Robust Routing in Urban Public Transportation: How to Find Reliable Journeys Based on Past Observations *

Kateřina Böhmová, Matúš Mihalák, Tobias Pröger, Rastislav Šrámek, and Peter Widmayer
Institute of Theoretical Computer Science, ETH Zurich, Switzerland
\{kboehmov,mmihalak,tproeger,rsramek, widmayer\}@inf.ethz.ch

Abstract

We study the problem of robust routing in urban public transportation networks. In order to propose solutions that are robust for typical delays, we assume that we have past observations of real traffic situations available. In particular, we assume that we have "daily records" containing the observed travel times in the whole network for a few past days. We introduce a new concept to express a solution that is feasible in any record of a given public transportation network. We adapt the method of Buhmann et al. [4] for optimization under uncertainty, and develop algorithms that allow its application for finding a robust journey from a given source to a given destination. The performance of the algorithms and the quality of the predicted journey are evaluated in a preliminary experimental study. We furthermore introduce a measure of reliability of a given journey, and develop algorithms for its computation. The robust routing concepts presented in this work are suited specially for public transportation networks of large cities that lack clear hierarchical structure and contain services that run with high frequencies.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph Theory (Graph algorithms, Network problems), I.2.6 Learning

Keywords and phrases Algorithms, Optimization, Robustness, Route planning, Public transportation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2013.27

1 Introduction

We study the problem of routing in urban public transportation networks, such as tram and bus networks in large cities, focusing on the omnipresent uncertain situations when (typical) delays occur. In particular, we search for robust routes that allow reliable yet quick passenger transportation. We think of a "dense" tram network in a large city containing many tram lines, where each tram line is a sequence of stops that is served repeatedly during the day, and where there are several options to get from one location to another. Such a network usually does not contain clear hierarchical structure (as opposed to train networks), and each line is served with high frequency. Given two tram stops a and b together with a latest arrival time t_{A}, our goal is to provide a simple yet robust description of how to travel in the

[^0]
© K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer;
licensed under Creative Commons License CC-BY
given network from a to b in order to arrive on time t_{A} even in the presence of typical delays. We base our robustness concepts on past traffic data in a form of recorded timetables - the actually observed travel times of all lines in the course of several past days. If no delays occur, such a recorded timetable corresponds to the scheduled timetable for that day.

The standard approach to describe a travel plan from a to b in a given tram network is to specify, according to a scheduled timetable, the concrete sequence of vehicles together with transfer stops and departure/arrival times for each transfer stop. Such a travel plan may look like this: Take the tram 6 at 12:33 from stop a and leave it at 12:47 at transfer stop s; then take the tram 10 at 12:51 from s and leave it at 12:58 at b. However, such a travel plan may become infeasible on a concrete day due to delays: Imagine a situation where the tram 6 left a at 12:33, but arrived to s only at 12:53, and the tram 10 leaving s at 12:51 was on time. Then, the described travel plan would bring the passenger to stop s but it does not specify how to proceed further in order to arrive to b.

We observe that the standard solution concepts (such as paths in a time-expanded graph) are not suitable for our setting. We introduce a new concept to express a solution, which we call a journey, that is feasible in any recorded timetable of a given transportation network assuming the timetable to be periodic. A journey specifies an initial time t_{D} and then only a sequence of transportation lines $\left\langle l_{1}(\right.$ tram $), l_{2}$ (bus) $, \ldots, l_{k}($ tram $\left.)\right\rangle$ together with transfer stops $\left\langle s_{1}, \ldots, s_{k-1}\right\rangle$. This travel plan suggests to start waiting at a at time t_{D}, take the first tram of line l_{1} that comes and travel to stop s_{1}, then change to the first coming bus of line l_{2}, etc. Since we assume that the frequency of vehicles serving each line is high, such a travel plan is not only feasible in our setting but also reasonable, and provides the passenger with all the necessary information. We provide algorithms to efficiently compute these journeys.

Equipped with the introduced solution concept of a journey, we can easily adapt the method of Buhmann et al. [4] for optimization under uncertainty, and apply it to identify robust travel plans. A key ingredient of the method is the ability to count the number of (possibly exponentially many) "good" solutions. Our solution concept allows us to develop efficient algorithms to compute the number of all journeys from a to b that depart after the time t_{D} and arrive before the time t_{A}.

Finally, we suggest an alternative simple measure for reliability of a given journey, expressed simply as the fraction of recorded timetables where the journey was successful and allowed to arrive at the destination on time. We provide efficient algorithms for computation of this measure.

2 Related Work

The problem of finding a fastest journey (according to the planned timetable) using public transportation has been extensively studied in the literature. Common approaches model the transportation network as a graph and compute a shortest path in this graph (see [12] for a survey). Various improvements have been developed, and experimental studies suggest that these can also be used in practice (see, e.g., $[2,5,14]$). Recent approaches avoid the construction of a graph and process the timetable directly [6, 7]. For example, Delling et al. [6] describe an approach which is centered around transportation lines (such as train or bus lines) and which can be used to find all pareto-optimal journeys when the arrival time and the number of stops are considered as criteria. Bast et al. [1] observe that for two given stops, we can find and encode each sequence of intermediate transfer stations (i.e., stations where we change from one line to another) that can lead to an optimal route. The set of these sequences of transfers is called transfer pattern. These patterns can be precomputed,

Figure 1 The line l_{1} is a sequence of stops $\left\langle\ldots, s_{0}, a, s_{1}, c, d, s_{2}, \ldots\right\rangle$. The line $l_{4}=$ $\left\langle\ldots, s_{2}, d, c, s_{1}, b, s_{0}, \ldots\right\rangle$ that goes in the opposite direction to l_{1} is considered to be a different line. In this example, both $a \triangleleft l_{1}$ and $a \triangleleft l_{4}$ hold, but $a \triangleleft l_{2}$ does not. Similarly, $s_{1} \triangleleft s_{2} \triangleleft l_{1}$ holds, but $s_{1} \triangleleft s_{2} \triangleleft l_{4}$ does not. The set $l_{1} \cap l_{2}$ of all stops common to l_{1} and l_{2} is $\left\{s_{0}, s_{1}, s_{2}\right\}$. Moreover, when travelling from a to b using a route $\left\langle l_{1}, l_{2}, l_{3}\right\rangle$, this network is an example where not every stop in $l_{1} \cap l_{2}$ is suitable for changing from l_{1} to l_{2} : We cannot choose s_{0} as transfer stop since it is served before a. If s_{2} was chosen, then l_{3} can never be reached without travelling back. Thus, the only valid stop to change the line is s_{1}.
leading to very fast query times. These approaches are similar to our approach in the sense that they try to explicitly exploit the problem structure (e.g., by considering lines) instead of implicitly modelling all properties into a graph.

For computing robust journeys in public transportation, stochastic networks have been studied $[3,9,13]$, where the delays between successive edges are random variables. Dibbelt et al. [7] study the case when stochastic delays on the vehicles are given. In a situation when timetables are fixed, Disser et al. [8] used a generalization of Dijkstra's algorithm to compute pareto-optimal multi-criteria journeys. They define the reliability of a journey as a function depending on the minimal time to change between two subsequent trains, and use it as an additional criterion. Müller-Hannemann and Schnee [11] introduced the concept of a dependency graph for a prediction of secondary delays caused by some current primary delays, which are given as input. They also show how to compute a journey that is optimal with respect to the predicted delays. Goerigk et al. [10] consider a given set of delay scenarios for every event, and adapt strict robustness to it, i.e. they aim to compute a journey that arrives on time for every scenario. Furthermore, the concept of light robustness is introduced, which aims to compute a journey that maximizes the number of scenarios in which the travel time of this journey lies at most a fixed time above the optimum. Strict robustness requires a feasible solution for every realization of delays for every event. This is quite conservative, as in reality not every combination of event delays appears. Our approach tries to avoid this by learning from the typical delay scenarios as recorded for each individual day.

3 Modeling issues

3.1 Model

Stops and lines Let \mathcal{S} be a set of stops, and $\mathcal{L} \subset \bigcup_{i=2}^{|\mathcal{S}|} \mathcal{S}^{i}$ be a set of lines (e.g., bus lines, tram lines or lines of other means of transportation). The following basic definitions are illustrated in Figure 1. Every line $l \in \mathcal{L}$ is a sequence of $S(l)$ stops $\left\langle s_{1}^{(l)}, \ldots, s_{S(l)}^{(l)}\right\rangle$, where, for every $i \in\{1, \ldots, S(l)-1\}$, the stop $s_{i}^{(l)}$ is served directly before $s_{i+1}^{(l)}$ by the line l. We explicitly distinguish two lines that serve the same stops but have opposite directions (these may be operated under the same identifier in reality). For a stop $s \in \mathcal{S}$ and a line $l \in \mathcal{L}$, we write $s \triangleleft l$ if s is a stop on the line l, i.e. if there exists an index $i \in\{1, \ldots, S(l)\}$ such
that $s=s_{i}^{(l)}$. Furthermore, for two stops $s_{1}, s_{2} \in \mathcal{S}$ and a line $l \in \mathcal{L}$ we write $s_{1} \triangleleft s_{2} \triangleleft l$ if both s_{1} and s_{2} are stops on l and s_{1} is served before s_{2}, i.e. if there exist indices $i, j \in \mathbb{N}$, $1 \leq i \leq S(l)-1, i+1 \leq j \leq S(l)$ such that $s_{1}=s_{i}^{(l)}$ and $s_{2}=s_{j}^{(l)}$. For two lines $l_{1}, l_{2} \in \mathcal{L}$, we define $l_{1} \cap l_{2}$ to be the set of all stops $s \in \mathcal{S}$ that are served both by l_{1} and l_{2}.

Trips and timetables While the only information associated with a line itself are its consecutive stops, it usually is operated multiple times per day. Each of these concrete realizations that departs at a given time of the day is called a trip. With every trip τ we associate a line $L(\tau) \in \mathcal{L}$. By $L^{-1}(l)$ we denote the set of all trips associated with a line $l \in \mathcal{L}$. For a trip τ and a stop $s \in \mathcal{S}$, let $A(\tau, s)$ be the arrival time of τ at stop s, if $s \triangleleft L(\tau)$. Analogously, let $D(\tau, s)$ be the departure time of τ at s. In the following, we assume time to be modelled by integers. For a given trip τ, we require $A(\tau, s) \leq D(\tau, s)$ for every stop $s \in L(\tau)$. Furthermore we require $D\left(\tau, s_{1}\right) \leq A\left(\tau, s_{2}\right)$ for every two stops $s_{1}, s_{2} \in \mathcal{S}$ with $s_{1} \triangleleft s_{2} \triangleleft L(\tau)$. A set of trips is called a timetable. We distinguish between

1. the planned timetable T. We assume it to be periodic, i.e., every line realized by some trip τ will be realized by a later trip τ^{\prime} again (probably not on the same day).
2. recorded timetables T_{i} that describe how various lines were operated during a given time period (i.e., on a concrete day or during a concrete week). These recorded timetables are concrete executions of the planned timetable.
In the following, timetable refers both to the planned as well as to a recorded timetable.
Goal In the following, let $a, b \in \mathcal{S}$ be two stops, $m \in \mathbb{N}_{0}$ be the maximal allowed number of line changes, and $t_{A} \in \mathbb{N}$ be the latest arrival time. A journey consists of a departure time t_{D}, a sequence of lines $\left\langle l_{1}, \ldots, l_{k}\right\rangle, k \leq m+1$ and a sequence of transfer stops $\left\langle s_{\mathrm{CH}}^{(1)}, \ldots, s_{\mathrm{CH}}^{(k-1)}\right\rangle$. The intuitive interpretation of such a journey is to start at stop a at time t_{D}, take the first line l_{1} (more precisely, the first available trip of the line l_{1}), and for every $i \in\{1, \ldots, k-1\}$, leave l_{i} at stop $s_{\mathrm{CH}}^{(i)}$ and take the next arriving line l_{i+1} immediately. Our goal is to compute a recommendation to the user in form of one or more (robust) journeys from a to b that will likely arrive on time (i.e., before time t_{A}) on a day for which the concrete travel times are not known yet. We formalize the notion of robustness later. We note that for the convenience of the user, one should handle two different lines l_{1} and l_{2} operating between two stops s_{1} and s_{2} as one (virtual) line, and provide recommendations of the form "in s_{1}, take the first line l_{1} or l_{2} to s_{2}, etc.". For the sake of simplicity we do not pursue this generalization further, but will consider this in the future.

Routes Let $k \in\{1, \ldots, m+1\}$ be an integer. A sequence of lines $r=\left\langle l_{1}, \ldots, l_{k}\right\rangle \in \mathcal{L}^{k}$ is called a feasible route from a to b if there exist $k+1$ stops $s_{0}:=a, s_{1}, \ldots, s_{k-1}, s_{k}:=b$ such that $s_{i-1} \triangleleft s_{i} \triangleleft l_{i}$ for every $i \in\{1, \ldots, k\}$, i.e., if both s_{i-1} and s_{i} are stops on line l_{i}, and s_{i-1} is served before s_{i} on line l_{i}. Notice that on a feasible route $r \in \mathcal{L}^{k}$ we need to change the line at $k-1$ transfer stops. Let

$$
\begin{equation*}
\mathcal{R}_{a b}^{m}=\left\{r \in \mathcal{L} \cup \mathcal{L}^{2} \cup \cdots \cup \mathcal{L}^{m+1} \mid r \text { is a feasible route from } a \text { to } b\right\} \tag{1}
\end{equation*}
$$

be the set of all feasible routes from a to b using at most m transfer stops. If a, b and m are clear from the context, for simplicity we just write \mathcal{R} instead of $\mathcal{R}_{a b}^{m}$. Notice that by definition, a line l may occur multiple times in a route. This is reasonable because there might be two transfer stops s, s^{\prime} on l and one or more intermediate lines that travel faster from s to s^{\prime} than l does. Additionally, notice that a route does not contain any time information.

3.2 Computation of Feasible Routes

Input data In this section we describe an algorithm that, given a set of stops \mathcal{S} and a set of lines \mathcal{L}, finds the set \mathcal{R} of all feasible routes that allow to travel from a given initial stop a to a given destination stop b using at most m transfer stops (also called transfers). Notice that to compute \mathcal{R} we only need the network structure, no particular timetable is necessary.
Preprocessing the input We preprocess the input data and construct data structures to allow efficient queries of the following types:

1. $Q(l, s)$: Compute the position of s on l. Given a line $l=\left\langle s_{1}, \ldots, s_{|S(l)|}\right\rangle, Q(l, s)$ returns j if s is the j-th stop on l, i.e., if $s=s_{j}$, or 0 if s is not served by l.
2. $Q\left(l, s_{i}, s_{j}\right)$: Determine whether s_{i} is served before s_{j} on l. Given a line l and two stops $s_{i}, s_{j}, Q\left(l, s_{i}, s_{j}\right)$ returns TRUE iff $s_{i}, s_{j} \triangleleft l$ and $s_{i} \triangleleft s_{j} \triangleleft l$.
3. $Q\left(l_{i}, l_{j}\right)$: Determine $l_{i} \cap l_{j}$ (i.e., the stops shared by l_{i} and l_{j}) in a compact, ordered format. Given two lines l_{i}, and $l_{j}, Q\left(l_{i}, l_{j}\right)$ returns the set $l_{i} \cap l_{j}$ of stops shared by these lines. We encode $l_{i} \cap l_{j}$ into an ordered set $I_{i j}$ of pairs of stops with respect to l_{i} in such a way that $\left(s_{q}, s_{r}\right) \in I_{i j}$ indicates that l_{i} and l_{j} share the stops s_{q}, s_{r}, and all the stops in between on the line l_{i} (independent of their order on l_{j}). Thus, $Q\left(l_{i}, l_{j}\right)$ outputs the described sorted set $I_{i j}$ of pairs of stops. The motivation to compress $l_{i} \cap l_{j}$ into $I_{i j}$ is that, in practice, there may be many stops shared by l_{i} and l_{j}, but only a small number of contiguous intervals of such stops. Notice that $Q\left(l_{i}, l_{j}\right)$ doesn't need to be equal to $Q\left(l_{j}, l_{i}\right)$, nor the sequence in reverse order; an example is given in Figure 2.
Notice that these queries can be answered in expected constant time if implemented using suitable arrays or hashing tables.

Graph of line incidences The function $Q\left(l_{i}, l_{j}\right)$ induces the following directed graph G. The set V of vertices of G corresponds to the set of lines \mathcal{L}. There is an edge from a vertex (line) l_{i} to a vertex l_{j} if and only if $Q\left(l_{i}, l_{j}\right) \neq \emptyset$. Then, $Q\left(l_{i}, l_{j}\right)$ is represented as a tag of the edge $\left(l_{i}, l_{j}\right)$. We construct and represent the graph G as adjacency lists.

Preliminary observations Given two stops a and b, and a number m, we want to find all routes \mathcal{R} that allow to travel from a to b using at most m transfers in the given public transportation network described by a set of stops \mathcal{S} and a set of lines \mathcal{L}. Notice that each such route $r=\left\langle l_{1}, \ldots, l_{k}\right\rangle \in \mathcal{L}^{k}$ with $0<k \leq m+1$ has the following properties.

1. Both $Q\left(l_{1}, a\right)$ and $Q\left(l_{k}, b\right)$ are nonzero (i.e., $a \triangleleft l_{1}$, and $\left.b \triangleleft l_{k}\right)$.
2. The vertices l_{1}, \ldots, l_{k} form a path in G (i.e., $l_{i} \cap l_{i+1} \neq \emptyset$ for every $i=1, \ldots, k-1$).
3. There exists a sequence of stops $a=s_{0}, s_{1}, \ldots, s_{k-1}, s_{k}=b$ such that $Q\left(l_{i}, s_{i-1}, s_{i}\right)$ is TRUE (i.e., $s_{i-1} \triangleleft s_{i} \triangleleft l_{i}$) for every $i=1, \ldots, k$.
These observations lead to the following algorithm to find the set of routes \mathcal{R}.
All routes algorithm For the stop a, determine the set \mathcal{L}_{a} of all lines passing through a. Then explore the graph G from the set \mathcal{L}_{a} of vertices in the following fashion. For each vertex $l_{1} \in \mathcal{L}_{a}$, perform a depth-first search in G up to the depth m, but do not stop when finding a vertex that has already been found earlier. In each step, try to extend a partial path $\left\langle l_{1}, \ldots, l_{j}\right\rangle$ to a neighbor l_{j}^{\prime} of l_{j} in G. Keep track of the current transfer stop s_{q}. This is a stop on the currently considered line l_{j} such that s_{q} is the stop with the smallest position on l_{j} at which it is possible to transfer from l_{j-1} to l_{j}, considering the partial path from l_{1} to l_{j-1}. In other words, s_{q} is the stop on the considered route where the line l_{j} can be boarded. Each step of the algorithm is characterized by a search state: a partial path $P=\left\langle l_{1}, \ldots, l_{j}\right\rangle$, and a current transfer stop s_{q} that allowed the transfer to line l_{j}. The initial search state consists of the partial path $P=\left\langle l_{1}\right\rangle$ and the current transfer stop a. More specifically, to

Figure 2 Lines l_{j} and l_{j}^{\prime} have common stops $s_{3}, s_{6}, s_{11}, s_{14}$, and s_{15}. The ordered set $I_{j j^{\prime}}=$ $Q\left(l_{j}, l_{j}^{\prime}\right)$ consists of the pairs $\left\{\left(s_{3}, s_{3}\right),\left(s_{15}, s_{11}\right),\left(s_{6}, s_{6}\right)\right\}$. Thus, the last stop in the last interval of $I_{j j^{\prime}}$ is the stop s_{6}. On the other hand, the ordered set $I_{j^{\prime} j}=Q\left(l_{j}^{\prime}, l_{j}\right)$ consists of the pairs $\left\{\left(s_{3}, s_{3}\right),\left(s_{6}, s_{6}\right),\left(s_{11}, s_{15}\right)\right\}$. Now, imagine that the current transfer stop s_{q} for a partial path $P=$ $\left\langle l_{1}, \ldots, l_{j}\right\rangle$ is s_{2}, then the stop s_{3} is the current transfer stop s_{q}^{\prime} for a partial path $P^{\prime}=\left\langle l_{1}, \ldots, l_{j}, l_{j}^{\prime}\right\rangle$. However, observe that if s_{q} is s_{12}, then s_{q}^{\prime} needs to be s_{6}.
process a search state with the partial path $P=\left\langle l_{1}, \ldots, l_{j}\right\rangle$, and the current transfer stop s_{q}, perform the following tasks:

1. Check whether the line corresponding to the vertex l_{j} contains the stop b and whether s_{q} is before b on l_{j}. If this is the case (i.e., the query $Q\left(l_{j}, s_{q}, b\right)$ returns TRUE), then the partial path P corresponds to a feasible route and is output as one of the solutions in \mathcal{R}.
2. If the partial path P contains at most $m-1$ edges (thus the corresponding route has at most $m-1$ transfers, and can be extended), then for each neighbor l_{j}^{\prime} of l_{j} check whether extending P by l_{j}^{\prime} is possible (and if so, update the current transfer stop) as follows. Let $I_{j j^{\prime}}=Q\left(l_{j}, l_{j}^{\prime}\right)$ be the set of pairs of stops sorted as described in the previous section. Recall that each pair $\left(s_{u}, s_{v}\right) \in I_{j j^{\prime}}$ encodes an interval of one or several consecutive stops on l_{j} that are also stops on the line l_{j}^{\prime}. Let s_{z} be the last stop in the last interval of $I_{j j^{\prime}}$. Similarly, let $I_{j^{\prime} j}=Q\left(l_{j}^{\prime}, l_{j}\right)$. If $Q\left(l_{j}, s_{q}, s_{z}\right)$ is TRUE, then $s_{q} \triangleleft s_{z} \triangleleft l_{j}$, and the path P can be extended to l_{j}^{\prime}.
a. We determine the current transfer stop s_{q}^{\prime} for l_{j}^{\prime} by considering the pairs/intervals of $I_{j^{\prime} j}$ in ascending order and deciding whether the position of s_{q} on the line l_{j} is before one of the endpoints of the currently considered interval. We refer to Figure 2 for a nontrivial case of computing of the current transfer stop.
b. Perform the depth search with the search state consisting of the partial path $P^{\prime}=$ $\left\langle l_{1}, \ldots, l_{j}, l_{j}^{\prime}\right\rangle$ and the current transfer stop s_{q}^{\prime}.
Otherwise, if $Q\left(l_{j}, s_{q}, s_{z}\right)$ is FALSE, it is not possible to extend P to l_{j}^{\prime}.
The theoretical running time of the algorithm is $\mathcal{O}\left(\Delta^{m}\right)$, where Δ is the maximum degree of G. However, we believe that in practice the actual running time will rather linearly correspond to the size of the output $\mathcal{O}(m|\mathcal{R}|)$. On real-world data, the algorithm performs reasonably fast (see section 6 for details).

3.3 Computing the earliest arriving journey

Recursive computation As previously stated, let $a \in \mathcal{S}$ be the initial stop, $b \in \mathcal{S}$ be the destination stop, $\varepsilon\left(s, l, l^{\prime}\right)$ be the minimum time to change from line l to line l^{\prime} at station s, and $t_{A} \in \mathbb{N}$ be the latest arrival time. In the previous section we showed how the set \mathcal{R} of all feasible routes from a to b can be computed. However, instead of presenting just a route $r \in \mathcal{R}$ to the user, our final goal is to compute a departure time t_{0} and a journey that arrives at b before time t_{A}. For the following considerations, we assume the underlying timetable (either the planned or a recorded timetable) to be fixed. Given $a, b \in \mathcal{S}$, an initial
departure time $t_{0} \in \mathbb{N}$, and a route $r=\left\langle l_{1}, \ldots, l_{k}\right\rangle \in \mathcal{R}$, a journey along r that arrives as early as possible can be computed as follows. We start at a at time t_{0} and take the first line l_{1} that arrives. Then we compute an appropriate transfer stop $s \in l_{1} \cap l_{2}$ (that is served both by l_{1} as well as by l_{2}) and the arrival time t_{1} at s, leave l_{1} there and compute recursively the earliest arrival time when departing from s at time at least $t_{1}+\varepsilon\left(s, l_{1}, l_{2}\right)$, following the route $\left\langle l_{2}, \ldots, l_{k}\right\rangle$. Notice that the selection of an appropriate transfer stop s is the only non-trivial part due to mainly two reasons:

1. The lines l_{1} and l_{2} may operate with different speeds (e.g., because l_{1} is a fast tram while l_{2} is a slow bus), or l_{1} and l_{2} separate at a stop s_{1} and join later again at a stop s_{2} but the overall travel times of l_{1} and l_{2} differ between s_{1} and s_{2}. Depending on the situation, it may be better to leave l_{1} as soon or as late as possible, or anywhere inbetween.
2. The lines l_{1} and l_{2} may separate at a stop s_{1} and join later again at a stop s_{2}. If all transfer stops in $l_{2} \cap l_{3}$ are served by l_{2} before s_{2}, then leaving l_{1} at s_{2} is not an option since l_{3} is not reachable anymore. See Figure 1 for a visualization.
The idea now is to find the earliest trip of line l_{1} that departs from a at time t_{0} or later, iterate over all stops $s \in l_{1} \cap l_{2}$, and compute recursively the earliest arrival time when continuing the journey from s having a changing time of at least $\varepsilon\left(s, l_{1}, l_{2}\right)$. Finally, we return the smallest arrival time that was found in one of the recursive calls.

Issues and improvement of the recursive algorithm An issue with this naïve implementation is the running time, which might be exponential in k in the worst-case (if $\left|l_{i} \cap l_{i+1}\right|>1$ for $\Omega(k)$ many $i \in\{1, \ldots, k-1\})$. Let τ and τ^{\prime} be two trips with $L(\tau)=L\left(\tau^{\prime}\right)$. If τ leaves before τ^{\prime} at some stop s, we assume that it will never arrive later than τ^{\prime} at any subsequent stop $s^{\prime}, s \triangleleft s^{\prime} \triangleleft L(\tau)$, i.e. consecutive trips of the same line do not overtake. For a line $l \in \mathcal{L}$ and a set of trips $T_{l} \subseteq L^{-1}(l)$, it follows that taking the earliest trip in T_{l} never results in a later arrival at b than taking any other trip from T_{l}. Furthermore, a trip $\tau \in T_{l}$ is operated earlier than a trip $\tau^{\prime} \in T_{l}$ iff $A(\tau, s)<A\left(\tau^{\prime}, s\right)$ for any stop $s \triangleleft l$.

Thus, we can iterate over some appropriate stops in $l_{1} \cap l_{2}$ to find the earliest reachable trip associated with l_{2}. We just need to ignore those stops where changing to l_{3} is no longer possible (see Figure 1 for an example).
Computing appropriate transfer stops The problem to find these appropriate stops can be solved by first sorting $l_{1} \cap l_{2}=\left\{s_{1}, \ldots, s_{n}\right\}$ such that $s_{j} \triangleleft s_{j+1} \triangleleft l_{1}$ for every $j \in\{1, \ldots, n-1\}$. Obviously, all stops that appear before a on line l_{1} cannot be used for changing to l_{2}. This problem can easily be solved by considering only those stops s_{j} where $a \triangleleft s_{j} \triangleleft l_{1}$. Unfortunately, the last $m \geq 0$ stops s_{n-m+1}, \ldots, s_{n} might also not be suitable for changing to l_{2} because they may prevent us later to change to some line l_{j} (e.g., if all stops of $l_{2} \cap l_{3}$ are served before s_{n-g+1}, \ldots, s_{n} on l_{2}, then changing to l_{3} is no longer possible). We solve this problem by precomputing (the index of) the last stop s_{j} where all later lines are still reachable. This can be done backwards: we start at b, order the elements of $l_{k} \cap l_{k-1}$ as they appear on line l_{k}, and find the last stop that is served before b on l_{k}. We recursively continue with l_{1}, \ldots, l_{k-1} and use the stop previously computed as the stop that still needs to be reachable.
Iterative algorithm The improved algorithm first iterates over $i \in\{1, \ldots, k-1\}$, and uses the aforementioned algorithm to precompute the index last $[i]$ of the last stop where changing from l_{i} to l_{i+1} is still possible (with respect to the route $\left\langle l_{1}, \ldots, l_{k}\right\rangle$). After that, for every $i \in\{1, \ldots, k-1\}$, we iterate over the appropriate transfer stops $s \in l_{i} \cap l_{i+1}$ where changing to l_{i+1} is possible, and find among those the stop $s_{\mathrm{CH}}^{(i)}$ where the earliest trip τ_{i+1} associated with line l_{i+1} departs. Finally we obtain a sequence of trips $\tau_{1}, \ldots, \tau_{k}$ along with transfer stops $s_{\mathrm{CH}}^{(0)}:=a, s_{\mathrm{CH}}^{(1)}, \ldots, s_{\mathrm{CH}}^{(k)}$ to change lines. Since we gradually compute the earliest trips τ_{i} for each of the lines l_{i}, the earliest time to arrive at b is simply $A\left(\tau_{k}, b\right)$.

```
EarliestArrival \(\left(a, b, t_{0},\left\langle l_{1}, \ldots, l_{k}\right\rangle\right)\)
    \(\operatorname{last}[k] \leftarrow b\)
    for \(i \leftarrow k, \ldots, 2\) do
        Order the elements of \(l_{i} \cap l_{i-1}=\left\{s_{1}, \ldots, s_{n}\right\}\) s.t. \(s_{j} \triangleleft s_{j+1} \triangleleft l_{i-1} \forall j \in\{1, \ldots, n-1\}\).
        \(\operatorname{last}[i-1] \leftarrow \max \left\{j \in\{1, \ldots, n\} \mid s_{j} \triangleleft \operatorname{last}[i] \triangleleft l_{i}\right\}\)
    \(\tau_{1} \leftarrow \arg \min _{\tau \in L^{-1}\left(l_{1}\right)}\left\{D(\tau, a) \mid D(\tau, a) \geq t_{0}\right\} ; \quad s_{\mathrm{CH}}^{(0)} \leftarrow a\)
for \(i \leftarrow 1, \ldots, k-1\) do
    Order the elements of \(l_{i} \cap l_{i+1}=\left\{s_{1}, \ldots, s_{n}\right\}\) s.t. \(s_{j} \triangleleft s_{j+1} \triangleleft l_{i} \forall j \in\{1, \ldots, n-1\}\).
    \(\tau_{i+1} \leftarrow\) null; \(\quad s_{\mathrm{CH}}^{(i)} \leftarrow\) null; \(A_{s_{n}}^{(i+1)} \leftarrow \infty\)
    for \(j \leftarrow 1, \ldots\), last \([i]\) do
            if \(s_{\mathrm{CH}}^{(i-1)} \triangleleft s_{j} \triangleleft l_{i}\) and \(s_{j} \triangleleft\) last \([i+1] \triangleleft l_{i+1}\) then
            \(\tau^{\prime} \leftarrow \arg \min _{\tau \in L^{-1}\left(l_{i+1}\right)}\left\{D\left(\tau, s_{j}\right) \mid D\left(\tau, s_{j}\right) \geq A\left(\tau_{i}, s_{j}\right)+\varepsilon\left(s_{j}, l_{i}, l_{i+1}\right)\right\}\)
            if \(A\left(\tau^{\prime}, s_{n}\right)<A_{s_{n}}^{(i+1)}\) then \(\tau_{i+1} \leftarrow \tau^{\prime} ; \quad s_{\mathrm{CH}}^{(i)} \leftarrow s_{j} ; \quad A_{s_{n}}^{(i+1)} \leftarrow A\left(\tau^{\prime}, s_{n}\right)\)
return \(A\left(\tau_{k}, b\right)\)
```

Let $n=\max \left\{\left|l_{i} \cap l_{i+1}\right|\right\}$. Given a line $l \in \mathcal{L}$, a station $s \in \mathcal{S}$ and a time $t_{0} \in \mathbb{N}$, let f be the time to find the earliest trip τ with $L(\tau)=l$ und $D(\tau, s) \geq t_{0}$ (this time depends on the concrete implementation of the timetable). It is easy to see that the running time of the above algorithm is bounded by $\mathcal{O}(k n(\log n+f))$.

4 Maximizing the Unexpected Similarity

Computing the optimum journey for a fixed timetable Given two stops $a, b \in \mathcal{S}$ and a departure time $t_{0} \in \mathbb{N}$, we can already compute the earliest arrival of a journey from a to b starting at time t_{0}. From now on, we aim to compute the latest departure time at a when the latest arrival time t_{A} at b is given. For this purpose we present an algorithm that sweeps backwards in time and uses the previous algorithm EARLIEST-Arrival. This sweepline algorithm will later be extended to count journeys (instead of computing a single one) and can be used for finding robust journeys, i.e. journeys that are likely to arrive on time.

The sweepline algorithm works as follows. We consider the trips departing at stop a before time t_{A}, sorted in reverse chronological order. Everytime we find a trip τ of any line departing at some time t_{0}, we check whether there exists a route $r=\left\langle L(\tau), l_{2}, \ldots, l_{k}\right\rangle \in \mathcal{R}$ that starts with the line $L(\tau)$. If yes, then we use the previous algorithm to compute the earliest arrival time at b when we depart at a at time t_{0} and follow the route r. If the time computed is not later than t_{A}, we found the optimal solution and stop the algorithm. Otherwise we continue with the previous trip departing from a.
Finding robust journeys We will now describe how to compute robust journeys using the approach of Buhmann et al. [4]. We stress up front that this is "learning"-style algorithm and that it, in particular, does not specifically aims at optimizing some "robustness" criterion (such as the fraction of successes in the recorded timetables). Let $a, b \in \mathcal{S}$ be the departure and the target stop of the journey, t_{A} be the latest arrival time at b, and \mathcal{T} be a set of recorded timetables for comparable time periods (e.g., daily recordings for the past Mondays). For a timetable $T \in \mathcal{T}$ and a value γ, the approximation set $A_{\gamma}(T)$ contains a route $r \in \mathcal{R}$ iff there exists a journey along the route r that starts at a at time $t_{A}-\gamma$ or later and arrives at b at time t_{A} or earlier (both times refer to timetable T). The major advantage of this definition over classical approximation definitions (such as multiplicative approximation) is

Figure 3 An example with five lines $\{1, \ldots, 5\}$ and two routes $r_{1}=\langle 1,2,3\rangle$ (solid) and $r_{2}=\langle 4,5\rangle$ (dotted). The x-axis illustrates the stops $\left\{a, s_{1}, s_{2}, s_{3}, b\right\}$, whereas the y-axis the time. If a trip leaves a stop s_{d} at time t_{d} and arrives at a stop s_{a} at time t_{a}, it is indicated by a line segment from $\left(s_{d}, t_{d}\right)$ to $\left(s_{a}, t_{a}\right)$. We have $\mu_{\gamma}^{T}\left(r_{1}\right)=3$ and $\mu_{\gamma}^{T}\left(r_{2}\right)=1$.
that we can consider multiple recorded timetables at the same time, and that the parameter γ still has a direct interpretation as the time that we depart before t_{A}. Especially, if we consider approximation sets $A_{\gamma}\left(T_{1}\right), \ldots, A_{\gamma}\left(T_{k}\right)$ for $T_{1}, \ldots, T_{k} \in \mathcal{T}$, every set contains only routes that appear in the same time period and are therefore comparable among different approximation sets.

To identify robust routes when only two timetables $T_{1}, T_{2} \in \mathcal{T}$ are given, we consider $A_{\gamma}\left(T_{1}\right) \cap A_{\gamma}\left(T_{2}\right)$: the only chance to find a route that is likely to be good in the future is a route that was good in the past for both recorded timetables. The parameter γ determines the size of the intersection: if γ is too small, the intersection will be empty. If γ is too large, the intersection contains many (and maybe all) routes from a to b, and not all of them will be a good choice. Assuming that we knew the optimal parameter γ_{OPT}, we could pick a route from $A_{\gamma_{\mathrm{OPT}}}\left(T_{1}\right) \cap A_{\gamma_{\mathrm{OPT}}}\left(T_{2}\right)$ at random. Buhmann et al. [4] suggest to set γ_{OPT} to the value γ that maximizes the so-called similarity

$$
\begin{equation*}
S_{\gamma}=\frac{\left|A_{\gamma}\left(T_{1}\right) \cap A_{\gamma}\left(T_{2}\right)\right|}{\left|A_{\gamma}\left(T_{1}\right)\right|\left|A_{\gamma}\left(T_{2}\right)\right|} \tag{2}
\end{equation*}
$$

Notice that up to now we did not consider how often a route is realized by a journey in a recorded timetable. This is undesirable from a practical point of view: when we pick a route from $A_{\gamma_{\text {OPT }}}\left(T_{1}\right) \cap A_{\gamma_{\text {OPT }}}\left(T_{2}\right)$ at random, the probability to obtain a route should depend on how frequently it is realized. Therefore we change the definition of $A_{\gamma}(T)$ to a multiset of routes, and $A_{\gamma}(T)$ contains a route r as often as it is realized by a journey starting at time $t_{A}-\gamma$ or later, and arriving at time t_{A} or earlier. Figure 3 shows an example with five lines $\{1, \ldots, 5\}$ and two routes $r_{1}=\langle 1,2,3\rangle$ and $r_{2}=\langle 4,5\rangle$. We have $\mu_{\gamma}^{T}\left(r_{1}\right)=3$: taking the second 1 and the second 2 (from above) as well as taking the third 1 and the second 2 are counted as different journeys since the departure times at a differ. On the other hand, by our definition of journey we have to take the first occurence of a line that arrives, thus taking the first 1 and waiting for the second 2 is not counted.

Now the approximation set $A_{\gamma}(T)$ can be represented by a function $\mu_{\gamma}^{T}: \mathcal{R} \rightarrow \mathbb{N}_{0}$, where for a route $r \in \mathcal{R}, \mu_{\gamma}^{T}(r)$ is the number of journeys starting at time $t_{A}-\gamma$ or later, arriving at time t_{A} or earlier and following the route r. Thus, we have $\left|A_{\gamma}(T)\right|=\sum_{r \in \mathcal{R}} \mu_{\gamma}^{T}(r)$, and for two recorded timetables T_{1}, T_{2}, we need to compute

$$
\begin{equation*}
\gamma_{\mathrm{OPT}}=\arg \max _{\gamma} \frac{\sum_{r \in \mathcal{R}} \min \left(\mu_{\gamma}^{T_{1}}(r), \mu_{\gamma}^{T_{2}}(r)\right)}{\left(\sum_{r \in \mathcal{R}} \mu_{\gamma}^{T_{1}}(r)\right) \cdot\left(\sum_{r \in \mathcal{R}} \mu_{\gamma}^{T_{2}}(r)\right)} . \tag{3}
\end{equation*}
$$

ATMOS'13

After computing the value γ_{OPT}, we pick a route r from $A_{\gamma_{\mathrm{OPT}}}\left(T_{1}\right) \cap A_{\gamma_{\mathrm{OPT}}}\left(T_{2}\right)$ at random according to the probability distribution defined by

$$
\begin{equation*}
p_{r}:=\frac{\min \left(\mu_{\gamma_{\mathrm{OPT}}}^{T_{1}}(r), \mu_{\gamma_{\mathrm{OPT}}}^{T_{2}}(r)\right)}{\sum_{r \in \mathcal{R}} \min \left(\mu_{\gamma \mathrm{OPT}}^{T_{1}}(r), \mu_{\gamma \mathrm{OPT}}^{T_{2}}(r)\right)}, \tag{4}
\end{equation*}
$$

and search in the planned timetable for a journey from a to b that departs at time $t_{A}-\gamma_{\text {OPT }}$ or earlier, and that arrives at time t_{A} or earlier.
Computing the similarity For $i \in\{1,2\}$, we represent the function $\mu_{\gamma}^{T_{i}}$ by an $|\mathcal{R}|$-dimensional vector μ_{i} such that $\mu_{i}[r]=\mu_{\gamma}^{T_{i}}(r)$ for every $r \in \mathcal{R}$. We can compute the value $\gamma_{\text {OPT }}$ by a simple extension of the aforementioned sweepline algorithm. The modified algorithm again starts at time t_{A}, and considers all trips in T_{1} and T_{2} in reverse chronological order. The sweepline stops at every time when one or more trips in T_{1} or in T_{2} depart. Assume that the sweepline stops at time $t_{A}-\gamma$, and assume that it stopped at time $t_{A}-\gamma^{\prime}>t_{A}-\gamma$ in the previous step. Of course, we have $\mu_{\gamma}^{T_{i}}(r) \geq \mu_{\gamma^{\prime}}^{T_{i}}(r)$ for every $r \in \mathcal{R}$ and $i \in\{1,2\}$. Let $\tau_{1}, \ldots, \tau_{k}$ be the trips that depart in T_{1} or T_{2} at time $t_{A}-\gamma$. The idea is to compute the values of μ_{i} (representing $\mu_{\gamma}^{T_{i}}$) from the values computed in the previous step (representing $\left.\mu_{\gamma^{\prime}}^{T_{i}}\right)$. This can be done as follows: for every trip τ_{j} occuring in T_{i} and departing at time $t_{A}-\gamma$, we check whether there exists a route $r \in \mathcal{R}$ starting with $L\left(\tau_{j}\right)$. If yes, we distinguish two cases:

1. If $\mu_{i}[r]=0$, then $\mu_{\gamma^{\prime}}^{T_{i}}(r)=0$, thus $r \notin A_{\gamma^{\prime}}\left(T_{i}\right)$. If there exists a journey from a to b along r departing at time $t_{A}-\gamma$ or later, and arriving at time t_{A} or earlier, then $A_{\gamma}\left(T_{i}\right)$ contains r exactly once. Thus, if $\operatorname{Earliest}-\operatorname{Arrival}\left(a, b, t_{A}-\gamma, r\right) \leq t_{A}$, we set $\mu_{i}[r] \leftarrow 1$.
2. If $\mu_{i}[r]>0$, then $\mu_{\gamma^{\prime}}^{T_{i}}(r)>0$, thus $A_{\gamma^{\prime}}\left(T_{i}\right)$ contains r at least once. Thus, there exists a journey from a to b along r departing at time $t_{A}-\gamma^{\prime}$ or later, and arriving at time t_{A} or earlier. Since τ_{i} is the only possibility to depart at a between time $t_{A}-\gamma$ and $t_{A}-\gamma^{\prime}$, τ_{i} is the first trip on a journey we never found before. Therefore it is sufficient to simply increase $\mu_{i}[r]$ by 1 .
Up to now, we did not define when the algorithm terminates. In fact we stop if γ exceeds a value γ_{MAX}. Let $t_{A}-\gamma_{i}$ be the starting time of an optimal journey in T_{i}. Of course, γ_{MAX} has to be larger than $\max \left\{\gamma_{1}, \gamma_{2}\right\}$. In our experimental evaluation, we set $\gamma_{\text {MAX }}$ to be one hour before t_{A}; good choices for $\gamma_{\text {MAX }}$ will be investigated in further experiments.

5 Journey Reliability

Success rate as reliability Having several recorded timetables at our disposal, and a journey from a to b, a natural approach to assess its reliability with respect to the given latest arrival time t_{A} is to check how many times in the past the journey finished before t_{A}. Normalized by the total number of recorded timetables, we call this success rate the coupled reliability. This is the least information about robustness one would wish to obtain from online routing services when being presented, upon a query to the system, with a set of routes from a to b.
Few recorded timetables The generalizing expressiveness of coupled reliability is limited (and biased towards outliers in the samples) if the number of recorded timetables is small. If lines in the considered transportation network suffer from delays (mostly) independently, we can heuristically extract from each of the m given recorded timetables T_{1}, \ldots, T_{m} an individual timetable $T(i, l)$ for every line l (storing just the travelled times of the specific line l in timetable T_{i}), and then evaluate the considered journey on every relevant combination of these individual decoupled timetables. This enlarges the number of evaluations of the
journey and thus has a chance to better generalize/express the observed travel times as typical situation.
Decoupling the timetables We can formally describe this process as follows. We consider m recorded timetables T_{1}, \ldots, T_{m}, and we consider a journey J from stop a to stop b, specified by a departure time t_{D}, by a sequence of lines $\left\langle l_{1}, \ldots, l_{k}\right\rangle$, and by a sequence of transfer stops $\left\langle s_{\mathrm{CH}}^{(1)}, \ldots, s_{\mathrm{CH}}^{(k-1)}\right\rangle$.

We say that journey J is realizable in $\left\langle T\left(i_{1}, l_{1}\right), T\left(i_{2}, l_{2}\right), \ldots, T\left(i_{k}, l_{k}\right)\right\rangle, i_{1}, \ldots, i_{k} \in$ $\{1, \ldots, m\}$, with respect to a given latest arrival time t_{A}, if for every line l_{j} there exists a trip t_{j} (of the line l_{j}) in $T\left(i_{j}, l_{j}\right)$ such that

1. The departure time of trip t_{1} from stop a is after t_{D},
2. the arrival time of trip t_{k} at stop b is before t_{A}, and
3. for every $j=1, \ldots, k-1$, the arrival time of trip t_{j} at stop $s_{\mathrm{CH}}^{(j)}$ is before the departure time of $\operatorname{trip} t_{j+1}$ at the same stop.

Decoupled reliability Clearly, there are m^{k} ways to create a k-tuple $\left\langle T\left(i_{1}, l_{1}\right), \ldots, T\left(i_{k}, l_{k}\right)\right\rangle$. Let M denote the number of those k-tuples in which journey J is realizable with respect to a given t_{A}. We call the ratio $\frac{M}{m^{k}}$ the decoupled reliability of journey J with respect to the latest arrival time t_{A}.
Computational issues Computing the coupled reliability is very easy: For every timetable $T_{i} \in\left\{T_{1}, \ldots, T_{m}\right\}$ we need to check whether the journey in question finished before time t_{A} or not. This can be done by a simple linear time algorithm that simply "simulates" the journey in the timetable T_{i}, and checks whether the arrival time of the journey lies before or after t_{A}. The computation of decoupled reliability is not so trivial anymore, as the straightforward approach would require to enumerate all $m^{k} k$-tuples $\left\langle T\left(i_{1}, l_{1}\right), \ldots, T\left(i_{k}, l_{k}\right)\right\rangle$, and thus an exponential time. In the following section, we present an algorithm that avoids such an exponential enumeration.
Computing decoupled reliability We can reduce the enumeration of all k-tuples $\left\langle T\left(i_{1}, l_{1}\right)\right.$, $\left.T\left(i_{2}, l_{2}\right), \ldots, T\left(i_{k}, l_{k}\right)\right\rangle$ by observing that the linear order of the lines in journey J allows to use dynamic-programming. Let us denote for simplicity the boarding, transfer, and arrival stops of journey J as $s_{0}, s_{1}, \ldots, s_{k}$, where $s_{0}=a, s_{k}=b$, and $s_{j}=s_{\mathrm{CH}}^{(j)}$ for $j=1, \ldots, k-1$. For every stop $s_{j-1}, j=1, \ldots, k$, we store for every time event t of a departing trip τ of line l_{j} (in any of the timetables T_{1}, \ldots, T_{m}) a "success rate" of the journey J : the fraction $S R\left[s_{j-1}, t\right]$ of all tuples $\left\langle T\left(i_{j}, l_{j}\right), \ldots, T\left(i_{k}, l_{k}\right)\right\rangle$ in which the sub-journey of J from s_{j-1} to s_{k} starting at time t is realizable. For time t not being a departure event, we extend the definition and set $S R\left[s_{j-1}, t\right]:=S R\left[s_{j-1}, t^{\prime}\right]$, where t^{\prime} is the nearest time in the future for which a departing event exists. Having this information for every j, the decoupled reliability of J is then simply $S R\left[s_{0}, t_{D}\right]$.

We can compute $S R\left[s_{j-1}, t\right]$ in the order of decreasing values of j. We initially set $S R\left[s_{k}, t_{A}\right]=1$ (denoting that the fraction of successful sub-journeys arriving in s_{k} is 1 , if the sub-journey starts in s_{k} and before t_{A}). The dynamic-programming like fashion for computing $S R\left[s_{j-1}, t\right]$ at any time t then follows from the following recurrence:

$$
\begin{equation*}
S R\left[s_{j-1}, t\right]=\frac{1}{m} \sum_{i=1}^{m} S R\left[s_{j}, t_{i}\right], \tag{5}
\end{equation*}
$$

where t_{i} is the earliest arrival time of line l_{j} at stop s_{j} if the line uses timetable T_{i} and does not depart before time t from s_{j-1}.

When implementing the algorithm, we can save the (otherwise linear) time computation of the values of t_{i} from the recurrence by simply storing this value and updating if needed.

Figure 4 A journey with two lines l_{1} and l_{2} and three timetables (solid black, dotted red, dashed blue). The fractions denote the stored values of $S R\left[s_{j}, t\right]$.

Figure 4 illustrates the algorithm, and the resulting decoupled reliability of $6 / 9$. The running time of a naive implementation is $\mathcal{O}(k \cdot(m+e \log e))$, where e is the maximum number of considered tram departing events at any station s_{j}.

6 Small Experimental Evaluation

In this section we describe and comment on a small experimental evaluation of the proposed approach to robust routing in public transportation networks. We first describe few observations/properties of our approach that serve as a kind of "mental" experiment. We have also implemented the proposed algorithms, and we report on our preliminary experiments with real public networks and artificially generated delays.
Properties of the approach Let T_{1} and T_{2} be two recorded timetables (from which we want to learn how to travel from stop a to stop b and arrive there before t_{A}). Consider the situation where the best journey J to travel from a to b in timetable T_{1} is the same as the best journey to travel from a to b in timetable T_{2}. Assuming that T_{1} and T_{2} represent typical delays, common sense dictates to use the very same journey J also in the future. This is exactly what our approach does as well. Recall that $S_{\gamma} \leq 1$. Let r be the route that corresponds to the journey J. In our case, setting γ so that $A_{\gamma}\left(T_{1}\right)=A_{\gamma}\left(T_{2}\right)=\{r\}$, we get that $S_{\gamma}=\frac{\left|A_{\gamma}\left(T_{1}\right) \cap A_{\gamma}\left(T_{2}\right)\right|}{\left|A_{\gamma}\left(T_{1}\right)\right|\left|A_{\gamma}\left(T_{2}\right)\right|}=1$, and thus our approach computes the very same γ and returns the journey J as the recommendation to the user. These considerations can be generalized to the cases such as the one where $A_{\gamma}\left(T_{1}\right)=\{r\}, r \in A_{\gamma}\left(T_{2}\right)$, in which again J will be returned as the recommendation to the user.

If only a reliable journey is required, and the travel time is not an issue, then suggesting to depart few days before t_{A} is certainly sufficient. We now demonstrate that our approach does not work along these lines, and that it in fact reasonably balances the two goals robustness and travel time. We consider the symmetric situation where both $\left|A_{\gamma}\left(T_{1}\right)\right|$ and $\left|A_{\gamma}\left(T_{2}\right)\right|$ grow with γ in the same way, i.e., for every $\gamma,\left|A_{\gamma}\left(T_{1}\right)\right|=\left|A_{\gamma}\left(T_{2}\right)\right|$. Let us only consider discrete values of γ, and let γ_{1} be the largest γ for which $A_{\gamma_{1}}\left(T_{1}\right) \cap A_{\gamma_{1}}\left(T_{2}\right)=\emptyset$. Let $x=\left|A_{\gamma_{1}}\left(T_{1}\right)\right|$. Then, for every $\gamma>\gamma_{1}, S_{\gamma}=\frac{\Delta_{\gamma}}{\left(x+\Delta_{\gamma}\right)^{2}}$ for some values of Δ_{γ}. Simple calculation shows that S_{γ} is maximized for $\Delta_{\gamma}=x$. We can interpret x as the number of failed routes (that would otherwise make it if no delays appear). Then, S_{γ} is maximized at the point that allows for another $\Delta_{\gamma}=x$ routes to joint the approximation sets $A_{\gamma}\left(T_{i}\right)$. Thus, the more disturbed the timetables are, the more "backward" in time we need to search for a robust route.
Experimental evaluation We implemented the algorithms presented in the sections 2, 3 and 4 in Java 7. The experiments were performed on one core of an Intel Core i5-3470 CPU

Table 1 Comparison of the described methods over 100 test cases.

	on time	less than 5 min late	less than 10 min late	avg arrival time	avg earlier depart. than Opt in T_{3}
Unexpected Similarity, pick u.a.r.	88%	95%	97%	$7: 54$	3.14
Unexp. Sim., pick max. \# occurences	89%	94%	97%	$7: 54$	3.22
Optimum in T	31%	48%	60%	$8: 07$	-7.9
2nd Optimum in T	49%	64%	76%	$7: 57$	2.14
Opt. in $T+$ end buffer time	41%	57%	70%	$8: 03$	-3.26
Buffer time 3 min	55%	71%	83%	$7: 59$	0.02
Buffer time 5 min	66%	81%	88%	$7: 56$	4.43

clocked at 3.2 GHz with 4 GB of RAM running Debian Linux 7.0. We used the combined tram and bus network of Zurich as input. It has 611 stops and 90 different line IDs. In our experiments, the actual number of lines itself is much higher (471), since multiple lines may operate under the same ID (e.g., lines in opposite directions, or lines coming from or returning to the depot). The planned timetable T that we used is the official one for the Zurich network. However, trips departing before $6 \mathrm{a} . \mathrm{m}$. or after $10 \mathrm{p} . \mathrm{m}$. were ignored (since the timetable is only valid for 24 hours, trips starting before and ending after midnight are virtually interrupted at midnight, leading to a large number of lines).

We set the latest arrival time t_{A} to 8 a.m., and carefully chose a small set of problematic stops S^{\prime} where delays usually occur. Then we generated 100 pairs of stops (a, b) uniformly at random. For each pair, we generated three timetables T_{1}, T_{2} and T_{3} from T by delaying every trip τ in T between 0 and 3 minutes at every station $s \in S^{\prime}$ (if s occurs on τ). These delays are 0 or 3 minutes with probability $1 / 8$, and 1 or 2 minutes with probability $3 / 8 . T_{1}$ and T_{2} are used as input to the algorithm, and the arrival time of the computed journey is measured in T_{3}. We use the following methods for computing the journey.

1. Maximizing the Unexpected Similarity Compute a route using the approach described in section 4 . We consider two ways to pick a route from the intersection: 1) choose uniformly at random; 2) Choose the one with the maximum number of occurrences.
2. Optimum in T Find the best or the second best journey according to the planned timetable T. Compute also the latest journey arriving in T five minutes before t_{A}.
3. Buffer time for transfers Consider the latest journey from a to b that arrives on time in T such that at each transfer stop it have to wait for an additional "buffer time". We experiment with buffer times of $1-5$ minutes.
For each of these statistics, we computed the following numbers (see Table 1): Percentage of the experiments where the proposed journey arrives on time, how often it arrives at most 5 minutes late, and how often it arrives at most 10 minutes late. We also computed the average arrival time of the journeys proposed by each method as well as the average difference between the departure time of the proposed journey to the optimal journey in T_{3}.

The average time for computing the optimum solution is 127 ms , the time to compute a robust journey by using Unexpected Similarity is 262 ms . We observed that our algorithm produces journeys that are on time in high percentage of cases, and on average we propose to depart only around 3 minutes earlier than the optimum in T_{3}, thus the cost we pay for this robustness is quite low. In comparison, the other considered approaches achieve much lower success rates. Even the generous buffer time of 5 minutes turns out not to be enough to beat our approach, which is rather surprising given the small delays in the considered timetables.

ATMOS'13

7 Discussion

We presented a novel framework for robust routing in frequent and dense urban public transportation networks based on observations of past traffic data. We introduced a new concept to describe a travel plan, a journey, that is not only well suited for our robustness issues, but also represents a natural and convenient description for the traveler. We also provided a bag of algorithmic tools to handle this concept, tailored towards the proposed robustness measures. We described a simple way to assess the reliability of a given journey. We also used a different approach to robustness and described how to find a robust journey according to it. We are preparing further experiments to confirm efficiency of the presented algorithms and to evaluate the quality of the computed robust journeys.

Future work is to examine how the described methods can be extended to support a fully multi-modal scenario, e.g., how to integrate walking. We believe that the modelling itself is easy, while the performance of the algorithms will decrease significantly unless we develop special techniques. Also considering and exploring different robustness concepts for journeys may be worthwhile.

References

1 Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin Raychev, and Fabien Viger. Fast routing in very large public transportation networks using transfer patterns. In Mark Berg and Ulrich Meyer, editors, Algorithms - ESA 2010, volume 6346 of $L N C S$, pages 290-301. Springer Berlin Heidelberg, 2010.
2 Reinhard Bauer, Daniel Delling, and Dorothea Wagner. Experimental study of speed up techniques for timetable information systems. Networks, 57(1):38-52, 2011.
3 Justin Boyan and Michael Mitzenmacher. Improved results for route planning in stochastic transportation. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 895-902. Society for Industrial and Applied Mathematics, 2001.
4 Joachim M. Buhmann, Matúš Mihalák, Rastislav Šrámek, and Peter Widmayer. Robust optimization in the presence of uncertainty. In Robert D. Kleinberg, editor, ITCS, pages 505-514. ACM, 2013.
5 Daniel Delling, Thomas Pajor, and Dorothea Wagner. Engineering time-expanded graphs for faster timetable information. In Ravindra K. Ahuja, Rolf H. Möhring, and Christos D Zaroliagis, editors, Robust and Online Large-Scale Optimization, volume 5868 of LNCS, pages 182-206. Springer Berlin Heidelberg, 2009.
6 Daniel Delling, Thomas Pajor, and Renato F Werneck. Round-based public transit routing. Algorithm Engineering and Experiments (ALENEX), pages 130-140, 2012.
7 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple and fast transit routing. In Vincenzo Bonifaci, Camil Demetrescu, and Alberto MarchettiSpaccamela, editors, SEA, volume 7933 of $L N C S$, pages 43-54. Springer, 2013.
8 Yann Disser, Matthias Müller-Hannemann, and Mathias Schnee. Multi-criteria shortest paths in time-dependent train networks. In Experimental Algorithms, pages 347-361. Springer, 2008.
9 H Frank. Shortest paths in probabilistic graphs. Operations Research, 17(4):583-599, 1969.
10 Marc Goerigk, Martin Knoth, Matthias Müller-Hannemann, Marie Schmidt, and Anita Schöbel. The price of robustness in timetable information. In 11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, pages 76-87, 2011.
11 Matthias Müller-Hannemann and Mathias Schnee. Efficient timetable information in the presence of delays. In Ravindra K. Ahuja, Rolf H. Möhring, and Christos D. Zaroliagis,
editors, Robust and Online Large-Scale Optimization, volume 5868 of LNCS, pages 249-272. Springer, 2009.
12 Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Timetable information: Models and algorithms. In Algorithmic Methods for Railway Optimization, pages 67-90. Springer, 2007.
13 Evdokia Nikolova, Jonathan A Kelner, Matthew Brand, and Michael Mitzenmacher. Stochastic shortest paths via quasi-convex maximization. In Algorithms-ESA 2006, pages 552-563. Springer, 2006.
14 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient models for timetable information in public transportation systems. Journal of Experimental Algorithmics (JEA), 12:2-4, 2008.

[^0]: * This work has been partially supported by the Swiss National Science Foundation (SNF) under the grant number 200021 138117/1, and by the EU FP7/2007-2013 (DG CONNECT.H5-Smart Cities and Sustainability), under grant agreement no. 288094 (project eCOMPASS). Kateřina Böhmová is a recipient of the Google Europe Fellowship in Optimization Algorithms, and this research is supported in part by this Google Fellowship.

