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Chapter 1

Introduction

The history of public transport can be traced back to 1662, when the French math-
ematician, inventor and philosopher Blaise Pascal came up with the brilliant idea to
efficiently channel the transportation demand of 17th century Parisians by proposing
a system that we now refer to as public transport. In Pascal’s carosses à cinq sols
(five-penny coaches), horse-drawn buses were used to operate a network with five
routes according to a fixed schedule, with frequencies up to eight buses per hour
(Monmerqué, 1828). Despite a positive initial reception by the public, the system
was short-lived, which has been attributed to a ruling of the Parlement de Paris that
only the nobility can use the carosses.

Pascal’s idea was ahead of its time, but as cities, economic activity and transporta-
tion demand kept growing, the potential of public transport did as well. In today’s
society, public transport plays an essential role that benefits everyone. Users of public
transport are getting around from point A to point B in an affordable, comfortable,
and quick manner, stimulating economic mobility and economic activity in general.
Moreover, by temporal and spatial pooling of passengers in high-capacity vehicles,
public transport drastically reduces congestion, allowing users of private transport
to enjoy relatively uncongested, and therefore fast, roads. An advantage of public
transport that has become increasingly important in recent years is its low climate
impact. On a local scale, public transport helps to reduce noise and air pollution
within cities. On a global scale, the lower emission per passenger-kilometer compared
to road transport can help to battle global warming.

1
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Given its undisputed benefits, there is a clear need for making public transport sys-
tems as attractive, cost-efficient and sustainable as possible. Lines and frequencies,
the timetable and resource schedules should be designed in order to maximize passen-
ger demand, while simultaneously limiting operator costs and environmental impact.
In the spirit of the mastermind behind the carosses à cinq sols, the main tool for
achieving these objectives is mathematics. By framing these problems in the lan-
guage of mathematics, we can optimize public transport. This is the overarching
theme of this thesis: improving public transport using mathematical models.

Within the field of public transport optimization, this thesis explores two topics.
The first topic is the integrated planning of public transport, which is introduced
in Section 1.1. The second topic concerns decentralized control in public transport,
which is introduced in Section 1.2. Next, Section 1.3 provides an overview of the
contents of this thesis, and its contributions. Finally, Section 1.4 briefly discusses the
context in which this research has been conducted.

1.1 Integrated Public Transport Planning

The public transport planning process consists of several steps, visualized in Fig-
ure 1.1. Traditionally, these steps are performed sequentially. As the first step, the
network is designed, which involves planning the infrastructure, the stops (stations)
and determining between which stops services can be operated. This network design
serves as input for the line planning step, where one decides which lines to operate
and their frequencies (or equivalently, their headways, the time between consecutive
services). In the timetabling step, the departure and arrival times are determined
at all stops for the installed lines. Next, the vehicles (referred to as rolling stock in
railways) are scheduled, such that all trips in the timetable are performed. The final
crew planning step is typically also decomposed into scheduling and rostering: crew
scheduling involves constructing the days of work or duties such that all tasks are
covered, and crew rostering involves assigning the duties to the crew members.

The first planning steps – network design and line planning – correspond to strategic,
long-term decisions and are usually only performed once every few years. Timetabling
is seen as a tactical problem, with operators commonly updating their timetable
every year. By adjusting the vehicle and crew schedules, operators can respond to
short-term trends, hence these steps are usually performed on a more regular basis.



Chapter 1 3

Network Design

Line Planning

Timetabling

Vehicle Scheduling

Crew Planning

Strategic

Tactical

Operational

Figure 1.1: Overview of the steps in the planning process of public transport.

In public transport planning, the objective is typically threefold: to maximize the
service quality for the passengers, to minimize the costs for the operator (thereby
also minimizing environmental impact), and to maximize the robustness of the sys-
tem against disturbances. To support planners in realizing these objectives, many
mathematical models and methods have been developed. The development and ap-
plication of mathematical techniques to support decision-makers is called Operations
Research. For an overview of such approaches in the field of public transport plan-
ning, see Borndörfer et al. (2018b), Caprara et al. (2007) and Huisman et al. (2005).

In Part I of this thesis, we focus on improving Operations Research models for public
transport by (partially) integrating the steps in the planning process. This has large
potential benefits, because one cannot evaluate the exact quality of decisions taken
in the earlier planning stages until the outcomes of the later stages are known. As
a consequence, the sequential approach asks for making estimations and approxi-
mations, likely resulting in suboptimal solutions. For example, service quality highly
depends on the paths taken by passengers and the resulting travel times, which are
determined by the timetable. Hence, in the line planning step planners need to
use estimates for driving, dwelling and transfer times, resulting in an approximate
measure of service quality that may not reflect the actual service quality. Integrated
planning can also be motivated from a mathematical point of view: the sequential
approach is a greedy approach, which is generally suboptimal.

Complete integration leads to an immensely large and therefore unsolvable problem.
Furthermore, complete integration neglects the different time scales associated with
the planning problems: the later-stage problems depend on many operational details
that are simply unknown when the early-stage problems need to be solved. Therefore,
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a more tractable and practical approach is to consider partial integration and improve
the quality of the approximations of later-stage outcomes in the earlier steps. This
is the approach studied in Chapter 2 and 3 of this thesis.

1.2 Decentralized Control in Public Transport

The overview of the planning steps described in the previous section neglects one
important feature of public transport systems: disruptions. Events such as infra-
structure malfunctions, vehicle breakdowns or heavy traffic cause deviations from
the planned schedules. This leads to the need for real-time rescheduling, or dis-
ruption management. Below, we first discuss traditional, schedule-based, disruption
management. Thereafter, we discuss decentralized control, and when this could be
the preferable alternative.

1.2.1 Traditional Disruption Management

As disruptions render the regular schedule infeasible, disruption management involves
finding a new feasible schedule by modifying the timetable and resource schedules.
Analogously to the respective planning problems, rescheduling is usually performed in
sequence. First, a new timetable is constructed by canceling, retiming and rerouting
services. Then, the vehicles are rescheduled, matching the new timetable. Finally,
the crew schedule is updated to account for the changes to the timetable and vehicle
schedule. As infeasibilities may be encountered in the rescheduling of the vehicle
and crew schedules, it may be necessary to perform further updates in a feedback
loop. For an overview of Operations Research techniques for disruption management
in public transport, we refer to Cacchiani et al. (2014), Ghaemi et al. (2017) and
Visentini et al. (2014).

In addition to prescriptive Operations Research models, a more descriptive model
relevant in disruption management is the bathtub model. This model identifies three
phases in the process of handling a disruption, see Figure 1.2. The first phase starts
directly after the initial disruption and involves gathering all information about the
disruption and its expected duration, determining the disruption timetable and trans-
itioning towards it. In the second phase, the disruption timetable is operated, often
based on predefined contingency plans. In the third phase, the disruption is over and
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there is a transition towards the regular timetable. The name of the bathtub model
refers to the traffic level during the three phases, (loosely) resembling a bathtub: it
decreases during the first phase, reaches a constant lower-than-regular level during
the second phases, and increases back to the regular level in the third phase.

Traffic

Time

Regular

Timetable

Regular

Timetable
Disruption

Timetable

Phase 1 Phase 2 Phase 3

Figure 1.2: Bathtub model for disruption management.

1.2.2 Decentralized Strategies

Conventional disruption management is entirely schedule-based: timetables and re-
source schedules are updated in real-time, and it is assumed that these schedules
can be communicated to all actors involved in operating the system. This requires
there to be one or multiple control centers, where dispatchers are responsible for
performing and communicating rescheduling actions.

Decentralized control refers to a different paradigm that can be used for operating
public transport. The concepts of a timetable and resource schedules are abandoned,
and since there is no schedule, there is also no need to reschedule. Consequently, there
is no control center. Instead, local agents are responsible for dispatching vehicles and
crew, based on local information. This approach is the focus of Part II of this thesis.

In this thesis, decentralized strategies always specify what to do when a vehicle has
finished a trip. At in-between stations of lines, vehicles should of course always
continue on their current line, but once a vehicle arrives at the terminal station, it
should be decided which line the vehicle performs next and when it should depart.
If crew is also considered, the same should be determined for the crew. We now give
two examples of decentralized dispatching strategies that are proposed and analyzed
in this thesis. Both are explained using an example of a station that serves as a
terminal for two (bidirectional) lines, A and B, with a headway of 10 minutes.
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Example 1 (ASAP-STAT). Arriving vehicles return on the same line (in the reverse
direction) and are instructed to depart as soon as possible. For example, a vehicle
arriving on line A at 10:00 will depart again on line A as soon as possible.

Example 2 (SYNC-DYN). Arriving vehicles are assigned to a line based on the most
recent departure times and next departure times are determined in order to minimize
deviations from the target headway. For example, suppose the most recent departure
times are 9:50 for line A and 9:52 for line B. Then, a vehicle arriving at 9:55 is
assigned to line A and instructed to depart at 10:00 to meet the 10-minute target
headway. The next arriving vehicle will always be assigned to line B. If it arrives
before 10:02, it is instructed to depart at 10:02, otherwise it should depart as soon as
possible

The ASAP-STAT and SYNC-DYN strategies are examples of decentralized control,
as they can be applied independently at the terminal stations of the network, without
any form of communication between stations. Moreover, both are easy to implement,
requiring little information and computation.

In case of functional information systems, smooth rescheduling and seamless commu-
nication, centralized control is clearly preferred over decentralized control: one has a
global overview of the system and can continuously reschedule based on complete in-
formation. However, if one of these conditions is not met, the merits of decentralized
control become clear: these strategies are fast to apply, robust against incomplete
information and, provided that the line plan is known to all actors, only require
communication between actors within the same station. Below, we describe multiple
practical situations where decentralized control can prove valuable.

Out-of-Control Situations

Our main motivation for studying decentralized control of public transport are so-
called out-of-control situations. These are situations in railway systems where dis-
patchers cease to have an overview of the system and consequently decide to ter-
minate all railway traffic in the affected region, even though the required resources
(infrastructure, rolling stock and crew) might be available. In the Dutch railway sys-
tem, out-of-control situations occurred about ten times in the period 2009-2012 due
to extreme weather. From then on, it was decided to operate a reduced timetable
in case of extreme weather forecasts. However, out-of-control situations still occur
occasionally because of, for example, (short-lasting) power outages or bomb alerts.
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Figure 1.3: Average delay on the Dutch railway network on February 3, 2012. Ab-
breviations: Amsterdam (Asd), Rotterdam (Rtd), Roosendaal (Rsd), Utrecht (Ut),
Enschede (Es), Zwolle (Zl) and Heerenveen (Hr). Taken from Dekker et al. (2021).

The size and impact of out-of-control situations can be illustrated using Figure 1.3,
which visualizes the evolution of delay in the Dutch railway network on February 3,
2012. As a result of extreme weather, throughout this day there were 305 infrastruc-
ture malfunctions and 250 issues with rolling stock (including six completely broken
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trains). The number of trains that suffered delays due to missing crew was twice as
high as on a regular day. Dispatchers could not keep up with the rapid succession
of disruptions, resulting in an out-of-control situation. As can be seen in the figure,
initially most delays occurred between Amsterdam and Utrecht. During the day, the
delay spread towards Rotterdam and Roosendaal, reaching even the far east of the
Netherlands by the beginning of the evening.

Out-of-control situations have a number of characteristics that yield traditional dis-
ruption management strategies ineffective. Primarily, there is no isolated, well-
defined disruption with a known duration (such as a track blockage that lasts 2
hours). Rather, out-of-control situations are fuzzy, large-scale and characterized by
incomplete information. One or multiple source events strongly disrupt a consider-
able portion of the timetable and resource schedules, causing information systems for
the timetable, rolling stock and crew to lag behind. Dispatchers are faced with uncer-
tainty, both regarding the duration of the disruption and the actual whereabouts of
rolling stock and crew. Another typical assumption in disruption management is that
all stakeholders in the operations act as expected. In out-of-control situations, this
assumption is not met. In fact, there have been cases of train drivers and conductors
not being aware or even ignoring rescheduling decisions made by dispatchers.

A decentralized dispatching approach is robust against the discussed features of out-
of-control situations. As long as infrastructure, rolling stock and crew are available,
simple local rule-based strategies can be applied, reducing the dependence on central
dispatchers and restoring traffic to a reasonable level. A decentralized approach could
also be used as a preventive measure, if there is a high risk for going out-of-control.
For a further discussion of out-of-control situations, and how decentralized control
can help to reduce their impact, we refer to Dekker et al. (2021).

Other Applications

In addition to out-of-control situations, there are other scenarios where the applica-
tion of decentralized control might be fruitful. Firstly, consider the case of operators
in developing countries or remote areas, operators of small networks or services that
are run on an incidental basis, for example bus services replacing disrupted rail lines.
Centralized control can be undesirable in these situations because it demands con-
siderable effort and comes with high monetary costs: it requires constant tracking
of vehicles and crew, monitoring of schedule adherence and rescheduling in case of
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schedule deviations or disruptions, possibly using a costly decisions support system.
Conversely, by applying simple decentralized strategies, the system essentially runs
itself, without any information or decision support system.

Secondly, decentralized strategies can be the preferable alternative for high-frequency
systems. If frequencies get high enough, passengers stop consulting timetables and
arriving at the station shortly before the scheduled departure time of their trip.
Instead, passengers start arriving uniformly. The result is twofold: exact schedule
adherence becomes less important, while maintaining constant headways becomes
increasingly important. For example, suppose that services of a certain line are
scheduled every 4 minutes, at 10:00, 10:04, 10:08 et cetera. If the 10:00 service is
delayed by 3 minutes, running a service at 10:04 is inefficient, as it will run close
to empty (potentially causing further bunching). Instead, it might be preferred to
delay all services by 2 minutes, to maintain constant headways. Of course, the latter
can also be achieved through centralized control, but decentralized strategies are
potentially faster because they cut out the role of the control center.

Thirdly, decentralized control could be be advantageous in the first phase of a disrup-
tion, referring back to the bathtub model. Decentralized strategies could be helpful
in the first phase because it shares features with out-of-control situations: often all
resources are there, but the right contingency plan still has to be determined, res-
ulting in the cancellation of many services. As it can take quite some time for the
control center to gather all information and determine the disposition timetable, de-
centralized strategies could provide a means to maintain a base service level during
the first phase.

Despite the lack of present-day relevance, we end this section with a final reference to
the carosses à cinq sols. We are not aware of any sources about the real-time manage-
ment of Pascal’s system. However, it is a fascinating thought that the decentralized
strategies explored in this thesis do not at all depend on modern technology, such
that they could have been applied to the carosses.

1.3 Thesis Outline and Contributions

This thesis is structured around two parts and consists of seven chapters. An overview
of the thesis is provided in Figure 1.4. All chapters are self-contained, so they can
be read independently.
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Figure 1.4: Schematic overview of the thesis.

Part I considers the integrated planning of public transport. Chapter 2 combines line
planning and vehicle scheduling, and presents a new approach to determine the num-
ber of vehicles that are required to operate a line plan, without the intermediate step
of computing a timetable. Chapter 3 combines timetabling and vehicle scheduling,
and develops a novel optimization model for jointly optimizing a periodic timetable
and vehicle circulation schedule.

Part II deals with decentralized control in public transport and railway systems
in particular. Chapter 4 presents a theoretical analysis of a simple, decentralized
strategy for vehicle dispatching. Chapter 5 considers the application of decentral-
ized control to out-of-control situations in railways. This chapter develops a novel
algorithm to find line plans that are suited for these circumstances and evaluates the
performance of decentralized strategies on these line plans in a macroscopic railway
simulation. To ensure that the line plan is feasible with respect to the available rolling
stock, the line plan model partially integrates rolling stock scheduling, using ideas
developed in Chapter 2. Chapter 6 again focuses on railways and tests decentralized
dispatching of both vehicles and crew in a microscopic railway simulation.

Chapter 2: "Vehicle Scheduling Based on a Line Plan". Published in the
ATMOS conference proceedings as Van Lieshout and Bouman (2018).

Chapter 2 analyzes approaches to estimate the number of vehicles required to operate
a line plan, without having to first compute a timetable. Formally, it studies the
following problem: given a set of lines in a public transportation network with their
round trip times and frequencies, a maximum number of vehicles and a maximum
number of lines that can be combined into a vehicle circulation, does there exist a set
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of vehicle circulations that covers all lines given the constraints. We show that this
problem is NP-hard if the number of lines that can be combined into a circulation is
equal to or greater than three. We pay special attention to the case where at most
two lines can be combined into a circulation, which is NP-hard if a single line can be
covered by multiple circulations. If this is not allowed, a matching algorithm can be
used to find an optimal solution. We also provide an exact algorithm that is able to
exploit low treewidth of the so-called circulation graph.

Chapter 3: "Integrated Periodic Timetabling and Vehicle Circulation
Scheduling". Published in Transportation Science as Van Lieshout (2021).

The impact timetabling has on the number of required vehicles, which directly trans-
lates to operator costs, is rarely taken into account in timetabling models. Therefore,
in Chapter 3, we consider the problem of jointly optimizing the (periodic) timetable
and the vehicle circulation schedule, which specifies the cyclic sequences of trips
vehicles perform. In order to obtain high-quality solutions to realistic instances, we
derive new theoretical results on vehicle circulation scheduling, which are then used
to enhance the formulation. Ultimately, this allows the operator to make an informed
trade-off between costs and passenger service. A computational study demonstrates
the effectiveness of the improved formulation. Moreover, using this approach we are
able to find timetables requiring substantially fewer vehicles at the cost of minimal
increases of the average travel time of passengers.

Chapter 4: "A Self-Organizing Policy for Vehicle Dispatching in Public
Transit Systems with Multiple Lines". Published in Transportation Re-
search Part B: Methodological as Van Lieshout et al. (2021).

In Chapter 4, we propose and analyze an online, decentralized policy for dispatching
vehicles in a multi-line public transit system. In the policy, vehicles arriving at a ter-
minal station are assigned to the lines starting at the station in a round-robin fashion.
Departure times are selected to minimize deviations from the target headway. We
prove that this policy is self-organizing: given that there is a sufficient number of
vehicles, a timetable spontaneously emerges that meets the target headway of every
line. We present both theoretical and numerical results on the time until a stable
state is reached and on how quickly the system recovers after the breakdown of a
vehicle. Experiments on three real-world transit systems show that our policy per-
forms well, even if not all assumptions required for the theoretical analysis are met:
if there are enough vehicles, the realized headways are close to the target headways.
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Chapter 5: "Determining and Evaluating Alternative Line Plans in Out-
of-Control Situations". Published in Transportation Science as
Van Lieshout et al. (2020).

Chapter 5 develops and tests disruption management strategies for out-of-control
situations. First, we propose an algorithm that finds an alternative line plan that
can be operated in the affected part of the railway network. As the line plan should
be feasible with respect to infrastructural and rolling stock restrictions, we integrate
these aspects in the algorithm in a Benders’-like fashion. Second, to operate the
railway system within the disrupted region, we propose several local train dispatching
strategies requiring varying degrees of flexibility and coordination. Computational
experiments based on disruptions in the Dutch railway network indicate that the
algorithm performs well, finding workable and passenger oriented line plans within
a couple of minutes. Moreover, we also demonstrate in a simulation study that
the produced line plans can be operated smoothly without depending on central
coordination.

Chapter 6: "Microscopic Simulation of Decentralized Dispatching
Strategies in Railways". Submitted.

Chapter 6 analyzes the effectiveness of decentralized strategies for dispatching rolling
stock and train drivers in a railway system. We test the performance of four rolling
stock and two driver dispatching strategies in a microscopic simulation. Our test case
is a part of the Dutch railway network, containing eleven stations linked by four train
lines. We find that with the decentralized dispatching strategies, target frequencies
of the lines are approximately met and train services are highly regular without large
delays. Especially strategies that allow rolling stock to switch between lines result in
a good performance.

Contributions

The main contribution of Chapters 2 to 6 is fourfold.

Firstly, we provide new theoretical insights in the structure of certain problems and
systems arising in public transport. In Chapter 2, we analyze the problem of es-
timating the number of vehicles required to operate a line plan, without computing
a timetable, and present numerous complexity results on different variants of the
problem, including a heuristic with an approximation guarantee. In Chapter 3, we
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prove, among other results, that given a timetable, a greedy algorithm is optimal in
order to determine the number of required vehicles. In Chapter 4, we prove that a
simple decentralized strategy induces a self-organizing public transport system and
also derive bounds on the time until the system stabilizes.

Secondly, we use the derived theoretical results to develop effective optimization
approaches. The theoretical results in Chapter 3 are the key ingredients for an
improved formulation for the integrated periodic timetabling and vehicle circulation
scheduling problem that is developed later in that chapter. In Chapter 5, we present
a real-time line planning algorithm with a rolling stock component that is based on
the ideas developed in Chapter 2.

Thirdly, we test and assess the performance of the proposed approaches using nu-
merical experiments on both real-world and artificial public transport networks. The
integrated timetabling and vehicle scheduling model developed in Chapter 3 is ap-
plied to the entire Dutch intercity network operated by Netherlands Railways (NS),
as well as a partial network containing both intercity and regional services. This par-
tial network also serves as the test bed for the line planning algorithm developed in
Chapter 5 and the microscopic simulation in Chapter 6. The practical performance
of the decentralized strategy of Chapter 4 is assessed using the bus networks of The
Hague, Amersfoort and Göttingen, as well as artificially created networks.

Fourthly, our analyses lead to valuable insights for public transport operators. In
Chapters 2, we show that despite the problem being hard in theory, it is possible to
estimate the number of vehicles using a fast heuristic, bypassing the time-consuming
and tedious process of planning a timetable. In Chapter 3, we illustrate that integ-
rated planning can lead to large benefits: compared to the sequential approach, the
developed integrated model is able to considerably reduce the number of vehicles at
the cost of minimal increases in passenger travel time. Chapters 4, 5 and 6 all suggest
that decentralized control is an alternative worth considering in certain situations.

1.4 Research Statement

This thesis is a result of research conducted within the interdisciplinary project "Im-
proving the resilience of railway systems", funded by the Dutch Research Council
(NWO), as part of the research programme Complexity in Transport & Logistics.
This project is a collaboration between Erasmus University Rotterdam, Utrecht Uni-
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versity, Delft University of Technology, Netherlands Railways and ProRail. The main
goal of this project is to investigate approaches to avoid or reduce the impact of out-
of-control situations. The chapters in Part II of this thesis are directly related to this
topic. This research also triggered two spin-off projects, which led to the chapters in
Part I.

The research in all chapters except Chapter 6 was primarily conducted by the au-
thor of this thesis. For Chapter 6, Rafael Mendes Borges, Teun Druijf and a team
of bachelor students Computer Science in the faculty of Science, Utrecht University,
were responsible for the majority of the coding, while the author of this thesis was
responsible for research design, testing and fine-tuning the developed software, ana-
lyzing the results and the write-up. For all chapters in this thesis, it holds that their
quality has greatly been improved by frequent discussions with doctoral advisors Paul
Bouman, Marjan van den Akker en Dennis Huisman, and with other partners within
the NWO project.
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2.1 Introduction

Traditionally, the planning of public transport services occurs in a number of steps.
First, a line plan is constructed where service routes, usually referred to as lines, are
selected such that high quality service is provided to the customers (Borndörfer et al.,
2007; Schöbel, 2012). In the second step, a timetable is constructed that specifies the
departure and arrival times along the stops of all lines (Caimi et al., 2017; Ibarra-
Rojas et al., 2015). In the final step, vehicles and possibly human resources are
planned as they are necessary resources to execute the services (Abbink et al., 2011;
Fioole et al., 2006; Kliewer et al., 2012). As the individual scheduling steps are
already quite challenging, the sequential planning approach is traditionally applied
because an integrated approach is computationally not tractable. The disadvantage
of the sequential approach is that the objectives of the subsequent steps are not
taken into account when the prior steps are solved. In particular, the line plan and
timetable are usually optimized based on passengers’ convenience, while the vehicle
schedule is optimized based on the operator costs. Therefore, the optimal solution
for the combined problem is likely to be missed.

Recently, a number of authors have proposed ideas to integrate the separate planning
steps. One example, the eigenmodel (Schöbel, 2017), replaces a fixed order with an
iterative approach that takes a different route through the separate steps, controlling
both the passengers’ convenience and the operator costs during the process. Pätzold
et al. (2017) takes a different approach and incorporates penalties during the line
planning phase for lines which can not be covered efficiently by a vehicle in a periodic
timetable. That is, assuming the cycle time is 60 minutes, a line with frequency one
for which a round trip takes 54 minutes (a downtime of 6 minutes) is given a low
penalty, while a line with frequency one for which a round trip takes 65 minutes (a
downtime of 55 minutes) is given a very high penalty.

In this chapter, we consider the construction of vehicle schedules based on the line
plan without the intermediate step of constructing a timetable. One goal of this is to
quickly assess whether a line plan can be operated using a small number of vehicles.
This allows public transport operators to detect potential inefficiencies early in the
planning process, without having to compute a timetable first. The novel aspect of
our approach is that we explicitly consider the possibility to combine lines into larger
vehicle circulations. To illustrate, while a line that takes 65 minutes with a period of
60 minutes may seem inefficient by itself, it may be a good option if we can combine
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it with a line of 55 minutes. Although combinations of lines can help to reduce the
number of vehicles required to operate a line plan, large and complex combinations
of lines may result in greater dependencies between the operations of the different
lines. Therefore, we provide a detailed examination of cases where at most two lines
can be combined in a vehicle schedule.

The remainder of this chapter is organized as follows. In Section 2.2 we formally
introduce the vehicle circulation scheduling on a line plan. In Section 2.3 we study
the computational complexity of the general case. In Section 2.4 we study the special
case where only two lines can be combined in a circulation. We conclude and discuss
ideas for future research in Section 2.5.

2.2 Problem Formulation

In this chapter, we assume a line plan is already given and want to determine the
minimum number of vehicles that are required to operate the line plan without the
intermediate step of constructing a timetable. For the line plan, we have a fixed time
period denoted by T and a set of lines L where a line {v, u} ∈ L is an unordered pair
of terminal stations of the line. The line graph L = (V,L) has terminal stations V as
vertices and the lines as edges. In the line plan each line l ∈ L has a round trip time
tl and an integer frequency fl assigned to it. The round trip times specified by the
line plan should at least include the minimum driving and dwelling times required
to execute the line, but can also include some slack to make operations more robust
against disruptions. The frequency defines the number of times the line service must
be executed by a vehicle within each time period of length T .

If vehicles are only allowed to operate a single line, the number of vehicles required
for line l equals

⌈
tl

T fl

⌉
. In order to reduce the number of vehicles required to oper-

ate the line plan, public transport operators may consider circulations, which are a
combination of lines that can be executed by a single vehicle. Formally, a circulation
c ⊆ L is a set of lines that can be operated by one or more vehicles. We allow lines
to be contained more than once in the set, since this can be relevant if the line has
a frequency greater than 1. We call the number of times a line l is contained in
a circulation the multiplicity of l in c. Furthermore, we assume that a summation
over the lines in the circulation includes a line multiple times if it has a multiplicity
greater than 1. An example of a situation where we want to assign the same line to
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a circulation multiple times, is a line with a round trip time of T
2 and a frequency

of 2. In that case, we want to consider a circulation where we execute the line twice
during each period.

For this chapter, we only consider circulations c such that the lines it contains form
a connected subgraph of L. As a consequence of this, the time tc needed to perform
a single round trip of a circulation c can be expressed as tc =

∑
l∈c tl. Furthermore,

a circulation c corresponds to a directed Eulerian tour in ←→L , where ←→L is the dir-
ected line graph, which is a a symmetric directed graph derived from L where each
edge of L is replaced by two arcs, one for each direction. Let us now consider the
correspondence between a connected subset of L and the directed cycle in ←→L .

Lemma 2.1. A connected subset c ⊆ L of lines in the line graph L corresponds to a
directed Eulerian sub-graph in the directed line graph ←→L . Thus, there always exists
a directed cycle in ←→L that visits all arcs that correspond to both directions of the
lines in c a number of times that is exactly equal to the multiplicity of the lines in
the circulation.

Proof. A directed graph contains a directed Eulerian cycle if two conditions hold: (1)
for every vertex the in-degree is equal to the out-degree, and (2) the graph is strongly
connected. Since the graph ←→L is symmetric, each vertex must have one outgoing
arc for each incoming arc, and thus condition (1) always holds. As c is a connected
subset of lines, the corresponding lines in ←→L must be connected as well. Since the
graph is symmetric, this implies that it is also strongly connected. □

Although more general concepts of circulations that do not enforce connectivity can
be considered, these would require dead-heading of vehicles as part of a line plan.
While public transport operators have to use dead-heading when operations start up,
or frequencies of lines are changed throughout the day, it is usually avoided as much
as possible by public transport operators during regular operations. As we focus on
regular operations, we consider those generalized concepts of circulations beyond the
scope of this chapter.

In the problem we consider we do not only need to decide which circulations should
be used, but we also have to decide how many vehicles must be assigned to each
circulation to cover the constraints of the line plan. Since a circulation c can have
a round trip time that is larger than T , we may need to assign multiple vehicles
to it in order to enforce that every line in the circulation is covered during every
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period. We define the number of vehicles required to perform the circulation once in
every period as kc = ⌈ tc

T ⌉. If we would assign fewer vehicles than kc to a circulation,
the vehicle is not finished with its circulation when a new period starts and as a
consequence no vehicle executes the circulation during some periods. Furthermore,
an upper bound on the number of vehicles that can be assigned to a circulation c

is given by the expression minl∈c flkc, as assigning more vehicles to the circulation
would imply that the line where the minimum was attained is executed with greater
frequency than the line plan prescribes. In the special case that all frequencies are
1, kc itself is an upper bound on the number of vehicles that can be assigned to c.

Note that we do not enforce that each line is covered by a single circulation. For
example, suppose we have two lines a and b with round trip times ta = tb = 30, but
different frequencies fa = 3 and fb = 1, with a period time of T = 60. The most
efficient way to cover these lines is to have one vehicle circulation that executes line
a two times each period, while a second vehicle alternates between line a and line b,
executing both lines once each period. We investigate a strict version of the problem
where a line can only be covered by a single circulation in Section 2.4.2.

The goal of the problem studied in this chapter is to find a set of circulations and
the number of vehicles assigned to each circulation such that all lines are covered.
From a practical point of view it is desirable that the selected circulations do not
contain too many lines, as this creates significant dependencies in the operations that
make the operations extremely sensitive to minor disruptions. When a disruption
occurs somewhere in a circulation, all subsequent lines in the circulation are affected.
Furthermore, very large circulations can only be operated in practice if the timetables
of all the lines in the circulation are synchronized. This may lead to problems in
the timetabling phase, especially if you want to offer good transfer possibilities to
passengers who want to follow different paths than the vehicles.

To avoid large circulations, we consider a restriction on the maximum number of
lines than can be included in a circulation. We call a circulation c an α-circulation
if the number of unique lines in c is α. A 1-circulation is also referred to as a fixed
circulation and a 2-circulation is also referred to as a combined circulation. We
introduce an input parameter κ that restricts the number of unique lines that can be
combined in a single circulation. With this concept clearly defined, we can introduce
the decision variant of our problem in a formal way:
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Vehicle Circulation Scheduling on a Line Plan (VCS-LP)
Instance: A line graph L = (V,L), a maximum number of of unique lines that
are allowed to exist in a single circulation κ and a maximum number of vehicles z

Question: Does there exist a set of circulations C, with for each circulation
c ∈ C a value assigned to the integer decision variable θc ∈ N that indicates how
many vehicles are assigned to circulation c, such that:
(1) the circulations cover all lines in every period, i.e. ∀l ∈ L : fl =

∑
c∈C:l∈c

θc

kc
,

(2) there are no α-circulations in C with α > κ, and
(3) at most z vehicles are required to execute all circulations, i.e.

∑
c∈C θc ≤ z.

The optimization version of this problem seeks to find the smallest z for a given line
graph and a given parameter κ, such that there exists a set of circulations C with
integer vehicle assignments θ that satisfy the conditions.

2.3 Computational Complexity

First, we consider a lower bound on the number of vehicles that is needed in a given
line graph. Since we are not allowed to use dead-heading, we must consider the
connected components of a line graph separately, as no vehicle will be able to move
from one component to another. Thus without loss of generality we assume that a line
graph is connected, since if it is not we can decompose the problem into independent
sub-problems. A lower bound on the number of vehicles required can be computed
by dividing the total running time by the cycle time. As no fractional vehicles can
be used, we can round the number of vehicles up. This gives the following necessary
condition to check if the instance can possibly be a YES-instance:

z ≥
⌈∑

l∈L tl · fl

T

⌉
(2.1)

If we have an instance of the problem where |L|-circulations are allowed, i.e. κ ≥ |L|,
this lower bound can be obtained by a single circulation that contains all lines as
many times as their frequency dictates. Thus all such instances are YES-instances.

If we are only allowed to used fixed circulations, i.e. κ = 1, the only way to cover
all lines is to use a fixed circulation for each line. In this case an instance is a
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YES-instance if and only if z is sufficient for the sum over all fixed circulations:

z ≥
∑
l∈L

⌈
tl · fl

T

⌉
(2.2)

Theorem 2.2. Any instance with κ ≥ |L| for which the condition of Equation 2.1
holds is a YES-instance. Any instance with κ = 1 is a YES-instance if and only if
the condition of Equation 2.2 holds.

As we noted earlier, circulations that do not contain too many lines are preferred
as they have many advantages. However, the number of vehicles required with fixed
circulations can be significantly greater than when any circulation is allowed. We
can see this via application of the following general identity for sums over ceiling
functions. Suppose we have a sequence a1, . . . an of n numbers with n ≥ 2, then it is
straightforward to show that

n∑
i=1
⌈ai⌉ −

⌈
n∑

i=1
ai

⌉
≤ n− 1 (2.3)

Thus, we can see that the difference between the lower bound of Equation 2.2 and
Equation 2.1 can become as large as |L| − 1. If we allow 2-circulations, we are able
to halve the number of terms in Equation 2.2 which halves the worst case gap. It
thus can be very beneficial to consider restrictions on the circulation κ that are small
but strictly greater than one. Unfortunately, for any case with a fixed κ ≥ 3, we can
show that the resulting problem becomes NP-hard.

Theorem 2.3. For any fixed κ ≥ 3, the VCS-LP is NP-hard.

Proof. We show this by reduction from 3-partition. Let S = {s1, s2, . . . , sm} be
a set of integers such that

∑m
i=1 si = m

3 B and ∀1 ≤ i ≤ m : B
4 < si < B

2 . A 3-
partition instance is a YES-instance if it is possible to partition S into n = m

3 triplets
S1, S2, . . . Sn such that each triplet sums to B.

For the case where κ = 3, we reduce the 3-partition instance to a line graph L = (V,L)
where we have a central hub station v0 ∈ V and m external stations v1, . . . , vm ∈ V .
This line plan must be periodically operated in a period of T = B time units.
Furthermore we have a set of m lines where li ∈ L = {v0, vi}, with frequency fi = 1
and a round trip and total time equal to si. As the sum of the round trip times is
exactly mB, the only way to execute this line plan with m vehicles is to have every
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circulation take B time. Otherwise, at least one circulation will require two vehicles.
Thus we set z = m. If the 3-partition instance is a YES-instance, we can use the
triplets to create 3-circulations with this precise property. If the 3-partition instance
is a NO-instance, we can not nicely divide the lines over 3-circulations and thus need
at least one additional vehicle.

For cases where κ > 3, we scale the 3-partition instance by setting s′
i = 4 · κ · si and

B′ = (κ− 3) + 4 · κ ·B. This way we make sure that B′

4 > κ− 3. We now introduce
a set of κ · n lines where lines l1, . . . , lm have round trip times s′

1, . . . , s′
m and lines

lm+1, . . . , lκ·n all have round trip time of 1. We define 1 + κ terminal stations and let
lines i connect terminal stations {v0, vi} in the same structure as the κ = 3 case. By
construction, only circulations that consist of κ− 3 lines with round trip time 1 and
three other lines can sum up to B′. This way it is enforced that it is a YES-instance
if and only if the 3-partition instance is a YES-instance.

□

2.4 Fixed and Combined Circulations

Of special interest is the case of κ = 2 where we are only allowed to have fixed and
combined circulations, as this gives us some flexibility to decrease the number of
vehicles required to operate the line plan, while we still keep the number of lines in a
circulation low. Since all finite cases with κ > 2 are NP-hard, the κ = 2 case is also
of particular interest from a theoretical perspective.

For the remainder of this section, we restrict ourselves to instances of VCS-LP where
the frequency of each line is 1. Although this restriction may seem unrealistic, we
can approximate instances with higher frequencies either by splitting up a line l with
a frequency higher than 1 into fl lines with frequency 1 and the same characteristics
or by increasing the round trip times as a function of the frequencies. The straight-
forward approach increases the round trip times based on the frequency, i.e. the
new round trip time becomes fl · tl. More sophisticated approaches can add slack
to model the periodicity in more detail in order to increase the probability that a
regular timetable exists, possibly at the cost of requiring more vehicles to execute
the line plan.

In case κ = 2 and fl = 1 for all lines, we can represent an instance of VCS-LP by a
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circulation graph G = (L, E). In this graph, the lines are the vertices and the edges
are the circulations. The set of edges consists of edges for the fixed circulations E1

and of the 2-circulations E2, thus E = E1 ∪ E2. The set E1 contains a self loop for
every line li ∈ L. The set E2 contains an edge between two lines li and lj if they
have a common terminal station. To ease notation, we denote a circulation {li} ∈ E1

simply as li.

An example of a VCS-LP instance represented by a circulation graph is given in
Figure 2.1. On the circulation graph, we also depict the kc value of each circulation c.
For the self loops, these values are depicted inside the nodes to make the graph more
clear. For example, line 3 has a round trip time of 70 minutes, so k3 =

⌈ 70
60
⌉

= 2. Line
4 also needs 2 vehicles if it is performed in a fixed circulation, but if lines 3 and 4 are
combined only 3 vehicles are required to operate both lines since k34 =

⌈ 70+100
60

⌉
= 3.

Using the circulation graph, we can formulate the following optimization problem for
VCS-LP:

ν(L) = min
θ

∑
c∈E

θc (2.4)

s.t. 1
kl

θl +
∑

c∈E2|l∈c

1
kc

θc = 1 ∀l ∈ L, (2.5)

θc ≥ 0 and integer ∀c ∈ E, (2.6)

The objective is to minimize the number of used vehicles. We now consider how to
rewrite this problem to a maximization problem where the goal is to maximize the
number of saving circulations. First note that we can rewrite the summation in the

Figure 2.1: Example of a line graph with round trip times and the corresponding
circulation graph. The cycle time T is 60.
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objective of Equation 2.4 by splitting the summation over E into summations over
E1 and E2, and that by definition a summation over E1 is equal to a summation over
L. We rewrite the objective as follows:

min
θ

∑
l∈L

θl +
∑

c∈E2

θc (2.7)

In the next step we make use of Constraints (2.5), which state that a line is included
in a sufficient number of circulations. As these constraints imply that θl = kl −∑

c∈E2|l∈c
kl

kc
θc, we can substitute the left term to obtain

min
θ

∑
l∈L

kl −
∑

c∈E2|l∈c

kl

kc
θc

+
∑

c∈E2

θc (2.8)

Note that the double summation over l ∈ L and c ∈ E2|l ∈ c can also be written as
a double summation over c ∈ E2 and l ∈ c. Rewriting the double summation and
reshuffling terms gives:

∑
l∈L

kl + min
θ

∑
c∈E2

(
θc −

∑
l∈c

kl

kc
θc

)
(2.9)

In the last step we factor out θc

kc
and Equations 2.4 – 2.6 are written as:

ν(L) =
∑
l∈L

kl + min
{∑

c∈E2

[
kc −

∑
l∈c

kl

]
θc

kc
, s.t. (2.5) – (2.6)

}
(2.10)

If we now apply Equation 2.3, it can be seen that
[
kc −

∑
l∈c kl

]
equals either -1 or

0. If the term is -1, we call the circulation saving, otherwise we call it non-saving.
For example, in Figure 2.1, circulation {3, 4} is saving, while circulation {1, 2} is
non-saving. If we let the set of all saving circulations be denoted as ES

2 , we have that
ν(L) =

∑
l∈L kl − σ(L) where σ(L) is the savings problem defined as follows:

σ(L) = max
θ

∑
c∈ES

2

θc

kc
s.t. (2.5) – (2.6)

 (2.11)

As such, it can be observed that minimizing the number of vehicles is equivalent
with maximizing the savings over a vehicle schedule that only uses fixed circulations.
In the remainder of this section, we use this observation to give a proof of the NP-
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hardness of VCS-LP with κ = 2 and fl = 1 for all lines, and to develop an exact
algorithm and an 16

15 -approximation algorithm.

2.4.1 NP-hardness

Our proof depends on the fact that we can construct an arbitrary circulation graph
from the line graph if it is accompanied by auxiliary restrictions on which 2-circulations
are allowed, which are not part of the formal input to VCS-LP. This can be seen from
the fact that a star-shaped line graph translates to a complete circulation graph, since
we can combine all pairs of lines. If we can provide auxiliary restrictions on which
combinations can be combined into circulations and which not, we have complete
control over the structure of the circulation graph. In practice, such restrictions are
realistic, since the possibility to combine lines into circulations does not only depend
on the lines having a shared terminal station, but also on the precise layout of the
infrastructure at the terminal station, and whether there exists a type of rolling stock
that is able to operate both lines.

Theorem 2.4. VCS-LP with κ = 2 and auxiliary restrictions on which 2-circulations
are allowed is NP-hard.

Proof. Our proof is based on a reduction from the NP-complete numerical 3-
dimensional matching problem (Garey and Johnson, 1979) to an instance of VCS-
LP expressed by means of a circulation graph. Since each circulation graph can be
generated based on a line graph with auxiliary restrictions, this is sufficient to prove
the theorem.

The inputs to the N3DM are three multisets of integers X, Y, Z, each containing
k elements, and a bound b. An N3DM instance is a YES-instance if there exist k

disjoint triples (x, y, z) such that x + y + z = b holds for every triple.

We transform this to the following instance of VCS-LP. For every element in X, Y

and Z we create three lines in L, all with kl = 2. The three lines can be combined
in saving circulations (kc = 3) such that they form a triangle. One of the three lines
serves as the connect line, the other lines are referred to as dummy lines. For every
triple (x, y, z) that sums up to b (all such triples can be found in polynomial time), a
triple line is created with kl = 1, which can be combined in non-saving circulations
(kc = 3) with the connect-lines corresponding to x, y and z. Letting µ denote the
number of triples that sum up to b, the resulting VCS-LP instance has 9k + µ lines.
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Figure 2.2: Transformation of a N3DM instance to a VCS-LP instance represented
by a circulation graph.

We call the generated instance a YES-instance, if the number of required vehicles
is at most 14k + µ, equivalent to a saving σ(L) of at least 4k. In Figure 2.2, we
visualized this transformation for a small N3DM instance.

We claim that the constructed VCS-LP instance is a YES-instance if and only if the
N3DM instance is a YES-instance.

(if) Each disjoint triple (x, y, z) can be used to generate a saving of 4 by assigning 1
vehicle to each of the 3 circulations combining the triple line with the connect lines
(green in Figure 2.2, 1 vehicle to each of the 6 circulations combining the triples lines
with the dummy lines (blue) and 2 vehicles to each of the circulations combining
dummy lines (red). In every triangle, this gives a saving of 4

3 , so the total saving
generated by every disjoint triple equals 4. As such, if there are k disjoint triples,
the total saving is 4k and VCS-LP instance is indeed a YES-instance.

(only if) Since only the combined circulations in the triangle are saving, if the instance
is a YES-instance, every triangle must generate a saving of 4

3 . This implies that
in every triangle, the circulations combining the triple lines and dummy lines are
assigned 1 vehicle (blue in Figure 2.2) and the circulations combining dummy lines
are assigned 2 vehicles (red). As a consequence, for every connect line, one of the
circulations connecting the line with a triple line must be assigned 1 vehicle (otherwise
the connect line would not be covered entirely). Next, note that a triple line cannot
be partially performed by combined circulations. Hence, if one of the circulations
combining a certain triple line and a connect-line is assigned a vehicle, all three such
circulations must be assigned a vehicle. So, as every connect line is included in
exactly one circulation with a triple line, and as every triple line is included in either
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zero or three combined circulations, there must be k triple lines that are connected
with 3 connect lines. Clearly, the associated triples in the N3DM instance must be
disjoint, hence the N3DM instance must also be a YES-instance. □

2.4.2 The Strict Variant

We define the strict version of VCS-LP to state that each circulation c is either not
executed at all, or executed by exactly kc vehicles. We will now show that the strict
version with κ = 2 and all frequencies equal to 1 can be solved exactly using an
approach based on matching.

As in the non strict version, we have the relation that the minimum number of vehicles
required under the strictness assumption, denoted as ν̄(L), equals

∑
l∈L kl − σ̄(L),

where σ̄(L) denotes the strict savings problem, obtained by replacing θc

kc
with the

binary variable γc in the regular savings problem σ(L):

σ̄(L) = max
γ

∑
c∈ES

2

γc (2.12)

s.t. γl +
∑

c∈E2|l∈c

γc = 1 ∀l ∈ L, (2.13)

γc ∈ {0, 1} ∀c ∈ E, (2.14)

Constraints (2.13) now state that a line is either operated with a fixed circulation,
or using one of the combined circulations. Since the objective does not contain the
γc variables for the fixed circulations anymore, the γ-variables for these circulations
can be viewed as slack variables for the Constraints (2.13). Furthermore, since the
non-saving circulations have zero contribution to the objective, there always exists an
optimal solution that does not contain any non-saving circulations. As a consequence,
Constraints (2.13) can be rewritten as:∑

c∈ES
2 |l∈c

γc ≤ 1 ∀l ∈ L (2.15)

Since the circulations in ES
2 contain precisely two lines, the resulting formulation

is equivalent to a matching problem where we have to maximize the number of
selected saving circulations. Thus, we can compute ν̄(L) by computing the maximum
matching in the graph that only contains the edges from ES

2 .
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Theorem 2.5. The strict VCS-LP with κ = 2, fl = 1 for each line l ∈ L is solvable
in polynomial time.

2.4.3 The Matching Approximation

Since the strict VCS-LP provides solutions that are also feasible for the regular
problem, it can be applied as a heuristic. In this section we derive an approximation
guarantee for this heuristic. Our approximation results are based on the observation
that the savings problem is a maximization problem and that the linear programming
relaxations of the savings problem and its strict version, denoted as σLP(L) and
σ̄LP(L) respectively, are equal. This easily follows from the fact that the strict version
is obtained from the non strict version by performing a linear variable substitution,
which does not influence the value of the linear relaxation.

Theorem 2.6. For any line plan it holds that ν̄(L) − ν(L) ≤
⌊

|L|
6

⌋
. Furthermore,

there exists an instance that attains this bound.

Proof. Note that we can consider the difference between the savings instead of the dif-
ference between the number of vehicles, as ν̄(L)−ν(L) =

∑
l∈L kl− σ̄(L)−

∑
l∈L kl +

σ(L) = σ(L)− σ̄(L). For any graph it holds that the difference between the value of
the maximum fractional matching and the value of the maximum matching is at most
n
6 , with n the number of nodes (Choi et al., 2016). This implies that σ̄LP(L)−σ̄(L) ≤
|L|
6 . Since the linear programming relaxations of the savings problem and its strict

version are equal, it follows that σ(L)−σ̄(L) ≤ σLP(L)−σ̄(L) = σ̄LP(L)−σ̄(L) ≤ |L|
6 .

Furthermore, the right hand side of this equation can be rounded down since the dif-
ference between savings must be integral.

To show that this bound is tight, consider the circulation graph depicted in Figure 2.3.
The example contains 2k + 1 triangles, where k is a positive integer, and one central
node connected to all triangles. The circulations between the lines in the triangles are
saving. The value σ̄(L) is equal to the size of the maximum matching in the graph
induced by all saving circulations, i.e. the graph with only the 2k + 1 triangles.
Since we can pick only one circulation in every triangle, we have that σ̄(L) = 2k +
1. The optimal unrestricted solution is as follows. We can assign 1 vehicle to all
green circulations, k vehicles to all blue circulations and k + 1 vehicles to all red
circulations. The objective attained with this solution equals σ(L) =

∑
c∈ES

2

θc

kc
=

(2k + 1)( k+k+k+1
2k+1 ) = 3k + 1.
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Figure 2.3: Circulation graph of the instance used to show that the bound of Theorem
2.6 is tight.

Comparing the two objectives, we have that σ(L)− σ̄(L) = k. As the bound equals⌊
|L|
6

⌋
=
⌊

3(2k+1)+1
6

⌋
=
⌊
k + 4

6
⌋

= k, this circulation graph attains the bound for
every k. □

Lemma 2.7. If σ(L) − σ̄(L) = k, the circulation graph contains at least 2k + 1
disjoint odd cycles of saving circulations.

Proof. Every vertex x of the fractional matching polytope is half-integral, i.e. xe ∈
{0, 1

2 , 1} (Balinski, 1965). Moreover, the edges with xe = 1 form a matching and the
set of edges with xe = 1

2 form a set of disjoint odd cycles. If the optimal solution to the
fractional matching problem contains ω such odd cycles, the difference between the
size of the fractional matching and the size of the matching equals ω

2 , as a fractional
matching in a single odd cycle can improve the objective only by 1

2 compared to an
integer matching in the same cycle. As such, if σ(L) − σ̄(L) = k, we certainly have
that σ̄LP(L) − σ̄(L) ≥ k, implying that the circulation graph contains at least 2k

disjoint odd cycles of saving circulations.

We prove that the number of odd cycles of saving circulations should be one more
than 2k by contradiction. As we have already established that the number of odd
cycles is at least 2k, we assume that σ(L) − σ̄(L) = k while there are exactly 2k

odd cycles. Note that an odd cycle cannot contribute strictly more than 1
2 to the

difference between σ(L) and σ̄(L), as this violates the fact that fractional matching
is the relaxation of the savings problem. Hence, it must hold that every odd cycle
contributes exactly 1

2 to the difference between savings.
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However, we will now show that for VCS-LP, every odd cycle can increase the differ-
ence between σ(L) and σ̄(L) with strictly less than 1

2 . This is the case since it is not
possible to select all circulations in an odd cycle of saving circulations in the circula-
tion graph with value 1

2 . To see this, note that if circulation c = {l, m} contributes
1
2 to the objective of VCS-LP, this implies that kc is even (e.g. kc = 4 and θc = 2).
Furthermore, since kc = kl + km − 1 (the circulation is saving), it must hold that
kl and km have a different parity (one of them is odd, the other even). As such, if
we do have an odd cycle in which every circulation is selected with value 1/2, there
must exists a 2-coloring of the vertices of the cycle. Since this is clearly not possible
for an odd cycle, we reach a contradiction. □

Theorem 2.8. For any line plan it holds that ν̄(L)−ν(L)
ν(L) ≤ 1

15 . Furthermore, there
exists an instance where this bound is attained. This implies that ν̄(L) is a 16

15 -
approximation algorithm for VCS-LP with κ = 2 and all frequencies 1.

Proof. First note that

max ν̄(L)− ν(L)
ν(L) = max σ(L)− σ̄(L)∑

l∈L kl − σ(L) . (2.16)

It follows from Lemma 2.7 that for a given value of ν̄(L)− ν(L) = k, the worst case
ratio must be attained by using 2k+1 cycles of 3 vertices (more or larger cycles only
lead to larger values in the denominator). Next to that, for a fixed numerator it is
easily seen that the denominator of the ratio is minimized by letting a single node
connect all the cycles. This implies that for a given value of ν̄(L) − ν(L) = k, the
instance in Figure 2.3 gives the worst case ration. Maximizing over k gives

max
k∈N

k

(2k + 1)(3k + 3) + k − (3k + 1) = 1
15 , (2.17)

with the maximum being attained at k = 1. □

2.4.4 An Exact Algorithm for Bounded Treewidth

In this section we consider how to solve VCS-LP exactly with κ = 2 where the circu-
lation graph has a low treewidth. Treewidth is a graph property that was introduced
by Robertson and Seymour (1986) that, informally, indicates how “similar to a tree”
the graph is. Many problems that are NP-hard on general graphs, such as independ-
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ent and dominating set, are solvable in polynomial time if the treewidth of the input
graph is bounded by a constant.

Formally, the treewidth of a graph G is the smallest width for which there a exists
tree-decomposition of G with that width. A tree-decomposition of an undirected
graph G = (V, E) is a tree T , where each node n ∈ T is associated with a bag
Xn ⊆ V and these two properties hold: (1) the endpoints of each edge should occur
simultaneously in at least one bag, i.e. for each edge {v, w} ∈ E there is a node
n ∈ T such that both v ∈ Xn and w ∈ Xn, and (2) for each vertex v ∈ V , all nodes
n for which the associated bag contains v, i.e. v ∈ Xn, are a connected subtree of T .
The width of a tree decomposition T is equal to maxn∈T |Xn| − 1. Although finding
a tree-decomposition of the treewidth of a graph is NP-hard, there is a linear time
algorithm for any fixed width (Bodlaender, 1996). Furthermore, there are algorithms
that are able to efficiently find good tree decompositions in practice, e.g. Tamaki
(2017).

One versatile approach in the design of algorithms that exploit bounded treewidth
is to perform dynamic programming on the tree-decomposition. Central to this idea
is the interpretation of every bag Xn in the tree-decomposition as a graph separator,
which means that if we remove the nodes in the bag from the graph, the graph
splits up in different parts. By moving up the the tree of the tree-decomposition,
the algorithm looks at the current bag of vertices of the graph, which separates the
part of the graph that is already processed by the algorithm from the part still needs
to be processed, with the invariant that all connections between the processed and
unprocessed parts of the graph must go through the current bag. In each state of
the algorithm a state table is constructed for (combinations of) vertices in the bag
associated with the current node in the tree, under the assumption that optimal
decisions were made for the processed part of the graph.

A helpful way to design a dynamic programming algorithm based on the tree-
decomposition is to assume it is a nice tree-decomposition (Bodlaender and Kloks,
1996). Such a tree-decomposition has a root and as a consequence the order in which
the dynamic programming algorithm visits the nodes of the tree is fixed: we start at
the leaves and moves up to the root. In our description of the algorithm, we say that
the algorithm moves from parent nodes to child nodes. A nice tree-decomposition
distinguishes four types of nodes: create nodes which corresponds to leaves in the tree
that only have a single vertex in their bag, introduce nodes which introduce a single
new vertex into the bag of their parent, forget nodes which remove a single vertex
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from the bag of their parents and join nodes which have the same bag as their two
parents. Thus in a nice tree-decomposition join nodes have two parents, leaf nodes
have no parents and the other nodes have a single parent. There exists a linear time
algorithm that converts any tree-decomposition into a nice tree-decomposition with
O(|V |) nodes and the same width (Bodlaender and Kloks, 1996).

Our algorithm adopts this approach. For each bag a state table is constructed for all
partial covers of the lines in the current bag, based on the possible combinations of
values of the left hand sides of Constraints (2.5). In every step we are only allowed to
increase the θc values and thus the coverage of each line. Since each circulation c ∈ E

can only be selected an integer number of times, there is a finite number of fractions∑
c∈δ(l)

θc

kc
that lie in the range [0, 1] for each line l. The total number of combinations

of values of the left hand sides of Constraints (2.5) for a particular set of lines is at
most the product of the possible number of values for the individual constraints.
This gives us an upper bound on the number of states we need to maintain in a state
table when we enumerate the optimal partial covers for that bag. An upper bound
on the number of possible fractional values for the left hand side of the constraint
of a line l is denoted by ρl. One (crude) upper bound for this can be computed as
1 +

∏
c∈δ(l) kc. Note that if the circulations are short enough compared to T , which

they often are in practice, this number will typically be small.

A single state in the state table for a bag Xn assigns a fraction ql to each line l ∈ Xn

where we have ql ∈ {0, 1
ρl

, . . . , ρl−1
ρl

, 1}. The state table for a node n ∈ T maps
each state to the minimum number of vehicles required to reach this state. If the
algorithm generates the same state multiple times, it is sufficient to store only the
state for which the minimum number of vehicles was required to reach the state. If
we introduce ρ as the maximum ρl for all lines l ∈ L, the size of the table is for a
single bag is O(ρw+1).

To conclude the description of the algorithm, we describe how the state table for
each of the four types of nodes in the tree-decomposition can be computed based on
the state tables of the parent(s). In a start node, only a single line l is introduced
and thus only a fixed circulation is considered, modeled by a self loop. This loop
can be used at most ρl times and may not be used at all. These state tables can
be generated in O(ρ) time. In an introduce node, a new line l is introduced to the
state table of the parent. Due to this introduction, we have to expand all states in
the parent table with all possible multiplicities of the circulations in δ(l), including
multiplicities of zero. As the state table of the parent contains O(ρw) states and
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there are O(w) circulations that connect the new line l to lines in the current bag,
each of which can be used at most ρ times in the expansion, we can construct the
state table for an introduce node in O(w · ρw+1) time. In a forget node, a line l is
removed from the state table of parent. This means that from this step onward, that
particular line is in the set of lines that have been processed by the algorithm and
thus we must make sure that it is fully covered. This can be achieved by removing all
states from the parent table where the ql of this line is not equal to 1, as the removal
of line l implies that these states are infeasible. This can be done in O(ρw+1) time
as we only have to filter the state table of the parent. Finally, in a join node we have
two parent nodes with the same bag, but potentially different states. We construct
the new state table by either taking the state and its associated number of vehicles
from one of the two parents’ state table or by taking a state from one table and
combining it with a state from the second table, by adding up the ql’s of both states
and adding up the number of vehicles of the two states. These combinations are
only worth considering if none of the resulting ql’s exceeds 1. As both parent tables
can be of size ρw+1, there are ρ2w+2’ combinations that can be explored in this step.
This means the table for a join node can be computed in O(ρ2w+2) time.

When the algorithm is done, we can find the optimal solution to VCS-LP in the
root node at the state where all ql’s are equal to one. Recall that the size of the
tree-decomposition is O(|L|) and each node in this decomposition can be processed
in O(ρ2w+2) time.

Theorem 2.9. VCS-LP with κ = 2 and auxiliary constraints on the allowed circu-
lations can be solved in O(nρ2w+2) time where n = |L|, w is the tree-width of the
circulation graph and ρ = maxl∈L

∏
x∈{kc|c∈δ(l)} x.

2.5 Conclusion

We have shown that Vehicle Circulation Scheduling on a Line Plan is NP-hard for
any finite restriction on the number of lines that can be included in a circulation
(κ) greater than two. For the κ = 2 case we need to make the (realistic) additional
assumption that we have auxiliary restrictions on which lines can be combined in
order to prove NP-hardness. For the κ = 2 case we show that if we can cover each
line by at most one unique circulation, a matching algorithm yields the optimal
solution. This solution provides a 16

15 -approximation in case multiple circulations can
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be used. We also provide an exact algorithm that can exploit low treewidth of the
circulation graph, and a low number of vehicles required per circulation. For future
research, it makes sense to combine these algorithms with the line planning process to
see if it can help to make line plans that allow better vehicle schedules. Furthermore,
it is interesting to consider whether algorithms exist that are useful for cases where κ

is small, but greater than two. Finally, it is still an open question whether the κ = 2
case without auxiliary restrictions is NP-hard.
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Integrated Periodic
Timetabling and Vehicle
Circulation Scheduling

This chapter is based on Van Lieshout, R.N. (2021). Integrated Periodic Timetabling
and Vehicle Circulation Scheduling. Transportation Science 55(3), 768–790.
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3.1 Introduction

The timetable is the foundation of any public transportation system. It influences
the travel times of passengers and the paths they take to travel from their origins
to their destinations. Furthermore, the extent to which disturbances such as delays
propagate through the system also highly depends on the timetable. All in all,
it is widely accepted that the timetable determines the attractiveness of the public
transportation system from the passengers’ point of view. Because of the importance
of a good timetable, and the fact that finding such a timetable is a non-trivial exercise,
the timetabling problem has triggered the interest of many researchers in the field of
public transport optimization. However, the impact the timetable has on the costs
of the operator is rarely considered in timetabling models.

In this chapter, we consider periodic timetabling. In a periodic timetable, the schedule
of a single period (e.g. one hour) is repeated throughout the day. Periodic timetables
are favoured by passengers as they can easily memorize the departure times of services
(e.g. a traveller can always take the train at xx:06). Furthermore, operators that use
a periodic timetable only need to plan services for one period, after which they can
repeat the timetable during the entire day.

Most periodic timetabling models are based on the Periodic Event Scheduling Prob-
lem (PESP). Serafini and Ukovich (1989) introduce the PESP and prove it is NP-
complete. In its original form, the PESP is a feasibility problem. Later, researchers
have started to consider optimization variants of the PESP, where the objective typ-
ically is to minimize passenger travel time or to maximize the robustness of the
timetable. The PESP can be solved using constraint programming or SAT solvers
(Gattermann et al., 2016; Großmann et al., 2012; Kroon et al., 2009; Schrijver and
Steenbeek, 1993), the modulo network simplex heuristic (Borndörfer et al., 2016;
Goerigk and Schöbel, 2013; Nachtigall and Opitz, 2008) or mixed-integer program-
ming based approaches (Goerigk and Liebchen, 2017; Liebchen, 2008; Maróti, 2017;
Polinder et al., 2019).

The goal of this chapter is to find timetables that are both attractive for the passen-
gers and for the operator. Specifically, we analyze the trade-off between the travel
time of passengers and the number of vehicles required to operate the timetable. To
illustrate the impact a timetable has on the required number of vehicles, consider
the two timetables in Figure 3.1. The timetable on the left induces two vehicle cir-
culations, which are cyclic sequences of trips performed by the same vehicles, both
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Timetable requiring four vehicles

A B

45

0

15

30

40
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10

35

Timetable requiring three vehicles

55
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30

A B

40

15

10

45

Figure 3.1: Two timetables for a line (A, B) with a frequency of 2 per hour and a
driving time of 40 minutes.

requiring two vehicles. In contrast, the timetable on the right induces one vehicle
circulation requiring three vehicles. Moreover, both timetables yield the same travel
times for passengers. Therefore, as vehicles constitute a large proportion of the op-
erator costs, the second timetable is clearly preferred over the first one.

Traditionally, timetabling and vehicle scheduling are performed sequentially: first the
timetable is optimized to minimize travel times of passengers and subsequently the
vehicles are scheduled to minimize operator costs. However, this is a greedy approach
that leads to globally sub-optimal solutions. More recently, integrated public trans-
port planning, where the goal is to find a good overall line plan, timetable and vehicle
schedule, has seen increasing attention (Burggraeve et al., 2017; Kaspi and Raviv,
2013; Pätzold et al., 2017; Schöbel, 2017; Van Lieshout and Bouman, 2018). The
potential of jointly optimizing the timetable and vehicle schedule has already been
demonstrated for non-periodic timetables by Desfontaines and Desaulniers (2018),
Fonseca et al. (2018), Ibarra-Rojas et al. (2014) and Schmid and Ehmke (2015). Even
when only limited modifications to an initial timetable are allowed, large savings in
operational costs can be obtained without dramatic increases in travel times.

In contrast, only a few contributions consider the integration of periodic timetabling
and vehicle scheduling. Peeters (2003) notes that if the operated vehicle circulations
are fixed a priori, the number of required vehicles can easily be counted within the
PESP. Furthermore, the author shows that choosing the circulation can be incor-



40 Chapter 3

porated in the PESP (without introducing auxiliary variables) for the case that at
most two services terminate at each station. However, this only works under the
sufficient spread assumption, which states that there is never more than one vehicle
idle at a station. Liebchen and Möhring (2007) show that this assumption can be
avoided when there are at most two services terminating at each station, at the
cost of introducing an auxiliary binary variable. Kroon et al. (2013) are able to
choose vehicle turnarounds within the PESP between an arbitrary number of ser-
vices without leaving the PESP framework, but again require the sufficient spread
assumption. Nührenberg (2016) proposes a general explicit matching approach that
is also valid when the sufficient spread assumption does not hold, which requires
extending the PESP with matching variables and constraints. In this model, both
the timetable and the vehicle circulations are entirely determined. We refer to this
completely integrated problem as the Vehicle Circulation Periodic Event Scheduling
Problem (VC-PESP). However, the proposed formulation contains many big-M con-
straints, causing it to not perform well, even on medium-sized instances. Moreover,
the author purely focuses on minimizing the number of required vehicles, without
regard to the passengers’ perspective.

In this chapter, we improve the formulation of Nührenberg (2016), in order to be
able to tackle realistic instances of the VC-PESP and gain insight into the trade-
off between the average travel time a timetable offers and the number of vehicles it
requires. To do so, we first formalize and analyze the vehicle circulation scheduling
problem (given a timetable), which, in contrast to traditional non-periodic vehicle
scheduling (see e.g. Bunte and Kliewer (2009)), has not received much attention in the
literature. Next, we use the properties of the vehicle circulation scheduling problem to
develop a stronger formulation of the VC-PESP. In particular, to reduce the number
of big-M constraints, we develop a modeling technique that computes the minimum
turnaround time at stations in a contracted graph. In addition, we present new valid
inequalities that bound the minimum turnaround time of vehicles, strengthening the
linear programming relaxation. Finally, we prove that a greedy algorithm is optimal
for the vehicle circulation scheduling problem and use this observation to develop
symmetry-breaking inequalities.

Besides strengthening the formulation of the VC-PESP, we also extend the problem
by considering restrictions on the number of lines that may occur in a single vehicle
circulation. In practice, public transport operators prefer short circulations where
vehicles perform only a single line or alternate between two lines, as such circula-
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tions are more easy to operate and avoid dependencies between different parts of the
network. We show how such practical requirements can be incorporated.

Computational experiments with different instances based on the Dutch railway net-
work demonstrate the effectiveness of the proposed improved formulation. When min-
imizing the number of required vehicles, the improved formulation finds timetables
requiring fewer vehicles compared to the original formulation, reducing the average
optimality gap from 5.0 to 2.6 percent. An analysis of the trade-off between the num-
ber of vehicles and the perceived travel time of timetables illustrates the benefit of in-
tegrating circulation scheduling within the timetabling problem: minimizing average
travel time without taking vehicles into account results in relatively costly timetables.
In more than half of the considered instances, our approach finds timetables that re-
quire fewer vehicles without any increase in the travel time. Moreover, if one permits
a travel time increase of 0.1 percent, we are typically able to reduce the number
of vehicles by about 10 percent. Furthermore, the experiments show that in most
instances vehicle circulations consisting of at most two lines suffice for realizing very
efficient timetables and only small decreases in travel time can be attained if longer
vehicle circulations are allowed.

Summarizing, the main contributions of this chapter are (1) the analysis of the vehicle
circulation scheduling problem, (2) the improvement of a mathematical formulation
to efficiently solve periodic timetabling problems while controlling the number of
required vehicles, (3) showing that neglecting vehicle circulations in the periodic
timetabling problem will often lead to inefficient timetables; considerable savings in
the number of vehicles can generally be achieved without compromising the passen-
gers’ perspective and (4), demonstrating that a large proportion of these savings can
already be obtained with vehicle circulations consisting of at most two lines, which
are attractive for operators.

The remainder of this chapter is structured as follows. In Section 3.2, we discuss the
periodic timetabling problem and in Section 3.3, the vehicle circulation scheduling
problem. In Section 3.4, we describe the mathematical formulation for the VC-PESP
that is proposed in Nührenberg (2016). In Section 3.5, we analyze the computational
complexity of the integrated problem. In Section 3.6, we present the improved for-
mulation. In Section 3.7, we describe how restrictions on the number of lines in a
circulation can be included in the formulation. In Section 3.8, we discuss the results
of the conducted computational experiments. Finally, in Section 3.9, we conclude
and describe future research directions.
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3.2 Periodic Timetabling

In periodic timetabling, the goal is to determine departure and arrival times for a
given set of services, such that all operational and service requirements are met. As
the schedule repeats every period (e.g. one hour), it suffices to determine departure
times and arrival times for a single period.

3.2.1 The Periodic Event Scheduling Problem

The most widely applied method to formulate periodic timetabling problems is
through the Periodic Event Scheduling Problem (PESP), introduced in Serafini and
Ukovich (1989). The input to the PESP is a directed network N = (E, A) referred to
as an event-activity network, a period or cycle time T and lower and upper bounds
la and ua for all a = (e, f) ∈ A. Every node e ∈ E represents a repeating event that
needs to be scheduled at some time πe ∈ [0, T ) and every arc a ∈ A represents an
activity for which the duration should be between the specified bounds:

Definition 3.1 (PESP). Given a period T , an event-activity network N = (E, A)
and lower and upper bounds la and ua for all a = (e, f) ∈ A, the Periodic Event
Scheduling Problem is to determine event times πe ∈ [0, T ) for all e ∈ E, satisfying

(πf − πe − la) mod T ≤ ua − la for all a = (e, f) ∈ A

or to conclude that no such schedule exists.

Serafini and Ukovich (1989) prove the NP-completeness of the PESP. Odijk (1997)
shows the problem is NP-complete even for fixed T ≥ 3 by a reduction from vertex
coloring.

The PESP can be used to formulate a wide range of timetabling constraints. The
events that need to be scheduled are the arrivals and departures of services at all
stations. Activities are used to model various operational and service requirements of
the timetable, covering e.g. driving and dwell times, minimum and maximum transfer
times and minimum separation times. For a more comprehensive overview, we refer
to Peeters (2003) and Liebchen and Möhring (2007).



Chapter 3 43

3.2.2 Mixed Integer Programming Formulations

By introducing an integer variable pa for all a ∈ A, the PESP can be formulated as
the following mixed integer program:

find (π, p) (3.1)

s.t. la ≤ πf − πe + Tpa ≤ ua ∀a = (e, f) ∈ A, (3.2)

0 ≤ πe ≤ T ∀e ∈ E, (3.3)

pa ∈ Z ∀a ∈ A. (3.4)

In this formulation, the pa variables take the role of the modulo operator. For
example, consider an activity a = (e, f) with la = 5 and ua = 15 and let T = 30. If
πf = 5 and πe = 25, pa can take the value 1, such that πf −πe +Tpa = 5−25+30 =
10 ∈ [5, 15].

The standard formulation of the PESP (3.1)-(3.4) has a very weak linear program-
ming (LP) relaxation and does not perform well on reasonably sized instances. A
formulation with fewer integer variables can be obtained by formulating the PESP
in terms of the activity durations or tensions xa = πf − πe + Tpa and exploiting the
cycle periodicity property:

Lemma 3.2 (Cycle Periodicity (Odijk, 1996)). Consider a feasible PESP solution
(π, p) and let xa = πf − πe + Tpa for a = (e, f) ∈ A. Let C denote a cycle in the
event-activity network, with forward arcs C+ and backward arcs C−. It holds that∑

a∈C+

xa −
∑

a∈C−

xa = qCT for some integer qC .

Moreover, aC ≤ qC ≤ bC , with

aC =
⌈∑

a∈C+ la −
∑

a∈C− ua

T

⌉
and bC =

⌊∑
a∈C+ ua −

∑
a∈C− la

T

⌋

Lemma 3.2 shows that the cycle periodicity property is a necessary condition for a
feasible solution to the PESP. Odijk (1996) proves that it is in fact both necessary
and sufficient, so if the property holds for all cycles, the solution is feasible. The final
ingredient for the cycle periodicity formulation is asserted by Nachtigall (1994), who
shows that if the periodicity property holds for the cycles in a carefully chosen subset
of the set of all cycles, it actually holds for all cycles in the event-activity network.
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Specifically, if the cycle periodicity property holds for all cycles in an integral cycle
basis of the event-activity network, it holds for any cycle (Liebchen and Peeters,
2009).

From these results, it follows that the PESP can be formulated in terms of tension
variables xa for all arcs and periodicity variables qC for all cycles in an integral cycle
basis B. The entire cycle periodicity formulation reads as follows:

find (x, q) (3.5)

s.t. la ≤ xa ≤ ua ∀a ∈ A, (3.6)∑
a∈C+

xa −
∑

a∈C−

xa = qCT ∀C ∈ B, (3.7)

aC ≤ qC ≤ bC ∀C ∈ B, (3.8)

xa ∈ R ∀a ∈ A, (3.9)

qC ∈ Z ∀C ∈ B. (3.10)

Constraints (3.6) impose the lower and upper bounds for the tensions. Constraints
(3.7) model the periodicity of the timetable through the cycle periodicity property.
Constraints (3.8) are not required for the correctness of the formulation but are
included to strengthen the LP relaxation.

Assuming the network N is connected, the cycle periodicity formulation contains only
|B| = |A|−|E|+1 integer variables, compared to |A| in the standard formulation. The
cycle periodicity formulation also performed better than the standard formulation in
empirical studies, see e.g. Liebchen et al. (2008).

3.3 Vehicle Circulation Scheduling

Once the timetable is known, operators need to schedule the vehicles in order to
cover all trips. This includes determining sequences of trips performed by vehicles,
and in e.g. railway contexts also coupling and decoupling decisions in order to better
meet passenger demand. In this chapter, we do not consider (de)coupling, but limit
ourselves to vehicle circulation scheduling, which involves determining which trips are
operated consecutively within the periodic pattern, under the assumption that a single
vehicle suffices to cover a trip. As the timetable is periodic, every trip should have
exactly one successor and one predecessor, which results in cycles of trips, referred



Chapter 3 45

to as circulations, that are performed by one or multiple vehicles. For example, if T

is 60 minutes and a certain circulation takes 180 minutes, three vehicles are needed
to operate this circulation. The vehicle circulation scheduling problem (VCSP) is to
find the set of circulations that cover all trips and minimize the number of required
vehicles. Note that if (de)coupling is allowed, the optimal solution to the VCSP
minimizes the number of vehicle compositions, which is strongly related to, but not
necessarily the same as the number of vehicles.

To model vehicle transitions between trips, we let Eend(s) ⊆ E and Estart(s) ⊆ E

denote the ends and starts of trips at station s, and expand the event-activity network
with turnaround activities Aturn(s) linking end events e ∈ Eend(s) with start events
f ∈ Estart(s). That is, if these events and activities were not present in the original
network, we add them. An example is depicted in Figure 3.2.

arr end

start

arrend

start

Turnarounds

Dwell

Drive

Drive Dwell

Drive

Drive

Figure 3.2: Event-activity network with turnaround activities (dashed arcs).

In general, turnaround activities could also involve a vehicle driving from one sta-
tion to another without passengers (a deadhead trip). However, in this chapter
we assume that there are only turnarounds between ends and starts of trips at
the same station. Furthermore, we assume that all transitions between trip ends
and trip starts at the same station are possible, such that the turnaround graph
Gturn(s) = (Eend(s), Estart(s), Aturn(s)) is a complete bipartite graph for every sta-
tion s. We let Eend, Estart and Aturn denote the union of the sets Eend(s), Estart(s)
and Aturn(s) over all stations, respectively. Finally, we incorporate the minimum
turnaround time in the final dwell activity before the end event. This allows us to
set la = 0 and ua = T for all a ∈ Aturn, which will simplify the analysis of the VCSP.

Let Aveh denote all drive and dwell activities in the event-activity network. Then,
a vehicle circulation schedule is a set of directed cycles C in the event-activity net-
work, consisting of vehicle activities and turnaround activities, such that all vehicle
activities are covered exactly once. The cycles represent the sequences of trips per-
formed by vehicles in the periodic pattern. As trips are connected by turnaround
activities, there is a direct correspondence between the vehicle circulation schedule
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and the selected turnaround activities, denoted as T (C). Given a feasible timetable,
the sum of the tensions of a vehicle circulation are an integer multiple of T by Lemma
3.2. Hence, for a given timetable specified in terms of the tensions x, the number
of vehicles required to operate the timetable using vehicle circulation schedule C,
denoted as n(x, C), equals

n(x, C) = 1
T

∑
c∈C

∑
a∈c

xa = 1
T

 ∑
a∈Aveh

xa +
∑

a∈T (C)

xa

 .

For a given timetable, only the selected turnaround activities still need to be determ-
ined. To model the VCSP, let δ+(e) denote the set of turnaround activities leaving
e ∈ Eend and let δ−(e) denote the set of turnaround activities entering e ∈ Estart.
Next, we introduce the binary decision variable ya for a ∈ Aturn which is equal to 1
if a is selected and 0 otherwise. Then, for a given timetable x we can find a vehicle
circulation schedule that minimizes the number of required vehicles by solving the
following problem:

min
∑

a∈Aturn

xaya (3.11)

s.t.
∑

a∈δ+(e)

ya = 1 ∀e ∈ Eend, (3.12)

∑
a∈δ−(e)

ya = 1 ∀e ∈ Estart, (3.13)

ya ∈ {0, 1} ∀a ∈ Aturn. (3.14)

The objective (3.11) is to minimize the total turnaround time. Constraints (3.12)
and (3.13) ensure that every end event has a successor and every start event has a
predecessor. As already observed by Orlin (1982) and Serafini and Ukovich (1989),
it follows that finding a vehicle circulation schedule requiring the fewest number
of vehicles, comes down to solving a weighted perfect matching problem in a bi-
partite graph (the graph induced by all turnaround arcs). Moreover, as we assume
that deadheading is not allowed, the bipartite graph decomposes into a complete
bipartite graph per station, such that a global optimal solution can be found by solv-
ing a weighted perfect matching problem for each terminal station independently.
Borndörfer et al. (2018a) prove that solving this formulation is actually equivalent
with solving a traditional non-periodic vehicle scheduling problem (see e.g. Bunte
and Kliewer (2009)) on a roll out of the periodic timetable over the day.
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3.3.1 Properties

We now present properties of the VCSP. Later, we use these properties to develop a
strong formulation for the VC-PESP.

Our analysis is based on the observation that the arc weights xa of the weighted
perfect matching problem are generated from a special metric. Specifically, there
exist end times πe ∈ [0, T ) for all e ∈ Eend and start times πf ∈ [0, T ) for all
f ∈ Estart such that xa = πf − πe mod T for all a = (e, f)1. Hence, the end events
and start events can be represented by points on the circle with circumference T , such
that we can view the VCSP as clockwise bipartite perfect matching on a circle, which
needs to be performed per station. To illustrate, Figure 3.3 depicts an example of
such a matching problem and a possible solution. The following proposition provides
a first result of this structure:

Proposition 3.3. Let y1 and y2 denote feasible solutions to (3.11)-(3.14). For a
feasible timetable x, it holds that

∑
a∈Aturn

xay1
a −

∑
a∈Aturn

xay2
a = zT for some

integer z.

Proof. Intuitively, this statement must be true since the number of vehicles required
to operate a timetable must always be integer. For a formal proof, let M1 = {a ∈
Aturn : y1

a = 1} and M2 = {a ∈ Aturn : y2
a = 1}. The symmetric difference of two

perfect matchings M1 ⊕M2 =
(
M1 \M2) ∪ (M2 \M1) is the union U of vertex-

disjoint cycles. Within these cycles, arcs from M1 and M2 alternate. It follows
that

∑
a∈Aturn

xay1
a −

∑
a∈Aturn

xay2
a =

∑
C∈U

( ∑
a∈C:a∈M1

xa −
∑

a∈C:a∈M2

xa

)
=
∑
C∈U

qCT (Lemma 3.2)

=
(∑

C∈U

qC

)
T

for integers qC . □

To further analyze the problem, we define the inventory function of a matching
1We disregard the case where xa = T , as this is never optimal for minimizing the number of

vehicles.
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Is(t, M), which denotes the number of idle vehicles at station s under matching M

at time t ∈ [0, T ). Figure 3.3 depicts an example of the inventory function. Using
this concept, the following lemma characterizes optimal solutions to the VCSP.

Matching M

0

1
2T

1
4T

3
4T

⊕ End Event

	 Start Event	

⊕
⊕

⊕

⊕

	
	

	 Inventory Is(t,M)

0

1

2

3

1
4T

1
2T

3
4T T

t →

Figure 3.3: Example of a matching at a station and the associated inventory function.

Lemma 3.4. Consider station s with turnaround arcs Aturn(s) and tensions xa for
all a ∈ Aturn(s). Let M ⊆ Aturn(s) and M ′ ⊆ Aturn(s) denote perfect matchings
from the associated end events to start events. The following statements are true:
(i)
∑

a∈M xa =
∫ T

0 Is(t, M)dt.
(ii) Is(t, M)− Is(t, M ′) = z for all t ∈ [0, T ) for some constant integer z.
(iii) M is a minimum cost perfect matching if and only if Is(t, M) = 0 for some
t ∈ [0, T ).

Proof. (i) Consider an arc a = (e, f). Let Is(t, a) be equal to 1 if a "covers" time
instant t and 0 otherwise. Formally, if πe ≤ πf , a covers t if t ∈ [πe, πf ], otherwise
a covers t if t ∈ [0, πf ] ∪ [πe, T ]. It holds that Is(t, M) =

∑
a∈M Is(t, a). Hence,∫ T

0 Is(t, M)dt =
∫ T

0
∑

a∈M Is(t, a)dt =
∑

a∈M

∫ T

0 Is(t, a)dt =
∑

a∈M xa.
(ii) Let end(a, b) and start(a, b) denote the number of end and start events in the
interval [a, b), respectively. It holds that Is(t, M) = Is(0, M) + end(0, t)− start(0, t).
Therefore, Is(t, M)− Is(t, M ′) = Is(0, M)− Is(0, M ′), which is integer.
(iii) First assume that Is(t′, M) = 0 for some t′ ∈ [0, T ). Let Mopt denote the optimal
matching. Clearly, Is(t′, Mopt) ≥ 0, such that Is(t′, M)−Is(t′, Mopt) ≤ 0. From (ii),
it follows that Is(t, M)− Is(t, Mopt) ≤ 0 for all t. From (i), we then find that

∑
a∈M

xa −
∑

a∈Mopt

xa =
∫ T

0
Is(t, M)− Is(t, Mopt)dt ≤ 0,

hence M is optimal. To prove the reverse direction, assume that M is optimal but
Is(t, M) > 0 for all t ∈ [0, T ). Then, there exist arcs (e1, f1), ...(ek, fk) ∈ M that
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cover all t ∈ [0, T ) such that

0 ≤ πe1 < πfk
≤ πe2 < πf1 ≤ ... ≤ πek

< πfk−1 < T.

Note that the alternating structure is due to the non-empty inventory at any t. The
strict inequalities come from the observation that if πe = πf for some end event e

and start event f , this pair does not affect the inventory function and can therefore
be left out of consideration. Clearly, the cost of the matching can be decreased by
selecting the arcs (e1, fk), (e2, f1), ..., (ek, fk−1), contradicting the optimality of M .
To illustrate, an example of a matching for which Is(t, M) > 0 for all t ∈ [0, T ) is
presented in Figure 3.4. □

0

1
2
T

1
4
T3

4
T

⊕ End Event
	 Start Event	

⊕

⊕
⊕

	

	

Figure 3.4: Example of a matching for which the inventory is non-empty at any t.

Next, we present a greedy algorithm for vehicle circulation scheduling in Algorithm 1.
The algorithm simply iteratively matches unmatched end events with the unmatched
start event that gives the shortest turnaround time.

Algorithm 1 Greedy algorithm for vehicle circulation scheduling
Input: Turnaround graph Gturn(s) = (Eend(s), Estart(s), Aturn(s)) and turnaround

times times turnaround times xe,f ∀(e, f) ∈ Aturn(s)
Output: Minimum cost perfect matching M in Gturn(s)

1: M = ∅, Uend = Eend(s), Ustart = Estart(s)
2: while M is not a perfect matching do
3: Pick any event e ∈ Uend
4: Find f = argming∈Ustart xe,g

5: M ←M ∪ (e, f)
6: Uend ← Uend \ e, Ustart ← Ustart \ f

7: Return M
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Theorem 3.5. Algorithm 1 is optimal for the VCSP.

Proof. Assume Mgreedy is not optimal. Then, by Theorem 3.4, Is(t, Mgreedy) > 0 for
all t ∈ [0, T ). As in the proof of part (iii) of Lemma 3.4, this implies that there exist
arcs (e1, f1), ...(ek, fk) ∈M that cover all t ∈ [0, T ), such that

0 ≤ πe1 < πfk
≤ πe2 < πf1 ≤ ... ≤ πek

< πfk−1 < T.

We can further assume that e1 is the end event that is matched first in the greedy
algorithm (of the events e1, ..., ek), as otherwise the events can be relabeled and the
times can all be shifted by a constant. The event e1 is matched with f1. However,
it holds that xe1,fk

< xe1,f1 . Therefore, the greedy algorithm would select the arc
(e1, fk) instead of (e1, f1), resulting in a contradiction. It follows that Mgreedy is
optimal. □

As a corollary, we find that the vehicle circulation scheduling problem can be solved
in time O(m2 log m), where m = |Eend| = |Estart|.

Corollary 3.6. The VCSP can be solved in O(m2 log m), where m = |Eend|.

Proof. Algorithm 1 is correct for any order in which the end events are matched.
Hence, a valid approach is to first sort all turnaround activities in the entire network
according to their tension, and then choose the first m (starting with the shortest
tension) non-conflicting activities in this list as the selected turnarounds. Since there
are at most m2 activities in the turnaround graph, this results in a complexity of
O(m2 log m2) = O(m2 log m). □

We conclude this section by proving two additional properties of the VCSP. In Pro-
position 3.7 we show that in case the events at a station repeat with a shorter period
than the global period (e.g. every 30 minutes instead of 60 minutes), the inventory
function at this station will also repeat with the shorter period, for any matching.
In Theorem 3.8, we provide a lower bound on the minimum turnaround time at a
station based on a weighted sum of the durations of all turnaround activities.

Proposition 3.7. Consider station s with turnaround arcs Aturn(s) and suppose the
events Eend(s) and Estart(s) repeat periodically every Ts time units,
with Ts < T . Then, for any perfect matching M ⊆ Aturn(s), it holds that
Is(t, M) = Is(t + Ts mod T, M).
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Proof. Since the end and start events repeat every Ts time units, it holds that
end(0, Ts) = start(0, Ts). Moreover, it holds that start(0, t) = start(Ts, Ts + t) and
end(0, t) = end(Ts, Ts + t). First, consider the case where t + Ts < T . Then,

Is(t + Ts mod T, M) = Is(t + Ts, M)

= Is(0, M) + end(0, t + Ts)− start(0, t + Ts)

= Is(0, M) + end(Ts, Ts + t)− start(Ts, Ts + t)

= Is(0, M) + end(0, t)− start(0, t)

= Is(t, M).

As T must be a multiple of Ts, it follows that

Is(t, M) = Is(t + iTs, M) for t ∈ [0, Ts) and i ∈ {1, ..., T/Ts − 1} (3.15)

Next, consider the case where t+Ts ≥ T . It holds that t+Ts mod T = t+Ts−iT for
some i ∈ Z. Because T must be a multiple of Ts. it follows that t+Ts mod T = t−jTs

for some j ∈ Z. Equation (3.15) implies that Is(t+Ts mod T, M) = Is(t−jTs, M) =
Is(t, M). □

Theorem 3.8. Consider station s with end events Eend(s), turnaround arcs Aturn(s)
and tensions xa for all a ∈ Aturn(s) and let M(s) ⊆ Aturn denote any feasible perfect
matching. It holds that

∑
a∈M(s)

xa ≥
1

|Eend(s)|
∑

a∈Aturn(s)

xa − T
|Eend(s)| − 1

2 . (3.16)

Proof. We first consider the case where end events and start events alternate in the
periodic pattern. Let k = |Eend(s)|. Then, we can partition the arcs Aturn(s) =
A1(s) ∪ A2(s) ∪ ... ∪ Ak(s), where A1(s) contains all activities from end events to
the next start, A2(s) all the activities from end events to start events that ’skip’
one start event and in general Ai(s) contains the activities from end events to start
events that ’skip’ i departures (see Figure 3.5 for an illustration). It can be observed
that

∑
a∈Ai(s) xa =

∑
a∈A1(s) xa + (i− 1)T . Therefore, we have that

∑
a∈Aturn(s)

xa =
k∑

i=1

∑
a∈Ai(s)

xa = k
∑

a∈A1(s)

xa + T
k(k − 1)

2 ,
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or equivalently, ∑
a∈A1(s)

xa = 1
k

∑
a∈Aturn(s)

xa − T
k − 1

2 .

The theorem follows from the observation that A1(s) minimizes the total turnaround
time. For the case where end and start events do not alternate, we first relate the
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Figure 3.5: Illustration of the decomposition of all turnaround arcs into A1(s), A2(s)
and A3(s), along with the corresponding inventory functions.

theorem to the difference between the minimum turnaround time and the average
turnaround time. Let M(s) denote the set of all perfect matchings at station s

and let x(M) =
∑

a∈M xa denote the turnaround time of matching M . Since the
turnaround graph is a complete bipartite graph, there are |Eend(s)|! distinct perfect
matchings and every arc is contained in |Eend(s)− 1|! matchings, so that
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1
|M(s)|

∑
M∈M(s)

x(M) = 1
|Eend(s)|!

∑
a∈Aturn(s)

∑
M∈M(s):a∈M

xa

= 1
|Eend(s)|!

∑
a∈Aturn(s)

|Eend(s)− 1|! xa

= 1
|Eend(s)|

∑
a∈Aturn(s)

xa.

In other words, the theorem gives a lower bound on the turnaround of any matching
based on the average turnaround time over all possible matchings. Hence, what
remains to prove is that the difference between the minimum turnaround time and
the average turnaround time is maximized when end events and start events alternate.

Let Mopt denote the matching attaining the minimum turnaround time and let M ′

denote any other matching. Let πe ∈ [0, T ) denote the event time of event e. As
ends and starts do not alternate, there are end events e1 and e2 and start events f1

and f2 such that (e1, f1) ∈Mopt, (e2, f2) ∈Mopt and

0 = πe1 ≤ πe2 < πf1 ≤ πf2 .

Now, consider shifting f1 with δ such that π′
f1

= πf1 − δ and πe1 ≤ π′
f1
≤ πe2 , i.e.

after the shift the end events e1, e2 and start events f1, f2 do alternate. Let x′(M)
denote the turnaround time of matching M after shifting f1. Clearly, x′(Mopt) =
x(Mopt)− δ. Let ealt denote the end event that turns on f1 in matching M ′. Then,

x′(M ′) =

x(M ′) + T − δ if πf1 − δ < πealt < πf1

x(M ′)− δ else.

It follows that x′(M ′) − x′(Mopt) ≥ x(M ′) − x(Mopt). In other words, by dis-
entangling non-alternating end events and start events, the difference between the
minimum turnaround time and the turnaround time of an arbitrary matching cannot
decrease. Therefore, the difference is maximized when all ends and starts alternate.
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Putting the ingredients together, we find that

1
|Eend(s)|

∑
a∈Aturn(s)

xa −
∑

a∈M(s)

xa ≤
1

|Eend(s)|
∑

a∈Aturn(s)

xa −
∑

a∈Mopt(s)

xa

= 1
|M(s)|

∑
M∈M(s)

x(M)−
∑

a∈Mopt(s)

xa

≤ 1
|M(s)|

∑
M∈M(s)

x′(M)−
∑

a∈Mopt(s)

x′
a

≤ T
|Eend(s)| − 1

2 .

□

Note that for stations with only a single terminating line, Equation (3.16) directly
gives the minimum turnaround time, since the end events and start events of one
line always alternate. Hence, for such stations, the minimum turnaround time can
be computed without explicitly solving a matching problem.

3.4 Mathematical Formulation for the VC-PESP

We are now ready to present a mathematical formulation for the integrated time-
tabling and vehicle circulation scheduling problem. To cover the timetabling part, we
introduce the same decision variables as in the cycle periodicity formulation of the
PESP: continuous tension variables xa for all a ∈ A and integer valued periodicity
variables qC for all C ∈ B, where B is an integral cycle basis. For the vehicle circu-
lation scheduling part, we introduce binary matching variables ya for all a ∈ Aturn

which are equal to 1 if turnaround activity a is selected in the matching and 0 other-
wise. Furthermore, we introduce an integer variable n representing the total number
of vehicles required to operate all circulations. The VC-PESP can then be formulated
as the following bi-objective problem:
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min
∑
a∈A

λaxa (3.17)

min n (3.18)

s.t. la ≤ xa ≤ ua ∀a ∈ A, (3.19)∑
a∈C+

xa −
∑

a∈C−

xa = qCT ∀C ∈ B, (3.20)

aC ≤ qC ≤ bC ∀C ∈ B, (3.21)∑
a∈δ+(e)

ya = 1 ∀e ∈ Eend, (3.22)

∑
a∈δ−(e)

ya = 1 ∀e ∈ Estart, (3.23)

n ≥ 1
T

( ∑
a∈Aveh

xa +
∑

a∈Aturn

xaya

)
(3.24)

xa ∈ R ∀a ∈ A, (3.25)

qC ∈ Z ∀C ∈ B, (3.26)

ya ∈ {0, 1} ∀a ∈ Aturn, (3.27)

n ∈ Z. (3.28)

The objectives are to minimize the average (perceived) travel times of all passengers
(which can be achieved by setting appropriate weights λa) and the operator costs
(captured by the number of required vehicles to operate the timetable). Constraints
(3.19)-(3.21) cover the timetabling part of the formulation. Constraints (3.22) and
(3.23) handle the matching part of the formulation, making sure that every trip
has exactly one successor and one predecessor. Constraint (3.24) provides the link
between the tension variables, the matching variables and the vehicle variable. The
right hand side represents the total driving, dwelling and turnaround time of the
chosen timetable in combination with the selected turnaround, divided by the period
length. In a feasible integer solution, the sum of tensions of each cycle will necessarily
be an integer multiple of the period, such that the division by the period gives an
integer result. The remainder of the constraints state the domains of the variables.

Formulation (3.17)-(3.28) is nonlinear, as constraint (3.24) contains the product of
binary and continuous variables. However, it can be linearized by defining auxiliary
continuous variables we for all e ∈ Eend, representing the turnaround time between
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end event e and the start event it connects to, and replacing constraint (3.24) by

n ≥ 1
T

( ∑
a∈Aveh

xa +
∑

e∈Eend

we

)
. (3.29)

To ensure that the w-variables attain the correct values, we add the following con-
straints:

we ≥ xa −M1(1− ya) ∀e ∈ Eend ∀a ∈ δ+(e), (3.30)

we ≤ xa + M1(1− ya) ∀e ∈ Eend ∀a ∈ δ+(e), (3.31)

we ≥ 0 ∀e ∈ Eend. (3.32)

It suffices to set M1 = T , since xa is smaller than T for turnaround arcs. The resulting
formulation is the one studied by Nührenberg (2016), except that we include both
the average travel time and the number of vehicles as objectives, instead of only the
number of vehicles.

3.5 Complexity

As the PESP is NP-complete, it follows that the VC-PESP is NP-complete as well.
However, it turns out that even if all timetabling complexity is removed from the
problem (such that any timetable is feasible), it is still a hard problem to decide
whether there exists a timetable that can be operated with a certain number of
vehicles.

Specifically, let us define the simple-vc-pesp as follows. Consider a line plan L,
where each line l = (s1, s2) ∈ L has a minimum unidirectional trip time tl and a
frequency fl. From this line plan, we derive an event-activity network with events
for the departures and arrivals of the lines at the terminals, trip activities linking the
departure of a line at one terminal to the arrival of the line at the other terminal, syn-
chronizing activities linking different events of the same line and turnaround activities
linking arrivals with departures at the same terminal. The synchronizing activities
are added for lines with frequencies larger than 1 and impose that the departures of a
line with frequency f are separated by exactly T/f time units. In this problem, there
are no safety or transfer activities and all drive and dwell activities are contracted
in a single trip activity with a fixed duration tl. This implies that the arrival times
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of lines directly follow from the departure times. Therefore, the simple-vc-pesp
contains only two timetabling decision variables πs1

l and πs2
l per line l = (s1, s2),

representing the departure times at the terminals.

Definition 3.9 (simple-vc-pesp). Given a period T , a line plan L specifying the
lines and frequencies and given a maximum number of vehicles n, the Simple Vehicle
Circulation Periodic Event Scheduling Problem is to determine departure times at
the terminals πs1

l and πs2
l for all lines l = (s1, s2) ∈ L such that at most n vehicles

are needed to operate the periodic timetable, or to conclude that no such timetable
exists.

Note that in the simple-vc-pesp, all timetables π are feasible. Hence, the only
remaining complexity lies in making sure that all arrivals have short turnarounds to
departures, such that only a small number of vehicles is required.

Theorem 3.10. The simple-vc-pesp is NP-complete.

Proof. The simple-vc-pesp clearly is in NP. We prove NP-completeness by reduction
from the strongly NP-complete 3-partition problem (Garey and Johnson, 1979).
Let S = {s1, s2, . . . , sm} be a set of integers and let B be an integer such that∑m

i=1 si = m
3 B and for all i it holds that B

4 < si < B
2 . A 3-partition instance is a

YES-instance if it is possible to partition S into k = m
3 triplets S1, S2, . . . Sk such

that each triplet sums to B.

We reduce the 3-partition instance to a star network where we have a central hub
station v0 ∈ V and m + 1 outer stations v1, . . . , vm+1 ∈ V . We put T = k +

∑m
i=1 si

time units. For every element si ∈ S, we create a line li ∈ L = {v0, vi} with frequency
fi = 1 and a trip time ti = 1

2 si. Furthermore, we create a line lm+1 = {v0, vm+1}
with frequency fm+1 = k and a trip time tm+1 = 1

2k .

Note that the total driving time of the created simple-vc-pesp instance equals∑m+1
i=1 2fiti = k+

∑m
i=1 si = T . Therefore, at least 1 vehicle is required to operate the

line plan. We put n = 1. Furthermore, w.l.o.g. we can assume that the vehicles have
a turnaround time of 0 time units at the outer stations (i.e. πvi

li
= πv0

li
+ ti mod T ).

Therefore, only the departure times at the central station need to be determined.
We claim that the 3-partition instance is a YES-instance if and only if the simple-
vc-pesp instance is a YES-instance.

If the 3-partition instance is a YES-instance, we can create a solution using only
a single vehicle. Let S1, ..., Sk denote the triplets. We set πlm+1 = 0, so line m + 1
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has departures at 0, T
k , ..., (k−1)T

k . For triplet Sj = (sp, sq, sr), we set πlp = (j−1)T
k +

1
k , πlq = πlp + 2tp and πlr = πlq + 2tq. Then, it is possible to create a circulation
that performs the first service of line m + 1, then the lines corresponding to S1, then
the second service of line m + 1, then all lines corresponding to S2 et cetera. As this
circulation takes exactly one period, only a single vehicle is needed to operate the
timetable, such that the simple-vc-pesp instance is a YES-instance.

If the simple-vc-pesp instance is a YES-instance, it must be that there is a single
circulation covering all lines with a duration of T . W.l.o.g. we can set πlm+1 = 0. We
can therefore write this circulation as

l1
m+1, l′

1, ..., l′
p︸ ︷︷ ︸

L1

, l2
m+1, l′′

1 , ..., l′′
q︸ ︷︷ ︸

L2

l3
m+1......lk

m+1 l′′′
1 , ..., l′′′

r︸ ︷︷ ︸
Lk

As the services of line m + 1 should be spread exactly 1
k T time units and the total

circulation time equals T , it holds that∑
l∈L1

tl =
∑
l∈L2

tl = ... =
∑
l∈Lk

tl = B,

such that
⋃k

i=1 Li = L\ {lm+1}. The corresponding elements in S partition S into k

subsets with a sum of B. Moreover, since B
4 < si < B

2 , all these subsets must contain
exactly three elements. We conclude that that the 3-partition instance also is a
YES-instance. □

3.6 A Stronger Formulation

The mathematical formulation of the VC-PESP given in Section 3.4 has been in-
vestigated by Nührenberg (2016). However, the author finds that the formulation is
weak and results in large optimality gaps even for medium-sized instances. Besides
the large optimality gaps that tend to come with the PESP model itself (see e.g.
Borndörfer et al. (2019)), this is likely caused by the big-M constraints (3.30)-(3.31)
that are necessary to linearize the formulation. Furthermore, the formulation also
allows for many symmetric solutions, as there can be multiple matchings that attain
the same turnaround time.

In this section, we present several ways to enhance the formulation of the VC-PESP
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by exploiting the special matching structure of the vehicle circulation scheduling
problem. First, we discuss how the number of binary matching variables can be
reduced. Next, we give multiple valid inequalities that strengthen the linear relax-
ation. Finally, we propose symmetry-breaking constraints, that make sure only a
single matching that attains the minimum turnaround time is feasible.

3.6.1 Computing the Matching in a Contracted Network

Even though the period of the entire timetable might be equal to T , often the period
is smaller from a local perspective. We can use this property to reduce the number
of matching variables necessary to compute the total turnaround time at a station.
In particular, if the events at station s repeat every Ts time units, we say that the
local period at station s is Ts. In case the local period is strictly smaller than the
global period, it turns out to be possible to reduce the number of matching variables
at s with a factor of

(
T
Ts

)2
.

For instance, consider a station that serves as a terminal for two lines, line A that
runs every 15 minutes and line B that runs every 30 minutes. Regardless of the global
period, the local period Ts at this station is 30 minutes, since all events repeat at
least every 30 minutes. By Proposition 3.7, this implies that the inventory function
also repeats every 30 minutes, for any matching. Hence, we can simply optimize
the matching for all events occurring in 30 minutes and repeat this pattern in the
subsequent periods. Figure 3.6 visualizes the contraction for this station for the case
that the global period is 60 minutes. The events eA

1 and eA
3 are end events of line A

that are separated with exactly 30 minutes, so they are combined in a single node in
the contracted graph. The same holds for other pairs of events in the original graph.
This results in a reduction of the number of turnaround arcs from 36 to 9.

To formally model the total turnaround time in the contracted graphs, we define for
each line l that terminates at s and has global frequency fl, the local line frequency
fs

l := flTs

T . Next, we create a contracted graph in which every line is represented
with fs

l contracted end events and fs
l contracted start events. Each contracted event

corresponds to T
Ts

events in the regular network that are all separated by a multiple
of Ts minutes. Let Econ

end(s) and Econ
start(s) denote all end events and start events in the

contracted graph at s. The set Acon
turn(s) denotes the set of all turnaround arcs in the

contracted networks, and contains an arc for each pair of contracted end and start
events, such that the contracted network is complete. It follows that each contracted
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arc a corresponds to
(

T
Ts

)2
arcs in the regular network. We let Aturn(a) denote the

set of arcs in the regular network that correspond to the contracted arc a. Finally,
we let S denote the set of all terminal stations.

To perform the matching in the contracted network, we introduce a binary matching
variable γa and a continuous tension variable χa for all a ∈ Acon

turn(s) and a turnaround
time variable ωe for all e ∈ Econ

end(s). The following constraints then model the
matching in this contracted networks:∑

a∈δ+(e)

γa = 1 ∀e ∈ Econ
end, (3.33)

∑
a∈δ−(e)

γa = 1 ∀e ∈ Econ
start, (3.34)

χa ≥ xa′ − T + Ts ∀s ∈ S, ∀a ∈ Acon
turn(s), ∀a′ ∈ Aturn(a), (3.35)

χa ≤ xa′ ∀s ∈ S, ∀a ∈ Acon
turn(s), ∀a′ ∈ Aturn(a), (3.36)

ωe ≥ χa −M2(1− γa) ∀e ∈ Econ
end, ∀a ∈ δ+(e), (3.37)

ωe ≤ χa + M2(1− γa) ∀e ∈ Econ
end, ∀a ∈ δ+(e), (3.38)

n ≥ 1
T

 ∑
a∈Aveh

xa +
∑
s∈S

T

Ts

∑
e∈Econ

end(s)

ωe

 (3.39)

ωe ≥ 0 ∀e ∈ Econ
end, (3.40)

χa ∈ R ∀a ∈ Acon
turn, (3.41)

γa ∈ {0, 1} ∀a ∈ Acon
turn. (3.42)

Constraints (3.33)-(3.34) are the matching constraints for the contracted network.
Constraints (3.35)-(3.36) link the tensions of the activities of the contracted network
with those of the original network. Here, we use that the tensions of the arcs in the
original network associated to an arc in the contracted network are x, x + Ts, x +
2Ts, ..., x + T −Ts for some x ∈ [0, Ts). For example, if the local period is 15 minutes
and the contracted arc a corresponds to tensions of 12, 27, 42 and 57 minutes in the
original network, these constraints enforce that χa = min{12, 27, 42, 57} = 12.

Constraints (3.37)-(3.38) make sure that the turnaround time of every contracted
event is equal to the tension of the arc that is selected to be in the matching. Since
it holds that χa ∈ [0, Ts), it now suffices to set M2 = Ts instead of T , which also
strengthens the formulation. Constraint (3.39) counts the number of vehicles, and
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Figure 3.6: Contraction of the turnaround graph at a station with lines A and B
with frequencies 4 and 2, respectively.

now takes into account that turnaround times of contracted events should be counted
according to their multiplicity.

For the sake of notation, in the remainder of this section, we omit the superscript
"con" to denote the contracted turnaround graph and write xa instead of χa, ya

instead of γa and we instead of ωe.

3.6.2 Strengthening the LP relaxation

A potential weakness of the original formulation is that its linear programming (LP)
relaxation is weak due to the linearization of the quadratic terms xaya. When in-
specting solutions to the LP relaxation, we noticed that even when the periodicity
variables qC are integer for all C ∈ B (so the timetable is feasible) and only the integ-
rality of the matching variables ya is relaxed, the turnaround time variables we often
still equal 0 for all end events. To illustrate this, consider the timetable displayed in
Figure 3.7, with two vehicles turning at a certain station. We assume the event times
are fixed and that the end events take place at time instants −ε and ε, and the start
events at 1

2 Ts − ε and 1
2 Ts + ε, for some small ε. Clearly, the minimum turnaround

time, which is actually obtained by both possible matchings, is Ts. However, if the
matching variables ya are equal to 1

2 , the turnaround time variables we can take the
value ε, such that the total turnaround time is smaller than 2ε. In order to decrease
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the gap between the actual minimum turnaround time and the turnaround time in
the relaxation, we develop three classes of valid inequalities.

0

1
2
Ts

1
4
Ts

3
4
Ts

⊕ End Event

	 Start Event

⊕ ⊕

		
Figure 3.7: Example illustrating the weak linear programming relaxation of the for-
mulation.

Min-Mean Cuts

The first class of valid inequalities is based on the lower bound on the minimum
turnaround time at a station given by Theorem 3.8. This theorem directly implies
that the following inequalities are valid for the VC-PESP:

∑
e∈Eend(s)

we ≥
1

|Eend(s)|
∑

a∈Aturn(s)

xa − Ts
|Eend(s)| − 1

2 ∀s ∈ S. (3.43)

We refer to these inequalities as the min-mean cuts, as Theorem 3.8 relates the
minimum turnaround time with the mean turnaround time over all matchings. Recall
that for stations with only a single terminating line, these cuts directly give the
minimum turnaround time, since the end events and start events of one line always
alternate, so for these stations it is no longer necessary to add any binary variables.

For the example in Figure 3.7, the min-mean cut states that
∑

e∈Eend(s) we ≥ 1
2 Ts.

Therefore, the original LP solution where both turnaround time variables have value
ε is cut off.

Reference Matching Cuts

To improve the effectiveness of the min-mean cuts, we also include the following
constraints. Let Ms denote a reference matching for station s and introduce the
integer variable zs for all s ∈ S. By Proposition 3.3, the difference in turnaround
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time between two matchings must be an integer multiple of Ts, hence the following
equality is valid: ∑

e∈Eend(s)

we =
∑

a∈Ms

xa − Tszs ∀s ∈ S, (3.44)

zs ∈ Z ∀s ∈ S. (3.45)

To illustrate the usefulness of these cuts, consider again the example in Figure 3.7.
In case the reference matching variable zs is integer, this implies that

∑
e∈Eend(s) we

is either 0 or Ts. Next, the min-mean cut states that
∑

e∈Eend(s) we ≥ 1
2 Ts. Hence,

provided that zs is integer,
∑

e∈Eend(s) we must be equal to Ts. The zs variables are
therefore useful variables to branch on in a branch-and-bound context.

Headway Cuts

Headway cuts can be used if all departures at a station should be separated by a
headway time hs > 0. In this case, if a start event f is scheduled at time πf and an
end event e does not connect to f , it follows that e connects to a departure outside
the interval [πf −hs, πf +hs]Ts

. This implies that the following inequalities are valid:

we ≥ xa + hs − Ts ∀s ∈ S, ∀e ∈ Eend(s), ∀a ∈ δ+(e), (3.46)

In case the end event e connects to f , the inequality clearly holds as hs < Ts.
Otherwise, e connects to a different start event, which must be separated at least
hs time units from f . Taking periodicity into account, the right hand side of the
inequality represents a lower bound on the turnaround time. For example, if Ts = 60
minutes, hs = 3 minutes, xe,f = 59 and e does not connect to f , it should hold that
we ≥ 2.

These inequalities cut off a relatively small portion of the feasible region, since they
only have an effect if xe,f + hs > Ts and hs usually is relatively small. By prepro-
cessing the event-activity network, the minimum separation between departures can
usually be strengthened. Furthermore, these constraints can easily be incorporated
by setting M2 = Ts − hs in constraints (3.37)-(3.38).
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3.6.3 Symmetry Breaking

In the VC-PESP, there can be a very large number of matchings that lead to the
same number of required vehicles. This even holds for a fixed timetable. As an
example, consider the timetable at a station depicted in Figure 3.8. All 24 possible
matchings at this station attain the same (and therefore minimum) turnaround time.
To understand why this symmetry occurs, recall that the greedy algorithm described
in Section 3.3 minimizes the total turnaround time, regardless of the order in which
the events are matched. In other words, any order leads to an optimal matching with
the same total turnaround time, but can lead to a different solution. Different orders
do lead to different solutions when the end events and start evens do not alternate.
As a result, branching on the matching variables ya leads to many similar nodes
being created, increasing the computational burden.

0
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Ts

1
4
Ts

3
4
Ts

⊕ End Event

	 Start Event

⊕ ⊕

⊕

⊕

		

	
	

Figure 3.8: Example illustrating the existence of many symmetric solutions.

The symmetries can be broken if we specify an order in which the end events nodes
are matched in the greedy algorithm a priori, and incorporate this order in the
mathematical formulation. Let E<e

end (E>e
end) denote the set of end events that come

earlier (later) in the ordering than end event e and consider a turnaround activity
(e, f) at some station s with tension xe,f . Recall that hs denotes the minimum
separation between departures at station s. In an integer solution, the following
cases can occur:

we ≤


xe,f if e connects to f (so ye,f = 1),

xe,f + M3 if e′ connects to f with e′ ∈ E<e
end,

xe,f − hs if e′ connects to f with e′ ∈ E>e
end.

(3.47)

Here M3 is a sufficiently large constant. Intuitively, if e connects to f , the turnaround



Chapter 3 65

time will be exactly xe,f by constraints (3.30). In the second case, some e′ that comes
earlier in the ordering than e turns on f , such that we cannot restrict we. In the final
case, some e′ that comes later in the ordering than e connects to f , which implies
that the turnaround time we should be at most xe,f − hs, as e has a higher priority
and will hence connect to a start event that departs earlier than f . The above stated
relations can be captured in the following constraints:

we ≤ xe,f +M3
∑

e′∈E<e
end

ye′,f−hs

∑
e′∈E>e

end

ye′,f ∀s ∈ S, ∀e ∈ Eend(s), ∀f ∈ Estart(s).

(3.48)
These constraints ensure that for every possible timetable, only one matching that
attains the minimum turnaround time is feasible, namely the one induced by the
specified order. A sufficiently large value for M3 is Ts − hs.

3.7 Short Circulations

In practice, operators typically prefer shorter vehicle circulations over longer ones,
since short circulations are more robust and easier to manage. If a disturbance occurs
in a short circulation, it affects only a small part of the network. In contrast, if a
disturbance occurs in a long circulation, the disturbance may propagate through all
lines in the circulation, and therefore may have a large impact on the operations.

In this chapter, we consider three types of vehicle circulations. Fixed circulations
consist of services corresponding to a single line. Hence, if the entire network is
operated using fixed circulations, there are dedicated vehicles for all lines. Combined
circulations consist of services associated with two lines, so vehicles can alternate
between lines. Flexible circulations consist of services belonging to three or more
lines.

Fixed circulations are easily imposed within the VC-PESP by removing all turn-
around activities between different lines. For the case where both fixed and combined
circulations are allowed, we consider the slightly more restrictive case that every line
can be combined with at most one other line. Then, let L denote the set of lines,
let Acomb

turn denote the set of all turnaround activities that connect different lines and
let lines(a) denote the pair of lines a combined turnaround connects. If we introduce
binary decision variables vlm for all pairs of lines l, m ∈ L that are equal to one
if the lines are combined and zero else, the following constraints model combined
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circulations: ∑
m∈L,l ̸=m

vlm ≤ 1 ∀l ∈ L, (3.49)

ya ≤ vlines(a) ∀a ∈ Acomb
turn , (3.50)

vlm ∈ {0, 1} ∀l, m ∈ L, l ̸= m. (3.51)

Constraints (3.49) ensure that every line is combined with at most one other line.
Constraints (3.50) link the matching variables with the line combination variables.

Finally, note that when restrictions are imposed on the number of lines in vehicle
circulations, it is not necessary to include all improvements developed in the previous
section. If all circulations are fixed, the min-mean cuts (3.43) suffice for directly
modeling the turnaround times, so none of the other techniques are needed. In fact,
the matching variables and constraints can be omitted entirely. In case combined
circulations are imposed, the matching problems at the different stations are linked,
implying that they cannot be solved for each station independently. As such, the
symmetry-breaking constraints (3.48) are no longer included, as they potentially
might cut off the optimal solution and symmetries are already broken.

3.8 Computational Experiments

In order to demonstrate the effectiveness of the proposed formulation, we present
the results of a series of experiments. First, we focus on minimizing the number of
vehicles to analyze the impact of the contraction techniques, valid inequalities and
symmetry-breaking constraints. Thereafter, we consider the trade-off between the
number of required vehicles and the quality of the timetable from the passengers’
perspective (measured in terms of average perceived travel time).

3.8.1 Instances

The instances used for the experiments are derived from the Dutch railway network.
In the Dutch network, two types of lines are operated: regional lines that have stops at
all intermediate stations and intercity lines that only have stops at intercity stations.
Both line types have completely dedicated rolling stock types and we account for this
in the mathematical model by decomposing the turnaround graphs at each station
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(that is, only turnaround activities between trips of the same type are considered).
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Figure 3.9: Networks used in the computational study.

We consider ten instances that are based on the part of the Dutch railway network
depicted in Figure 3.9a. These instances contain both regional and intercity lines
and are referred to as two-type instances. To construct these instances, we create
ten different line plans for this network from which the event-activity networks are
derived. Safety constraints are generated with a headway of 3 minutes based on
the railway infrastructure. Besides the two-type instances, we also consider a larger
instance with the complete Dutch intercity network with the 2019 line plan, depicted
in Figure 3.9b. This instance is referred to as "complete-ic".

Table 3.1 gives for all instances the number of lines |L|, the period in minutes T ,
the number of events |E|, the number of activities |A|, the number of turnaround
activities |Aturn| and a lower bound on the number of required vehicles n (computed
using minimum driving and dwell times). In order to optimize the perceived travel
time, we employ an origin destination matrix with passenger counts. The origin
destination pairs are routed over the network based on the line plan, giving the
number of passengers per activity. We then define the perceived travel time of a
route as the sum of expected waiting time for the first service, the in-vehicle time
and an additional transfer penalty of 10 minutes plus twice the transfer time. The
activity weights λa are set accordingly.

The experiments are performed on a machine with an Intel Xeon E5-2650 v2 2.60Ghz
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processor with 16 cores and 64 GB RAM. CPLEX 12.8.0 with default settings is
used to solve the mixed-integer programs, using 16 parallel threads. As the number
of valid inequalities is relatively small, we do not separate violated valid inequalities
dynamically but add them directly to the model.

Table 3.1: Characteristics of the instances used in the computational study.

Instance |L| T |E| |A| |Aturn| n
two-type1 10 60 522 732 90 15
two-type2 15 60 684 1000 122 20
two-type3 14 60 752 1105 138 21
two-type4 9 60 908 1405 200 26
two-type5 10 60 1030 1643 290 28
two-type6 10 30 522 734 90 29
two-type7 12 60 1122 1899 318 31
two-type8 15 60 1158 1932 380 33
two-type9 14 30 714 1028 124 40
two-type10 11 20 550 747 78 47
complete-ic 23 60 3932 6683 280 140

3.8.2 Comparing the Formulations

To examine the effectiveness of the proposed techniques, we define the following
formulations:

• Orig: the original formulation presented in Section 3.4.

• Con: the formulation with the contraction technique described in Section 3.6.1.

• Con+Val: the formulation with contraction and with the valid inequalities
described in Section 3.6.2.

• Con+Sym: the formulation with contraction and with the symmetry-breaking
constraints described in Section 3.6.3.

• Con+Val+Sym: the formulation with contraction, valid inequalities and the
symmetry-breaking constraints.

Size of the Formulations

Before we test the actual performance of the formulations, we first examine the im-
pact the contraction technique and the valid inequalities have on the size of the
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formulation. In Table 3.2, we present the number of binary and continuous variables
and the number of constraints that are included in the formulations. Only the vari-
ables and constraints related to the matching part of the formulation are included
here. It can be seen that the contraction on average reduces the number of binaries
by more than a factor of two. Despite the auxiliary variables and constraints that
are introduced, the contraction of the turnaround graphs also results in an overall
decrease of the number of continuous variables and constraints. The reduction in the
number of binaries varies quite strongly over the instances, as it is really dependent
on the properties of the line plan. This reduction is the largest for the complete-ic
instance, from 280 to 61. This can be explained by the fact that the local period in
the densely populated parts of the Netherlands is often 30 or 15 minutes, whereas
the global period of the line plan is 60 minutes. It is exactly in these situations that
the contraction technique is useful.

Table 3.2: The number of binary variables, continuous variables and constraints
required by the different formulations in the matching part of the model.

Orig Con Con+Val Con+Sym Con+Val+Sym
Instance Bin. Cont. Const. Bin. Cont. Const. Bin. Cont. Const. Bin. Cont. Const. Bin. Cont. Const.

two-type1 90 113 220 78 99 208 75 96 222 78 99 262 75 96 276
two-type2 122 152 300 122 152 300 120 150 317 122 152 390 120 150 407
two-type3 138 171 336 126 157 324 123 154 342 126 157 416 123 154 434
two-type4 200 239 476 68 89 336 65 86 340 68 89 380 65 86 384
two-type5 290 340 680 83 108 476 81 106 481 83 108 532 81 106 537
two-type6 90 113 220 78 99 208 75 96 222 78 99 262 75 96 276
two-type7 318 376 752 81 109 436 80 108 448 81 109 488 80 108 500
two-type8 380 434 868 161 196 680 159 194 691 161 196 804 159 194 815
two-type9 124 155 304 112 141 292 109 138 309 112 141 372 109 138 389
two-type10 78 101 196 78 101 196 75 98 211 78 101 248 75 98 263
complete-ic 280 356 712 61 73 344 38 50 266 61 73 370 38 50 292

Average 192 232 460 95 120 345 91 116 350 95 120 411 91 116 416

The valid inequalities are also able to slightly decrease the number of variables. This
can be explained by the fact that if only a single line terminates at a station, the min-
mean cuts provide an exact description of the minimum turnaround time, such that
the matching variables and constraints for that station can be omitted. For some of
the instances, this implies that even the total number of constraints is reduced when
the valid inequalities are added. Including the symmetry-breaking constraints does
lead to an increase of the number of constraints, on average with 66 constraints.

Tightness of the Formulations

To gain more insight into the effect the contraction technique and the valid inequal-
ities have on the strength of the formulation, we perform the following experiment.
First, we find a timetable x by minimizing, to optimality, the number of vehicles using
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the original formulation with all variables relaxed, except the periodicity variables.
As the periodicity variables still are required to be integer, the resulting solution
corresponds to a feasible timetable. We let n(x) denote the number of vehicles this
timetable requires. Next, we fix the timetabling part of the model entirely and solve
the linear relaxation of the remainder of the model with the different formulations.
We let nLP (x) denote the solution value of this relaxed problem. In a tight formu-
lation, the integrality gap, which we define as n(x)

⌈nLP (x)⌉ , should be small (we take the
ceiling as the number of vehicles is integer).

Table 3.3: Results of solving the linear relaxations of the formulations with a fixed
timetable.

Orig Con Con+Val
Instance n(x) nLP (x) Int. Gap nLP (x) Int. Gap nLP (x) Int. Gap

two-type1 21 14.3 1.40 14.7 1.40 16.7 1.24
two-type2 26 19.0 1.37 19.0 1.37 21.5 1.18
two-type3 25 20.2 1.19 20.5 1.19 23.1 1.04
two-type4 31 24.4 1.24 25.5 1.19 28.1 1.07
two-type5 34 27.5 1.21 28.1 1.17 31.2 1.06
two-type6 34 28.7 1.17 29.0 1.13 31.5 1.06
two-type7 38 30.0 1.27 31.3 1.19 35.5 1.06
two-type8 41 32.7 1.24 32.9 1.24 36.9 1.11
two-type9 47 38.5 1.21 38.7 1.21 41.7 1.12
two-type10 52 46.0 1.13 46.0 1.13 48.3 1.06
complete-ic 151 140.6 1.07 146.9 1.03 149.7 1.01

Average 45.5 38.3 1.23 39.3 1.20 42.2 1.09

In Table 3.3, the results of solving the relaxations are presented for the formula-
tions Orig, Con and Con+Val. The other formulations are not included since the
symmetry-breaking constraints do not have an impact on the strength of the formu-
lation. We can observe that the contraction technique and valid inequalities are able
to reduce the integrality gap considerably. For example, for instance two-type1, the
timetable that is found in the first step requires 21 vehicles. In the linear relaxation
however, the original formulation finds a solution with 14.3 vehicles, giving a gap of
1.4. The formulation with contraction finds a slightly better bound of 14.7. An even
stronger bound of 16.7 is obtained by the formulation that also includes the valid
inequalities, driving down the integrality gap to 1.24. In the other instances, the
same pattern is visible. On average, the integrality gap decreases from 1.23 to 1.09
when the improvements are included in the formulation. All in all, this experiment
illustrates that the linear relaxation becomes much more informative about the num-
ber of required vehicles by a timetable when the contraction technique and especially
the valid inequalities are included in the model.
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Performance of the Formulations

We next perform two experiments to assess the practical performance of the formu-
lations. In both experiments, we solve the VC-PESP with the objective to minimize
the number of required vehicles, with flexible circulations, using all five formulations.
In the first experiment, we solve each instance with five different seeds to take into
account that the performance of CPLEX can vary with the seed that is used. For this
experiment, we use a time limit of 15 minutes and consider the average performance
over the five runs. In the second experiment, we use a longer time limit of 1 hour
and perform a single run.

Table 3.4: The average number of required vehicles, the average relative optimality
gap (as a percentage, given by CPLEX) and the number of runs out of five that are
solved to optimality, obtained by the different formulations with a time limit of 15
minutes.

Orig Con Con+Val Con+Sym Con+Val+Sym
Instance Veh. Gap Opt. Veh. Gap Opt. Veh. Gap Opt. Veh. Gap Opt. Veh. Gap Opt.

two-type1 16.0 1.2 4 16.0 0.0 5 16.0 0.0 5 16.0 0.0 5 16.0 1.2 4
two-type2 20.0 0.0 5 20.0 0.0 5 20.2 1.0 4 20.2 1.0 4 20.0 0.0 5
two-type3 22.8 7.8 0 22.4 6.1 1 21.6 2.6 3 21.6 2.6 3 21.4 1.8 3
two-type4 26.4 1.5 3 26.0 0.0 5 26.0 0.0 5 26.0 0.0 5 26.0 0.0 5
two-type5 31.2 10.2 0 30.2 7.3 0 30.2 7.3 0 30.0 6.7 0 30.0 6.7 0
two-type6 30.0 0.0 5 30.0 0.0 5 30.0 0.0 5 30.0 0.0 5 30.0 0.0 5
two-type7 35.2 11.8 0 33.4 7.2 0 33.2 6.6 0 33.2 6.6 0 33.0 6.1 0
two-type8 38.4 14.0 0 37.0 10.8 0 37.2 11.3 0 37.2 11.3 0 36.8 10.3 0
two-type9 41.4 3.4 0 40.8 1.9 2 42.0 4.7 0 40.6 1.4 3 40.2 0.5 4
two-type10 48.0 0.0 5 48.0 0.0 5 48.0 0.0 5 48.0 0.0 5 48.0 0.0 5
complete-ic 150.8 5.2 0 148.8 3.4 0 148.2 3.1 0 149.6 4.0 0 148.0 2.6 0

Average 41.8 5.0 2.0 41.1 3.3 2.5 41.1 3.3 2.5 41.1 3.1 2.7 40.9 2.6 2.8

In Table 3.4, we present the results of the first experiment, stating the average num-
ber of vehicles, the relative optimality gap and the number of times (out of five
runs with different seeds) a provably optimal solution is obtained with the different
formulations. On average, the original formulation clearly is the worst performing
formulation, resulting in the largest number of vehicles, the largest optimality gap
and the fewest number of optimal solutions. However, there is some variation across
the instances. For instances two-type1, two-type2, two-type6, two-type10, all formu-
lations perform (roughly) equally well. This can be explained by the fact these are
precisely the instances with the smallest number of turnaround arcs (see Table 4.2),
implying that the vehicle circulations scheduling part of the formulations is relatively
small. Therefore, it is likely that for these instances, the impact of the enhancements
is limited. For the other seven instances, where the number of turnaround arcs is
larger, the original formulation does result in strictly the largest number of vehicles
and optimality gap, except for instance two-type9. Introducing the contraction tech-
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nique considerably improves the performance, most notably on two-type5, two-type7,
two-type8 and the complete intercity instance. Adding the valid inequalities on top
of the contraction does not improve the average performance. The formulation that
includes symmetry-breaking constraints is not able to find solutions that on aver-
age require fewer timetables, but is able to find better lower bounds, resulting in a
smaller average gap. Moreover, it turns out that when both the valid inequalities
and the symmetry-breaking constraints are included in the formulation, the average
performance does further improve: the Con+Val+Sym formulation attains both the
lowest average number of vehicles and the lowest average gap. In addition, on all
instances this formulation finds the same or a lower number of vehicles than the
other formulations. Compared to the original formulation, Con+Val+Sym reduces
the average number of required vehicles by 0.9 (2.2 percent) and almost halves the
average optimality gap. Con+Val+Sym also finds the optimal solution most often.

Table 3.5: The number of required vehicles, the relative optimality gap (as a per-
centage, given by CPLEX) and the computation time, obtained by the different
formulations with a time limit of 1 hour.

Orig Con Con+Val Con+Sym Con+Val+Sym
Instance Veh. Gap Time (s) Veh. Gap (%) Time (s) Veh. Gap Time (s) Veh. Gap Time (s) Veh. Gap Time (s)

two-type1 16 0.0 45 16 0.0 27 16 0.0 32 16 0.0 52 16 0.0 273
two-type2 20 0.0 3265 20 0.0 34 20 0.0 197 20 0.0 486 20 0.0 34
two-type3 22 4.8 3600 22 4.8 3600 23 8.7 3600 22 4.8 3600 22 4.8 3600
two-type4 27 9.3 OOM 26 4.8 334 26 0.0 97 26 0.0 248 26 0.0 44
two-type5 31 9.7 OOM 30 6.7 3600 31 9.7 3600 30 6.7 3600 30 6.7 3600
two-type6 30 0.0 15 30 0.0 11 30 0.0 40 30 0.0 6 30 0.0 21
two-type7 34 8.8 3600 33 6.1 3600 33 6.1 3600 33 6.1 3605 33 6.1 3600
two-type8 37 10.8 3600 36 8.3 3600 36 8.3 3600 34 2.9 3600 34 2.9 3600
two-type9 42 4.8 3600 41 2.4 3600 42 4.8 3600 40 0.0 1291 40 0.0 964
two-type10 48 0.0 33 48 0.0 12 48 0.0 41 48 0.0 17 48 0.0 23
complete-ic 151 5.3 3600 149 3.4 OOM 147 2.0 3600 147 2.0 3600 147 2.0 3600

Average 41.6 4.9 2596 41.0 3.3 2002 41.1 3.6 2001 40.5 2.0 1828 40.5 2.0 1760
Note. OOM, out-of-memory. The OOM computation times are set to 3600s for computing the average computation time.

The results of the second experiment are presented in Table 3.5, stating the number
of vehicles, optimality gap and computation time obtained with the different formu-
lations. The results are in line with those of the previous experiment: the original
formulation attains an average optimality gap of 4.9 percent compared to 2.0 per-
cent using the formulation with all three enhancements. The contraction technique
and symmetry-breaking constraints appear to lead to the largest improvement in
performance. The formulations Con+Sym and Con+Val+Sym achieve the same ex-
act number of vehicles and optimality gap for all instances. In terms of computation
time, Con+Val+Sym performs better, but the difference is small. Combined with the
results of Table 3.4, we can conclude that the Con+Val+Sym formulation is the most
effective formulation for solving the VC-PESP, yielding considerable improvements
over the original formulation. Finally, it is important to note that these results also
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illustrate the limitations of the proposed enhancements. Despite that the improved
formulations perform much better than the original formulation, Con+Val+Sym is
still unable to solve five out of the eleven instances to optimality. Moreover, the gap
improvement compared to shorter running time is only due to finding better feasible
solutions. The lower bounds are identical to those found in the previous experiment,
indicating that the relaxation is still relatively weak.

3.8.3 Trade-Off Between Number of Vehicles and Travel Time

To analyze the trade-off between the number of vehicles and the average travel time,
we use the concept of a Pareto-efficient timetable, where it is impossible to reduce
the number of vehicles without increasing the average travel time, and vice-versa.
To approximate the set of Pareto-efficient timetables, we first separately minimize
the average travel time and the number of vehicles, resulting in an upper and lower
bound on the minimum number of required vehicles. These first two problems are
solved with a time limit of 30 minutes. Next, for every integer m between the lower
bound and the upper bound, the VC-PESP is solved with the average travel time as
the objective and the constraint that the number of vehicles is at most m. For these
problems, the time limit is set to 15 minutes. As we do not solve the problems to
optimality, this results only in an approximation of Pareto-efficient solutions. The
best performing formulation found in the previous section, Con+Val+Sym, is used
in these experiments.

We approximate the Pareto-efficient solutions for the cases with fixed circulations,
combined circulations and flexible circulations. To speed up the computations, we
use the obtained solutions with fixed circulations as starting solutions for the com-
bined circulations, and the obtained solutions with combined circulations as starting
solutions for the flexible circulations.

Two-Type Instances

The obtained solutions for the two-type instances are visualized in Figure 3.10. The
figure also depicts the sequential solutions obtained by first optimizing the timetable
to minimize the travel time and subsequently optimizing the vehicle circulations for
the found timetable. It can be observed that sequential optimization leads to very
inefficient timetables. In many cases, the number of vehicles of these solutions can
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be reduced without any increases in travel time. Furthermore, if an increase in travel
time is required to reduce the number of vehicles, this increase is typically very
limited. In general, it can be observed that reductions in the number of vehicles only
require small increases in average travel time, but the required increases progressively
become larger when the number of vehicles approaches its minimum.

A second observation from Figure 3.10 is that, as expected, the flexible solutions dom-
inate the combined solutions, which in turn dominate the fixed solutions. Especially
the difference between the combined solutions and the fixed solutions is considerable.
The benefit of flexible circulations over combined circulations is less consistent over
the instances, but still clearly noticeable for two-type5, two-type9 and two-type10.
For seven of the instances, flexible circulations do allow finding solutions with fewer
vehicles than with combined circulations, but these timetables on the far end of the
curve are often much less attractive from the passengers’ side.

To further analyze the benefit of integrating timetabling and circulation scheduling,
Figure 3.11 depicts the increase in travel time and decrease in number of vehicles for
all Pareto-efficient solutions, relative to the sequential solution. The key insight is
that substantial decreases in the number of required vehicles can be achieved at the
cost of very limited increases in travel time. Moreover, for combined circulations it
is possible to decrease the number of vehicles without any increases in travel time
for six out of the ten instances. For fixed and flexible circulations, this is possible in
five of the instances. If a 0.01 percent travel time increase is permitted, significant
savings in vehicles can be obtained for the majority of the instances. This clearly
shows that the timetable obtained by sequentially optimizing the travel time and the
number of vehicles is strongly inferior to timetables obtained by jointly optimizing
the travel time and the number of vehicles. All in all, the results indicate that the
number of vehicles can typically be reduced considerably without doing any serious
harm to the passengers’ perspective.
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Figure 3.10: The approximated Pareto-efficient solutions and the sequential solu-
tions. In some cases, the sequential solutions are not Pareto-efficient, these points
are disconnected from the curve.
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Figure 3.11: Increase in travel time (on a logarithmic scale) plotted against the
decrease in the number of vehicles, both relative to the sequential solution.

Complete Intercity Network

The results for the complete Dutch intercity network are visualized in Figure 3.12.
The plot on the left depicts the approximated Pareto curve and the plot on the right
depicts the increase in perceived travel time and decrease in number of vehicles for the
obtained solutions, relative to the sequential solution. As in the two-type instances,
we can observe that it is possible to realize a decrease in the number of vehicles
compared to the sequential solution at the expense of a relatively small increase in
the average perceived travel time. On the other hand, a decrease in the number of
vehicles of five percent or more is only possible if the travel time is increased by
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Figure 3.12: Results of the complete intercity instance.

slightly less than one percent for fixed circulations, and more than one percent for
combined and flexible circulations, whereas this required much smaller travel time
increases for most two-type instances. Moreover, the maximum attainable relative
vehicle decrease for the two-type instances is much larger. This difference can likely
be attributed to the larger size of the complete-ic instance, as the longer driving
times of the lines imply that the number of vehicles is to a smaller extent determined
by the turnaround times. Hence, optimizing the turnarounds has a relatively smaller
effect on the number of vehicles.

When we compare the results of the different types of vehicle circulations, we observe
the same patterns as in the results of the two-type instances. The benefit of allowing
circulations with multiple lines is clear, especially when the number of vehicles is 155
or more. For example, if there are 155 available vehicles, the average perceived travel
time under fixed circulations is almost 30 seconds longer than under combined or
flexible circulations. The additional benefit of allowing circulations to contain more
than two lines is smaller. When the number of vehicles is 155 or more, the solutions
with combined and flexible circulations even coincide.

Next, we analyze the timetables obtained under flexible circulations in more detail,
to get better insight into the impact that decreasing the number of vehicles has on
the journeys of passengers. Figure 3.13 presents the average perceived travel times
of these timetables, separately for direct passengers. As can be seen, the travel time
for these passengers hardly differs over the different solutions. This can be explained
by the fact that both the travel times of direct passengers and the number of vehicles
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benefit from keeping driving and dwell times as small as possible. It follows that the
increase in average travel time that is necessary to realize a decrease in the number of
vehicles is almost entirely passed on to the transfer times of transferring passengers.
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Figure 3.13: Perceived travel times of direct passengers with timetables requiring
different number of vehicles.
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Figure 3.14: Empirical cumulative distribution function of the transfer time of trans-
ferring passengers with timetables requiring a different number of vehicles.

To illustrate how the transfer times change when the number of vehicles is decreased,
Figure 3.14 displays the empirical cumulative distribution function of the transfer
times of passengers with four different timetables. As expected, the timetable re-
quiring the most (158) vehicles offers the shortest transfer times to passengers. For
over half of the transfers, the arrival and departure of the connecting trains are per-
fectly synchronized, with a transfer time of 0 minutes. The timetable requiring 154
vehicles realizes approximately the same transfer times. This is also consistent with
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Figure 3.12, where we observed that compared to the sequential solution, it is pos-
sible to achieve a small reduction in the number of vehicles without a large increase
in average travel time. When the number of vehicles is reduced to 151, there is a
clear increase in transfer time. With this timetable, still over half of the transfers
are shorter than 5 minutes. Transfer times are increased further with the timetable
requiring the smallest number of vehicles. Here, a quarter of the transferring passen-
gers has a transfer longer than 15 minutes. As long transfers are very much disliked
by passengers, these results illustrate that when considering the trade-off between
the number of vehicles and travel times of passengers, it is important to not only
assess the average travel time, but also the travel times of transferring passengers
separately.

3.9 Conclusion

We presented a new periodic timetabling approach that allows to explicitly consider
the trade-off between passengers’ travel time and the number of required vehicles.
We introduced contraction techniques, valid inequalities and symmetry-breaking con-
straints to cope with the complexities of this integrated problem.

Computational results based on the Dutch railway network illustrate the value of
our approach. The improved formulation performs better when it comes to finding
timetables requiring few vehicles compared to an existing formulation, approximately
halving the average optimality gap. Furthermore, compared to sequential optimiz-
ation of the travel time and the number of vehicles, we are able to find timetables
requiring considerably fewer vehicles with only minimal increases of average travel
times. As such, our approach gives operators the opportunity to save costs without
strongly decreasing the level of service, or conversely, increasing the level of service
by introducing new lines or raising frequencies without strongly increasing the costs.

For further research, the presented approach could be embedded in an (iterative)
scheme for integrated public transport planning, where the goal is to find a line plan,
timetable and vehicle schedule that are both inexpensive to operate and attractive to
passengers. Furthermore, our methods could be applied in different periodic schedul-
ing problems, such as aircraft scheduling or job-shop scheduling. Finally, it would be
interesting to consider a further integration between timetabling and vehicle schedul-
ing in railway contexts, where vehicles can be coupled to meet passenger demand.
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4.1 Introduction

Self-organizing strategies are a promising concept to increase the resilience of urban
public transit systems. In such a strategy, the concept of a schedule or timetable is
abandoned and instead, departure times and/or destinations of vehicles are determ-
ined locally at stations according to an easy-to-implement policy. In the absence of
perturbations, an adequate self-organizing policy causes the system to converge to
some preferable state, typically a periodic repetition of services with constant head-
ways (the time between consecutive services). As a result, the impact of disruptions
always dies out spontaneously, without intervention by a central control authority.
In this chapter, we propose and analyze an easy-to-implement decentralized policy
for dispatching vehicles in a multi-line public transit system and prove the resulting
system exhibits self-organizing behavior.

There are multiple advantages of self-organizing strategies over centralized approaches
to dispatch vehicles. First of all, a self-organizing strategy completely eliminates any
need for the public transit operator to constantly track the vehicles, monitor schedule
adherence and adjust schedules in case of disruptions. Given the cost and effort that
comes with applying centralized control through a decision support system, avoiding
the need for such a system altogether can be an attractive alternative, especially for
smaller operators, operators in developing countries or for services that are only op-
erated on an incidental basis, for example to replace disrupted train lines. Secondly,
centralized control requires communication between the vehicles or local dispatchers
and a central control center, where dispatching decisions are made. This process,
involving communication, determining a new schedule and coordination, can be time
consuming and prone to errors. Especially if rescheduling needs to be performed
frequently, for example because congestion causes travel times to be highly volatile,
this can be cumbersome. Moreover, public transit systems and railway systems in
particular may suffer from out-of-control situations, where extreme events such as
power outages or blizzards result in largely disrupted operations (Dekker et al., 2021;
Van Lieshout et al., 2020). In such situations, centralized rescheduling approaches
are ineffective due to the sheer size of the disruptions and a lack of complete inform-
ation available at the central control center. In contrast, a self-organizing strategy
is typically easy and very fast to apply in all situations, without requiring commu-
nication or even the use of a computer. A self-organizing strategy could also serve
as a back-up plan: operators may want to apply centralized control as a default
and switch to the self-organizing approach when disruptions make it too complex
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to manage the system centrally. Of course a disadvantage of the self-organizing ap-
proach is that passengers cannot rely on a schedule to plan their trips. Therefore,
this approach is most suited for urban high-frequency networks, as passengers tend
to arrive approximately uniformly if the headway is smaller than 10 minutes, despite
a schedule being available (Fan and Machemehl, 2009).

The self-organizing approach has already been introduced in the context of public
transit by Bartholdi and Eisenstein (2012), who developed a simple rule for holding
buses at a control point to reduce headway variation (variation in the time between
consecutive services) and prevent bus bunching. The authors show analytically that
for the case with a single circular line, as long as there are no perturbations, under
their policy any starting position will converge to some fixed point where the head-
ways between all vehicles are equal. Note that this directly implies that whenever
there is a perturbation, the headways will automatically self-equalize after some time.
Even when one of the vehicles breaks down, a new system headway will naturally
emerge. This approach was later extended by Liang et al. (2016) and Zhang and Lo
(2018), who consider both the backward headway and the forward headway when
deciding how long a vehicle should wait at a control point.

In this chapter, we extend the literature on self-organizing dispatching strategies by
considering more complex public transit networks. Specifically, we consider networks
consisting of multiple lines, with the condition that all lines have the same target
headway. In such a system, when a vehicle reaches a terminal station of a line one not
only needs to decide when to depart again, but also which line to perform. For this
problem, we propose and theoretically analyze an easy-to-implement decentralized
dispatching policy. In our policy, every terminal station maintains a fixed cyclic
ordering of its outgoing lines and keeps track of the most recent departure times
of these lines. Vehicles arriving at the station are assigned to the outgoing lines in
round-robin fashion, that is, a vehicle is assigned to each line in turn according to
the fixed ordering. The departure times of vehicles are chosen such that deviations
from the target headway are minimized.

Our policy can be viewed as a generalization of the rotor-router model, originally
introduced by Priezzhev et al. (1996). In the rotor-router model, one or more
agents move over a graph at discrete and synchronous steps. Nodes propagate agents
over the network in round-robin fashion, similar to our policy. The main difference
between our policy and the rotor-router model is that our policy uses the concept of
a target headway, sometimes instructing vehicles to wait in order to meet the target
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headway. Furthermore, we also allow lines to have different travel times, while in the
rotor-router model it always takes one time unit until to traverse an edge. These two
differences completely change the dynamics of the system, such that the properties
of our policy cannot be derived from known results in the rotor-router literature.

Our main theoretical contribution is that we prove that our policy is self-organizing,
leading to emergent behavior. Once converged, the decentralized policy matches the
performance that can be achieved under centralized control. As long as the number
of vehicles is large enough to perform a schedule meeting the target headways, our
policy guarantees convergence to such a schedule. This result holds regardless of the
initial locations of the vehicles. As a consequence, even when one of the vehicles
breaks down or a bus returns to the depot at the end of the driver’s shift, the
remaining vehicles spontaneously redistribute over the network to again meet the
target headway of all lines. In case the number of vehicles is not sufficient to meet
the target headways using a centralized approach, we prove that our policy keeps the
headways, on average, as small as possible given the number of available vehicles. We
also derive upper bounds on the largest headway that can occur and the stabilization
time. Finally, we also show that the assumption of the common target headway is
crucial to our analysis. If target headways are different, matching the performance of
centralized control is equivalent to solving an NP-complete problem. Therefore, there
does not exist a policy that requires no more than the optimal number of vehicles
and is guaranteed to stabilize within polynomial time (unless P=NP).

Besides a theoretical analysis, we also assess the practical performance of our policy in
numerical experiments. We show that after a vehicle breakdown, the target headway
is restored quickly, especially when there is more than one spare vehicle available.
In other experiments, we analyze the impact of relaxing the assumptions that are
required for the theoretical results. We find that the performance of the policy
degrades if the target headways are different or time varying or the travel times are
stochastic, but this can be compensated by having some buffer in the system in terms
of the number of available vehicles. Experiments on the transit systems of the cities
of Göttingen, Amersfoort and The Hague support the conclusion that a relatively
small buffer is sufficient for attaining good performance.

The remainder of this chapter is structured as follows. In Section 4.2, we describe the
problem setting and explain the policy. In Section 4.3, we discuss related literature.
In Section 4.4, we theoretically analyze the performance of the policy. In Section
4.5, we discuss the results of a series of experiments that illustrate the practical
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performance of the policy. Finally, we conclude the chapter in Section 4.6.

4.2 The Policy

4.2.1 Problem Setting and Notation

We represent the public transit system by a directed network G = (S,L), where S is
the set of terminal stations and L the set of lines. The intermediate stations are not
relevant for our policy and therefore not included in the network. We assume that the
network is symmetric, such that for every line (s→ s′) ∈ L, the reverse line (s′ → s)
is also an element of L. Furthermore, we assume that G is connected (otherwise the
connected components can be considered separately). For line l = (s, s′) ∈ L, the
time between a departure of a vehicle at s and its arrival at the other terminal station
s′ is referred to as the travel time of line l and denoted by tl. We allow for asymmetric
travel times, so the travel time of a line and its reverse line are not required to be
equal. Every line has the same target headway, which we denote as H. In other
words, the goal is to operate each line every H time units. We assume that all travel
times and H are integer. Fractional inputs can be converted into integers by scaling.
We let δ+(s) and δ−(s) and denote the set of lines originating and terminating at
s ∈ S, respectively.

s1 s2

s3

s4

15

10

20

12

Target headway H: 30 min.

Figure 4.1: Illustration of the problem setting. Travel times are symmetric and given
in minutes.

We assume there is a fixed number of vehicles available in the system, which we
denote as n. At the moment of initialization, all vehicles are at stations. Vehicles
are allowed to switch between lines at the terminal stations, but are not allowed
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to deadhead (drive without passengers). Therefore, after a vehicle performs line
(s → s′), the next line the vehicle is assigned to must be an element of δ+(s′). To
meet all the target headways, one needs at least n∗ vehicles, with

n∗ =
∑

l∈L tl

H
.

In general, n∗ may be fractional, so it can be rounded up to the next integer to obtain
a stronger bound. Furthermore, this bound on the number of required vehicles does
not depend on whether the system is operated using a centralized or a decentralized
approach. Although operators will naturally choose a target headway that is feasible
given their fleet size, we consider both the case where n ≥ n∗ and where n < n∗, as
the latter may be relevant when there is a breakdown of a vehicle or travel times are
longer than anticipated.

A visual illustration of the problem setting is provided in Figure 4.1, depicting a
network of four stations, four lines and four vehicles. In this example, n∗ = 3.8, so
at least four vehicles are necessary to meet the target headways.

4.2.2 Policy Definition

We now propose a policy for dispatching vehicles at a terminal station. The policy
determines the next line and the next departure time of a vehicle arriving at a
terminal station. In the policy, the lines starting at a terminal station are selected
in round-robin fashion, according to a fixed (but arbitrary) cyclic order. Departure
times are based on the previous departure times of the lines, which are assumed to
be known at the station. The departure time is taken to be the maximum of the
target departure time, which is equal to the sum of the previous departure time and
the target headway, and the current time (as it is not possible to depart in the past).
Note that any minimum required time between services can be incorporated in the
definition of the travel times, so we assume without loss of generality that an arriving
vehicle can depart immediately.

As an example, suppose a vehicle arrives at station s2 from Figure 4.1 at 9:10.
Table 4.1a displays the relevant information at s2 at this time, indicating which
line should be performed next, the previous departure times of the lines starting at
s2 and the target departure times. Our policy assigns the arriving vehicle to line
(s2 → s4), as it is indicated that this line should be performed next. Naturally, the
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Table 4.1: The state at station s2 at two different time instants.

(a) Current time: t = 9:10

Line Next Prev. Dep. Target Dep.
s2 → s1 8:50 9:20
s2 → s3 9:00 9:30
s2 → s4 8:35 9:05

(b) Current time: t = 9:15

Line Next Prev. Dep. Target Dep.
s2 → s1 8:50 9:20
s2 → s3 9:00 9:30
s2 → s4 9:10 9:40

previous departure time of this line is also the longest ago. As the target departure
time has already passed, the departure time is set at 9:10. Table 4.1b shows the
updated information after the departure. Note that the target departure time of line
(s2 → s4) is now equal to 9:40, as it is only based on the most recent departure time.
Suppose that the next arrival occurs at time 9:15. The policy assigns the arriving
vehicle to line (s2 → s1). As the target departure time of line (s2 → s1) is 9:20, the
policy instructs the vehicle to wait for 5 minutes and depart exactly at 9:20.

For a formal definition of the policy, let us (arbitrarily) order the lines starting at
station s ∈ S as ls

1, ls
2, ..., ls

|δ+(s)|, representing the cyclic order in which the lines from
this station are performed. Let ls

next ∈ δ+(s) denote the next line to be performed
from station s and let τl denote the current target departure time of line l (at ini-
tialization, all target departure times are 0 and ls

next = ls
1). Suppose at time tnow,

a vehicle arrives at station s and ls
next = ls

i . Our policy assigns the arriving vehicle
to line ls

i and schedules it at time t′ = max{τls
i
, tnow}. Next, the policy updates the

target departure time of the selected line:

τls
i
← t′ + H.

Finally, the policy updates ls
next according to the order of the lines:

ls
next ← ls

(i mod |δ+(s)|)+1.
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4.3 Related Literature

4.3.1 Self-Organizing Approaches in Public Transit

Bartholdi and Eisenstein (2012) were the first to introduce the concept of self-
organization or self-coordination in the field of public transit scheduling. In their
approach a vehicle is delayed at a control point by a time proportional to the head-
way to the trailing vehicle. The authors prove that for the case with a single circular
line, this policy ensures that all headways self-equalize over time, regardless of the
initial locations of the vehicles. This approach has been extended by Liang et al.
(2016) and Zhang and Lo (2018), who consider both the backward headway and the
forward headway when computing how long a vehicle should be delayed, resulting
in a faster convergence rate. Zhang and Lo (2018) also provide theoretical evidence
that the headway variation remains limited under stochastic travel times. However,
only single-line systems are considered in these papers.

4.3.2 Multi-Line Control

For multi-line systems, the approach of Argote-Cabanero et al. (2015) is closest to
our work. In this study, the authors propose an adaptive control rule for holding,
accelerating and decelerating vehicles with the aim to adhere to the schedule as
well as possible. However, the possibility to dynamically switch lines after a vehicle
reaches a terminal station is not considered. Furthermore, this approach requires
the specification of a target schedule and a number of functions and parameters.
In contrast, our approach does explicitly allow vehicles to change lines in order to
better spread vehicles over the network and only requires the specification of a target
headway, making the policy easier to implement. Other papers focusing on multi-line
systems, such as Hernández et al. (2015) and Petit et al. (2019), consider centralized
optimization based approaches to reduce bus bunching, as opposed to applying a
local decision rule.

4.3.3 Rotor-Router Systems

Our policy can be viewed as a generalization of the rotor-router model, which was
originally introduced in Priezzhev et al. (1996) as the deterministic counterpart of a
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random walk on a graph. In the random walk on a graph, one or more agents move
over a graph at discrete and synchronous steps. The next edge to be traversed by an
agent is selected randomly from the set of incident edges of the current node where
the agent is located (Lovász, 1993). In the rotor-router model, a node does not send
agents visiting it to a random neighbour, but instead selects the incident edges in
round-robin fashion. That is, every node in the graph maintains a cyclic ordering
of its incident edges and has a pointer indicating the next edge to be traversed by
an entering agent. Whenever an agent enters a node, the pointer is advanced to the
next edge in the cyclic ordering.

As our policy assigns arriving vehicles at a station to lines in a round-robin fashion,
it is similar to the the rotor-router system. On the other hand, in the rotor-router
model it takes one time step to traverse an edge, whereas in our case a line can have
any positive integer valued travel time. Moreover, our policy sometimes instructs to
hold a vehicle at a station to meet the target headway, where agents in the rotor-
router model move in every time step. However, we will see that some of the results
for the rotor-router model also hold for our policy.

For the rotor-router system, a number of relevant results have been established.
When there is only one agent, Priezzhev et al. (1996) proves for the rotor-router
mechanism that after a sufficiently long time, the agent gets locked-in in a cycle
where every edge is traversed exactly once in both directions. Yanovski et al. (2003)
and Bampas et al. (2009) show that the lock-in time is bounded by 2mD, where m is
the number of edges in the graph and D the diameter of the graph. The ability of the
system to recover from, for example, edge deletions (corresponding to the removal of
lines in a public transit network) is investigated in Bampas et al. (2017). For the case
with multiple agents, Wagner et al. (1999) prove that the difference in the number
of traversals of two edges cannot grow unbounded. Yanovski et al. (2003) present
a stronger bound for the maximum difference between the number of traversals of
two edges and also prove that a rotor-router system with multiple agents converges
to a periodic motion. Chalopin et al. (2015) provide a further analysis of the limit
behavior of the multi-agent rotor router system, and show that unlike the case with
one agent the duration of the periodic motion (so the time until the system returns to
the same state) can be superpolynomial in the number of edges. Finally, Dereniowski
et al. (2016) prove that the time it takes until all edges are traversed with k agents
is at least log(k) times shorter than with one agent.
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4.4 Theoretical Analysis

In this section, we analyze the emerging behavior of the system in case all vehicles
are scheduled according to the proposed policy. First, we investigate whether the
policy serves all lines in a fair or balanced manner, as preferably each line should
have approximately the same number of departures. Secondly, we analyze the long
run behavior of the system and investigate whether the target headway of every line
is met. Thirdly, we provide worst case results on the maximum headway that can
occur under the policy and the time it can take before the system reaches a stable
state. We conclude this section with a discussion regarding the performance of the
policy in case there is no common target headway of all lines.

4.4.1 Balanced Services

We first analyze the extent to which our policy leads to a balanced service of all
lines. Ideally, at any point in time, every line should have approximately the same
number of departures. Formally, let f(s → s′) denote the number of departures of
line (s → s′) ∈ L up to time t. The lemmas and theorems that we prove hold for
any t. Hence, for readability, we omit the index t. In this section, the goal is to show
that the difference between f(s1 → s′

1) and f(s2 → s′
2) is bounded for two arbitrary

lines (s1 → s′
1), (s2 → s′

2) ∈ L

As the policy serves lines in a round-robin fashion, for two lines (s→ s′) and (s→ s′′)
originating at the same station, it holds that |f(s→ s′)− f(s→ s′′)| ≤ 1. The first
part of our analysis only depends on this property of our policy. Because this property
is shared with the rotor-router system, we apply a similar analysis as presented by
Yanovski et al. (2003).

Let S1,S2 be a partition of the set of all stations. Then, we define f(S1 → S2) as
the number of times lines starting in S1 and ending in S2 have been performed up
to some time t (again we omit the index t). We also refer to f(S1 → S2) as the flow
from S1 to S2. As it holds for every of the n vehicles that it is impossible to cross
from S1 to S2 twice, without crossing back from S2 to S1, we can make the following
observation (first made by Wagner et al. (1999)).

Observation 4.1. For a partition S1,S2 of the set of stations, it holds that f(S1 →
S2)− f(S2 → S1) ≤ n.
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Using Observation 4.1, it is possible to prove Lemma 4.2, which gives an upper
bound on the difference between the number of times a line and its reverse line are
performed.

Lemma 4.2. For every line (s→ s′) ∈ L, it holds that |f(s→ s′)− f(s′ → s)| ≤ n.

Proof. We define f(s) := min(s→s′)∈δ+(s) f(s→ s′) for a station s ∈ S, denoting the
minimum number of departures for any line leaving s. As the lines are always served
in a round-robin fashion, we have that 0 ≤ f(s→ s′)− f(s) ≤ 1.

Now, suppose that the lemma is not true, such that there exists a pair of opposite
lines (s → s′) and (s′ → s) with f(s → s′) = j and f(s′ → s) ≤ j − n − 1. By
definition, it holds that f(s) ≥ j − 1 and f(s′) ≤ j − n − 1. Consider the partition
S1,S2 where S1 = {s ∈ S : f(s) ≥ j − n} and S2 = {s ∈ S : f(s) ≤ j − n − 1}. We
have that s ∈ S1 and s′ ∈ S2. Let the number of lines crossing from S1 to S2 be m.
As the flow from s to s′ is j and the flow over all other lines from S1 to S2 is at least
j − n, we find that

f(S1 → S2) ≥ (m− 1)(j − n) + j.

Similarly, the flow from S2 to S1 is at most

f(S2 → S1) ≤ (m− 1)(j − n) + j − n− 1.

Therefore, it follows that

f(S1 → S2)− f(S2 → S1) ≥ n + 1.

As this contradicts Observation 4.1, the assumption that the lemma is not true must
be wrong. □

We now present a theorem that bounds the difference between f(s1 → s′
1) and

f(s2 → s′
2) for two arbitrary lines, which implies that the number of times two lines

are performed cannot differ too much, at any point in time. To do so, let lines(s1, s2)
denote the minimum number of lines that has to be traversed on a path from s1 to
s2. For example, if s1 and s2 are connected by a line it holds that lines(s1, s2) = 1
and if s1 and s2 are not directly connected, but both are connected to some other
station s3, it holds that lines(s1, s2) = 2.
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Theorem 4.3. For two lines (s1 → s′
1), (s2 → s′

2) ∈ L, it holds at any time that
|f(s1 → s′

1)− f(s2 → s′
2)| ≤ (lines(s′

1, s2) + 1)(n + 1).

Proof. First, we prove a bound on the difference between the number of times two
consecutive lines are performed. Thereafter, we consider a shortest path between s′

1

and s2 and iteratively apply this bound to prove the theorem.

By Lemma 4.2 it holds that f(s→ s′) ≤ f(s′ → s)+n and by definition of the policy
it holds that f(s′ → s) ≤ f(s′ → s′′) + 1. Hence, for two consecutive lines we find
that f(s→ s′) ≤ f(s′ → s′′) + n + 1.

Next, let s′
1 = sa, sb, ..., sp = s2 denote a shortest path from s′

1 to s2. It holds that

f(s1 → s′
1) ≤ f(sa → sb) + n + 1

≤ f(sb → sc) + 2(n + 1)
...

≤ f(s0 → sp) + lines(s′
1, s2)(n + 1)

≤ f(s2 → s′
2) + (lines(s′

1, s2) + 1)(n + 1).

Hence, f(s1 → s′
1)− f(s2 → s′

2) ≤ (lines(s′
1, s2) + 1)(n + 1). The theorem follows by

symmetry. □

The desirable property of the bound proven in Theorem 4.3 is that it does not depend
on t. Therefore, it holds that the difference between the number of times two lines
are performed cannot grow unbounded. In what follows, we use this observation to
characterize the long run behavior of the system.

4.4.2 Limit Behavior

In this section, we analyze the emerging properties of the system in the long run.
The first result states that after some time it is guaranteed that the system enters
a periodic motion (i.e. starts to cycle) and that every line is performed the same
number of times in one cycle. The proof is an adaption of the proof by Yanovski
et al. (2003) of the same property for the rotor-router system.

Lemma 4.4. After a certain finite time, the system enters a periodic motion. In
every cycle, every line is performed the same number of times.
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Proof. To prove the first part of the lemma, it suffices that the system can only be
in a finite number of states. Since the policy is deterministic, it then directly follows
that the system must eventually return to the same state, at which point the system
enters a periodic motion. To see why the system can only be in a finite number of
states, note that by the integrality of the travel times and the target headway H,
vehicles always depart at integer time points. Hence, it suffices to consider the system
only at integer time points. The state of the system at an integer time point can be
represented by all locations of the vehicles and the time since the latest departure
of all lines. According to Theorem 4.3, the number of times two lines are performed
cannot differ too much. This implies that the time since the latest departure of a line
cannot be unbounded. It then follows that the number of possible states is finite.

To prove the second part of the lemma, note that if the number of times two lines
are performed during a cycle would be different, over time the difference would grow
without bound, contradicting Theorem 4.3. □

It follows from the proof of Lemma 4.4 that we can represent the state of the system
at time t using some state vector Vt. Following Chalopin et al. (2015), we call a
state Vt stable if there exists t′ > t such that Vt′ = Vt. Equivalently, we say that the
system has stabilized once it has entered the periodic motion. By Lemma 4.4, Vt will
always be stable for large enough t. The stabilization time, denoted as Tstable, is the
smallest value such that VTstable is stable. Furthermore, the periodicity, denoted as
Tperiod, is the smallest value such that VTstable+Tperiod = VTstable .

At this point, the role of the target headway in the policy also comes into play, which
is not present in the rotor-router model. Hence, all theoretical results that follow
require novel analysis. In the remainder of this subsection, we analyze the properties
of the system once it reaches a stable state in more detail. In Section 4.4.3, we
analyze how large the stabilization time can be in the worst case.

To provide more insight into the emerging behavior of the system, we first consider
the number of idle vehicles at stations. Let arrs(a, b) and deps(a, b) denote the
number of arrivals and departures at s in the half-open interval [a, b) respectively.
Then, the number of idle vehicles at station s at time t, denoted by is(t), satisfies

is(t) = is(0) + arrs(0, t)− deps(0, t).

This brings us to the following lemma:
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Lemma 4.5. For the number of idle vehicles at a station, it holds that is(t) ≥
is(t + H).

Proof. Assume is(t) < is(t + H). Then, it must hold that deps(t, t + H) < arrs(t, t +
H). As every line has at most one departure per H time units, the number of arrivals
at s during H time units, is at most |δ−(s)| (the number of lines that terminates at s).
By the symmetry of the network |δ−(s)| = |δ+(s)|, so we find that deps(t, t + H) <

|δ+(s)|. As such, there exists a line l without a departure in the interval [t, t + H).
This implies that is(t + H) = 0, as otherwise line l would have had a departure in
this interval. As 0 = is(t + H) > is(t) ≥ 0, we reach a contradiction. The conclusion
is that is(t) ≥ is(t + H). □

Next, we analyze a global performance indicator, the utilization. Let γs(a, b) denote
the total idle time of vehicles at station s in the interval [a, b). The utilization,
denoted by util(a, b), represents the average proportion of time that the vehicles are
driving in the interval [a, b):

util(a, b) := 1−
∑

s∈S γs(a, b)
(b− a)n .

By Lemma 4.5, the number of idle vehicles cannot increase over time. Therefore, it
holds that the utilization cannot decrease over time. The next lemma formalizes this
statement.

Lemma 4.6. For the utilization, it holds that util(t, t + H) ≤ util(t + H, t + 2H).
Moreover, for t′ ≥ Tstable it holds that

util(t′, t′ + H) = util(t′ + iH, t′ + (i + 1)H) for any i ∈ Z+.

Proof. Observe that γs(a, b) =
∫ b

a
is(t)dt. By applying Lemma 4.5 we find

γs(t, t + H) =
∫ t+H

t

is(x)dx

≥
∫ t+H

t

is(x + H)dx

=
∫ t+2H

t+H

is(x)dx

= γs(t + H, t + 2H).
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Therefore, it holds that

util(t, t + H) = 1−
∑

s∈S γs(t, t + H)
Hn

≤ 1−
∑

s∈S γs(t + H, t + 2H)
Hn

= util(t + H, t + 2H).

For the second part of the lemma, note that by the periodicity of the system, we
have that for t′ > Tstable util(t′, t′ + H) = util(t′ + iTperiod, t′ + iTperiod + H) for
any i ∈ Z+. Since util(t, t + H) ≤ util(t + H, t + 2H), it follows for t′ > Tstable that
util(t′, t′ + H) = util(t′ + iH, t′ + (i + 1)H) for any i ∈ Z+.

□

From the above lemma, it follows that once the system reaches a stable state, the
utilization is constant over consecutive intervals of duration H, even though Tperiod,
the duration of the periodic motion, can in general be strictly larger than H. We
formally define this limit value of the utilization as u := util(Tstable, Tstable + H), to
which we refer as the stable utilization. Note that the policy ensures that at all lines
are performed at least once in one cycle of the periodic motion, such that u > 0.

Before we state the main theorem, recall that n∗ is a lower bound on the number of
vehicles required to meet the target headways. Theorem 4.7 shows that the behavior
of the system depends on whether n < n∗ or n ≥ n∗.

Theorem 4.7. If n < n∗, then the stable utilization u equals 1 and the average
headway of all lines during the periodic motion equals n∗

n H. Otherwise, the headways
of all lines during the periodic motion equal H for all lines and the stable utilization
equals n∗

n .

Proof. As we have shown that the utilization converges to a certain stable utilization
0 < u ≤ 1, we can distinguish the following two cases:

Case I: 0 < u < 1. This implies that there exists at least one station where there
is strictly positive idle time during the periodic motion. It must be that the lines
originating from this station are performed once per H time units, as a vehicle only
waits if it is in time to meet the target headway of its next line. As all lines are
performed the same number of times in the periodic motion by Lemma 4.4, it follows
that Tperiod = H and every line is performed exactly once per H time units in both
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directions. By definition, this implies that n ≥ n∗. As every line is operated once
per H time units, the utilization converges to

u =
∑

l∈L tl

nH
= n∗

n
.

Case II: u = 1. As every line can be operated at most once every H time units, this
implies that n ≤ n∗. Moreover, it follows from Lemma 4.4 that the system enters a
periodic motion in which all vehicles have no idle time and all lines are performed
the same number of times. Let g denote the number of times each line is performed
during a cycle. As all vehicles are running all the time, it holds that

nTperiod = g
∑
l∈L

tl = gn∗H.

Consequently, the average headway of all lines, which we denote as H̄, equals

H̄ = Tperiod
g

= n∗
n

H.

□

The above theorem provides a concise characterization of the behavior of the system
under the proposed policy. The result can be seen to be optimal in some sense. If
the number of vehicles is large enough to meet the target headways using centralized
control, our decentralized policy is also able to meet the target headways. In case
there are not sufficient vehicles to meet the target headways, every vehicle is used
all the time and every line has the same average headway, equal to the smallest
headway possible under centralized scheduling. Moreover, if n ≥ n∗ + 1, there is
some slack in the system, such that if a vehicle breaks down, the headways of all
lines again converge to H. In the other case, there is no slack in the system and
every breakdown of a vehicle leads to an increase in headways, and therefore to a
reduction in passenger service.

4.4.3 Worst Case Analysis

In this part, we provide worst case results of the headway deviation in case n < n∗

and on the time it takes to reach a stable state.
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Worst Case Headway Deviation

In contrast with the results Bartholdi and Eisenstein (2012) and Zhang and Lo (2018)
obtained for the single-line case, in case n < n∗ (so there are not enough vehicles
available), our policy leads to convergence of the average headways of all lines, but
not necessarily to convergence of the headways themselves. A natural question to
ask is how large the maximum headway can become in the worst case. Theorem 4.8
shows that the headway cannot be larger than H + (n∗ − n)H, such that the excess
headway is never larger than (n∗ − n)H.

Theorem 4.8. If n < n∗, once the system is in a stable state, all headways are at
most H + (n∗ − n)H.

Proof. For this proof it is convenient to think of every line l as having length tl and
think of every vehicle as a snake having length H and moving 1 unit distance per
unit time (such that it takes tl time units to traverse a line). As n < n∗, it holds
according to Theorem 4.7 that the system converges to a periodic motion where
the snakes are constantly moving. Furthermore, the policy ensures that consecutive
departures of the same line are always separated by at least H time units, such
that two snakes, despite having length H, cannot occupy the same part of a line.
Therefore, once the system has stabilized, the snakes cover a part of the network
of length nH. The part of the network that is not covered by any of the snakes
then has length,

∑
l∈L tl − nH = n∗H − nH = (n∗ − n)H. Thus, whenever a snake

starts traversing a line, the distance between the front of the snake and the tail of
the preceding snake on the line is at most (n∗ − n)H. As the length of every snake
is H, it follows that the distance between the fronts of two vehicles is, at any time,
at most H + (n∗ − n)H. Hence, the time between two consecutive departures of the
same line is at most H + (n∗ − n)H. □

This theorem has a nice interpretation, as it shows that if there is only a small short-
age of vehicles, the headways cannot become very large. As long as the discrepancy
between n and n∗ is not too big, the target headways are met reasonably well. For
example, if n = n∗ − 1, the maximum headway that can occur is 2H.
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Stabilization Time

In this part, we derive worst case bounds on the stabilization time Tstable. We invest-
igate the time until stabilization for two special cases. In both cases, the stabilization
time depends on the unweighted diameter of the network, a graph parameter which
only depends on the topology of the network. The diameter is denoted as D and is
defined as follows (recall that lines(s1, s2) equals the minimum number of lines that
has to be traversed on a path from s1 to s2)

D = max
s1,s2

lines(s1, s2), (4.1)

so D can be seen as the longest shortest path in the network. First, we analyze the
case where n = n∗ = 1, so a single vehicle suffices for meeting the target headway.

Theorem 4.9. If n = n∗ = 1, it holds that Tstable ≤ DH.

Proof. As there is only one vehicle, the system is stabilized if the vehicle continuously
performs an Euler tour every H time units. Bampas et al. (2009) shows that for the
rotor-router model with a single agent, an Euler tour is established in "phases" and
that in the worst case, D phases are required. This result directly extends to our
setting. In every phase, the vehicle performs a tour starting and ending at s0, the
initial location of the vehicle. A phase ends when the vehicle returns to s0 and all
the lines originating at s0 have been traversed during that phase. Furthermore, in
the worst case, the cyclic order of the outgoing lines at every s is such that in phase
i, station s is visited if and only if lines(s0, s) ≤ i. Therefore, after round D the
vehicle will have entered the periodic motion and continuously perform an Euler
tour. Furthermore, since n∗ = 1 every closed tour over the network takes at most H

time units, which implies that the duration of every round is H. It follows that the
system stabilizes in the worst case at time DH. □

Next, we analyze the case where tl = H for all l ∈ L and n = n∗ = |L|. Since all
travel times are equal to the target headway, we can analyze the system in iterations
of duration H and define is(m) as the number of vehicles located at station s at the
end of iteration m. The system has stabilized if and only if is(m) = deg(s) for every
s ∈ S, where deg(s) denotes the degree of station s in the network (the number of
lines in the set δ+(s)). This motivates the following definition:
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Definition 4.10. We define Cs(m) = is(m)−deg(s) as the charge of station s after
iteration m. The station s is called positively charged if Cs(m) > 0 and negatively
charged if Cs(m) < 0. Otherwise, the station is called neutral.

We can observe that the total charge over the network equals zero:∑
s∈S

Cs(m) =
∑
s∈S

(is(m)− deg(s)) = n−
∑
s∈S

deg(s) = n− n∗ = 0.

According to the policy, the number of vehicles leaving station s in iteration m +
1 equals min{is(m), deg(s)}. As the number of vehicles entering station s in an
iteration is at most deg(s), it follows that the charge of a neutral or positively charged
station can never increase. Hence, a station can change from being positively charged
to neutral, but not vice versa. On the other hand, until the system stabilizes, it is
possible that negatively charged stations become neutral and vice versa.

We define the potential function Φ(m) =
∑

s∈S:Cs(m)>0 Cs(m), equal to the sum
of the positive charges. As the charge of positively stations can only decrease and
neutral stations cannot become positively charged, it follows directly Φ(m) ≥ Φ(m +
1). If m ≥ Tstable/H, it holds that Φ(m) = 0. In order to bound Tstable, we use the
following result from the rotor-router system

Lemma 4.11. For a rotor-router system with k > 1 agents, the cover time (the time
until all edges have been visited at least once) on a graph with diameter D and m

edges is at most O
(

mD
log k

)
. If there is only 1 agent, the cover time is O (mD).

Proof. See Dereniowski et al. (2016). □

Theorem 4.12. If tl = H for all l ∈ L and n = n∗ = |L|, it holds that Tstable =
O
(
|L|2DH

)
.

Proof. Clearly, Φ(m) is integer and 0 ≤ Φ(m) ≤ n − 1. To bound the number of
iterations the potential function can stay constant, we use the concept of anti-vehicles:
whenever a line is not traversed by a vehicle in some iteration, it is traversed by an
anti-vehicle. Thus, in case station s is negatively charged after iteration m, there
are is(m) regular vehicles and −Cs(m) anti-vehicles leaving s in iteration m + 1.
Moreover, if Φ(m) = Φ(m + 1), it holds that in case s is negatively charged after
iteration m + 1, the absolute value of the charge equals the number of anti-vehicles
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entering s in iteration m. Hence, the anti-vehicles can be seen as carriers of the
negative charge over the network.

Suppose that Φ(m) = f > 0. Then, there are f anti-vehicles in the network after
iteration m. We are interested in how long it takes until one of the anti-vehicles arrives
at a positively charged station, as such an event reduces the potential function. As
in any iteration the anti-vehicles traverse the lines that are not traversed by regular
vehicles, it can be seen that that the anti-vehicles move according to the same policy
as the regular vehicles, but with the cyclic order of the lines reversed. Moreover,
since anti-vehicles move in every iteration (otherwise the number of anti-vehicles at
a station would be larger than the degree), this system is equivalent to a rotor-router
system. Therefore, the number of iterations until one of the anti-vehicles hits a
positively charged station is at most the cover time of a rotor-router system with
f agents. Applying Lemma 4.11 and using that the potential can decrease at most
n− 1 = |L| − 1 times and that every iteration takes H time units, it follows that

Tstable = O(|L|DH) +
|L|−1∑
f=2

O

(
|L|D
log f

H

)
= O

(
|L|2DH

)
.

□

The results in Theorem 4.9 and 4.12 illustrate that the stabilization time depends
on the diameter and number of lines of the network and the target headway. For
high-frequency networks that are highly connected, for example urban transit sys-
tems, stabilization occurs rapidly. For large elongated networks operated at lower
frequencies, for example inter-regional transit systems, stabilization is established
more slowly.

4.4.4 Different Target Headways Among Lines

In order to apply our policy to instances with different target headways, it needs
to be slightly altered. Instead of maintaining a fixed cyclical order of the lines,
an incoming vehicle should be assigned to the line whose target departure time is
minimal. Intuitively, this line needs a departure most urgently. Moreover, whenever
there is a departure of line l′ at time t′, the target departure time should now be
updated according to the formula τl′ ← t′ +hl′ , where hl denotes the target headway
of line l.
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The presented theoretical results cannot be extended to settings where there is no
common target headway. There are instances with different headways where the
system fails to stabilize under our policy, despite enough vehicles being available.
For such instances, stabilization can only be attained if the lines are performed in a
specific order. However, if our policy initially performs the lines in the wrong order,
it is unable to modify the order, such that the system remains in an unstable state
indefinitely.

Furthermore, it holds in general that, unless P=NP, there does not exist a policy that
requires no more than the optimal number of vehicles and is guaranteed to stabilize
within polynomial time. In Chapter 3, we proved that the problem of deciding
whether a line plan with arbitrary frequencies can be operated with a certain number
of vehicles (i.e. whether there exists a timetable that meets all target headways) is
NP-complete in the strong sense. Hence, if a policy would have the property that
the headways of all lines converge to the target headways if the number of available
vehicles is at least the minimum required number under centralized scheduling, an
NP-complete problem would be solved by simulating this policy.

Despite these insights, it is still possible to apply our policy to systems with different
target headways. A first possibility is to decompose the network into sub-networks
where there is a common target headway. Secondly, one could still choose to apply
the policy and accept that there are no theoretical performance guarantees. We
assess the performance of the latter approach numerically in the next section.

4.5 Numerical Experiments

In this section, we describe the results of a series of experiments that illustrate the
practical performance of the proposed policy. First, we analyze how the time it takes
to reach a stable state grows if the size of the network increases. Next, we investigate
how long it takes to re-stabilize after one of the vehicles breaks down. Then, we
we test the performance of the policy in situations where the assumptions of the
theoretical analysis of the previous section are not met. Specifically, we analyze the
behavior of the system in case the lines do not have a common target headway and in
case the travel times are not fixed but stochastic. Finally, we assess the performance
of the policy on three real-world transit systems.
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Path

Ring

Star

Fully Connected

Figure 4.2: Different network topologies used in the numerical experiments.

4.5.1 Stabilization Time

We assess the time to reach a stable state for four types of network topologies: path,
ring, star and fully connected. The differences between these types of networks are
illustrated in Figure 4.2. In the first two experiments, we set the travel time of each
edge equal to one time unit and set H = 1 and n = n∗.

In Figures 4.3a-4.3b, it is shown how the stabilization time grows with the size of the
network, if all vehicles start from an unbalanced starting position. That is, we start
with all vehicles at a single station. For the path network and the star network, we
start with all vehicles at one of the outer stations. To minimize the rate at which
the vehicles are spread out over the networks, for each station s, ls

next is initialized
such that the first time a vehicle enters s, the vehicle is sent back over the reverse
line it came from. When comparing the stabilization time for a fixed number of
stations, we find that the network topologies with the largest diameter also have the
largest stabilization time, which we also expected based on the worst case results in
Section 4.4.3. Moreover, the stabilization time grows at a faster rate for the path and
ring network compared to the star and fully connected network, which is likely caused
by the fact that the diameters of the latter two networks is constant in the number
of stations, whereas the diameter of the former two networks increases linearly in the
number of stations.

In Figures 4.4a-4.4b, it is shown how the time until stabilization grows with the
size of the network, if the stating configuration is randomly generated. Here, we
take the average over 2,500 runs. The required time is much shorter compared to
the unbalanced starting situation. Interestingly, the fully connected network takes
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more time on average to stabilize than the star network, whereas in the previous
experiment the star network required more time. Most likely, this is caused by the
fact that if all vehicles often attend the same station, their departure times are more
quickly coordinated. However, in the previous experiment all vehicles started at the
same outer station of the star network, such that it took a long time before all vehicles
had departed from the starting station.
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Figure 4.3: Stabilization time, starting from an unbalanced starting configuration.
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Figure 4.4: Stabilization time, starting from a random configuration, averaged over
2500 samples.

4.5.2 Re-Stabilizing after a Vehicle Breakdown

To get a better sense of the performance in practice, we perform a third experiment,
where we start in a stable state (i.e. a feasible timetable). Then, we let one of the
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vehicles break down and analyze how long it takes to re-stabilize. We refer to the
number of vehicles in the system above the minimum number of required vehicles
to reach a stable state as the buffer. Provided that there is a buffer of at least one
vehicle, we know that the system will always bounce back to a stable state after the
breakdown. Note that having a buffer in the number of vehicles can be seen as the
‘self-organizing’ analog of the commonly used method in schedule-based approaches
to include time supplements in a timetable: it increases the robustness, at the cost
of a decrease in efficiency.

We perform this experiment on a star network with five lines with a target headway
of 15 minutes and travel times uniformly drawn between 10 and 30 minutes. We
start this experiment from a random stable state, which is achieved by having the
system converge to a stable state from a random starting configuration.

In Figures 4.5a-d, the results of this experiment are visualized, for different sizes of the
buffer and with ten randomly generated networks for each buffer size. The horizontal
axis depicts the time since the breakdown and the vertical axis the current maximum
headway in the network. As expected, the maximum headway in the system can be
quite large right after the vehicle breakdown. However, the impact of the breakdown
dies out rather quickly. Even with only a single vehicle as a buffer, the maximum
headway in the system reduces to less than 20 minutes within the first hour. On the
other hand, there can be a tailing off effect, as for some of the scenarios we observe it
takes a long time before all headways really have converged to 15 minutes. However,
in practice the difference between a headway of 15 minutes and a headway that is
up to 45 seconds longer is not very noticeable to passengers. Moreover, regardless
of whether one uses a self-organizing approach or a schedule-based approach, the
breakdown of a vehicle causes a decrease in capacity that needs to be absorbed
in one way or another. Spreading out the "pain" caused by the disruption over a
long time can be a preferable solution in some scenarios. We also observe that the
maximum headway converges to 15 minutes much faster when there is a larger buffer
in the number of vehicles.
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Figure 4.5: Impact of vehicle breakdown at t = 0 given vehicle availability. Each
figure shows how the maximum headway in the network evolves over time for ten
scenarios, with each line representing a scenario. The target headway equals 15
minutes.

s1 s2 s3
t1 = 14 min. t2 =16 min.

Target headway H: 30 min.

Figure 4.6: Example with a long stabilization time. Travel times are symmetric.



108 Chapter 4

The cause of the tailing off effect visible in the previous experiment can be understood
using the simple example depicted in Figure 4.6. There are two lines and two buses
available at the station connection the lines. It holds that n∗ = (2 · 14 + 2 · 16) /30 =
60/30 = 2, so it is guaranteed that with two buses the system will eventually stabilize.

Let us suppose that at the initialization (t = 0), the first bus at s2 is sent towards
s1 and the second bus towards s3. After 28 minutes (t = 28), the first bus will have
returned to s2, where it is instructed depart towards s1 again at t = 30. The second
bus arrives at s2 at t = 32 and is instructed to depart immediately towards s3 since
the current headway of line (s2 → s3) is already 32 minutes. Continuing to apply the
policy, the first departures for line (s2 → s1) occur at 0, 30, 60, 90 et cetera, while
the first departure times for line (s2 → s3) occur at 0, 32, 64 and 96. The headway
of the line (s2 → s3) remains 32 until t = 448. From that point on, the headways of
both lines are always 30 minutes, so the system has stabilized after 448 minutes.

Before the system has stabilized, one bus only performs the line between s1 and s2,
with a waiting time of 2 minutes before every departure at s2, while the other bus
only performs the line between s2 and s3. At t = 448, the bus arriving at s2 from
s1 is assigned to line (s2 → s3), because that line has been performed 13 times while
line (s2 → s1) 14 times. After this time, the buses alternate between the two lines,
which is more efficient as there is no waiting, causing the system to stabilize.

This example illustrates that if the system is not yet in a stable state, there must be
at least one vehicle running an inefficient circulation, so a circulation with strictly
positive waiting time. Furthermore, we can observe that there is a direct relation
between the waiting time before every departure of line (s2 → s1), the deviation from
the target headway for line (s2 → s3) and the stabilization time. By working out the
policy for different values of t2, we find that the stabilization time is approximately
inversely proportional with 2t2 −H, the headway deviation of line (s2 → s3) before
stabilization: if the headway deviation is large, the stabilization time is small, but
if the headway deviation is small, the stabilization time can blow up, leading to a
long tailing off effect. For example, if the travel times of the lines were 13 and 17
respectively, instead of 14 and 16, the waiting time of the vehicle performing line
(s2 → s1) would be 4 minutes instead of 2 minutes, the headway deviation of line
(s2 → s3) would be 4 minutes instead of 2 minutes and the system would stabilize
after 236 minutes instead of 448 minutes. In other words, large inefficiencies and
headway deviations are quickly flushed out, while small inefficiencies and headway
deviations can be more persistent.
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4.5.3 Time-Varying Target Headways

We next test the policy’s abilities to accommodate for time-varying headways. To
do so, we perform an experiment that resembles a peak period that requires smaller
headways to transport all passengers. In the first 2 hours of the simulation, the
target headway equals 10 minutes. The next 4 hours represent the peak period with
a target headway of 5 minutes. The final 4 hours are again off-peak hours with a
target headway of 10 minutes. During the peak-hour, also an additional number of
vehicles is available, keeping the buffer constant. These vehicles are again removed
from the network when the peak hour ends. We perform this experiment on a star
network with three lines and travel times uniformly drawn between 10 and 30 minutes.
As in the previous experiment, we start from a random stable state.
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Figure 4.7: Impact of time-varying headways given vehicle availability. Each figure
shows how the maximum headway in the network evolves over time for ten scenarios,
with each line representing a scenario. The target headway equals 10 minutes in the
first 2 and last 4 hours and equals 5 minutes in hours 2-6.

The results of the experiment are presented in Figures 4.7 for different sizes of the
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buffer and with ten randomly generated travel time instances for each buffer size. The
horizontal axis depicts the time since the start of the experiment and the vertical
axis the maximum headway across the lines in the network at that particular time.
The maximum headway is 10 minutes during the first 2 hours of the experiment as
we initialize the system from a stable state. We observe that decreasing the target
headway after 2 hours and increasing the target headway again after 6 hours acts as
a shock that is eventually absorbed by the system. For all buffer sizes, it is apparent
that the increase in the target headway after 6 hours causes larger deviations from
the target headway than the decrease in target headway after 2 hours. If there is no
buffer in the system, in some of the scenarios the headway can become 15 up to 20
minutes. This indicates that for small buffer sizes, reducing the number of vehicles
in an uncoordinated manner may lead to large gaps between vehicles. On the other
hand, if a larger number of vehicles is available, both increasing and decreasing the
headway is far less problematic, as the shocks can be seen to quickly die out.
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Figure 4.8: Impact of time-varying headways given vehicle availability. The target
headway equals 10 minutes in the first 2 and last 4 hours and equals 8 minutes in
hours 2-6.
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In Figure 4.8, the results of the same experiment are shown, but with a peak target
headway of 8 minutes instead of 5 minutes. Comparing with Figure 4.7, we observe
that the smaller difference between the peak and off-peak target headway lessens the
impact of the change in target headway. However, there are still deviations from the
target headway present when the target headway changes.

4.5.4 Different Target Headways Among Lines

The performance under different target headways is the subject of the next experi-
ment. We conduct this experiment on a star network with three lines, with target
headways of 10, 15 and 20 minutes, respectively. The travel time for each line is
uniformly drawn between 10 and 30 minutes.

In Figures 4.9a-4.9b, the headways of the three lines are plotted over time for a ran-
domly generated instance. Only the headways of the lines from the central station of
the star network to the outer stations are included here. If the number of vehicles is
equal to the minimum number required to meet the target headways, we observe that
the system does not converge to a stable state where the target headways are always
met. Instead, the system converges to a periodic motion where there are deviations
from the target headways. In this periodic motion, the headways of the line with a
target headway of 10 minutes vary between 10 and 13 minutes and for the line with
a target headway of 20 minutes they vary between 20 and 23 minutes. This is in
line with our expectations, since, as discussed in Section 4.4.4, there are no guaran-
tees that the system stabilizes if there is no common headway. Assuming uniform
passenger arrivals, the expected waiting times without a buffer are 5.2 minutes for
the line with a target headway of 10 minutes, 8.0 minutes for the line with a target
headway of 15 minutes and 10.4 minutes for the line with a target headway of 20
minutes.1 These values are marginally larger than the theoretical minimum values
of 5 minutes, 7.5 minutes and 10 minutes, respectively.

The persistent headway deviations without any buffer indicate that there is a constant
shortage of vehicles. If the number of vehicles in the system is increased by one, we
can observe that the headways do all converge to the target headways. Hence, this
indicates that despite the absence of theoretical guarantees, the policy still performs
well, but that a larger number of vehicles may be required to ensure that the target

1These values are computed using the formula E(W )= E(h)
2 (1+CV2)), with W the waiting time,

h the headway and CV the coefficient of variation of the headway.
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headways are met at all times.

0 2 4 6 8 10 12

10

15

20

25

30

35

Time (hours)

H
ea

dw
ay

(m
in

.)

hl = 20 min.
hl = 15 min.
hl = 10 min.

(a) Buffer = 0 vehicles

0 2 4 6 8 10 12

10

15

20

25

30

35

Time (hours)
H

ea
dw

ay
(m

in
.)

hl = 20 min.
hl = 15 min.
hl = 10 min.

(b) Buffer = 1 vehicle

Figure 4.9: Headways of lines with different target headways, plotted over time, with
and without a buffer.

4.5.5 Stochastic Travel Times

In this experiment, we test the performance of the policy in case the travel times are
not fixed, as we assumed in the theoretical analysis, but stochastic. We perform this
experiment on a star network with five lines with a target headway of 15 minutes. The
nominal travel time for each line is uniformly drawn between 10 and 30 minutes. The
realized travel time is equal to the sum of the nominal travel time and a disturbance
term. As it is likely that there is correlation in the duration of subsequent trips, we
generate the disturbances εl for each line according to an autoregressive model:

εl
i = ρεl

i−1 + ηi, ηl
i ∼ N(0, σl). (4.2)

We set ρ = 0.8 and σl = 1
4 tl. To get a complete image of the variation of the

headway in this scenario, we simulate 100 hours with ten different seeds, during
which we collect all headways.

The results are presented in Figure 4.10a and Figure 4.10b. Figure 4.10a visualizes
the empirical cumulative distribution function (ECDF) of the headway. Figure 4.10
shows the expected waiting time assuming uniform passenger arrivals. The ECDF
and waiting times presented for different number of buffers, which are computed based
on the nominal travel times. The ECDF shows for every size h of the headway, what
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proportion of the observed headways is smaller than h. For example, we can observe
that with a buffer of 0, about 75% of the headways are smaller than 18 minutes. As
expected, the headways are not always equal to the target headway of 15 minutes
as there are constant disturbances keeping the system away from a stable state.
However, it can be observed that the headways are reasonably close to the target
headway. Even without any buffer, over 50 percent of the headways are equal to the
target headway and 80 percent of the headways are shorter than 20 minutes. The
expected waiting time without a buffer is more than 10 minutes, substantially larger
than 7.5 minutes. When the buffer is larger, the headway distribution gradually shifts
towards the left. With a buffer of 1, the expected waiting time already decreased to
about 8.7 minutes. Therefore, this suggests that the policy performs reasonably well
if the travel times are stochastic, but that a larger number of vehicles is required to
obtain a (very) high service level.
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Figure 4.10: Results with stochastic travel times for a star network with five lines.
The target headway equals 15 minutes.

4.5.6 Real-World Transit Systems

In a final experiment, we evaluate the performance of the policy on the transit systems
of The Hague, Amersfoort and Göttingen. For the bus networks of The Hague and
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Amersfoort, we retrieve the lines, their headways and travel times from the published
line plans and timetables. For the Göttingen bus network, we use a data set from the
open source software library LinTim (Schiewe et al., 2020). As this line plan contains
lines that are unidirectional, we only use a smaller part of the network, containing
seven connected lines that are operated in both directions. The data for the three
networks can be found at http://www.ecopt.nl.

The three real-world transit systems are visualized in Figure 4.11. As can be observed,
the networks have different sizes and topologies. The Amersfoort network is star-
shaped with all lines having the central station as a terminal. The network in The
Hague has a different structure, with most lines terminating in neighborhoods outside
the city center. The Göttingen network is a bit smaller and has a topology somewhat
in between the networks of Amersfoort and The Hague. Table 4.2 presents for each
transit system the number of stations and lines, the minimum number of vehicles
required to meet the target headways, the minimum, maximum and average target
headway across all lines, and the minimum, maximum and average travel time across
all lines. For none of the transit systems, all lines have the same target headway.
The lines in The Hague relatively have the smallest headways and those in Göttingen
the largest.

In the experiment we perform with the real-world transit systems, we let the real-
ized travel times be stochastic. The travel times disturbances generated according
to Equation (4.2). In accordance with the customary practice of public transport
operators, we let the nominal (or average) travel times be such that that the realized
travel time is smaller or equal to the timetabled travel time with 85% probability. We
do so to take into account that public transport timetables include time supplements
in order to absorb the majority of small delays.

Table 4.2: Characteristics of the considered transit systems.

Headway (min.) Travel Time (min.)
Network Stations Lines Min. Veh. Min. Max. Ave. Min. Max. Ave.

Göttingen 8 7 16 15 60 36.4 19 43 34.6
Amersfoort 10 11 25 15 30 21.8 11 35 20.8
The Hague 13 10 65 7.5 30 14.0 17 68 40.3

http://www.ecopt.nl
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Figure 4.11: The three considered real-world transit systems networks.
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As in the previous experiment, we simulate 100 hours with ten different seeds, during
which we collect all headways. As the considered networks contain lines whose target
headways differ, we consider the normalized headway, which is simply the realized
headway divided by the target headway. For example, if a line has a target headway
of 10 minutes, a headway of 12 minutes corresponds to a normalized headway of 1.2
and a headway of 15 minutes to a normalized headway of 1.5. As such, the normalized
headway should ideally be equal to 1.0.
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Figure 4.12: Empirical cumulative distribution function (ECDF) of the normalized
headway for the real-world transit systems, under stochastic travel times and with
different number of vehicles on the network.

In Figure 4.12, the empirical cumulative distribution function (ECDF) of the normal-
ized headway is presented for the three real-world transit systems, with different sizes
of the buffer. We find that without any buffer, the target headway is met around 80
percent of the time in Göttingen and around 90 percent of the time in Amersfoort



Chapter 4 117

and The Hague. Again without any buffer, a headway deviation of more than 20
percent (corresponding to a normalized headway of 1.2), occurs in around 5 percent
of the cases in Göttingen and The Hague and only in around 1 percent of the cases
in Amersfoort. For Göttingen and Amersfoort, a buffer of three vehicles is required
to ensure that more than 95 percent of the headways meet the target headway. For
the larger network of The Hague, a buffer of four vehicles is required to attain this
service level. Overall, we can conclude that our policy performs well and leads to
small deviations from the target headway with only a small number of additional
vehicles.

4.6 Conclusion

We proposed a self-organizing policy for dispatching vehicles in multi-line public
transit systems. Theoretical and numerical analyses illustrate that our policy per-
forms well. In idealized conditions and provided that a sufficient number of vehicles
is available, it is guaranteed that the system converges to a stable state where the
target headway of each line is met. Experiments based on three real-world transit
systems show that the policy also attains good performance in case travel times are
not fixed but stochastic, or lines have different target headways: the deviations from
the target headways are small, especially if there is some reserve capacity in the
number of vehicles. Furthermore, our policy causes the system to quickly recover
after disruptions, such as the breakdown of a vehicle.

Our promising theoretical and numerical results show that the potential of self-
organizing strategies extends to multi-line public transit networks. Specifically urban
high-frequency networks seem suited for our approach, as convergence is more rap-
idly established if the target headway and size of the network are small. However,
for networks with heterogeneous headways, theoretical performance guarantees can
only be obtained by decomposing the network into sub-networks with homogeneous
headways. Compared to schedule-based approaches, the self-organizing approach is
much easier to implement, as it does not require constructing a schedule, monit-
oring adherence to the schedule and rescheduling after disruptions. Only the lines
and target headway need to be determined, which should be set in order to provide
good service to all passengers, of course taking the number of available vehicles into
account.
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For further research, it would be interesting to investigate if the policy can be general-
ized to ensure that headways are always self-equalizing, even if n < n∗. This requires
the target headway to no longer be exogenous, but emerge spontaneously due to the
dynamics of the system. It is an open question whether this can be achieved by a
simple decentralized policy, without coordination or communication between differ-
ent parts of the network. Another potential direction of future research is to extend
the policy to also resist bunching effects, for example by integrating our work with
that of Bartholdi and Eisenstein (2012). Finally, in this chapter the passengers have
been taken into account implicitly, as maintaining constant headways minimizes pas-
senger waiting time if passengers arrive uniformly. It would be interesting to model
the costs of passengers more explicitly, revealing the interactions between different
dispatching approaches and the experience of passengers.
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Determining and Evaluating
Alternative Line Plans in
Out-of-Control Situations

This chapter is based on Van Lieshout, R.N., Bouman, P.C. and Huisman, D. (2020).
Determining and Evaluating Alternative Line Plans in Out-of-Control Situations.
Transportation Science 54(3), 740–761.
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5.1 Introduction

Every once in a while, railway systems suffer from very large disruptions as the result
of power outages, extreme weather conditions or other severe incidents. Intensive use
of the railway infrastructure and strong interdependencies between timetable, rolling
stock and crew schedules cause these disruptions to easily propagate and accumulate.
Since the affected number of resources can be very large and durations of disruptions
are uncertain, this leads to an immensely complex problem for dispatchers. As a
result, decisions made by dispatchers take a long time, and are often based on in-
formation that is already out-of-date, rendering the decision unworkable. In the end,
dispatchers are confronted with a lack of accurate and up-to-date information on
the current state of the system, preventing them from making viable rescheduling
decisions. This can ultimately result in an out-of-control situation, meaning that
all traffic in the affected region is terminated, even though the required resources
(infrastructure, rolling stock and crew) might be available.

On the Dutch railway network, out-of-control situations happened about ten times
during the period 2009-2012 because of extreme weather conditions. For this reason,
Netherlands Railways (NS), the largest railway operator in the Netherlands, and
ProRail, the Dutch infrastructure manager, decided to anticipate on such events by
operating a reduced timetable if bad weather is expected. This reduces the prob-
ability of losing control, but the downside is that a worse service is provided to the
passengers. Moreover, this does not prevent all out-of-control situations, since they
also occur with completely unexpected causes, such as the power outages in Ams-
terdam in 2015 and 2017 and the terrorist attack in Amsterdam Central Station in
2018. In these cases, control was lost during the process of restarting operations after
the forced shutdowns. As such, there is a clear need for effective countermeasures in
out-of-control situations.

In spite of the many recent advancements in disruption management, currently exist-
ing disruption management techniques cannot be applied in out-of-control situations
due to the absence of complete information and the large number of affected trips
and resources. Therefore, Dekker et al. (2021) propose a new strategy for avoiding
or escaping out-of-control situations. The core idea of this strategy is to completely
decouple the disrupted region from the rest of the railway network. Rolling stock nor
crew is allowed to change over between the two regions, isolating the disruption and
preventing it from spreading. The traffic outside the disrupted region can be man-
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aged using conventional disruption management techniques, because in that region
complete information is available. Inside the disrupted region, the lack of accurate
and up-to-date information makes it very difficult to dispatch trains according to a
centrally agreed upon timetable. Therefore, it is suggested to adjust the line plan
within the disrupted region, such that it becomes possible to dispatch trains in the
region using local and self-organizing mechanisms, which can be applied even when
the information about the resources in the system degrades. All in all, this strategy
could lead to stable operations both inside and outside the disrupted region, where
the current practice simply terminates all traffic within the affected region.

In this chapter, we examine whether the strategy proposed by Dekker et al. (2021)
indeed provides a viable alternative in out-of-control situations. In particular, we
investigate how the line plan within the disrupted region should be modified. An
alteration of the line plan is necessary, as the regular line plan most likely becomes
infeasible due to limited turning capacity at the boundary stations and a limited
availability of rolling stock in the disrupted region. In addition, we investigate how
trains within this region can be dispatched without relying on central coordination.
Note that by addressing these two research questions, we increase the scope of rail-
way disruption management, which traditionally involves rescheduling the timetable,
rolling stock schedule and crew schedule, by also modifying the line plan and the way
the system is operated.

The contribution of this chapter is threefold. The first contribution is a novel line
planning algorithm that provides as many passengers with as many travel options
as possible, while taking into account timetabling and rolling stock constraints in
a Benders’-like approach. In our application, integration of multiple planning steps
is required as we alter the line plan on the day of operations, hence it needs to be
guaranteed that the line plan is feasible with respect to the available infrastructure
capacity and rolling stock. However, the same decomposition approach can also be
applied in strategic planning contexts, where it avoids having to optimize a complete
timetable and/or rolling stock schedule before finding out that a line plan is in fact
infeasible. The second contribution is that we propose several local dispatching
strategies that can be applied in out-of-control situations. The proposed strategies
differ in the amount of required information and flexibility, offering a range of options
to dispatchers. The final contribution is the evaluation of the produced line plans and
suggested dispatching strategies by simulating them on the Dutch railway network.
In particular, we illustrate that by applying the proper dispatching strategies, the
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modified line plans indeed lead to feasible operations, as intended.

The structure of the chapter is as follows. In Section 5.2, the problem is described
in detail. In Section 5.3, relevant literature is discussed. Section 5.4 addresses the
line planning algorithm. Section 5.5 describes the local dispatching strategies and
discusses how to test the performance of line plans and dispatching strategies by
means of simulation. In Section 5.6, the results of both the line planning algorithm
and the simulations are presented. We conclude in Section 5.7.

5.2 Problem Description

The schedule of a railway operator typically consists of the following main compon-
ents. The line plan specifies between which stations direct trains are operated, their
frequencies and the stopping patterns. The timetable specifies the exact departure
and arrival times of train services. The rolling stock schedule specifies the train units
that are used for each trip. Finally, the crew schedule specifies which train drivers
and conductors perform which tasks. In an out-of-control situation, all components
are heavily disrupted and are required to be modified. Dekker et al. (2021) describe
a new approach for dealing with these situations, taking the size of the disruption
and the lack of complete information into account. Their framework is visualized in
Figure 5.1.

Monitoring Effective measures

Step 1: Anticipate amplification
using early warning metrics

Step 3: Reschedule the
non-disrupted region

Step 2: Identify and isolate the
disrupted region

Step 4: Modify line system inside
the disrupted region

Step 5: Schedule resources inside
the disrupted region

Step 6: Manage the passenger
flows

Figure 5.1: The framework for dealing with out-of-control situations proposed by
Dekker et al. (2021).

In the first step, it is detected that the railway system is in a state of (near) out-of-
control and the rest of the framework is set in motion to prevent or escape the out-
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of-control situation. In the second step, the disrupted region is identified. Once this
region has been determined, no rolling stock or crew is allowed to transfer between
the disrupted and the non-disrupted region, in order to encapsulate the disruption.
In practice, the disrupted region often directly follows from the cause of the out-of-
control situation. For example, if a temporary power outage in Amsterdam has resul-
ted in an out-of-control situation around Amsterdam, the disrupted region will most
likely consist of Amsterdam Central Station and a number of surrounding stations.
The strict separation between the operations in the disrupted and non-disrupted re-
gion is maintained for the remainder of the day, as re-coupling the regions is very
complex and comes with the risk of new disruptions. Over night, all resources can
be set up again in order to start the regular timetable on the next day.

Besides preventing the disruption from spreading, decoupling the disrupted region
makes it possible to develop tailored disruption management for both regions, which
are steps 3 to 6 of the framework. Most importantly, it can be assumed that outside
the disrupted region complete information is available, while inside there is not.
For this reason, it is argued that the non-disrupted region can be rescheduled using
conventional disruption management techniques, see Cacchiani et al. (2014) for a
recent review. To operate the disrupted region, Dekker et al. (2021) propose to adjust
the line plan and to schedule the resources using local, self-organizing strategies.
Such strategies strongly reduce the dependence on central dispatchers and are robust
against the lack of complete and up-to-date information that characterizes out-of-
control situations.

In this chapter, we focus on managing the operations inside the disrupted region,
steps 4 and 5 of the framework. That is, we assume that a disrupted region has been
identified and decoupled from the rest of the network, and investigate how the line
plan within this region should be modified. In addition, we propose and evaluate
self-organizing, local dispatching strategies that can be used to operate the railway
traffic in the disrupted region. To limit the scope of this research, we only consider
the available infrastructure and rolling stock in the dispatching strategies and when
determining the line plan, so train drivers and conductors are not taken into account.
As such, we assume that the crew operating a train at the moment the disrupted
region is decoupled continues to operate that train for the rest of the day.
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5.2.1 Modifying the Line Plan

A modification of the line plan within the disrupted region is necessary, as the original
line plan most likely becomes infeasible when the region is decoupled from the rest
of the network. To illustrate this, consider the example in Figure 5.2a. When the
disrupted region is decoupled, trains from both sides have to turn at stations S4 and
S5. As such, only a part of the platforms at these stations can be used to serve the
disrupted region, which is probably not sufficient to operate as many train services
as in the original line plan. Moreover, there is only limited rolling stock available in
the disrupted region, while the average proportion of time that trains are running
decreases when all trains must be turned at the boundary (turning a train takes more
time than a regular stop). Taking these two factors into account, one might have to
settle for the alternative line plan in Figure 5.2b.

S1
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S6

S7

S2

S4

S5

S8

disrupted region

(a) Original line plan

S1

S3

S6

S7

S2

S4
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S8

disrupted	region

(b) Alternative line plan

Figure 5.2: Modification of a line plan. Relative frequencies are indicated by the line
thickness.

As the above presented example illustrates, the challenge is to find a line plan that
offers sufficient transport capacity, while ensuring that the line plan is feasible with
respect to the available infrastructure and available rolling stock. As such, even
though we will operate the disrupted region using local dispatching strategies instead
of using a timetable and rolling stock schedule, the line plan should admit a feasible
timetable and rolling stock schedule. Therefore, by considering line planning as an
operational rather than a strategic problem, we are forced to integrate line planning
with the subsequent planning stages.

During operations, trains using the same piece of infrastructure must be separated by
a headway time of a certain number of minutes. This implies that every line consumes



Chapter 5 125

a certain amount of capacity. In strategic planning, these restrictions are taken into
account during the timetabling phase. As such, we can avoid finding line plans that
require more capacity than available by considering timetabling restrictions when re-
designing the line plan. However, in an out-of-control situation it suffices to consider
a relaxed version of the timetabling problem as trains cannot be dispatched according
to a centrally agreed upon timetable due to the lack of complete information. Hence,
requiring that a line plan exactly fits in a period of e.g. 60 minutes is too strong of a
restriction (a line plan that fits in a period of slightly over 60 minutes likely performs
equally well under the local, self-organizing dispatching strategies). For this reason,
we only consider certain necessary conditions for the existence of a timetable.

As every line requires a certain number of trains and the available number of trains
in the disrupted region is limited, it is essential to take rolling stock into account
when modifying the line plan. The set of rolling stock compositions available in
the disrupted region at the time the region is decoupled serves as input. Given the
nature of out-of-control situations, we assume that it is not possible to couple or
decouple units to and from a composition. Therefore, we can ignore the rolling stock
compositions of the operating trains and simply refer to a rolling stock composition as
a train. A complicating factor is that the exact number of trains required to operate
a line plan depends on the timetable, which is unavailable. However, it is possible to
find lower bounds based on the minimum running, dwell and turning times.

Although our methodology extends to the general case, we consider only two types
of lines, intercity lines that only have stops at major stations and regional lines
that have stops at every station. Both line types have dedicated rolling stock types.
Furthermore, we assume that it is given which stations are decoupling stations, the
stations that may serve as terminals for a line. Regional lines can be introduced
between regional as well as intercity decoupling points, intercity lines can only be
introduced between intercity decoupling points.

The main objective when modifying the line plan is to minimize passenger incon-
venience. In (the aftermath of) out-of-control situations that occurred over the last
few years, travelers often had to seek alternative modes of transport as there were
either no trains running or not all travelers would fit in the few trains that were
running. Therefore, maintaining a large transport capacity is crucial, which is why
we measure the inconvenience of a passenger through the decrease in the number of
travel options per period the passenger has in the modified line plan compared with
the original line plan. For example, if a passenger has four travel options per hour in
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an undisrupted situation, ideally the modified line plan should offer this passenger
four travel options per hour. However, given the restrictions it is inevitable to reduce
the number of travel options for some groups of passengers.

5.2.2 Operating the Disrupted Region

Once the new line plan for the disrupted region has been determined, we can start
executing the line plan by dispatching trains. In regular operations, trains are dis-
patched according to the timetable and adjustments are made to the timetable in
case of disturbances or disruptions. Conversely, when operating trains in the disrup-
ted region during an out-of-control situation, a timetable is not available. Therefore,
radically different train dispatching strategies are required to operate the modified
line plan. These strategies should specify simple rules that determine when trains
depart. Moreover, as out-of-control situations are characterized by a lack of complete
and accurate information, the strategies should be local, meaning that only informa-
tion of the directly surrounding part of the railway network is required to decide what
to do next, such that dispatching decisions can be made locally. We limit ourselves
to determining departure times for trains, and scheduling the rolling stock. Train
drivers and conductors are not taken into account.

5.3 Literature Review

Traditionally, railway disruption management involves finding a new timetable by
rerouting, retiming (delaying) and canceling train services and rescheduling the rolling
stock and crew such that the adapted timetable is compatible with the adapted re-
source schedules (Jespersen-Groth et al., 2009). Given that complete integration
of these steps is computationally intractable, contributions focus on one of the res-
cheduling steps. Recently, researchers have started to incorporate aspects of multiple
rescheduling phases in their models. For example, Veelenturf et al. (2015) consider
the timetabling rescheduling problem, but also guarantee that every trip in the ad-
apted timetable can be assigned a rolling stock composition. A second interesting
development is the application of robust optimization methods. For example, Veelen-
turf et al. (2014) take the uncertain disruption duration into account when solving
the crew rescheduling problem. For recent surveys on railway disruption management
we refer to Cacchiani et al. (2014) and Ghaemi et al. (2017).
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To the best of our knowledge, we are the first to consider redesigning the line plan
after disruptions. In strategic planning on the other hand, line planning has received
a considerable amount of attention, see Schöbel (2012) for a general survey. However,
existing methods are not directly applicable to our problem, since in strategic contexts
computation time is of less importance and it is usually assumed that infrastructural
and rolling stock restrictions can be dealt with later. In this chapter however, the goal
is to find a modified line plan that is feasible with respect to the infrastructure and
actual available rolling stock, in real time. Therefore, we limit ourselves to discussing
papers that (partially) integrate line planning with timetabling or vehicle/rolling
stock scheduling.

Schöbel (2017) argues that the conventional approach of solving line planning, time-
tabling and vehicle scheduling problems in the traditional sequential manner can be
seen as a greedy and therefore suboptimal algorithm. By considering the problem
in an integrated way, one should be able to find solutions that are better for both
operators and passengers. As no efficient algorithm for the complete integrated prob-
lem currently exists, the author presents a way to design new heuristics by iterating
between line planning, timetabling and vehicle scheduling.

Kaspi and Raviv (2013) develop a metaheuristic to solve the integrated line planning
and timetabling problem. In every iteration of their heuristic, trains are randomly
scheduled based on certain distribution parameters. The resulting operator costs
and passenger inconvenience is used to change the parameters for the next iteration.
Burggraeve et al. (2017) also iterate between the line planning and timetable phase,
but use feedback from the timetable to make deterministic changes to the line plan.
In the line planning problem, constraints are included that increase the likelihood a
timetable exists with large enough buffer times between trains. With this approach
they are able to construct line plans that allow for timetables with larger minimum
buffer times, thereby increasing the robustness. In this chapter, we use a similar
feedback loop connecting line planning and timetabling, but we compute partial
timetables instead of a complete timetable as a quick check (albeit more crude) that
the line plan does not exhaust all infrastructure capacity suffices in our application.

Some cost-oriented line planning approaches consider aspects from rolling stock
scheduling in the line planning problem. Claessens et al. (1998) and Goossens et
al. (2004) decide which lines to operate as well as how many carriages should be
assigned to each line. Based on the driving, dwell and turnaround times, this can be
used to compute a lower bound on the number of train units that is necessary to op-
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erate the line plan (the exact number depends on the timetable). A similar approach
is taken by Pätzold et al. (2017), who construct line plans that can likely be oper-
ated with a small number of vehicles by only considering lines that can be operated
efficiently with a fixed circulation. Specifically, a line can only be selected if a vehicle
continuously performing round trips of the line has a short downtime between round
trips in order to maintain periodicity. Chapter 2 extends these ideas and compute the
minimum number of vehicles required to operate a line plan, while allowing vehicles
to perform circulations consisting of multiple lines. In this chapter, we also consider
combining circulations as it results in more efficient use of the available rolling stock,
and integrate these decisions into the line planning problem.

There are also studies on integrating line planning and rolling stock considerations
into the timetabling problem. Liebchen and Möhring (2007) partially incorporate
line planning by assuming that line segments are fixed and need to be matched at
a certain station to constitute lines. In addition, the authors show that for certain
cases the required amount of train compositions for a line can be taken into account
in the timetabling problem. Kroon et al. (2013) are able to generalize this idea.
Under the assumption that arriving and departing trains are sufficiently spread, they
are able to find timetables requiring the smallest possible number of rolling stock
compositions.

Local dispatching strategies, which we use to operate the modified line plans in the
disrupted region, have to the best of our knowledge not yet been applied in rail-
way settings. In bus networks on the other hand, there is some work on this topic.
Dessouky et al. (1999) simulate different strategies for holding buses at transfer sta-
tions in order to find a good compromise between missed connections and passenger
delays. Other studies investigate holding strategies to maintain stable headways and
prevent bus bunching. Daganzo (2009) proposes and analytically analyzes a dynamic
control scheme for a single line where every bus is accelerated or decelerated based
on the real-time headway with the next bus. Bartholdi and Eisenstein (2012) con-
sider a simpler setting with a single control point on a circular line, and propose a
simple holding strategy that leads to constant headways in the long run, regardless
of initial headways. Argote-Cabanero et al. (2015) address the bus bunching prob-
lem for more complex network structures and define a strategy where the holding
time of a bus at a station is determined by real-time headway deviations of all lines
that visit the same station. Besides holding control approaches based on headway
deviation, researchers have proposed (stochastic) optimization models to determine
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optimal dispatching decisions (Berrebi et al., 2015; Delgado et al., 2012; Sánchez-
Martínez et al., 2016). However, such models require a lot of information and depend
on real-time communication between the vehicles and a central control center, which
is why we do not consider this approach viable for our problem. Instead, we define a
number of strategies based on headway deviations and use simulation to assess their
performance.

5.4 Line Planning Algorithm

Our line planning algorithm rests on a decomposition in a master problem and a
slave problem, which can be described as the integer or combinatorial variant of
Benders’ decomposition (Codato and Fischetti, 2006; Vanderbeck and Wolsey, 2010).
The master problem amounts to finding the optimal line plan subject to certain
timetabling and rolling stock restrictions, such that both the available infrastructure
and the available rolling stock is taken into account. The line plan produced by the
master serves as input for the subproblem, which performs an additional capacity
check by evaluating whether the line plan admits feasible partial timetables, which
we define as timetables for each station independently. If the line plan is feasible,
the algorithm terminates. If not, we identify a combinatorial cut in terms of the
variables of the master problem. The cut is then added to the master, after which
the process iterates.

Line Planning Timetabling Rolling Stock
Scheduling

Master Problem

Subproblem

Figure 5.3: Decomposition of the planning problems into a master problem and a
subproblem.

Figure 5.3 visualizes the decomposition. The master problem contains the entire line
planning problem, but, as we include timetabling and rolling stock constraints, also
includes parts of the timetabling and rolling stock scheduling problems. The master
problem is discussed in Section 5.4.2. In the subproblem, the timetable feasibility of
the line plan is further evaluated, but since we only compute partial timetables and
not a complete timetable for the whole disrupted region, not the entire timetabling
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problem is integrated in the algorithm. Section 5.4.3 explains this in detail.

In both the master problem and the subproblem, the timetabling constraints are
based on necessary conditions for the existence of a feasible periodic timetable, in
which the schedule exactly repeats each period. Such a timetable fits most natur-
ally to the concept of a line plan, since a line plan specifies frequencies per period.
Furthermore, the disrupted region will be operated according to local dispatching
rules and not according to a timetable. As a result, it is likely that travelers arrive
at stations approximately uniformly, in which case regular interdeparture intervals
(e.g. every 30 minutes) minimize traveler waiting time. Therefore, we base the time-
tabling constraints on periodic timetables, even though the realized timetable will
most likely deviate.

5.4.1 Definitions and Concepts

We represent the railway network using a connection network G = (S, E). The set
S contains the stations in the disrupted region and the set E contains an edge for
every pair of stations between which a train can run without dwelling at an in-between
station. In particular, we have basic edges connecting all pairs of stations that have no
other station in-between, and intercity edges connecting all pairs of adjacent intercity
stations, see Figure 5.4 for an example. We let T denote the period of the original
line plan and let ge denote the original edge-frequency of edge e (the frequency at
which trains are originally operated on the edge).

UtAsdh Ac Bkl Mrn UtzlAsbRaiAsdzShl

Intercity station

Basic station

Intercity edge

Basic edge

Figure 5.4: Connection graph of a part of the Dutch railway network.
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A line l is defined as a tuple (πl, fl), with πl = (e1, e2, ..., em) a path in G and fl

an integer representing the intended frequency per period of T time units. If l is a
regional line, all edges in the path must be basic edges and if l is an intercity line,
all edges must be intercity edges. A line l dwells at all stations in the path πl. The
terminal stations of a line must be decoupling stations compatible with the type of
the line. We let Sl denote the set of stations that line l passes. If l is an intercity line,
Sl also contains the stations where l passes but does not dwell. We assume lines are
always operated in both directions. The set Π contains all paths that can be used
to form lines and the line pool L contains all lines that may be selected. As is most
line planning models, we assume these sets are defined a priori (Schöbel, 2012). We
use subscripts to denote certain subsets of the line pool: the set Le contains all lines
covering edge e ∈ E, the set Ls contains all lines attending station s ∈ S and the set
Lπ contains all lines with path π ∈ Π.

We let OD ⊆ S × S denote the set of all origin-destination (OD) pairs and let no,d

denote the number of passengers traveling from station o to station d. We let ρo,d ⊆ E

denote the edges that appear in the shortest path from o to d. The shortest paths are
computed using the running times on all edges. We let ODdir denote the set of all OD
pairs that have a direct connection in the regular line plan and let Lo,d denote the
set of lines offering a direct connection between stations o and d. Finally, we let go,d

and gdir
o,d denote the total number of travel options per hour and the number of direct

travel options between o and d in the original line plan, respectively. We also refer
to go,d and gdir

o,d as the original OD-frequency and the original direct OD-frequency.

5.4.2 Solving the Master Problem

We start by explaining the canonical form of the master problem. Thereafter, we
describe the timetabling and rolling stock constraints that are included.

The binary decision variables xl indicate whether line l is selected. Next, the integer
decision variables zo,d represent the reduction in OD-frequency between o and d.
Similarly, the integer decision variables zdir

o,d represent the reduction in the direct
OD-frequency between o and d. The canonical form of the master problem is then
given by:
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minimize w1
∑

(o,d)∈OD

no,d

(
zo,d

go,d

)2
+ w2

∑
(o,d)∈ODdir

no,d

(
zdir

o,d

gdir
o,d

)2

+ w3
∑
l∈L

xl

(5.1)

s.t. zo,d +
∑
l∈Le

flxl ≥ go,d ∀(o, d) ∈ OD, ∀e ∈ ρo,d, (5.2)

zdir
o,d +

∑
l∈Lo,d

flxl ≥ gdir
o,d ∀(o, d) ∈ ODdir, (5.3)

∑
l∈Le

flxl ≤ ge ∀e ∈ E, (5.4)

∑
l∈Lπ

xl ≤ 1 ∀π ∈ Π, (5.5)

(timetabling constraints), (5.6)

(rolling stock constraints), (5.7)

xl ∈ {0, 1} ∀l ∈ L, (5.8)

zo,d, zdir
o,d ≥ 0 and integer ∀(o, d) ∈ OD. (5.9)

The objective is to minimize the weighted sum of the decrease in OD-frequency, the
decrease in direct OD-frequency and the number of lines. The two latter terms are
included with relatively smaller weights to favor line plans that offer more direct
connections and have fewer lines. A quadratic objective is used for the first two
terms to distribute the inconvenience fairly over all passengers. That is, if two OD
pairs have the same original OD-frequency, we prefer to reduce both frequencies by
one instead of reducing one of the frequencies by two. Moreover, if two OD pairs
have a different original OD-frequency we prefer to reduce the OD-frequency of the
OD-pair with the higher frequency, as this results in a lower relative decrease. As
the z−variables take on a limited number of values, the quadratic formulation can
easily be transformed into an equivalent linear formulation by defining some auxiliary
variables. We provide this linearization in Appendix 5.A.

As for the remainder of the formulation, constraints (5.2) and (5.3) make sure that
the decreases in OD-frequency and direct OD-frequency are measured correctly. Con-
straints (5.4) guarantee that for every edge, the total frequency of the selected lines
covering that edge is at most the original frequency of the edge (we do not allow
operating more trains than in the original line plan). Constraints (5.5) impose that



Chapter 5 133

for every path, at most one line can be selected (so we cannot operate two lines
with the same path but a different frequency). In the following sections, we provide
constraints (5.6) and two variants for constraints (5.7).

Infrastructure Capacity

In this section, we derive necessary conditions for the existence of a feasible timetable
in terms of the line planning variables. These constraints ensure that we do not find
line plans that cannot be operated on the available infrastructure. The idea behind
these conditions is that every line consumes a certain amount of the capacity at
stations and a timetable can only exist if not all capacity is exhausted. The novelty
of our approach is that when determining how much capacity a line requires, we
take into account that in periodic timetables trains often have longer stops and
turnaround times to enforce the periodic pattern. To illustrate this, consider a line
between stations A and B with a frequency of 2 and a travel time between A and
B of 31 minutes. Assume all lines turn on themselves, meaning that when a train
arrives at its terminal station, the train turns and starts performing the reverse trip
of the trip the train just finished. In a periodic timetable with a period of 60 minutes,
without loss of generality trains depart at station A at minutes 0, 30, 60 and so on.
Figure 5.5 depicts an example of a timetable for this line. The train leaving A at
0 arrives at B at minute 31. Assuming a minimal turning time of 5 minutes, the
soonest the train can again arrive at A is at minute 67. Likewise, the soonest the
train is ready to depart again from A is at minute 72. However the earliest next trip
it can perform starts at minute 90. This implies that on top of the minimum dwell
times, we are certain the train has to dwell an additional 18 minutes. In the displayed
timetable, the additional dwell time or downtime is spent entirely at station A, but
it is of course possible to spread this time over the stations where the train dwells.

0 15 30 45 60 75 90

}

105time

Figure 5.5: Time space diagram depicting the timetable of a line between A and B
with frequency of 2 per hour. The downtime is denoted by δl.
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Clearly, a timetable can only exist if there is sufficient platform capacity to serve all
selected lines, taking into account that the total dwell times must be long enough to
enforce the periodic pattern. To formalize this, let P s denote the set of platforms at
station s and let P s

ld ⊆ P s denote the set of platforms that can be used by a train of
line l arriving from direction d, taking into account infrastructural restrictions. The
set Ds

l contains the directions of line l at station s. If s is a terminal station of line
l, this set only contains one element, otherwise two. Next, the parameter bs

l denotes
the minimum time a platform at station s is blocked when a train from line l attends
station s ∈ Sl. This time includes the headway time that needs to separate two trains
using the same resource, and the minimum dwell time if l stops at s. Furthermore, we
let tl denote the minimum time it takes a train to perform a complete circulation of
line l, i.e. twice the sum of all driving and minimum dwell times. Then, the downtime
δl of line l is the smallest positive number satisfying tl + δl = 0 mod T

fl
. That is, the

downtime is the additional dwell time needed to enforce periodicity. The parameter
δmax

ls indicates the maximum allowed additional dwell time of line l at station s.

To incorporate these conditions in the master problem, we declare variables and
constraints that describe both the platform assignment of the selected lines and
how the downtime is divided over the stations. We introduce the variables wlsd

representing the downtime of line l at station s in direction d. In a periodic timetable,
this value is the same for every train of the line in the same direction. We also
introduce the binary decision variables ylisdp, which are equal to 1 if the i’th train
service of line l at station s in direction d is assigned to platform p, where i =
1, 2, ..., fl. Then, the following set of constraints are necessary conditions for the
existence of a periodic timetable:∑

s∈Sl

∑
d∈Ds

l

wlsd = δlxl ∀l ∈ L, (5.10)

∑
p∈P s

ld

ylisdp = xl ∀l ∈ L, i = 1, ..., fl, ∀s ∈ Sl, ∀d ∈ Ds
l , (5.11)

∑
l∈Ls

∑
d∈Ds

l

fl∑
i=1

(bs
l + wlsd)ylisdp ≤ T ∀s ∈ S, ∀p ∈ P s, (5.12)

0 ≤ wlsd ≤ δmax
ls ∀l ∈ L, ∀s ∈ Sl, ∀d ∈ Ds

l , (5.13)

ylisdp ∈ {0, 1} ∀l ∈ L, i = 1, ..., fl, ∀s ∈ Sl, ∀d ∈ Ds
l , ∀p ∈ P s

ld.

(5.14)
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Constraints (5.10) ensure that if a line is selected, the downtime is divided over
the stations. Constraints (5.11) ascertain that the train services of selected lines
are assigned to platforms. Constraints (5.12) impose that the total time a plat-
form is blocked per period is less than the total available time. Constraints (5.13)
guarantee that the downtimes are nonnegative and less than the specified upper
bounds. Constraints (5.12) can be linearized by introducing the decision variables
wlisdp = wlsdylisdp. This relation is enforced by adding the following linear con-
straints:

wlisdp ≥ wlsd − δmax
ls (1− ylispd) ∀l ∈ L, i = 1, ..., fl,∀s ∈ Sl,∀d ∈ Ds

l ,∀p ∈ P s
ld.

(5.15)

Rolling Stock Capacity

We take rolling stock scheduling into account when redesigning the line plan by
imposing that for every selected line, there must be a sufficient number of trains
assigned to circulations covering to the line. We distinguish two cases. In the first
case we assume that all rolling stock circulations must be fixed, such that all trains
turn on themselves. In the second case we relax this assumption and allow for
flexible rolling stock circulations, in which trains can switch lines when they reach
their terminal station. This leads to shorter turning times, which allows more trains
to be operated as (i) trains spend less time dwelling and more time running and (ii)
pressure is released at the turning stations, such that there is capacity for additional
trains. Moreover, flexible circulations increase flexibility during operations. As a
timetable is unavailable, the number of trains required to operate circulations is
determined based on the minimum trip times in both cases.

Note that the downtime constraints (5.10) defined in the previous section are valid
under the assumption of fixed circulations. It is possible to generalize these con-
straints, such that the additional dwell time is not distributed over the stations of
all selected lines, but over the stations of the selected circulations. However, this
constraint is rarely violated when flexible circulations are allowed. The reason for
this is that in order to use the available rolling stock as efficiently as possible, the
model selects circulations with short downtimes. Moreover, in the rare case that the
constraint is violated, this likely has a small impact on the overall performance, as
the line plan will be operated according to local dispatching rules and crude time-
tabling constraints suffice. Therefore, we ignore constraints (5.10) if we allow for
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flexible circulations. Note that constraints (5.11-5.12) and (5.14) then still restrict
the allowed capacity consumption of the line plan.

Fixed Rolling Stock Circulations
We let nl denote how many trains are at least necessary to operate line l when
operated solely with fixed circulations. This value can be computed as follows:

nl =
⌈

tl

T
fl

⌉
, or alternatively nl = tl + δl

T
fl. (5.16)

Next, we let R denote the set of available trains located in the disrupted region.
The parameter arl indicates whether train r can be assigned to line l, based on the
location and type of the train. We introduce decision variables vrl indicating whether
train r is assigned to line l. The allocation of rolling stock can be included in the
master problem by adding the following constraints:∑

r∈R

arlvrl = nlxl ∀l ∈ L, (5.17)∑
l∈L

vrl ≤ 1 ∀r ∈ R, (5.18)

vrl ∈ {0, 1} ∀l ∈ L, ∀r ∈ R. (5.19)

These constraints state that if a line is selected, nl trains should be assigned to the
line and that every train can only be assigned to a single line.

Flexible Rolling Stock Circulations
The advantage of flexible circulations is that multiple lines with long downtimes can
be combined into a circulation with a short downtime. Consider for example two
lines l and m with fl = fm = 1 and tl = tm = 85 minutes such that δl = δm = 35
minutes. Combining these lines in a circulation gives a travel time of 170 minutes
and a downtime of only 10 minutes, which is clearly more efficient.

We formally define a rolling stock circulation c as a sequence of lines c = l1, l2, ..., l|c|,
such that all consecutive lines, and the first and last line, have a shared terminal
station and all lines are either all regional or all intercity lines. A train performing
this circulation continuously traverses the sequence from left to right: first the train
performs a round trip of l1, then a round trip of l2 and so on. We let fc denote
the frequency of circulation c, which equals the minimum frequency of the lines in
the circulation. Analogously to lines, we let tc denote the minimum travel time of
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circulation c, which equals
∑

l∈c tl, and we let δc denote the downtime of a circulation,
which equals the smallest positive number satisfying tc + δc = 0 mod T

fc
.

To provide a mathematical formulation of flexible rolling stock circulations, we let
C denote the set of allowed circulations and introduce the decision variables γc,
indicating whether circulation c is selected, and θc, representing how many trains
perform circulation c. We also have the assignment variables vrc, indicating whether
train r ∈ R is assigned to circulation c. We let the parameter arc indicate whether
such an assignment is possible. The formulation now reads as follows:

∑
c∈C|l∈c

T

tc + δc
θc = flxl ∀l ∈ L, (5.20)

lcγc ≤ θc ≤ ucγc ∀c ∈ C (5.21)

γc ≤ xl ∀c ∈ C, ∀l ∈ c, (5.22)∑
r∈R

arcvrc = θc ∀c ∈ C, (5.23)∑
c∈C

vrc ≤ 1 ∀r ∈ R, (5.24)

θc ≥ 0 and integer ∀c ∈ C, (5.25)

γc, vrc ∈ {0, 1} ∀c ∈ C, ∀r ∈ R. (5.26)

Constraints (5.20) guarantee that if a line is selected, a sufficient number of trains is
assigned to circulations covering the line. The crucial observation is that every period,
a train assigned to circulation c performs T

tc+δc
trips of each line in c. Constraints

(5.21) assure that if a circulation is selected, the number of trains assigned to the
circulation is between a certain upper and lower bound. These bounds are given by

lc =
⌈

tc

T

⌉
and uc = tc

T
fc. (5.27)

The lower bound ensures that every selected circulation accounts for at least one
train service of each line in every period. The upper bound is derived from con-
straints (5.20). Constraints (5.22) impose that a circulation can only be selected if
all lines in the circulation are selected. These constraints are not necessary for a
valid formulation, but slightly strengthen the linear programming relaxation. The
assignment part of the formulation is covered by constraints (5.23) and (5.24). These
constraints make sure that the number of trains assigned to a circulation equals the
number of times the circulation is selected and that every train is assigned to at most



138 Chapter 5

one circulation.

To keep the number of circulations limited, we only allow fixed circulations and cir-
culations with two lines that satisfy δc <

∑
l∈c δl, i.e. the downtime of the combined

circulation is strictly smaller than the sum of the downtimes of the individual lines.
Doing so ensures that the size of the model does not increase too much, while still
including the most promising circulations.

5.4.3 Solving the Subproblem

The goal of the subproblem is to evaluate whether the line plan produced by the
master problem admits a feasible timetable and to identify one or more violated
inequalities or cuts if this is not the case. As explained in Section 5.2, it is not
required to consider the complete timetabling problem since trains will be dispatched
using self-organizing strategies rather than according to a timetable. Therefore, we
do not try to compute a timetable for the entire network, but rather compute partial
timetables for every station independently. Additional advantages of this approach
are that it gives timetabling instances that can be solved quickly and that it allows
us to identify small sets of inconsistent lines (and therefore strong cuts that can be
added to the master problem). Conversely, computing a timetable for the entire
network is very time consuming and has the disadvantage that only a single line plan
is ruled out by the generated cut if the line plan is found to be infeasible.

We formalize the timetabling problem using the Periodic Event Scheduling Problem
(PESP). The PESP is originally introduced by Serafini and Ukovich (1989) and can
be used to model a wide variety of timetabling constraints. In the PESP we include
safety, dwell, synchronizing and capacity constraints. The capacity constraints lie
outside the standard formulation of the PESP but are necessary given the limited
capacity of the boundary stations. We refer to the extended model as the C-PESP.
A formulation of the C-PESP is provided in Appendix5.B. For a more extensive
discussion of the (C-)PESP we refer to Peeters (2003).

In our implementation of the C-PESP, we increase the minimum dwell times by the
headway time to strengthen the capacity constraints (if both the dwell time and
headway time are 2 minutes, every dwelling train effectively blocks the platform for
4 minutes). In addition, we apply constraint propagation techniques before we split
up the timetabling problem into the timetabling problems for all stations. This way,
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the local constraints at the stations are strengthened using constraints outside the
station. Furthermore, junctions between stations and points in the network where
the number of tracks changes are considered as dummy stations.

When we detect an infeasibility at a station, it is first checked whether the set of lines
attending the station is a minimal inconsistent set by iteratively removing the lines
in the set and checking whether the C-PESP now has become feasible. If removing
one of the lines still results in an infeasible C-PESP, the line is removed from the set.
This process is repeated until the set of lines corresponds to a minimal inconsistency.

To give a mathematical formulation of the cut, let L s denote a minimal inconsistent
set of lines attending station s in the current solution of the master problem. Then,
the following cut rules out this line combination in the next iterations of the master
problem: ∑

l∈L s

xl ≤ |L s| − 1. (5.28)

However, this is not the only cut we can derive from the discovered infeasibility, since
we know all line plans that generate the same C-PESP at s, or a C-PESP with a
smaller feasible region, must also result in an infeasibility. To illustrate this, consider
the line plan visualized in Figure 5.6a, containing the lines l1 and l2 with frequencies
4 and 2, respectively. Now assume this line plan leads to an infeasible C-PESP at
station C. After adding the corresponding cut to the master and resolving, we might
find the line plan in Figure 5.6b in the next iteration. However, this line plan must
also result in an infeasibility at station C, as from the perspective of this station, the
solution has not changed (assuming that the minimum dwell time only depends on
whether trains turn or not). In other words, the C-PESPs generated for station C

are equivalent. Therefore, we could have excluded both line plans upon finding the
infeasibility at C.

More generally, letMs
i denote the set of lines that have the same frequency, the same

in- and outbound edge and the same minimum dwell time at station s as the i’th line
in L s. Then, from a station infeasibility at station s, we can derive the following
cuts: ∑

l∈M

xl ≤ |L s| − 1, ∀M ∈Ms
1 ×Ms

2 × ...×Ms
|L s|. (5.29)
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(a) Solution of the master problem.

(b) Alternative line plan.

Figure 5.6: Two line plans that generate the same C-PESP at station C.

The advantage of adding multiple cuts per iteration is that it is likely to reduce the
total number of iterations before the C-PESPs at all stations are feasible. On the
other hand, the time spent solving the master problem might increase, as adding all
cuts (5.29) increases the size of the master problem, especially when the disrupted
region and/or the set L s is large. In preliminary experiments, we observed that the
benefits of adding multiple cuts greatly outweigh the disadvantages. Therefore, we
always add all cuts (5.29) when running the algorithm.

5.5 Operating the Disrupted Region

In this section, we propose dispatching strategies that can be used to operate the
line plans that are produced by the model discussed in Section 5.4. In addition, we
describe the simulation framework and evaluation criteria used to assess the perform-
ance of the line plans and dispatching strategies.

5.5.1 Train Dispatching Strategies

The train dispatching strategies that we develop specify what to do next when a
train arrives at a station. Specifically, the strategies state (i) when the arrived train
will depart and (ii) where to the train will depart. The information that is allowed
to be used to make these decisions are previous departure times at the station and
information from trains directly surrounding the station.

As for the when aspect of strategies, we consider three timing principles, referred to
as ASAP, SYNC and SYNC + COOR. When trains are operated using the ASAP
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(as soon as possible) principle, arriving trains always leave as soon as possible. This
may be reasonable, as the station capacity is limited, hence trains should not occupy
platforms longer than necessary.

When trains are operated using the SYNC (synchronize) principle, trains do not
depart as soon as possible at terminal stations. Instead, the departure time at these
stations is decided based on the previous departure time of the line in order to
promote the regularity of the departure times. For example, if a train from a certain
line with a frequency of 4 per hour arrives at the terminal station and the previous
train of the line departed 7 minutes ago, the train will depart in 8 minutes. However,
we do impose that if a train is unable to enter a terminal station because of a
waiting train, the waiting train will depart immediately and not wait until its desired
departure time, to free a platform for the entering train.

The SYNC + COOR (synchronize and coordinate) principle extends the SYNC prin-
ciple by coordinating the departure times of different types of trains. Firstly, the
principle imposes that if a regional train has departed from a station on a part of
the network that has one track per direction, intercity trains can only depart when
enough time has passed to make sure the faster intercity train does not have to wait
for the slower regional train. Secondly, at stations where overtaking is possible, re-
gional trains wait at the station if an intercity train is coming within 3 minutes and
the regional train would have otherwise blocked the incoming intercity train. Note
that it is also possible to take a different value than 3 minutes or let the maximum
waiting time depend on the decrease in travel time of the intercity train.

As for the where to aspect of dispatching strategies, we consider two turning prin-
ciples, STAT and DYN. In the STAT (static) principle, trains reaching their terminal
station start performing the same line in the reverse direction. In the DYN (dynamic)
principle, trains can be reassigned to a different line when they reach their terminal
station. Trains are reassigned based on the type of the train and the previous de-
parture times. The line that needs a departure the earliest gets assigned the first
compatible train. The advantage of the DYN principle is that it results in shorter
turning times at the terminal stations. Even more, this principle leads to more ef-
ficient use of the trains, such that it is possible to operate more trains per hour.
Clearly, the STAT and DYN principles are related to the respectively fixed and flex-
ible rolling stock constraints discussed in Section 5.4.2. If the line plan is optimized
using flexible rolling stock constraints, it is expected that the STAT principle is too
restrictive and will not lead to satisfactory operations. Conversely, if fixed rolling
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stock circulations are imposed in the line planning algorithm, it might still be bene-
ficial to use the DYN principle, as it is more flexible.

The three timing principles and two turning principles give rise to six different
strategies, with ranging degrees of coordination. For instances without intercity
trains we have only four strategies, as the SYNC+COOR principle is only different
from the SYNC principle in the way it deals with intercity trains.

5.5.2 Simulation Framework

We evaluate the line plans and dispatching strategies by simulating the railway traffic
in the disrupted region. The simulation takes as input a disrupted region, the modi-
fied line plan, the regular timetable, the dispatching strategy that should be applied
and the time instant the disrupted region is decoupled from the rest of the network.
Using these inputs we can retrieve the current position of the trains in the disrup-
ted region from the regular timetable. The simulation is initialized by assigning the
trains to lines. We use a simple model to perform this initialization, assigning the
trains in such a way that trains assigned to the same line are roughly spread out over
the network. In the case that a train not assigned to any line, it is assumed that this
train can be routed to a shunt yard without interfering with other trains.

For the simulation we use a macroscopic representation of the railway network where
nodes are stations and edges are tracks. Junctions are modeled as dummy stations
with the number of tracks as the number of platforms. In the actual operations,
tracks are subdivided into block sections and a train is allowed to enter a section if
the previous train is no longer occupying the section. Otherwise, the train needs to
wait before the red signal placed at the beginning of the block. In the simulation,
the block sections are not taken into account and trains therefore only wait upon
arriving at or departing from a (dummy) station. Between stations, trains run at
a constant speed. Dummy stations are also introduced between stations to prevent
faster trains from overtaking slower trains on the same track.

Trains can enter a station if there is a platform available that is compatible with the
in- and outgoing track of the train. A platform is available if the predefined headway
time has passed since the previous train used the platform. If multiple platforms are
available, the simulation picks one at random. If there is no available platform, the
train is added to the arrival queue at the station. When a train arrives at a station,
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the departure is scheduled according to the dispatching strategy that is being used.
When a train wants to depart, the simulation checks whether the outgoing track is
available for the type of the train. The outgoing track is available if the headway
time has passed since the last train of the same type has departed. If the outgoing
track is still blocked, the train is added to the departure queue of the track. After a
train has departed, the simulation checks whether the newly available platform can
be used by one of the trains in the arrival queue and an arrival is scheduled if that
is the case.

5.5.3 Evaluation Criteria

As the main objective when optimizing the line plan is to offer sufficient travel options
to the passengers, it is expected that a good execution of the line plan also leads to a
good service for the passengers. Therefore, we introduce three operational measures
that quantify how close the realized timetable is to a perfect execution of the line plan.
The considered aspects in these measures are the realized frequencies of lines, the
regularity of the inter-departure times and the train delays. Next to the operational
measures, we also directly assess the impact of the different line plans and strategies
on the journeys of passengers with two travel measures, taking into account the
realized number of travel options per hour offered to passengers and travel times.
The exact definitions of the measures can be found in Appendix 5.C. Below, we
describe their interpretation.

Operational measures. The operational measures are defined for the operation of a
line in a certain direction. Later we describe how the measures can be evaluated for
an entire line plan. The measures are defined in such a way that if and only if a train
line is operated perfectly (i.e. trip times are at their minimum and the trains depart
from the terminal stations according to a perfect synchronized pattern), the train
line scores exactly 1 for all measures at all times. This allows us to clearly observe
deviations from the ideal scenario.

The frequency measure relates the number of realized departures to the number of
departures there should have been according to the line plan. For example, if the
measure for a certain line is 1.1, there have been 10 percent more departures than
indicated by the line plan and if the measure is 0.9, there have been 10 percent
fewer departures. The regularity measure relates the cumulated relative deviation
from the ideal interdeparture time to the number of departures. For example, for a
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line with a frequency of 4 per hour, if the measure equals 0.8, the average absolute
deviation from the ideal time between departures equals 0.2× 15 = 3 minutes. If the
measure equals 0.6, the average absolute deviation is 6 minutes. Relative deviations
are considered such that a deviation of 10 minutes on a line with a period of 30
minutes is penalized less than a deviation of 10 minutes on a line with a period of
15 minutes. Finally, the delay measure relates the realized trip time to the minimum
trip time of the line. For example, if the minimum trip time of a line is 30 minutes,
and the measure equals 1.1, the average realized trip time is 30× 1.1 = 33 minutes.
If the measure is 1.2, the average realized trip time is 36 minutes.

The frequency, regularity and delay measure of an entire line plan at any given t

can be computed by taking the average of the measures over all lines and directions.
Note that averaging over lines can result in a frequency measure of 1.0, even though
the performance of the individual lines may be very bad, for example one line has
frequency 1.5 and another line 0.5. However, in such a case we are still able to detect
that the line plan has poor performance as both lines will have very bad scores
on the regularity measure, which averages absolute deviations from the intended
interdeparture times.

Travel measures. The first travel measure corresponds to an empirical analog of the
objective used in the line planning algorithm and hence referred to as the realized
objective. To enable a proper comparison to the objective attained by the line plans,
we assume travelers take the same path as the path that is used in optimizing the line
plan. For the realized objective at time t, we assume that at that time no,d passengers
want to travel from o to d, and find the number of travel options over path ρo,d in the
next hour according to the simulation. To evaluate the long run average performance,
we compute the measure for every whole minute during the simulation and take the
average. By comparing this measure to the theoretical objective of the line plan, we
can assess to what extent dispatching strategies result in the same number of travel
options per period as intended in the line plan.

The second travel measure equals the (weighted) average travel time of travelers,
including waiting, in-vehicle and transfer times. For this measure, we assume pas-
sengers travel according to a shortest path that is computed using the modified line
plan. To evaluate the long run average performance, we again compute the measure
for every whole minute during the simulation and take the average. Besides us-
ing this measure to compare the performance of different line plans and dispatching
strategies, it also gives an indication of the overall performance of our approach by
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comparing it with the average travel time in an undisrupted situation.

5.6 Computational Results

To test our approach, we conduct experiments on multiple parts of the network
operated by NS. Disrupted regions of different sizes are considered, such that we can
examine the practicability of the algorithm in different scenarios. Furthermore, we
also investigate multiple variants of the rolling stock and timetabling constraints and
analyze the effect these have on the overall performance.

5.6.1 Problem Instances

We test the developed algorithms on two disrupted regions, using the 2017 line plan
and timetable. The original line plan of the part of the Dutch railway network that
we consider is presented in Figure 5.7. NS operates a dense line system in this part
of the Netherlands, with six intercity lines and nine regional lines. Figure 5.7 also
indicates which stations serve as decoupling stations, as specified by NS and ProRail.

The largest part of the considered railway network is double-tracked. To accom-
modate for higher frequencies of intercity and regional trains, there are four tracks
between Utrecht Centraal and Amsterdam-Zuid and between Utrecht Centraal and
Utrecht Overvecht. Furthermore, intercity trains can overtake regional trains at Am-
sterdam Muiderpoort, Weesp and Naarden-Bussum. The part between Baarn and
Den Dolder is single-tracked, with a passing possibility at Soest.

For the passenger data we use an origin-destination matrix with the average daily
number of passengers between stations provided by NS. As the network that we
consider is only a part of the Dutch railway network, there are many passengers that
travel through the considered network without having both the origin and destination
in this network. This is taken into account by including the passenger counts from and
to major intercity stations outside this part of the network. If possible, we derive
the number of available platforms at boundary stations for serving the disrupted
region from available contingency plans used by NS and ProRail. If no applicable
contingency plan is available, we estimate the number of available platforms.

The first disrupted region we consider is the region bounded by Utrecht Centraal,
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Figure 5.7: The regular line plan in a part of the Dutch railway network. Line
frequencies are indicated by the thickness of the lines. Dark lines are regional lines,
bright lines are intercity lines.

Den Dolder, Baarn and Hilversum. An out-of-control situation in this region could
occur due to a power outage at Amersfoort, directly impacting five of the eight lines
in this region. We assume buses are transporting passengers from Baarn and Den
Dolder to Amersfoort, and vice versa. An interesting aspect of this disrupted region
is that while the most important lines (in terms of the number of passengers) in
this region are the intercity lines between Hilversum and Amersfoort and between
Utrecht Centraal and Amersfoort, it is not possible to operate any intercity trains in
the disrupted region. The reason for this is that Baarn and Den Dolder are regional
decoupling stations, such that intercity trains cannot turn at these stations. Hence,
the challenge is to optimally use the available regional trains in order to also serve the
passengers that normally take intercity trains. The large instance that is considered
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is the region bounded by Amsterdam Centraal, Amsterdam Zuid, Almere Centrum,
Utrecht Centraal, Den Dolder, Baarn and Hilversum. An out-of-control situation
in such a large part of the Dutch railway network could occur after a combination
of major disruptions at Amsterdam and Utrecht. In this instance it is possible to
plan both regional and intercity lines. Besides its size, an interesting aspect of this
instance is that there is limited capacity for turning trains at Amsterdam Zuid,
Utrecht Centraal and Almere Centrum. Given that a large number of trains attend
these stations in the regular line plan, the limited station capacity is most likely one
of the bottlenecks in the large instance.

5.6.2 Parameter Settings and Experimental Setup

In our experiments, we generate the line pool L by considering all paths that either
constitute a shortest path between the terminal stations (shortest in terms of the
running times) or are a path or sub-path of a line in the regular line plan. For a
path πl we consider all lines (πl, fl) as long as the frequency fl is a positive integer
smaller or equal to mine∈πl

ge, since we do not allow higher frequencies on an edge
than the original edge-frequencies. This way, the size of the master problem remains
sufficiently small, such that we can find good solutions in a short time.

The running times between stations are derived from the regular timetable of NS.
For the dwell times, we use 5 minutes if the train turns and 2 minutes otherwise. We
use a headway time of 2 minutes. Hence, the blocking time of a line at a station is 7
minutes if the line has a turn at the station and 4 minutes otherwise. The parameter
T , the period of the timetable is set to 60 minutes, the cycle time used by NS.

We impose the timetabling constraints (5.10-5.14) in their most stringent form. That
is, we set the maximum additional dwell time δmax

ls of line l at station s to 0 minutes
unless s is a terminal of line l, in which case we set δmax

ls to 60 minutes. In other
words, we impose that the downtime of every line must be entirely spent at the
terminal stations. This way we avoid finding line plans that exhaust all capacity at
terminal stations, causing trains to queue up in front of these stations when operating
the line plan without a timetable.

After initial experiments we decided to set the weights in the objective function as
follows. The first term, representing frequency decrease of travel options is given
weight w1 = 1∑

(o,d)∈OD
no,d

, i.e. we normalize by dividing by the number of travelers.



148 Chapter 5

The second term, representing the decrease of direct travel options is given weight
w2 = 1

2
∑

(o,d)∈ODdir
no,d

, i.e. we divide by two times the number of travelers with

a direct travel option. The last term, the line cost, is given weight w3 = 0.001.
These settings ensure that the most emphasis is put on providing all passengers with
sufficient travel options ("getting everyone home"), and that direct connections are
maintained unless this strongly harms the first objective. Ties are broken based on
the number of lines.

For a thorough analysis of the performance of the line planning algorithm, we perform
tests with three variants of the rolling stock constraints. In the first setting, no rolling
stock constraints are included. This setting serves as a reference and is used to
illustrate which line plan would be possible if ample rolling stock would be present.
In the two other settings, fixed and flexible rolling stock constraints are included,
respectively.

The algorithm takes as input the trains that are present in the disrupted region when
the region is decoupled. Given this time instant, the positions of trains can be derived
from the timetable. Since this of course varies over the hour, we run the algorithm
for five equidistant time instants (minutes 1, 13, 25, 37 and 49). As NS operates most
lines every 15 or 30 minutes, this approach ensures that the majority of the variation
in the number of available trains and their positions is captured. When determining
the performance of the different dispatching strategies on the line plans, we use a
simulated time of 4 hours and average the measures over the five time instants.

The line planning algorithm and the simulation are implemented in Java 8 on a Dell
Precision 7520 running Windows 10 with an Intel Core i7-7820HQ processor at 2.9
GHz and 16 GB of RAM. CPLEX 12.8.0 is used to solve the mixed-integer programs.
In every iteration of the line planning algorithm, we let the master problem terminate
either when the optimal solution is found, or when a time limit of 120 seconds is
reached.

5.6.3 Results Small Disrupted Region

In Table 5.1, the objective, number of lines, number of iterations, number of cuts and
computation times are presented for the three settings. The results of the fixed setting
and flexible setting depend on the time instant, hence for these settings we present
the averages over the 5 time instants. It can be seen that without any rolling stock
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constraints we find a line plan with an objective very close to 0, indicating that hardly
any travelers have a reduction in their indirect or direct OD-frequency. However, as
rolling stock constraints are neglected, it turns out that this line plan requires 14
trains whereas only 6 or 7 trains (depending on the exact time the disrupted region
is decoupled) are available. The line plans obtained with the fixed and flexible rolling
stock constraints can be operated with the available rolling stock, but this of course
results in a worse objective. The flexible line plans achieve a much better objective
than the fixed line plans.

With regards to the computational performance, it can be seen that all solutions
are found within a few seconds. The solution with the basic setting is found after 2
iterations of the line planning algorithm, in which 32 cuts are added to the master
problem. For the fixed setting and flexible setting, the number of iterations varies
between 1 and 2, and fewer violated inequalities are encountered. This shows that
in this disrupted region, the amount of rolling stock available is the main limiting
factor for designing an attractive line plan.

Table 5.1: Results of the line planning algorithm on the small disrupted region using
the three types of rolling stock (RS) constraints.

RS constraints Obj. Lines Iterations Cuts Master
CPU (s)

Total
CPU (s)

Max
Total CPU (s)

None 0.033 6 4 32 0.5 2.7 2.7
Fixed 0.447 3.8 1.2 0.4 0.1 0.4 1.1
Flexible 0.351 4 1.6 0.8 0.7 1.1 2.4

To illustrate the impact of the different settings on the solution, the line plans for one
of the time instants are visualized in Figure 5.8. As can be seen, the line plan obtained
without rolling stock constraints is much denser than the fixed and flexible line plans,
once again showing that not taking into account rolling stock restrictions results in
line plans that cannot be operated with the available rolling stock. The fixed and
flexible line plans have the same lines, but with different frequencies. By combining
lines into circulations, the frequency between Utrecht Centraal and Hilversum and
between Baarn and Hilversum can be increased from 2 to 3. The frequency of the
line between Utrecht Centraal and Den Dolder however is decreased from 3 to 2.
Overall, this results in a theoretically better solution.
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(a) No RS constraints

(b) Fixed RS constraints

(c) Flexible RS constraints

Figure 5.8: Line plans for the small
disrupted region obtained with different
rolling stock (RS) constraints included.
All lines are regional lines.
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(a) Fixed RS constraints
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(b) Flexible RS constraints

Figure 5.9: Operational measures in the
small disrupted region obtained with (a)
fixed and (b) flexible rolling stock (RS)
constraints. The four strategies are struc-
tured in a 2x2 matrix. In the figures,
the horizontal axis denotes the time in
hours and the vertical axis the score on
the three measures. The closer a measure
is to the horizontal dashed line, the bet-
ter the performance.
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The simulation results are presented in Table 5.2 and Figure 5.9. Table 5.2 contains
the travel measures, averaged over the entire simulation and Figure 5.9 shows the
values for the operational measures plotted over time. As this instance only contains
regional lines, the SYNC+COOR principle is not considered here. The fixed set-
ting, which theoretically attains an objective of 0.447, results in realized objectives
of about 0.39 and 0.48 for strategies with the ASAP and SYNC timing principle,
respectively. This can be explained using Figure 5.9(a), where we observe that the
ASAP strategies have normalized frequencies that are much larger than 1, whereas
the SYNC strategies have normalized frequencies very close to 1. This means that
the ASAP strategies lead to ’more trains than promised’ and consequently, a better
objective than promised. The ASAP strategies also result in shorter travel times.
The turning principle has a much smaller effect on the performance of the fixed line
plans. The DYN strategies have slightly shorter travel times.

When the flexible setting is used, the turning principle now plays a more important
role in the performance. The DYN principle clearly outperforms the STAT principle
when the SYNC timing principle is used, resulting in both a lower objective and
shorter travel times. This was expected, since the flexible setting generates line plans
that cannot be operated if only fixed turnings are allowed. As with the fixed setting,
the strategies with the ASAP principle attain a better realized objective, although
the theoretical objective of 0.351 is not reached.

Table 5.2: Values of the travel measures for the different strategies and rolling stock
(RS) constraints in the small disrupted region, averaged over the five time instants.
In the undisrupted situation, the average travel time (without waiting time) is about
18 minutes.

Fixed RS constraints Flexible RS constraints
Real. Obj. Travel Time (min.) Real. Obj. Travel Time (min.)

ASAP-STAT 0.389 27.6 0.355 27.5
SYNC-STAT 0.478 30.6 0.434 29.6
ASAP-DYN 0.386 27.4 0.363 27.7
SYNC-DYN 0.486 30.3 0.396 28.5

Comparing the results for the line planning settings, we can observe that for any
dispatching strategy, the flexible setting has a better realized objective, and that for
both line planning settings, the objective and travel times are lowest using the ASAP
strategies. On the other hand, Figure 5.9 shows that the SYNC strategies generate
a more stable and predictable service, which can also be deemed important when
dealing with an out-of-control situation.
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5.6.4 Large Disrupted Region

In Table 5.3, the objective, number of lines, number of required trains under fixed
circulations, number of iterations, number of cuts and computation times are presen-
ted for the three settings. The results of the fixed and flexible constraints are again
averages over the 5 time instants. As in the small disrupted region, neglecting rolling
stock constraints leads to a line plan that achieves a very low objective, but is actu-
ally infeasible. However, the difference is smaller than in the small region, showing
that next to the number of available trains, the available infrastructure also poses a
large restriction on the line plans that can be realized in the large disrupted region.

The computation time of the algorithm strongly depends on the setting. Using the
fixed setting, the optimal solution is found on average within 10 seconds. The flexible
setting takes considerably more time, on average about 40 seconds. The basic setting
even takes more than 13 minutes, but this setting is unlikely to be used in real-time
applications as it produces overly optimistic line plans. Both the fixed and flexible
setting require on average 2 iterations during which 160 cuts are added. In fact, it
turns out that the same 160 cuts are added for both settings.

The line plans for one of the time instants are visualized in Figure 5.10. The line
plan without rolling stock constraints is similar to the regular line plan that is op-
erated. The frequency of regional trains is increased between Hilversum and Baarn
and between Utrecht Centraal and Den Dolder to compensate for the intercity trains
that cannot run between these stations. As for the intercity lines, the limited turning
capacity at Amsterdam Zuid, Utrecht and Almere Centrum leads to the cancellation
of the line between Amsterdam Zuid and Utrecht Centraal and the reduction of the
frequency of the line between Amsterdam Zuid and Almere Centrum from 4 to 2
per hour. In the fixed line plan, many regional lines are canceled or have their fre-
quency reduced, e.g. between Amsterdam Zuid and Almere Centrum and between
Amsterdam Centraal and Utrecht Centraal. The frequency of the intercity between
Amsterdam Zuid and Hilversum is also reduced. On the other hand, the intercity
between Amsterdam Zuid and Almere Centrum has frequency 4 compared to 2 in
the basic line plan, and the intercity between Amsterdam Zuid and Utrecht Centraal,
which was canceled entirely in the basic line plan, is included in the fixed line plan,
albeit with frequency 1. In the flexible line plan, many improvements are visible
over the fixed line plan. More and longer regional lines are operated, restoring direct
connections between Utrecht Centraal and Baarn and Amsterdam Zuid and Almere.
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Furthermore, the intercity between Amsterdam Zuid and Utrecht Centraal is included
with frequency 2, compared to 1 in the fixed line plan.

Table 5.3: Results of the line planning algorithm on the large disrupted region using
the three types of rolling stock (RS) constraints.

RS constraints Obj. Lines Iterations Cuts Master
CPU (s)

Total
CPU (s)

Max
Total CPU (s)

None 0.074 15 6 408 802.6 822.1 822.1
Fixed 0.162 13.0 2.0 160.0 5.2 9.2 15.2
Flexible 0.133 17.0 2.0 160.0 36.7 40.5 44.9

Table 5.4: Values of the travel measures for the different strategies and rolling stock
(RS) constraints in the large disrupted region, averaged over the five time instants.
In the undisrupted situation, the average travel time (without waiting time) is about
25 minutes.

Fixed RS constraints Flexible RS constraints
Real. Obj. Travel Time (min.) Real. Obj. Travel Time (min.)

ASAP-STAT 0.226 37.5 0.217 37.4
SYNC-STAT 0.224 36.1 0.244 37.9

SYNC+COOR-STAT 0.219 35.6 0.248 37.5
ASAP-DYN 0.197 35.8 0.195 36.5
SYNC-DYN 0.220 36.0 0.207 36.2

SYNC+COOR-DYN 0.219 35.9 0.217 36.3

The simulation results of the large disrupted region are presented in Table 5.4 and
Figure 5.11. Table 5.4 contains the travel measures, averaged over the entire simula-
tion and Figure 5.11 shows the values for the operational measures plotted over time.
The flexible rolling stock constraints in combination with the ASAP-DYN strategy
results in the best realized objective. However, note that in contrast to the small
instance, the realized objectives are worse than the theoretical objectives that are
attained. The figures with the operational measures provide an explanation. It is
visible that the delay measure is over 1.1 for all line planning settings and dispatch-
ing strategies, which is simply caused by the larger size of the network, with more
potential places for conflicts between trains. This implies that the actual travel times
are about 10 percent larger than travel times used in optimizing the line plans. As
a consequence, the realized frequencies are below the ’promised’ frequencies, causing
the realized objective to be worse. These results suggest that for larger disrupted
regions, it might be worthwhile to use more conservative trip time estimates in the
line planning algorithm.

In addition, it is visible that the large difference in the attained theoretical objective
between the fixed and flexible line plans does not translate in the same difference in
realized objective. On the other hand, the dispatching strategies that apply the DYN
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principle, which allows flexible turnings during operations, do achieve significantly
better objectives, travel times and also score better on the operational measures.
This shows that flexible turnings partially compensate for the longer than anticipated
travel times.

(a) No RS constraints (b) Fixed RS constraints

(c) Flexible RS constraints

Figure 5.10: Line plans for the large disrupted region obtained with the different
rolling stock (RS) constraints. Dark lines are regional lines, bright lines are intercity
lines.



Chapter 5 155

0 1 2 3 4
0.6

0.8

1

1.2

1.4

A
SA

P

STAT

0 1 2 3 4
0.6

0.8

1

1.2

1.4

DYN

0 1 2 3 4
0.6

0.8

1

1.2

1.4

SY
N

C

0 1 2 3 4
0.6

0.8

1

1.2

1.4

0 1 2 3 4
0.6

0.8

1

1.2

1.4

SY
N

C
+C

O
O

R

0 1 2 3 4
0.6

0.8

1

1.2

1.4

Frequency Delay Regularity

(a) Fixed RS constraints
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(b) Flexible RS constraints

Figure 5.11: Operational measures in the large disrupted region obtained with (a)
fixed and (b) flexible rolling stock (RS) constraints. The six strategies are structured
in a 3x2 matrix. In the figures, the horizontal axis denotes the time in hours and
the vertical axis the score on the three measures. The closer a measure is to the
horizontal dashed line, the better the performance.

A last observation regarding Table 5.4 and Figure 5.11 concerns the SYNC+COOR
principle. When considering the operational measures, the SYNC+COOR principle
leads to an average delay of about 2 percent lower compared to the SYNC principle,
which also results in a lower travel time for passengers in all cases except one. In
fact, if combined with the fixed setting, the SYNC+COOR-STAT strategy results in
the lowest travel time over all strategies, illustrating that adding small coordination
mechanisms can greatly improve the experience of passengers. However, this does
increase the complexity of the operations, potentially harming the controllability
of the system, which conflicts with the original goal of preventing out-of-control
situations.
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5.6.5 Impact of the Timetabling Constraints

As a final experiment, we examine the timetabling constraints have on the line plans
and resulting performance of the dispatching strategies. To do so, we define three
variants of the model. In the no timetabling constraints variant, we disregard the
capacity entirely, so we omit the subproblem and constraints (5.10-5.14). In the basic
timetabling constraints variant, we still omit the subproblem but include the basic
timetabling constraints (5.11-5.14) in the master problem. The advanced timetabling
constraints variant represents the original model, including the subproblem and all
timetabling constraints in the master problem. As we are also interested in the
impact of the timetabling constraints in case the rolling stock is not a limiting factor,
we also run the analysis for the case where there are ample trains in the disrupted
region. We only consider the large disrupted region in these experiments.

Table 5.5: Values of the performance measures in the large disrupted region for
the three variants of the timetabling constraints. With ample rolling stock and
no timetabling constraints, the original line plan is returned by the line planning
algorithm.

(a) Average performance of dispatching strategies with the ASAP principle
Rolling stock

setting
Timetabling
constraints Frequency Regularity Delay Real. obj. Travel time

(min.)
None 0.98 0.66 1.35 0.217 37.7

Fixed Basic 1.04 0.74 1.15 0.197 36.5
Advanced 1.04 0.74 1.14 0.205 36.1

None 0.94 0.64 1.34 0.227 39.2
Flexible Basic 1.00 0.75 1.14 0.207 37.0

Advanced 1.02 0.74 1.13 0.198 36.4
None 0.89 0.58 1.54 0.179 41.5

Ample Basic 1.03 0.77 1.18 0.119 36.0
Advanced 1.02 0.75 1.16 0.118 34.3

(b) Average performance of dispatching strategies with the SYNC principle
Rolling stock

setting
Timetabling
constraints Frequency Regularity Delay Real. obj. Travel time

(min.)
None 0.93 0.85 1.26 0.223 37.5

Fixed Basic 0.98 0.90 1.12 0.211 35.9
Advanced 0.98 0.90 1.11 0.220 35.9

None 0.91 0.81 1.27 0.240 38.4
Flexible Basic 0.95 0.87 1.12 0.224 37.2

Advanced 0.96 0.87 1.12 0.229 37.0
None 0.88 0.76 1.42 0.150 39.4

Ample Basic 0.97 0.89 1.16 0.122 34.3
Advanced 0.97 0.91 1.13 0.121 33.7

In Table 5.5, the values of the performance measures obtained with the different
timetabling constraints are presented. As can be seen, disregarding timetabling alto-
gether leads to very poor performance. This setting generates line plans that cannot
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be operated on the available infrastructure, leading to delays of around 30 percent
with the actual number of trains and fixed or flexible rolling stock constraints, and
around 50 percent for the case where there are ample trains. As expected, this also
leads to noticeably longer average travel times for passengers. With basic timetabling
constraints, the average delays are already strongly reduced to between 10 and 20
percent, translating in lower travel times. Adding the advanced timetabling con-
straints on top of the basic capacity constraints has a smaller effect, but still tends
to decrease the average delays with 1 up to 3 percentage points. Especially when
there are ample trains, this results in considerable decreases in average travel time.
In some cases, the advanced timetabling constraints do worsen the realized objective.
However, the realized objective is only based on the number of possible travel options
passenger have and not on the trip duration. Hence, in these cases passengers have
slightly fewer travel options per hour, but do on average still arrive earlier at their
destination due to shorter delays of the trains.

5.7 Conclusion

In this chapter, we addressed new disruption management strategies for out-of-control
situations occurring in railway systems. We developed a novel algorithm for redesign-
ing the line plan, such that the railway system within a disrupted region can be op-
erated using self-organizing principles. In order to ensure that the resulting line plan
is feasible with respect to the available railway infrastructure and rolling stock, the
proposed algorithm partially integrates line planning with timetabling and rolling
stock scheduling using the integer version of Benders’ decomposition. Besides invest-
igating which lines should be operated when the system gets out-of-control, we also
analyzed how the adapted line system should be operated. To this end, we developed
several dispatching strategies that only require local coordination.

Computational experiments on the Dutch railway network indicate that the algorithm
performs well. Optimal alternative line plans are provided in short amounts of time,
making the approach applicable for use in practice. Using simulation, we also demon-
strated that by applying the appropriate dispatching strategies, the produced line
plans can be operated smoothly without relying on central coordination. The results
show that allowing flexible turnings leads both to better line plans and to a better
performance during operations, resulting in more travel options for passengers and
shorter travel times. In addition, we observed that adding simple coordination mech-



158 Chapter 5

anisms between slower and faster trains also significantly improves the experience of
passengers, at the cost of increased complexity of the operations. All in all, our
work certainly highlights the opportunity to offer limited service in out-of-control
situations, where the current practice leads to termination of all traffic within the
affected region.

As a next step, it is interesting to also consider train drivers and conductors when
operating the disrupted region using self-organizing principles. In addition, we see
an application of the proposed decomposition approach to integrated models for
strategic railway planning.
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Appendix

5.A Linearizing a Quadratic Program

Here we describe how to linearize a quadratic program of the type

minimize
∑

i

(zi

gi

)2
(5.30)

s.t.
∑

i

aijzi ≤ bj , ∀j, (5.31)

0 ≤ zi ≤ gi, zi integer, ∀i. (5.32)

To this end, we introduce the auxiliary binary variables ui1, ui2, ..., uigi , add the
constraints

zi =
gi∑

k=1
uik, ∀i, (5.33)

uik ∈ {0, 1}, ∀i,∀k, (5.34)

and replace the objective by

minimize
∑

i

gi∑
k=1

cikuik (5.35)

where the cost coefficients cik are defined as follows:

cik =
( k

gi

)2
−
(k − 1

gi

)2
. (5.36)

Clearly the original formulation has a feasible solution if and only if the linearized
formulation has a feasible solution. Furthermore, note that the cost coefficients are
increasing in k. Hence, if zi = m, it is optimal to set ue1 = ue2 = ... = uem = 1
and ue(m+1) = ue(m+2) = ... = uege

= 0. This results in an objective contribution

of
∑m

k=1 cik =
∑m

k=1

(
k
gi

)2
−
(

k−1
gi

)2
=
(

m
gi

)2
−
(

m−1
gi

)2
+
(

m−1
gi

)2
− ...−

(
1
gi

)2
+(

1
gi

)2
=
(

m
gi

)2
. In terms of the original objective, the contribution equals

(
zi

gi

)2
=(

m
gi

)2
. As the contribution to the objective value is the same for both formulations,

they are equivalent.
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5.B Formulation of the C-PESP

The PESP can be formulated concisely using an event-activity network N = (E ,A).
The arrival of the i’th train of line l at station s is represented by an arrival node
(l, s, arr, i) ∈ Earr. Similarly, departures are represented by nodes (l, s, dep, i) ∈ Edep.
In the basic form, there are four types of activities (arcs) linking two nodes:

• Dwelling activities link arrival nodes (l, s, arr, i) to departure nodes (l, s, dep, i).

• Driving activities link the departure node (l, s1, dep, i) at station s1 to the
arrival node (l, s2, arr, i) at the next station s2.

• Safety activities link departure nodes (l, s, dep, i) or arrival nodes (l, s, arr, i)
with departure nodes (l′, s, dep, j) or arrival nodes (l′, s, arr, j).

• Synchronizing activities link departure nodes (l, s, dep, i) with departure nodes
(l, s, dep, j), with i ̸= j.

Every activity corresponds to a constraint stating that the duration of the activ-
ity should be in a certain interval. For example, the safety activities correspond to
constraints stating that the time between two trains using the same piece of infra-
structure should be at least the headway time.

We let πi ∈ [0, T − 1] denote the decision variable representing the time instant
assigned to node i. The periodic constraint for an activity (i, j) ∈ A is then given by

lij ≤ πj − πi + Tpij ≤ uij , pij ∈ {0, 1}, (5.37)

where lij is the lower bound of the duration of activity (i, j) and uij the upper
bound. The decision variables pij are introduced to compute the duration of activities
correctly when πj < πi and referred to as the modulo parameters.

Station Capacity in the PESP
A station capacity constraint can be formulated using the following interpretation of
the modulo parameters:

pij =

1, if event j takes place before event i,

0, if event j takes place after or at the same time as event i.
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Here, before or after refers to the sequence of the events on the linear axis [0, T − 1].
Now assume the event-activity network of a station Ns = (Es,As) contains all arcs

(i, j), where i ∈ Earr
s and j ∈ Edep

s ,

(i, j), where i ∈ Earr
s and j ∈ Earr

s and i < j.

Let Adwell
s denote the set of dwell activities at station s, let Aa

i denote the set of
outgoing activities to arrivals from event i and let Ad

i denote the set of outgoing
activities to departures from event i. Then, we can enforce that the capacity of
station s is never violated by adding the following constraints:

1 +
∑

(k,l)∈Adwell
s

pkl +
∑

(j,i)∈Aa
j

(1− pji) +
∑

(i,j)∈Aa
i

pij −
∑

(i,j)∈Ad
i

pij ≤ |P s| ∀i ∈ Aarr
s .

(5.38)

Usually, the platforms at a station are subdivided into groups that are assigned to the
different lines and directions. In such cases, the capacity constraint can be included
for every group of platforms.

A slight inaccuracy in the constraints is that when events occur concurrently, this is
not dealt with consistently. This issue can be resolved for by introducing a second
modulo parameter for every pair of events. We refer to Peeters (2003) for details.

5.C Definitions of the Performance Measures

Operational measures. The measures are first defined for the operation of a line in a
certain direction and can be computed at every departure at the associated terminal
station. Later we describe how the measures can be evaluated for an entire line plan
at any given time.

For the sake of notation, we start counting the departures from zero. The i’th realized
departure time of line l in direction d is denoted as depd

l (i). Furthermore, we let pl

equal T/fl, the period of a line. At the time of the i’th departure of line l in direction
d, the frequency measure is given by:

Frequencyd
l (i) = i× pl

depd
l (i)− depd

l (0)
. (5.39)
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The regularity measure is defined as follows:

Regularityd
l (i) = 1−

∑i
j=1 |depd

l (j)− depd
l (j − 1)− pl|/pl

i
. (5.40)

For the delay measure, we let di denote the relative delay of the i’th trip. Normally,
delays are computed with respect to a timetable, but since a timetable is not available,
we compute delays relative to the minimum trip times, the sum of minimum running
and dwell times from terminal to terminal. For example, if the minimum trip time
of line l is 20 minutes, and the i′th trip takes 25 minutes, di equals 0.25. The delay
measure is given by:

Delayd
l (i) =

∑i
j=0(1 + dj)
(i + 1) . (5.41)

To compute the performance of a line in a direction at any given time t, we com-
pute the measures at the last departure before t and the first departure after t and
interpolate. Next, the frequency, regularity and delay measure of an entire line plan
at any given t can be computed by taking the average of the measures over all lines
and directions.

Travel measures. The first travel measure corresponds to an empirical analog of the
objective used in the line planning algorithm and hence referred to as the realized
objective. We let L denote the set of selected lines in the line plan and let q

(dir)
o,d (t)

denote the number of travel options (direct travel options) on ρo,d in the interval (t, t+
T ). Then, the realized objective at time t is simply obtained by replacing

∑
l∈L xl

with |L | and by substituting the theoretical reduction in (direct) OD-frequency z
(dir)
o,d

in the objective with go,d−q
(dir)
o,d (t), the experienced reduction in the next T minutes:

Real. Obj.(t) = w1
∑

(o,d)∈OD

no,d

(
go,d − qo,d(t)

go,d

)2
+w2

∑
(o,d)∈ODdir

no,d

(
gdir

o,d − qdir
o,d(t)

gdir
o,d

)2

+w3|L |.

(5.42)

The second travel measure equals the average travel time of travelers entering the
system at time t. For this measure, the passengers are routed according to the
modified line plan. If we let timeo,d(t) denote the travel time from o to d for a
passenger entering station o at time t according to this routing, the measure is defined
as follows:

Travel Time(t) =
∑

(o,d)∈OD no,dtimeo,d(t)∑
(o,d)∈OD no,d

. (5.43)
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6.1 Introduction

When railway operations become heavily disrupted, central traffic control may lose
the overview of the system and terminate all traffic. In such extreme events, decent-
ralized dispatching strategies could provide a robust back-up plan, offering passengers
a service that may not be as good as in regular circumstances, but is much preferred
over the alternative of no service at all. In this chapter, we analyze whether decentral-
ized dispatching can indeed serve as a contingency plan when centralized dispatching
is impossible. To do so, we develop an integrated platform that simulates decentral-
ized dispatching strategies in a microscopic representation of the railway system.

The relevance of decentralized control in railway systems can be motivated by so-
called out-of-control situations, which we define as situations ‘where dispatchers cease
to have an overview of the system and consequently decide to terminate all railway
traffic in the affected region, even though the required resources (infrastructure,
rolling stock and crew) might be available’ (Dekker et al., 2021). Out-of-control situ-
ations are often caused by extreme weather events, (possibly short-lasting) power
outages, or malfunctioning of telecommunication systems. These situations are typ-
ically characterized by a large number of affected resources and incomplete informa-
tion, yielding traditional rescheduling approaches ineffective. Instead, decentralized
decision-making is more robust and better suited for out-of-control situations.

Theoretical justification for the good performance of decentralized dispatching was
provided in Chapter 4, where we proved analytically that, under several assumptions,
an easy-to-implement dispatching policy matches the performance of centralized dis-
patching in the long run. A first attempt in applying decentralized dispatching
in railways was made in Chapter 5, where we proposed and tested decentralized
strategies for dispatching rolling stock. A macroscopic simulation of a part of the
Dutch railway network showed that the decentralized approach can quickly restore
services to a reasonable level. In this chapter, we take the next step in validating the
adequacy of decentralized control by testing the rolling stock strategies proposed in
Chapter 5 in a full scope simulation of the railway network, including train drivers
and infrastructure at a microscopic level of detail. As decentralized dispatching of
train drivers has, to the best of our knowledge, not been considered before, we propose
and assess two new driver dispatching strategies that can be applied in conjunction
with the rolling stock strategies.

A microscopic railway simulation provides an accurate description of railway traffic
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by representing all details about the infrastructure (e.g. track gradients, curvature
radii), the vehicles (e.g. mass, tractive-effort speed curves of the traction unit, braking
rates), signaling (e.g. position and aspect of signals) and the interlocking (position
of switches, interlocking rules to prevent conflicts at junctions) (Hansen and Pachl,
2008). Microscopic simulation allows for in-depth analysis of important timetable
performance indicators, such as infrastructure occupation, feasibility, robustness and
energy efficiency (Goverde and Hansen, 2013). Therefore, such simulations have
primarily been used for assessing the quality of timetables or timetable rescheduling
approaches, see e.g. Quaglietta et al. (2013), Schlechte et al. (2011) and Solinen et
al. (2017). Our simulation framework makes use of the flexible microscopic railway
traffic simulator EGTRAIN (Quaglietta, 2014), which features an API module that
allows customization of built-in train control functionalities and the interface with
external algorithms for real-time dispatching, as the one assessed in this research.

Experiments on a part of the Dutch railway network showcase the potential of de-
centralized dispatching approaches. Despite the lack of central control, it is possible
to approximately meet the target frequencies of the lines in the network with a large
degree of regularity and with only small delays. This also holds when crew is added
into the mix, as long as we assume that all drivers are willing to work up to 2 hours
longer than planned.

Summarizing, the contribution of this chapter is twofold. First, we propose two
strategies for decentrally dispatching drivers along with the rolling stock. Secondly,
we assess the performance of decentralized dispatching strategies using a microscopic
simulation of a part of the Dutch railway network.

The remainder of this chapter is structured as follows. In Section 6.2, we discuss
the problem setting and the rolling stock and driver dispatching strategies. In Sec-
tion 6.3, we discuss the simulation platform. In Section 6.4, we discuss the different
performance measures. In Section 6.5, we discuss the results of a series of experi-
ments. Finally, we conclude the chapter in Section 6.6.

6.2 Problem Description and Dispatching Strategies

In this section, we describe the problem we consider in this chapter and discuss the
rolling stock and driver dispatching strategies.
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6.2.1 Problem Description

In this chapter, we consider the problem of decentrally operating a railway system.
As timetables, rolling stock and crew schedules all require centralized control, this
implies that we aim to operate the system without a centrally planned timetable,
rolling stock and crew schedule. Instead, we use local policies that determine the
next task incoming rolling stock and crew should perform. We assume that there is a
line plan, specifying the lines and frequencies, that is known by all local dispatchers.
Every line is operated in both directions. The objective of the local policies then
is to execute this line plan as well as possible, i.e. the frequencies in the line plan
should be met, delays should be avoided and the service should be regular.

We assume that the rolling stock is composed of self-powered train units and that
there are no restrictions to the use of the rolling stock, so every piece of rolling
stock can be used on every line. For the drivers, we assume that there are three
constraints that should be taken into account: a break constraint, a planned end-
of-duty constraint and a duty length constraint. The break constraint and the end-
of-duty constraint are soft constraints, meaning that although it is undesirable to
have drivers skip their breaks or work past their planned end-of-duty time, this is
not strictly forbidden. We assume that drivers can take breaks at all stations. The
duty length constraint is a hard constraint: it is strictly not allowed for a driver to
operate any new trips after the driver has worked longer than a specified amount
of time. Note that the planned end-of-duty time is earlier than the time at which
the maximum duty length is reached. The duty length constraint is evaluated at the
beginning of a trip using the minimum trip time. Hence, it may occur that a driver
surpasses the maximum duty length while operating a trip because of delays. In such
a case, the driver is allowed to finish the trip.

We also need to make assumptions with regards to the safety system to prevent
decentralized strategies from causing deadlocks. To see why this is necessary, note
that since train routes are not coordinated, such strategies could potentially lead to
deadlock situations on single tracks or in station areas. On single tracks, this can
simply be prevented by using an (electronic) token system. For station areas (or
junctions), it is necessary that local traffic controllers are able to set a route for a
train through the station to and/or from the platform, such that no other trains can
cross the route until the train has either arrived at the platform or left the station.
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6.2.2 Rolling Stock Dispatching

In this chapter, we study rolling stock dispatching strategies that are proposed in
Chapter 5. For completeness, we explain them here as well.

The rolling stock dispatching strategies are used to determine the next service of
a train when a train finishes a service. Hence, these strategies are only applied
at the terminal stations of lines. At other stations, trains always continue their
service with a dwell time that is as short as possible. The strategies comprise of
two components: the timing component and the turning component. The timing
component of a strategy determines the departure time of the train and the turning
component determines the next line of the train.

There are two options for the turning component: STAT and DYN. STAT stands
for static turning. When a strategy uses the STAT component, a train finishing a
service of line l is instructed to perform a return trip of line l. In other words, if
STAT is used, lines have dedicated vehicles. Conversely, when a strategy uses the
DYN component, trains can be exchanged between lines. Then, a train finishing
a service is assigned to the line with the earliest desired departure time, which is
defined as the sum of the most recent departure time of the line and the desired
interdeparture time of the line (e.g., 30 minutes for a line with frequency 2/h). Note
that if all lines have the same frequency, an incoming train is always assigned to the
line whose latest departure is the longest time ago.

There are also two options for the timing component: ASAP and SYNC. When a
strategy uses the ASAP component, a train finishing its service is always instructed
to depart as soon as possible. When a strategy uses the SYNC component, the
departure time is determined based on the most recent departure time of the selected
line. For example, if a train finishes its service at 09:15 and is assigned to a line with
frequency 2 per hour and a most recent departure time of 9:05, the train is instructed
to depart at 9:35, to meet the desired interdeparture time of 30 minutes. If instead,
the most recent departure time would be before 8:45, the train is instructed to depart
as soon as possible.

6.2.3 Driver Dispatching

In this chapter, we propose two strategies that can be used to dispatch drivers in
a decentralized manner. Similar to the rolling stock strategies, these strategies de-
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termine the next service to be performed by a driver, whenever a driver finishes a
service. Moreover, as the rolling stock strategies, the driver strategies also require
little information and computation. The driver strategies use the concept of avail-
ability score. This score indicates to what extent a driver can perform the service
within the labor regulations. The availability score is computed based on the charac-
teristics of the service (departure time and destination) and also takes into account
for example break and duty length constraints. The lower the availability score, the
more labor constraints are (likely) violated. An availability score of 0 indicates that
a driver cannot perform a service. The idea of the driver dispatching strategies is
to swap drivers at terminals whenever someone with a higher availability score is
available.

We next describe how the driver dispatching, in conjunction with the rolling stock
dispatching, works in more detail. When a train finishes a service, the rolling stock
dispatching strategy proposes a tentative next service. If either the driver currently
on the train or any of the drivers that are present at the corresponding station is able
to perform this service (i.e. has an availability score strictly larger than 0), the line
and departure time are fixed. If none of the drivers is able to perform the service, the
departure time and line are adjusted, until either a driver is available or all options
are exhausted. Once the line and departure time of the next service are fixed, the
crew dispatching strategy determines which driver should operate the service. By
default, this is the driver that is currently on the train. If there is a driver at the
station with a higher availability score, this driver is assigned to the service and the
driver on the train stays at the station.

The availability score can be computed for any combination of a service and a driver.
The score is based on a driver’s last break time, planned end-of-duty time and crew
base, and of the departure time and destination of the service. A lower availab-
ility score corresponds to a violation of a more important labor constraint. The
exact interpretation of the availability score is stated in Table 6.1. Since drivers
are dispatched decentrally and dynamically, it is not possible to predict with cer-
tainty whether performing a service will later lead to the violation of a constraint.
Therefore, we propose two strategies that have different ways of performing this
prediction. In the first strategy, OneStepAhead, only violations during the service
are considered. For example, if a driver’s planned end-of-duty time is 16:30, the
OneStepAhead strategy will only give an availibility score of at most 1 to services
that end later than 16:30, regardless of the destination of a service. In contrast, the
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TwoStepAhead strategy also takes into account the time required to travel from the
destination of a service to the driver’s crew base. Only, if a driver is able to return
to his/her crew base before the planned end-of-duty time, this strategy will give an
availability score larger than 1. This works similarly for the other constraints.

Table 6.1: Interpretation of the availability score

Availability
Score Performing the service...

0 ... causes a violation of the duty length constraint
1 ... causes the driver to work past his/her planned end-of-duty time
2 ... causes a violation of the break constraint
3 ... does not violate any constraints

We also need to specify when drivers are sent on to having a break or can sign off
completely. In both strategies, any driver that is idle at a break station is assumed
to be having a break. Furthermore, whenever a driver is present at his/her crew
base and it is past the planned end-of-duty time, the workday of the driver is ended.
If a driver is idling at a station other than his/her crew base and is no longer able
to perform any services without violating the planned end-of-duty time (i.e. the
availability score is always 0 or 1), we assume that the driver travels to the crew base
as a passenger. The workday is only ended upon arrival at the crew base.

In principle, any rolling stock dispatching strategy can be combined with any driver
dispatching strategy. However, the added flexibility of the DYN strategies is espe-
cially useful when drivers are also considered, as they allow a driver at the end of
a shift to operate a train towards his/her crew base. On top of that, if there are
lines that connect two stations that are not crew bases, a STAT strategy may be
ineffective, since a driver operating a train on this line will at some point have to
abandon the train and travel to his/her crew base and it is unlikely that there is a
driver available who can start operating the train on this line.

6.3 Simulation Platform

We simulate the dispatching strategies using a platform that integrates a dispatch-
ing tool and a simulator and manages the continuous communication between these
entities. The dispatching tool determines dispatching decisions based on incoming
messages that specify departure and arrival times of trains and communicate these
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Figure 6.1: Visualization of the integrated platform.

decisions back to the simulator. The simulator simulates the railway traffic that
follows from the dispatching decisions and communicates all departure and arrival
times back to the dispatching tool, which is in turn processed by the dispatching tool
to make new dispatching decisions. Besides managing the continuous communica-
tion between the dispatching tool and the simulator, the platform also has an editor
for setting up experiments. Such an experiment is sent to a server, which processes
it by running the Simulator and dispatching tool. Once an experiment is finished,
the realized time distance diagrams of all trains can be visualized, and a variety of
metrics can be chosen to display for the assessment of one, or multiple simulation
runs.

The simulation platform has a modular design and is, therefore, able to simulate any
type of strategy using any type of simulator. In this chapter, the dispatching tool
determines dispatching decisions based on the decentralized rolling stock and crew
strategies explained in the previous sections. Moreover, as a simulator, we use the
microscopic simulator EGTRAIN. The platform is visualized in Figure 6.1. In the
remainder of this section, we discuss this simulator in more detail.

EGTRAIN

EGTRAIN (Environment for the desiGn and simulaTion of RAIlway Networks) is a
C++ object-oriented model for simulating railway operations at a microscopic level
of detail by relying on time-driven processing of traffic events (Quaglietta, 2014).
Input data are grouped within four main interacting modules, namely:

• The infrastructure module, which builds on a weighted directed-graph repres-
entation of the network where nodes represent physical infrastructure elements
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like switches, signals, balizes and station platforms while links are rail tracks
connecting those elements. Node weights describe geographical coordinates of
corresponding infrastructure elements, while link weights depict physical track
characteristics such as gradients, speed limits and curvature radii.

• The rolling stock module, that collects physical and mechanical features of
trains, including train masses lengths and car composition, as well as braking
rates, tractive effort-speed curves and motion resistance coefficients.

• The signaling system module, which stores data about operational principles
and rules of both the signaling and the interlocking system. Dependencies
between signal aspects, speed codes of the Automatic Train Protection (ATP)
system are modeled. Several signaling systems can be simulated ranging from
traditional multi-aspect fixed-block signaling (e.g. the Dutch ATB/NS ’54, the
Italian BACC) to the three levels of the interoperable European signaling stand-
ard ERTMS/ETCS (Theeg and Vlasenko, 2009) for which the communication
of Movement Authority and train position updates between trains and the RBC
are specifically modelled. Additional functionality has been recently added to
the signaling module to describe train operations under the next-generation
signaling concept of Virtual Coupling (Quaglietta et al., 2020).

• The timetabling module, which contains data about the train schedule such as
planned departure/arrival times and minimum dwell times at stations. This
module also takes as input stochastic distributions of entrance delays and sta-
tion dwell times to assess the impact of disturbances on planned operations. In
this chapter, trains are dispatched according to decentralized strategies instead
of a timetable, so this module is not used.

The core of EGTRAIN simulates train movements by integrating Newton’s motion
formula over time. At each time step, the speed and position of trains are calculated
based on track and vehicle characteristics and the status of the signaling system is
updated accordingly to respect safety constraints. Output from the simulation con-
sists of train diagrams (e.g. time-distance, speed-time), delay statistics, mechanical
energy consumption and blocking time diagrams. EGTRAIN features an API mod-
ule for customizing functions, modifying model parameters and interface simulated
railway operations with external applications such as sensitivity analysis toolboxes
or traffic rescheduling algorithms. The decentralized dispatching strategies presen-
ted in this research have hence been interfaced with the EGTRAIN API module to
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reschedule train services, in real-time during the simulation. The impact of different
decentralized dispatching strategies are assessed in simulation in terms of relevant
performance measures pertaining to both train services (i.e. frequency, regularity,
and delay) as well as crew duty planning (e.g. number of violations to planned lengths
of break and duty times of the train crew).

In the remainder of this section, we discuss relevant implementation details.

Signaling system

The signaling of the simulation consists of a three-aspect fixed-block signaling system
that resembles the Dutch railway signaling. The control of single tracks is based on
a token system, such that a single track can only be occupied by a train at a time.
This implies that even trains traveling in the same direction are not allowed to cross
the single track simultaneously. This approach also prevents the single track to be
used by consecutive trains in the same direction, which would lead to the single track
being used for a long time in the same direction. Such a strategy is applied because
train services are not known in advance, due to the characteristics of the dispatching
strategies.

An additional train route management algorithm has been implemented in EGTRAIN
to prevent deadlock between incoming and outgoing trains within a station area. Spe-
cifically, the route management algorithm coordinates the entrance and the exit of
trains from the same station by allowing trains to enter a station only when there
are no trains leaving it in the opposite direction. In this way train deadlocks over
bidirectional tracks in approach to the station area are avoided.

Maneuvers at terminal stations

At terminal stations, trains always depart from the platform where they have arrived.
An minimum time of 5 minutes is required before a train can depart in the opposite
direction.

Dynamic platform allocation

A main characteristics of decentralized dispatching strategies is that trains should
preferably have a dynamic platform allocation when entering stations. This means
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that rather than being pre-scheduled to stop at a specific station platform they can
stop at any suitable free platform which is dynamically assigned as they approach the
station area. A dynamic platform assignment can hence prevent trains from getting
delayed for waiting outside of station areas if a specific platform is occupied by giving
the chance to use instead any suitable available platform. The developed dynamic
platform allocation algorithm hence automatically assigns trains approaching a sta-
tion to a suitable free platform in case the pre-scheduled platform is occupied at that
moment.

Initial position of trains

For every experiment, trains always start at terminal stations. In some cases, the
number of trains starting at a given station exceeds the number of platforms available.
When that is the case, the second train assigned to a given platform only enters the
station after the first train departs. A maximum of two trains can be assigned to a
platform when defining the initial position of trains.

Timestep

For all experiments, a timestep of one second is used, which provides a high level of
detail when computing train motion dynamics.

6.4 Performance Measures

To measure the performance of the rolling stock and crew dispatching strategies, we
use a set of performance measures. We use the three operational measures proposed
in Chapter 5 to assess whether the line plan is executed satisfactorily. These measures
are frequency, regularity and delay and consider the realized frequencies of the lines,
the regularity of interdeparture times of lines and the delays, respectively. Besides the
operational measures, we also discuss how we assess the performance of our strategies
with respect to the constraints for train drivers.
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6.4.1 Operational Measures

The metrics are defined for the operation of a line in one direction. Let h denote the
target interdeparture time of the line in minutes (so the hourly frequency is 60/h)
and τ the minimum trip time from one terminal to the other in minutes. Let the
departures be labeled as 1, 2, ..., n, with departure times (in minutes from the start
of the simulation) d1 ≤ d2 ≤ · · · ≤ dn and realized trip times t1, t2, ..., tn. We first
define the average realized interdeparture time, which we denote as H:

H = 1
n− 1

n−1∑
i=1

(di+1 − di)

Frequency: The frequency metric, denoted as F , measures the realized frequency,
relative to the target frequency (or equivalently, the average realized interdeparture
time relative to the target interdeparture time):

F = h

H
.

Regularity: The regularity metric, denoted as R, measures to which extent the
interdeparture times vary with respect to the average realized interdeparture time:1

R = 1− 1
(n− 1)H

n−1∑
i=1
|di+1 − di −H|.

Delay: The delay metric, denoted as D, captures the average delay of the line,
measured relative to the theoretical minimum trip time:

D =
∑n

i=1 ti

nτ
.

Note that all metrics are normalized, such that a value of 1.00 for all metrics indicates
the scenario where the target frequency is exactly met, all interdeparture intervals
are constant and there are no delays. To assess the performance of the decentralized
strategies on the complete line plan, we take an unweighted average over all lines in
both directions.

1This definition sligtly deviates from Chapter 5. In this chapter, the deviations are measures
with respect to the realized average interdeparture time, whereas Chapter 5 measure the deviations
with respect to the target interdeparture time.
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Figure 6.2: The network considered in the experiments.

6.4.2 Crew Measures

To analyze the performance of the crew dispatching strategies, we simply count how
many times the break and duty length constraints are violated, and how often drivers
need to work past their planned end-of-duty time.

6.5 Results

6.5.1 Instances

Network and line plan

For the experiments, we use a part of the Dutch railway network. This network
is depicted in Figure 6.2. The network contains four lines, all of which should be
operated with a frequency of 2 per hour. The largest station in this network is Ut
(Utrecht Centraal), which also serves as the crew base in our experiments. The part
between Dld (Den Dolder) and Brn (Baarn) is single track, with a passing loop at St
(Soest).

The infrastructure input data for the microscopic simulation is built from a very
detailed database of the Dutch railway network, provided by ProRail, the Dutch in-
frastructure manager. It was necessary to convert the original data from the database



176 Chapter 6

into the specific format of input data used by EGTRAIN. After the conversion, the
model of the network is still detailed but with some approximations. These include,
for example, the assumption of a fixed block section length and approximated track
gradients and speed limits.

To compute the motion dynamics, we use the characteristics of a 6-wagon SLT train,
which is an often-used rolling stock type in the considered area. The input data of
rolling stock includes the tractive effort-speed curves and other characteristics, e.g.
maximum speed, length and mass.

Finally, the default values of dwell times are based on the real timetable of train
services running across the area.

Crew data and simulation duration

We use crew data that is based on crew schedules used by NS. The majority of duties
of train drivers at NS can roughly be subdivided into morning shift duties, ending
somewhere between 12pm and 2pm, and evening shift duties, starting somewhere
between 12pm and 2pm. As it is interesting to simulate this period with many driver
reliefs, we simulate a duration of 6 hours, from 10am until 4pm. Moreover, when
we construct an instance with 2x drivers, we generate x morning shift drivers whose
duties end between 12pm and 2pm and x evening shift drivers, whose duties start
between 12pm and 2pm. The exact starting and end times are uniformly generated
within this interval. For all drivers, Ut serves as the crew base. The planned duty
lengths are all set equal to 8 hours. The maximum allowed working time is set equal
to 10 hours. In other words, a driver is allowed to work at most 2 hours past his/her
planned end-of-duty time. The maximum working time without a break is set equal
to 4.5 hours.

6.5.2 Comparison of Rolling Stock Strategies

In the first experiment, we compare the performance of the four rolling stock dis-
patching strategies, without simulating the crew. Initially, we assume that there are
six trains available in this region.

We first analyze the time-distance diagrams that visualize all train trajectories during
the simulation. Figure 6.3 and Figure 6.4 present the time-distance diagrams for the
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four rolling stock dispatching strategies. The line Ut-Hvs is depicted in subfigures (a)
and (c). The three other lines are depicted in subfigures (b) and (d). The different
shades of gray in the diagrams represents a different train. When we compare the
STAT strategies with the DYN strategies, it can be observed that in accordance with
the definition of these strategies, when a STAT strategy is applied, trains stick with
their initial line, whereas when a DYN strategy is applied, trains can switch between
lines. Especially when the ASAP-DYN strategy is used, trains are often exchanged
between lines, to serve the line that needs a departure most urgently. Note that
there are no switches between different lines at station Brn, as this is prohibited
by the infrastructure at that station. When we compare the ASAP strategies with
the SYNC strategies, we find that the time-distance diagrams of ASAP-STAT and
ASAP-DYN appear to be more cluttered and irregular compared to those of SYNC-
STAT and SYNC-DYN. On the other hand, it appears that the ASAP strategies are
able to achieve higher frequencies. In none of the diagrams, long delays or queuing
of trains can be observed. Moreover, the time-distance diagrams do not give any
signs of a long warm-up period required before a steady state is reached. Instead,
the behavior of the system seems rather homogeneous over time.

Figure 6.5 presents the operational measures obtained with the different strategies.
This figure supports the observations made using the time-distance diagrams. The
delay measure is very close to 1.00 for all strategies, indicating that there are hardly
any delays. The frequency measure is slightly over 1.00 for the ASAP strategies and
slightly below 1.00 for the SYNC strategies. This shows that the SYNC strategies
lead to frequencies that are a bit below the target frequencies, while the ASAP
strategies lead to frequencies above the target frequencies. This is caused by the fact
that the ASAP principle instructs trains to depart as soon as possible, without regard
to the desired interdeparture. We find that the SYNC strategies perform better for
the regularity measure, with values very close to 1.00. This confirms the observation
that the services realized by these strategies are almost perfectly regular. The ASAP
strategies score worse in terms of regularity, especially ASAP-DYN. There are only
minor differences in the measures obtained with SYNC-STAT and SYNC-DYN. This
could be caused by the number of trains available in these experiments, as in the
absence of delays, six trains are sufficient to meet the target headways.

Larger differences in the performance of the strategies become apparent when we
analyze the measures per line, especially in terms of frequency. Figure 6.6 presents
the frequency measure per line for the four strategies. The static turning principle
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(a) Ut-Hvs with ASAP-
STAT (b) Ut-Brn-Hvs with ASAP-STAT

(c) Ut-Hvs with ASAP-
DYN (d) Ut-Brn-Hvs with ASAP-DYN

Figure 6.3: Time-distance diagrams obtained by simulating the ASAP strategies with
six trains.
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(a) Ut-Hvs with SYNC-
STAT (b) Ut-Brn-Hvs with SYNC-STAT

(c) Ut-Hvs with SYNC-
DYN (d) Ut-Brn-Hvs with SYNC-DYN

Figure 6.4: Time-distance diagrams obtained by simulating the SYNC strategies with
six trains.
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Figure 6.5: The operational measures obtained by simulating the strategies with six
trains, averaged over all lines in the network.

can be seen to lead to a much larger dispersion in the frequency. For example, with
the ASAP-STAT strategy, half the lines experience a frequency much larger than 1
(up to 1.5), and the other half experience a frequency smaller than 1. This occurs
since the lines Ut-Hvs and Hvs-Brn are assigned more trains relative to their trip
time. With the ASAP-DYN strategy, the differences in frequency between lines is
much smaller, as trains are swapped between lines. To a lesser extent, the same holds
for the SYNC-STAT strategy and the SYNC-DYN strategy. The dynamic turning
principle hence leads to a more balanced division of resources over the lines.

Varying the number of trains

Besides conducting the experiment with six available trains, we also repeat the ex-
periment with four, five, seven and eight trains. Figure 6.7 presents the performance
measures as a function of the number of trains. We find that with ASAP strategies
every increase in the number trains translates to an increase in frequency. This is
not the case with the SYNC strategies, where the frequency stops increasing after six
trains. This aligns with the definition of these strategies, as the SYNC principle in-
structs trains to wait to meet the target interdeparture time, such that the frequency
measure cannot be above 1.0 by definition. The difference in frequency between
the STAT principle and the DYN principle again only becomes apparent when the
frequency is analyzed per line, as the STAT principle leads to large differences in
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Figure 6.6: Frequency measure per line with six trains.

frequency per line, whereas the DYN principle leads to a more evenly distribution of
services over the lines. How the number of the trains affects the other measures is
less unambiguous. There appears to be a positive relationship between delay and the
number of trains when one of the SYNC strategies is used. This delay can be attrib-
uted to the single track part between Dld and Brn, where the abundance of ‘slack’
in the number of trains causes trains to have to wait for each other at the passing
loop at Soest. There are no significant delays in the other parts of the network. As
for the regularity, we find that all strategies have fairly a high regularity. The STAT
strategies attain a higher or equal regularity than their DYN counterparts, except
when there are eight trains. This is caused by the fact that the STAT strategies have
a constant number of trains per line, leading to a higher regularity.
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Figure 6.7: Performance measures with a different number of trains.

Higher line frequencies

Furthermore, we analyze the effect of increasing the frequencies of the lines in the
network. Specifically, the frequency of the lines Ut-Dld, Ut-Hvs and Hvs-Brn is
increased to 4 per hour. The frequency of the line Ut-Brn remains 2 per hour, as the
single track cannot manage higher frequencies. We perform this experiment with ten
trains. Figures 6.9 and 6.10 visualize the time-distance diagrams. The main finding
is that the increased frequencies lead to a higher incidence of delays, which can be
observed as vertical lines in the time-distance diagram. This happens occasionally
when at the single track part of the network and also right before entering station
Hvs. Still, there is no sign of queuing of trains and all delays remain relatively
small. This is also reflected in the performance measures, presented in Figure 6.8.
Especially the SYNC strategies experience larger delays compared to the case with
lower line frequencies. With respect to the frequency measure, the ASAP strategies
also outperform the SYNC strategies. On the other hand, the SYNC strategies do
score much better on the regularity measure.
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Figure 6.8: The operational measures obtained by simulating the strategies with ten
trains, with increased line frequencies, averaged over all lines in the network.

(a) Ut-Hvs with ASAP-
STAT (b) Ut-Brn-Hvs with ASAP-STAT

(c) Ut-Hvs with ASAP-
DYN (d) Ut-Brn-Hvs with ASAP-DYN

Figure 6.9: Time-distance diagrams obtained by simulating the ASAP strategies with
ten trains, with increased line frequencies.
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(a) Ut-Hvs with SYNC-
STAT (b) Ut-Brn-Hvs with SYNC-STAT

(c) Ut-Hvs with SYNC-
DYN (d) Ut-Brn-Hvs with SYNC-DYN

Figure 6.10: Time-distance diagrams obtained by simulating the SYNC strategies
with ten trains, with increased line frequencies.
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6.5.3 Comparison of Crew Strategies

In the second experiment, we compare the performance of the two crew dispatching
strategies. As a static rolling stock strategy does not combine well with the flexible
switching of drivers and the SYNC-DYN performed well without drivers, we choose
the SYNC-DYN strategy for the rolling stock in this experiment. We use six trains,
six drivers in the morning shift and six in the evening shift. We perform five runs
for every setting, with different crew data.

First, we examine the impact of the inclusion of the crew dispatching in the simulation
on the metrics. Figure 6.11 presents the operational measures for the OneStepAhead
strategy, the TwoStepAhead strategy, and the case without driver dispatching. We
observe that regardless of the crew strategy, the impact of including driver dispatch-
ing is small, with only minor differences in the obtained delay, frequency and regu-
larity. Hence, we find that both strategies are successful in maintaining a high level
of service. With the TwoStepAhead strategy, the frequency measure is even higher
than without driver dispatching. A possible reason for this is that the TwoStepA-
head strategy can instruct a train to leave before the desired departure time if that
is required to avoid violating driver constraints.
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Figure 6.11: Performance measures with different crew dispatching strategies.

Next, we analyze the realized durations of the duty length of drivers and how long
drivers have worked without having a break. Figure 6.12 visualizes these statistics for
every driver in the five simulation runs. Every shade of gray corresponds to a different
run. For both strategies, all points can be divided into two clouds, which correspond
to the morning and evening shift drivers, respectively. Recall that the simulation
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(a) OneStepAhead (b) TwoStepAhead

Figure 6.12: Scatter plot of the realized duty duration and working time without
break for the two strategies, with six trains and twelve drivers (six in the morning
shift, six in the evening shift). The rolling stock strategy is SYNC-DYN. Every shade
corresponds to a run.

starts at 10am, that the workday of the morning shift drivers starts between 4am
and 6am and for the evening shift drivers between 12pm and 2pm. Hence, the left
cloud corresponds to the evening shift drivers, who worked a couple of hours at
most when the simulation ends. It is more interesting to consider the right cloud,
corresponding to the morning shift drivers. We find that with both strategies, the
majority of drivers needs to work between 8 and 9 hours. As the planned duty
durations are 8 hours, this corresponds to at most 1 hour overtime. Moreover, for
most drivers, the constraint that the maximum working time without a break is 4.5
hours is not violated. The difference between the strategies becomes apparent in the
outliers, where we find that with the OneStepAhead strategy, five drivers worked
more than 10 hours, including two drivers that worked over 11 hours. These drivers
got stuck at stations other than the crew base Utrecht, and were required to travel
back to Utrecht as a passenger. With the TwoStepAhead strategy, only two drivers
worked more than 10 hours, but only with a maximum of 10 hours and 3 minutes,
due to a driver operating a train that faced a delay. The TwoStepAhead strategy
also leads to fewer violations of the constraint that drivers should have a break every
4.5 hours. Therefore, this indicates that the TwoStepAhead strategy is an effective
strategy for avoiding severe violations of the break and duty length constraints.

Higher line frequencies

When we repeat the experiments with increased line frequencies of 4 per hour for all
lines except Ut-Brn, we find the results presented in Figure 6.13 and Figure 6.14. We
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Figure 6.13: Performance measures with different crew dispatching strategies, with
increased line frequencies.

(a) OneStepAhead (b) TwoStepAhead

Figure 6.14: Scatter plot of the realized duty duration and working time without
break for the two strategies, with ten trains and twenty drivers (ten in the morning
shift, ten in the evening shift). The rolling stock strategy is SYNC-DYN. Every shade
corresponds to a run.

again find that the impact on the measures of including driver dispatching is small.
Furthermore, the TwoStepAhead strategy results in fewer and less severe exceedances
of the end-of-duty time of drivers and of the maximum time without a break than
the OneStepAhead strategy.

Crew dispatching with a STAT strategy

In Section 6.2.3, we mentioned that rolling stock dispatching with static turning may
be ineffective if crew is considered, since it may lead to drivers having to switch
trains at stations that are not a crew base, where it is unlikely that there is a driver
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(a) Ut-Hvs (b) Ut-Brn-Hvs

Figure 6.15: Time-distance diagrams, with six trains and twelve drivers. The rolling
stock strategy is SYNC-STAT and the crew strategy is TwoStepAhead.

available to start operating the abandoned train. Experiments confirm that when
crew is considered, static rolling stock strategies indeed perform badly. Figures 6.15a-
b illustrate the issue. The figures show the obtained time-distance diagrams with
SYNC-STAT as the rolling stock strategy and TwoStepAhead as the crew dispatching
strategy. It can be observed that after about 3.5 hours, the train operating the Hvs-
Brn line stops in Hvs and does not operate any more trips. The reason is that the
driver originally operating this train, has to switch to the Ut-Hvs line at Hvs, in
order to arrive at the crew base Ut before violating the duty length constraint. If the
SYNC-DYN strategy would be used, the driver would stay on the train and simply
operate a trip of the line to Ut. However, with the SYNC-STAT strategy, the train is
not allowed to switch lines, such that the driver has to abandon the train and get on
a different train to travel towards Ut. Moreover, as dispatching is done locally, the
dispatcher at Ut is unaware of the driver shortage at Hvs. Of course, it is possible
that the driver that abandoned the train at Hvs informs the dispatcher at Ut, but it
would still take a long time for the replacement driver to arrive at Hvs.

6.6 Conclusion

In this chapter, we tested the performance of decentralized strategies for dispatch-
ing rolling stock and drivers in a railway system. Such strategies could serve as a
back-up plan when traditional dispatching approaches become infeasible due to dis-
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ruptions. To analyze whether decentralized dispatching can be a viable alternative,
we developed a simulation platform that is able to simulate dispatching strategies
on a microscopic representation of the railway system. Experiments on a part of the
Dutch railway system indicate that on small instances, easy-to-implement decentral-
ized dispatching strategies can attain high performance, meeting target frequencies
with a high degree of regularity and small delays. Strategies where trains are al-
lowed to switch between lines attain the same average frequency as strategies where
trains are fixed to lines. However, with these latter strategies, the frequency per line
deviates much more strongly from the average frequency, indicating that dynamic
switching leads to a more balanced performance. The advantage of dynamic switch-
ing strategies become even more clear when drivers are also considered: with static
strategies, trains can be left without a driver because the driver needs to switch to
a different line to travel to his/her crew base, which is avoided by using a dynamic
strategy. Due to the complicatedness of microscopic railway simulation, we have only
considered a relatively small instance with four lines and at most 10 trains. It would
be interesting to scale up and investigate whether the performance of decentralized
dispatching degrades in larger instances with multiple types of trains and lines.
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Summary and Conclusions

In this thesis, we investigated approaches for planning and operating public trans-
port. The first part of this thesis focused on integrating the steps in the public
transport planning process, with the general aim to find schedules that are more at-
tractive for passengers, operators and the environment. The second part of this thesis
investigated decentralized strategies for operating public transport. Although such
strategies could be preferable over centralized and schedule-based control in various
scenarios, in this thesis we specifically targeted strategies suitable for out-of-control
situations in railway systems.

In Chapter 2, we considered a combination of line planning and vehicle scheduling,
by developing methods that estimate how many vehicles are required to operate a
line plan, without having to compute a timetable. This allows operators to quickly
assess and compare the cost-effectiveness of line plans, avoiding the time-consuming
and computationally intensive timetabling step. We considered different restrictions
on the number of lines that may be combined in a vehicle circulation and analyzed
the impact on computational complexity. For the case where at most two lines can
be combined, we developed an exact algorithm exploiting low treewidth, as well as
an approximation algorithm based on matching.

In Chapter 3, we developed a novel solution approach to jointly optimize a periodic
timetable and the vehicle circulation schedule, allowing operators to make informed
trade-offs between passenger service and operating costs. We provided new theor-
etical results on the vehicle circulation scheduling problem, and used these results
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to improve the algorithmic performance of the integrated model. Computational
experiments showed that this approach finds timetables that require fewer vehicles,
without compromising the passengers’ perspective.

In Chapter 4, we provided an in-depth theoretical analysis of a decentralized dispatch-
ing policy. The proposed policy can easily be applied without the use of a computer,
as it only involves a trivial calculation using the most recent departure times of the
lines at a station. We showed that, in idealized conditions, this simple policy results
in a self-organizing system: once converged, it matches the efficiency of centralized
control. We also established worst-case bounds on the time until convergence, as well
as the maximum headway deviation if the number of vehicles is insufficient. Numer-
ical experiments illustrated that the policy still performs reasonably well when the
assumptions required for the theoretical analysis are not met.

In Chapter 5, we investigated a novel disruption management strategy for dealing
with out-of-control situations in railways. This strategy involves modifying the line
plan in the affected region, which is subsequently operated using decentralized dis-
patching strategies. We developed a solution approach based on combinatorial Bend-
ers’ decomposition that finds passenger-optimal line plans, given infrastructural and
rolling stock restrictions that result from the disruption(s). In addition, we proposed
several rolling stock dispatching strategies, requiring varying degrees of flexibility and
coordination. Computational experiments based on disruptions in the Dutch railway
network indicate that the algorithm performs well, finding workable and passenger-
oriented line plans within a couple of minutes. Moreover, a macroscopic simulation
demonstrated that the produced line plans can be operated smoothly without de-
pending on central coordination.

In Chapter 6, we analyzed the effectiveness of decentralized strategies in a microscopic
railway simulation. Besides rolling stock, this simulation involves train drivers, for
which we also proposed decentralized strategies. We tested the strategies on a sub-
network of the Dutch railway network, containing eleven stations linked by four train
lines. The results showed that with the decentralized dispatching strategies, target
frequencies of the lines are approximately met and train services are highly regular
without large delays. Especially strategies that allow rolling stock to switch between
lines result in a high performance.
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7.1 Practical Implications

Chapters 2 and 3 highlight opportunities for public transport operators to improve
their planning process. The benefit of integrated planning is most clearly demon-
strated in Chapter 3: compared to sequential planning, the integrated approach en-
ables a considerable reduction in the number of required vehicles, driving down costs,
at the expense of marginal increases in passenger service. Put differently, integrated
planning leads to opportunities to increase passenger service without increasing op-
erating costs. Chapter 3 also provides evidence that allowing vehicle circulations to
contain at most two lines (combined circulations) achieves a good balance between
costs and the complicatedness of the vehicle circulation schedule, which impacts the
robustness of the system. Compared to fixed circulations, combined circulations real-
ize a large decrease in the number of required vehicles, while the additional benefit of
allowing more than two lines in a circulation is fairly limited. Under this restriction,
the matching heuristic proposed in Chapter 2 provides a fast and intuitive method
to estimate the number of vehicles line plans require, allowing operators to better
assess and compare the cost-effectiveness of line plans.

Chapters 4, 5 and 6 show that there is certainly merit to decentralized control. Espe-
cially among railway practitioners, it is often believed that there is no alternative to
centralized control and stick-to-the-plan rescheduling approaches. Our work refutes
that belief: flexible, decentralized dispatching strategies are not guaranteed to cause
a plunge into chaos. In out-of-control situations, the strategies that we propose could
even provide a way out of chaos, yielding a reasonable and relatively stable level of
service in the affected region. On the other hand, the effectiveness of the considered
strategy is dependent on the assumption that there are no interactions between the
disrupted region (operated using decentralized strategies), and the rest of the net-
work (operated using conventional approaches). The Netherlands has seen recent
examples of out-of-control situation where this assumption is met due to fallen trees
blocking tracks, essentially cutting up the network. However, in the majority of the
cases, one has to manually enforce the separation between the disrupted region and
the rest of the network, which disrupts a considerable proportion of rolling stock and
crew schedules, placing a large burden on dispatchers. In other words, imposing a
strict boundary between the disrupted region and the rest of the network may solve
one problem, but potentially leads to new problems elsewhere. These considerations
limit the applicability of decentralized control to out-of-control situations.
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In the introduction, we also discussed other possible applications of decentralized
strategies: transit networks in developing countries or remote areas, replacement
bus services, high-frequency services and first-phase rescheduling. Our promising
results indicate that decentralized control is a viable alternative in certain scenarios.
However, the mentioned applications all come with their own intricacies, such that
more research is required to accurately assess the applicability of such strategies.

7.2 Further Research

There are many interesting and relevant research directions that extend the research
in this thesis. A limitation of the work in Chapters 2 and 3 is the assumption that
a single vehicle suffices to perform a trip. However, in railway systems, rolling stock
scheduling is more involved, as train units can be coupled to increase capacity. In
this setting, the methods developed in Chapters 2 and 3 estimate and optimize the
number of required compositions rather than the number of train units. It would
be interesting to investigate the extension of the proposed techniques by taking into
account coupling of train units. Another promising research direction is to integrate
the predictive model for estimating the number of required vehicles in Chapter 2
into a prescriptive line planning model, to find line plans that can efficiently be
covered by a small number of vehicles. Our work could also be applied in different
fields than public transport. For example, the formulation proposed in Chapter 3 for
optimizing the number of vehicles in a periodic timetable can be applied to optimize
other resources in systems operated using periodically repeating schedules.

On the topic of decentralized control in public transport, the opportunities for fur-
ther research are plentiful. In addition to the mentioned other applications of de-
centralized strategies that could be researched further, it is worth noting that in this
thesis, we primarily assessed performance by analyzing frequencies, regularity and
delay. These measures unquestionably affect the experience of passengers. However,
it would be interesting to move passengers more to the foreground. Besides modeling
the impact of certain strategies on passengers in more detail, also the impact the
passengers have on the system, for example due to bunching effects, is worth invest-
igating. Furthermore, one could even analyze decentralized strategies that depend
directly on the passengers (for example, "depart when the number of vehicles is at
least x% of the capacity"). These aspects could be investigated both analytically, as
an extension to Chapter 4, or empirically, in the style of Chapters 5 and 6.
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Samenvatting

Openbaar vervoer speelt in onze hedendaagse maatschappij een essentiële rol waar
iedereen van profiteert. Effectief openbaar vervoer biedt mensen de mogelijkheid om
van punt A naar punt B te reizen op een betaalbare, comfortabele en snelle manier,
en is zo een grote stimulans voor economische mobiliteit en economische activiteit
in het algemeen. Ook gebruikers van privaat vervoer profiteren van openbaar ver-
voer, aangezien openbaar vervoer de druk op het wegennet drastisch verlaagt door
het samenvoegen van reizigers in voertuigen met hoge capaciteit. Een ander belan-
grijk voordeel van openbaar vervoer is de lage emissie per passagierskilometer ten
opzichte van privaat wegvervoer, waardoor het een rol kan spelen in de strijd tegen
klimaatverandering.

Gezien deze voordelen, is het belangrijk om openbaar vervoersystemen (ov-systemen)
zo duurzaam, kostenefficiënt en aantrekkelijk mogelijk voor de reiziger te maken.
Dit proefschrift draagt hieraan bij door nieuwe aanpakken voor het plannen, be- en
bijsturen van ov-systemen te onderzoeken, en doet dat in twee delen.

Deel I richt zich op het integreren van verschillende stappen in het planningsproces
van aanbieders van openbaar vervoer. In vergelijking met de gangbare sequentiële
aanpak kan een dergelijke geïntegreerde aanpak in theorie betere oplossingen vinden,
wat aanzienlijke besparingen en/of verbetering van het aanbod voor de reiziger op
kan leveren.

Hoofdstuk 2 beschouwt een combinatie tussen lijnvoering en voertuigplanning, door
het ontwikkelen van methodes die inschatten hoeveel voertuigen er nodig zijn om een
gegeven lijnvoering uit te voeren, zonder dat hiervoor een volledige dienstregeling
uitgerekend hoeft te worden. We besteden vooral aandacht aan het geval waarbij een
voertuigcirculatie maximaal twee verschillende lijnen mag bevatten, aangezien dit de
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complexiteit van het voertuigschema beperkt. Voor dit geval ontwikkelen we zowel
een exact algoritme, als een efficiënte approximatiemethode.

Hoofdstuk 3 beschouwt een combinatie tussen dienstregeling en voertuigplanning.
Hier ontwikkelen we een optimalisatiemodel dat geïntegreerd een dienstregeling en
de voertuigcirculaties uitrekent, om zo een afweging te kunnen maken tussen kosten
en serviceniveau voor de reiziger. We bewijzen nieuwe theoretische resultaten over het
plannen van voertuigcirculaties en gebruiken deze resultaten om de rekenprestaties
van het model te verbeteren. Experimenten laten het voordeel van onze geïntegreerde
aanpak zien: er worden dienstregelingen gevonden die substantieel minder voertuigen
nodig hebben om uitgevoerd te worden, zonder dat de reiziger erg moet inleveren qua
serviceniveau.

Deel II onderzoekt decentrale aanpakken om ov-systemen te be- of bijsturen, met
een focus op spoorsystemen. In reguliere situaties, waar we mogen uitgaan van func-
tionerende communicatiesystemen, vlotte bijsturing en complete beschikbaarheid van
informatie, is centrale bijsturing geprefereerd boven decentrale bijsturing. Wanneer
een van deze aannames echter wegvalt worden de voordelen van decentrale besturing
zichtbaar. Dit is bijvoorbeeld het geval in out-of-control situaties in spoorsystemen,
welke het gevolg kunnen zijn van een opeenstapeling van grote verstoringen. In dit
deel onderzoeken we of decentrale bijsturing een uitkomst kan zijn voor out-of-control
situaties, en andere situaties waar de centrale aanpak ineffectief is.

Hoofdstuk 4 presenteert een uitgebreide theoretische analyse van een eenvoudig toe te
passen decentrale beslisregel. De voorgestelde beslisregel bepaalt wanneer er op een
eindstation een voertuig arriveert op basis van de vorige vertrektijden hoe laat en in
welke richting dit voertuig weer moet vertrekken. We bewijzen dat, in geïdealiseerde
situaties, deze beslisregel resulteert een een zelf-organiserend systeem: mits er genoeg
voertuigen zijn, convergeert het systeem spontaan naar een stabiele dienstregeling.
Hiernaast leiden we bovengrenzen af voor de tijd tot convergentie en de afwijking van
het gewenste vertrekinterval indien er niet voldoende voertuigen zijn. In numerieke
experimenten laten we zien dat wanneer de aannames van de theoretische analyse
niet op gaan, de beslisregel nog steeds leidt tot goede prestaties van het systeem.

Hoofdstuk 5 onderzoekt een nieuwe strategie om met out-of-control situaties om te
gaan. In deze strategie wordt eerst de lijnvoering in het verstoorde gebied aangepast,
waarna dit gebied met decentrale beslisregels bestuurd kan worden. We ontwikkelen
een oplosmethode om een lijnvoering te vinden die het ongemak van passagiers min-
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imaliseert, rekening houdend met infrastructurele restricties en materieelbeperkingen.
Daarnaast stellen we meerdere beslisregels voor om decentraal te bepalen wanneer
en en in welke richting inkomende treinen moet vertrekken. Experimenten gebaseerd
op verstoringen in het Nederlandse spoornetwerk laten zien dat het algoritme binnen
enkele minuten passagiersgeoriënteerde lijnvoeringen kan vinden. Een macroscopis-
che spoorsimulatie laat verder zien dat de gevonden lijnvoeringen in combinatie met
de decentrale beslisregels werkbaar zijn, en niet leiden tot grote vertragingen of on-
regelmatigheden.

Ten slotte analyseert Hoofdstuk 6 de effectiviteit van decentrale besturing in een
microscopische spoorsimulatie, waarin het spoorsysteem op een zeer gedetailleerd
niveau wordt gesimuleerd. Naast het materieel stellen we hier ook beslisregels voor
voor treinpersoneel. We testen de beslisregels opnieuw op een deel van het Neder-
landse spoornetwerk. De resultaten laten zien dat de voorgestelde beslisregels een
regelmatige treindienst kunnen opleveren, waarbij de doelfrequenties gehaald worden
en er geen grote vertragingen optreden.

Ons onderzoek levert een aantal praktische implicaties op. Het onderzoek in Deel I
laat mogelijkheden zien voor aanbieders van openbaar vervoer om hun planning-
sproces te verbeteren. De toegevoegde waarde van geïntegreerde planning wordt
goed duidelijk uit de resultaten van Hoofdstuk 3: in vergelijking met sequentieel
plannen leidt een geïntegreerde aanpak tot een aanzienlijke reductie in het aantal
benodigde voertuigen, tegen een marginaal verlies in reistijd voor de reiziger. Met
andere woorden, geïntegreerd plannen biedt mogelijkheden om het serviceniveau te
verhogen zonder dat dit extra kosten meebrengt. Hoofdstuk 3 laat ook zien dat het
toestaan van voertuigcirculaties met maximaal twee lijnen tot een goede balans leidt
tussen kosten en de complexiteit van het voertuigschema. Onder deze restrictie levert
Hoofdstuk 2 een snelle en intuïtieve methode om het aantal benodigde voertuigen
voor een lijnvoering te bepalen, wat het mogelijk maakt om beter de kosteneffectiv-
iteit van lijnvoeringen te vergelijken.

Het onderzoek in Deel II laat zien dat er kansen liggen om ov-systemen op een
decentrale manier te besturen. Zeker onder mensen werkzaam in de spoorsector
wordt er regelmatig gedacht dat er geen alternatief bestaat voor gecentraliseerd en
stick-to-the-plan bijsturen. Ons onderzoek ondersteunt die hypothese echter niet: op
flexibele wijze decentraal bijsturen hoeft niet in chaos te eindigen. Uiteraard geniet
centrale bijsturing de voorkeur in het gros van de situaties, maar in bijvoorbeeld out-
control-situaties, wanneer centraal bijsturen niet mogelijk is, kan decentraal bijsturen
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als alternatief dienen.

Een belangrijke beperking van ons onderzoek is wel dat we hebben aangenomen dat
er geen interacties zijn tussen het verstoorde gebied, wat decentraal bestuurd wordt,
en het niet-verstoorde gebied, wat met reguliere methoden bestuurd wordt. In en-
kele recente out-of-control situaties gaat deze aanname op, bijvoorbeeld wanneer er
door een storm bomen op het spoor vallen, waardoor het netwerk vanzelf wordt op-
geknipt. In de meeste out-of-control situaties gaat deze aanname echter niet moet,
wat zou betekenen dat het netwerk handmatig opgedeeld zou moeten worden, met
grote verstoringen in het materieelschema en personeelsschema tot gevolg. Met an-
dere woorden, het oplossen van een probleem in een deel van het netwerk zou dan tot
nieuwe problemen leiden andere delen van het netwerk. Dit maakt dat de toepassing
van decentrale besturing in out-of-control situaties beperkt mogelijk is.

In de introductie van deze thesis bespreken we ook andere mogelijke toepassin-
gen van decentrale besturing: ov-systemen in ontwikkelingslanden of afgelegen ge-
bieden, vervangend busvervoer, hoogfrequente diensten en bijsturing in de eerste
fase van een verstoring. Ons onderzoek laat zien dat decentrale beslisregels tot goede
prestaties kunnen leiden en dus mogelijk waardevol zijn in de genoemde toepassingen.
Echter hebben elk van deze toepassingen hun eigen specifieke eigenschappen, waar-
door er verder onderzoek vereist is om de toepasbaarheid van decentrale beslisregels
nauwkeuriger te bepalen.
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Public transport brings undisputed benefi ts to modern-day societies. Aside from providing an a� ordable 
means to get around, its supreme e�  ciency in comparison with private transport plays a crucial role 
in curbing congestion and pollution. Given these advantages, adequate design and operation of public 
transport systems is of utmost importance. 

The fi rst part of this thesis seeks to improve the planning process of public transport operators by 
integrating planning steps that are traditionally performed sequentially. The fi rst study considers a 
combination of line planning and vehicle scheduling, and presents methods that estimate how many 
vehicles are required to operate a line plan, without having to compute a timetable. The second study 
combines timetabling and vehicle scheduling, and develops a novel optimization model for jointly 
optimizing a periodic timetable and vehicle circulation schedule.

The second part of this thesis investigates decentralized strategies for operating public transport, with 
a focus on railway systems. Such strategies could be preferable over conventional centralized and 
schedule-based control in various scenarios. The fi rst study in this part presents a theoretical analysis 
of a simple, decentralized strategy for dispatching vehicles. The second study considers the application 
of decentralized control to out-of-control situations in railways, which includes the development of a 
solution algorithm to fi nd line plans that are suited for these circumstances. The fi nal study in this thesis 
tests decentralized dispatching of both vehicles and crew in a microscopic railway simulation.
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