105 research outputs found

    Digital Filter Design Using Improved Teaching-Learning-Based Optimization

    Get PDF
    Digital filters are an important part of digital signal processing systems. Digital filters are divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters according to the length of their impulse responses. An FIR digital filter is easier to implement than an IIR digital filter because of its linear phase and stability properties. In terms of the stability of an IIR digital filter, the poles generated in the denominator are subject to stability constraints. In addition, a digital filter can be categorized as one-dimensional or multi-dimensional digital filters according to the dimensions of the signal to be processed. However, for the design of IIR digital filters, traditional design methods have the disadvantages of easy to fall into a local optimum and slow convergence. The Teaching-Learning-Based optimization (TLBO) algorithm has been proven beneficial in a wide range of engineering applications. To this end, this dissertation focusses on using TLBO and its improved algorithms to design five types of digital filters, which include linear phase FIR digital filters, multiobjective general FIR digital filters, multiobjective IIR digital filters, two-dimensional (2-D) linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters. Among them, linear phase FIR digital filters, 2-D linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters use single-objective type of TLBO algorithms to optimize; multiobjective general FIR digital filters use multiobjective non-dominated TLBO (MOTLBO) algorithm to optimize; and multiobjective IIR digital filters use MOTLBO with Euclidean distance to optimize. The design results of the five types of filter designs are compared to those obtained by other state-of-the-art design methods. In this dissertation, two major improvements are proposed to enhance the performance of the standard TLBO algorithm. The first improvement is to apply a gradient-based learning to replace the TLBO learner phase to reduce approximation error(s) and CPU time without sacrificing design accuracy for linear phase FIR digital filter design. The second improvement is to incorporate Manhattan distance to simplify the procedure of the multiobjective non-dominated TLBO (MOTLBO) algorithm for general FIR digital filter design. The design results obtained by the two improvements have demonstrated their efficiency and effectiveness

    IIR Digital Filter Design Using Convex Optimization

    Get PDF
    Digital filters play an important role in digital signal processing and communication. From the 1960s, a considerable number of design algorithms have been proposed for finite-duration impulse response (FIR) digital filters and infinite-duration impulse response (IIR) digital filters. Compared with FIR digital filters, IIR digital filters have better approximation capabilities under the same specifications. Nevertheless, due to the presence of the denominator in its rational transfer function, an IIR filter design problem cannot be easily formulated as an equivalent convex optimization problem. Furthermore, for stability, all the poles of an IIR digital filter must be constrained within a stability domain, which, however, is generally nonconvex. Therefore, in practical designs, optimal solutions cannot be definitely attained. In this dissertation, we focus on IIR filter design problems under the weighted least-squares (WLS) and minimax criteria. Convex optimization will be utilized as the major mathematical tool to formulate and analyze such IIR filter design problems. Since the original IIR filter design problem is essentially nonconvex, some approximation and convex relaxation techniques have to be deployed to achieve convex formulations of such design problems. We first consider the stability issue. A sufficient and necessary stability condition is derived from the argument principle. Although the original stability condition is in a nonconvex form, it can be appropriately approximated by a quadratic constraint and readily combined with sequential WLS design procedures. Based on the sufficient and necessary stability condition, this approximate stability constraint can achieve an improved description of the nonconvex stability domain. We also address the nonconvexity issue of minimax design of IIR digital filters. Convex relaxation techniques are applied to obtain relaxed design problems, which are formulated, respectively, as second-order cone programming (SOCP) and semidefinite programming (SDP) problems. By solving these relaxed design problems, we can estimate lower bounds of minimum approximation errors, which are useful in subsequent design procedures to achieve real minimax solutions. Since the relaxed design problems are independent of local information, compared with many prevalent design methods which employ local search, the proposed design methods using the convex relaxation techniques have an increased chance to obtain an optimal design

    IIR approximation of FIR filters via discrete-time vector fitting

    Get PDF
    We present a novel technique for approximating finite-impulse-response (FIR) filters with infinite-impulse-response (IIR) structures through extending the vector fitting (VF) algorithm, used extensively for continuous-time frequency-domain rational approximation, to its discrete-time counterpart called VFz. VFz directly computes the candidate filter poles and iteratively relocates them for progressively better approximation. Each VFz iteration consists of the solutions of an overdetermined linear equation and an eigenvalue problem, with real-domain arithmetic to accommodate complex poles. Pole flipping and maximum pole radius constraint guarantee stability and robustness against finite-precision implementation. Comparison against existing algorithms confirms that VFz generally exhibits fast convergence and produces highly accurate IIR approximants. © 2008 IEEE.published_or_final_versio

    FIR Digital Filter and Neural Network Design using Harmony Search Algorithm

    Get PDF
    Harmony Search (HS) is an emerging metaheuristic algorithm inspired by the improvisation process of jazz musicians. In the HS algorithm, each musician (= decision variable) plays (= generates) a note (= a value) for finding the best harmony (= global optimum) all together. This algorithm has been employed to cope with numerous tasks in the past decade. In this thesis, HS algorithm has been applied to design digital filters of orders 24 and 48 as well as the parameters of neural network problems. Both multiobjective and single objective optimization techniques were applied to design FIR digital filters. 2-dimensional digital filters can be used for image processing and neural networks can be used for medical image diagnosis. Digital filter design using Harmony Search Algorithm can achieve results close to Parks McClellan Algorithm which shows that the algorithm is capable of solving complex engineering problems. Harmony Search is able to optimize the parameter values of feedforward network problems and fuzzy inference neural networks. The performance of a designed neural network was tested by introducing various noise levels at the testing inputs and the output of the neural networks with noise was compared to that without noise. It was observed that, even if noise is being introduced to the testing input there was not much difference in the output. Design results were obtained within a reasonable amount of time using Harmony Search Algorithm

    Optimisation of multiplier-less FIR filter design techniques

    Get PDF
    This thesis is concerned with the design of multiplier-less (ML) finite impulse response (FIR) digital filters. The use of multiplier-less digital filters results in simplified filtering structures, better throughput rates and higher speed. These characteristics are very desirable in many DSP systems. This thesis concentrates on the design of digital filters with power-of-two coefficients that result in simplified filtering structures. Two distinct classesof ML FIR filter design algorithms are developed and compared with traditional techniques. The first class is based on the sensitivity of filter coefficients to rounding to power-of-two. Novel elements include extending of the algorithm for multiple-bands filters and introducing mean square error as the sensitivity criterion. This improves the performance of the algorithm and reduces the complexity of resulting filtering structures. The second class of filter design algorithms is based on evolutionary techniques, primarily genetic algorithms. Three different algorithms based on genetic algorithm kernel are developed. They include simple genetic algorithm, knowledge-based genetic algorithm and hybrid of genetic algorithm and simulated annealing. Inclusion of the additional knowledge has been found very useful when re-designing filters or refining previous designs. Hybrid techniques are useful when exploring large, N-dimensional searching spaces. Here, the genetic algorithm is used to explore searching space rapidly, followed by fine search using simulated annealing. This approach has been found beneficial for design of high-order filters. Finally, a formula for estimation of the filter length from its specification and complementing both classes of design algorithms, has been evolved using techniques of symbolic regression and genetic programming. Although the evolved formula is very complex and not easily understandable, statistical analysis has shown that it produces more accurate results than traditional Kaiser's formula. In summary, several novel algorithms for the design of multiplier-less digital filters have been developed. They outperform traditional techniques that are used for the design of ML FIR filters and hence contributed to the knowledge in the field of ML FIR filter design

    NATURAL ALGORITHMS IN DIGITAL FILTER DESIGN

    Get PDF
    Digital filters are an important part of Digital Signal Processing (DSP), which plays vital roles within the modern world, but their design is a complex task requiring a great deal of specialised knowledge. An analysis of this design process is presented, which identifies opportunities for the application of optimisation. The Genetic Algorithm (GA) and Simulated Annealing are problem-independent and increasingly popular optimisation techniques. They do not require detailed prior knowledge of the nature of a problem, and are unaffected by a discontinuous search space, unlike traditional methods such as calculus and hill-climbing. Potential applications of these techniques to the filter design process are discussed, and presented with practical results. Investigations into the design of Frequency Sampling (FS) Finite Impulse Response (FIR) filters using a hybrid GA/hill-climber proved especially successful, improving on published results. An analysis of the search space for FS filters provided useful information on the performance of the optimisation technique. The ability of the GA to trade off a filter's performance with respect to several design criteria simultaneously, without intervention by the designer, is also investigated. Methods of simplifying the design process by using this technique are presented, together with an analysis of the difficulty of the non-linear FIR filter design problem from a GA perspective. This gave an insight into the fundamental nature of the optimisation problem, and also suggested future improvements. The results gained from these investigations allowed the framework for a potential 'intelligent' filter design system to be proposed, in which embedded expert knowledge, Artificial Intelligence techniques and traditional design methods work together. This could deliver a single tool capable of designing a wide range of filters with minimal human intervention, and of proposing solutions to incomplete problems. It could also provide the basis for the development of tools for other areas of DSP system design

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    Design and implementation of computationally efficient digital filters

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide
    corecore