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Abstract. Mobile Ad-hoc Networks (MANETS) are composed of a set
of communicating devices which are able to spontaneously interconnect
without any pre-existing infrastructure. In such scenario, broadcasting
becomes an operation of tremendous importance for the own existence
and operation of the network. Optimizing a broadcasting strategy in
MANETS is a multiobjective problem accounting for three goals: reaching
as many stations as possible, minimizing the network utilization, and re-
ducing the duration of the operation itself. This research, which has been
developed within the OPLINK project (http://oplink.lcc.uma.es),
faces a wide study about this problem in metropolitan MANET's with up
to seven different advanced multiobjective metaheuristics. They all com-
pute Pareto fronts of solutions which empower a human designer with
the ability of choosing the preferred configuration for the network. The
quality of these fronts is evaluated by using the hypervolume metric. The
obtained results show that the SPEA2 algorithm is the most accurate
metaheuristic for solving the broadcasting problem.

1 Introduction

With the rapid development of wireless communications technologies and the
proliferation of mobile devices like cell phones, PDAs or laptops, mobile ad hoc
networks (MANETS) have emerged as an important research field in current
and future communication networks because they do not require infrastructure
support and can be quickly deployed with low costs. MANETS consist of a
collection of mobile, self-configurable hosts, called nodes or devices, which are free
to move randomly and organize themselves arbitrarily. The mobility of devices
along with the range-limited wireless links make the network topology to change
rapidly and unpredictably over time. This dynamical behavior constitutes one
of the main obstacles for performing efficient communications on such networks.

This work is focussed on the problem of broadcasting in MANETSs. In such
networks, broadcasting is not only the basic mechanism for solving many network
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layer problems (e.g. routing) but also a common operation at the application
level. Hence, choosing a broadcasting strategy properly will result in a major
impact in network performance. In this paper, we are considering the problem
of broadcasting over the so-called Metropolitan MANETSs [I], where the density
of devices is heterogeneous and continuously changing. This leads to networks
composed of subsets of ad hoc networks that may merge and disjoin dynamically
during the operation, so the network topologies change frequently (Fig. [). In
this context, rather than providing a generic protocol performing well on average
situations, our proposal lies in optimally tuning the broadcasting service for a
set of networks.

Fig. 1. An example of metropolitan MANET

Optimizing a broadcasting strategy is a multiobjective optimization prob-
lem (MOP), in which multiple functions have to be satisfied at the same time:
maximizing the number of stations reached, minimizing the network use, and
minimizing the duration of the process. In this work, the broadcasting strategy
considered for optimization is DFCN [2], and the target networks are metropol-
itan MANETSs. This MOP has been called DFCNT standing for DFCN Tuning.
DFCNT is a real-world, complex optimization MOP which is very hard to be
solved exactly within a reasonable amount of time. Heuristics become the choice
here. These methods sacrifice the guarantee of finding the optimal solutions for
the sake of (hopefully) getting accurate (also optimal) ones efficiently. Among
them, metaheuristics [3] are well-known optimization algorithms that are based
on combining basic heuristic methods in a higher level structured framework.
The aim is to efficiently and effectively explore the search space of the given
problem while seeking for its optimal solutions.

The goal of this work is to present a broad study in which seven different
state-of-the-art multiobjective metaheuristics for solving the optimal broadcast-
ing problem are evaluated. These metaheuristics are: NSGA-II [4] and SPEA2 [5]
(genetic algorithms), MOPSO [6] (particle swarm optimization), AbYSS [7]
(scatter search), cMOGA [§] (cellular genetic algorithm), and two adaptations
of Evolution Strategies (ES) [9] and Differential Evolution (DE) [I0] to the
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multiobjective optimization field. We have been able to address this extensive study
on such a complex problem thanks to the collaboration developed among the dif-
ferent research teams of the OPLINK project (http://oplink.lcc.uma.es). The
optimizers have been compared by using the standard methodology in the multi-
objective field and the drawn conclusions have been supported with an statistical
analysis.

The paper is structured as follows. The next section provides the reader with
a brief description of the DFCNT MOP that is being addressed in this work.
Section Bl describes all the metaheuristics used. Metrics, parameterization, and
results are presented in Sect. @l Finally, conclusions and lines of future work are
given in Sect.

2 DFCNT: Problem Statement

Metropolitan mobile ad hoc networks are MANETSs with some particular prop-
erties. First, they have one or more areas where the node density is higher
than the average. They are called high density areas, and they can be sta-
tistically detected. Second, high density areas do not remain active full time,
i.e., they can appear and disappear from the network. To deal with such kind
of networks, there is no other solution than resorting to software simulations.
In this work we have used Madhoc [II], a metropolitan MANET simulator
(www-1ih.univ-lehavre.fr/~hogie/madhoc). Very different realistic scenarios
can be implemented within Madhoc (open areas, metropolitan environments,
highways, etc.) because of its highly customizable behavioral parameters. We
have configured the simulator for modelling a mall environment according to
three main parameters: the size of the simulation area, the density of mobile
stations, and the type of environment. For our experiments, we have used a
simulation area of 40,000 square meters, a density of 2,000 devices per square
kilometer, and a mall-like environment (see [8] for further details). We consider
that the broadcasting is completed when either the coverage reaches 100% or it
does not vary in a reasonable period of time (set to 1.5 seconds after some prelim-
inary experimentation). This point is important since an improper termination
condition will lead us to bad results or very slow simulations.

Once we have the target network, the broadcasting strategy used to be tuned
is DFCN [2]. We have chosen this protocol because it has been specifically de-
signed for metropolitan MANET scenarios. After carefully analyzing DFCN, we
identified five parameters which determine the behavior of the protocol. For all
the details about the DFCNT parameters, the reader is referred to [8]. These five
parameters define five decision variables which correspond to a DFCN configura-
tion. The objectives to optimize are: minimizing the duration of the broadcasting
process, maximizing the network coverage, and minimizing the number of trans-
missions. Thus, we have defined a triple objective MOP, called DFCNT (DFCN
Tuning). As we stated before, this problem is defined by a given target network
in which the DFCN broadcasting strategy is used. We do not seek for a protocol
performing well on every possible scenario.
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3 Metaheuristics for Solving DFCNT

In this section we give a brief overview of the seven optimization methods used in
this work. For further details, please use the given references on each algorithm.

— NSGA-II: The NSGA-II algorithm was proposed by Deb et al. []. It is a ge-
netic algorithm based on obtaining a new population of individuals from the
original one by applying the typical genetic operators (selection, crossover,
and mutation); then, the most promising individuals for the next generation
are chosen according to their rank and crowding distance. When it is used
to solve continuous problems, NSGA-IT applies binary tournament selection,
SBX crossover and polynomial mutation.

— SPEA2: It is also a genetic algorithm, proposed by Zitler et al. in [5], in
which each individual has assigned a fitness value that is the sum of its
strength raw fitness and a density estimation. The algorithm applies the
selection, crossover, and mutation operators to fill an archive of individuals;
then, the non-dominated individuals of both the original population and the
archive are copied into a new population. If the number of non-dominated
individuals is greater than the population size, a truncation operator based
on calculating the distances to the k-th nearest neighbor is used.

— MOPSO: This technique, proposed by Coello and Lechuga in [6], combines
particle swarm optimization with the archiving strategy of PAES [12]. Non-
dominated solutions in the swarm are stored in an external repository and
they are used to guide the search. This repository is used both to store the
solutions of the problem and to maintain a diverse population of particles. We
have used the basic version of MOPSO [6], without the mutation operator.

— AbYSS: The Archive-Based hYbrid Scatter Search [7JI3] is our own pro-
posal to adapt the scatter search template to solve bounded continuous sin-
gle objective optimization problems [I4] to the multiobjective domain. The
SBX crossover and the polynomial mutation operators are used in the so-
lution combination and improvement methods, respectively. AbYSS uses an
external archive for storing non-dominated solutions, which is managed by
using the ranking and crowding of NSGA-II [4] as a niching measure.

— cMOGA: cMOGA [§ is a cellular genetic algorithm [I5] which uses an
external archive for storing the non-dominated solutions found during the
search. The management strategy of this external archive is similar to the
one used by PAES (as MOPSO does). This algorithm also uses SBX and
polynomial mutation as genetic operators in its breeding loop.

— Differential Evolution (DE): We use an approach based on the reproduc-
tion scheme of DE [I0] within the NSGA-II reproductive loop. That is, the
algorithm works on a population of NV vectors and, at each iteration, a new
offspring population of size N is generated by using the DE scheme. The
ranking and crowding mechanisms from NSGA-II are used to choose the N
best vectors out of 2N for the next iteration.

— Evolution Strategy (ES): This multiobjective ES algorithm is a rather

standard self-adaptive evolution strategy [9]; in particular, it is a (u+X) ES
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using the selection scheme of NSGA-II (based on ranking and crowding dis-
tances). The mutation operator used is the gaussian mutation, which is ap-
plied using a variation of the 1/5 success rule [9].

4 Experiments

This section is devoted to present the experiments performed for this work. We
firstly introduce the metric used for measuring the performance of the resulting
Pareto fronts. Secondly, the parameterization of all the multiobjective algorithms
is detailed. Finally, we thoroughly discuss and compare the results for DFCNT.

4.1  Quality Indicator: Hypervolume

We have used the Hypervolume [I6] metric for assessing the performance of the
multiobjective optimizers. This is a widely used, Pareto-compliant metric that
measures both convergence and diversity in the resulting Pareto fronts. It is
based on calculating the volume (in the objective space) covered by members of
a non-dominated set of solutions @. Let v; be the volume enclosed by solution
i € Q. Then, a union of all hypercubes is found and its hypervolume (HV) is

calculated:
QI

HV = volume U v | . (1)
i=1

Algorithms with larger values of HV are desirable. Since this metric could be
biased by arbitrary scaling of objectives, we have evaluated the metric by using
normalized objective function values.

4.2 Parameterization

All the algorithms stop when 25,000 function evaluations of DFCNT have been
computed. Due to the stochastic nature of Madhoc, five simulations per function
evaluation have been performed, so that the fitness values of the functions are
computed as the average resulting values of these five different trials. A maximum
archive size of 100 non-dominated solutions is set in those algorithms using
external archives. SBX crossover and polynomial mutation have been used in
NSGA-II, SPEA2, AbYSS, and cMOGA. The detailed configuration of each
algorithm is as follows:

— NSGA-II: It uses a distribution index of 10 for both SBX and polynomial
mutation operators. The crossover and mutation rates have been set up to
0.9 and 0.2, respectively (as suggested by the designers of the algorithm).

— SPEA2: It has been configured with a population size of 100 individuals.
The 7. value for SBX was fixed to 10 and the crossover rate to 1.0. In the
polynomial mutation, 7,, was set up to 20 and the mutation probability
to 0.01.
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MOPSO: We have used 100 particles and 250 iterations to meet 25,000 func-
tion evaluations. The values for computing the new velocity vectors and new
position of the particles are: w = 0.4, ¢c1 = ¢2 = 2.0, and X = 0.4 (see [6] for
the details).

AbYSS: The configuration of both the SBX crossover and polynomial mu-
tation (solution combination and improvement methods) uses a distribution
index of 10. The size of the initial set P is 20, the number of iterations in the
improvement method is 5, and the size of RefSet; and RefSets is 10 solutions.
c¢cMOGA: Tt uses the same configuration for SBX and polynomial mutation as
AbYSS. The algorithm has been configured with a population of 100 individ-
uals arranged in a 10 x 10 square toroidal grid with a NEWs neighborhood,
and using binary tournament selection, a crossover rate of 1.0, and mutation
rate of 0.2.

DE: From the set of predefined strategies, DE/rand/1/bin has been selected,
which respectively means that a random vector is mutated, one single vector
is considered for perturbation of this randomly chosen vector, and binomial
crossover is used for recombination (see [I0] for the details). Two additional
parameters are needed to be assigned in DE, the weighting factor (F) and
the crossover rate (CR). The chosen values for these parameters have been
0.5 and 1.0, respectively.

ES: The ES algorithm has been configured with 100 individuals so that
i = A = 100 (and therefore 250 iterations). The step-size meta-control
parameter A is equal to 0.7.

4.3 Results

We have made 30 independent runs of each experiment. The results are shown
in Table [ (best algorithms are at the top) which includes the median, #, and
interquartile range, IQR, as measures of location (or central tendency) and
statistical dispersion. Since we are dealing with stochastic algorithms and we
want to provide the results with confidence, the following statistical analysis has
been performed in all this work. First a Kolmogorov-Smirnov test is performed
in order to check whether the values of the results follow a normal (gaussian)
distribution or not. If so, the Levene test checks for the homogeneity of the
variances. If samples have equal variance (positive Levene test), an ANOVA

Table 1. HV values

Algorithm TIQR

SPEA2 8.807e—01 4.7¢—03
ES 8.755e—01 2.7¢—03
NSGA-II 8.741e—01 5.9¢—03
AbYSS 8.687e—01 3.8¢—02
DE 8.672e—01 g.4¢—03

MOPSO 8.644e—01 3.8¢—03
cMOGA 8.480e—01 5.4¢—02



test is done; otherwise we perform a Welch test. For non-gaussian distributions,
the non-parametric Kruskal-Wallis test is used to compare the medians of the
algorithms. We consider here a confidence level of 95% (i.e., significance level of
5% or p-value under 0.05), which means that the differences are unlikely to have
occurred by chance with a probability of 95%. After applying this test, we verify
that statistical difference exists amongst the values included in Table [

From the values in the table, we can observe that SPEA2 obtains the best
metric value, thus indicating that it is the most promising metaheuristic to
solve DFCNT. This is an expected result since DFCNT is a three-objective
MOP, and it is well-known that the density estimator of SPEA2 overcomes
those used in NSGA-II and PAES (used in the rest of algorithms) in MOPs
having more than two objectives [I7]. In this sense, it is remarkable the HV
values reached by the ES algorithm, which outperforms NSGA-II, the reference
algorithm in multiobjective optimization. The last position of cMOGA in Table[I]
is a consequence of its simplified archive management strategy, in which the
individuals in the archive are not reused in the breeding loop of the algorithm.
Anyway, the differences in the metric values are not large, indicating that all the
algorithms compute similar fronts.

It is worth mentioning the time required to run each experiment. In a modern
Intel Pentium 4 based PC, this time is in the order of 2.5 days. We have carried
out 25,000 function evaluations, which is a typical value when measuring the
performance of multiobjective algorithms using standard benchmarks, but this
number is probably insufficient to obtain accurate fronts of solutions from a
difficult problem such as DFCNT. However, increasing the number of evaluations
can turn the runtime of the algorithms as impractical, what suggests that parallel
techniques have to be considered if we intend to enhance the obtained results.

5 Conclusions and Future Works

We have analyzed seven multiobjective metaheuristics for solving DFCNT, the
tuning of the DFCN broadcasting protocol for metropolitan MANETSs. It is
a complex real world problem, which uses Madhoc, a metropolitan MANET
simulator, to model a realistic scenario that represents a shopping mall. This
leads to a MOP having five decision variables and three objectives.

The chosen metaheuristics are representative of the state-of-the-art, and they
include the well-known algorithms NSGA-IT and SPEA2. Apart from these two
methods, we have considered other metaheuristics: scatter search, cellular ge-
netic algorithm, evolution strategy, differential evolution, and particle swarm
optimization. The implementation of these algorithms and their application to
solve DFCNT have been a join work of the members of the OPLINK project,
involving research groups of four Spanish universities. The experiments carried
out reveal that SPEA2 is the algorithm yielding the best results, according to
the hypervolume metric. However, the metric values seem to indicate that all
the algorithms produce fronts which are close together.
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As lines of future work, more research has to be done to improve the Pareto
fronts of the DFCNT problem. The study of fine-tuning the algorithms to en-
hance their performance and the use of parallel techniques to compute more
function evaluations in a reasonable amount of time are matters of ongoing and
future developments.
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