82 research outputs found

    Cooperative beamsteering in wireless sensor network based on backtracking search algorithm

    Get PDF
    The progressive development of Wireless Sensor Network (WSNs) contributes to many applications such as in the intelligent transport system (ITS), safety monitoring, military and in natural disasters prevention. In parallel to WSNs, the idea of internet of things (IoT) is developed where IoT can be defined as an interconnection between identifiable devices within the internet connection in sensing and monitoring processes. With recent growth in both size and power efficient computing, the concept of the ubiquitous WSN has aggressively emerged as an acknowledged research topic. As the capabilities of individual nodes in WSNs increase, so does the opportunity to perform more complicated tasks, such as cooperative beamsteering (CB). This CB manages to improve the range of communications and save precious battery power during the transmission. Therefore, this research proposes a meta-heuristic algorithm to organize node location in array arrangement. It is expected to effectively improve radiation beampattern fluctuations, exhibits lower complexity and less energy. From the simulation that has been done, it's observed that the proposed algorithm helps to reduce the side lobe level, thus better radiation beampattern is achieved

    Collaborative Data Transmission in Wireless Sensor Networks

    Get PDF
    grant TR32043 grant III44003 grant III43002Collaborative beamforming (CBF) is a promising technique aimed at improving energy efficiency of communication in wireless sensor networks (WSNs) which has attracted considerable attention in the research community recently. It is based on a fact that beampattern with stable mainlobe can be formed, if multiple sensors synchronize their oscillators and jointly transmit a common message signal. In this paper, we consider application of CBF with one bit of feedback in different communication scenarios and analyze the impact of constraints imposed by simple sensor node hardware, on the resulting signal strength. First, we present a CBF scheme capable of reducing interference levels in the nearby WSN clusters by employing joint feedback from multiple base stations that surround the WSN of interest. Then, we present a collaborative power allocation and sensor selection algorithm, capable of achieving beamforming gains with transmitters that are not able to adjust their oscillators' signal phase. The performance of the algorithms is assessed by means of achieved beamforming gain which is given as a function of algorithm iterations. The presented results, which are based on numerical simulations and mathematical analysis, are compared with the ideal case without constraints and with negligible noise at the Base Station (BS).publishersversionpublishe

    Backtracking Search Optimization for Collaborative Beamforming in Wireless Sensor Networks

    Get PDF
    Due to energy limitation and constraint in communication capabilities, the undesirable high battery power consumption has become one of the major issues in wireless sensor network (WSN). Therefore, a collaborative beamforming (CB) method was introduced with the aim to improve the radiation beampattern in order to compensate the power consumption. A CB is a technique which can increase the sensor node gain and performance by aiming at the desired objectives through intelligent capabilities. The sensor nodes were located randomly in WSN environment. The nodes were designed to cooperate among each other and act as a collaborative antenna array. The configuration of the collaborative nodes was modeled in circular array formation. The position of array nodes was determined by obtaining the optimum parameters pertaining to the antenna array which implemented by using Backtracking Search Optimization Algorithm (BSA). The parameter considered in the project was the side-lobe level minimization. It was observed that, the suppression of side-lobe level for BSA was better compared to the radiation beampattern obtained for conventional uniform circular array

    Collaborative beamforming schemes for wireless sensor networks with energy harvesting capabilities

    Get PDF
    In recent years, wireless sensor networks have attracted considerable attention in the research community. Their development, induced by technological advances in microelectronics, wireless networking and battery fabrication, is mainly motivated by a large number of possible applications such as environmental monitoring, industrial process control, goods tracking, healthcare applications, to name a few. Due to the unattended nature of wireless sensor networks, battery replacement can be either too costly or simply not feasible. In order to cope with this problem and prolong the network lifetime, energy efficient data transmission protocols have to be designed. Motivated by this ultimate goal, this PhD dissertation focuses on the design of collaborative beamforming schemes for wireless sensor networks with energy harvesting capabilities. On the one hand, by resorting to collaborative beamforming, sensors are able to convey a common message to a distant base station, in an energy efficient fashion. On the other, sensor nodes with energy harvesting capabilities promise virtually infinite network lifetime. Nevertheless, in order to realize collaborative beamforming, it is necessary that sensors align their transmitted signals so that they are coherently combined at the destination. Moreover, sensor nodes have to adapt their transmissions according to the amounts of harvested energy over time. First, this dissertation addresses the scenario where two sensor nodes (one of them capable of harvesting ambient energy) collaboratively transmit a common message to a distant base station. In this setting, we show that the optimal power allocation policy at the energy harvesting sensor can be computed independently (i.e., without the knowledge of the optimal policy at the battery operated one). Furthermore, we propose an iterative algorithm that allows us to compute the optimal policy at the battery operated sensor, as well. The insights gained by the aforementioned scenario allow us to generalize the analysis to a system with multiple energy harvesting sensors. In particular, we develop an iterative algorithm which sequentially optimizes the policies for all the sensors until some convergence criterion is satisfied. For the previous scenarios, this PhD dissertation evaluates the impact of total energy harvested, number of sensors and limited energy storage capacity on the system performance. Finally, we consider some practical schemes for carrier synchronization, required in order to implement collaborative beamforming in wireless sensor networks. To that end, we analyze two algorithms for decentralized phase synchronization: (i) the one bit of feedback algorithm previously proposed in the literature; and (ii) a decentralized phase synchronization algorithm that we propose. As for the former, we analyze the impact of additive noise on the beamforming gain and algorithm’s convergence properties, and, subsequently, we propose a variation that performs sidelobe control. As for the latter, the sensors are allowed to choose their respective training timeslots randomly, relieving the base station of the burden associated with centralized coordination. In this context, this PhD dissertation addresses the impact of number of timeslots and additive noise on the achieved received signal strength and throughputEn los últimos años, las redes de sensores inalámbricas han atraído considerable atención en la comunidad investigadora. Su desarrollo, impulsado por recientes avances tecnológicos en microelectrónica y radio comunicaciones, está motivado principalmente por un gran abanico de aplicaciones, tales como: Monitorización ambiental, control de procesos industriales, seguimiento de mercancías, telemedicina, entre otras. En las redes de sensores inalámbricas, es primordial el diseño de protocolos de transmisión energéticamente eficientes ya que no se contempla el reemplazo de baterías debido a su coste y/o complejidad. Motivados por esta problemática, esta tesis doctoral se centra en el diseño de esquemas de conformación de haz distribuidos para redes de sensores, en el que los nodos son capaces de almacenar energía del entorno, lo que en inglés se denomina energy harvesting. En primer lugar, esta tesis doctoral aborda el escenario en el que dos sensores (uno de ellos capaz de almacenar energía del ambiente) transmiten conjuntamente un mensaje a una estación base. En este contexto, se demuestra que la política de asignación de potencia óptima en el sensor con energy harvesting puede ser calculada de forma independiente (es decir, sin el conocimiento de la política óptima del otro sensor). A continuación, se propone un algoritmo iterativo que permite calcular la política óptima en el sensor que funciona con baterías. Este esquema es posteriormente generalizado para el caso de múltiples sensores. En particular, se desarrolla un algoritmo iterativo que optimiza las políticas de todos los sensores secuencialmente. Para los escenarios anteriormente mencionados, esta tesis evalúa el impacto de la energía total cosechada, número de sensores y la capacidad de la batería. Por último, se aborda el problema de sincronización de fase en los sensores con el fin de poder realizar la conformación de haz de forma distribuida. Para ello, se analizan dos algoritmos para la sincronización de fase descentralizados: (i) el algoritmo "one bit of feedback" previamente propuesto en la literatura, y (ii) un algoritmo de sincronización de fase descentralizado que se propone en esta tesis. En el primer caso, se analiza el impacto del ruido aditivo en la ganancia y la convergencia del algoritmo. Además, se propone una variación que realiza el control de lóbulos secundarios. En el segundo esquema, los sensores eligen intervalos de tiempo de forma aleatoria para transmitir y posteriormente reciben información de la estación base para ajustar sus osciladores. En este escenario, esta tesis doctoral aborda el impacto del número de intervalos de tiempo y el ruido aditivo sobre la ganancia de conformación

    Review of Distributed Beamforming, Journal of Telecommunications and Information Technology, 2011, nr 1

    Get PDF
    As the capabilities of individual nodes in wireless sensor networks increase, so does the opportunity to perform more complicated tasks, such as cooperative distributed beam- forming to improve the range of communications and save precious battery power during the transmission. This work presents a review of the current literature focused on implementing distributed beamformers; covering the calculation of ideal beamforming weights, practical considerations such as carrier alignment, smart antennas based on distributed beamformers, and open research problems in the field of distributed beamforming

    A review on frequency synchronization in collaborative beamforming: a practical approach

    Get PDF
    Coherent signal reception from distributed beamforming nodes of virtual antenna array formation requires frequency synchronization of the participating nodes. Signals at the target receiver are out of phase due to unsynchronized local oscillator’s (LO) reference signal of all the nodes in the systems. Practical cases of this problem are considered. In this article, a brief overview is presented of the need for the frequency synchronization and the resulting effect of mitigation avoidance. A variant of the closed-loop feedback algorithm is used to provide LO drifts information to the beamforming transmitters. These feedbacks are used to estimate, correct, and predict the nonlinear LO offsets that will result in near (0) phase offset of the received signal. The algorithms are implemented in software defined radio (SDR) and transmitted through the RF front end of devices like the NI 2920/N210 USRP

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems
    corecore