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Abstract

Periodic timetabling is one of the most well researched problems in the public transport

optimization literature. However, the impact timetabling has on the number of required

vehicles, which directly translates to operator costs, is rarely considered. Therefore, in

this paper, we consider the problem of jointly optimizing the timetable and the vehicle

circulation schedule, which specifies the cyclic sequences of trips vehicles perform. In

order to be able to solve realistic instances, we improve an earlier proposed formulation

by contraction techniques, valid inequalities and symmetry-breaking constraints. Ulti-

mately, this allows us to explore the trade-off between the number of vehicles and the

attractiveness of the timetable from the passengers’ perspective. An extensive compu-

tational study demonstrates the effectiveness of the improved formulation. Moreover,

using this approach we are able to find timetables requiring substantially fewer vehicles

at the cost of minimal increases of the average travel time of passengers.

1 Introduction

The timetable is the foundation of any public transportation system. It determines the travel times

of passengers and the paths they take to travel from their origins to their destinations. Furthermore,

the extent to which disturbances such as delays propagate through the system also highly depends

on the timetable. All in all, it is widely accepted that the timetable determines the attractiveness of

the public transportation system from the passengers’ point of view. Because of the importance of a

good timetable, and the fact that finding such a timetable is a non-trivial exercise, the timetabling

problem has triggered many researchers in the field of public transport optimization. However, the

impact the timetable has on the costs of the operator is rarely considered in timetabling models.
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(a) Timetable requiring four vehicles.
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(b) Timetable requiring three vehicles.

Figure 1: Two timetables for a line (A,B) with a frequency of 2 per hour and a driving time of 40 minutes.

In this paper, we consider periodic timetabling. In a periodic timetable, the schedule of a

single period (e.g. one hour) is repeated throughout the day. Periodic timetables are favoured by

passengers as they can easily memorize the departure times of services (e.g. a traveller can always

take the train at xx:06). Furthermore, operators that use a periodic timetable only need to plan

services for one period, after which they can repeat the timetable during the entire day.

Most periodic timetabling models are based on the Periodic Event Scheduling Problem (PESP).

Serafini and Ukovich (1989) introduce the PESP and prove it is NP-complete. In its traditional

form, the PESP is a feasibility problem. Later, researchers have started to consider optimization

variants of the PESP, where the objective typically is to minimize passenger travel time or to

maximize the robustness of the timetable. The PESP can be solved using constraint programming

or SAT solvers (Gattermann, Großmann, Nachtigall, & Schöbel, 2016; Großmann et al., 2012; Kroon

et al., 2009; Schrijver & Steenbeek, 1993), the modulo-simplex heuristic (Borndörfer, Hoppmann,

Karbstein, & Löbel, 2016; Goerigk & Schöbel, 2013; Nachtigall & Opitz, 2008) or mixed-integer

programming based approaches (Goerigk & Liebchen, 2017; Liebchen, 2008; Maróti, 2017; Polinder,

Breugem, Dollevoet, & Maróti, 2019).

The goal of this paper is to find timetables that are both attractive for the passengers and

for the operator. Specifically, we analyze the trade-off between the travel time of passengers and

the number of vehicles required to operate the timetable. To illustrate the impact a timetable has

on the required number of vehicles, consider the two timetables in Figure 1. The timetable in

Figure 1a induces two vehicle circulations, cyclic sequences of trips performed by the same vehicles,

both requiring two vehicles. In contrast, the timetable in Figure 1b induces one vehicle circulation

requiring three vehicles. Furthermore, both timetables yield the same travel times for passengers.

Therefore, as vehicles constitute a large proportion of the operator costs, the second timetable is

clearly preferred over the first one.
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Traditionally, timetabling and vehicle scheduling are performed sequentially; first the timetable

is optimized to minimize travel times of passengers and subsequently the vehicles are scheduled

to minimize operator costs. However, this is a greedy approach that leads to globally sub-optimal

solutions. More recently, integrated public transport planning, where the goal is to find a good

overall line plan, timetable and vehicle schedule, has seen increasing attention (Burggraeve, Bull,

Vansteenwegen, & Lusby, 2017; Kaspi & Raviv, 2013; Pätzold, Schiewe, Schiewe, & Schöbel, 2017;

Schöbel, 2017; Van Lieshout & Bouman, 2019). The potential of jointly optimizing the timetable

and vehicle schedule has already been demonstrated for non-periodic timetables by Desfontaines

and Desaulniers (2018); Fonseca, Van der Hurk, Roberti, and Larsen (2018); Ibarra-Rojas, Giesen,

and Rios-Solis (2014) and Schmid and Ehmke (2015). Even when only limited modifications to an

initial timetable are allowed, large savings in operational costs can be obtained without dramatic

increases in travel times.

In contrast, only a few contributions consider the integration of periodic timetabling and vehicle

scheduling. Peeters (2003) notes that if the operated vehicle circulations are fixed a priori, the

number of required vehicles can easily be counted within the PESP. Furthermore, the author shows

that choosing the circulation can be incorporated in the PESP (without introducing auxiliary

variables) for the case that at most two services terminate at each station. However, this only works

under the sufficient spread assumption, which states that there is never more than one vehicle idle

at a station. Under the same assumption, Kroon, Peeters, Wagenaar, and Zuidwijk (2013) are

able to choose vehicle turnarounds within the PESP between an arbitrary number of services.

Nührenberg (2016) proposes an explicit matching approach that is also valid when the sufficient

spread assumption does not hold, which requires extending the PESP with matching variables and

constraints. In this model, both the timetable and the vehicle circulations are entirely determined.

We refer to this completely integrated problem as the Vehicle Circulation Periodic Event Scheduling

Problem (VC-PESP). However, the proposed formulation contains many big-M constraints, causing

it to not perform well, even on medium-sized instances. Next to that, the author purely focuses on

minimizing the number of required vehicles, without regard to the passengers’ perspective.

In this paper, we improve the formulation of Nührenberg (2016), in order to be able to tackle

realistic instances of the VC-PESP and gain insight in the trade-off between the average travel time

a timetable offers and the number of vehicles it requires. To do so, we first formalize and analyze

the vehicle circulation scheduling problem (given a timetable), which, in contrast to traditional non-

periodic vehicle scheduling (see e.g. Bunte and Kliewer (2009)), has not received much attention in

the literature. Next, we use the properties of the vehicle circulation scheduling problem to develop

a stronger formulation of the VC-PESP. In particular, to reduce the number of big-M constraints,

we develop a modeling technique that computes the minimum turnaround time at stations in a

contracted graph. Moreover, we present new valid inequalities that bound the minimum turnaround

time of vehicles, strengthening the linear programming relaxation. Finally, we proof that a greedy
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algorithm is optimal for the vehicle circulation scheduling problem and use this observation to

develop symmetry-breaking inequalities based.

Besides strengthening the formulation of the VC-PESP, we also extend the problem by consid-

ering restrictions on the number of lines that may occur in a single vehicle circulation. In practice,

public transport operators prefer short circulations where vehicles perform only a single line or

alternate between two lines, as such circulations are more easy to operate and avoid dependen-

cies between different parts of the network. We show how such practical requirements can be

incorporated in the VC-PESP.

Computational experiments with different instances based on the Dutch railway network demon-

strate the effectiveness of the proposed improved formulation. When minimizing the number of

required vehicles, the improved formulation finds timetables requiring fewer vehicles compared to

the original formulation, reducing the average optimality gap from 5.0 to 2.7 percent. An analysis

of the trade-off between the number of vehicles and the perceived travel time of timetables illus-

trates the benefit of integrating circulation scheduling within the timetabling problem: minimizing

average travel time without taking vehicles into account results in relatively costly timetables. In

more than half of the considered instances, our approach finds timetables that require fewer vehi-

cles without any increase in the travel time. Moreover, if one permits a travel time increase of 0.1

percent, we are typically able to reduce the number of vehicles with about 10 percent. Furthermore,

the experiments show that in most instances vehicle circulations consisting of at most two lines

suffice for realizing very efficient timetables and only small decreases in travel time can be attained

if longer vehicle circulations are allowed.

Summarizing, the main contributions of this paper are (1) the analysis of the vehicle circulation

scheduling problem, (2) the improvement of a mathematical formulation to efficiently solve periodic

timetabling problems while controlling the number of required vehicles, (3) showing that neglect-

ing vehicle circulations in the periodic timetabling problem leads to very inefficient timetables;

considerable savings in the number of vehicles can generally be achieved without compromising

the passengers’ perspective and (4), demonstrating that a large proportion of these savings can

already be obtained with vehicle circulations consisting of at most two lines, which are attractive

for operators.

The remainder of this paper is structured as follows. In Section 2, we discuss the periodic

timetabling problem and in Section 3, the vehicle circulation scheduling problem. In Section 4, we

describe the mathematical formulation for the VC-PESP that is proposed in Nührenberg (2016).

In Section 5, we analyze the computational complexity of the integrated problem. In Section 6, we

present the improved formulation for the VC-PESP. In Section 7, we describe how restrictions on

the number of lines in a circulation can be included in the formulation. In Section 8, we discuss the

results of the conducted computational experiments. Finally, in Section 9, we conclude the paper

and describe future research directions.
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2 Periodic Timetabling

In periodic timetabling, the goal is to determine departure and arrival times for a given set of

services, such that all operational and service requirements are met. As the schedule repeats every

period (e.g. one hour), it suffices to determine departure times and arrival times for a single period.

2.1 The Periodic Event Scheduling Problem

The most widely applied method to formulate periodic timetabling problems is through the Periodic

Event Scheduling Problem (PESP), introduced in Serafini and Ukovich (1989). The input to the

PESP is a directed network N = (E,A) referred to as event-activity network, a period or cycle time

T and lower and upper bounds la and ua for all a = (e, f) ∈ A. Every node e ∈ E represents a

repeating event that needs to be scheduled at some time πe ∈ [0, T ) and every arc a ∈ A represents

an activity for which the duration should be between the specified bounds:

Definition 1 (PESP). Given a period T , an event-activity network N = (E,A) and lower and

upper bounds la and ua for all a = (e, f) ∈ A, the Periodic Event Scheduling Problem is to

determine event times πe ∈ [0, T ) for all e ∈ E, satisfying

(πf − πe) modulo T ∈ [la, ua] for all a = (e, f) ∈ A

or to conclude that no such schedule exists.1

Serafini and Ukovich (1989) prove the NP-completeness of the PESP. Odijk (1997) shows the

problem is NP-complete even for fixed T ≥ 3 by a reduction from graph coloring.

The PESP can be used to formulate a wide range of timetabling constraints. The events that

need to be scheduled are the arrivals and departures of services at all stations. Activities are used

to model various operational and service requirements of the timetable, covering e.g. driving and

dwell times, minimum and maximum transfer times and minimum separation times. For a more

comprehensive overview, we refer to Peeters (2003) and Liebchen and Möhring (2007).

2.2 Mixed Integer Programming Formulations

By introducing an integer variable pa for all a ∈ A, the PESP can be formulated as the following

mixed integer program:

find (π,p) (1)

s.t. la ≤ πf − πe + Tpa ≤ ua ∀a = (e, f) ∈ A, (2)

0 ≤ πe ≤ T ∀e ∈ E, (3)

pa ∈ Z ∀a ∈ A. (4)

1For this definition, we assume w.l.o.g. that 0 ≤ la ≤ ua ≤ T (Peeters, 2003).
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In this formulation, the pa variables take the role of the modulo operator. For example, consider

an activity a = (e, f) with la = 5 and ua = 15 and let T = 30. If πf = 5 and πe = 25, pa can take

the value 1, such that πf − πe + Tpa = 5− 25 + 30 = 10 ∈ [5, 15].

The standard formulation of the PESP (1)-(4) has a very weak linear programming (LP) re-

laxation and does not perform well on reasonably sized instances. A stronger formulation can be

obtained by formulating the PESP in terms of the activity durations or tensions xa = πf−πe+Tpa

and exploiting the cycle periodicity property discovered by Odijk (1996):

Lemma 1 (Cycle Periodicity (Odijk, 1996)). Consider a feasible PESP solution (π,p) and let

xa = πf − πe + Tpa for a = (e, f) ∈ A. Let C denote a cycle in the event-activity network, with

forward arcs C+ and backward arcs C−. It holds that∑
a∈C+

xa −
∑
a∈C−

xa = qCT for some integer qC .

Moreover, aC ≤ qC ≤ bC , with

aC =

⌈∑
a∈C+ la −

∑
a∈C− ua

T

⌉
and bC =

⌊∑
a∈C+ ua −

∑
a∈C− la

T

⌋
Lemma 1 shows that the cycle periodicity property is a necessary condition for a feasible solution

to the PESP. Odijk (1996) proves that it is in fact both necessary and sufficient, so if the property

holds for all cycles, the solution is feasible. The final ingredient for the cycle periodicity formulation

is asserted by Nachtigall (1994), who shows that if the periodicity property holds for the cycles in

a carefully chosen subset of the set of all cycles, it actually holds for all cycles in the event-activity

network. Specifically, if the cycle periodicity property holds for all cycles in an integral cycle basis

of the event-activity network, it holds for any cycle (Liebchen & Peeters, 2009).

From these results, it follows that the PESP can be formulated in terms of tension variables xa

for all arcs and periodicity variables qC for all cycles in an integral cycle basis B. The entire cycle

periodicity formulation reads as follows:

find (x,q) (5)

s.t. la ≤ xa ≤ ua ∀a ∈ A, (6)∑
a∈C+

xa −
∑
a∈C−

xa = qCT ∀C ∈ B, (7)

aC ≤ qC ≤ bC ∀C ∈ B, (8)

xa ∈ R ∀a ∈ A, (9)

qC ∈ Z ∀C ∈ B. (10)

Constraints (6) impose the lower and upper bounds for the tensions. Constraints (7) model the

periodicity of the timetable through the cycle periodicity property. Constraints (8) are not required

for the correctness of the formulation but are included to strengthen the LP relaxation.
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The cycle periodicity formulation contains only |B| = |A| − |E|+ 1 integer variables, compared

to |A| in the standard formulation. Furthermore, the equality constraints (7) lead to a stronger

propagation of branching decisions. Combined, this makes the cycle periodicity formulation the

preferred model for solving the PESP.

3 Vehicle Circulation Scheduling

Once the timetable is known, operators need to schedule the vehicles in order to cover all trips.

This includes determining sequences of trips performed by vehicles, and in e.g. railway contexts also

coupling and decoupling decisions in order to better meet demand. In this paper, we limit ourselves

to vehicle circulation scheduling, which involves determining which trips are operated consecutively

within the periodic pattern, under the assumption that a single vehicle suffices to cover a trip. As

the timetable is periodic, every trip should have exactly one successor and one predecessor, which

results in cycles of trips, referred to as circulations, that are performed by one or multiple vehicles.

For example, if T is 60 minutes and a certain circulation takes 180 minutes, three vehicles are

needed to operate this circulation. The vehicle circulation scheduling problem is to find the set of

circulations that cover all trips and minimize the number of required vehicles.

To model vehicle transitions between trips, we let Eend(s) ∈ E and Estart(s) ∈ E denote the ends

and starts of trips at station s, and extend the event-activity network with turnaround activities

Aturn(s) linking end events e ∈ Eend(s) with start events f ∈ Estart(s). An example is depicted

in Figure 2. In general, these activities could also involve a vehicle driving from one station to

another without passengers (a deadhead trip). However, in this paper we assume that there are

only turnaround activities between ends and starts of trips at the same station. Furthermore, we

assume that all transitions between trip ends and trip starts at the same station are possible, such

that the turnaround graph Gturn(s) = (Eend(s), Estart(s), Aturn(s)) is a complete bipartite graph.

We let Eend, Estart and Aturn denote the union of the sets Eend(s), Estart(s) and Aturn(s) over all

stations s, respectively. Finally, without loss of generality la = 0 and ua = T for all a ∈ Aturn, as

the minimum time between trips is incorporated in the final dwell activity before the end event.

arr end

start

arrend

start

Turnarounds
Dwell

Drive

Drive Dwell

Drive

Drive

Figure 2: Event-activity network with turnaround activities indicated by the dashed arcs.

Let Aveh denote all drive and dwell activities in the event-activity network. Then, a vehicle
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circulation schedule is a set of directed cycles C in the event-activity network, consisting of vehicle

activities and turnaround activities, such that all vehicle activities are covered exactly once. The

cycles represent the sequences of trips performed by vehicles in the periodic pattern. As trips are

connected by turnaround activities, there is a direct correspondence between the vehicle circulation

schedule and the selected turnaround activities, denoted as T (C). Given a feasible timetable, the

sum of the tensions of a vehicle circulation are an integer multiple of T by Lemma 1. Hence, for a

given timetable x, the number of vehicles required to operate the timetable using vehicle circulation

schedule C, denoted as ν(x, C), equals

ν(x, C) =
1

T

∑
c∈C

∑
a∈c

xa =
1

T

 ∑
a∈Aveh

xa +
∑

a∈T (C)

xa

 .

For a given timetable, only the selected turnaround activities still need to be determined. To model

this problem, let δ+(e) denote the set of turnaround activities leaving e for e ∈ Eend and let δ−(e)

denote the set of turnaround activities entering e for e ∈ Estart. Next, we introduce the binary

decision variable ya for a ∈ Aturn which is equal to 1 if a is selected and 0 otherwise. Then, for a

given timetable x we can find a vehicle circulation schedule that minimizes the number of required

vehicles by solving the following problem:

min
∑

a∈Aturn

xaya (11)

s.t.
∑

a∈δ+(e)

ya = 1 ∀e ∈ Eend, (12)

∑
a∈δ−(e)

ya = 1 ∀e ∈ Estart, (13)

ya ∈ {0, 1} ∀a ∈ Aturn. (14)

The objective (11) is to minimize the total turnaround time. Constraints (12) and (13) ensure that

every end event has a successor and every start event has a predecessor. As already observed by

Orlin (1982) and Serafini and Ukovich (1989), it follows that finding a vehicle circulation schedule

requiring the fewest number of vehicles, comes down to solving a weighted perfect matching problem

in a bipartite graph. Furthermore, as we assume that deadheading is not allowed, the bipartite

graph decomposes into complete bipartite graphs per station, such that a global optimal solution can

be found by solving a weighted perfect matching problem for each terminal station independently.

Borndörfer, Karbstein, Liebchen, and Lindner (2018) prove that solving this formulation is actually

equivalent with solving a traditional non-periodic vehicle scheduling problem (see e.g. Bunte and

Kliewer (2009)) on a roll out of the periodic timetable over the day.
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3.1 Properties

We now present properties of the vehicle circulation scheduling problem. Later, we use these

properties to develop a strong formulation for the VC-PESP.

Our analysis is based on the observation that the arc weights xa of the weighted perfect matching

problem are generated from a special metric. Specifically, there exist end times πe ∈ [0, T ) for all

e ∈ Eend and start times πf ∈ [0, T ) for all f ∈ Estart such that xa = πf − πe modulo T for all

a = (e, f). Hence, the end events and start events can be represented by points on the circle with

circumference T , such that we can view the problem as clockwise bipartite perfect matching on

a circle. To illustrate, Figure 3a depicts an example of such a matching problem and a possible

solution. The following lemma provides a first result of having this structure:

Lemma 2. Let y1 and y2 denote feasible solutions to (11)-(14). For a feasible timetable x, it holds

that
∑

a∈Aturn
xay

1
a −

∑
a∈Aturn

xay
2
a = zT for some integer z.

Proof. Intuitively, this statement must be true since the number of vehicles required to operate

a timetable must always be integer. For a formal proof, let M1 = {a ∈ Aturn : y1a = 1} and

M2 = {a ∈ Aturn : y2a = 1}. From matching theory, it is known that the symmetric difference

M1 ⊕M2 =
(
M1 \M2

)
∪
(
M2 \M1

)
is the union S of vertex-disjoint cycles. Within these cycles,

arcs from M1 and M2 alternate. It follows that

∑
a∈Aturn

xay
1
a −

∑
a∈Aturn

xay
2
a =

∑
C∈S

 ∑
a∈C:a∈M1

xa −
∑

a∈C:a∈M2

xa


=
∑
C∈S

qCT (Lemma 1)

=

(∑
C∈S

qC

)
T

for integers qC . �

To further analyze the problem, we define the inventory function of a matching Is(t,M), which

denotes the number of idle vehicles at station s under matching M at time t. The inventory function

of the matching visualized in Figure 3a is presented in Figure 3b. Using this concept, the following

lemma characterizes optimal solutions to the matching problem.

Lemma 3. Consider a station s with turnaround arcs Aturn(s) and activity durations xa for all

a ∈ Aturn(s). Let M ⊆ Aturn(s) and M ′ ⊆ Aturn(s) denote perfect matchings from the associated

end events to start events. The following statements are true:

(i)
∑

a∈M xa =
∫ T
0 Is(t,M)dt.

(ii) Is(t,M)− Is(t,M ′) = z for all t ∈ [0, T ) for some constant integer z.

(iii) M is a minimum cost perfect matching if and only if Is(t,M) = 0 for some t ∈ [0, T ).
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(b) Inventory function Is(t,M)

Figure 3: Example of a matching at a station and the associated inventory function.

Proof. (i) Consider an arc a = (e, f). Let Is(t, a) be equal to 1 if a ”covers” time instant t and

0 otherwise. Formally, if πe ≤ πf , a covers t if t ∈ [πe, πf ], otherwise a covers t if t ∈ [0, πf ] ∪
[πe, T ]. It holds that Is(t,M) =

∑
a∈M Is(t, a). Hence,

∫ T
0 Is(t,M)dt =

∫ T
0

∑
a∈M Is(t, a)dt =∑

a∈M
∫ T
0 Is(t, a)dt =

∑
a∈M xa.

(ii) Let end(a, b) and start(a, b) denote the end and start events in the interval [a, b], respectively. It

holds that Is(t,M) = Is(0,M) + end(0, t)− start(0, t). Therefore, Is(t,M)− Is(t,M ′) = Is(0,M)−
Is(0,M

′), which is integer.

(iii) First assume that Is(t
′,M) = 0 for some t′ ∈ [0, T ). Let Mopt denote the optimal matching.

Clearly, Is(t
′,Mopt) ≥ 0, such that Is(t

′,M)− Is(t′,Mopt) ≤ 0. From (ii), it follows that Is(t,M)−
Is(t,M

opt) ≤ 0 for all t. From (i), we then find that

∑
a∈M

xa −
∑

a∈Mopt

xa =

∫ T

0
Is(t,M)− Is(t,Mopt)dt ≤ 0,

hence M is optimal. To prove the reverse direction, assume that M is optimal but Is(t,M) > 0

for all t ∈ [0, T ). Then, there exist arcs (e1, f1), ...(em, fm) that cover all t ∈ [0, T ). Without loss

of generality, we can assume that

πe1 < πfm < πe2 < πf1 < ... < πem < πfm−1

Clearly, the cost of the matching can be decreased by selecting the arcs (e1, fm), (e2, f1), ..., (em, fm−1),

contradicting the optimality of M . �

Next, we present a greedy algorithm for vehicle circulation scheduling in Algorithm 1. The

algorithm simply iteratively matches unmatched end events with the unmatched start event that

gives the shortest turnaround time.

Theorem 4. The matching Mgreedy returned by Algorithm 1 is optimal for the vehicle circulation

scheduling problem.
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Algorithm 1 Greedy algorithm for vehicle circulation scheduling

Input: Turnaround graph Gturn(s) = (Eend(s), Estart(s), Aturn(s)) and turnaround times

times turnaround times xe,f ∀(e, f) ∈ Aturn(s)

Output: Minimum cost perfect matching M in Gturn(s)

1: M = ∅, Uend = Eend(s), U2 = Estart(s)

2: while M is not a perfect matching do

3: Pick any event e ∈ Uend

4: Find f = argming∈Ustart
xe,g

5: M ←M ∪ (e, f)

6: Uend ← Uend \ e, Ustart ← Ustart \ f

7: Return M

Proof. Assume Mgreedy is not optimal. Then, by part (iii) of Theorem 3, Is(t,M
greedy) > 0 for all

t ∈ [0, T ). This implies that there exist arcs (e1, f1), ...(em, fm) that cover all t ∈ [0, T ). Without

loss of generality, we can assume that

πe1 < πfm < πe2 < πf1 < ... < πem < πfm−1

We can further assume that e1 is the end event that is matched first in the greedy algorithm (of the

events e1, ..., em). This event is matched with f1. However, it holds that xe1,fm < xe1,f1 . Therefore,

the greedy algorithm would select the arc (e1, fm) instead of (e1, f1), resulting in a contradiction.

It follows that Mgreedy is optimal. �

As a corollary, we find that the vehicle circulation scheduling problem can be solved in time

O(n2 log n), with n = |Eend| = |Estart|

Corollary 5. The vehicle circulation scheduling problem can be solved in O(n2 log n).

Proof. Algorithm 1 is correct for any order in which the end events are matched. Hence, a valid

approach is to first sort all turnaround activities in the entire network according to their process

time, and then choose the first n (starting with the shortest process time) non-conflicting activities

in this list as the selected turnarounds. Since there are at most n2 activities in the graph, this

results in a complexity of O(n2 log n2) = O(n2 log n). �

As a final result, we provide a lower bound on the minimum turnaround time at a station based

on a weighted sum of the durations of all turnaround activities.

Theorem 6. Consider a station s with end events Eend(s), turnaround arcs Aturn(s) and activity

durations xa for all a ∈ Aturn(s) and let M(s) ⊆ Aturn denote any feasible perfect matching. It
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holds that ∑
a∈M(s)

xa ≥
1

|Eend(s)|
∑

a∈Aturn(s)

xa − Ts
|Eend(s)| − 1

2
. (15)

Proof. We first consider the case where end events and start events alternate in the periodic pattern.

Let k = |Eend(s)|. Then, we can partition the arcs Aturn(s) = A1(s) ∪ A2(s) ∪ ... ∪ Ak(s), where

A1(s) contains all activities from end events to the next start, A2(s) all the activities from end

events to start events that ’skip’ one start event and in general Ai(s) contains the activities from

end events to start events that ’skip’ i departures (see Figure 4 for an illustration). It can be

observed that
∑

a∈Ai(s)
xa =

∑
a∈A1(s)

xa + (i− 1)Ts. Therefore, we have that

∑
a∈Aturn(s)

xa =
k∑
i=1

∑
a∈Ai(s)

xa = k
∑

a∈A1(s)

xa + Ts
k(k − 1)

2
,

or equivalently, ∑
a∈A1(s)

xa =
1

k

∑
a∈Aturn(s)

xa − Ts
k − 1

2
.

The theorem follows from the observation that A1(s) minimizes the total turnaround time.

For the case where end and start events do not alternate, we first relate the theorem to the

difference between the minimum turnaround time and the average turnaround time. Let M(s)

denote the set of all perfect matchings at station s and let x(M) =
∑

a∈M xa denote the turnaround

time of matching M . Since the turnaround graph is a complete bipartite graph, there are |Eend(s)|!
distinct perfect matchings and every arc is contained in |Eend(s)− 1|! matchings, such that

1

|M(s)|
∑

M∈M(s)

x(M) =
1

|Eend(s)|!
∑

a∈Aturn(s)

∑
M∈M(s):a∈M

xa

=
1

|Eend(s)|!
∑

a∈Aturn(s)

|Eend(s)− 1|!xa

=
1

|Eend(s)|
∑

a∈Aturn(s)

xa.

In other words, the theorem gives a lower bound on the turnaround of any matching based on the

average turnaround time over all possible matchings. Hence, what remains to prove is that the

difference between the minimum turnaround time and the average turnaround time is maximized

when end events and start events alternate.

Let Mopt denote the matching attaining the minimum turnaround time and let M ′ denote any

other matching. Let πe ∈ [0, Ts) denote the event time of event e. As ends and starts do not

alternate, there are end events e1 and e2 and start events f1 and f2 such that (e1, f1) ∈ Mopt,

(e2, f2) ∈Mopt and

0 = πe1 < πe2 < πf1 < πf2 .
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(e) A3(s)
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t→

(f) Inventory Is(t, A3(s))

Figure 4: Illustration of the decomposition of all turnaround arcs into A1(s), A2(s) and A3(s), along with

the corresponding inventory functions.

Now, consider shifting f1 with δ such that π′f1 = πf1 − δ and πe1 < π′f1 < πe2 , i.e. after the shift

the end events e1, e2 and start events f1, f2 do alternate. Let x′(M) denote the turnaround time

of matching M after shifting f1. Clearly, x′(Mopt) = x(Mopt) − δ. Let ealt denote the end event

that turns on f1 in matching M ′. Then,

x′(M ′) =

x(M ′) + T − δ if πf1 − δ < πealt < πf1

x(M)− δ else.

It follows that x′(M ′)− x′(Mopt) ≥ x(M ′)− x(Mopt). Therefore,

1

|M(s)|
∑

M ′∈M(s)

x′(M ′)− x′(Mopt) ≥ 1

|M(s)|
∑

M∈M(s)

x(M ′)− x(Mopt).

This shows that by disentangling non-alternating end events and start events, the difference between
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the minimum turnaround time and the average turnaround time cannot decrease. Therefore, the

difference is maximized when all ends and starts alternate. �

Note that for stations with only a single terminating line, Equation (15) directly gives the

minimum turnaround time, since the end events and start events of one line always alternate.

Hence, for such stations, the minimum turnaround time can be computed without explicitly solving

a matching problem.

4 Mathematical Formulation for the VC-PESP

We are now ready to present a mathematical formulation for the integrated timetabling and vehicle

circulation scheduling problem. To cover the timetabling part, we introduce the same decision

variables as in the cycle periodicity formulation of the PESP: continuous tension variables xa for

all a ∈ A and integer valued periodicity variables qC for all C ∈ B, where B is an integral cycle basis.

For the vehicle circulation scheduling part, we introduce binary matching variables ya which are

equal to 1 if turnaround activity a ∈ Aturn is selected in the matching and 0 otherwise. Furthermore,

we introduce an integer variable n representing the total number of vehicles required to operate all

circulations. The VC-PESP can then be formulated as the following bi-objective problem:

min
∑
a∈A

λaxa (16)

min n (17)

s.t. la ≤ xa ≤ ua ∀a ∈ A, (18)∑
a∈C+

xa −
∑
a∈C−

xa = qCT ∀C ∈ B, (19)

aC ≤ qC ≤ bC ∀C ∈ B, (20)∑
a∈δ+(e)

ya = 1 ∀e ∈ Eend, (21)

∑
a∈δ−(e)

ya = 1 ∀e ∈ Estart, (22)

n ≥ 1

T

 ∑
a∈Aveh

xa +
∑

a∈Aturn

xaya

 (23)

xa ∈ R ∀a ∈ A, (24)

qC ∈ Z ∀C ∈ B, (25)

ya ∈ {0, 1} ∀a ∈ Aturn, (26)

n ∈ Z. (27)
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The objectives are to minimize the average (perceived) travel times of all passengers (which can

be achieved by setting appropriate weights λa) and the operator costs (captured by the number

of required vehicles to operate the timetable). Constraints (18)-(20) cover the timetabling part of

the formulation. Constraints (21) and (22) handle the matching part of the formulation, making

sure that every trip has exactly one successor and one predecessor. Constraint (23) provides the

link between the process time variables, the matching variables and the vehicle variable. The right

hand side represents the total driving, dwelling and turnaround time of the chosen timetable in

combination with the selected turnaround, divided by the period length. In an integer solution,

the sum of tensions of each cycle will necessarily be an integer multiple of the period, such that the

division by the period gives an integer result. The remainder of the constraints state the domains

of the variables.

Formulation (16)-(27) is nonlinear, as constraint (23) contains the product of binary and con-

tinuous variables. However, it can be linearized by defining auxiliary continuous variables we for

all e ∈ Eend, representing the turnaround time between end event e and the start event it connects

to, and replacing constraint (23) by

n ≥ 1

T

 ∑
a∈Aveh

xa +
∑

e∈Eend

we

 . (28)

To ensure that the w-variables attain the correct values, we add the following constraints:

we ≥ xa −M1(1− ya) ∀e ∈ Eend ∀a ∈ δ+(e), (29)

we ≤ xa +M1(1− ya) ∀e ∈ Eend ∀a ∈ δ+(e), (30)

we ≥ 0 ∀e ∈ Eend. (31)

Note that it suffices to set M1 = T , since xa is smaller than T for turnaround arcs. The resulting

formulation is the one studied by Nührenberg (2016), except that we include both the average

travel time and the number of vehicles as objectives, instead of only the number of vehicles.

5 Complexity

As the PESP is NP-complete, it follows that the VC-PESP is NP-complete as well. However,

it turns out that even if all timetabling complexity is removed from the problem (such that any

timetable is feasible), it is still a hard problem to decide whether there exists a timetable that can

be operated with a certain number of vehicles.

Specifically, let us define the simple-vc-pesp as follows. Consider a line plan L, where each

l = (s1, s2) ∈ L has a minimum unidirectional trip time tl and a frequency fl. From this line

plan, we derive an event-activity network with events for the departures and arrivals of the lines
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at the terminals, trip activities linking the departure of a line at one terminal to the arrival of

the line at the other terminal, synchronizing activities linking different events of the same line and

turnaround activities linking arrivals with departures at the same terminal. The synchronizing

activities are added for lines with frequencies larger than 1 and impose that the departures of a

line with frequency f are separated by exactly T/f time units. In this problem, there are no safety

or transfer activities and all drive and dwell activities are contracted in a single trip activity with

a fixed duration tl. This implies that the arrival times of lines directly follow from the departure

times. Therefore, the simple-vc-pesp contains only two timetabling decision variables πs1l and πs2l

per line l = (s1, s2), representing the departure times at the terminals.

Definition 2 (simple-vc-pesp). Given a line plan L specifying the lines and frequencies and

given a maximum number of vehicles n, the Simple Vehicle Circulation Periodic Event Scheduling

Problem is to determine departure times at the terminals πs1l and πs2l for all lines l = (s1, s2) ∈ L
such that at most n vehicles are needed to operate the periodic schedule, or to conclude that no

such schedule exists.

Note that in the simple-vc-pesp, all timetables π are feasible. Hence, the only remaining

complexity lies in making sure that all arrivals have short turnarounds to departures, such that

only a small number of vehicles is required.

Theorem 7. The simple-vc-pesp is NP-complete.

Proof. We show this by reduction from the strongly NP-hard 3-partition problem (Garey &

Johnson, 1979). Let S = {s1, s2, . . . , sm} be a set of integers such that
∑m

i=1 si = m
3 B and ∀i it

holds that B
4 < si <

B
2 . A 3-partition instance is a YES-instance if it is possible to partition S into

k = m
3 triplets S1, S2, . . . Sk such that each triplet sums to B.

We reduce the 3-partition instance to a star network where we have a central hub station

v0 ∈ V and m + 1 outer stations v1, . . . , vm+1 ∈ V . We put T = k +
∑m

i=1 si time units. For

every element si ∈ S, we create a line li ∈ L = {v0, vi} with frequency fi = 1 and a trip time

ti = 1
2si. Furthermore, we create a line lm+1 = {v0, vm+1} with frequency fm+1 = k and a trip

time tm+1 = 1
2k .

Note that the total driving time of the created simple-vc-pesp instance equals
∑m+1

i=1 2fiti =

k +
∑m

i=1 si = T . Therefore, at least 1 vehicle is required to operate the line plan. We put n = 1.

Furthermore, w.l.o.g. we can assume that the vehicles have a turnaround time of 0 time units at

the outer stations (i.e. πvili = πv0li + ti mod T ). Therefore, only the departure times at the central

station need to be determined. We claim that the 3-partition instance is a YES-instance if and

only if the simple-vc-pesp instance is a YES-instance.

If the 3-partition instance is a YES-instance, we can create a solution using only a single

vehicle. Let S1, ..., Sk denote the triplets. We set πlm+1 = 0, so line m + 1 has departures at
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0, Tk , ...,
(k−1)T

k . For triplet Sj = (sp, sq, sr), we set πlp = (j−1)T
k +1, πlq = πlq+2tp and πlr = πlq+2tq.

Then, it is possible to create a circulation that performs the first service of line m + 1, then the

lines corresponding to S1, then the second service of line m+ 1, then all lines corresponding to S2

et cetera. As this circulation takes exactly one period, only a single vehicle is needed to operate

the timetable, such that the simple-vc-pesp instance is a YES-instance.

If the simple-vc-pesp instance is a YES-instance, it must be that there is a single circulation

covering all lines with a duration of T . W.l.o.g. we can set πlm+1 = 0. We can therefore write this

circulation as

l1m+1, l
′
1, ..., l

′
p︸ ︷︷ ︸

L1

, l2m+1, l
′′
1 , ..., l

′′
q︸ ︷︷ ︸

L2

l3m+1......l
k
m+1 l

′′
1 , ..., l

′′
r︸ ︷︷ ︸

Lk

As the services of line m+ 1 should be spread exactly 1
kT time units and the total circulation time

equals T , it holds that ∑
l∈L1

tl =
∑
l∈L2

tl = ... =
∑
l∈Lk

tl = B.

The corresponding elements in S partition S into k subsets with a sum of B. Moreover, since
B
4 < si <

B
2 , all these subsets must contain exactly three elements. We conclude that that the

3-partition instance also is a YES-instance. �

6 A Stronger Formulation

The mathematical formulation of the VC-PESP given in Section 4 is investigated by Nührenberg

(2016). However, the author finds that the formulation is weak and results in large optimality

gaps even for medium-sized instances. This is likely caused by the big-M constraints (29-30) that

are necessary to linearize the formulation. Furthermore, the formulation also allows for many

symmetric solutions, as there can be multiple matchings that attain the same turnaround time.

In this section, we present several ways to enhance the formulation of the VC-PESP by exploiting

the special matching structure of the vehicle circulation scheduling problem. First, we discuss how

the number of binary matching variables can be reduced. Next, we give multiple valid inequalities

that strengthen the linear relaxation. Finally, we propose symmetry-breaking constraints, that

make sure only a single matching that attains the minimum turnaround time is feasible.

6.1 Computing the Matching in a Contracted Network

Even though the period of the entire timetable might be equal to T , often the period is smaller

from a local perspective. We can use this property to reduce the number of matching variables

necessary to compute the total turnaround time at a station. In particular, if the events at station

s repeat every Ts time units, we say that the local period at station s is Ts. In case the local
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period is strictly smaller than the global period, it turns out to be possible to reduce the number

of matching variables at s with a factor of
(
T
Ts

)2
.

eA1

eA2

eA3

eA4

eB1

eB2

fA1

fA2

fA3

fA4

fB1

fB2

(a) Original turnaround graph

eB1 + eB2

fA1 + fA3

fA2 + fA4

fB1 + fB2

eA1 + eA3

eA2 + eA4

(b) Contracted turnaround graph

Figure 5: Contraction of the turnaround graph at a station with lines A and B with frequencies 4 and 2,

respectively.

For instance, consider a station that serves as a terminal for two lines, line A that runs every

15 minutes and line B that runs every 30 minutes. Regardless of the global period, the local period

Ts at this station is 30 minutes, since all events repeat at least every 30 minutes. This implies that

the inventory function Is(t,M) also repeats every 30 minutes, for any matching. Hence, we can

simply optimize the matching for all events occurring in 30 minutes and repeat this pattern in the

subsequent periods. Figure 5 visualizes the contraction for this station for the case that the global

period is 60 minutes. The events eA1 and eA3 are end events of line A that are separated with exactly

30 minutes, so they are combined in a single node in the contracted graph. The same holds for

other pairs of events in the original graph. This results in a reduction of the number of turnaround

arcs from 36 to 9.

To formally model the total turnaround time in the contracted graphs, we define for each line

l that terminates at s and has global frequency fl, the local line frequency fsl := flTs
T . Next, we

create a contracted graph in which every line is represented with f sl contracted end events and fsl

contracted start events. Each of such contracted events corresponds to T
Ts

events in the regular

network, in such a way that these events are all separated by a multiple of Ts minutes. Let Econ
end(s)

and Econ
start(s) denote all end events and start events in the contracted graph at s. The set Acon

turn(s)

denotes the set of all turnaround arcs in the contracted networks, and contains an arc for each pair

of contracted end and start events, such that the contracted network is complete. It follows that

each contracted arc a corresponds to
(
T
Ts

)2
arcs in the regular network. We let Aturn(a) denote

the set of turnaround arcs in the regular network that correspond to the contracted arc a. Finally,
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the set of all terminal stations is denoted as Sterm.

To perform the matching in the contracted network, we introduce a binary matching variable

γa and a continuous tension variable χa for all a ∈ Acon
turn(s) and a turnaround time variable ωe for

all e ∈ Econ
end(s). The following constraints then model the matching in this contracted networks:∑

a∈δ+(e)

γa = 1 ∀e ∈ Econ
end, (32)

∑
a∈δ−(e)

γa = 1 ∀e ∈ Econ
start, (33)

χa ≥ xa′ − T + Ts ∀s ∈ Sterm, ∀a ∈ Acon
turn(s), ∀a′ ∈ Aturn(a), (34)

χa ≤ xa′ ∀s ∈ Sterm, ∀a ∈ Acon
turn(s), ∀a′ ∈ Aturn(a), (35)

ωe ≥ χa −M2(1− γa) ∀e ∈ Econ
end, ∀a ∈ δ+(e), (36)

ωe ≤ χa +M2(1− γa) ∀e ∈ Econ
end, ∀a ∈ δ+(e), (37)

n ≥ 1

T

 ∑
a∈Aveh

xa +
∑

s∈Sterm

T

Ts

∑
e∈Econ

end(s)

ωe

 (38)

ωe ≥ 0 ∀e ∈ Econ
end, (39)

χa ∈ R ∀a ∈ Acon
turn, (40)

γa ∈ {0, 1} ∀a ∈ Acon
turn. (41)

Constraints (32)-(33) are the matching constraints for the contracted network. Constraints (34)-

(35) link the tensions of the activities of the contracted network with those of the original network.

Here, we use that the tensions of the arcs in the original network associated to an arc in the

contracted network are x, x + Ts, x + 2Ts, ..., x + T − Ts for some x ∈ [0, Ts). For example, if the

local period is 15 minutes and the contracted arc a corresponds to tensions of 12, 27, 42 and 57

minutes in the original network, these constraints enforce that χa = min{12, 27, 42, 57} = 12.

Constraints (36)-(37) make sure that the turnaround time of every contracted event is equal

to the tension of the arc that is selected to be in the matching. Since it holds that χa ∈ [0, Ts), it

now suffices to set M2 = Ts instead of T , which also strengthens the formulation. Constraint (38)

counts the number of vehicles, and now takes into account that turnaround times of contracted

events should be counted according to their multiplicity.

For the sake of notation, in the remainder of this section, we omit the superscript ”con” to

denote the contracted turnaround graph and write xa instead of χa, ya instead of γa and we instead

of ωe.
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Figure 6: Example illustrating the weak linear programming relaxation of the formulation.

6.2 Strengthening the LP-relaxation

A potential weakness of the original formulation is that its linear programming (LP) relaxation is

very weak due to the linearization of the quadratic terms xaya. Even if the periodicity variables

qC are integer for all C ∈ B (so the timetable is feasible) and only the integrality of the matching

variables ya is relaxed, the turnaround time variables we often still equal 0 for all end events. To

illustrate this, consider the timetable displayed in Figure 6, with two vehicles turning at a certain

station. We assume the event times are fixed and that the end events take place at time instants

−ε and ε, and the start events at 1
2Ts − ε and 1

2Ts + ε, for some small ε. Clearly, the minimum

turnaround time, which is actually obtained by both possible matchings, is Ts. However, if the

matching variables ya are equal to 1
2 , the turnaround time variables we can take the value ε, such

that the total turnaround time is smaller than 2ε. In order to decrease the gap between the actual

minimum turnaround time and the turnaround time in the relaxation, we develop three classes of

valid inequalities.

6.2.1 Min-Mean Cuts

The first class of valid inequalities is based on the lower bound on the minimum turnaround time

at a station given by Theorem 6. This theorem directly implies that the following inequalities are

valid for the VC-PESP:∑
e∈Eend(s)

we ≥
1

|Eend(s)|
∑

a∈Aturn(s)

xa − Ts
|Eend(s)| − 1

2
∀s ∈ Sterm. (42)

We refer to these inequalities as the min-mean cuts, as Theorem 6 relates the matching with the

minimum turnaround time with the mean turnaround time over all matchings. Recall that for

stations with only a single terminating line, these cuts directly give the minimum turnaround time,

since the end events and start events of one line always alternate, so for these stations it is no

longer necessary to add any binary variables.

For the example in Figure 6, the min-mean cut states that
∑

e∈Eend(s)
we ≥ 1

2Ts. Therefore, the

original LP solution where both turnaround time variables have value ε is cut off.
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6.2.2 Reference Matching Cuts

To improve the effectiveness of the min-mean cuts, we also include the following constraints. Let

Ms denote a reference matching for station s and introduce the integer variable zs for all s ∈ Sterm.

By Lemma 2, the difference in turnaround time between two matchings must be an integer multiple

of Ts, hence the following equality is valid:∑
e∈Eend(s)

we =
∑
a∈Ms

xa − Tszs ∀s ∈ Sterm, (43)

zs ∈ Z ∀s ∈ Sterm. (44)

To illustrate the usefulness of these cuts, consider again the example in Figure 6. In case the

reference matching variable zs is integer, this implies that
∑

e∈Eend(s)
we is either 0 or Ts. Next, the

min-mean cut states that
∑

e∈Eend(s)
we ≥ 1

2Ts. Hence, provided that zs is integer,
∑

e∈Eend(s)
we

must be equal to T . The zs variables are therefore useful variables to branch on in a branch-and-

bound context.

6.2.3 Headway Cuts

Headway cuts can be used if all departures at a station should be separated by a headway time

hs > 0. In this case, if a start event f is scheduled at time πf and an end event e does not connect

to f , it follows that e connects to a departure outside the interval [πf −hs, πf +hs]Ts . This implies

that the following inequalities are valid:

we ≥ xa + hs − Ts ∀s ∈ S, ∀e ∈ Eend(s), ∀a ∈ δ+(e), (45)

In case the end event e connects to f , the inequality clearly holds as hs < Ts. Otherwise, e connects

to a different start event, which must be separated at least hs time units from f . Taking periodicity

into account, the right hand side of the inequality represents a lower bound on the turnaround time.

For example, if Ts = 60 minutes, hs = 3 minutes, xe,f = 59 and e does not connect to f , it should

hold that we ≥ 2.

These inequalities cut off a relatively small portion of the feasible region, since they only have

an effect if xe,f + hs > Ts and hs usually is relatively small. By preprocessing the event-activity

network, the minimum separation between departures can usually be strengthened. Furthermore,

these constraints can easily be incorporated by setting M2 = Ts − hs in constraints (36)-(37).

6.3 Symmetry Breaking

In the VC-PESP, there can be a very large number of matchings that lead to the same number of

required vehicles. This even holds for a fixed timetable. As an example, consider the timetable
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Figure 7: Example illustrating the existence of many symmetric solutions.

at a station depicted in Figure 7. All 24 possible matchings at this station attain the same (and

therefore minimum) turnaround time. To understand why this symmetry occurs, recall that the

greedy algorithm described in Section 3 minimizes the total turnaround time, regardless of the

order in which the events are matched. In other words, any order leads to a optimal matching with

the same total turnaround time, but can lead to a different solution. Furthermore, different orders

do lead to different solutions when the end events and start evens do not alternate. As a result,

branching on the matching variables ya leads to many similar nodes being created, increasing the

computational burden.

The symmetries can be broken if we specify an order in which the end events nodes are matched

in the greedy algorithm a priori, and incorporate this order in the mathematical formulation. Let

E<eend (E>eend) denote the set of end events that come earlier (later) in the ordering than end event e

and consider a turnaround activity (e, f) at some station s with tension xe,f . Recall that hs denotes

the minimum separation between departures at station s. In an integer solution, the following cases

can occur:

we ≤


xe,f if e connects to f (so ye,f = 1),

xe,f +M3 if e′ connects to f with e′ ∈ E<eend,

xe,f − hs if e′ connects to f with e′ ∈ E>eend.

(46)

Here M3 is a sufficiently large constant. Intuitively, if e connects to f , the turnaround time will

be exactly xe,f by constraints (29). In the second case, some e′ that comes earlier in the ordering

than e turns on f , such that we cannot restrict we. In the final case, some e′ that comes later in

the ordering than e connects to f , which implies that the turnaround time we should be at most

xe,f − hs, as e has a higher priority and will hence connect to a start event that departs earlier

than f . The above stated relations can be captured in the following constraints:

we ≤ xe,f +M3

∑
e′∈E<e

end

ye′,f − hs
∑

e′∈E>e
end

ye′,f ∀s ∈ S, ∀e ∈ Eend(s), ∀f ∈ Estart(s). (47)

These constraints ensure that for every possible timetable, only one matching that attains the

minimum turnaround time is feasible, namely the one induced by the specified order. A sufficiently

large value for M3 is Ts − hs.
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7 Short Circulations

In practice, operators typically prefer shorter vehicle circulations over longer ones, since short

circulations are more robust and easier to manage. If a disturbance occurs in a short circulation, it

affects only a small part of the network. In contrast, if a disturbance occurs in a long circulation,

the disturbance may propagate through all lines in the circulation, and therefore may have a large

impact on the operations.

In this paper, we consider three types of vehicle circulations. Fixed circulations consist of ser-

vices corresponding to a single line. Hence, if the entire network is operated using fixed circulations,

there are dedicated vehicles for all lines. Combined circulations consist of services associated with

two lines, so vehicles can alternate between lines. Flexible circulations consist of services belonging

to three or more lines.

Fixed circulations are easily imposed within the VC-PESP by removing all turnaround activities

between different lines. For the case where both fixed and combined circulations are allowed, we

consider the slightly more restrictive case that every line can be combined with at most one other

line. Then, let L denote the set of lines, let Acomb
turn denote the set of all turnaround activities that

connect different lines and let lines(a) denote the pair of lines a combined turnaround connects. If

we introduce binary decision variables vlm for all pairs of lines l,m ∈ L that are equal to one if the

lines are combined and zero else, the following constraints model combined circulations:∑
m∈L,l 6=m

vlm ≤ 1 ∀l ∈ L, (48)

ya ≤ vlines(a) ∀a ∈ Acomb
turn , (49)

vlm ∈ {0, 1} ∀l ∈ L, ∀m ∈ L, l 6= m. (50)

Constraints (48) ensure that every line is combined with at most one other line. Constraints (49)

link the matching variables with the line combination variables.

Finally, note that when restrictions are imposed on the number of lines in vehicle circulations,

it is not necessary to include all machinery developed in the previous section. If all circulations are

fixed, the min-mean cuts (42) suffice for directly modeling the turnaround times, so none of the

other techniques are needed. In case combined circulations are imposed, the matching problems at

the different stations are linked, implying that they cannot be solved for each station independently.

As such, the symmetry-breaking constraints (47) are no longer necessary (and potentially might

even cut off the optimal solution).
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8 Computational Experiments

In order to demonstrate the effectiveness of the proposed formulation, we present the results of a

series of experiments. First, we focus on minimizing the number of vehicles to analyze the impact

of the contraction techniques, valid inequalities and symmetry-breaking constraints. Thereafter,

we consider the trade-off between the number of required vehicles and the quality of the timetable

from the passengers’ perspective (measured in terms of average perceived travel time).

8.1 Instances

The instances used for the experiments are derived from a part of the Dutch railway system. The

considered network is visualized in Figure 8. In this network, two types of lines are operated;

regional lines that have stops at all intermediate stations and intercity lines that only have stops

at intercity stations. As different types of rolling stock is used to operate different line types, the

mathematical model is (trivially) extended to account for vehicle types.
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Figure 8: Part of the Dutch railway system used in the computational study.

To construct the instances, we create ten different line plans for the network from which we

derive the event-activity networks. Safety constraints are generated with a headway of 3 minutes

based on the railway infrastructure. Table 1 gives for all line plans the number of lines |L|, the period

in minutes T , the number of events |E|, the number of activities |A|, the number of turnaround

activities |Aturn| and a lower bound on the number of required vehicles n (computed using minimum



25

driving and dwell times). In order to optimize the perceived travel time, we employ an origin

destination matrix with passenger counts. The origin destination pairs are routed over the network

based on the line plan, giving the number of passengers per activity. In this paper, we then define

the perceived travel time of a route as the sum of expected waiting time for the first service, the

in-vehicle time and an additional transfer penalty of 10 minutes plus twice the transfer time. The

activity weights λa are set accordingly.

The experiments are performed on a machine with an Intel Xeon E5-2650 v2 2.60Ghz processor

and 64 GB RAM. CPLEX 12.8.0 with default settings is used to solve the mixed-integer programs.

Table 1: Characteristics of the instances used in the computational study.

Instance |L| T |E| |A| |Aturn| n

ns1 10 60 522 732 90 15

ns2 15 60 684 1000 122 20

ns3 14 60 752 1105 138 21

ns4 9 60 908 1405 200 26

ns5 10 60 1030 1643 290 28

ns6 10 30 522 734 90 29

ns7 12 60 1122 1899 318 31

ns8 15 60 1158 1932 380 33

ns9 14 30 714 1028 124 40

ns10 11 20 550 747 78 47

8.2 Performance of the Formulations

To examine the effectiveness of the proposed techniques, we define the following formulations:

• Orig : the original formulation presented in Section 4.

• Con: the formulation with the contraction technique described in Section 6.1.

• Val : the formulation with the valid inequalities described in Section 6.2.

• Sym: the formulation with the symmetry-breaking constraints described in Section 6.3.

Next to these formulations, we also test combining the proposed techniques, which we indicate

using plus signs, so e.g. Con+Val stands for the formulation with both the contraction technique

and the valid inequalities.

As the improvements to the original formulations are developed to better model the number

of vehicles, the performance of the formulations is tested by solving the VC-PESP with the goal
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of minimizing the number of required vehicles, with flexible circulations. In the first experiment,

we solve the VC-PESP using the different formulations. To reduce the impact of the seed used by

CPLEX, we solve each instance with five different seeds and consider the average performance. For

this experiment, we use a time limit of 15 minutes.

In Table 2, we present the average number of vehicles and the optimality gap obtained on the

instances with the formulations Orig, Con, Con+Val, Con+Sym and Con+Val+Sym. The original

formulation is clearly the worst performing formulation. In all instances except ns2 and ns9, the

original formulation results in the largest number of vehicles and optimality gap. Introducing the

contraction technique considerably improves the performance, most notably on ns5, ns7 and ns8.

Adding the valid inequalities on top of the contraction does not yield further improvements. On the

other hand, the symmetry-breaking constraints do reduce the number of vehicles and the average

gap. However, it turns out that the valid inequalities are effective when added in combination with

the symmetry-breaking constraints, as the Con+Val+Sym formulation attains the lowest average

number of vehicles and the lowest average gap. Even more, on all instances this formulation finds the

same or a lower number of vehicles as the other formulations. Compared to the original formulation,

Con+Val+Sym reduces the average number of required vehicles by 0.8 (2.6 percent) and almost

halves the average optimality gap. Therefore, we conclude that the Con+Val+Sym formulation is

the most effective formulation for solving the VC-PESP, yielding considerable improvements over

the original formulation.

Table 2: The average number of required vehicles and the average optimality gap obtained with the different

formulations.

Orig Con Con+Val Con+Sym Con+Val+Sym

Instance Vehicles Gap (%) Vehicles Gap (%) Vehicles Gap (%) Vehicles Gap (%) Vehicles Gap (%)

ns1 16 1.2 16 0.0 16 0.0 16 0.0 16 1.2

ns2 20 0.0 20 0.0 20.2 1.0 20.2 1.0 20 0.0

ns3 22.8 7.8 22.4 6.1 21.6 2.6 21.6 2.6 21.4 1.8

ns4 26.4 1.5 26 0.0 26 0.0 26 0.0 26 0.0

ns5 31.2 10.2 30.2 7.3 30.2 7.3 30 6.7 30 6.7

ns6 30 0.0 30 0.0 30 0.0 30 0.0 30 0.0

ns7 35.2 11.8 33.4 7.2 33.2 6.6 33.2 6.6 33 6.1

ns8 38.4 14.0 37 10.8 37.2 11.3 37.2 11.3 36.8 10.3

ns9 41.4 3.4 40.8 1.9 42 4.7 40.6 1.4 40.2 0.5

ns10 48 0.0 48 0.0 48 0.0 48 0.0 48 0.0

Average 30.9 5.0 30.4 3.3 30.4 3.3 30.3 3.0 30.1 2.7

To gain more insight on the effect the contraction technique and the valid inequalities have on

the tightness of the formulation, we perform a second experiment where we consider the partial

linear programming relaxation, where all integer variables, except the periodicity variables, are

relaxed. As feasible solutions to this partial relaxation correspond to feasible timetables, this



27

allows us to measure the discrepancy between the number of required vehicles as indicated by the

relaxed model and the actual number of vehicles required to operate the timetable. Formally, we

let nPLP denote the number of vehicles in the optimal solution to the partial relaxation (which

in general will be fractional) and let n(xPLP ) the actual number of vehicles the found timetable

requires. In a tight formulation, the gap between nPLP and n(xPLP ) should be small. In this

experiment, if the relaxation is not solved to optimality within 2 minutes, the values of the best

solution found so far are reported.

In Table 3, the results of solving the partial relaxation are presented for the formulations

Orig, Con, Val and Con+Val. For instance ns1, the original formulation finds a solution with

14.34 vehicles. However, evaluating this solution gives that 21 vehicles are required to operate the

corresponding timetable, such that the gap is quite large at 31.7 percent. The formulations with the

improvements also find solutions with 14.34 vehicles, but these solutions require only 19, 18 and 18

vehicles, for Con, Val and Con+Val respectively. For all instances, formulations Orig and Con find

the same minimum number of vehicles in the partial relaxation. With the contraction technique

however, the gap between nPLP and n(xPLP ) and is 17.5 percent on average, compared to 19.7

percent with the original formulation. When the valid inequalities are included in the formulation,

the number of vehicles in the partial relaxation increases in seven of the ten instances, on average

from 28.11 to 28.47 for formulation Val and 28.50 for formulation Con+Val. Furthermore, the

gap drastically decreases, to 12.9 and 12.4 percent, respectively. This shows that the contraction

technique and especially the valid inequalities lead to a tighter formulation of the VC-PESP.

Table 3: Results of minimizing the number of vehicles with all integer variables relaxed, except the periodicity

variables. The reported gap is the relative gap between nPLP , the number of vehicles in the partial relaxation

and n(xPLP ), the actual number of vehicles required by the solution of the partial relaxation.

Orig Con Val Con+Val

Instance nPLP n(xPLP ) Gap (%) nPLP n(xPLP ) Gap (%) nPLP n(xPLP ) Gap (%) nPLP n(xPLP ) Gap (%)

ns1 14.34 21 31.7 14.34 19 24.5 14.34 18 20.3 14.34 18 20.3

ns2 18.96 26 27.1 18.96 26 27.1 18.96 23 17.6 18.96 23 17.6

ns3 20.17 27 25.3 20.17 27 25.3 20.17 26 22.4 20.17 25 19.3

ns4 24.35 31 21.4 24.35 29 16.0 24.93 28 11.0 24.93 28 11.0

ns5 27.50 36 23.6 27.50 33 16.7 28.01 32 12.5 27.86 32 12.9

ns6 28.68 32 10.4 28.68 32 10.4 28.70 31 7.4 28.70 31 7.4

ns7 29.95 37 19.0 29.95 35 14.4 30.52 33 7.5 31.03 35 11.3

ns8 32.66 41 20.3 32.66 41 20.3 33.74 39 13.5 33.26 37 10.1

ns9 38.51 43 10.4 38.51 44 12.5 39.05 43 9.2 39.41 42 6.2

ns10 45.96 50 8.1 45.96 50 8.1 46.29 50 7.4 46.29 50 7.4

Average 28.11 34.4 19.7 28.11 33.6 17.5 28.47 32.3 12.9 28.50 32.1 12.4
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8.3 Trade-off between the number of vehicles and the average travel time

To analyze the trade-off between the number of vehicles and the average travel time, we use the

concept of a Pareto-efficient timetable, where it is impossible to reduce the number of vehicles

without increasing the average travel time, and vice-versa. To compute the set of Pareto-efficient

timetables, we first separately minimize the average travel time and the number of vehicles, resulting

in an upper and lower bound on the minimum number of required vehicles. These first two problems

are solved with a time limit of 30 minutes. Next, for every integer m between the lower bound and

the upper bound, the VC-PESP is solved with the average travel time as the objective and the

constraint that the number of vehicles is at most m. For these problems, the lime limit is set to 15

minutes. The best performing formulation found in the previous section, Con+Val+Sym, is used

in these experiments.

We compute the Pareto-efficient solutions for the cases with fixed circulations, combined circu-

lations and flexible circulations. To speed up the computations, we use the obtained solutions with

fixed circulations as starting solutions for the combined circulations, and the obtained solutions

with combined circulations as starting solutions for the flexible circulations.

The obtained efficient solutions are visualized in Figures 9a-9j. The figures also depict the

sequential solutions obtained by first optimizing the timetable to minimize the travel time and

subsequently optimizing the vehicle circulations for the found timetable. It can be observed that

sequential optimization leads to very inefficient timetables. In many cases, the number of vehicles

of these solutions can be reduced without any increases in travel time. Furthermore, if an increase

in travel time is required to reduce the number of vehicles, this increase is typically very limited.

In general, it can be observed that reductions in the number of vehicles only require small increases

in average travel time, but the required increases progressively become larger when the number of

vehicles approaches its minimum.

A second observation from Figures 9 is that, as expected, the flexible solutions dominate the

combined solutions, which in turn dominate the fixed solutions. Especially the difference between

the combined solutions and the fixed solutions is considerable. The benefit of flexible circulations

over combined circulations is less consistent over the instances, but still clearly noticeable for ns5,

ns9 and ns10. For seven of the instances, flexible circulations do allow finding solutions with fewer

vehicles than with combined circulations, but these timetables on the far end of the Pareto-curve

are often much less attractive from the passengers’ side.
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Figure 9: Pareto-efficient solutions and the sequential solutions, for fixed, combined and flexible circulations.

In some cases, the sequential solutions are not Pareto-efficient, these points are disconnected from the curve.
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To further analyze the benefit of integrating timetabling and circulation scheduling, Figures

10a-10c depict the increase in travel time and decrease in number of vehicles for all Pareto-efficient

solutions, relative to the sequential solution. The key insight is that substantial decreases in the

number of required vehicles can be achieved at the cost of very limited increases in travel time.

Even more, for combined circulations it is possible to decrease the number of vehicles without any

increases in travel time for six out of the ten instances. For fixed and flexible circulations, this

is possible in five of the instances. If a 0.01 percent travel time increase is permitted, significant

savings in vehicles can be obtained for the majority of the instances. This clearly shows that the

timetable obtained by sequentially optimizing the travel time and the number of vehicles is strongly

inferior to timetables obtained by jointly optimizing the travel time and the number of vehicles.

All in all, our results indicate that the number of vehicles can typically be reduced considerably

without doing any serious harm to the passengers’ perspective.
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Figure 10: Increase in travel time (on a logarithmic scale) plotted against the decrease in the number of

vehicles, both relative to the sequential solution.
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9 Conclusion and Future Research

We presented a new periodic timetabling approach that allows to explicitly consider the trade-

off between passengers’ travel time and the number of required vehicles required to operate the

timetable. We introduced contraction techniques, valid inequalities and symmetry-breaking con-

straints to cope with the complexities of this integrated problem.

Computational results based on the Dutch railway network illustrate the value of our approach.

The improved formulation performs better when it comes to finding timetables requiring few ve-

hicles compared to an existing formulation, approximately halving the average optimality gap.

Furthermore, compared to sequential optimization of the travel time and the number of vehicles,

we are able to find timetables requiring considerably fewer vehicles with only minimal increases of

travel times. As such, our approach gives operators the opportunity to save costs without strongly

decreasing the level of service, or conversely, increasing the level of service by introducing new lines

or raising frequencies without strongly increasing the costs.

For further research, the presented approach could be embedded in a scheme for integrated

public transport planning, where the goal is to find a line plan, timetable and vehicle schedule that

are both inexpensive to operate and attractive to passengers. Next to that, our methods could be

applied in different periodic scheduling problems, such as aircraft scheduling or job-shop scheduling.

Finally, it would be interesting to consider a further integration between timetabling and vehicle

scheduling in railway contexts, where vehicles can be coupled to meet passenger demand.
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