clength

L∑
l=1

∑
e∈E

2xe,llengthe (14)

s.t. (11) - (13)
L∑
l=1

(
2zl(Lturn − Lwait) +

∑
e∈E

2(Ldrive
e + Lwait) · xe,l

)
≤ dur · T (15)

L∑
l=1

xe,l ≥ fmin
e ∀e ∈ E (16)

xe,l ≤ zl ∀e ∈ E ∀l ∈ [L] (17)∑
e∈E

xe,l ≥ zl ∀l ∈ [L] (18)∑
e∈E:s∈e

xe,l ≤ 2 ∀s ∈ V ∀l ∈ [L] (19)

2xe,l ≤ yi,l + yj,l ∀l ∈ [L] ∀(i, j) = e ∈ E (20)∑
s∈V

ys,l =
∑
e∈E

xe,l + zl ∀l ∈ [L] (21)∑
(i,j)=e∈E:i∈C and j∈C

xe,l ≤ |C| − 1 ∀ circles C ⊆ E ∀l ∈ [L] (22)

Coefficients:
L – maximal possible number of lines (integer) and [L] := {1, ..., L}.

Variables:
zl – is 1 iff line l is non-empty. (binary)
ys,l – is 1 iff stop s is contained in line l. (binary)
xe,l – is 1 iff edge e is contained in line l. (binary)
dur – total duration of all lines (counted in periods) (integer)
fmin
e – as in Model 1, including the variables fe,u and constraints (11) - (13) from Model 1.

This model finds some feasible line plan. First the zl-variables determine if line number l is a
line or empty. Constraint (17) and (18) ensure this. Now we need for every index l that for
every stop of some line there are at most two incident edges (constraint (19)). This ensures
that the xe,l variables form circles or paths. To ensure that they form only one connected
path we could consider them as flow variables. Here, we decided to add y-variables for every
visited stop and count the number of stops that a line visits. The y-variables are set to one
for the incident nodes of all edges the line visits in (20). We then can ensure that there is
some connected path by requiring that there exists exactly one more stop than edges in a line
in constraint (21). Finally we need to rule out subtours which is done by constraint (22) (As
usual they are added by constraint generation procedures). The variables fmin

e taken from
Model 1 help us to determine feasibility of the line plan, which is done by constraint (16).
Finally we round the duration up to the next multiple of a time period, which is done by (15).

The objective function is again a lower bound on the exact costs of an LTS-plan. This is
shown in the next theorem.
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v1 v2 v3 v4 v5

1 2 3 4

5678

1

2

Figure 3 Solution of Model 2.

I Theorem 10. The optimal objective value of Model 2 is a lower bound on the optimal
objective value of (cost-opt LTS) and an upper bound to the optimal objective value of Model 1.

Proof. See Appendix B. J

We can again construct a feasible solution for (cost-opt LTS) from the solution of Model 2 in
the case that we are only interested in line-pure vehicle schedules. In such schedules, every
vehicle serves the same line, alternating between its forward and its backward direction.
More formally:

I Definition 11. A solution to (cost-opt LTS) is called line-pure if R = {rl : l ∈ L}, with
rl = (l+, l−) being the route that contains only the forward and backward direction of line
l ∈ L.

We now show that the following slight modification of Model 2 can find a cost-optimal
LTS-plan under the restriction that only line-pure vehicle schedules are allowed.

I Definition 12. Consider Model 2 and replace constraint (15) by

2zl(Lturn
e − Lwait

e ) +
∑
e∈E

2(Ldrive
e + Lwait

e ) · xe,l ≤ dl · T ∀l ∈ [L] (23)

L∑
l=1

dl = dur (24)

with integer variables dl ∈ N. We call this modified version Model 2*.

Restricting ourselves to a special structure of the vehicle schedules, we are still able to obtain
the optimal solution to (cost-opt LTS) (under some assumptions) by simply considering loads
and the lines. This is the main result of this section.

I Theorem 13. An optimal solution to Model 2* solves (cost-opt LTS) under the restriction
that only line-pure vehicle schedules are allowed.

Proof. See Appendix B. J

For the general case of (cost-opt LTS), Model 2* still finds a feasible solution and therefore
provides an upper bound to (cost-opt LTS).

I Corollary 14. The optimal objective value to Model 2* imposes an upper bound on the
optimal objective value of (cost-opt LTS).

I Example 15. We continue Example 9 and now consider the solution constructed in
Theorem 10. These now provide simple lines, resulting in the line-pure vehicle schedule
depicted in Figure 3, improving on the line structure of Example 9. The first line is depicted
in red, the second is dashed in green. The lines here look much more reasonable for practical
implementation than the solution which was obtained by Model 1*.
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5 Model 3: Integrating timetabling and vehicle scheduling

In Model 1 and Model 2 we did not consider all subproblems of (cost-opt LTS), especially we
did not include a proper vehicle scheduling. With the following model we want to overcome
this issue and formulate the whole problem in an integrated way.

To formulate the integrated model, we need a notation for the event-activity network
N = (E ,A) (see, e.g., [19, 21, 23, 27, 28]). The set of events E consists of all departures
and all arrivals of all lines at all stops and two additional OD-events ((u,dep), (u, arr)) per
stop u for passengers to enter and leave the network, denoted as EOD. The set A connects
the events by driving, waiting and transfer activities. The OD-events are connected to each
departure event of the corresponding stop using OD-activities (AOD). Using this, we can
now formulate the integrated model. Let further denote with Al′ all activities in A \ AOD
that are included in a directed line l′ ∈ L′.

I Model 3. Given the input data from Notation 1, find a feasible LTS-plan (L,R) with
minimal costs, i.e., minimizing g(L,R).

min
∑
v∈V

costv

s.t. durr ≥
1
T
·
∑
l′∈L′

xl′,r · durl +
∑

l′1,l
′
2∈L′

x(l′1,l′2),r · durl′1,l′2 ∀r ∈ [R] (25)

lengthr ≥
∑
l′∈L′

xl′,r · lengthl +
∑

l′1,l
′
2∈L′

x(l′1,l′2),r · lengthl′1,l′2 ∀r ∈ [R] (26)

costr ≥ clength · lengthr + ctime · durr ∀r ∈ [R] (27)∑
l∗∈L′

x(l′,l∗),r = xl′,r =
∑
l∗∈L′

x(l∗,l′),r ∀l′ ∈ L′, ∀r ∈ [R] (28)∑
r∈R

xl′,r =
∑
v∈V

xb(l′),r ∀l′ ∈ L′ (29)

Cap ·
∑
r∈R

xl′,r ≥
∑
u,v∈V

fa,(u,v) ∀l′ ∈ L′, ∀a ∈ Al′ (30)

∑
i∈E

(i,j)=a∈A

fa,(u,v) =
∑
i∈E:

(j,i)∈At

fa,(u,v) ∀p ∈ P, ∀j ∈ E \ EOD (31)

∑
i∈E:

(i,j)=a∈AOD

fa,(u,v) = Wuv ∀u, v ∈ V, ∀j = (v, arr) ∈ EOD (32)

∑
i∈E:

(j,i)=a∈AOD

fa,(u,v) = Wuv ∀u, v ∈ V, ∀j = (u,dep) ∈ EOD (33)

∑
(l′1,l′2)∈U ′

x(l′1,l′2),r ≤ |U ′| − 1 ∀U ′ ( L′ × L′, ∀r ∈ [R] (34)

durr ∈ N ∀r ∈ [R] (35)

Coefficients:
R: number of possible vehicle routes, we assume it to be sufficiently large
L′: the set of all possible directed lines in the network, b(l′) denotes the backwards
direction for a directed line l′, l is the corresponding undirected line.
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Table 1 Properties of the examined datasets.

Instance Nodes Edges Passengers

Linear 5 4 141
Toy 8 8 2622
Grid 25 40 2546

Germany 250 326 385868

Variables:
xl′,r – is 1 iff the directed line l′ is part of route r
x(l′1,l′2),r: is 1 iff lines l′1 and l′2 are served directly after each other in route r
costr – the costs of route r
durr – the duration of route r
lengthr – the length of route r
fa,(u,v) – the number of passenger traveling from u to v using activity a

This model finds a cost-optimal LTS-plan (i.e., line plan, timetable and vehicle schedules).
The f variables determine the passenger flow, satisfying the classical flow conservation
constraints ((31)-(33)) and creating coupling constraints for the vehicle routes r in (30),
determined by the x-variables. The duration and length of the routes are determined in (25)
and (26) and then combined in (27) to determine the costs. Of course, the vehicle routes need
to satisfy flow conservation as well (see (28)). (34) are the subtour elimination constraints.
Constraint (29) ensures that every line is served in both directions.
The model is too large to be solved for realistic instances. One possibility As can be seen in
Section 6, the integrated problem cannot be solved even for instances of small size. This is
due to its enormous number of variables including a trip for every possible line in the network.
Nevertheless, Model 3 can be used if enough variables are fixed. We hence can combine
it with Model 2 by fixing the lines in Model 3 to the optimal lines computed by Model 2.
This means that we only need to consider the constraints (25)-(28) and (34), additionally
guaranteeing that every trip in L′ is covered exactly once. The result is a tractable model
for medium-sized instances.
Other possibilities to reduce its size would be to start with a line pool of limited size (e.g. as
generated in [14] or from Model 2) or to use column generation approaches as in [2].

6 Experiments

In the computational experiments we implemented the three proposed models with the open
source library LinTim (see [1, 16, 31]) and tested them on four different datasets. These
datasets are described in in Table 1 and depicted in Figure 5, Appendix A.
We implemented Model 1, Model 1*, Model 2, Model 2* and Model 3 using Gurobi 8.0 as
MIP solver with default settings. We tested all implementations on a compute server (6
cores of Intel(R) Xeon(R) CPU X5650 @ 2.67GHz, 78 GB RAM) with a time limit of 3 hours
per test case. For each model and each instance we considered two different cases: Either
Lturn = Lwait or Lturn > Lwait to distinguish the cases where Model 1* is able to find an
optimal solution and where it is not. We obtained the results depicted in Tables 2 and 3. A
symbol ◦ denotes that the problem has not been solved to optimality and hence only the
best found upper or lower bound is presented.
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Table 2 Objective values for the case of Lturn = Lwait.

Instance Model 1 Model 2 Model 3
Model 1 Model 1∗ Model 2 Model 2∗ lb ub

Linear 80 80 80 130 80 80
Toy 1424 1424 1424 1696 1270◦ 1460◦

Grid 1034 1034 1034 1034 – –
Germany 73321◦ 84694◦ 54148◦ – – –

Table 3 Objective values for the case of Lturn > Lwait.

Instance Model 1 Model 2 Model 3
Model 1 Model 1∗ Model 2 Model 2∗ lb ub

Linear 80 130 130 130 130 130
Toy 1424 1474 1424 1696 1288◦ 1539◦

Grid 1034 1134 1030◦ 1140 – –
Germany 74462◦ 85612◦ 54148◦ – – –

For each of the three models there exist two columns. The left column contains a lower bound
to (cost-opt LTS), whereas the right column contains an upper bound, i.e., the objective
value of the best found feasible solution.
We observe for Model 1 that in the case Lturn = Lwait it almost always finds the optimal
objective value within the specified time limit of 3 hours. Only in our biggest instance we
cannot get an optimal solution within the time limit (we still have a gap of 13.7% here).
For the case Lturn > Lwait there exists a gap between the lower bound and upper bound of
Model 1, but this model still obtains the best solutions.
Model 2 can solve the two smallest instances easily, but starts having trouble with the time
limit for Grid. For Germany it is not able to find a feasible solution within the specified time
limit. Regarding the solution quality, we see that the lower bound given by Model 2 is only
in a single case sharper than the lower bound given by Model 1. On the other hand, the
upper bounds found by Model 2* never have smaller objective values than Model 1*.
Model 3 is already on the toy instance not able to find an optimal solution within 3 hours.
The obtained objective values for Linear and the bounds for Toy are consistent with the
values given in Models 1 and 2. For the bigger instance, even the precomputation of the
complete line pool for Model 3 was not possible anymore.
We illustrate our results on the dataset Grid (see [13, 30]). Solutions are evaluated by their
costs and their traveling times. The solutions shown in Figure 4 are computed sequentially.
We see that the sequential solutions with smallest costs are A4 (computed in [25]) and
P5 (computed in [20].) The best possible costs of a feasible solution (computed by solving
Model 1) is depicted as a red line and improves the costs by 23%. Note that Model 1 computes
a solution with a periodic vehicle schedule, but as shown in [5] an aperiodic schedule would
not improve the costs.
The traveling time of the cost-minimal solution is hard to evaluate: Using the best possible
paths for the passengers as done for the other solutions in Figure 4 would lead to a traveling
time of only 20.57. We did not depict this objective value in the figure since in this solution
the passengers are far away from using the paths computed for them in Model 1 and hence
the solution would have heavily overloaded vehicles.
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Figure 4 Multiple solutions for Grid (see [30]), evaluated by their cost per hour and traveling
time (perceived journey time meaning traveling time plus a time penalty for every occurring transfer).
With our models we were able to find a cost-minimal solution. Its objective value is depicted by a
red line.

Table 4 Runtime improvements with Lemma 4 on Grid for Lturn > Lwait.

parameters no cuts cuts
Model 1 Model 1* Model 1 Model 1*

Nodes explored 46557 26391 2398 3845
Runtime in sec 23.18 12.6 10.61 8.99

We finally investigate the influence of valid inequalities introduced in Lemma 4 on the runtime
of Model 1. We restricted this investigation to Grid, since the runtime for the smallest two
instances is already less than a second, and for Germany it is already non-trivial to determine
“good” cuts of the network. For Grid, however, we took all horizontal and all vertical cuts of
the network, whose PTN is depicted in Figure 5, into the model. With this improvement we
were able to speed up the solution process significantly with respect to runtime and number
of explored MIP nodes, as can be seen in Table 4.

7 Outlook

We propose three models to compute cost-optimal public transport plans. For the first
two models we derive optimality conditions and with the third model we present an IP
formulation for the integrated exact model. The computational experiments show that the
implementation of the models is computationally tractable.
Model 1 is able to compute cost-optimal solutions up to Grid outperforming previous
approaches to tackle this problem. For large networks the model provides bounds of good
quality in a reasonable amount of time. Model 2 finds optimal line-pure LTS-plans. Finally,
Model 3 yields a cost-optimal LTS-plan without requiring any further assumptions.

ATMOS 2018
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For future work we plan to sharpen the formulation of Model 1 by identifying good cuts. It
would hopefully be the case that better cuts lead to a further decrease of the computation
time, especially for the large instances.
Furthermore it would be interesting to not only find a solution with minimal costs, but
to find a lexicographic solution, i.e., the cost-optimal solution with the best traveling time
for the passengers. To this end, we can include the passengers’ traveling time in Model 3
which will most likely further increase the computation time of the model. To use this model
effectively, more work in speed-up techniques is necessary. Promising ideas include column
generation and decomposition techniques, similar to the methods presented in [22].
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A Figures

B Proofs

Proof of Theorem 3. Let (L, R) be some feasible solution to (cost-opt LTS). Since the line
plan is feasible we can construct some feasible flow from it by setting fmin

e = |{l ∈ L|e ∈ l}|
and fe,u =

∑
p∈Pall:e∈p wp. Now we get for all i, j ∈ V with {i, j} ∈ E

∑
u∈V

f(i,j),u =
∑

p∈Pall:(i,j)∈p

wp ≤︸︷︷︸
by (1)

fmin
e · Cap

by definition of feasibility of a line plan, i.e., constraint (11) is satisfied. Since the wp
correspond to paths in the PTN the flow conservation constraints (12) and (13) are also
satisfied. By setting

dur =
⌈∑

e∈E 2fmin
e (Ldrive

e + Lwait)
T

⌉

we finally have constructed a feasible solution to Model 1.
We now show that the objective function value of the constructed solution is better than
g(L,R) = ctime · dur(L,R) + clength · length(L,R).
We first consider length(L,R): We know that for the constructed solution it holds that
fmin
e = |{l ∈ L|e ∈ l}|, hence

length(L,R) ≥
∑
l′∈L′

lengthl′ =
∑
l∈L

∑
e∈l

2lengthe ≥
∑
e∈E

2lengthefmin
e .
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(a) The Linear network. (b) The Toy network. (c) The Grid network.

(d) The Germany network.

Figure 5 The instances used in the experiments.

For dur(L,R) we calculate

dur(L,R) =
∑
r∈R

durr =
∑
r∈R

⌈∑
l′∈r

(durl′ + Lturn)
⌉
T

≥

⌈∑
r∈R

∑
l′∈r

(durl′ + Lturn)
⌉
T

=︸︷︷︸
(4)

⌈∑
r∈R

∑
l′∈r

(
(|l| − 1)Lwait + Lturn +

∑
e∈l′

Ldrive
e

)⌉
T

=
⌈∑
l′∈L

(
Lturn − Lwait +

∑
e∈l′

(Ldrive
e + Lwait)

)⌉
T

≥


∑
l∈L

2

(Lturn − Lwait︸ ︷︷ ︸
≥0

) +
∑
e∈l

(Ldrive
e + Lwait)


T

≥︸︷︷︸
fmin

e =|{l∈L|e∈l}|

⌈∑
e∈E

2fmin
e (Ldrive

e + Lwait)
⌉
T

= dur · T. ATMOS 2018
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Overall it holds that

g(L,R) = ctimedur(L,R) + clengthlength(L,R) ≥ ctimedur · T + clength
∑
e∈E

2lengthe · fmin
e .

Thus every feasible solution to (cost-opt LTS) can be transformed to a solution for Model 1
whose objective is smaller than g(L,R). Hence, the optimal objective function value of
Model 1 yields a lower bound to (cost-opt LTS). J

Proof of Lemma 4. We start with constraint (12), i.e.,∑
i∈V :{i,v}∈E

f(i,v),u = Wuv +
∑

i∈V :{v,i}∈E

f(v,i),u ∀u ∈ V ∀v ∈ V \{u}

and argue that for any u ∈ X it holds that

∑
v∈Y

∑
i∈V :{i,v}∈E

f(i,v),u =
∑
v∈Y

Wuv +
∑

i∈V :{v,i}∈E

f(v,i),u


⇔︸︷︷︸

V=X∪Y

∑
v∈Y

 ∑
i∈X:{i,v}∈E

f(i,v),u +
∑

i∈Y :{i,v}∈E

f(i,v),u︸ ︷︷ ︸
=(∗)



=
∑
v∈Y

Wuv +
∑

i∈X:{v,i}∈E

f(v,i),u +
∑

i∈Y :{v,i}∈E

f(v,i),u︸ ︷︷ ︸
=(∗)


⇔︸︷︷︸

(∗) cancel out

∑
v∈Y

∑
i∈X:{i,v}∈E

f(i,v),u =
∑
v∈Y

Wuv +
∑

i∈X:{v,i}∈E

f(v,i),u


⇔

∑
v∈Y,i∈X:
{v,i}∈Ecut

f(i,v),u =
∑
v∈Y

Wuv +
∑

v∈Y,i∈X:
{v,i}∈Ecut

f(v,i),u

Hence we can conclude∑
i∈X,v∈Y :{v,i}∈Ecut

f(i,v),u ≥
∑
v∈Y

Wuv ∀u ∈ X. (36)

Thus we get that

Cap ·
∑

e∈Ecut

fmin
e ≥︸︷︷︸

(11)

∑
i∈X,v∈Y :
{i,v}∈Ecut

∑
u∈V

f(i,v),u

≥︸︷︷︸
X⊆V

∑
u∈X

∑
i∈X,v∈Y :
{i,v}∈Ecut

f(i,v),u ≥︸︷︷︸
(36)

∑
u∈X

∑
v∈Y

Wuv.

J

Proof of Theorem 10. Let (L,R) be some feasible solution to (cost-opt LTS). Then we
know that we can set fmin

e = |{l ∈ L|e ∈ l}| (and fe,u accordingly) as in the proof of
Theorem 3 to some feasible flow which satisfies (16). Furthermore we can enumerate all lines
with some bijective mapping ϕ : L → [|L|] such that xe,ϕ(l) = 1 iff e ∈ l for all l ∈ L and
also ys,ϕ(l) = 1 iff s ∈ e for some e ∈ l and zi = 1 for all i ∈ [|L|] and 0 else. Since L was
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some feasible line plan all lines are simple paths and hence also constraints (17) to (22) are
fulfilled. Now for the objective function it holds that

length(L,R) =
∑
l′∈L′

lengthl′ +
∑

r=(l′1,...,l′kr
)∈R

kr−1∑
i=1

lengthl′
i
,l′

i+1

≥
∑
l∈L

∑
e∈l

2lengthe =
∑
l∈L

∑
e∈E

2xe,ϕ(l)lengthe =
L∑
l=1

∑
e∈E

2xe,llengthe.

For the duration we get

dur(L,R) =
∑

r=(l′1,...,l′kr
)∈R

⌈
k∑
i=1

durl′
i

+ durl′
i
,l′

i+1

⌉
T

≥

⌈∑
r∈R

∑
l′∈r

(durl′ + Lturn)
⌉
T

=︸︷︷︸
(4)

⌈∑
r∈R

∑
l′∈r

(
(|l| − 1)Lwait + Lturn +

∑
e∈l′

Ldrive
e

)⌉
T

=
⌈∑
l′∈L

(
Lturn − Lwait +

∑
e∈l′

(Ldrive
e + Lwait)

)⌉
T

=
⌈

L∑
l=1

(
2zl(Lturn − Lwait) +

∑
e∈E

2(Ldrive
e + Lwait) · xe,l

)⌉
T

≥ dur · T

Hence, by finally setting

dur =
⌈∑L

l=1
(
2zl(Lturn − Lwait) +

∑
e∈E 2(Ldrive

e + Lwait) · xe,l
)

T

⌉

we conclude that from any feasible solution (L,R) to (cost-opt LTS) we can construct some
feasible solution to Model 2 such that

g(L,R) ≥ ctimedur · T + clength

L∑
l=1

∑
e∈E

2xe,llengthe,

which means that the objective function value of Model 2 is a lower bound to (cost-opt LTS).
On the other hand every feasible solution to Model 2 is a feasible solution to Model 1. This
can be seen by setting the three types of variables, fmin

e , fe,u and dur, that are contained
in both models, to be the same. Hence constraints (11) - (13) are satisfied, and also (10) is
satisfied since

dur·T ≥
L∑
l=1

2zl (Lturn − Lwait)︸ ︷︷ ︸
≥0

+
∑
e∈E

2(Ldrive
e + Lwait) · xe,l

 ≥∑
e∈E

2fmin
e (Ldrive

e +Lwait).

For the objective functions it additionally holds that

L∑
l=1

∑
e∈E

2xe,llengthe =
∑
e∈E

2fmin
e lengthe.

This means that every solution to Model 2 can be projected to a solution of Model 1 with
smaller objective value in Model 1, meaning that Model 2 is an upper bound to Model 1. J
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Proof of Theorem 13. Let L,R be some line-pure feasible solution to (cost-opt LTS). For
the objective value of (L,R) we know that

length(L,R) =
∑

r=(l′1,...,l′kr
)∈R

kr∑
i=1

lengthl′
i
+ lengthl′

i
,l′

i+1︸ ︷︷ ︸
=0

=
∑
l∈L

2lengthl =
∑
l∈L

∑
e∈l

2lengthe,

and that

dur(L,R) =
∑
r∈R

⌈∑
l′∈r

(durl′ + Lturn)
⌉
T

=
∑
l∈L

⌈
2(durl + Lturn)

⌉
T

=
∑
l∈L

⌈
2(Lturn − Lwait) +

∑
e∈E:e∈l

2(Ldrive
e + Lwait)

⌉
T

.

We can extend the line plan L to some feasible solution to Model 2* by again defining
a bijective mapping ϕ : L → [|L|] such that xe,ϕ(l) = 1 iff e ∈ l for l ∈ L for all e ∈ E.
Analogously a solution xe,l can be transformed into some feasible line plan L by defining a
line l to contain exactly all edges e ∈ E if xe,l = 1. Thus there exists a bijection between the
set of feasible solutions between (cost-opt LTS) and Model 2* as well as the same objective
function for both problems since

∑
l∈L

∑
e∈l

2lengthe =
∑
l∈L

∑
e∈E

2xe,ϕ(l)lengthe =
L∑
l=1

∑
e∈E

2xe,llengthe

and

∑
l∈L

⌈
2(Lturn − Lwait) +

∑
e∈E:e∈l

2(Ldrive
e + Lwait)

⌉
T

=
L∑
l=1

⌈
2zl(Lturn − Lwait) +

∑
e∈E

2xe,llengthe(Ldrive
e + Lwait)

⌉
T

=
L∑
l=1

dl.

Hence their optimal objective values coincide. J
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