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Introduction 
 
Natural processes from population dynamics (Soarse-Filho et al., 2002; Lauf et al., 2012) to fluid 

dynamics (Somers, 1993; Chopard and Masselot, 1999), from biofilm growth (Pizarro et al., 

2005; Fagerlind et al., 2012) to tumor growth (Kansal et al., 2002; Alemani et al., 2012) all occur 

in discrete space and time so that a probabilistic nature of representation is needed to understand 

precisely the dynamics of such processes. Stochasticity is an intrinsic property of any natural 

system, more specifically at a microscopic scale (Deutsch and Dormann, 2003; Frange et al., 

2010). Several studies have observed occurrence of stochastic fluctuations in living systems 

(Abkowitz et al., 1996; Meng et al., 2004; Wu and Higgs 2012). Most biological events are 

triggered as network of chemical reactions which pose larger challenges due to computational 

representation and requirements (Kier et al., 2005). The noise of one event can alter the 

outcomes of the succeeding event and simultaneously affect the final outcome (Blake et al., 

2003). When concentrations of species in an enzymatic reaction are high, the reaction can be 

mathematically modeled using deterministic approaches, like Michaelis-Menten kinetics. But, at 

lower concentrations, it is advisable to use modeling tools which have some stochastic property 

within the rule structure. Such models shall evolve to show certain global properties and are also 

unpredictable until the event actually occurs to completion. Thus an accurate mathematical 

model can help clarify the roles of individual components within a process and generate specific, 

testable hypotheses and predictions (Apte et al., 2008). Cellular Automata (CA) is one such 

stochastic approach in which a natural event can be successfully simulated. Using probabilistic 

rule application, CA can capture the properties that evolve from the stochastic nature present in 

microscopic scale in natural systems assuming both time and space to be discrete. In our earlier 

studies (Kar et al., 2010; Dutta et al., 2011), a generalized two-dimensional (2D) interaction 
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model was created to represent two-agent kinetic interactions of an enzymatic reaction. From the 

sensitivity analysis study of Dutta et al. (2013) based on several input parameters, it was realized 

that there cannot be any specific mathematical relationship between the input parameters and the 

model output. It is also not feasible to define a strict mathematical relation between the chemical 

kinetic constants and the CA model parameters as the model is an abstract representation of a 

realistic reaction. This makes repeated trial-and-error interactions of random parameter values 

the only way to capture specifically the resulting state of a model system. When there are 

multiple objective functions of a model to be satisfied, useful combinations of parameter values 

become rarer in the infinite pool of solutions (Konak et al., 2006). If the problem is NP-hard, 

finding the optimal solutions by exhaustive search may be too costly or practically impossible. 

Genetic Algorithm (GA) is a popular meta-heuristic tool frequently used for solving optimization 

problems (Holland et al., 1975).  

Acid phosphatases (APs) are a family of enzymes that are widespread in nature, that non-

specifically catalyze the hydrolysis of orthophosphate monoesters to produce inorganic 

phosphate and can be found in many animal and plant species (Bull et al., 2002). These enzymes 

are competitively inhibited by inorganic phosphate (Odds and Hierholzer, 1972). Alvarez (1962) 

was the first to characterize the kinetics and mechanism of the hydrolysis of phosphoric acid 

esters by potato acid phosphatase. He found that the enzymatic activity depended on three 

ionizable groups. Based on these findings, a reaction mechanism was proposed (see Fig 1). After 

the nucleophilic attack of one of the ionizable groups on the phosphorous atom of p-nitrophenyl 

phosphate, the enzyme-substrate complex is formed. After releasing p-nitrophenol, the enzyme-

phosphate complex gets hydrolyzed, resulting in the formation of inorganic phosphate and 

recycled acid phosphatase.  
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In this study, an NSGA-II based Multi-Objective Genetic Algorithm (MOGA) approach is 

implemented for a stepwise improvement of the CA model. Finally, this approach is validated 

using the enzymatic hydrolysis of p-nitrophenyl phosphate by acid phosphatase with inhibition 

reaction. 

 

Cellular Automata model 
 
In accordance with our previous studies, the CA model is framed on a two-dimensional grid. 

Extended von-Neumann neighborhoods are considered for application of local rules. To 

represent the boundary as virtually infinite, periodic boundary condition are implemented. This 

facilitates the boundary molecules to interact with the molecules present in the boundary of 

opposite direction, as on the surface of toroid. Also, such a neighborhood implementation 

facilitates the application of probability rules in a combinatorial fashion without any exception 

due to edge restrictions (Dutta et al., 2011). Each of the reaction compound molecules is 

considered as a single agent in the model. Each cross section of the grid represents a single 

lattice node. An agent is allowed to occupy only one lattice node. The types of agents with their 

percentage occupancy are predefined, and the probability rules are declared as input parameters 

along with the grid size and iterations. The model can support a maximum of two agent 

interaction (first order and second order reactions) with equal numbers of molecules on either 

side of any reaction. This means, if a reaction complex forms at any time of the reaction, the 

model is valid for complexes so formed with two individual agents. The algorithm for rule 

application remains similar to Dutta et al. (2013). As earlier, the model is structured on several 

stochastic rules. There are four basic types of stochastic rules: the probability of Join (PJ) to form 

complexes, the probability of break (PB) to break a formed complex, the probability of transition 
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(PT) to define the reaction transition and the free movement probability (PM) which captures the 

Brownian mixing phenomenon in the model. For a particular agent, each of its neighboring 

directions is independently examined for feasible events, each of whose probability is obtained in 

a multiplicative manner. A re-normalization of the directional event probability value is 

performed. A random direction is then marked for occurrence of the designated event. This 

makes the model a pure instantaneous model, rather than a memory based model. Each agent is 

updated once per iteration. Rules are applied in a continuous manner based on the fundamental 

hypothesis no two events occur simultaneously.  

 
Genetic algorithm for multi-objective optimization 
 
Genetic Algorithm is inspired by Darwin’s law of survival of fittest (Goldberg et al., 1989). It 

mimics the process of natural evolution. It uses operators inspired by biological processes of 

Inheritance, Mutation, Selection and Crossover. The solutions are represented as chromosomes. 

Each chromosome is composed of values that can either be binary, real or floating point in 

representation. Using a set of Objective Functions (OFs), the chromosomes are mapped from 

variable (genotypic) space to objective (phenotypic) space. A set of solutions defines the 

population of a generation. The population evolves as more fit solutions (chromosomes) replaces 

less fit solutions. This way GA gradually nears to optimal solutions. A multi-objective 

optimization problem can be stated as a minimization problem as in Equation 1. 
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solutions. Then u  dominates v  (or vu ≻ ), if iff ii ∀≤ ),()( vu  and j∃ such that )()( vu jj ff < . 

Again u  and v  are said to be nondominated to each other (or vu || ) if neither vu ≻  nor uv ≻ . 
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A solution that is not dominated by any other possible solution is called Pareto optimal solution. 

The set of all Pareto optimal solutions is called the Pareto Set (PS). The set of all corresponding 

objective vectors to PS is called the Pareto front (PF). 

Given a set of solutions A , a subset of solutions AA ⊂1  is obtained such that 1A  is a 

nondominated set of solutions and )( 1AA−  is a dominated set of solutions. Then 1A  becomes the 

first front and nondomination rank of all solutions of 1A  is 1. If φ≠− )( 1AA , another set of 

solutions )( 12 AAA −⊂ is obtained such that 2A  is a nondominated set of solutions. Then 

2A becomes the second front and all the solutions of 2A have nondomination rank 2. Similarly an 

ith front can be defined and therefore, all the solution of ith will have nondomination rank i.  Any 

MOGA tries to find a set of solutions which is close to PF, well spread and covers the whole 

spectrum of PF. Further details on multi objective optimization using genetic algorithms can be 

found in (Deb et al., 2001; Coello et al., 2007). Several multi-objective genetic algorithms can be 

found in literature (Zitzler et al., 2001; Deb et al., 2002; Nag et al., 2012). For further reviews on 

MOGA, the interested reader is referred to Coello et al. (1999; 2006) and Konak et al. (2006).  

NSGA-II (Deb et al., 2002) is an elitist, population based genetic algorithm. The diversity of the 

population for a particular generation is measured by its crowding distance. Crowding distance 

can be assigned to each of the solutions of any nondominated set of solutions. The extreme 

(boundary) solutions are assigned infinity as crowding distance and for other solutions half the 

perimeter of its bounding cuboid is set as their crowding distance. It can be conceptualized that 

in each corner of the cuboid there exists the nearest neighbor according to the corresponding 

objective axis. A crowding distance assignment procedure is shown below: 

 
assignCrowdingDistance (SolutionSet P) { 
  for each i, set P[i].crowdingDistance = 0; 
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  for each objective m, 
    P = sortAscending(P, m); 
    P[1].crowdingDistance = P[|P|].crowdingDistance = INFINITY; 
    for i = 2 to (|P|-1), 
      P[i].crowdingDistance += (P[i+1].m – P[i-1].m)/(P[|P|].m – 
P[1].m);   
} 
 
 
NSGA-II algorithm  
 
Step-I (Population Initialization): Randomly initializes N number of solutions, where N is the 

population size. 

Step-II (Generate N number of offspring): A mating pool is created using a binary tournament 

selection where a two-tier fitness mechanism is used. The solution with lower rank is preferred. 

If the solutions have the same nondomination rank, then the solution with higher crowding 

distance is the winner. Then, Simulated Binary Crossover (SBX) (Deb et al., 1995) is performed 

on the mating pool to create N offspring. Polynomial mutation (Deb et al., 2006) is followed by 

crossover to mutate the offspring. Next, all the mutated offspring are evaluated. Thus a set of N 

offspring is generated. 

Step-III (Modify the population): The offspring and the parent population are added together to 

create a union of size 2N. After that, from these 2N solutions, the best N solutions are selected to 

form the next generation. In this selection procedure, NSGA-II uses a two-tier fitness 

mechanism. Lower nondomination rank is given the higher priority and kept in the first tier. 

Crowding distance is used in the second tier to differentiate the quality of the solutions having 

same rank. To frontify, NSGA-II uses fast-non-dominated-sort (Deb et al., 2002) procedure.       

Step-IV (Terminate the algorithm): If the termination condition (may be a maximum number of 

function evaluations or generations) is satisfied, perform a fast-non-dominated-sort and return 

the nondominated solutions of the archive, else go to Step-II.    
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Model formulation  
 
The CA model in this study acts as a black box function for NSGA II. The input parameters are 

selected by the GA, which is then used to simulate the CA model. The simulation output is then 

used to calculate the fitness functions. Finally, new sets of input parameter values are obtained 

after implementing the genetic operators of the GA. The model iterates until the final targeted 

generation count is reached. The following parameters are considered as target optimization 

parameters: the joining probabilities between enzyme and substrate (Join (ES)), between enzyme 

and inhibitor (Join (EI)), between enzyme and product (Join (EP)), between water and substrate 

Join (WS)) and between two water agents (Join (WW)), the breaking probabilities between 

enzyme and substrate (Break (ES)), between enzyme and inhibitor (Break (EI)), between enzyme 

and product (Break (EP)), between substrate and water (Break (WS)) and between two water 

agents (Break (WW)), the transition probabilities from enzyme-substrate to enzyme-product 

(Trans (ESEP)) and from enzyme-product to enzyme-substrate (Trans (EPES)). Due to the 

probabilistic nature of these parameters, the values are varied within the range of 1.0E-10 to 

9.99E-10 (correct to ten decimal places). Each of these parameters can have any real value 

within the range.  

The optimization approach used in this study is based on mainly three objective functions (OFs). 

The first OF (Eq. 2a) is the summation of all the probabilistic parameter values. The second OF 

(Eq. 2b) is the absolute difference of the product concentration between the target and the 

simulation output, thereby to obtain the model output product concentration as close as possible 

to the target product concentration. A third OF (Eq. 2c) has been tested during model validation 

work and is used to replace the first OF. It is defined to measure the initial speed of reaction for 
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product formation. This initial speed of the reaction is defined as first few n iterations of the 

model. The iteration number can be defined as the initial simulation settings. The first two 

functions are targeted to be minimized using the NSGA-II algorithm. For the third OF, whose 

target is to maximize in the positive axis, the effect is achieved by considering the negative of the 

value. The minimization of the summation of the parameter values (first OF) facilitates the 

optimizer to optimize the function while keeping the individual parameter values to minimum. 

Since the initial state of the CA model considers product concentration to be zero, these 

probabilistic parameter values have to increase from zero towards unity to reach the target 

product concentration. As such the summation value will always have an increasing tendency so 

that the model output product concentration can reach nearer to the target product concentration. 

This makes the first OF to have a mutually inverse relationship with the expected property. 

Furthermore, the second OF facilitates increase of final product formation and the third OF 

targets to increase the initial speed of the reaction so that more products are formed with fewer 

iterations. The flowchart in Figure 2 shows the logical flow structure of the GA-CA coupled 

approach. 

12

1
1

objective min i
i

f P
=

! "
= # $

% &
∑                                         (2a) 

2 target modelobjective minf P P= −                                                        (2b) 

( )3 targetobjective max nf P P= $                                                                                                     (2c) 

The CA program is developed in the C language. The Java coded open source jMETAL 

Optimization package (Durillo and Nebro, 2011) is used for the NSGA II algorithm. The 

communication between the GA and the CA occurs through file based I/O operation. This helps 
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the simulation design to be robust as the simulations can be restarted from the final terminated 

GA generation by using the status storage files.  

 
 
Results and discussions  
 
Initially, some pseudo real reaction sets are considered in order to study the capability of the 

model. A competitive enzyme inhibition reaction scheme is represented for all the simulation 

runs as shown in Figure 3. Such a reaction structure is modeled so that one can study the ability 

of the GA optimization. The representation considers substrate-water affinity and affinity of two 

water molecules among each other. This also illustrates the possibility of parallel reactions. The 

reaction scheme, in total, has twelve probability rule parameters. 

The optimization study is performed in two grid sizes namely, 110×110 and 310×310 so as to 

compare the results. The initial parameter settings are set for four different target Substrate 

Conversion to Product (ScP): 10%, 18%, 23% and 90%. The initial concentration of water, 

substrate, enzyme, inhibitor and product are fixed to 60%, 4%, 1%, 1% and 0% respectively. 

34% of void is maintained as per the molecular theory of intermediate space. The total number of 

iteration steps for each CA is fixed to 3000. Each optimization simulation is run for 250 

generations, with 100 as the population size of each generation. Each of the single threaded 

optimization simulations for a 310×310 grid took approximately 22 days, while each of the 

optimization simulations for a 110×110 grid took approximately 4 days for completion, with the 

HPC Flemish computing facility. Figures 4(a-d) shows the characteristic Pareto front for the 

110×110 grid for the corresponding ScP. The Pareto fronts for the 310×310 grid are shown in 

Figures 5(a-d). 
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There can be many combinations of probability parameter values that can be considered for 

simulation to reach a single ScP within considerable SD. Hence each optimization simulation 

results in multiple sets of near-optimal parameter values. But all these result sets are not realistic 

as some may have highly optimized first OF which may lead to poor second OF. To filter out 

such anomalies, the Two sample Z-Test method (see Eq. 3) is implemented on the simulation 

results sets, after calculating mean and standard deviation over 100 runs using the following 

relation: 

2 2
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where ME is expected mean P count, Mi is obtained mean P count, Es and is  are the standard 

deviations of ME and Mi respectively. A parameter set is considered acceptable only if Z value is 

less than 2. The acceptable detailed result sets and the corresponding probability parameter 

values are listed in Appendix (see Tables A(1-8) in Appendix). 

 
Model Validation 
 
To represent any kinetic reaction through a CA model, some informations are needed a priori 

such as the intermediate steps of the reaction, the initial concentration of the reacting agents and 

the final concentration of the target product. Since the CA model considers one node to one 

agent representation, the concentration of the reaction agents can be converted to % occupancy 

based on the calculation of Avogadro number. The void consideration of 34% on the CA grid is 

kept constant in all representations. Specifically for enzymatic reaction data, it is observed that 

the concentration scales of the reacting substrate and that of the participating enzyme are widely 

different. Such difference arises from the reusability and high activity properties of the enzyme. 

To be able to represent such a broad scale of concentrations, the size of the CA grid requires to 
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be increased proportionally. But a larger CA grid will require significantly more computational 

time. Hence, to keep the grid within manageable limit, the minimal concentration representation 

format is followed. The lowest-concentration agent will have the least possible count in the CA 

grid, possibly just one. But such a representation can cause reaction completion time reach 

infinity. After an initial exponential phase of the reaction the number of forward reacting agents 

reduce. This causes the overall probability of feasible neighborhood interaction events among the 

agents become unpredictably high. The randomness of free movement increases thereby delaying 

the expected forward reaction. This can be observed from the fact that the simulation takes only 

83611 iterations for the first 98.64% of substrate conversion, whereas it takes as much as 131657 

iterations for the next 1% of substrate conversion. Hence during optimization, the number of 

iterations required for automata evolution can be set. To choose the number of iterations for a 

particular reaction structure, sample runs of the CA model are performed with sufficiently high 

number of iterations until the reaction equilibrium is reached, while the values of the probability 

rules are changed in these simulations. Further while analyzing the concentration curves, 

additional iterations are considered so that it is well beyond the completion or attainment of 

reaction equilibrium. In this way, the resulting optimized parameter value sets can be used to 

simulate the CA model that can reach the target ScP provided. However, it must be noted that a 

large number of CA iterations may be required to reach the final targeted ScP due to the 

reduction in reaction speed once reaction completion/equilibrium is attained.  

As mentioned earlier, the enzymatic hydrolysis of p-nitrophenyl phosphate by acid phosphatase 

with inhibition reaction is chosen for model validation. In the experiment, acid phosphatase (AP) 

from potato (P3752, Sigma Aldrich) is used. The enzymatic function in the production, transport 

and recycling of phosphate is critical for the metabolic and energy transduction processes of a 
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living cell. In the first reaction, the enzyme-substrate complex is formed by a nucleophilic attack 

on the phosphorous atom of the substrate. Subsequently, p-nitrophenol is released. Next, the 

enzyme-Pi complex is hydrolyzed to yield phosphate ions and recycled enzyme. Sodium 

phosphate monohydrate (NaH2PO4.H2O) (Figure 6a) is used as inhibitor in the reaction. The 

intermediate steps of the reaction as represented by the CA-GA model are shown in Figure 6b. 

Four sets of experimental data with varying reactant and enzyme concentrations for different 

reaction times are collected for the validation. The concentration of the enzyme is proportionally 

less by a large factor of 10 for which the minimal agent representation format is followed, as 

described earlier. The CA iteration is fixed to 5000. Each of the GA optimization runs for 250 

generations with population size 100. Equations 2b and 2c are the two optimization functions 

used for the validation scheme. The concentration gradient for the initial speed of reaction (for 

Eq. 2c) is measured for the first 10000 CA iterations. The results of the GA optimization are 

shown in Tables 1(a-d). Each element of the optimization set has a varying number of resultant 

optimized parameter sets. Due to the stochastic nature, the number of obtained optimized 

parameter sets may vary for different runs and for different targets of optimization. The obtained 

optimal parameters are then used to run independent simulations, each for a considerable number 

of CA iterations steps. The concentration graphs are plotted along the number of iterations for 

corresponding reaction set, as shown in Figures 7(a-d). The general characteristics of these 

graphs match well with the concentration profiles. Although most of the curves are overlapping, 

at times the characteristics can be drastically affected due to stochastic noise, as seen in Figure 

7c (red curve, line1). Such a noise can be minimized only if the observations are made over a 

mean of several runs. However due to extremely high computational cost, this approach was 

avoided. The product yield (%P) obtained from the simulation tables and the simulation curves 
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indicates the validity of the CA-GA optimization tool. The CPU time for each simulation is 

approximately 6 hours. The simulations are run using a high performance compute cloud 

available on credit basis from Amazon Web Service (AWS). Each simulation is enabled to run 

with 36 parallel threads in dedicated processing cores available through AWS hardware level 

virtualization.  

 
 
Conclusion 
 
Cellular automata can represent a discrete system with a simple yet abstract representation of a 

natural process governed by probability rules. However, an abstract representation makes it 

highly inadequate to have a mathematical relationship between the process parameters, so that 

parameter estimation by trial and error is the only choice left to synchronize the results. In the 

current study, it is successfully shown that genetic algorithms can be used to optimize the 

parameter sets of a kinetic model. The validation study using enzymatic hydrolysis of disodium 

phosphate by acid phosphatase with inhibition reaction aptly describes the usefulness of the CA 

model when used with a GA optimizer to represent (bio)chemical reaction in silico. A practical 

implication of this study is that the stochastic CA model can represent each and every 

intermediate step of the kinetic reaction, which possibly cannot be observed in a deterministic 

model due to its limitations. Further it can be used to represent complex biological reactions and 

the simulation results can be analyzed without actually performing in vitro. It is also shown that 

an extensive need for computational resources for discrete modeling can be met using high 

performance cloud clusters and farm computational clusters, which are available at a reasonable 

price.  
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P_Join_ES P_Join_AB P_Join_AW P_Join_EI P_Break_ES P_Break_AB P_Break_EP P_Break_EI P_trans_ESAB P_trans_ABES P_Trans_AWEP Iterations % P 

0.702837 0.121707 0.781171 0.029324 0.133784 0.590446 0.622463 0.079896 0.978648 0.312356 0.990690 163552 1.30 

0.653945 0.177088 0.817983 0.887521 0.393030 0.868474 0.839000 0.922149 0.636805 0.131928 0.990050 183957 1.30 

0.613252 0.370823 0.790154 0.797484 0.349440 0.600341 0.358055 0.953598 0.646044 0.269840 0.991711 215268 1.30 

 
 
 
Table 1a: Optimized results of the coupled CA-GA simulation using initial concentrations (Substrate 1 (S) 
= 43.12%, Substrate 2 (W) = 1.31%, Inhibitor (I) = 21.56%, Enzyme (E) = 0.005% and Void (_) = 34%) 
for a 150×150 CA grid size, 5000 CA iterations, 100 GA population size and 250 GA generations of 
simulation. Final target Product (P) = 1.30%. The chemical reaction time is 30 mins. Simulation time with 
36 parallel threads took approximately 6 hours. 
 
 
 
 
 
 
 
 
 
 
 

P_Join_ES P_Join_AB P_Join_AW P_Join_EI P_Break_ES P_Break_AB P_Break_EP P_Break_EI P_trans_ESAB P_trans_ABES P_Trans_AWEP Iterations % P 

0.031686 0.044148 0.890304 0.117166 0.524927 0.991674 0.711479 0.710109 0.531081 0.001208 0.994324 272196 8.41 

0.117018 0.037198 0.984235 0.160812 0.520963 0.868183 0.311518 0.866367 0.959528 0.028873 0.995971 400000 8.39 

0.985828 0.681940 0.979454 0.492411 0.649391 0.719708 0.619185 0.740343 0.950976 0.012735 0.979529 289698 8.41 

0.034687 0.442827 0.979739 0.163103 0.557778 0.865898 0.311518 0.866367 0.948876 0.013018 0.995933 321388 8.40 

0.956729 0.005193 0.986940 0.457661 0.651398 0.945841 0.619185 0.740930 0.968777 0.024097 0.979792 400000 8.39 

 
 
 
Table 1b: Optimized results of the coupled CA-GA simulation using initial concentrations (Substrate 1 (S) 
= 38.39%, Substrate 2 (W) = 8.41%, Inhibitor (I) = 19.19%, Enzyme (E) = 0.002823% and Void (_) = 
34%) for a 150×150 CA grid size, 5000 CA iterations, 100 GA population size and 250 GA generations of 
simulation. Final target Product (P) = 8.41%. The chemical reaction time is 2.5 mins. Simulation time with 
36 parallel threads took approximately 6 hours.  
 
 
 
 
 
 
 
 
 
 
 
 



 
 

P_Join_ES P_Join_AB P_Join_AW P_Join_EI P_Break_ES P_Break_AB P_Break_EP P_Break_EI P_trans_ESAB P_trans_ABES P_Trans_AWEP Iterations % P 

0.477159 0.034581 0.773444 0.029921 0.086241 0.884724 0.936365 0.943321 0.922237 0.008024 0.989975 400000 11.08 

0.465103 0.045059 0.805223 0.268620 0.078904 0.905332 0.890624 0.888123 0.857370 0.020236 0.988668 400000 13.00 

0.774559 0.436236 0.805223 0.268620 0.078919 0.989605 0.958038 0.888123 0.857370 0.020236 0.988668 400000 13.01 

0.765923 0.350941 0.834075 0.633454 0.531113 0.989776 0.991090 0.810838 0.947486 0.017457 0.960751 400000 12.98 

0.767359 0.033105 0.688106 0.274920 0.153293 0.979561 0.981325 0.329886 0.945152 0.017488 0.986868 400000 13.03 

 
 
 
Table 1c: Optimized results of the coupled CA-GA simulation using initial concentrations (Substrate 1 (S) 
= 35.31%, Substrate 2 (W) = 13.04%, Inhibitor (I) = 17.64%, Enzyme (E) = 0.002596% and Void (_) = 
34%) for a 150×150 CA grid size, 5000 CA iterations, 100 GA population size and 250 GA generations of 
simulation. Final target Product (P) = 13.04%. The chemical reaction time is 5 mins. Simulation time with 
36 parallel threads took approximately 6 hours. 
 
 
 
 
 
 
 
 
 

P_Join_ES P_Join_AB P_Join_AW P_Join_EI P_Break_ES P_Break_AB P_Break_EP P_Break_EI P_trans_ESAB P_trans_ABES P_Trans_AWEP Iterations % P 

0.816042 0.031226 0.811154 0.258073 0.006672 0.961697 0.921515 0.998066 0.999853 0.000574 0.994197 400000 24.26 

0.993704 0.103822 0.811589 0.846079 0.007089 0.999228 0.948470 0.915764 0.999829 0.002215 0.995784 400000 24.25 

 
 
 
Table 1d: Optimized results of the coupled CA-GA simulation using initial concentrations (Substrate 1 (S) 
= 27.81%, Substrate 2 (W) = 24.27%, Inhibitor (I) = 13.90%, Enzyme (E) = 0.0204% and Void (_) = 
34%) for a 150×150 CA grid size, 5000 CA iterations, 100 GA population size and 250 GA generations of 
simulation. Final target Product (P) = 24.27%. The chemical reaction time is 2.5 mins. Simulation time 
with 36 parallel threads took approximately 6 hours.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1: Molecular reaction structure of P-nitrophenylphosphate and water reacting in presence 
of acid phosphatase enzyme to form P-nitrophenols and Phosphoric acid. 
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Figure 2: A simplified flowchart for the Genetic Algorithm (GA) coupled with Cellular Automata 
(CA) model system implemented in this study. 
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Figure 3: Reaction steps for the pseudo-artificial competitive enzyme inhibition reaction 
representation in the CA model. The symbols indicate Substrate (S), Enzyme (E), Product (P), 
Inhibitor (I) and Water (W). 
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Figure 4a: Pareto front at 250th generation using 110×110 grid size obtained from the two 
objective functions (Eqs. 2a and 2b), for each member of the population. (Target S conversion = 
23%). 
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Figure 4b: Pareto front at 250th generation using 110×110 grid size obtained from the two 
objective functions (Eqs. 2a and 2b), for each member of the population. (Target S conversion = 
18%). 
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Figure 4c: Pareto front at 250th generation using 110×110 grid size obtained from the two 
objective functions (Eqs. 2a and 2b). for each member of the population. (Target S conversion = 
10%). 
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Figure 4d: Pareto front at 250th generation using 110×110 grid size obtained from the two 
objective functions (Eqs. 2a and 2b). for each member of the population. (Target S conversion = 
90%). 
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Figure 5a: Pareto front at 250th generation using 310×310 grid size obtained from the two 
objective functions (Eqs. 2a and 2b). for each member of the population. (Target S conversion = 
23%). 
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Figure 5b: Pareto front at 250th generation using 310×310 grid size obtained from the two 
objective functions (Eqs. 2a and 2b). for each member of the population. (Target S conversion 
=18%). 
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Figure 5c: Pareto front at 250th generation using 310×310 grid size obtained from the two 
objective functions (Eqs. 2a and 2b). for each member of the population. (Target S conversion 
=10%). 
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Figure 5d: Pareto front at 250th generation using 310×310 grid size obtained from the two 
objective functions (Eqs. 2a and 2b). for each member of the population. (Target S conversion = 
90%. 

 



 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6a: Molecular structure of inhibitor sodium phosphate monohydrate. 
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Figure 6b: Intermediate steps of the enzymatic reaction (S: P-nitrophenylphosphate, E: acid 
phosphatase enzyme, A: Pi-enzyme complex, B: P-nitrophenol, W: water, P: Phosphate ion and I: 
inhibitor) used for model validation in the study. 

 



 
 

Figure 7a: The substrate concentration graph obtained from simulation run using the optimized 
parameter sets (see Table A1). The x-axis represents the iteration number and y-axis represents 
the substrate count at its corresponding iteration step. 

 

 
 

Figure 7b: The substrate concentration graph obtained from simulation run using the optimized 
parameter sets (refer Table A2). The x-axis represents iteration number and y-axis represents the 
substrate count at its corresponding iteration step. 



 
 

Figure 7c: The substrate concentration graph obtained from simulation run using the optimized 
parameter sets (refer Table A3). The x-axis represents iteration number and y-axis represents the 
substrate count at its corresponding iteration step. 
 

 
 

Figure 7d: The substrate concentration graph obtained from simulation run using the optimized 
parameter sets (refer Table A4). The x-axis represents iteration number and y-axis represents the 
substrate count at its corresponding iteration step.!


