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Summary

Summary

This thesis is concerned with the issues of design and optimisation of digital filters and multirate
filter banks. The main focus and contribution of this thesis is to apply the genetic algorithm
(GA) technique and to draw some comparison with the standard gradient and non-gradient
based optimisation methods. The finite word length (FWL) constraint affects the accuracy of a
real-time digital filter frequency response. For the case of digital filters, this study is concerned
with the optimisation of FWL coefficients using genetic algorithms. Some comparative study
with the simple hill climber algorithms is also included. The outcome of this part of the study
demonstrates a substantial improvement of the new results when compared with the simply
rounded FWL coefficient frequency response.

The FWL coefficient optimisation process developed in the earlier Chapters is extended to the
field of multirate filter banks. All multirate filter banks suffer from the problems of amplitude,
phase and aliasing errors and, therefore, constraints for perfect reconstruction (PR) of the input
signal can be extensive. The problem, in general, is reduced to relaxing constraints at the
expense of errors and finding methods for minimising the errors. Optimisation techniques are
thus commonly used for the design and implementation of multirate filter banks. In this part of
the study, GAs have been used in two distinct stages. Firstly, for the design optimisation so that
the overall errors are minimised and secondly for FWL coefficient optimisation of digital filters
that form the sub-band filters of the filter bank. This process leads to an optimal realisation of
the filter bank that can be applied to specific applications such as telephony speech signal
coding and compression. One example of the optimised QMF bank was tested on a real-time
DSP target system and the results are reported.

The multiple M-channel uniform and non-uniform filter banks have also been considered in this
study for design optimisation. For a comparative study of the GA optimised results of the
design stage of the filter bank, other standard methods such as the gradient based quasi-Newton
and the non-gradient based downhill Simplex methods were also used. In general, the outcome
of this part of study demonstrates that a hybrid approach of GA and standard method was the
most efficient and effective process in generating the best results.
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PR perfect reconstruction
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QMF
ROC
SNR
SOS
SP
SQNR
VLSI
WLS

quadrature mirror filter

region of convergence

signal to noise ratio

second order section

selective pressure

signal to quantisation noise ratio
very large scale integration

weighted least square
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Chapter 1: Introduction and Overview of Thesis

Chapter 1 : Introduction and Overview of Thesis

Overview of Chapter 1: This Chapter starts with an introductory section covering a synopsis of
the thesis. This is followed by a literature review of the genetic algorithm (GA) technique as an
optimisation tool in various digital signal processing (DSP) applications. The generic form of
the GA code used for optimisation in this study is then described. Finally, the aims, objectives

and contributions of this study are considered.

1.1Introduction

This thesis is concerned with the issues of design and optimisation of digital filters and multirate
filter banks. The main focus and contribution of this thesis is to apply the genetic algorithm
(GA) technique and to draw some comparison with the standard gradient and non-gradient
based optimisation methods. The accuracy of a real-time digital filter frequency response is
affected by the finite word length (FWL) constraint used in its implementation. The full process
of digital filtering can generate errors in a number of ways such as; quantisation of the input
signal due to analogue to digital conversion, representation of filter coefficients by a finite
number of bits and the accumulation of round-off errors resulting from arithmetic operations.
Overflows of arithmetic operations can also occur within the filtering algorithm, however, with

proper scaling procedures, such overflow problems are easily eliminated.

For the case of digital filters, this study is concerned with the optimisation of finite word length
coefficients using genctic algorithms. Both non-recursive and recursive filters are considered.
It is well recognised that structural differences of digital filter implementation can have
significant variations in their sensitivity to filter response as a consequence of coefficient

truncation due to finite word length effects.
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The linear phase, direct form structure of finite impulse response (FIR) filters has been shown to
be robust and therefore, attractive for the realisation of FWL coefficient implementation [Chan
and Rabiner, 1973]. The problem of FWL FIR symmetric digital filters involves choosing a set
of coefficients so that the new frequency response, as a consequence of truncation of the infinite
precision coefficients, approximates as closely as possible to a given specified frequency
response in a minimax sense. Algorithms for solving this problem have been based upon two
methods; the local search method [Avenhaus, 1972] and the integer programming ‘branch and

bound’ method [Kodek, 1980], [Kodek and Steiglitz, 1981].

The local search algorithm involves selecting a feasible set of FWL coefficients (say rounded
valued) to give a frequency response and examining the neighbourhood of H, the transfer
function of the filter, for a better filter H' i.e. one with lower error function. If such a filter is
found then H', replaces H and the algorithm moves to the next step or else it stops. The ‘branch
and bound’ algorithm is involved with systematically pruning a tree of several possible
solutions based upon certain lower bounds as the enumeration proceeds. Both of these methods
are intrinsically computationally intensive and global optimality is not assured. The problem is

further compounded and becomes acute for longer filter lengths.

For the case of infinite impulse response (IIR) filters, the direct form implementation is usually
avoided. It has been shown [Kaiser, 1966] that the sensitivity of the filter response to the FWL
effects of the denominator coefficients in this case increases rapidly with the increasing order of
the filter. A 2™ order cascade or parallel form implementation of IIR filters is better behaved in

this situation [Dempster and Macleod, 1994].
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For the case of multirate filters, a 2-channel quadrature mirror filter bank (QMF) and multiple-
channel uniform and non-uniform filter banks have been considered in this study. Multirate
systems are based on the application of digital filters for which sampling rate can vary from
point to point. Such systems are often used for processing signals more efficiently and have
seen applications in the sub-band coding of speech, audio and video signals and in multi-carrier
data transmission and digital audio systems. A number of different design and implementation
structures exist for multirate filter banks [Vaidyanathan, 1993). Emphasis is placed, in this
study, on the choice of structure that is relatively simple to design and leads to an efficient

practical implementation for real-time applications.

All multirate filter banks suffer from the problems of amplitude, phase and aliasing errors and
therefore, constraints for perfect reconstruction (PR) of the input signal can be extensive. In
addition, coding errors are generated by the quantisation of the decimated signal that cannot be
eliminated. These coding errors are beyond the scope of this work and will not be considered in
this study. However, the first three errors can be reduced and almost eliminated by prudent
choice of design criteria and type and order of sub-band filters leading towards perfect

reconstruction of the input signal.

The case of a maximally decimated, two-channel filter bank is the simplest example of a
multirate filter bank. This is commonly referred to as a quadrature mirror filter (QMF) bank
since the high pass filter is a mirror image of the low pass filter about the mid-point. The 2-
channel QMF bank considered here for optimisation is designed using the fransformation of
variables method [Tay, 1998]. This design technique yields IIR filters for sub-bands that are
causal and stable and can achieve perfect reconstruction of the input signal. The design of such
a filter bank is based on the use of prototype filters whose variables are transformed using a

transformation function. This design is fairly simple and allows flexibility for “fine-tuning’ of
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the design and implementation for real-time realisation. However, a specific problem that exists
in this method of design is to do with optimising the parameters of the transformation function
to generate a good parity between the idealised and the actual frequency response of the filters.
This process involves the use of optimisation procedures such as the quasi-Newton or downhill
Simplex algorithms. Most standard procedures of this form are inevitably dependent on the
selection choice of the starting ‘seed’ values of the transformation function parameters, so a

good optimal result cannot always be assured in such situations.

A genetic algorithm based optimisation approach has been considered in this work to search for
the global minima over a wide landscape of transformation function parameter values. A new
GA ‘creep’ code has also been developed here to study the effects of small vanations of the
parameter values once a ‘suspect’ good valley has been detected by the main GA code. This
‘creep’ code is a variation of the G-bit operator [Goldberg, 1989]. A comparative study of the
GA based hybrid optimisation (GA optimisation followed by standard quasi-Newton and
downhill Simplex methods) and non-GA based standard optimisation methods is also
conducted. In addition, FWL constraints are applied to the optimisation of 1IR filters using a
genetic algorithm code. This leads to the development of practical IIR sub-band filters. The
optimised QMF filter structure is represented in a computationally efficient form using

polyphase decomposition and tested using simulation and a real-time DSP system.

The second form of multirate filter considered in this work is a maximally decimated multiple
M-channel uniform filter bank. This form of filter bank consists of equally spaced frequency
bands that are each of equal widths. Such a structure offers a higher resolution for the analysis
of the input signal and can be an improvement over the 2-channel QMF bank. Closed form
solutions for the design of the M-channel filter bank without aliasing and with perfect

reconstruction property are well established [Vaidyanathan, 1993]. Mostly such solutions lead
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to complex implementations. In practice, therefore, approximations that consider only the
directly adjacent alias spectra and its minimisation are less complex and thus of greater interest.
These types of filter banks are called pseudo-QMF banks and use cosine modulation technique
for its design, based on a single prototype low-pass filter. The optimisation of the prototype
filter such that the signal reconstruction errors are minimised forms an important area for

consideration that is investigated in this study.

The third form of multirate filter studied here is the non-uniform filter (NUF) bank. This type
of filter bank has specific advantages in their application to real signals for which high coding
gain is achievable. This is specifically due to the significant variation of the ensemble average
of the energy in different frequency bands of real signals. The case for multiple-band uniform
filter banks, as mentioned above, has been extensively studied and PR conditions are well
established [Vaidyanathan, 1993]. However, the design of non-uniform banks is particularly
challenging for PR for which extensive constraints exist. The problem, in general, 1s reduced to
relaxing constraints at the expense of errors and finding methods for minimising the errors.
Optimisation techniques are thus commonly used for the design and implementation of non-

uniform filter banks and are investigated in this study.

Several examples of design and optimisation of NUF banks have been reported in literature
recently. The concept of compatible sets for integer decimation factors as a requirement for
completely eliminating aliasing error in a maximally decimated NUF bank is reported in [Hoang
and Vaidyanathan, 1989]. Other examples of design are based on the use of optimised multiple-
prototype LP filters and cosine modulation or by sine/cosine multiplication to shift to the
appropriate frequency sub-band. The optimisation process is aimed at eliminating the main
aliasing component [Argenti and Del Re, 1996], [Wada, 1995]. Another approach is based on

time-domain analysis for the design of NUF banks using FIR filters [Nayebi ez al, 1993] .
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A direct design approach using FIR low pass prototype (baseband) filters and their
transformation using sine or cosine multiplication is considered in this study [Chu, 1985],
[Wada,1995]. The case of a non-compatible, integer-valued, maximally decimated set NUF
bank is investigated. This form of filter bank gives greater flexibility for a choice of sub-band
filters for the optimisation of coding gain of a real signal at the expense of aliasing and
amplitude distortion that cannot be completely eliminated. Effort is then applied to reducing the
two distortions by using a hybrid approach based on a genetic algorithm and standard

minimisation techniques such as quasi-Newton and downhill Simplex.

1.2 Genetic Algorithms in DSP design and optimisation

Genetic algorithms are intensively parallel stochastic search algorithms based on the principles
of natural genetics and the concept of ‘survival of the fittest”. GAs operate over a wide
landscape of search space using a large population set of possible solutions seeking to locate
potentially the best candidates. The process of ranking, crossover and mutation is applied
sequentially through a number of generations in an effort to obtain a good optimal solution. The
characteristics of GAs makes it a versatile tool to conduct a search over a large, noisy, multi-
modal and possibly a discontinuous, search space landscape. For continuous and slowly
varying landscapes, then the standard calculus based methods are likely to do better, however,
for smaller landscapes, the GAs may show no specific advantage over the enumerative or

random search methods [Holland, 1975], [Goldberg, 1989].

The GA used in this study is a MATLAB based programme that was developed for the study of
control systems [Chipperfield ef al, 1993). Although this version is fairly flexible in its

implementation to different applications, only real-valued simple GAs are used for the work
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covered in this study. The use of real-valued genes has specific advantages in the numerical
objective function optimisation over the binary-coded GAs [Wright, 1991]. The GA efficiency
is increased since there is no need for conversion of chromosomes to phenotypes before the
objective function is evaluated. The other advantages are; less memory overhead for
computation, no loss of precision by discretisation to binary and greater freedom for the use of

different genetic operators.

Design of digital processing systems based on minimal computational complexity and low
power bas important implications in modern systems especially for portable applications.
Inevitably, for many instances, there is a need for optimising the hardware structure and
realisation of processes involved. The use of primitive filter components such as simple adder
sections represented by their corresponding transfer functions of the form H(z) = 1+z*, where k
is an integer, can be stored as library entries. A combination of these primitive filters represents
a trial frequency response that is compared to the specified response and then the error function
calculated. The optimisation of a combination of filter primitives can lead to the design of FIR
filters of minimal computational complexity. A GA based optimisation using a trial selection of
a combination of filter primitives can lead to an efficient method of FIR filter design generating
filters of good frequency response and minimal computational complexity [Suckley, 1991].
Suckley has used a sequential GA to design a cascaded FIR filter structure that optimises the
objective function metric based on computational efficiency of the filter. Primitive filter
components, as defined by Wade [Wade et al, 1990], are used as geres and cascaded primitive
structures represented a chromosome. A direct design method for FIR digital filters with
arbitrary log magnitude and phase responses based on obtaining a least-squares approximation

using a weighted genetic algorithm for each iteration is reported in [Lu and Tzeng, 2000].
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Another efficient form of FIR filter realisation exploits the redundancy that exists in the product
terms of the convolution form representation of such filters in the time domain. The partial
results of a single multiplication process of a coefficient and a signal sample value can be reused
to assist in the formation of other product terms. Thus, each inner product in the convolution
process can be decomposed into a number of pnimitive arithmetic operations such as additions,
subtractions and shifts. This can lead to an efficient architecture that comprises an
interconnection of elementary digital processing clements. The representation of an FIR filter
multiplication block in the form of an efficient signal flow directed graph using primitive
operators is a useful methodology for direct form FIR digital filter realisation both in terms of
its frequency characteristic and hardware implementation [Bull and Horrocks, 1991]. Genetic
algorithms have been used for the efficient implementation of primitive operator directed graphs
to provide FIR filter design in consideration of compromises between filter performance,
complexity and filter order [Redmill and Bull, 1997, 1998]. The use of a hybrid GA
optimisation for the direct design of frequency selective FIR digital filters based on the

frequency sampling method is reported in [Harris and Ifeachor, 1998].

The problem of approximating the digital filters designed using infinite precision coefficients by
using a finite number of bits for real-time realisation has been mentioned in section 1.1. The
frequency response characteristic of such filters deviates from the original by a finite amount.
Another issue here is the representation of coefficient values by a significantly reduced number
of bits so that the filter implementation can be achieved with much improved computational
throughput. This effort can lead to reduced complexity architecture with savings in memory,
space and power [Arslan and Horrocks, 1995]. Another work investigated in this area for
designing FIR digital filters is based on the minimisation of the minimax criterion and the

normalised peak ripple magnitude using genetic algorithms [Ciloglu, 2002].
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The results of integer programming method for optimising finite word length coefficient FIR
filter frequency response have been compared with those obtained using a parallel GA [Xu and
Daley, 1995]. The parallel GA is executed using 16 microprocessors and implemented using
parallel ‘C’ language. This effectively involves running 16 sequential GAs running
simultancously and linked by the operation of ‘migration’. The optimisation metric based on
weighted pass-band and stop-band deviations showed marginal improvements using the GA
procedure. Another application of GAs is reported for the case of direct design approach for IIR
digital filters that consider a hierarchical multi-layer gene structure to represent a chromosome.
This chromosome structure is formed using a string of control genes representing the filter
structure that is concatenated with another string of genes representing the filter coefficients.
The design process attempts to satisfy constraints of; lowest order filter, speed of computation,

filter stability and frequency response tolerance settings [Tang et al, 1998].

The synthesis of VLSI low power hardware design specifically for digital signal processing
applications is another area of interest for modern portable communications and computing
systems. Issues of space, speed and power are important factors in such systems. A high-level
signal data flow graph (DFG) consisting of functional blocks such as adders, multipliers and
delays can be used to formulate the DSP design [Bright and Arslan, 2001]. The data flow graph
is encoded as an individual gene in the chromosome that may be of a variable length. The
fitness function used here is based on minimising the overall power consumption that is
dependent on the power consumption of individual DFG gene. In the area of multirate
quadrature mirror filter banks, a recent work reported in literature uses a genetic algorithm for
the optimisation of a canonical signed power-of-two (SPT) coefficient lattice structure. The
genetic operations are constrained such that the canonical property of the SPT is preserved [Yu

and Lim, 2002].
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1.3 Genetic algorithm used in this work

The GA used in this work was developed for control systems based on the Matlab programme
[Chipperfield er al, 1993]. The simple GA generic code used in the work described in the
thesis, remains largely the same. Figure 1.1 shows the generic code. The ‘ranking’ function in
the code returns a column vector based on the corresponding individual fitness values and then
ranks the individuals for minimisation of the objective function. The option selected performs a
linear ranking with a selective pressure (SP) of 2 [Whitley, 1998]. The fitness value assigned to

the individuals is calculated according the following formula:

FitnV(Pos) = 2 — SP +2(SP-1)(Pos-1)/(Nind-1) 1.1
Where ‘Pos’ is the position of the individual in the sorted population and ‘Nind’ is the number

of individuals used.

The high-level function for selection of individuals from the population set and returning the
selected individuals in a new population is performed by the ‘select’” function. The low-level
selection function ‘sus’ is called by the ‘select’ function. The ‘sus’ function is based on a form
of stochastic sampling method and is implemented by obtaining a cumulative sum of the fitness
vector, FitnV, and generating a set of equally spaced numbers between 0 and Z(FitnV) [Baker,

1987]. The probability of an individual being selected is given by:

F(x) = — 0% 12

Nind

Z f(Xj)

where f(x;) is the fitness of individual x;.

10
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The crossover function is also performed in two stages. The high-level function is ‘recombin’
that calls the low-level function ‘recdis’. A number of low-level recombination (crossover)
options are available. The single or multiple point crossover functions (with and without
shuffel) are applicable mainly to binary-type variables. The ‘recdis’ function used in the work
described in the thesis is a discrete recombination function. The mating process is performed
between pairs of rows. The ‘recdis’ function first generates an internal mask table that
determines which parents contribute which variables to the offspring. On the basis of the
randomly generated mask table, the variable values are exchanged between the individuals. The
mutation operator is represented by ‘mutbga’ that takes real-valued population, mutates each
variable with a pre-defined probability and returns a new population after mutation. The
‘mutbga’ function produces firstly a random internal mask table that determines which variables
will mutate and also the sign for the step size. A second internal table generates the normalised
mutation step size. The mutated variable is worked out as a function of the original variable and
the step size [Muhlenbein and Schlierkamp-Voosen, 1993]. Finally, the ‘reins’ function
performs insertion of the offspring into the current population replacing the parents and

returning a new population set.

1.4 Aims and Objectives

The main aim of this work is to assess the genetic algorithm technique as an optimisation tool in
a selected range of digital signal processing (DSP) applications. More specifically, in the field
of digital filters, the problem of finite word length (FWL) coefficients is considered for
optimisation. In the field of multirate filter banks, the optimisation of the design issues and
error problems for perfect reconstruction of the input signal, are considered using genetic

algorithms.

12
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The objectives of this work comprised the following.

1. To investigate the feasibility of using a simple sequential GA as an optimisation tool for
a selection of digital signal processing applications and to draw a comparison with the

results reported in literature where this is possible.

2. To use the hill climber optimisation techniques such as steepest ascent (SAHC), nearest
ascent (NAHC), downhill Simplex, quasi-Newton and the sequential quadratic
programming (SQP) constrained optimisation method for the purpose of drawing a

comparison with the GA optimised results.

3. To test the validity of the GA technique as an optimisation technique in the design of
multirate filter bank by using it in a hybrid form such as GA optimisation followed by a

standard gradient and non-gradient based hill climber technique.

The motivation for using genetic algorithms to the design and realisation of digital filters and
multirate filter banks was the need to generate near-optimal solutions by searching over a fairly
wide landscape of possible solutions without using computationally intensive and slow, iterative
techniques. It is believed that the work described in this thesis is the first time that a
quantifiable measure of performance improvement using GAs for FWL coefficient digital filters
has been made. This measure is based on a comparison with the results of the filter frequency
response obtained using simply rounded coefficients and, for the case of FIR filters, also with
certain statistical bounds arrived at by mathematical analysis of the quantised coefficients [Chan
and Rabiner, 1973). Further comparison of the GA optimised results for FWL coefficient
digital filters is based on the optimised results using the ‘steepest” and ‘near’ ascent hill climber

techniques [Mitchell, 1996].

13
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It is also believed that GAs have been used for the first time in the optimisation of multirate
filter banks. For the case of a 2-channel uniform quadrature mirror filter bank, the contribution
of the work in this thesis is the GA optimisation of the parameters of the transformation function
required in the design of the QMF bank using the transformation of variables method [Tay,
1998]. This leads to the determination of optimal coefficients of the IIR analysis and synthesis
digital filters. Furthermore, the FWL coefficients are optimised using a second stage GA. The
optimised filter bank is first tested using the SIMULINK Matlab programme and then
implemented on a TMS320C50 fixed point digital signal processing kit [TMS 320C5x DSK,

1997} for real-time testing for a number of coding options.

For the case of non-uniform filter banks, significant constraints exist for satisfying the perfect
reconstruction property. However, for real signals, the ensemble average of energy varies
significantly in different frequency bands that do not easily conform to the requirements of the
constraints for PR. A number of constraints are thus relaxed causing significant amplitude and
aliasing distortions. It is believed that this thesis contains the first explicit method using GAs,
for optimising the overall non-uniform filter bank transfer function by perturbing the cut-off
frequencies of the prototype low-pass filters individually. This procedure overcomes the
problem of reconstruction errors by reducing the amplitude and aliasing distortion in a
combined manner. Some design examples of a maximally decimated, non-compatible set, for
non-uniform filter banks using FIR filters have been considered and tested using Simulink

toolbox of Matlab.

14
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1.5 Overview of the thesis and the contributions

The structure of the thesis follows the description of the work covered in section 1.1 above. An
introduction to the genetic algorithm used for optimisation in the main body of the work is
followed with the theoretical and optimisation issues for the various digital filtering processes.
The FIR and IIR digital filters are first investigated followed by the uniform multirate
quadrature mirror filter bank. An investigation of the modal property of the QMF bank
objective function is conducted and a comparative analysis of the performance of different
optimisation procedures is also considered. This is followed with the investigation of a class of
uniform and non-uniform multirate filter banks and their optimisation using GAs. Finally, the
conclusions from the work covered and described in the thesis are drawn and recommendations

made.

Chapter Two describes the finite word-length coefficient problem of FIR filters and discusses
issues of statistical bounds. The objective functions are defined for various filter types such as
low-pass, high-pass etc. and GA optimised results are compared with the results obtained using
the integer programming method. Chapter Three discusses aspects of IIR filter design and
structure type such that coefficient finite word-length effects are minimised. Stability issues are
also discussed and considered in the GA optimisation of such filters. Since coefficient finite
word length constrained statistical bounds are not known for IIR filters, a comparison of GA
optimised results is made with the simply rounded-valued coefficients of the filter. A range of
FWL coefficient bits starting from a high number of bits to a fairly low number, have been used

to test the advantage of the GA optimised results compared to the simply rounded coefficients.

Chapter Four reviews the theoretical issues of the transformation of variables design of the

quadrature mirror filter bank with perfect reconstruction property. The analysis and synthesis

15
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filters are designed using causal, stable IIR filters that exhibit a lincar phase characteristic. The
GA optimisation of the parameters used for the transformation is also covered here including a
comparative analysis of the optimisation results with and without the use of GAs. Further study
in this chapter covers the aspects of practical implementation of the optimised QMF bank. The
computationally efficient method of polyphase decomposition of the QMF bank is discussed
and also used in the implementation both in the simulated results and for real-time testing on the
TMS302C5x digital signal processing hardware kit. A number of possible coding gain options

are implemented and tests conducted using the ‘mean opinion score’ procedure.

In Chapters Five and Six, the theoretical issues of multiple M-channel uniform and non-
uniform, multi-band multirate filter banks are discussed respectively. The constraints for
perfect reconstruction are also investigated and some of these constraints are relaxed. This
leads to the generation of amplitude and aliasing distortions that are minimised by using a
hybrid approach combining firstly the a GA search over a wide landscape and then using the
standard quasi-Newton and downhill Simplex method on the most promising near-optimal
solution. The optimised examples of the uniform and non-uniform filter banks based on FIR
filters are tested using the Matlab Simulink package. Finally Chapter Seven reviews the thesis
and summarises the conclusions from the work presented in the thesis. It also makes
recommendations for further work. Appendix A contains copies of four conference papers that

have been published during the course of the work described in this thesis.

The main focus and contribution of this thesis is the study and application of the genetic

algorithm optimisation method in the area of digital filters and multirate filter banks. More

specifically, the following contributions are claimed.
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A real integer-valued genetic algorithm code has been developed for the optimisation study

of finite word length constrained coefficients of FIR digital filters. Some comparative study

has been investigated and reported.

Real integer-valued genetic algorithm codes have been developed for the optimisation of the
finite word length constrained coefficients of lIR digital filters. The direct form and the
second order cascade form structures have been considered and extensive range of new

results obtained.

A real-valued genetic algorithm code has been developed for the optimisation of the design
of a class of quadrature mirror filter bank that has a perfect reconstruction property. For a
comparative study with other standard methods, this GA code was further enhanced to
include a ‘creep’ code option within the main GA code that uses a ‘tumbling-like’

minimisation algorithm.

The new GA optimised design of the OMF bank was implemented on a real-time
TMS320C50 digital signal processing starter kit. Tests were conducted using the Mean

Opinion Score metric for telephone quality signals.

A real-valued genetic algorithm code has been developed for the optimisation of design of a
uniform maximally decimated M-channel filter bank. The process involved marginally

perturbing the prototype filter parameters for optimal results.

Real-valued genetic algorithm codes have been developed for the optimisation of the non-
uniform M-channel maximally decimated filter banks using integer decimators. Multiple

low pass prototype filters are used in the design stage. The hybrid optimisation process is
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applied to the entire network of the non-uniform filter bank. The minimisation of the

magnitude and aliasing errors is thus achieved in a combined manner.
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Chapter 2: Finite word length optimisation of FIR filters

Overview of Chapter 2: This Chapter starts by considering the filter coefficient finite word
length (FWL) problem in regard to the finite impulse response digital filters. Some theoretical
issues and statistical error bound conditions of the maximum deviation between the exact and
the approximate magnitude responses are also considered. The GA optimisation results for the
maximum error bounds and error deviation due to FWL effects for a number of design examples
are investigated.  Finally, a comparison is drawn between the simply rounded, the GA

optimised, integer programming method and the simple hill climber methods.

2.1Introduction

The work described in this chapter starts with the discussion on the specific issues of finite word
length constraint for digital filters in general and more specifically for the case of finite impulse
response (FIR) filters. The analysis of simple and statistical bounds for FWL coefficients of
FIR direct form filters is reviewed and used for a comparative study with the GA optimised
results. A number of objective functions for the various structures of the FIR filter such as low-
pass, high-pass etc. are also defined with the view to practical significance of the optimised
frequency response. The optimisation problem of FWL coefficients of FIR filters obtained by
rounding the ‘infinite precision’ coefficients has been investigated previously [Avenhaus, 1972],
[Kodek, 1980], [Kodek and Steiglitz, 1981]. A comparative study for the case of a FIR filter
coefficient optimisation using the integer programming method and GA optimised results using
the specific code developed for the work in the thesis is covered in this chapter. Furthermore, a
small selection of filters was tested using the simple hill climber techniques and the optimised

results are compared with the GA optimised results.

19






Chapter 2: Finite word length optimisation of FIR filters

The error due to coefficient quantisation can be reduced in practice by applying optimisation
techniques that allow for efficient means by which the quantised coefficients are perturbed by a
small amount that leads to a closer approximation of the new frequency response to the original
response. The work covered in this thesis considers this type of problem and a study of the use
of genetic algorithm as an optimisation tool is investigated by using a number of metrics for a

comparative analysis.

2.2.1 Finite word length coefficient effects in FIR filter realisation

The first stage in the realisation problem of a FIR digital filter is the design of the filter that
approximates the original specifications. This process leads to the calculation of high precision
filter coefficients in the transfer function of the approximated filter. The second stage of the
filter design involves its realisation either on a digital hardware system or as a software
programme to implement the input/output relationship as prescribed by the filter transfer
function. For a given transfer function, there may exist many different forms of structures for
implementing and/or programming the digital filter. In the case of FIR filters there are a
number of different types of filter structures of which the most commonly used is the direct
form. Others are: fast convolution, frequency sampling, transpose and cascade structures. The
choice for selecting a particular structure for a specific application can depend on several
factors. These are; sensitivity to errors in the filter coefficients, ease of programmability for a

particular processor, immunity to signal quantisation etc.

A simple 3-length FIT filter can be represented by a transfer function H(z) given by
H(z)=hy+ hyz"' + h z* 2.1

Where h, h;, h, are the filter coefficients and z' represents one unit time delay.
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The difference equation that provides the output condition is given by the convolution operation
of

y(n) = hox(n) + hy x(n-1) + hy x(n-2) 2.2

The direct calculation of Equation 2.2 can be represented by a block diagram shown in Figure
2.2 and is called the direct or transversal structure. This form of structure is most commonly
used in practice due to its robustness and its ease of programming and efficient implementation
on most DSP devices. Such DSP devices are specifically designed and include machine code
instructions that are tailored for efficient FIR transversal operations [Ifeachor and Jervis, 1993],
[Parks and Burrus, 1987]. For this reason, only the direct form structure is considered for study

in this work.

x(n-1) x(n-2)

x(n)

y(n)

Figure 2.2 Direct form FIR filter structure of length 3.

The calculation of the output condition of the FIR filter given by Equation 2.2 involves working
out the products of the coefficient values and the past and present input signal values. In
practice, real-time implementation and realisation of FIR filters is often involved with the use of
fixed-point digital devices that are designed for optimal throughput of FIR filtering operations.
This condition imposes a restriction on the number of bits that can be used to represent the
signal data value, the filter coefficients and the results of arithmetic operations. For efficient

computational throughput and to limit the cost of the DSP device, the number of bits used to
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represent the various values must be small. This restriction leads to the problem of finite word
length effects in the filter realisation and in general, degrades the performance of the filter when
compared with the original design. The study in this thesis considers the specific problem of
FWL coefficients and seeks to optimise the frequency response of the filter by picking the best-
quantised cocfficients. The realisation of FWL FIR filters is normally executed on fixed point
DSP devices that are usually cheaper than their floating-point counterparts. There are also
advantages for fixed-point devices in terms of smaller silicon space, less number of external
pins, lower power dissipation and faster clock cycle times. Such fixed point FWL devices find
applications in digital audio systems, speech processing and compression and in mobile
communications. The study in this chapter is thus restricted to the use of quantised coefficients

for fixed-point devices and the calculations involved are based on fixed-point arithmetic.

The most commonly used method of dertving FWL coefficients for fixed-point arithmetic is the
direct quantisation method. In this method, the high precision coefficients that are derived using
standard filter design techniques are first rounded to yield FWL quantised coefficients. The

starting solution of quantised coefficients is thus given by

h; = round[h; 2% i=0,1,2,......... N-1 23

Where ‘h,;’ is the rounded coefficient, ‘h.;” is the high precision coefficient, ‘B’ is the number of
bits used to represent the coefficients and ‘N’ is the filter length. The representation of a high
precision coefficient value of say 0.762345 in a 5-bit rounded form is thus given by h, =
round[0.762345 x 2°] = round[12.19752] = 12. This value, in a fraction form is represented by
12/2* = 0.75. Thus a new set of coefficient values are derived that gencrate the ‘rounded’
frequency response of the filter. It must also be noted that for fixed-point devices, two’s

complement arithmetic is most commonly used and the most significant bit in the above
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example of a 5-bit representation is the sign bit. The largest positive number is then +15 and the
largest negative number is —16. This form of numbering system is the only one used and
considered in this work mainly due to its application later (Chapter 4) on a fixed-point DSP
device based around Texas Instrument’s TMS320C50 processor that stores numbers in a two’s
complement integer format. Furthermore, the work of Kodek and Steiglitz [1981] that has been
used for comparative purposes in this chapter also use the two’s complement integer format for

representing the coefficient values of the designed FIR filters.

2.2.2 Finite word length coefficient quantisation

The exact representation of a direct form non-recursive or FIR filter is of the form:
N-1
y(n) = > h(m) x(n - m) 2.4
m=0

where x(n) = input signal
y(n) = output signal
h(m) = coefficient value of the filter

and N = filter length (total number of coefficients)

For quantised values of the coefficients then the output signal is modified to:
N-1
§ @)= h(m) x(n-m) 2.5
m=0

where h(m) = quantised coefficient value

The error signal e(n) is then given by

e(n) =y(n) - ¥ (n) 26
N-1 .
or  e(m= Y {h(m)-h(m)} x(n-m) 27
m=0 .
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In terms of the frequency response, the system transfer function with quantised coefficients is

given by

~ NI ‘ N ) |
H(o)= Th(m)e i*m+ 3 {h(m)-h(m)} e 2™ »
m=0 m=0

oo H(w)= H(w)+E() 2.9
where E(w) s the transfer function of the error signal and H(w) is the transfer function of the

unquantised exact system.

The magnitude of the frequency response of the error signal is bounded by the inequality
|E(@)| < N max |{h(m) - h(m)} | 2.10
When the coefficients are rounded to B bits, including the sign bit, then
max | {h(m) - h(m)}| = 2 2.11

then, |E(w)|< N2 2.12

Also note that the bounded value of Equation 2.12 has been derived for the case of arbitrary
phase FIR filter i.e. no coefficient symmetry is assumed. However, a symmetrical spread of the
coefficients taken from the central point is a typical characteristic of linear phase FIR filters.
This is a special case for the derivation of error bound of Equation 2.12 and therefore, the same

error bound as given by Equation 2.12 also applies to the case of linear phase FIR filters.

The upper bound of the magnitude of error signal from Equation 2.12 gives a worst case limit
and is overly pessimistic. For this reason, statistical error bounds have been developed that give
a more realistic measure of the bounded limits [Chan and Rabiner, 1973]. The statistical

analysis of the filter response errors is based on the assumption that errors due to different
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coefficient quantisations are statistically independent and that each error is uniformly distributed
in the range ~Q/2 and +Q/2 where Q is the quantisation step size. This assumption leads to the
deduction that the error signal will have a zero mean and a variance of Q%/12 which is consistent
with rounding of sampled signal values in pulse code modulated systems. Two error bounds are
derived based on statistical analysis. These are:

i) for linear phase FIR filter

Q [2N-1
W) £ — J—— 2.13
O'EL( ) 5 3

i) for arbitrary phase FIR filter

op(®) < %E 2.14

where og; (®) and o4 (©) are the standard deviation of the errors respectively.

2.2.3 Some practical considerations for filter design

Filter design problems in general, involve finding a filter with a frequency response, which
approximates that of an ideal filter response within a specified amount of error. More
specifically, for band select filters, several bands may be defined for which error bounds are also
specified. In this part of the study, only band select filters will be considered although, this
restriction does not in any way affect the possibility of generalising the optimisation ideas and

test metrics used for a comparative study.

Let D(w)be some real, idealised band-select function that is desired to be approximated by the
exact frequency response of a linear phase FIR filter denoted by the transfer function H(w).
The desired function D(w)consists of a number of disjointed frequency bands Qy < [0,7].

where k=1,... .M such that for each k, D(w) is to be approximated to within a specified error
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bound 8(k) for all @€, The frequency band €, is separated by M-1 transition bands where
the filter frequency response remains unconstrained. This assumption can lead to severe
excursions from the high-precision design of frequency response H(w) when coefficient

quantisation, especially low-bit form of representation is used. This effect has been

demonstrated in an example of the optimised response shown later in this section.

For D(®) to be the desired response in the specified frequency bands, then

Max’ IH(w)| - D(o) ) = 5(K) for © € 215
Now for all®
| 1Ai@)I- D) |<| IH(@)|-[H@)| | + | [H@)]- D(@) 216
thus
’ |H(w)| - D(w) ‘ < max |E (@) + 8(k) 2.17
© ey

where E(0)= |H(o)| - |H(w)|

Also, it is assumed that in all probability

|EL(w)] < 20, 2.18

where o, = max oz (©) = Q 2N-1
2 3

then,

III:I(O.))| - D(w) ’S Q 2% + 8(k) for @ Q) 2.19
or

~ 2N -1
max | |H(w)|- D(w)|= Q 3 + 8(k) for w ey 2.20

Where Q = 2® and B is the number of bits including the sign bit. Note that the upper bound of

Equation 2.20 is valid provided that the infinite precision filter conforms to the design
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requirement stipulated in Equation 2.15. For conducting a comparative study, the metric of
Equation 2.20 over the selected frequency bands will be considered. A comparison is drawn

between the GA optimised and the integer programming method of optimisation.

2.3 Objective functions for filter optimisation

The generalised objective error function ‘F’ to be minimised can be represented in the form
L m
F=Z(|Hei—Hi & wi)+WZ(l(Dej~q)j *) 2.21
=0 j=k

where the first part of Equation 2.21 is the magnitude squared error and the second part is the
phase squared error with W being a weighting fraction. It is also possible to apply weightings w;
to the individual magnitude errors at frequencies in/L for i = 0, 1, 2, ..., L. Such individual

weightings can be adjusted to give a better control for biasing the optimisation procedure
towards the preferred design specification.

Also,

H.; = Magnitude response of exact filter at frequency in/L.
H; = Magnitude response of finite word length filter at frequency in/L.
®,; = Phase response of exact filter at frequency jn/L.

®@; = Phase response of finite word length filter at frequency jr/L.

A different suitable objective function for the finite word length problem is
L .
F=)|ME"™)-M,(™)]" W, 222
m=0

where
M(e“") = complex response finite word length filter at frequency .

M,(¢"") = complex response of exact filter at frequency ;.
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Here the objective function is the sum of the squared error of the complex response M(e™")
compared to the desired response M), over the frequencies ®1, o, ..., o, where ®; = 0 and
o, = . Note that the complex responses M(¢“") and My(¢’*") contain both magnitude and phase
information. Also, weightings W, can be added for a proper bias of the optimisation procedure.
Objective function of Equation 2.22 is biased towards finding an optimum solution both in
magnitude and phase for the range between 0 and = and can yield a good solution in most cases.
The objective functions of Table 2.1 offer more flexibility by allowing the removal of the stop-
band frequencies for the phase response and hence relaxing the optimisation requirements.

These can be used in difficult cases where Equation 2.21 fails to give an acceptable solution.

For FIR filters, phase linearity is ensured if the coefficients are symmetric around the mid-point
coefficient(s). If the optimisation procedurc of a FIR filter is designed to preserve the
coefficient symmetry then there is no need to optimise for phase, because the phase response
linearity will not be affected. Therefore, for the FIR case, the simple objective function shown

in Equation 2.23 is adequate.

L
F=>|H,-H;I’w, 223
i=0

2.4 Optimisation of FIR filters using genetic algorithms

The Matlab programme £ir ga.m shown in Appendix B performs the GA optimisation of the
direct form FIR filter by preserving the symmetrical form of the coefficients thereby generating
linear phase response of the optimised filters. A utility programme £ir_obj.m calculates the
error objective function that is minimised over successive generations. Furthermore, the

procedure for crossover, inherent in the discrete recombination operator ‘recdis’, was found to
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Chapter 2: Finite word length optimisation of FIR filters

be adequate for generating sufficient randomness in the population set so that the ‘mutation’
function in the programme was not of any benefit and thus not used in the main GA code for
this application. The GA programme shown in Appendix B uses certain parameters that can

influence the performance of the genetic algorithm and are explained below.

Peak variance ‘BASE’: BASE is an integer number indicating the maximum peak variance of
the population individuals, compared to the original scaled and rounded coefficients. A value of

1 is suitable for most cases, but values of 2 or 3 or more can be used in some situations.

‘Preserve Pattern’ option: This option is activated when PRSZ = 1 and de-activated when
PRSZ = 0. It is useful when optimising filters for which the zero-valued coefficients need to be

preserved during optimisation.

Generation gap ‘GGAP’: If fewer individuals than the original population are produced by
reproduction and crossover, then the fractional difference between the old and new population

sizes is called generation gap. This can have a value between 0 and 1.

Insertion Rate ‘INSR’: INSR lies between 0 and 1 and indicates the percentage of the
offspring (newly produced generation) that is re-inserted back into the old population. The
operation of re-insertion is necessary in order to maintain the same number of individuals in

successive generations, if a generation gap exists.

Number of frequency points ‘L’: This is the number of frequency points where a comparison

between the exact and the test response is performed.
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2.4.1 The methodology and pseudo GA code for FIR filters

The simple genetic algorithm used in the optimisation of FWL quantised coefficients of FIR
filters is based on the standard techniques of generating the initial population of individuals
followed by objective function calculation, ranking and crossover. No mutation operator was
included in the algorithm as initial tests indicated no beneficial outcome of this operator for this
optimisation problem. The GA used is a Matlab based toolbox designed and developed by
Chipperfield et al [1993]. A number of standard functions are included in the toolbox that are
indicated here by bold letters. For example crtrp(Nind, FicldDR) is a function that creates a
random real-valued population of number of individuals ‘Nind’ with perturbation range of

‘FieldDr’ for each variable. The description of each stage of the GA process is as follows.

1) Generating initial population

The first step is to obtain the rounded integer valued coefficients from the design of the
specified FIR filter that generates real-valued coefficients. The design option selected in this
application is the ‘remez’ function of the Signal Processing toolbox of Matlab. This function is
based on the Parks-McClellan optimal FIR filter design algorithm and is one of the most widely
used FIR filter design technique. The filters designed using the ‘remez’ function are optimal in
the minimax sense i.e. the maximum error between the desired and the actual frequency
response of the filter is minimised. The integer programming optimised results of Kodek and
Steiglitz [1981], with which the GA results are compared, also use the ‘remez’ function for the
design of the FIR filters. It must be recognised that there is no loss of generality of the GA
optimisation process if the initial design of the FIR filter is based on other standard design
techniques. Some of these are the classical windowed technique used in the “firl” function or
the weighted, integrated squared error minimisation used in the ‘firls’ function of the Matlab

signal processing toolbox.
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The design process for the FIR filters generates a set of coefficients of the form shown in
Equation 2.1. The set of rounded integer valued coefficients are then derived using the Equation
2.3. This coefficient set forms the chromosome representation for GA optimisation. The
population set of individuals is then generated using the crtrp function of the GA toolbox by
randomly perturbing each rounded coefficient by +1, 0 or —1. This range of perturbation is
obtained using the base value BASE=1. Increasing the base value to say 2 can extend this range
and thus the search space. The random perturbation of coefficients will then be +2, +1, 0, -1 or
-2. It must be noted that an appropriate choice of the base value depending on the filter length
and the number of bits being used to represent the coefficients, is an area that needs further
research. For this study, an initial trial of several different filters using base value of 1, 2 and 3
was conducted. The test results for a population size of 100 over 10 generations, consistently
generated good results for base value of 1. An extensive range of search space could have been
tested over larger population size and greater number of generations. However, the motivation
for using GAs in this study was to test this optimisation process as a general framework against

other methods and to draw a comparative measure.

2) Objective function evaluation

The main purpose of the optimisation process is to minimise the objective function with the
specific aim of obtaining an approximated frequency response of the filter that is as close as
possible to the desired response. The discrete search space for the example filters considered in
this chapter can be calculated using the filter lengths and the base value used for cocfficient
perturbations. The filter length ranges from 15 to 35 and since these are linear phase filters then
the actual number of coefficients that will be affected ranges from 8 to 18. The discrete search
space for a base value of 1 is then 3° = 6561for filter length 15 and 3'* = 387420489 for filter

length 35. This search space increases substantially when the base value is increased to 2. The
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GA used for optimisation conducts 100 objective function evaluations initially followed by 80

evaluations over 10 generations. This makes a total of 900 evaluations using the base value of 1.

The objective function is calculated for 500 equally spaced frequency grid points. An example
filter specification of a band select filter on a normalised frequency scale where Nyquist
frequency = 1.0, is of the form:

Pass band range = 0 to 0.4 desired response = 1.0

Stop band range =0.5to0 1.0 desired response = 0

The objective function is then evaluated using the following.

p L
ObjV = {Z |1 - Hip |2 +.Z| H; |2} + 10 max {maxll—Himealeisl} 2.24

ip=0 1g=§
Where H; = magnitude response of GA optimised filter at frequency i, in the pass band
H;_= magnitude response of GA optimised filter at frequency i, in the stop band
L = number of frequency grid points (=500)
p = pass band cut-off point (=0.4 L)

s = stop band cut-off point (=0.5 L)

A combination of the summation of squared deviations and a weighted maximum deviation as
seen in Equation 2.24 generated good overall frequency response that did not show the effects

of skewing that was observed during initial trials when only the maximum deviation was used to

optimise the objective function.

3) Fitness value and ranking
The Matlab based ranking function of the GA toolbox ranks the individuals according to their
objective function values ‘ObjV’ and returns a column vector consisting of the corresponding

fitness value ‘FitnV” of the individuals. This function performs a linear ranking with a selective
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pressure (SP) of 2 [Whitley, 1998]. The fitness value assigned to the individuals is calculated

according the following formula given by Equation 1.1in Chapter 1.

4) Selection of individuals for breeding

The high-level function for selection of individuals from the population set and returning the
selected individuals in a new population is performed by the ‘select’” function. The low-level
selection function sus is called by the ‘select’ function. The sus function is based on a form of
stochastic sampling method and is implemented by obtaining a cumulative sum of the fitness
vector ‘FitnV’ and generating a set of equally spaced numbers between 0 and Z(FitnV) [Baker,

1987]. The probability of an individual being selected is given by Equation 1.2 in Chapter 1.

5) Recombining individuals — crossover

The crossover function is also performed in two stages. The high-level function is recombin
that calls the low-level function recdis. The recdis function is a discrete recombination
function. The mating process is performed between pairs of rows. The recdis function first
generates an internal mask table that determines which parents contribute which variables to the
offspring. On the basis of the randomly generated mask table, the variable values are exchanged

between the individuals and return a new population after mating.

6) Reinsert offspring into new population

The new population set generated after crossover is subjected to the objective function
evaluation of each new individual. On the basis of their fitness, the offspring are selected for
reinsertion into the new population. The objective function values are then copied according to

the reinserted offspring and the GA loop is then repeated for the next generation.

A pseudo GA code for FIR filter optimisation and for the objective function are shown in

Figures 2.3 and 2.4 respectively.
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Q /N
E =3 = |—
max |[E( )|, 13 2.26

for arbitrary phase

The example FIR filter used to test the validity of the error bounds of Equations 2.25 and 2.26 is
designed using the Parks-McClellan (minimax) algorithm. The MATLAB function ‘remez’ is
used to calculate the coefficients for this filter design.
The filter parameters used are

Filter length = 20 (total number of coefficients)

Frequency band edges = [0 0.4 0.5 1]

Desired magnitude response = [1 1 0 0]

Weighting function = 1 (both for pass and stop bands)
The GA parameters used are

Number of individuals (NIND) = 100

Maximum number of generations (MAXGEN) = 10

Generation gap (GGAP) = 0.8

Insertion rate (INSR)=0.8

Peak variance of integer coefficients (BASE) = 1

Number of bits (B) =5

Frequency axis number of points = 500
The error objective function used for optimisation is given by Equation 2.24
Case 1 - Linear Phase FIR filter

The magnitude response of the rounded coefficient value and GA optimised filter for a 5-bit

coefficient representation is shown in Figure 2.4. The phase response is not included here, as
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this will be linear because of the symmetrical coefficients used for the optimisation process.
Figure 2.5 shows the magnitude error max |[E(®)|, for the rounded coefficients, the GA

optimised coefficients and the bounded value given by Equation 2.25.

T
—— eXxact response
------- rounded coeff.

0.6 0.8 1

1.5 T
——— exact response
vvvvvvv GA opt.
1 -
0.5 b
(o] 0.2 0.4 0.6 0.8 1

frequency (pi)

Figure 2.5 Magnitude response of simply rounded and GA optimised coefficient filter.

0.7 T , T T T :

- +- rounded coeff.

—o— GA opt.
--53-- bounded

number of bits

Figure 2.6 Comparison of error magnitudes max [E(®)|.
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The rounded and the GA optimised coefficients are obtained respectively as
h(md) = 0-1-1t010-1-13773-1-10120-1-10

h(GA-op.= 0 0-1 010-1-13773-1-1010-1020

Case 2 — Arbitrary Phase FIR filter

In general, non-symmetrical coefficient, i.¢. arbitrary phase FIR filters are not used in practical
applications due to the requirement for doubling the memory space to store the relevant
coefficients and also the loss of phase linearity. However, there may be useful application of
such filters for low-bit low-order implementation leading to computationally efficient, low
power systems. For this reason, a GA optimisation code was developed with minor
amendments to the code of Appendix B using the same filter characteristics and GA parameters
as shown above in this section. The magnitude response of the rounded coefficient filter and of
the GA optimised filter is shown in Figure 2.6 that also includes the phase response of the GA
optimised filter. The number of bits used for the coefficients of this filter is 5. Figure 2.7 shows
the magnitude error max [E( )|, for the rounded coefficients, the GA optimised coefficients

and the bounded value given by Equation 2.26.

—— exact response
i LTI ] e rounded coeff.

-5 L L 1 1 1 . L s i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
frequency (pi)

Figure 2.7 Magnitude response of simply rounded filter (a), GA optimised filter (b) and phase
response of GA optimised filter (c).
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0.7 T T T T

-—-=— GA opt.

-+ rounded coef.
0.6 --(3-- bounded value |-

number of bits

Figure 2.8 Comparison of error magnitudes max [E( )4

The rounded and the GA optimised coefficients are obtained respectively as
h(md) = 0-1-1010-1-13773--10120-1-120

hGA-op)y= 0-1-1011-1-13673-1-2-10020 00

The graphs shown in Figures 2.5 and 2.7 demonstrate a good parity between the GA optimised

results and the bounded value of Equations 2.25 and 2.26 thus suggesting that the original

conjecture of max |E( )| = 3 times og (@) is closely valid.

2.4.3 GA optimisation of band select FIR filters

This section deals with the case of band select filters for which the desired response is specified

over the selected pass and stop bands. The desired function D(w)consists of a number of

disjointed frequency bands Q, c [0,n], where k=1,....M such that for each k, D(w) is to be
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approximated to within a specified error bound 3(k) for all we . In order to conduct a
comparative study, the 10 filter examples used by Kodek and Steiglitz [1981] for coefficient
optimisation based on integer programming method are also used here. The 10 filters are
divided into 4 sets of filters as shown in Table 2.2. The filter coefficients for the 10 filters are
shown in Table 2.3. The representation such as A15/5 denotes A-range filter of length 15 using
5 bit coefficients. The integer programming method optimised coefficients have been taken

from [Kodek and Steiglitz, 1981].

Table 2.2
Sets of Filter Specifications
Filter Pass-band Stop-band Pass-band
A: range 0 to 04 05t 1.0
Weighting: 1 1
Desired value: 1 0
B: range 0 to 04 05t 10
Weighting: 1 10
Desired value: 1 0
C: range 0 to 024 [ 04to 068 | 0.84 to 1.0
Weighting: 1 1 1
Desired value: 1 0 1
D: range 1 to 024 | 04 to 068 | 084 to 1.0
Weighting: 1 10 1
Desired value: 1 0 1

Table 2.4 shows the results for the maximum error deviation to the desired response for

all @ €, and Table 2.5 shows the results for the total summation error relative to the desired
response for all @ Q. The bounded value used in Table 2.4 is obtained using Equation 2.20. A

comparison with the integer programming (IP) method clearly shows a distinct improvement for
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the case of GA optimised filters both for the maximum error deviation and for the summation
error. It is also observed that the bounded value of Equation 2.20 is consistent with the
maximum error deviation obtained using the GA optimised filters. The GA optimised filters
have generated slightly lower maximum error deviation values as compared to the value of
bounded error for all but two of the ten filters namely, the A25/5 and the C15/5 filters. On the
other hand, the IP optimised filters have better performance compared to the bounded value in

just two of the ten filters.

The reason for comparison of the total summation error, as shown by results in Table 2.5, is
useful as this generates a more distinct semblance with the desired response of the filter without
the possibility of skewing the overall frequency response. Again, it can be seen that the GA
optimised filters have significantly outperformed those using the IP optimised filters in most
instances. In comparison to the IP optimised filters, the GA optimised results have marginally
under performed in one case namely the A15/5 filter, for two other filters namely A25/5 and
C25/5, the results are identical and for the remaining seven filters, the GA optimised results are

distinctly superior.

Some example filter responses for filters B25/7 and C25/5 are shown in Figures 2.8, and 2.10
respectively. It is observed that while the rounded response follows the exact response as is to
be expected, the GA optimised response follows the requirement of the desired response which
is 1 in the pass band for the filter B25/7. It is also observed that the optimised filters, as shown
in Figure 2.10 have significant deviation from the exact response in the transition region. This
deviation may not be critical for a required design however, it is sufficiently significant for
consideration of a specific filter response realisation. Figures 2.11 and 2.12 show a comparison

of maximum error magnitudes against number of bits B for filters A15 and B25 respectively.
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Table 2.3

The filter coefficients of the 10 filters. ‘GA-op’ denotes GA optimised, ‘Rnd’ denotes rounded
and ‘IP-op’ denotes the integer programming method optimised. Only half the coefficients are
given due to symmetrical property.

Filter 1: A15/5

GA-op 7 5 0 -1 -1 1 1 0
Rnd 7 5 1 -1 -1 1 0
IP-op 7 5 1 -2 0 1 1 0
Filter 2: A25/5
GA-op 7 5 1 -1 -1 1 1 0 -1 0 0 0O
Rnd 7 5 1 -1 -1 1 1 0 0 O O 0O
IP-op 7 5 1 -1 -1 1 0 -1 0 0 0 O
Filter 3: B15/7
GA-op 29 20 3 -6 -3 2 5 2
Rnd 28 20 4 -6 -3 3 6 3
IP-op 28 20 3 -7 -5 2 5 3
Filter 4: B25/7
GA-op 26 20 3 -6 -3 2 3 -1 22 0 1 10
Rnd 28 20 4 -6 -3 2 3 -1 2 0 2 21
IP-op 27 19 3 6 -3 3 3 -1 -3 -1 2 21
Filter 5: B35/7
GA-op 2820 4 6 -3 2 3 -1 -2 01 0-1-11140620
Rnd 2820 4 6 -3 2 3 -1 -2 01 1-1-111120
IP-op 2820 4 -5 -3 2 2-1 -2 01 0-1 02210290
Filter 6: C15/5
GA-op 8 1 5 -1 0 -1 -1 1
Rnd 9 1 5 -1 -1 0 -1 1
IP-op 9 1 5 -1 0 -1 -l
Filter 7: C25/5
GA-op 9 0 5 0 -1 0 -1 0 1 0 0 0 -l
Rnd 9 1 5 -1 -1 0-1 1 0 0 0 0 O
IP-op 9 0 5 0 -1 0 -1 0 1 0 O 0O -1
Filter 8: D15/7
GA-op 34 4 20 4 0 -2 -3 2
Rnd 35 4 21 -3 1 -3 -2 1
IP-op 34 4 20 4 0 -4 -3 0
Filter 9: D25/7
GA-op 34 3 19 4 2 22 4 3 1 1 1 20
Rnd 34 3 19 4 2 2 4 3 1 1 1 -10
IP-op 34 3 19 4 -1 2 2 3 2 1 1 -120
Filter 10: D35/7
GA-op 35 3 19 4 2 2 4 3 11 1 20 0 0 1 020
Rnd 34 319 -4 2 2 4 3 1 1120 0 01 00
IP-op 34 3 19 -4 2 2 4 3 1 1 1-20-1 0 0 020
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Table 2.4

Maximum error deviation relative to the desired response for all €
filter | GA-op | Rounded | IP-op exact | Bounded value

(Equation 2.20)
AlS5/5 | 0.1978 0.2309 | 02002 | 0.1324 0.2296
A25/5 | 0.1873 0.2309 0.1873 0.0508 0.1771
B15/7 | 0.2315 0.2813 0.3273 0.2797 0.3040
B25/7 | 0.0993 0.1251 02157 | 0.1231 0.1547
B35/7 | 0.0637 0.0869 0.1865 0.0528 0.0903
C15/5 | 0.1672 0.1873 0.1667 | 0.0596 0.1568
C25/5 | 0.1265 0.1873 0.1265 0.0173 0.1436
D15/7 | 0.1483 0.2143 0.2542 | 0.2006 0.2249
D25/7 | 0.0428 0.0651 0.1306 | 0.0570 0.0886
D35/7 | 0.0425 0.0558 | 0.0668 0.0152 0.0526

Table 2.5
Total summation error relative to the desired response for all w €

filter | GA-op | Rounded | IP-op exact

Al5/5 | 6.1843 3.5146 5.9662 3.1958

A25/5 | 3.8005 3.5146 3.8005 0.3576

B15/7 | 45658 | 7.3014 6.8917 7.7252

B25/7 | 0.5421 1.6740 2.7130 1.5205

B35/7 [ 0.5158 0.7558 2.0358 0.2805

Cl15/5 | 1.7789 | 2.0507 2.9096 0.3663

C25/5 | 1.4342 | 2.0507 1.4342 0.0298

D15/7 | 1.0987 | 3.6671 2.8557 4.3325

D25/7 {0.2187 | 0.2359 1.2669 0.2327

D35/7 | 0.1556 | 0.1360 0.3666 0.0112
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Figure 2.9 Magnitude response of simply rounded, GA optimised and IP optimised coefficients
for the case of filter B25/7.
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Figure 2.10 Magnified response of simply rounded, GA optimised and IP optimised coefficients
for the case of filter B25/7.
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Figure 2.11 Magnitude response of simply rounded, GA optimised and IP optimised
coefficients for the case of filter C25/5.
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Figure 2.12 Comparison of error magnitudes against number of bits B for filter A15.
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Figure 2.13 Comparison of error magnitudes against number of bits B for filter B25.

2.5 Simple hill climber techniques and exhaustive search

To test the robustness and accuracy of the GA optimised results, the methods of simple hill
climber algorithms such as the steepest ascent (SAHC) and the nearest ascent (NAHC) were
applied to a selection of filters shown in Table 2.4. Random sampling tests for the search space
as used for the GA optimisation was also conducted. Furthermore, for a small selection of low
order filters, an exhaustive search was conducted over a matching search space. The hill
climber algorithms for this search were based on the standard techniques used for binary strings
[Mitchell, 1996] and adapted for the case of integer valued numbers representing the FIR filter
coefficients. It must be recognised that the integer valued rounded coefficients of FIR filters are
derived from real valued coefficients that are represented by a finite number of bits. The hill
climber technique in this context for real-valued variable is synonymous with the integer valued
variable. The starting ‘seed” individual of an integer valued coefficient sct is generated by

randomly perturbing the rounded coefficients by +1, 0 or -1. The flow chart shown in Figure
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2.14 describes the hill climber algorithm used for this application. In order to maintain parity
with the GA optimisation, approximately the same number of objective function evaluations
were performed for the hill climber methods. The hill climber performed a maximum of 90
objective function evaluations i.e. 9 evaluations (for filter length 15) for each loop running a
maximum of 10 times. 10 runs of each algorithm, each starting with a different randomly
generated seed thus generates a maximum of 900 evaluations; the same number as the GA

evaluations.

The SAHC generates new neighbours by systematically mutating each coefficient randomly by
+1, 0 or -1 moving from left to right. For example, if the starting randomly mutated ‘seed’
cocfficient string is -4, 2, 1, 0 then the neighbours can be -5, 2, 1,0; -4, 3, 1, 0; -4, 2, 0, 0 and -4,
2, 1, 1. For the NAHC algorithm the neighbours are derived by mutating each of the
coefficients from left to right successively while keeping the previously mutated coefficients.
For example, if the starting coefficient string is -4, 2, 1,0 then the neighbours can be -5, 2, 1, 0; -
5,3,1,0;-5,3,0,0and -5, 3, 0, -1. An important observation for the application of the above
described hill climber algorithms is that the search space for optimisation can extend beyond the
range bf +1 or -1 of the rounded values for each coefficient. This outcome is implicit in the
evolutionary nature of the algorithms since mutation of the coefficient value occurs for each
iteration. In this respect, there is a subtle difference when compared with the GA optimisation
because the search space for GA is confined to +1 and -1 of the rounded coefficient values for
the results obtained in this study. The hill climbers are thus subjected to a wider search space
that may or may not be advantageous to the optimisation process. There is a possibility of
obtaining a superior solution when compared to the GA method, however there is also a danger
for the search to move towards areas of inferior or local minima solutions. The results of
SAHC, NAHC, the random sampling and exhaustive search for a selection of the FIR filters are

shown in Table 2.6 and the filter coefficients are shown in Table 2.7. The results shown with an
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asterisk (*) are the ones for which the search space has deviated greater than +1 or -1 of the
rounded coefficient values. Note also that the exhaustive search was confined to deviation of

+1, 0 or -1 of the rounded cocfficients.
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Figure 2.14 A flow chart for the simple hill climber algorithm.

Table 2.6
Maximum error deviation relative to the desired response for all ® €€

Filter Exh. search Random SAHC NAHC GA

Al5/5 0.1978 0.1978 0.1978 0.3536 0.1978

A25/5 None 0.3051 0.1873 0.2517 0.1873

B15/7 0.2208 0.2322 0.1418* 0.1972* 0.2315
| B25/7 None 0.1088 0.0678* 0.0740* 0.0993

C15/5 0.1667 0.1875 0.1667 0.2796 0.1672

C25/5 None 0.2468 0.1576 0.2623 0.1265

Exh. = Exhaustive

SAHC=steepest ascent hill climber
NAHC=nearest ascent hill climber
* indicates search space exceeded +1 and/or —1 of rounded coefficient values
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Table 2.7

The filter coefficients of selected filters. Only half the coefficients are given due to symmetrical
property.

Exh. Sch= Exhaustive

Rand=Random sample

SAHC=steepest ascent hill climber

NAHC=nearest ascent hill climber

* indicates search space exceeded +1 and/or —1 of rounded coefficient values

Filter 1: A15/5

Exh. Sch 75 0 -1 -1 110
Rand 75 0 -1 -1 1 10
SAHC 75 0 -1 -1 110
NAHC 8 5 0 -2 -1 11 -2
Filter 2: A25/5
Exh. Sch none
Rand 751 -2 -1 001-10202900
SAHC 7 51 - -1 1150-1 02000
NAHC 751 -2 -1 11 0-1 02000
Filter 3: B15/7
Exh. Sch 28 20 3 -7 -2 2 5 2
Rand 29 19 3 -7 2 2 5 2
SAHC 28 20 3 6 -3 3 5 -1*
NAHC 28 21 2 -5 -3 4 3% 1*
Filter 4: B25/7
Exh. Sch none
Rand 26 19 4 6 4 2 3 2 -2 0 1 2 0
SAHC 26 20 3 6 -3 2 2 -1 2 0 2 1 -1*
NAHC 28 20 3 -6 -3 2 2 -1 2 1 2 0* -1*

Filter 5 C15/5

Exh. Sch 9 1 5 -1 0 -1 -1 1
Rand 9 1 5 -2 0 -1 -1 1
SAHC 9 1 5 -1 0 -1 -1 1
NAHC 9 1 5 -1 0 0 -1 -l
Filter 6 C25/5
Exh. Sch none
Rand 9 050 -1t 1 -10120000O0
SAHC 9 1 5-1 -1 0-111400-1020
NAHC 1001 5 0 0-1-101 00 00
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2.6 Discussion of results

Section 2.4.2 covers the results of the maximum deviation between the exact filter magnitude
response and the FWL coefficient results. Established maximum deviation theoretical bounds
calculated using the number of bits to represent the filter coefficients and the filter length are
used to draw a comparison with the deviation obtained by simply rounded valued coefficients
and the GA optimised FWL coefficients. The case of a linear phase and of arbitrary phase FIR
filters is considered. The graphical results of the magnitude response of a typical low pass FIR
filter of length 20 for the linear and arbitrary phase responses are shown in Figures 2.5 and 2.7
respectively. The maximum deviation error between the exact and the approximate magnitude
responses for a number of bits ranging from 3 to 10 representing the exact coefficient values is
shown in Figures 2.6 and 2.8 for the linear and arbitrary phase FIR filters respectively. It is
clearly seen that the GA optimised results generate the minimum deviation error and is closely
followed by the theoretically predicated error bounds given by Equations 2.25 and 2.26. The
simply rounded coefficients generate the worst error. Furthermore, the assumption made in

section 2.4.2 that the maximum deviation is likely to be three times og(®)holds well as is

evident from the results shown in Figures 2.5 and 2.7.

For the case of band select FIR filters covered in section 2.4.3, the choice of filters shown in
Table 2.2 were taken directly from [Kodek and Steiglitz, 1981]. These filter coefficients were
optimised using the GA code developed for this study (see Appendix B) and then compared
with the integer programming method optimised coefficient results as listed by Kodek and
Steiglitz [1981]. Table 2.3 lists the coefficient values of the ten band select filters for the
rounded values, the integer programming method optimised values and the GA optimised
values. Table 2.4 lists the values for maximum deviation relative to the desired response and

Table 2.5 lists the total summation error relative to the desired response. These values clearly
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show significant improvement of the GA optimised results for most of the example band select
filters when compared to the integer programming method optimised results. This is evidence
of the efficacy of the GA technique as an optimisation tool in the specific application of FWL

constraints on the infinite precision coefficients of the FIR digital filters.

Further tests were conducted on a selection of FIR filters using the simple hill climber
techniques, random sampling and exhaustive search. The results of these tests are shown in
Table 2.6. Once again, the GA optimised results are seen to be consistently good. However, for
some filters such as the B15/7 and B25/7, the hill climber methods have generated superior
results. This is significant since the search space for these algorithms can intrinsically extend
beyond the +1 and/or —1 of the rounded coefficient values. The GA search space, however, is
restricted to +1 or —1 of the rounded coefficients. This offers credibility to the simple hill
climber technique and complements the GA optimisation to search for superior solutions for the

application considered here.

2.7 Summary of Chapter 2

The specific problem of finite word length coefficients in the realisation of FIR filters has been
considered here. The purposeful aim is to use the procedures of genetic algorithms to optimise
the frequency response in comparison to the exact filter response and to the desired response for
the case of band select filters. The GA programme used in this application is explained and a
specific code is developed to seek optimal results on the basis of the minimisation of a
predefined error objective function. Quantifiable metrics for comparison purposes are defined
on the basis of the maximum error bound |[E( )] for all @ both for the case of linear phase and
arbitrary phase FIR filters. Comparison is drawn between the simply rounded coefficient results

and those obtained using the GA optimised coefficients. In both cases of FIR filters, it is
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observed that good near optimal results of filter coefficients are obtained using the GA method.
Furthermore, the bounded values given in Equations 2.13 and 2.14 show a good parity with the
GA optimised results as seen in Figures 2.6 and 2.8 for the case of linear phase and of the

arbitrary phase FIR filters respectively.

For the case of band select filters, a comparison is drawn with the results taken from [Kodek and
Steiglitz, 1981} for ten specified FIR linear phase filters that are optimised using the integer
programming method. The GA optimised results show a distinct improvement over the integer
programming method of optimisation both for maximum error and for total summation error
within the specified range of band selected frequencies. The results of maximum error against
number of bits for the case of example filters as seen in Figures 2.12 and 2.13 show consistently
lower values obtained by GA optimised results in comparison to rounded coefficients response

or the bounded values of Equation 2.20.

The general conclusion of this part of the study leads to the observation that FIR filters are fairly
accurate in their frequency response realisation using quantised rounded valued coefficients. A
distinct measure of improvement is achievable by using GA optimisation especially for low
number of bits (see Figures 2.5, 2.6, 2.12 and 2.13). The bounded error results shown in Figures
2.6,2.8,2.12 and 2.13 show a good correspondence between the statistically calculated bounds
and the results obtained for GA optimised filters. For completeness, a study of non-symmetrical
FIR filters has also been conducted using the same metrics for comparison as mentioned above.
The results of Tables 2.4 and 2.5 clearly indicate a substantial improvement of GA optimised
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