36,196 research outputs found

    Robust Multi-Cellular Developmental Design

    Get PDF
    This paper introduces a continuous model for Multi-cellular Developmental Design. The cells are fixed on a 2D grid and exchange "chemicals" with their neighbors during the growth process. The quantity of chemicals that a cell produces, as well as the differentiation value of the cell in the phenotype, are controlled by a Neural Network (the genotype) that takes as inputs the chemicals produced by the neighboring cells at the previous time step. In the proposed model, the number of iterations of the growth process is not pre-determined, but emerges during evolution: only organisms for which the growth process stabilizes give a phenotype (the stable state), others are declared nonviable. The optimization of the controller is done using the NEAT algorithm, that optimizes both the topology and the weights of the Neural Networks. Though each cell only receives local information from its neighbors, the experimental results of the proposed approach on the 'flags' problems (the phenotype must match a given 2D pattern) are almost as good as those of a direct regression approach using the same model with global information. Moreover, the resulting multi-cellular organisms exhibit almost perfect self-healing characteristics

    Metaheuristic approaches for optimal broadcasting design in metropolitan MANETs

    Get PDF
    11th International Conference on Computer Aided Systems Theory. Las Palmas de Gran Canaria, Spain, February 12-16, 2007Mobile Ad-hoc Networks (MANETs) are composed of a set of communicating devices which are able to spontaneously interconnect without any pre-existing infrastructure. In such scenario, broadcasting becomes an operation of tremendous importance for the own existence and operation of the network. Optimizing a broadcasting strategy in MANETs is a multiobjective problem accounting for three goals: reaching as many stations as possible, minimizing the network utilization, and reducing the duration of the operation itself. This research, which has been developed within the OPLINK project (http://oplink.lcc.uma.es), faces a wide study about this problem in metropolitan MANETs with up to seven different advanced multiobjective metaheuristics. They all compute Pareto fronts of solutions which empower a human designer with the ability of choosing the preferred configuration for the network. The quality of these fronts is evaluated by using the hypervolume metric. The obtained results show that the SPEA2 algorithm is the most accurate metaheuristic for solving the broadcasting problem.Publicad

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    A Neuroevolutionary Approach to Stochastic Inventory Control in Multi-Echelon Systems

    Get PDF
    Stochastic inventory control in multi-echelon systems poses hard problems in optimisation under uncertainty. Stochastic programming can solve small instances optimally, and approximately solve larger instances via scenario reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation optimisation is an alternative approach that has recently been applied to such problems, using policies that require only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider exponentially large scenario trees with a corresponding number of decision variables. We propose instead a neuroevolutionary approach: using an artificial neural network to compactly represent the scenario tree, and training the network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find high-quality plans using networks of a very simple form

    Identification of cellular automata based on incomplete observations with bounded time gaps

    Get PDF
    In this paper, the problem of identifying the cellular automata (CAs) is considered. We frame and solve this problem in the context of incomplete observations, i.e., prerecorded, incomplete configurations of the system at certain, and unknown time stamps. We consider 1-D, deterministic, two-state CAs only. An identification method based on a genetic algorithm with individuals of variable length is proposed. The experimental results show that the proposed method is highly effective. In addition, connections between the dynamical properties of CAs (Lyapunov exponents and behavioral classes) and the performance of the identification algorithm are established and analyzed
    corecore