183 research outputs found

    Inventory policy for a deteriorating item: quadratic demand with shortages

    Get PDF
    We develop an inventory model for a deteriorating item having an instantaneous supply with a quadratic time-varying demand given by f(t)=a+bt+ct2; a&#88050, b&#88000, c&#88000 with shortages. The model is solved analytically to obtain the optimal solution for the problem. The sensitivity analysis of the optimal solution toward change in the values of the different system parameters is also examined. Numerical example is given to illustrate the proposed model. Journal of Science and Technology (Ghana) Vol. 27 (2) 2007: pp. 89-9

    A two-storage model for deteriorating items with holding cost under inflation and Genetic Algorithms

    Full text link
    A deterministic inventory model has been developed for deteriorating items and Genetic Algorithms (GA) having a ramp type demands with the effects of inflation with two-storage facilities. The owned warehouse (OW) has a fixed capacity of W units; the rented warehouse (RW) has unlimited capacity. Here, we assumed that the inventory holding cost in RW is higher than those in OW. Shortages in inventory are allowed and partially backlogged and Genetic Algorithms (GA) it is assumed that the inventory deteriorates over time at a variable deterioration rate. The effect of inflation has also been considered for various costs associated with the inventory system and Genetic Algorithms (GA). Numerical example is also used to study the behaviour of the model. Cost minimization technique is used to get the expressions for total cost and other parameters

    Production inventory policy under a discounted cash flow

    Get PDF
    This paper presents an extended production inventory model in which the production rate at any instant depends on the demand and the inventory level. The effects of the time value of money are incorporated into the model. The demand rate is a linear function of time for the scheduling period. The proposed model can assist managers in economically controlling production systems under the condition of considering a discounted cash flow. A simple algorithm computing the optimal production-scheduling period is developed. Several particular cases of the model are briefly discussed. Through numerical example, sensitive analyses are carried out to examine the effect of the parameters. Results show that the discount rate parameter and the inventory holding cost have a significant impact on the proposed model

    Sustainable Inventory Management Model for High-Volume Material with Limited Storage Space under Stochastic Demand and Supply

    Get PDF
    Inventory management and control has become an important management function, which is vital in ensuring the efficiency and profitability of a company’s operations. Hence, several research studies attempted to develop models to be used to minimise the quantities of excess inventory, in order to reduce their associated costs without compromising both operational efficiency and customers’ needs. The Economic Order Quantity (EOQ) model is one of the most used of these models; however, this model has a number of limiting assumptions, which led to the development of a number of extensions for this model to increase its applicability to the modern-day business environment. Therefore, in this research study, a sustainable inventory management model is developed based on the EOQ concept to optimise the ordering and storage of large-volume inventory, which deteriorates over time, with limited storage space, such as steel, under stochastic demand, supply and backorders. Two control systems were developed and tested in this research study in order to select the most robust system: an open-loop system, based on direct control through which five different time series for each stochastic variable were generated, before an attempt to optimise the average profit was conducted; and a closed-loop system, which uses a neural network, depicting the different business and economic conditions associated with the steel manufacturing industry, to generate the optimal control parameters for each week across the entire planning horizon. A sensitivity analysis proved that the closed-loop neural network control system was more accurate in depicting real-life business conditions, and more robust in optimising the inventory management process for a large-volume, deteriorating item. Moreover, due to its advantages over other techniques, a meta-heuristic Particle Swarm Optimisation (PSO) algorithm was used to solve this model. This model is implemented throughout the research in the case of a steel manufacturing factory under different operational and extreme economic scenarios. As a result of the case study, the developed model proved its robustness and accuracy in managing the inventory of such a unique industry

    Optimal dynamic pricing and replenishment policies for deteriorating items

    Get PDF
    Marketing strategies and proper inventory replenishment policies are often incorporated by enterprises to stimulate demand and maximize profit. The aim of this paper is to represent an integrated model for dynamic pricing and inventory control of deteriorating items. To reflect the dynamic characteristic of the problem, the selling price is defined as a time-dependent function of the initial selling price and the discount rate. In this regard, the price is exponentially discounted to compensate negative impact of the deterioration. The planning horizon is assumed to be infinite and the deterioration rate is time-dependent. In addition to price, the demand rate is dependent on advertisement as a powerful marketing tool. Several theoretical results and an iterative solution algorithm are developed to provide the optimal solution. Finally, to show validity of the model and illustrate the solution procedure, numerical results are presented

    The optimal ordering policy with trade credit under two different payment methods

    Get PDF
    [[abstract]]Suppliers’ offering delay payment terms to retailers can be regarded as a type of price reduction. In today’s ever competitive marketplace, offering delay payments has become a commonly adopted method to suppliers. Most of the inventory models with permissible delay in payments assumed that the entire lot size is delivered at the same time. However, in practice, goods ordered are usually arrived overtime in separate batches. In this study, we discuss an inventory problem with a finite replenishment rate under trade credit for two payment methods. We establish a theorem to find the optimal solution for each payment method. Numerical examples are also given to illustrate the solution procedure. Finally, to investigate the effect of changes of some main parameter values on the optimal solution, a sensitivity analysis is performed and some management interpretations are proposed.[[journaltype]]國外[[incitationindex]]SCI[[ispeerreviewed]]Y[[booktype]]紙本[[countrycodes]]DE

    Supply chain finance for ameliorating and deteriorating products: a systematic literature review

    Get PDF
    Ameliorating and deteriorating products, or, more generally, items that change value over time, present a high sensitiveness to the surrounding environment (e.g., temperature, humidity, and light intensity). For this reason, they should be properly stored along the supply chain to guarantee the desired quality to the consumers. Specifically, ameliorating items face an increase in value if there are stored for longer periods, which can lead to higher selling price. At the same time, the costumers’ demand is sensitive to the price (i.e., the higher the selling price the lower the final demand), sensitiveness that is related to the quality of the products (i.e., lower sensitiveness for high-quality products). On the contrary, deteriorating items lose quality and value over time which result in revenue losses due to lost sales or reduced selling price. Since these products need to be properly stored (i.e., usually in temperature- and humidity-controlled warehouses) the holding costs, which comprise also the energy costs, may be particularly relevant impacting on the economic, environmental, and social sustainability of the supply chain. Furthermore, due to the recent economic crisis, companies (especially, small and medium enterprises) face payment difficulties of customers and high volatility of resources prices. This increases the risk of insolvency and on the other hand the financing needs. In this context, supply chain finance emerged as a mean for efficiency by coordinating the financial flow and providing a set of financial schemes aiming at optimizing accounts payable and receivable along the supply chain. The aim of the present study is thus to investigate through a systematic literature review the two main themes presented (i.e., inventory management models for products that change value over time, and financial techniques and strategies to support companies in inventory management) to understand if any financial technique has been studied for supporting the management of this class of products and to verify the existing literature gap
    corecore