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Summary

Summary

This thesis is concerned with the issues of design and optimisation of digital filters and multirate 
filter banks. The main focus and contribution of this thesis is to apply the genetic algorithm 
(GA) technique and to draw some comparison with the standard gradient and non-gradient 
based optimisation methods. The finite word length (FWL) constraint affects the accuracy of a 
real-time digital filter frequency response. For the case of digital filters, this study is concerned 
with the optimisation of FWL coefficients using genetic algorithms. Some comparative study 
with the simple hill climber algorithms is also included. The outcome of this part of the study 
demonstrates a substantial improvement of the new results when compared with the simply 
rounded FWL coefficient frequency response.

The FWL coefficient optimisation process developed in the earlier Chapters is extended to the 
field of multirate filter banks. All multirate filter banks suffer from the problems of amplitude, 
phase and aliasing errors and, therefore, constraints for perfect reconstruction (PR) of the input 
signal can be extensive. The problem, in general, is reduced to relaxing constraints at the 
expense of errors and finding methods for minimising the errors. Optimisation techniques are 
thus commonly used for the design and implementation of multirate filter banks. In this part of 
the study, GAs have been used in two distinct stages. Firstly, for the design optimisation so that 
the overall errors are minimised and secondly for FWL coefficient optimisation of digital filters 
that form the sub-band filters of the filter bank. This process leads to an optimal realisation of 
the filter bank that can be applied to specific applications such as telephony speech signal 
coding and compression. One example of the optimised QMF bank was tested on a real-time 
DSP target system and the results are reported.

The multiple M-channel uniform and non-uniform filter banks have also been considered in this 
study for design optimisation. For a comparative study of the GA optimised results of the 
design stage of the filter bank, other standard methods such as the gradient based quasi-Newton 
and the non-gradient based downhill Simplex methods were also used. In general, the outcome 
of this part of study demonstrates that a hybrid approach of GA and standard method was the 
most efficient and effective process in generating the best results.

(ix)
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Chapter 1 : Introduction and Overview of Thesis

Overview of Chapter I: This Chapter starts with an introductory section covering a synopsis of 

the thesis. This is followed by a literature review of the genetic algorithm (GA) technique as an 

optimisation tool in various digital signal processing (DSP) applications. The generic form of 

the GA code used for optimisation in this study is then described. Finally, the aims, objectives 

and contributions of this study are considered.

1.1 Introduction

This thesis is concerned with the issues of design and optimisation of digital filters and multirate 

filter banks. The main focus and contribution of this thesis is to apply the genetic algorithm 

(GA) technique and to draw some comparison with the standard gradient and non-gradient 

based optimisation methods. The accuracy of a real-time digital filter frequency response is 

affected by the finite word length (FWL) constraint used in its implementation. The full process 

of digital filtering can generate errors in a number of ways such as; quantisation of the input 

signal due to analogue to digital conversion, representation of filter coefficients by a finite 

number of bits and the accumulation of round-off errors resulting from arithmetic operations. 

Overflows of arithmetic operations can also occur within the filtering algorithm, however, with 

proper scaling procedures, such overflow problems are easily eliminated.

For the case of digital filters, this study is concerned with the optimisation of finite word length 

coefficients using genetic algorithms. Both non-recursive and recursive filters are considered. 

It is well recognised that structural differences of digital filter implementation can have 

significant variations in their sensitivity to filter response as a consequence of coefficient 

truncation due to finite word length effects.
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The linear phase, direct form structure of finite impulse response (FIR) filters has been shown to 

be robust and therefore, attractive for the realisation of FWL coefficient implementation [Chan 

and Rabiner, 1973]. The problem of FWL FIR symmetric digital filters involves choosing a set 

of coefficients so that the new frequency response, as a consequence of truncation of the infinite 

precision coefficients, approximates as closely as possible to a given specified frequency 

response in a minimax sense. Algorithms for solving this problem have been based upon two 

methods; the local search method [Avenhaus, 1972] and the integer programming 'branch and 

bound' method [Kodek, 1980], [Kodekand Steiglitz, 1981].

The local search algorithm involves selecting a feasible set of FWL coefficients (say rounded 

valued) to give a frequency response and examining the neighbourhood of H, the transfer 

function of the filter, for a better filter H' i.e. one with lower error function. If such a filter is 

found then H', replaces H and the algorithm moves to the next step or else it stops. The 'branch 

and bound' algorithm is involved with systematically pruning a tree of several possible 

solutions based upon certain lower bounds as the enumeration proceeds. Both of these methods 

are intrinsically computationally intensive and global optimality is not assured. The problem is 

further compounded and becomes acute for longer filter lengths.

For the case of infinite impulse response (IIR) filters, the direct form implementation is usually 

avoided. It has been shown [Kaiser, 1966] that the sensitivity of the filter response to the FWL 

effects of the denominator coefficients in this case increases rapidly with the increasing order of 

the filter. A 2nd order cascade or parallel form implementation of IIR filters is better behaved in 

this situation [Dempster and Macleod, 1994].
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For the case of multirate filters, a 2-channel quadrature mirror filter bank (QMF) and multiple- 

channel uniform and non-uniform filter banks have been considered in this study. Multirate 

systems are based on the application of digital filters for which sampling rate can vary from 

point to point. Such systems are often used for processing signals more efficiently and have 

seen applications in the sub-band coding of speech, audio and video signals and in multi-carrier 

data transmission and digital audio systems. A number of different design and implementation 

structures exist for multirate filter banks [Vaidyanathan, 1993]. Emphasis is placed, in this 

study, on the choice of structure that is relatively simple to design and leads to an efficient 

practical implementation for real-time applications.

All multirate filter banks suffer from the problems of amplitude, phase and aliasing errors and 

therefore, constraints for perfect reconstruction (PR) of the input signal can be extensive. In 

addition, coding errors are generated by the quantisation of the decimated signal that cannot be 

eliminated. These coding errors are beyond the scope of this work and will not be considered in 

this study. However, the first three errors can be reduced and almost eliminated by prudent 

choice of design criteria and type and order of sub-band filters leading towards perfect 

reconstruction of the input signal.

The case of a maximally decimated, two-channel filter bank is the simplest example of a 

multirate filter bank. This is commonly referred to as a quadrature mirror filter (QMF) bank 

since the high pass filter is a mirror image of the low pass filter about the mid-point. The 2- 

channel QMF bank considered here for optimisation is designed using the transformation of 

variables method [Tay, 1998]. This design technique yields IIR filters for sub-bands that are 

causal and stable and can achieve perfect reconstruction of the input signal. The design of such 

a filter bank is based on the use of prototype filters whose variables are transformed using a 

transformation function. This design is fairly simple and allows flexibility for 'fine-tuning' of
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the design and implementation for real-time realisation. However, a specific problem that exists 

in this method of design is to do with optimising the parameters of the transformation function 

to generate a good parity between the idealised and the actual frequency response of the filters. 

This process involves the use of optimisation procedures such as the quasi-Newton or downhill 

Simplex algorithms. Most standard procedures of this form are inevitably dependent on the 

selection choice of the starting 'seed' values of the transformation function parameters, so a 

good optimal result cannot always be assured in such situations.

A genetic algorithm based optimisation approach has been considered in this work to search for 

the global minima over a wide landscape of transformation function parameter values. A new 

GA 'creep' code has also been developed here to study the effects of small variations of the 

parameter values once a 'suspect' good valley has been detected by the main GA code. This 

'creep' code is a variation of the G-bit operator [Goldberg, 1989]. A comparative study of the 

GA based hybrid optimisation (GA optimisation followed by standard quasi-Newton and 

downhill Simplex methods) and non-GA based standard optimisation methods is also 

conducted. In addition, FWL constraints are applied to the optimisation of IIR filters using a 

genetic algorithm code. This leads to the development of practical IIR sub-band filters. The 

optimised QMF filter structure is represented in a computationally efficient form using 

polyphase decomposition and tested using simulation and a real-time DSP system.

The second form of multirate filter considered in this work is a maximally decimated multiple 

M-channel uniform filter bank. This form of filter bank consists of equally spaced frequency 

bands that are each of equal widths. Such a structure offers a higher resolution for the analysis 

of the input signal and can be an improvement over the 2-channel QMF bank. Closed form 

solutions for the design of the M-channel filter bank without aliasing and with perfect 

reconstruction property are well established [Vaidyanathan, 1993]. Mostly such solutions lead
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to complex implementations. In practice, therefore, approximations that consider only the 

directly adjacent alias spectra and its minimisation are less complex and thus of greater interest. 

These types of filter banks are called pseudo-QMF banks and use cosine modulation technique 

for its design, based on a single prototype low-pass filter. The optimisation of the prototype 

filter such that the signal reconstruction errors are minimised forms an important area for 

consideration that is investigated in this study.

The third form of multirate filter studied here is the non-uniform filter (NUF) bank. This type 

of filter bank has specific advantages in their application to real signals for which high coding 

gain is achievable. This is specifically due to the significant variation of the ensemble average 

of the energy in different frequency bands of real signals. The case for multiple-band uniform 

filter banks, as mentioned above, has been extensively studied and PR conditions are well 

established [Vaidyanathan, 1993]. However, the design of non-uniform banks is particularly 

challenging for PR for which extensive constraints exist. The problem, in general, is reduced to 

relaxing constraints at the expense of errors and finding methods for minimising the errors. 

Optimisation techniques are thus commonly used for the design and implementation of non- 

uniform filter banks and are investigated in this study.

Several examples of design and optimisation of NUF banks have been reported in literature 

recently. The concept of compatible sets for integer decimation factors as a requirement for 

completely eliminating aliasing error in a maximally decimated NUF bank is reported in [Hoang 

and Vaidyanathan, 1989]. Other examples of design are based on the use of optimised multiple- 

prototype LP filters and cosine modulation or by sine/cosine multiplication to shift to the 

appropriate frequency sub-band. The optimisation process is aimed at eliminating the main 

aliasing component [Argenti and Del Re, 1996], [Wada, 1995]. Another approach is based on 

time-domain analysis for the design of NUF banks using FIR filters [Nayebi et al, 1993] .
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A direct design approach using FIR low pass prototype (baseband) filters and their 

transformation using sine or cosine multiplication is considered in this study [Chu, 1985], 

[Wada,1995]. The case of a non-compatible, integer-valued, maximally decimated set NUF 

bank is investigated. This form of filter bank gives greater flexibility for a choice of sub-band 

filters for the optimisation of coding gain of a real signal at the expense of aliasing and 

amplitude distortion that cannot be completely eliminated. Effort is then applied to reducing the 

two distortions by using a hybrid approach based on a genetic algorithm and standard 

minimisation techniques such as quasi-Newton and downhill Simplex.

1.2 Genetic Algorithms in DSP design and optimisation

Genetic algorithms are intensively parallel stochastic search algorithms based on the principles 

of natural genetics and the concept of 'survival of the fittest'. GAs operate over a wide 

landscape of search space using a large population set of possible solutions seeking to locate 

potentially the best candidates. The process of ranking, crossover and mutation is applied 

sequentially through a number of generations in an effort to obtain a good optimal solution. The 

characteristics of GAs makes it a versatile tool to conduct a search over a large, noisy, multi- 

modal and possibly a discontinuous, search space landscape. For continuous and slowly 

varying landscapes, then the standard calculus based methods are likely to do better, however, 

for smaller landscapes, the GAs may show no specific advantage over the enumerative or 

random search methods [Holland, 1975], [Goldberg, 1989].

The GA used in this study is a MATLAB based programme that was developed for the study of 

control systems [Chipperfield et al, 1993]. Although this version is fairly flexible in its 

implementation to different applications, only real-valued simple GAs are used for the work
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covered in this study. The use of real-valued genes has specific advantages in the numerical 

objective function optimisation over the binary-coded GAs [Wright, 1991]. The GA efficiency 

is increased since there is no need for conversion of chromosomes to phenotypes before the 

objective function is evaluated. The other advantages are; less memory overhead for 

computation, no loss of precision by discretisation to binary and greater freedom for the use of 

different genetic operators.

Design of digital processing systems based on minimal computational complexity and low 

power has important implications in modern systems especially for portable applications. 

Inevitably, for many instances, there is a need for optimising the hardware structure and 

realisation of processes involved. The use of primitive filter components such as simple adder 

sections represented by their corresponding transfer functions of the form H(z) = l+z"k, where k 

is an integer, can be stored as library entries. A combination of these primitive filters represents 

a trial frequency response that is compared to the specified response and then the error function 

calculated. The optimisation of a combination of filter primitives can lead to the design of FIR 

filters of minimal computational complexity. A GA based optimisation using a trial selection of 

a combination of filter primitives can lead to an efficient method of FIR filter design generating 

filters of good frequency response and minimal computational complexity [Suckley, 1991]. 

Suckley has used a sequential GA to design a cascaded FIR filter structure that optimises the 

objective function metric based on computational efficiency of the filter. Primitive filter 

components, as defined by Wade [Wade et al, 1990], are used as genes and cascaded primitive 

structures represented a chromosome. A direct design method for FIR digital filters with 

arbitrary log magnitude and phase responses based on obtaining a least-squares approximation 

using a weighted genetic algorithm for each iteration is reported in [Lu and Tzeng, 2000].



Chapter 1: Introduction and Overview of Thesis

Another efficient form of FIR filter realisation exploits the redundancy that exists in the product 

terms of the convolution form representation of such filters in the time domain. The partial 

results of a single multiplication process of a coefficient and a signal sample value can be reused 

to assist in the formation of other product terms. Thus, each inner product in the convolution 

process can be decomposed into a number of primitive arithmetic operations such as additions, 

subtractions and shifts. This can lead to an efficient architecture that comprises an 

interconnection of elementary digital processing elements. The representation of an FIR filter 

multiplication block in the form of an efficient signal flow directed graph using primitive 

operators is a useful methodology for direct form FIR digital filter realisation both in terms of 

its frequency characteristic and hardware implementation [Bull and Horrocks, 1991]. Genetic 

algorithms have been used for the efficient implementation of primitive operator directed graphs 

to provide FIR filter design in consideration of compromises between filter performance, 

complexity and filter order [Redmill and Bull, 1997, 1998]. The use of a hybrid GA 

optimisation for the direct design of frequency selective FIR digital filters based on the 

frequency sampling method is reported in [Harris and Ifeachor, 1998].

The problem of approximating the digital filters designed using infinite precision coefficients by 

using a finite number of bits for real-time realisation has been mentioned in section 1.1. The 

frequency response characteristic of such filters deviates from the original by a finite amount. 

Another issue here is the representation of coefficient values by a significantly reduced number 

of bits so that the filter implementation can be achieved with much improved computational 

throughput. This effort can lead to reduced complexity architecture with savings in memory, 

space and power [Arslan and Horrocks, 1995]. Another work investigated in this area for 

designing FIR digital filters is based on the minimisation of the minimax criterion and the 

normalised peak ripple magnitude using genetic algorithms [Ciloglu, 2002].
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The results of integer programming method for optimising finite word length coefficient FIR 

filter frequency response have been compared with those obtained using a parallel GA [Xu and 

Daley, 1995]. The parallel GA is executed using 16 microprocessors and implemented using 

parallel 'C' language. This effectively involves running 16 sequential GAs running 

simultaneously and linked by the operation of 'migration'. The optimisation metric based on 

weighted pass-band and stop-band deviations showed marginal improvements using the GA 

procedure. Another application of GAs is reported for the case of direct design approach for IIR 

digital filters that consider a hierarchical multi-layer gene structure to represent a chromosome. 

This chromosome structure is formed using a string of control genes representing the filter 

structure that is concatenated with another string of genes representing the filter coefficients. 

The design process attempts to satisfy constraints of; lowest order filter, speed of computation, 

filter stability and frequency response tolerance settings [Tang et al, 1998].

The synthesis of VLSI low power hardware design specifically for digital signal processing 

applications is another area of interest for modern portable communications and computing 

systems. Issues of space, speed and power are important factors in such systems. A high-level 

signal data flow graph (DFG) consisting of functional blocks such as adders, multipliers and 

delays can be used to formulate the DSP design [Bright and Arslan, 2001]. The data flow graph 

is encoded as an individual gene in the chromosome that may be of a variable length. The 

fitness function used here is based on minimising the overall power consumption that is 

dependent on the power consumption of individual DFG gene. In the area of multirate 

quadrature mirror filter banks, a recent work reported in literature uses a genetic algorithm for 

the optimisation of a canonical signed power-of-two (SPT) coefficient lattice structure. The 

genetic operations are constrained such that the canonical property of the SPT is preserved [Yu 

and Lim, 2002].



Chapter 1: Introduction and Overview of Thesis 

1.3 Genetic algorithm used in this work

The GA used in this work was developed for control systems based on the Matlab programme 

[Chipperfield et al, 1993]. The simple GA generic code used in the work described in the 

thesis, remains largely the same. Figure 1.1 shows the generic code. The 'ranking' function in 

the code returns a column vector based on the corresponding individual fitness values and then 

ranks the individuals for minimisation of the objective function. The option selected performs a 

linear ranking with a selective pressure (SP) of 2 [Whitley, 1998]. The fitness value assigned to 

the individuals is calculated according the following formula:

FitnV(Pos) = 2 - SP +2(SP-l)(Pos-l)/(Nind-l) 1.1 

Where 'Pos' is the position of the individual in the sorted population and 'Nind' is the number 

of individuals used.

The high-level function for selection of individuals from the population set and returning the 

selected individuals in a new population is performed by the 'select' function. The low-level 

selection function 'sus' is called by the 'select' function. The 'sus' function is based on a form 

of stochastic sampling method and is implemented by obtaining a cumulative sum of the fitness 

vector, FitnV, and generating a set of equally spaced numbers between 0 and I(FitnV) [Baker, 

1987]. The probability of an individual being selected is given by:

W-NST^- L2

where ffc) is the fitness of individual x,.

10
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NIND = number of individuals; MAXGEN = maximum number of generations;

GGAP = generation gap; INSR = Insertion rate; N = number of sample points;

% Build a field descriptor

FieldDR=define search space

% Create a real-valued initial population

Chrom=crtrp(NIND,FieldDR);

% Evaluate initial population

ObjV=obj_function(Chrom,lb,lc,M,N,n);

gen=0; % Counter

% Generational loop

while gen < MAXGEN

% Assign fitness values to entire population

FitnV = ranking(ObjV);

% Select individuals for breeding

SelCh=select('sus', Chrom, FitnV, GGAP);

% Recombine individuals (crossover)

SelCh^recombinCrecdisVSelCh);

% Apply mutation

SelCh=mutbga(SelCh,FieldDR);

% Evaluate offspring, call objective function

ObjVSel=obj_function(SeICh,lb,lc,M,N,n); 

% Reinsert offspring into population

[Chrom ObjY]=reins(Chrom,SelCh,l,[l INSR],ObjV,ObjVSel); 

% Increment counter 

gen=gen+l 

end

Figure 1.1: A generic Simple GA code in MATLAB

11
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The crossover function is also performed in two stages. The high-level function is 'recombin' 

that calls the low-level function 'recdis'. A number of low-level recombination (crossover) 

options are available. The single or multiple point crossover functions (with and without 

shuffel) are applicable mainly to binary-type variables. The 'recdis' function used in the work 

described in the thesis is a discrete recombination function. The mating process is performed 

between pairs of rows. The 'recdis' function first generates an internal mask table that 

determines which parents contribute which variables to the offspring. On the basis of the 

randomly generated mask table, the variable values are exchanged between the individuals. The 

mutation operator is represented by 'mutbga' that takes real-valued population, mutates each 

variable with a pre-defined probability and returns a new population after mutation. The 

'mutbga' function produces firstly a random internal mask table that determines which variables 

will mutate and also the sign for the step size. A second internal table generates the normalised 

mutation step size. The mutated variable is worked out as a function of the original variable and 

the step size [Muhlenbein and Schlierkamp-Voosen, 1993]. Finally, the 'reins' function 

performs insertion of the offspring into the current population replacing the parents and 

returning a new population set.

1.4 Aims and Objectives

The main aim of this work is to assess the genetic algorithm technique as an optimisation tool in 

a selected range of digital signal processing (DSP) applications. More specifically, in the field 

of digital filters, the problem of finite word length (FWL) coefficients is considered for 

optimisation. In the field of multirate filter banks, the optimisation of the design issues and 

error problems for perfect reconstruction of the input signal, are considered using genetic 

algorithms.

12
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The objectives of this work comprised the following.

1. To investigate the feasibility of using a simple sequential GA as an optimisation tool for 

a selection of digital signal processing applications and to draw a comparison with the 

results reported in literature where this is possible.

2. To use the hill climber optimisation techniques such as steepest ascent (SAHC), nearest 

ascent (NAHC), downhill Simplex, quasi-Newton and the sequential quadratic 

programming (SQP) constrained optimisation method for the purpose of drawing a 

comparison with the GA optimised results.

3. To test the validity of the GA technique as an optimisation technique in the design of 

multirate filter bank by using it in a hybrid form such as GA optimisation followed by a 

standard gradient and non-gradient based hill climber technique.

The motivation for using genetic algorithms to the design and realisation of digital filters and 

multirate filter banks was the need to generate near-optimal solutions by searching over a fairly 

wide landscape of possible solutions without using computationally intensive and slow, iterative 

techniques. It is believed that the work described in this thesis is the first time that a 

quantifiable measure of performance improvement using GAs for FWL coefficient digital filters 

has been made. This measure is based on a comparison with the results of the filter frequency 

response obtained using simply rounded coefficients and, for the case of FIR filters, also with 

certain statistical bounds arrived at by mathematical analysis of the quantised coefficients [Chan 

and Rabiner, 1973]. Further comparison of the GA optimised results for FWL coefficient 

digital filters is based on the optimised results using the 'steepest' and 'near' ascent hill climber 

techniques [Mitchell, 1996].

13
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It is also believed that GAs have been used for the first time in the optimisation of multirate 

filter banks. For the case of a 2-channel uniform quadrature mirror filter bank, the contribution 

of the work in this thesis is the GA optimisation of the parameters of the transformation function 

required in the design of the QMF bank using the transformation of variables method [Tay, 

1998]. This leads to the determination of optimal coefficients of the HR analysis and synthesis 

digital filters. Furthermore, the FWL coefficients are optimised using a second stage GA. The 

optimised filter bank is first tested using the SIMULINK Matlab programme and then 

implemented on a TMS320C50 fixed point digital signal processing kit [TMS 320C5x DSK, 

1997] for real-time testing for a number of coding options.

For the case of non-uniform filter banks, significant constraints exist for satisfying the perfect 

reconstruction property. However, for real signals, the ensemble average of energy varies 

significantly in different frequency bands that do not easily conform to the requirements of the 

constraints for PR. A number of constraints are thus relaxed causing significant amplitude and 

aliasing distortions. It is believed that this thesis contains the first explicit method using GAs, 

for optimising the overall non-uniform filter bank transfer function by perturbing the cut-off 

frequencies of the prototype low-pass filters individually. This procedure overcomes the 

problem of reconstruction errors by reducing the amplitude and aliasing distortion in a 

combined manner. Some design examples of a maximally decimated, non-compatible set, for 

non-uniform filter banks using FIR filters have been considered and tested using Simulink 

toolbox of Matlab.

14
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1.5 Overview of the thesis and the contributions

The structure of the thesis follows the description of the work covered in section 1.1 above. An 

introduction to the genetic algorithm used for optimisation in the main body of the work is 

followed with the theoretical and optimisation issues for the various digital filtering processes. 

The FIR and IIR digital filters are first investigated followed by the uniform multirate 

quadrature mirror filter bank. An investigation of the modal property of the QMF bank 

objective function is conducted and a comparative analysis of the performance of different 

optimisation procedures is also considered. This is followed with the investigation of a class of 

uniform and non-uniform multirate filter banks and their optimisation using GAs. Finally, the 

conclusions from the work covered and described in the thesis are drawn and recommendations 

made.

Chapter Two describes the finite word-length coefficient problem of FIR filters and discusses 

issues of statistical bounds. The objective functions are defined for various filter types such as 

low-pass, high-pass etc. and GA optimised results are compared with the results obtained using 

the integer programming method. Chapter Three discusses aspects of IIR filter design and 

structure type such that coefficient finite word-length effects are minimised. Stability issues are 

also discussed and considered in the GA optimisation of such filters. Since coefficient finite 

word length constrained statistical bounds are not known for IIR filters, a comparison of GA 

optimised results is made with the simply rounded-valued coefficients of the filter. A range of 

FWL coefficient bits starting from a high number of bits to a fairly low number, have been used 

to test the advantage of the GA optimised results compared to the simply rounded coefficients.

Chapter Four reviews the theoretical issues of the transformation of variables design of the 

quadrature mirror filter bank with perfect reconstruction property. The analysis and synthesis

15
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filters are designed using causal, stable IIR filters that exhibit a linear phase characteristic. The 

GA optimisation of the parameters used for the transformation is also covered here including a 

comparative analysis of the optimisation results with and without the use of GAs. Further study 

in this chapter covers the aspects of practical implementation of the optimised QMF bank. The 

computationally efficient method of polyphase decomposition of the QMF bank is discussed 

and also used in the implementation both in the simulated results and for real-time testing on the 

TMS302C5x digital signal processing hardware kit. A number of possible coding gain options 

are implemented and tests conducted using the 'mean opinion score' procedure.

In Chapters Five and Six, the theoretical issues of multiple M-channel uniform and non- 

uniform, multi-band multirate filter banks are discussed respectively. The constraints for 

perfect reconstruction are also investigated and some of these constraints are relaxed. This 

leads to the generation of amplitude and aliasing distortions that are minimised by using a 

hybrid approach combining firstly the a GA search over a wide landscape and then using the 

standard quasi-Newton and downhill Simplex method on the most promising near-optimal 

solution. The optimised examples of the uniform and non-uniform filter banks based on FIR 

filters are tested using the Matlab Simulink package. Finally Chapter Seven reviews the thesis 

and summarises the conclusions from the work presented in the thesis. It also makes 

recommendations for further work. Appendix A contains copies of four conference papers that 

have been published during the course of the work described in this thesis.

The main focus and contribution of this thesis is the study and application of the genetic 

algorithm optimisation method in the area of digital filters and multirate filter banks. More 

specifically, the following contributions are claimed.

16
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• A real integer-valued genetic algorithm code has been developed for the optimisation study 

of finite word length constrained coefficients of FIR digital filters. Some comparative study 

has been investigated and reported.

• Real integer-valued genetic algorithm codes have been developed for the optimisation of the 

finite word length constrained coefficients of 11R digital filters. The direct form and the 

second order cascade form structures have been considered and extensive range of new 

results obtained.

  A real-valued genetic algorithm code has been developed for the optimisation of the design 

of a class of quadrature mirror filter bank that has a perfect reconstruction property. For a 

comparative study with other standard methods, this GA code was further enhanced to 

include a 'creep' code option within the main GA code that uses a 'tumbling-like' 

minimisation algorithm.

  The new GA optimised design of the QMF bank was implemented on a real-time 

TMS320C50 digital signal processing starter kit. Tests were conducted using the Mean 

Opinion Score metric for telephone quality signals.

• A real-valued genetic algorithm code has been developed for the optimisation of design of a 

uniform maximally decimated M-channel filter bank. The process involved marginally 

perturbing the prototype filter parameters for optimal results.

  Real-valued genetic algorithm codes have been developed for the optimisation of the non- 

uniform M-channel maximally decimated filter banks using integer decimators. Multiple 

low pass prototype filters are used in the design stage. The hybrid optimisation process is

17
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applied to the entire network of the non-uniform filter bank. The minimisation of the 

magnitude and aliasing errors is thus achieved in a combined manner.

18
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Chapter 2: Finite word length optimisation of FIR filters

Overview of Chapter 2: This Chapter starts by considering the filter coefficient finite word 

length (FWL) problem in regard to the finite impulse response digital filters. Some theoretical 

issues and statistical error bound conditions of the maximum deviation between the exact and 

the approximate magnitude responses are also considered. The GA optimisation results for the 

maximum error bounds and error deviation due to FWL effects for a number of design examples 

are investigated. Finally, a comparison is drawn between the simply rounded, the GA 

optimised, integer programming method and the simple hill climber methods.

2.1 Introduction

The work described in this chapter starts with the discussion on the specific issues of finite word 

length constraint for digital filters in general and more specifically for the case of finite impulse 

response (FIR) filters. The analysis of simple and statistical bounds for FWL coefficients of 

FIR direct form filters is reviewed and used for a comparative study with the GA optimised 

results. A number of objective functions for the various structures of the FIR filter such as low- 

pass, high-pass etc. are also defined with the view to practical significance of the optimised 

frequency response. The optimisation problem of FWL coefficients of FIR filters obtained by 

rounding the 'infinite precision' coefficients has been investigated previously [Avenhaus, 1972], 

[Kodek, 1980], [Kodek and Steiglitz, 1981]. A comparative study for the case of a FIR filter 

coefficient optimisation using the integer programming method and GA optimised results using 

the specific code developed for the work in the thesis is covered in this chapter. Furthermore, a 

small selection of filters was tested using the simple hill climber techniques and the optimised 

results are compared with the GA optimised results.
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2.2The finite word length problem

The finite word length effect in digital filter implementation causes errors in their realisation in 

a number of ways. The analogue to digital conversion of the input signal causes quantisation 

noise that is well understood as considered in pulse code modulated systems. Using additional 

number of bits to represent sampled signal values can reduce the effect of these errors. The 

filter coefficient quantisation errors are due to representing the filter coefficients with a limited 

number of bits for real-time, fixed point processing of the signal. This error has an adverse 

effect on the transfer function of the filter and in some instances the frequency response may 

vary significantly from its original form (see Figure 2.1). The third form of error is due to the 

round-off errors in the arithmetic operations. This occurs by discarding say the lower order bits 

before storing the results of multiplication. The effect of this error is the reduction of signal to 

noise (SNR) ratio and is constrained by the type of arithmetic used. Lastly, the arithmetic 

overflow problem occurs when partial sums or filter output exceeds the maximum number of 

bits allowed by the system. This results in an incorrect interpretation of the output sample 

value. This form of error is overcome by appropriate scaling of the coefficient values.

-

1 O1 O2 O 3 04 O 5 OB O 7 08 O 9 1

Frequ»ney (pi)

Figure 2.1 Effect of coefficient quantisation on frequency response of digital filters.
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The error due to coefficient quantisation can be reduced in practice by applying optimisation 

techniques that allow for efficient means by which the quantised coefficients are perturbed by a 

small amount that leads to a closer approximation of the new frequency response to the original 

response. The work covered in this thesis considers this type of problem and a study of the use 

of genetic algorithm as an optimisation tool is investigated by using a number of metrics for a 

comparative analysis.

2.2.1 Finite word length coefficient effects in FIR filter realisation

The first stage in the realisation problem of a FIR digital filter is the design of the filter that 

approximates the original specifications. This process leads to the calculation of high precision 

filter coefficients in the transfer function of the approximated filter. The second stage of the 

filter design involves its realisation either on a digital hardware system or as a software 

programme to implement the input/output relationship as prescribed by the filter transfer 

function. For a given transfer function, there may exist many different forms of structures for 

implementing and/or programming the digital filter. In the case of FIR filters there are a 

number of different types of filter structures of which the most commonly used is the direct 

form. Others are; fast convolution, frequency sampling, transpose and cascade structures. The 

choice for selecting a particular structure for a specific application can depend on several 

factors. These are; sensitivity to errors in the filter coefficients, ease of programmability for a 

particular processor, immunity to signal quantisation etc.

A simple 3-length FIT filter can be represented by a transfer function H(z) given by

H(z) = h0 + h,z- 1 + h2 z-2 2.1 

Where h0, h,, h2 are the filter coefficients and z" 1 represents one unit time delay.
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The difference equation that provides the output condition is given by the convolution operation

of

y(n) = h0 x(n) + h, x(n-l) + h2 x(n-2) 2.2

The direct calculation of Equation 2.2 can be represented by a block diagram shown in Figure 

2.2 and is called the direct or transversal structure. This form of structure is most commonly 

used in practice due to its robustness and its ease of programming and efficient implementation 

on most DSP devices. Such DSP devices are specifically designed and include machine code 

instructions that are tailored for efficient FIR transversal operations [Ifeachor and Jervis, 1993], 

[Parks and Burrus, 1987]. For this reason, only the direct form structure is considered for study 

in this work.

x(n)
x(n-l) x(n-2)

y(n)

Figure 2.2 Direct form FIR filter structure of length 3.

The calculation of the output condition of the FIR filter given by Equation 2.2 involves working 

out the products of the coefficient values and the past and present input signal values. In 

practice, real-time implementation and realisation of FIR filters is often involved with the use of 

fixed-point digital devices that are designed for optimal throughput of FIR filtering operations. 

This condition imposes a restriction on the number of bits that can be used to represent the 

signal data value, the filter coefficients and the results of arithmetic operations. For efficient 

computational throughput and to limit the cost of the DSP device, the number of bits used to
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represent the various values must be small. This restriction leads to the problem of finite word 

length effects in the filter realisation and in general, degrades the performance of the filter when 

compared with the original design. The study in this thesis considers the specific problem of 

FWL coefficients and seeks to optimise the frequency response of the filter by picking the best- 

quantised coefficients. The realisation of FWL FIR filters is normally executed on fixed point 

DSP devices that are usually cheaper than their floating-point counterparts. There are also 

advantages for fixed-point devices in terms of smaller silicon space, less number of external 

pins, lower power dissipation and faster clock cycle times. Such fixed point FWL devices find 

applications in digital audio systems, speech processing and compression and in mobile 

communications. The study in this chapter is thus restricted to the use of quantised coefficients 

for fixed-point devices and the calculations involved are based on fixed-point arithmetic.

The most commonly used method of deriving FWL coefficients for fixed-point arithmetic is the 

direct quantisation method. In this method, the high precision coefficients that are derived using 

standard filter design techniques are first rounded to yield FWL quantised coefficients. The 

starting solution of quantised coefficients is thus given by

hri = roundfhei 2B''] i=0,l,2,.........,N-l 2.3

Where 'hri ' is the rounded coefficient, %;' is the high precision coefficient, 'B' is the number of 

bits used to represent the coefficients and 'N' is the filter length. The representation of a high 

precision coefficient value of say 0.762345 in a 5-bit rounded form is thus given by hr = 

round[0.762345 x 24] = round[ 12.19752] = 12. This value, in a fraction form is represented by 

12/24 = 0.75. Thus a new set of coefficient values are derived that generate the 'rounded' 

frequency response of the filter. It must also be noted that for fixed-point devices, two's 

complement arithmetic is most commonly used and the most significant bit in the above
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example of a 5-bit representation is the sign bit. The largest positive number is then +15 and the 

largest negative number is -16. This form of numbering system is the only one used and 

considered in this work mainly due to its application later (Chapter 4) on a fixed-point DSP 

device based around Texas Instrument's TMS320C50 processor that stores numbers in a two's 

complement integer format. Furthermore, the work of Kodek and Steiglitz [1981] that has been 

used for comparative purposes in this chapter also use the two's complement integer format for 

representing the coefficient values of the designed FIR filters.

2.2.2 Finite word length coefficient quantisation

The exact representation of a direct form non-recursive or FIR filter is of the form:

N-l

y(n) = ^ h(m) x(n - m) 2.4

where x(n) = input signal

y(n) = output signal

h(m) = coefficient value of the filter 

and N = filter length (total number of coefficients)

For quantised values of the coefficients then the output signal is modified to:

y(n)=]Th(m) x(n-m) 2.5
m=0

where h(m) = quantised coefficient value

The error signal e(n) is then given by

e(n) = y(n)-y(n) 2.6

N-l

or e(n) - £ {h(m) - h(m)} x(n - m) 2.7
m=0
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In terms of the frequency response, the system transfer function with quantised coefficients is 

given by

H(o>)= Zh(m)e- j2'Ifm + Z{h(m)-h(m)} e' J2* fm 2.8
m=0 m=0

or H(<o)= H(co)+E(co) 2.9 

where E(oo) is the transfer function of the error signal and H(oo) is the transfer function of the 

unquantised exact system.

The magnitude of the frequency response of the error signal is bounded by the inequality

|E(o))| < N max|{h(m)-h(m)}| 2.10 

When the coefficients are rounded to B bits, including the sign bit, then

max|{h(m)-h(m)}| =TB 2.11 

then, |E(oo)|< N 2'B 2.12

Also note that the bounded value of Equation 2.12 has been derived for the case of arbitrary 

phase FIR filter i.e. no coefficient symmetry is assumed. However, a symmetrical spread of the 

coefficients taken from the central point is a typical characteristic of linear phase FIR filters. 

This is a special case for the derivation of error bound of Equation 2.12 and therefore, the same 

error bound as given by Equation 2.12 also applies to the case of linear phase FIR filters.

The upper bound of the magnitude of error signal from Equation 2.12 gives a worst case limit 

and is overly pessimistic. For this reason, statistical error bounds have been developed that give 

a more realistic measure of the bounded limits [Chan and Rabiner, 1973]. The statistical 

analysis of the filter response errors is based on the assumption that errors due to different
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coefficient quantisations are statistically independent and that each error is uniformly distributed 

in the range -Q/2 and +Q/2 where Q is the quantisation step size. This assumption leads to the 

deduction that the error signal will have a zero mean and a variance of Q2/12 which is consistent 

with rounding of sampled signal values in pulse code modulated systems. Two error bounds are 

derived based on statistical analysis. These are: 

i) for linear phase FIR filter

2 - 13

ii) for arbitrary phase FIR filter

2.14

where GEL (o) and CT^ (co) are the standard deviation of the errors respectively.

2.2.3 Some practical considerations for filter design

Filter design problems in general, involve finding a filter with a frequency response, which 

approximates that of an ideal filter response within a specified amount of error. More 

specifically, for band select filters, several bands may be defined for which error bounds are also 

specified. In this part of the study, only band select filters will be considered although, this 

restriction does not in any way affect the possibility of generalising the optimisation ideas and 

test metrics used for a comparative study.

Let D(oo)be some real, idealised band-select function that is desired to be approximated by the 

exact frequency response of a linear phase FIR filter denoted by the transfer function H(co) . 

The desired function D(a>) consists of a number of disjointed frequency bands Qk e [0,Ji]. 

where k=l,...,M such that for each k, D(ot>) is to be approximated to within a specified error
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bound 5(k) for all coeQk. The frequency band Cik is separated by M-l transition bands where 

the filter frequency response remains unconstrained. This assumption can lead to severe 

excursions from the high-precision design of frequency response H(co) when coefficient 

quantisation, especially low-bit form of representation is used. This effect has been 

demonstrated in an example of the optimised response shown later in this section.

For D((o) to be the desired response in the specified frequency bands, then

Max |H(co)|-D(co) = 8(k) for coeQk

Now for all CO

thus

|H(co)|-D(co)

| H(OJ) | - D(co) < max | EL (CD) | + 5(k)

|H(co)|-D(co)

where EL (co)= | H(co) | - 1 H(co) | 

Also, it is assumed that in all probability

|EL (co)| < 20e

where cre = max GEL (ff>) =
Q J2N-1

then,

|H(co)|-D(co) 5(k) for co

or

max for coeQk

2.15

2.16

2.17

2.18

2.19

2.20

Where Q = 2"B and B is the number of bits including the sign bit. Note that the upper bound of 

Equation 2.20 is valid provided that the infinite precision filter conforms to the design
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requirement stipulated in Equation 2.15. For conducting a comparative study, the metric of 

Equation 2.20 over the selected frequency bands will be considered. A comparison is drawn 

between the GA optimised and the integer programming method of optimisation.

2.3 Objective functions for filter optimisation

The generalised objective error function 'F' to be minimised can be represented in the form

L m

F = £(|Hii -H i | 2 w i ) + w£(|^-Oj | 2 ) 2.21
1=0 j=k

where the first part of Equation 2.21 is the magnitude squared error and the second part is the 

phase squared error with W being a weighting fraction. It is also possible to apply weightings w; 

to the individual magnitude errors at frequencies m/L for i = 0, 1, 2, ..., L. Such individual 

weightings can be adjusted to give a better control for biasing the optimisation procedure 

towards the preferred design specification. 

Also,

Hei = Magnitude response of exact filter at frequency irc/L.

H, = Magnitude response of finite word length filter at frequency iit/L.

®ej - Phase response of exact filter at frequency jrc/L.

<J>j = Phase response of finite word length filter at frequency jrc/L.

A different suitable objective function for the finite word length problem is

J<°--Me jro " 2 W 2.22
m=0

where

M(ei "n) = complex response finite word length filter at frequency ton 

= complex response of exact filter at frequency con .
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Here the objective function is the sum of the squared error of the complex response M(eju") 

compared to the desired response M^e*""), over the frequencies »i, co 2 , ..., CO L where co, = 0 and 

CQ L - t. Note that the complex responses M(e)Q>n) and Md(e)<0n) contain both magnitude and phase 

information. Also, weightings Wm can be added for a proper bias of the optimisation procedure. 

Objective function of Equation 2.22 is biased towards finding an optimum solution both in 

magnitude and phase for the range between 0 and n and can yield a good solution in most cases. 

The objective functions of Table 2.1 offer more flexibility by allowing the removal of the stop- 

band frequencies for the phase response and hence relaxing the optimisation requirements. 

These can be used in difficult cases where Equation 2.21 fails to give an acceptable solution.

For FIR filters, phase linearity is ensured if the coefficients are symmetric around the mid-point 

coefficient(s). If the optimisation procedure of a FIR filter is designed to preserve the 

coefficient symmetry then there is no need to optimise for phase, because the phase response 

linearity will not be affected. Therefore, for the FIR case, the simple objective function shown 

in Equation 2.23 is adequate.

F = Z|H ei -H,| 2 w - 2 - 23
i=0

2.4 Optimisation of FIR filters using genetic algorithms

The Matlab programme f ir_ga .m shown in Appendix B performs the GA optimisation of the 

direct form FIR filter by preserving the symmetrical form of the coefficients thereby generating 

linear phase response of the optimised filters. A utility programme f ir_ob j . m calculates the 

error objective function that is minimised over successive generations. Furthermore, the 

procedure for crossover, inherent in the discrete recombination operator 'recdis', was found to
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be adequate for generating sufficient randomness in the population set so that the 'mutation' 

function in the programme was not of any benefit and thus not used in the main GA code for 

this application. The GA programme shown in Appendix B uses certain parameters that can 

influence the performance of the genetic algorithm and are explained below.

Peak variance 'BASE': BASE is an integer number indicating the maximum peak variance of 

the population individuals, compared to the original scaled and rounded coefficients. A value of 

1 is suitable for most cases, but values of 2 or 3 or more can be used in some situations.

'Preserve Pattern' option: This option is activated when PRSZ = 1 and de-activated when 

PRSZ = 0. It is useful when optimising filters for which the zero-valued coefficients need to be 

preserved during optimisation.

Generation gap 'GGAP': If fewer individuals than the original population are produced by 

reproduction and crossover, then the fractional difference between the old and new population 

sizes is called generation gap. This can have a value between 0 and 1.

Insertion Rate 'INSR': INSR lies between 0 and 1 and indicates the percentage of the 

offspring (newly produced generation) that is re-inserted back into the old population. The 

operation of re-insertion is necessary in order to maintain the same number of individuals in 

successive generations, if a generation gap exists.

Number of frequency points 'L': This is the number of frequency points where a comparison 

between the exact and the test response is performed.
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2.4.1 The methodology and pseudo GA code for FIR filters

The simple genetic algorithm used in the optimisation of FWL quantised coefficients of FIR 

filters is based on the standard techniques of generating the initial population of individuals 

followed by objective function calculation, ranking and crossover. No mutation operator was 

included in the algorithm as initial tests indicated no beneficial outcome of this operator for this 

optimisation problem. The GA used is a Matlab based toolbox designed and developed by 

Chipperfield et al [1993]. A number of standard functions are included in the toolbox that are 

indicated here by bold letters. For example crtrp(Nind, FieldDR) is a function that creates a 

random real-valued population of number of individuals 'Nind' with perturbation range of 

'FieldDr' for each variable. The description of each stage of the GA process is as follows.

1) Generating initial population

The first step is to obtain the rounded integer valued coefficients from the design of the 

specified FIR filter that generates real-valued coefficients. The design option selected in this 

application is the 'remez' function of the Signal Processing toolbox of Matlab. This function is 

based on the Parks-McClellan optimal FIR filter design algorithm and is one of the most widely 

used FIR filter design technique. The filters designed using the 'remez' function are optimal in 

the minimax sense i.e. the maximum error between the desired and the actual frequency 

response of the filter is minimised. The integer programming optimised results of Kodek and 

Steiglitz [1981], with which the GA results are compared, also use the 'remez' function for the 

design of the FIR filters. It must be recognised that there is no loss of generality of the GA 

optimisation process if the initial design of the FIR filter is based on other standard design 

techniques. Some of these are the classical windowed technique used in the 'firI' function or 

the weighted, integrated squared error minimisation used in the 'firls' function of the Matlab 

signal processing toolbox.
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The design process for the FIR filters generates a set of coefficients of the form shown in 

Equation 2.1. The set of rounded integer valued coefficients are then derived using the Equation 

2.3. This coefficient set forms the chromosome representation for GA optimisation. The 

population set of individuals is then generated using the crtrp function of the GA toolbox by 

randomly perturbing each rounded coefficient by +1, 0 or -1. This range of perturbation is 

obtained using the base value BASE=1. Increasing the base value to say 2 can extend this range 

and thus the search space. The random perturbation of coefficients will then be +2, +1, 0, -1 or 

-2. It must be noted that an appropriate choice of the base value depending on the filter length 

and the number of bits being used to represent the coefficients, is an area that needs further 

research. For this study, an initial trial of several different filters using base value of 1, 2 and 3 

was conducted. The test results for a population size of 100 over 10 generations, consistently 

generated good results for base value of 1. An extensive range of search space could have been 

tested over larger population size and greater number of generations. However, the motivation 

for using GAs in this study was to test this optimisation process as a general framework against 

other methods and to draw a comparative measure.

2) Objective function evaluation

The main purpose of the optimisation process is to minimise the objective function with the 

specific aim of obtaining an approximated frequency response of the filter that is as close as 

possible to the desired response. The discrete search space for the example filters considered in 

this chapter can be calculated using the filter lengths and the base value used for coefficient 

perturbations. The filter length ranges from 15 to 35 and since these are linear phase filters then 

the actual number of coefficients that will be affected ranges from 8 to 18. The discrete search 

space for a base value of 1 is then 3 8 = 6561for filter length 15 and 3 18 = 387420489 for filter 

length 35. This search space increases substantially when the base value is increased to 2. The
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GA used for optimisation conducts 100 objective function evaluations initially followed by 80 

evaluations over 10 generations. This makes a total of 900 evaluations using the base value of 1.

The objective function is calculated for 500 equally spaced frequency grid points. An example 

filter specification of a band select filter on a normalised frequency scale where Nyquist 

frequency = 1.0, is of the form:

Pass band range = 0 to 0.4 desired response = 1 .0

Stop band range = 0.5 to 1.0 desired response = 0 

The objective function is then evaluated using the following.

ObjV= J Z |1 - H ip | 2 + El H; | 2 L + 10 max Jmax |1 -H, | , max | H, | L 2.24'=°
Where H^ = magnitude response of GA optimised filter at frequency ip in the pass band 

H,s = magnitude response of GA optimised filter at frequency is in the stop band 

L = number of frequency grid points (=500) 

p = pass band cut-off point (=0.4 L) 

s = stop band cut-off point (=0.5 L)

A combination of the summation of squared deviations and a weighted maximum deviation as 

seen in Equation 2.24 generated good overall frequency response that did not show the effects 

of skewing that was observed during initial trials when only the maximum deviation was used to 

optimise the objective function.

3) Fitness value and ranking

The Matlab based ranking function of the GA toolbox ranks the individuals according to their 

objective function values 'ObjV and returns a column vector consisting of the corresponding 

fitness value 'FitnV of the individuals. This function performs a linear ranking with a selective
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pressure (SP) of 2 [Whitley, 1998]. The fitness value assigned to the individuals is calculated 

according the following formula given by Equation 1.1 in Chapter 1.

4) Selection of individuals for breeding

The high-level function for selection of individuals from the population set and returning the 

selected individuals in a new population is performed by the 'select' function. The low-level 

selection function sus is called by the 'select' function. The sus function is based on a form of 

stochastic sampling method and is implemented by obtaining a cumulative sum of the fitness 

vector 'FitnV and generating a set of equally spaced numbers between 0 and S(FitnV) [Baker, 

1987]. The probability of an individual being selected is given by Equation 1.2 in Chapter 1.

5) Recombining individuals - crossover

The crossover function is also performed in two stages. The high-level function is recombin 

that calls the low-level function recdis. The recdis function is a discrete recombination 

function. The mating process is performed between pairs of rows. The recdis function first 

generates an internal mask table that determines which parents contribute which variables to the 

offspring. On the basis of the randomly generated mask table, the variable values are exchanged 

between the individuals and return a new population after mating.

6) Reinsert offspring into new population

The new population set generated after crossover is subjected to the objective function 

evaluation of each new individual. On the basis of their fitness, the offspring are selected for 

reinsertion into the new population. The objective function values are then copied according to 

the reinserted offspring and the GA loop is then repeated for the next generation.

A pseudo GA code for FIR filter optimisation and for the objective function are shown in 

Figures 2.3 and 2.4 respectively.
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% GA optimisation of FWL coefficients FIR digital filter

% filter specifications and design

b = remez(ne,f,m); % filter design using remez algorithm

% GA parameters

[M,w]=freqz(b,l,L);

coefs=[round((2An)*b(l:lc))]; % rounded coefficient values |||

% Build field descriptor FieldDR

% Initialise population .^....f^^iiSW- 
Chrom=round (crtrp {NIND, FieldDR) ) ; '''iilfiiiK^

% Evaluate objective function of initial population :^3-Syi*T'ff. 
ObjV=fir_obj (Chrom, Ib, lc,M, L,n, R, fp, f s) ; ^l||:il||

gen=0; % ' counterWlfSJlfl^r'"  ::SP^*P;W^

% Generational loop 0;i:;:: : :,::,:.:.:: .   :&&;p:;;s:« '..:: 
while gen < MAXGEN ffl4<p- ''SpS^IS :--.., ..

%Assign fitness values to entire population 
FitnV = ranking(ObjV);

%Select individuals for breeding ,;;,, ,is , ; -.. ;; ..ifsxiK •.», mti:,mi, : .. !;; ;. ;i: ., :. ,> ; ;; : || 
SelCh=select('sus', Chrom, FitnV, GGAP)

%Recombine individuals (crossover) ".,.'. :;,: . K .;;.-,.;...; 
SelCh=recombin (' recdis', SelCh) ; :|l^l|p||:lK;y:

%Evaluate offspring, call objective function 
ObjVSel=fir_obj(SelCh,lb,lc,M,L,n,R,fp,fs) ;

%-Reinsert offspring into population
[Chrom ObjV]=reins(Chrom,SelCh,1,[1 INSR],ObjV,ObjVSel);

%Increment counter
gen=gen+l;
[m, z]=min(ObjV);
OBJ=ObjV(z,l) ;
end !' -' : ' '-';- . :   

Figure 2.3 Pseudo GA code for finite word length coefficient optimisation of an FIR digital 
filter
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% Objective function
function f=fir_obj(Chrom,lb,lc,M,L,n,R,fp,fs);

(GA,wJ=freqz(bb/(2 A n),l,L); 
GA=abs(GA); 
GAp=GA(l:(fp*L)); 
GAs=GA((fs*L);L);

% obj ective function
f (i,l)=(sum{(abs(1-GAp)). A 2)+sum( (abs(GAs)). A 2))+10*max{(max(abs(1-
GAp))) ,max(abs(GAs))) ;

% alternative objective function
% f(i,l)=max((max(abs(1-GAp))),max(abs(GAs)));
end;

Figure 2.4 Objective function pseudo code called by the main GA code for FIR digital filter

2.4.2 Example FIR filter for GA optimisation over all o>

This section deals with the GA optimisation of the direct form filter coefficients for the case of 

linear phase and of the arbitrary phase FIR filters over all GO . The maximum deviation |E( co)| is 

determined over all 00 in the range 0 < co < n. The deviation |E( oo)| is derived from the error 

transfer function given by Equation 2.9 and represents the difference between the ideal filter 

response (using infinite precision coefficients) and the quantised coefficient filter response. The 

statistical bounds for the standard deviation of the error signals for linear phase and arbitrary 

phase FIR filters are given in Equations 2.13 and 2. 14 respectively. It is conjectured here that 

the max |E(oo)| value for all co will 'in all probability' be 3 times CT£-(OO). The max |E(o>)| 

deviation is then given by

max|E(oo)|L = 3 -- 2.25
jlr

for linear phase 

and
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maxiE(<D)U = 3 — ,/— 2.26 
2 V 3

for arbitrary phase

The example FIR filter used to test the validity of the error bounds of Equations 2.25 and 2.26 is 

designed using the Parks-McClellan (minimax) algorithm. The MATLAB function 'remez' is 

used to calculate the coefficients for this filter design. 

The filter parameters used are

Filter length = 20 (total number of coefficients)

Frequency band edges = [0 0.4 0.5 1]

Desired magnitude response = [1 100]

Weighting function = 1 (both for pass and stop bands) 

The GA parameters used are

Number of individuals (NIND) = 100

Maximum number of generations (MAXGEN) =10

Generation gap (GGAP) = 0.8

Insertion rate (INSR) = 0.8

Peak variance of integer coefficients (BASE) = 1

Number of bits (B) =5

Frequency axis number of points = 500

The error objective function used for optimisation is given by Equation 2.24

Case 1 - Linear Phase FIR filter

The magnitude response of the rounded coefficient value and GA optimised filter for a 5-bit

coefficient representation is shown in Figure 2.4. The phase response is not included here, as
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this will be linear because of the symmetrical coefficients used for the optimisation process. 

Figure 2.5 shows the magnitude error max |E(0))|£ for the rounded coefficients, the GA 

optimised coefficients and the bounded value given by Equation 2.25.

1.5

1

0.5

o i

1.5

1

O.5

exact response 
rounded coeff.

O.2 O.4 O.6 O.8

exact response 
GA opt._____

O.2 O.4 O.6 
frequency (pi)

O.8

Figure 2.5 Magnitude response of simply rounded and GA optimised coefficient filter.

0.7

0.6

0.5 -

GA opt. 
rounded coeff 
bounded

6 7 
number of bits

Figure 2.6 Comparison of error magnitudes max |E( co )|L
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The rounded and the GA optimised coefficients are obtained respectively as 

h(rnd) = 0-1-1010-1-13773-1-1010-1-10 

h(GA-op)L = 00-1010-1-13773-1-1010-100

Case 2 -Arbitrary Phase FIR fitter

In general, non-symmetrical coefficient, i.e. arbitrary phase FIR filters are not used in practical 

applications due to the requirement for doubling the memory space to store the relevant 

coefficients and also the loss of phase linearity. However, there may be useful application of 

such filters for low-bit low-order implementation leading to computationally efficient, low 

power systems. For this reason, a GA optimisation code was developed with minor 

amendments to the code of Appendix B using the same filter characteristics and GA parameters 

as shown above in this section. The magnitude response of the rounded coefficient filter and of 

the GA optimised filter is shown in Figure 2.6 that also includes the phase response of the GA 

optimised filter. The number of bits used for the coefficients of this filter is 5. Figure 2.7 shows 

the magnitude error max |E((0)|^ for the rounded coefficients, the GA optimised coefficients 

and the bounded value given by Equation 2.26.

exact response 
rounded coeff.

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

exact response 
GA opt.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.7 Magnitude response of simply rounded filter (a), GA optimised filter (b) and phase 
response of GA optimised filter (c).
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0.7
-e- GA opt.
-+- rounded coef.
--G3-- bounded value

6 7 
number of bits

Figure 2.8 Comparison of error magnitudes max |E(co)|^

The rounded and the GA optimised coefficients are obtained respectively as 

h(rnd) = 0-1-1010-1-13773-1-1 010-1-10 

h(GA-op)A = 0-1-1011-1-13673-1-2-100000

The graphs shown in Figures 2.5 and 2.7 demonstrate a good parity between the GA optimised 

results and the bounded value of Equations 2.25 and 2.26 thus suggesting that the original 

conjecture of max |E( co)| = 3 times O-£-((D) is closely valid.

2.4.3 GA optimisation of band select FIR filters

This section deals with the case of band select filters for which the desired response is specified 

over the selected pass and stop bands. The desired function D(o>) consists of a number of 

disjointed frequency bands Qk c [0,7t], where k=l,...,M such that for each k, D(o>) is to be
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approximated to within a specified error bound 8(k) for all CD eQk In order to conduct a 

comparative study, the 10 filter examples used by Kodek and Steiglitz [1981] for coefficient 

optimisation based on integer programming method are also used here. The 10 filters are 

divided into 4 sets of filters as shown in Table 2.2. The filter coefficients for the 10 filters are 

shown in Table 2.3. The representation such as A15/5 denotes A-range filter of length 15 using 

5 bit coefficients. The integer programming method optimised coefficients have been taken 

from [Kodek and Steiglitz, 1981].

Table 2.2
Sets of Filter Specifications

Filter

A: range
Weighting:

Desired value:

B: range

Weighting:

Desired value:

C: range

Weighting:

Desired value:

D: range
Weighting:

Desired value:

Pass-band

0 to 0.4
1
1

0 to 0.4

1
1

0 to 0.24
1
1

1 to 0.24
1
1

Stop-band

0.5 to 1.0
1
0

0.5 to 1.0

10
0

0.4 to 0.68
1
0

0.4 to 0.68

10
0

Pass-band

0.84 to 1.0
1
1

0.84 to 1.0
1
1

Table 2.4 shows the results for the maximum error deviation to the desired response for 

and Table 2.5 shows the results for the total summation error relative to the desired

response for all CO eQk . The bounded value used in Table 2.4 is obtained using Equation 2.20. A 

comparison with the integer programming (IP) method clearly shows a distinct improvement for
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the case of GA optimised filters both for the maximum error deviation and for the summation 

error. It is also observed that the bounded value of Equation 2.20 is consistent with the 

maximum error deviation obtained using the GA optimised filters. The GA optimised filters 

have generated slightly lower maximum error deviation values as compared to the value of 

bounded error for all but two of the ten filters namely, the A25/5 and the C15/5 filters. On the 

other hand, the IP optimised filters have better performance compared to the bounded value in 

just two of the ten filters.

The reason for comparison of the total summation error, as shown by results in Table 2.5, is 

useful as this generates a more distinct semblance with the desired response of the filter without 

the possibility of skewing the overall frequency response. Again, it can be seen that the GA 

optimised filters have significantly outperformed those using the IP optimised filters in most 

instances. In comparison to the IP optimised filters, the GA optimised results have marginally 

under performed in one case namely the A15/5 filter, for two other filters namely A25/5 and 

C25/5, the results are identical and for the remaining seven filters, the GA optimised results are 

distinctly superior.

Some example filter responses for filters B25/7 and C25/5 are shown in Figures 2.8, and 2.10 

respectively. It is observed that while the rounded response follows the exact response as is to 

be expected, the GA optimised response follows the requirement of the desired response which 

is 1 in the pass band for the filter B25/7. It is also observed that the optimised filters, as shown 

in Figure 2.10 have significant deviation from the exact response in the transition region. This 

deviation may not be critical for a required design however, it is sufficiently significant for 

consideration of a specific filter response realisation. Figures 2.11 and 2.12 show a comparison 

of maximum error magnitudes against number of bits B for filters A15 and B25 respectively.
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Table 2.3

The filter coefficients of the 10 filters. 'GA-op' denotes GA optimised, 'Rnd' denotes rounded 
and 'IP-op' denotes the integer programming method optimised. Only half the coefficients are 
given due to symmetrical property.

Filter 1: A15/5 
GA-op 750-1-1 1 10 
Rnd 751-1-1110 
IP-op 751-20110 

Filter 2 : A25/5 
GA-op 751-1-1110-10000 
Rnd 751-1-111000000 
IP-op 75 1-1-1 1 10-10000 

Filter 3: B15/7 
GA-op 29 20 3 -6 -3 2 5 2 
Rnd 28 20 4 -6 -3 3 6 3 
IP-op 28 20 3 -7 -5 2 5 3 

Filter 4: B25/7 
GA-op 28 20 3 -6 -3 2 3 -1 -2 0 1 1 0 
Rnd 28 20 4 -6 -3 2 3 -1 -2 0 2 2 1 
IP-op 27 19 3 -6 -3 3 3 -1 -3 -1 2 2 1 

Filter 5 : B35/7 
GA-op 28 20 4 -6 -3 2 3-1-2 0 1 0-1-11100 
Rnd 28 20 4 -6 -3 2 3 -1 -2 0 1 1 -1 -1 1 1 1 0 
IP-op 28 20 4 -5 -3 2 2-1-2 0 1 0-1 02210 

Filter 6: C 15/5 
GA-op 815-10-1-11 
Rnd 915-1-10-11 
IP-op 915-10-1-11 

Filter 7: C25/5 
GA-op 9050-10-101000-1 
Rnd 915-1-10-1100000 
IP-op 9050-10-101000-1 

Filter 8: D15/7 
GA-op 34 4 20 -4 0 -2 -3 2 
Rnd 35 4 21 -3 1 -3 -2 1 
IP-op 34 4 20 -4 0 -4 -3 0 

Filter 9: D25/7 
GA-op 34 3 19 -4 -2 -2 -4 3 1 1 1-20 
Rnd 34 3 19 -4 -2 -2 -4 3 1 1 1-10 
IP-op 34 3 19 -4 -1 -2 -2 3 2 1 1 -1 0 

Filter 10: D35/7 
GA-op 35 3 19 -4 -2 -2 -4 3 11 1-2000 1 
Rnd 34 3 19 -4 -2 -2 -4 3 1 1 1 -2 0 0 0 1 
IP-op 34 3 19 -4 -2 -2 -4 3 1 1 1 -2 0 -1 0 0

0 0 
0 0 
0 0
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Table 2.4
Maximum error deviation relative to the desired response for all CO

filter

A15/5

A25/5

B15/7

B25/7

B35/7

C15/5

C25/5

D15/7

D25/7

D35/7

GA-op

0.1978

0.1873

0.2315

0.0993

0.0637

0.1672

0.1265

0.1483

0.0428

0.0425

Rounded

0.2309

0.2309

0.2813

0.1251

0.0869

0.1873

0.1873

0.2143

0.0651

0.0558

IP-op

0.2002

0.1873

0.3273

0.2157

0.1865

0.1667

0.1265

0.2542

0.1306

0.0668

exact

0.1324

0.0508

0.2797

0.1231

0.0528

0.0596

0.0173

0.2006

0.0570

0.0152

Bounded value 
(Equation 2.20)

0.2296

0.1771

0.3040

0.1547

0.0903

0.1568

0.1436

0.2249

0.0886

0.0526

Table 2.5 
Total summation error relative to the desired response for all co

filter

A15/5

A25/5

B15/7

B25/7

B35/7

C15/5

C25/5

D15/7

D25/7

D35/7

GA-op

6.1843

3.8005

4.5658

0.5421

0.5158

1.7789

1.4342

1.0987

0.2187

0.1556

Rounded

3.5146

3.5146

7.3014

1 .6740

0.7558

2.0507

2.0507

3.6671

0.2359

0.1360

IP-op

5.9662

3.8005

6.8917

2.7130

2.0358

2.9096

1.4342

2.8557

1.2669

0.3666

exact

3.1958

0.3576

7.7252

1.5205

0.2805

0.3663

0.0298

4.3325

0.2327

0.0112
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Figure 2.9 Magnitude response of simply rounded, GA optimised and IP optimised coefficients 
for the case of filter B25/7.
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Figure 2.10 Magnified response of simply rounded, GA optimised and IP optimised coefficients 
for the case of filter B25/7.
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Figure 2.11 Magnitude response of simply rounded, GA optimised and IP optimised 
coefficients for the case of filter C25/5.
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Figure 2.12 Comparison of error magnitudes against number of bits B for filter A15.
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Filter 4 B25
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Figure 2.13 Comparison of error magnitudes against number of bits B for filter B25.

2.5 Simple hill climber techniques and exhaustive search

To test the robustness and accuracy of the GA optimised results, the methods of simple hill 

climber algorithms such as the steepest ascent (SAHC) and the nearest ascent (NAHC) were 

applied to a selection of filters shown in Table 2.4. Random sampling tests for the search space 

as used for the GA optimisation was also conducted. Furthermore, for a small selection of low 

order filters, an exhaustive search was conducted over a matching search space. The hill 

climber algorithms for this search were based on the standard techniques used for binary strings 

[Mitchell, 1996] and adapted for the case of integer valued numbers representing the FIR filter 

coefficients. It must be recognised that the integer valued rounded coefficients of FIR filters are 

derived from real valued coefficients that are represented by a finite number of bits. The hill 

climber technique in this context for real-valued variable is synonymous with the integer valued 

variable. The starting 'seed' individual of an integer valued coefficient set is generated by 

randomly perturbing the rounded coefficients by +1, 0 or -1. The flow chart shown in Figure
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2.14 describes the hill climber algorithm used for this application. In order to maintain parity 

with the GA optimisation, approximately the same number of objective function evaluations 

were performed for the hill climber methods. The hill climber performed a maximum of 90 

objective function evaluations i.e. 9 evaluations (for filter length 15) for each loop running a 

maximum of 10 times. 10 runs of each algorithm, each starting with a different randomly 

generated seed thus generates a maximum of 900 evaluations; the same number as the GA 

evaluations.

The SAHC generates new neighbours by systematically mutating each coefficient randomly by 

+1, 0 or -1 moving from left to right. For example, if the starting randomly mutated 'seed' 

coefficient string is -4, 2, 1, 0 then the neighbours can be -5, 2, 1,0; -4, 3, 1,0; -4, 2, 0, 0 and -4, 

2, 1, 1. For the NAHC algorithm the neighbours are derived by mutating each of the 

coefficients from left to right successively while keeping the previously mutated coefficients. 

For example, if the starting coefficient string is -4, 2, 1,0 then the neighbours can be -5, 2, 1,0;- 

5, 3, 1, 0; -5, 3, 0, 0 and -5, 3, 0, -1. An important observation for the application of the above 

described hill climber algorithms is that the search space for optimisation can extend beyond the 

range of+1 or -1 of the rounded values for each coefficient. This outcome is implicit in the 

evolutionary nature of the algorithms since mutation of the coefficient value occurs for each 

iteration. In this respect, there is a subtle difference when compared with the GA optimisation 

because the search space for GA is confined to +1 and -1 of the rounded coefficient values for 

the results obtained in this study. The hill climbers are thus subjected to a wider search space 

that may or may not be advantageous to the optimisation process. There is a possibility of 

obtaining a superior solution when compared to the GA method, however there is also a danger 

for the search to move towards areas of inferior or local minima solutions. The results of 

SAHC, NAHC, the random sampling and exhaustive search for a selection of the FIR filters are 

shown in Table 2.6 and the filter coefficients are shown in Table 2.7. The results shown with an
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asterisk (*) are the ones for which the search space has deviated greater than +1 or -1 of the 

rounded coefficient values. Note also that the exhaustive search was confined to deviation of 

+1, 0 or -1 of the rounded coefficients.

Save 
Bestold

-^ ——

\ —— ̂

1 IViLUlUUlll Jt-I^VlUJII I^T

t

Evaluate objective function

t

Obtain new neighbours

1
Evaluate objective functions 

Save Bestl

X^Bestl < Bestold\.

Yes No

Figure 2.14 A flow chart for the simple hill climber algorithm.

Table 2.6
Maximum error deviation relative to the desired response for all co

Filter
A15/5
A25/5
B15/7
B25/7
C15/5
C25/5

Exh. search
0.1978
None
0.2208
None
0.1667 _J
None

Random
0.1978
0.3051
0.2322
0.1088
0.1875
0.2468

SAHC
0.1978
0.1873
0.1418*
0.0678*
0.1667
0.1576

NAHC
0.3536
0.2517
0.1972*
0.0740*
0.2796 _
0.2623

GA
0.1978
0.1873
0.2315
0.0993
0.1672
0.1265

Exh. = Exhaustive
SAHOsteepest ascent hill climber
NAHOnearest ascent hill climber
* indicates search space exceeded +1 and/or -1 of rounded coefficient values
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Table 2.7

The filter coefficients of selected filters. Only half the coefficients are given due to symmetrical 
property.

Exh. Sch= Exhaustive
Rand=Random sample
SAHC=steepest ascent hill climber
NAHC=nearest ascent hill climber
* indicates search space exceeded +1 and/or -1 of rounded coefficient values

Filter l:A15/5
Exh. Sch 750-1-1110 
Rand 750-1-1110 
SAHC 750-1-1110 
NAHC 850-2-111-2

Filter 2: A25/5 
Exh. Sch none
Rand 751-2-1001-10000 
SAHC 751-1-1110-10000 
NAHC 751-2-1110-10000

Filter 3: B15/7
Exh. Sch 28 20 3 -7 -2 2 5 2 
Rand 29 19 3 -7 -2 2 5 2 
SAHC 28 20 3 -6 -3 3 5 -1* 
NAHC 28 21 2-5-34 3* 1*

Filter 4: B25/7 
Exh. Sch none
Rand 28 19 4 -6 -4 2 3 -2 -2 0 1 2 0 
SAHC 28 20 3 -6 -3 2 2 -1 -2 0 2 1 -1* 
NAHC 28 20 3 -6 -3 2 2 -1 -2 1 2 0* -1*

Filter 5 C15/5
Exh. Sch 915-10-1-11 
Rand 915-20-1-11 
SAHC 915-10-1-11 
NAHC 915-10 0-1-1

Filter 6 C25/5 
Exh. Sch none
Rand 9050-11-1010000 
SAHC 915-1-10-11100-10 
NAHC 10 1 5 0 0-1-10100 00
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2.6 Discussion of results

Section 2.4.2 covers the results of the maximum deviation between the exact filter magnitude 

response and the FWL coefficient results. Established maximum deviation theoretical bounds 

calculated using the number of bits to represent the filter coefficients and the filter length are 

used to draw a comparison with the deviation obtained by simply rounded valued coefficients 

and the GA optimised FWL coefficients. The case of a linear phase and of arbitrary phase FIR 

filters is considered. The graphical results of the magnitude response of a typical low pass FIR 

filter of length 20 for the linear and arbitrary phase responses are shown in Figures 2.5 and 2.7 

respectively. The maximum deviation error between the exact and the approximate magnitude 

responses for a number of bits ranging from 3 to 10 representing the exact coefficient values is 

shown in Figures 2.6 and 2.8 for the linear and arbitrary phase FIR filters respectively. It is 

clearly seen that the GA optimised results generate the minimum deviation error and is closely 

followed by the theoretically predicated error bounds given by Equations 2.25 and 2.26. The 

simply rounded coefficients generate the worst error. Furthermore, the assumption made in 

section 2.4.2 that the maximum deviation is likely to be three times erg (o>) holds well as is 

evident from the results shown in Figures 2.5 and 2.7.

For the case of band select FIR filters covered in section 2.4.3, the choice of filters shown in 

Table 2.2 were taken directly from [Kodek and Steiglitz, 1981]. These filter coefficients were 

optimised using the GA code developed for this study (see Appendix B) and then compared 

with the integer programming method optimised coefficient results as listed by Kodek and 

Steiglitz [1981]. Table 2.3 lists the coefficient values of the ten band select filters for the 

rounded values, the integer programming method optimised values and the GA optimised 

values. Table 2.4 lists the values for maximum deviation relative to the desired response and 

Table 2.5 lists the total summation error relative to the desired response. These values clearly
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show significant improvement of the GA optimised results for most of the example band select 

filters when compared to the integer programming method optimised results. This is evidence 

of the efficacy of the GA technique as an optimisation tool in the specific application of FWL 

constraints on the infinite precision coefficients of the FIR digital filters.

Further tests were conducted on a selection of FIR filters using the simple hill climber 

techniques, random sampling and exhaustive search. The results of these tests are shown in 

Table 2.6. Once again, the GA optimised results are seen to be consistently good. However, for 

some filters such as the B15/7 and B25/7, the hill climber methods have generated superior 

results. This is significant since the search space for these algorithms can intrinsically extend 

beyond the +1 and/or -1 of the rounded coefficient values. The GA search space, however, is 

restricted to +1 or -1 of the rounded coefficients. This offers credibility to the simple hill 

climber technique and complements the GA optimisation to search for superior solutions for the 

application considered here.

2.7 Summary of Chapter 2

The specific problem of finite word length coefficients in the realisation of FIR filters has been 

considered here. The purposeful aim is to use the procedures of genetic algorithms to optimise 

the frequency response in comparison to the exact filter response and to the desired response for 

the case of band select filters. The GA programme used in this application is explained and a 

specific code is developed to seek optimal results on the basis of the minimisation of a 

predefined error objective function. Quantifiable metrics for comparison purposes are defined 

on the basis of the maximum error bound |E(o>)| for all CO both for the case of linear phase and 

arbitrary phase FIR filters. Comparison is drawn between the simply rounded coefficient results 

and those obtained using the GA optimised coefficients. In both cases of FIR filters, it is
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observed that good near optimal results of filter coefficients are obtained using the GA method. 

Furthermore, the bounded values given in Equations 2.13 and 2.14 show a good parity with the 

GA optimised results as seen in Figures 2.6 and 2.8 for the case of linear phase and of the 

arbitrary phase FIR filters respectively.

For the case of band select filters, a comparison is drawn with the results taken from [Kodek and 

Steiglitz, 1981] for ten specified FIR linear phase filters that are optimised using the integer 

programming method. The GA optimised results show a distinct improvement over the integer 

programming method of optimisation both for maximum error and for total summation error 

within the specified range of band selected frequencies. The results of maximum error against 

number of bits for the case of example filters as seen in Figures 2.12 and 2.13 show consistently 

lower values obtained by GA optimised results in comparison to rounded coefficients response 

or the bounded values of Equation 2.20.

The general conclusion of this part of the study leads to the observation that FIR filters are fairly 

accurate in their frequency response realisation using quantised rounded valued coefficients. A 

distinct measure of improvement is achievable by using GA optimisation especially for low 

number of bits (see Figures 2.5, 2.6, 2.12 and 2.13). The bounded error results shown in Figures 

2.6, 2.8, 2.12 and 2.13 show a good correspondence between the statistically calculated bounds 

and the results obtained for GA optimised filters. For completeness, a study of non-symmetrical 

FIR filters has also been conducted using the same metrics for comparison as mentioned above. 

The results of Tables 2.4 and 2.5 clearly indicate a substantial improvement of GA optimised 

frequency response over the simply rounded response and also over the optimised results using 

the integer programming method. The GA code running on a 600MHz pentium-3 computer with 

the parameters given in Section 2.4.2 above completed the optimisation in approximately 30 

seconds for each filter.
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The major contributions of this chapter are the following.

• A real integer-valued genetic algorithm code has been developed for the optimisation of 

finite word length constrained coefficients of FIR digital filters. This code also incorporates 

the option for preserving the zero-valued coefficients that occur during the original high- 

precision design of the FIR digital filters. This option allows for preserving the memory 

space allocation for the coefficients. The new GA optimised results are significantly 

superior when compared with the integer programming method optimised results taken from 

[Kodek and Steiglitz, 1981]. The comparative results are shown in Tables 2.4 and 2.5 and 

the new coefficient values are listed in Table 2.3. Other comparative results for a selection 

of filters using the simple hill climber techniques, random sampling and exhaustive search 

are shown in Table 2.6 and the new coefficient values are listed in Table 2.7.

• The GA optimised results for FIR filters demonstrate the assertion that the maximum 

deviation derived using statistical methods [Chan and Rabiner, 1973] as given by Equations 

2.25 and 2.26 holds well as is evident from the GA optimised results seen in Figures 2.6 and 

2.8.

The GA code developed and applied for the optimisation of FWL coefficients FIR digital filters 

is extended for the case of infinite impulse response (IIR) digital filters. The discussion and 

FWL coefficient optimisation of IIR filters using genetic algorithms form the basis for study 

that is covered in the next chapter.
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Chapter 3: Finite word length optimisation of IIR filters

Overview of Chapter 3: This Chapter starts by highlighting the specific problems of finite word 

length (FWL) coefficient constraints for the case of infinite impulse response (IIR) digital filters. 

Due to the feedback nature of recursive filters, stability issues are an important factor in their 

design and are discussed in some detail. Some previously reported work on the optimisation of 

FWL coefficients for IIR filters is also discussed. Extensive range of filter types and structures 

of IIR filters and their optimisation using genetic algorithms is investigated and reported. 

Finally, comparative tests were conducted using the simple hill climber optimisation techniques 

for a selection of filters.

3.1 Introduction

The investigation of finite word length constraints on FIR filter coefficients that was covered in 

Chapter 2 is followed with a similar study in this chapter for the case of IIR filters. The exact 

design and analysis of IIR filters is normally based in terms of linear systems. However, when 

finite word length effects of quantisation error and overflow are considered then the system 

becomes non-linear and it is this that causes difficulties in the analysis of fixed point filter 

implementation. For recursive filter structures the problems of the effects of finite word length 

become more severe when compared to the non-recursive filters. In an extreme situation and 

especially for narrow band filters where the poles of the filter are fairly close to the unit circle, 

the finite word length coefficients of IIR filter may generate positive feedback and thus become 

unstable. The finite word length realisation of recursive IIR filters due to fixed-point hardware 

suffer from the same error effects as for non-recursive FIR filters such as; input signal 

quantisation due to analogue to digital conversion, coefficient quantisation, overflow errors and 

product round-off errors. In addition to these errors, two additional problems are caused by the
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feedback nature of the recursive filter. These are; firstly, small-scale limit cycles that are 

oscillations caused by quantisation non-linearity in the feedback loop and secondly, large scale 

limit cycles caused by fixed-point arithmetic non-linear overflow in the feedback loop. Of these 

two problems, the first error is usually low and is easily tolerated but the second error can lead 

to large-amplitude sustained oscillations over the complete dynamic range of the recursive 

filters and so must be prevented. For the purpose of analysing finite word length effects in 

recursive filters, such filter errors can be classed in four categories, these are; filter coefficient 

errors, quantisation noise and overflow errors and the two limit cycles. The impact of these 

errors is significantly influenced by the structure of the recursive filters used for their 

realisation.

The commonly used structures are; direct, parallel and cascade forms. It is well established that 

a cascade of 2nd order sections is much less sensitive to coefficient quantisation effects and its 

impact on stability of the filter, especially when compared to direct form implementation 

[Kaiser, 1965], [Parks and Burrus, 1987]. Proper ordering and matching of poles and zeros in 

each section of the cascade and their scaling further ensures reduced coefficient sensitivity 

[Oppenheim and Shaffer, 1989], [Jackson, 1989]. Other structures that can be used for IIR filter 

realisation are: state-variable [Roberts and Mullis, 1987], lattice [Gray and Markel, 1973] and 

the wave digital filter [Fettweis, 1974]. Generally, as the filter structure becomes more complex 

then a larger part of the process of filtering is carried by the structure itself placing less load on 

the coefficients. Thus more complex structures such as lattice and wave digital filters, are 

capable of operating to a required response, with greatly reduced coefficient word lengths. 

However, in terms of coefficient sensitivity, the 2nd order cascade has been shown to perform 

well even when compared to parallel and wave digital filter structure for a number of designs 

[Dempster and Macleod, 1994]. Hence, in this study, 2nd order cascades are used due to their 

simplicity of filtering algorithms and ease of performing stability tests.
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3.2 Optimisation issues in IIR filter design and stability

In a recursive digital filter the output is a linear combination of past and present inputs and past 

outputs. The difference Equation representation is of the form

M N
myn-m 31

m=0 m=l

and the transfer function is

M
_m 

Z2X
32

m=l

The coefficients bm and a,,, of the filter transfer function H(z) of Equation 3.2 are obtained in a 

high precision form through the initial design stage of the IIR filter such that the stipulated filter 

specifications are satisfied. For real-time realisation of such filters using fixed-point devices, 

then errors arise in a number of ways that could degrade the performance of the filter and in 

extreme situations make an otherwise stable filter to become unstable. The main sources of 

errors in the IIR filter realisation due to finite word length effects are the following.

• The analogue to digital conversion (ADC) quantisation noise that results from representing 

the input analogue signal in a quantised discrete form.

• Filter coefficient quantisation error that is caused by representing the high precision 

coefficients by a finite number of bits.

• Overflow errors that are due to the finite-precision arithmetic operations of addition, 

multiplication and storage.

In addition to the above, two other sources of errors are caused by the feedback nature of the 

recursive IIR filters, these are:
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• Small-scale limit cycles that are caused by the quantisation non-linearity in the feedback 

loop. These are generally of small amplitude and can be tolerated.

• Large-scale limit cycles that are oscillations caused by the overflow of arithmetic operations 

in the feedback loop. These overflow amplitudes can cover the complete dynamic range of 

the filter and so must be strictly prevented.

Appropriate scaling of the inputs to the adders such that the outputs are kept low can prevent the 

large-scale limit cycles. This can lead to a reduction of the signal-to-noise ratio (SNR) of the 

system. It is thus important to select an appropriate scaling factor for a given structure to 

prevent overflow while at the same time preserving the best possible SNR. There are three 

commonly used methods for determining a suitable scaling factor and are referred to as the Lj, 

LI and La, norms [Parks and Burrus, 1987], [Ifeachor and Jervis, 1993].

Of the above listed sources of error, the ADC quantisation noise error is inevitable and is 

dependent on the number of bits used to represent the input analogue signal in a digital form. 

Increasing the number of bits used for ADC can only reduce this form of noise. The error due 

to FWL quantised coefficient representation of the filter transfer function forms the focus of 

study in this work and its optimisation is considered here in some detail. Finally, the round-off 

noise, pairing and ordering of poles and zeros and scaling are important issues that are 

considered mainly in the design stage of the IIR filter. No effort was devoted to the FWL 

optimisation of these issues either individually or simultaneously. However, it must be 

emphasised that a combination of effective initial design taking account of the scaling factor and 

the ordering of poles and zeros gives a good starting point for the FWL coefficient optimised 

realisation of the IIR filter. However, final checks may be needed to confirm the validity of the 

optimised design. A combined optimisation of multiple parameters for the FWL realisation of 

IIR filters is an area that has yet to be fully investigated.
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The major effect of filter coefficient quantisation into a finite number of bits is that the infinite 

precision transfer function H(z) is no longer representative since the poles and zeros are shifted 

in the z-plane. The new transfer function is then an approximation of the original and in some 

instances, especially for narrow band filters, the poles that are close to but inside the unit circle, 

may have shifted sufficiently to place their new position outside the unit circle. This condition 

will lead to the filter becoming unstable. The finite word-length coefficient optimisation for 

recursive IIR filters must, therefore, consider both the satisfactory frequency response and the 

stability of the filter. The issue concerning coefficient sensitivity and filter stability has been 

analysed by considering the extent to which the pole positions change as a result of changes in 

the coefficient a™ [Parks and Burrus, 1987 pp.234-236], [Mitra, 1998 pp.578-582]. Some of the 

important deductions of the analysis are

• The filter is most sensitive to the last coefficient a>j.

• Moving the poles closer to the unit circle increases the sensitivity of the pole location to the 

variation of a coefficient.

• Coefficient sensitivity increases when the poles are close together.

• For high order filters, the poles are normally clustered together in the pass band, so in order 

to reduce sensitivity a cascade structure of several lower order sections is recommended. 

This leads to the preference for using a cascade of 2nd order section.

By factoring the rational transfer function of Equation 3.2, the cascade 2nd order transfer 

function can be written as

''' 2 3.3

where L is the number of cascade sections.
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There are many different cascade structures possible depending on the ordering of Hk(z) blocks 

and also on different pairings of the poles and zeros. This flexibility of structural leniency 

allows for a choice of filter realisations that may be used to reduce coefficient quantisation 

dependency. For reduced coefficient sensitivity, a specific 2nd order cascade design procedure is 

described in [Jackson, 1989]. Some important considerations in the ordering of the cascade 

sections are

• Match the poles closest to the z-plane unit circle with the zeros closest to those poles.

• Match the remaining poles to zeros similarly, moving towards the origin of the unit circle.

• The section with poles closest to the unit circle is ordered as the last section of the cascade 

preceded by other pole/zero pairing sections according to the distance of the poles from the 

unit circle.

The condition of (iii) above is based on the assumption that the following scaling of the sections 

in the cascade is applied i.e.

Max
N

3.4

The scaling property of Equation 3.4 generates maximum peaking of the magnitude response of 

the section with poles closest to the unit circle. The ordering rule, therefore, is to start with 

sections that are least peaked and move towards the most peaked.

The Matlab Signal Processing toolbox provides a function tf2sos (transfer function to second 

order section convert) that can be used to generate second order sections that are ordered 

according to the above rules based on appropriate optimum pole-zero pairing. This function 

generates a matrix sos containing the coefficients of each second order section of the 

equivalent transfer function H(z). The sos is a L x 6 matrix of the form
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SOS =

oi b21 a01 a n a21
b02 b12 b22 a 02

b b bL^OL "1L U 2L a OL a lL a2La,
3.5

The rows in Equation 3.5 are ordered such that the pole pair furthest from the unit circle and its 

nearest zero pair is in the first row of the matrix sos (i.e. k=l). A second-order cascade form 

structure of the IIR filter representing the SOS matrix of Equation 3.5 is shown in Figure 3.1. 

Note that the coefficient aon-1 for all the sections.

^ 01r i ———— r —— * — ••_i /

a *i v
——— 4 ————

1 1
—————— * ———

z- 1

a21
_.. —— *-. ——— ,.,

b21
..— k ———

(j

iIn

^Z >y(n)

2n

1 s section n"1 section

Figure 3.1 Cascade form structure of IIR digital filter

A FIR digital filter comprises of bounded impulse response coefficients and so is always stable. 

However, an IIR digital filter includes a feedback component that structurally cannot be 

guaranteed to be stable. Additionally, an IIR filter that is designed to be stable using infinite 

precision coefficients may become unstable when the coefficients are finite word length 

quantised. The testing of an IIR filter transfer function for stability is thus an intricate and 

integral part of the design procedure of such filters for real-time applications.
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For high order transfer function the analytical calculation of pole positions is difficult thus the 

use of computer programs is essential for working out the roots of the denominator polynomial 

of the rational transfer function H(z) of Equation 3.2. Also, since 2nd order cascades of higher 

order IIR filters are less sensitive to quantised finite word length coefficients, the analysis for 

stability tests will consider a second-order transfer function.

The denominator of the transfer function H(z) assuming ao = 1, is given by 

D(z) = 1 + a.z' 1 + a2z 2 3.6

The shaded region of the stability triangle shown in Figure 3.2 gives the region where the two 

conditions of coefficients ai and a2 are satisfied i.e. |a2 | < 1 and |ai| < 1 + a2 .

-2

Figure 3.2 Stability triangle for a second-order transfer function.

Stability tests can be conducted in Matlab using the 'roots' function to obtain the poles of the 

denominator polynomial of the rational transfer function H(z). For GA optimisation, the 

individuals failing the stability test are awarded a large penalty for their objective function 

thereby leading towards stable solutions of the IIR filters.
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3.3 GA optimisation of IIR digital filters

The design criteria of IIR digital filters are normally based on the assumption that the 

coefficients are of infinite precision and thus the system is a linear system. However, due to 

finite word-length constraint for fixed-point implementation of recursive filters, the digital filter 

becomes a non-linear system. This non-linearity causes a problem for developing analytical 

methods for optimisation of quantised coefficient IIR digital filters. No such method for 

optimisation has been reported in literature. However, computer programs have been developed 

for determining suitable minimum coefficient word-lengths for satisfying specific frequency 

response constraints [Ifeachor and Jervis, 1993 pp. 429].

Genetic algorithms are a useful tool in the optimisation of finite word-length constrained 

coefficients for realisation of IIR digital filters. Some examples of GA optimisation applied to 

the IBR. filter design problems have been reported in literature. Wilson and Macleod [1993] 

consider a cascade form design of IIR filters. A simple GA is applied in order to find a 

compromise solution to the frequency response error and adder cost. In addition, stability and 

minimum phase is guaranteed by analysing the genes and identifying positions of poles and 

zeros. If the root is outside the unit circle then this is moved by multiplication with an all pass 

filter. Quantising the coefficients then follows this procedure. This step is a restriction to direct 

optimisation of the realisable IIR filter. Harris and Ifeachor [1995] have considered an 

automated design procedure for IIR filters. This work considers a hybrid GA approach that 

optimises second order cascade sections of IIR filters in terms of pole-zero positions on the z- 

plane. The GA culminates when an appropriate filter is located within specified bounds of 

maximum passband ripple and minimum stop band attenuation. The stability criterion of the 

stability triangle is used to return unstable solutions with low fitness function. A multiple 

objective fitness function includes a weighted component of round-off noise due to the ordering
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of the second order sections and the frequency response of the filter. This combination allows a 

compromise solution to be found based on the two variables that can be controlled by the design 

specifications. Arslan and Horrocks [1995] have reported other work in this field. Again, 

second order sections are considered here, using real-valued coefficients, that are arranged in a 

concatenated form represented by a string of cascade stages. The frequency response template 

is specified within minimum and maximum limits and the overall fitness is evaluated as a 

function of the deviation from the exact design frequency response of the filter. Stability checks 

are also conducted based on the stability triangle.

The above methods for GA optimisation of IIR filters generate good results, however, the 

procedures used are generally, not flexible. For example, in the work of Wilson et al [1993], the 

GA optimisation of a second-order cascade form IIR filter is based on a compromise solution of 

frequency response error and adder cost for digital filters implemented on DSP devices that do 

not include a dedicated multiplier. The tests for stability and minimum phase are conducted by 

analysing the genes and identifying the positions of poles and zeros. If any root falls outside the 

unit circle thus contradicting the stability or minimum phase constraints, then the root is moved 

by multiplication with an all-pass filter. The finite word length quantisation of coefficients then 

follows this procedure. This step is a restriction to the final optimised filter. The work reported 

by Arslan et al [1995] overcomes some of these limitations. A direct design of FWL quantised 

coefficients is considered although there is no explicit mention of the manner in which the initial 

design of the IIR filters is conducted. Also, there is no mention of scaling and ordering issues 

for second-order cascade structures. Furthermore, the culmination of the GA is based on 

conformation of the optimal response to the specified bounds of maximum pass band ripple and 

minimum stop band attenuation. For these reasons, no extensive quantifiable measures of 

performance of the optimisation process have been reported for a range of filter types. Some of 

these issues have been investigated in this study.
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The main advantage of the work covered in this study is that the complete process for design 

and optimisation is Matlab based and can be executed sequentially by selecting the appropriate 

choice of the filter design and the optimisation parameters. This option offers flexibility of 

design using the standard Matlab Signal Processing toolbox functions that include issues about 

scaling, pole-zero pairing and ordering of the second-order sections. The GA used in this work 

is a Matlab Toolbox developed by Chipperfield et al [1993]. This toolbox was originally 

developed for Control Systems applications and has been adapted for IIR digital filter 

optimisation. The main GA functions such as ranking, crossover and reinsert were used without 

any change and new m-file function for calculating the fitness function was written.

Such a Matlab based integral approach to the initial design of the IIR filter and subsequent GA 

optimisation makes this procedure flexible to obtaining quantifiable metrics for a number of 

design specifications. For example, the Matlab function tf2sos converts the high order rational 

transfer function H(z) into its second order sections in a cascade. The pole-zero ordering in the 

default option 'UP' is such that the first row of the matrix sos of Equation 3.5 will contain 

poles closest to the origin and the last row will contain poles closest to the unit circle. This 

option allows for minimum coefficient sensitivity due to quantisation. The 'SCALE' option of 

the tf2sos function specifies the desired scaling of the gain and the numerator coefficients of 

all the second order sections in the cascade. The 'SCALE' options available are the L^-norm, 

U-norm and no scaling. A combination of the default 'UP' ordering of pole-zero pairs and Leo- 

norm scaling minimises the probability of overflow error in the realisation of the IIR filter.

Matlab programs iir_ga.m and sos_ga.m execute the GA optimisation of finite word 

length coefficient, IIR digital filters of the direct form and of a cascade of secod order sections 

respectively. The m-file codes of these programs are shown in Appendices Cl.l and C2.1 

respectively. The complete process of optimisation is achieved in a single stage implementation
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using a single frequency response template of the exact magnitude response. The magnitude 

error function is calculated using the following

L
mag_error= £|Hej-HJ 3.7

i=l

where

He,= Magnitude response of the exact (i.e. high precision coefficient) filter at frequency 'i'

H, = Magnitude response of the test filter at frequency 'i'

The phase error function is similarly calculated using the phase response of the filter. The 

object function value that must be minimised is evaluated using the following

Obj_Val = mag_error + W phase_error 3.8 

where W = weighting fraction

The percentage error between the exact and the best optimised magnitude response is calculated 

using the following

%mag_error= •&- ———— 100 3.9

IN

3.3.1 The methodology and pseudo GA code for IIR filters

The simple genetic algorithm used in the optimisation of FWL quantised coefficients of IIR 

filters is based on the standard techniques of generating the initial population of individuals 

followed by objective function calculation, ranking and crossover. No mutation operator was 

included in the algorithm, as initial tests indicated no beneficial outcome of this operator for this 

optimisation problem. The GA used is a Matlab based toolbox designed and developed by
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Chipperfield et al [1993]. A number of standard functions are included in the toolbox and are 

indicated by bold letters here. The description of each stage of the GA process is as follows.

1) Design of IIR filters

The design option selected in this application is the 'ellip' function of the Signal Processing 

toolbox of Matlab. This function is based on the Elliptical or Cauer IIR filter design algorithm. 

Such filters offer steeper roll-off characteristics than the Buttenvorth or the Chebyshev filters 

but are equiripple in both the pass and stop bands. In general, the elliptical filters meet the 

given specifications with the lowest order when compared with other filter types. The Matlab 

function for the elliptical IIR filter design uses the format

[b,a]=ellip(n, Rp, R,, Wn, 'ftype') 3.10 

Where 'b' and 'a' are the derived numerator and denominator coefficients of the IIR filter, V is 

the order of the filter, Rp and R* are the pass-band and stop-band allowable ripples (in dBs) 

respectively and Wn represents the cut-off frequency for low and high pass filters. When Wn = 

[w, wa], then 'ellip' returns an order 2n band pass filter with pass band wi < co < w2 . Note that 

Wn is a number between 0 and 1 where 1 corresponds to the Nyquist frequency. 'ftype'=high 

defines a high pass filter with cut-off frequency Wn .

The study in this work covered the FWL coefficient GA optimisation of the direct form and the 

second-order cascade form of IIR filters. The coefficients 'b' and 'a' derived from Equation 

3.10 generate the direct form version of the IIR filters. For representation in the second-order 

cascade form, the transfer function must be converted appropriately by using the Matlab 

function of the form

sos = tf2sos(b, a, 'order', 'scale') 3.11 

Where 'order' specifies the ordering of the second-order sections of Equation 3.5. If order = 

'up', then the first row of Equation 3.5 will contain the poles closest to the origin and the last
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row will contain poles closest to the unit circle. If 'order' = 'down', then the sections are 

ordered in the opposite direction. The zeros are always paired with the poles closest to them. 

The 'scale' option specifies the desired scaling of the gain and the numerator coefficients of all 

the second-order sections. The options available in the Matlab function are; 'none', 'two' and 

'inf representing 'no scaling', Lj norm and the Loo norm scaling respectively. These various 

options for ordering and scaling offers flexibility of design and preferences to the design 

engineer for an appropriate choice based on the specific application. However, the following 

two options are likely to be most useful for the design of second-order cascade form IIR filters 

[Jackson, 1989].

• Using the infinity norm scaling in conjunction with the 'up' ordering will minimise the 

probability of overflow in the realisation.

• Using the 2-norm scaling in conjunction with the 'down' ordering will minimise the peak 

round-off noise.

The option of infinity-norm scaling in conjunction with the 'up' ordering generally offers the 

best compromise and it also allows the effects of scaling to be verified experimentally using 

sinusoidal input signals [Ifeachor and Jervis, 1993]. For this reason, the FWL coefficient 

quantisation considered for optimisation in this study is based on this option of infinity norm 

scaling and 'up' ordering of the second-order sections. For completeness, the results of another 

option of 'no-scaling' and 'up' ordering is also included in the study here. It must be recognised 

that there is no loss of generality of the GA optimisation process if the initial design of the FIR 

filter is based on other standard design techniques such as the Butterworth, Chebyshev or the 

Yulewalk functions available in the Matlab Signal Processing toolbox.
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2) Representing real-valued coefficients with FWL rounded values

The design process for the IIR filters generates a set of real-valued coefficients of the form 

shown in Equation 3.1. The next step is to obtain the rounded integer valued coefficients from 

the real-valued coefficients. As discussed for the case of FIR filters in Chapter 2, the IIR filters 

considered here are specifically designed for their realisation on fixed-point devices that have 

the advantage of efficient computational throughput, low cost and low power dissipation when 

compared with their floating point counterparts. The study in this work is thus restricted to the 

optimisation of quantised FWL coefficients for fixed-point devices and the calculations 

involved are based on the fixed-point arithmetic. The method used for deriving the FWL 

coefficients of IIR filter for fixed-point arithmetic is identical to that used for the case of FIR 

filters covered in Chapter 2. For convenience, this is repeated here. The high-precision 

coefficients derived through an appropriate design stage for the IIR filters are in the form of real 

valued numbers. The most commonly used method of deriving FWL coefficients for fixed- 

point arithmetic is the direct quantisation method. In this method, the high precision 

coefficients that are derived using standard filter design techniques are first rounded to yield 

FWL quantised coefficients. The starting solution of quantised coefficients is thus given by

hn = roundfhei 2B-'] 3.11

Where 'hri ' is the rounded coefficient, 'kj' is the high precision coefficient and 'B' is the 

number of bits used to represent the coefficients.

3) Generating initial population

The first step towards generating a population set of individuals is to start with the rounded 

coefficient values. The initial string is thus obtained by concatenating the rounded integer- 

valued coefficients 'b' and 'a' in the form x = [b, a]. The population set of individuals is then

70



Chapter 3: Finite word length optimisation of MR filters

obtained by randomly perturbing each rounded integer-valued coefficient by +1, 0 or -1. This 

range of perturbation is obtained using the base value BASE=1. The choice for a variation of 

+1, 0 or -1 is simply to do with the word length of the quantised coefficients. For example if 

we consider a word length of 6 bits, then the real valued coefficients can take integer values 

ranging from +31 to -32 in a two's complement format where the most significant bit is a sign 

bit. A change of+1 then amounts to a fractional change of 1/25 = +0.03125 of the real valued 

coefficient. Increasing the base value to say BASE=2 can extend this range and thus the search 

space. The random perturbation of coefficients will then be +2, +1, 0, -1 or -2. It must be 

mentioned that an appropriate choice of the base value depending on the filter length and the 

number of bits being used to represent the coefficients, is an area that is not fully investigated. 

For this study, an initial trial of several different filters using base value of 1, 2 and 3 was 

conducted. The test results for a population size of 100 over 20 generations, consistently 

generated good results for base value of 1. An extensive range of search space could have been 

tested over larger population size and greater number of generations. However, the motivation 

for using GAs in this study was to test this optimisation process as a general framework against 

other methods and to draw a comparative measure.

4) Objective function evaluation

The main purpose of the optimisation process is to minimise the objective function with the 

specific aim of obtaining an approximated frequency response of the filter that is as close as 

possible to the desired response. The discrete search space for the example filters considered in 

this Chapter could be calculated using the filter lengths and the base value used for coefficient 

perturbations. The filter length ranges from 10 to 18 for the direct form IIR filters and from 12 

to 24 for the second-order cascade form IIR structures. The discrete search space for a base 

value of 1 is then 3 10 for filter length 10 and 3 1S for filter length 18 for direct form IIR filters and 

3 12 and 3 24 for filter lengths 12 and 24 respectively of the second-order cascade form structures.
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This search space increases substantially when the base value is increased to 2. The GA used 

for optimisation conducts 120 objective function evaluations initially followed by 100 

evaluations over 20 generations. This makes a total of 2120 objective function evaluations.

The objective function is calculated for L=500 equally spaced frequency grid points. An

example low pass filter specification of normalised frequency scale where Nyquist frequency =

1.0, is of the form

Pass band: maximum allowable ripple = IdB

Stop band: stop band attenuation = 40dB

Wn (cut-off frequency): = 0.5 = half the Nyquist frequency.

The magnitude error function is calculated using the following

mag_error= -^l 3 - 12 
1=1

where

Hi = Magnitude response of the exact filter at frequency 'i'

Hj = Magnitude response of the test filter at frequency 'i'

The phase error function is similarly calculated using the phase response of the filter. The 

object function value that must be minimised is evaluated using the following

Obj_Val = mag_error + W phase_error 3.13 

where W is the weighting factor.

After some initial trials it was observed that a value of W=0.001 generated good compromise 

solutions for the magnitude and phase response of the optimised filters.
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It must be recognised that stability of the optimised design must be assured for a realisable IIR 

filter. The objective function sub-code that is called by the main GA code incorporates stability 

checks for every individual by deriving the roots. Individuals failing the stability test are 

awarded a high penalty of the objective function value and are thus effectively eliminated from 

the overall search.

5) Fitness value and ranking

The Matlab based ranking function of the GA toolbox ranks the individuals according to their 

objective function values 'ObjV and returns a column vector consisting of the corresponding 

fitness value 'FitnV of the individuals. This function performs a linear ranking with a selective 

pressure (SP) of 2 [Whitley, 1998]. The fitness value assigned to the individuals is calculated 

according the following formula given by Equation 1.1 in Chapter 1.

6) Selection of individuals for breeding

The high-level function for selection of individuals from the population set and returning the 

selected individuals in a new population is performed by the select function. The low-level 

selection function sus is called by the select function. The sus function is based on a form of 

stochastic sampling method and is implemented by obtaining a cumulative sum of the fitness 

vector 'FitnV and generating a set of equally spaced numbers between 0 and S(FitnV) [Baker, 

1987]. The probability of an individual being selected is given by Equation 1.2 in Chapter 1.

7) Recombining individuals - crossover

The crossover function is also performed in two stages. The high-level function is recombin 

that calls the low-level function recdis. The recdis function is a discrete recombination 

function. The mating process is performed between pairs of rows. The recdis function first 

generates an internal mask table that determines which parents contribute which variables to the
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offspring. On the basis of the randomly generated mask table, the variable values are exchanged 

between the individuals and return a new population after mating.

8) Reinsert offspring into new population

The new population set generated after crossover is subjected to the objective function 

evaluation of each new individual. On the basis of their fitness, the offspring are selected for 

reinsertion into the new population. The objective function values are then copied according to 

the reinserted offspring and the GA loop is then repeated for the next generation.

A pseudo GA code for FIR filter optimisation and the objective function code are shown in 

Figures 3.3 and 3.4 respectively.

3.3.2 Example IIR filters

A number of example IIR filters were used to test the robustness of the GA optimisation code. 

The filters are tested for the direct form format and the second-order cascade form for a number 

of different types, order and number of bits. Table 3.1 shows the different types of filters used 

i.e. A-type is a low pass filter with cut-off frequency Wn = Q.5n, B-type is a band pass filter with 

cut-off frequencies Wn = [0.3;r O.Vre] and C-type is high pass filter with cut-off frequency Wn = 

0.671. Each of these filters were tested for 4th, 6* and 8th order using 5, 8 and 12 bits in each 

case. Further distinction of filters used were to test for minimal phase and non-minimal phase in 

the case of direct form filters and for the second order cascade form the case of 'Infinity norm' 

and 'No norm' options were both used. The GA specifications used are

Population size (Nind) =120 

Maximum number of generations =20 

Weighting fraction (W) = 0.001 

Number of frequency points (L) = 500 

Generation gap (GGAP) = 0.8 

Insertion rate (INSR) = 1
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%Pseudo GA code for FWL coefficient optimisation of IIR digital filter 
% GA characteristics ...... : ..... ....,,.,,,,...,,...,,.,  .... ,, ,,, , ,,, ,..

IIR Filter design procedure
could use several filter design, functions such as "% butterworth, cheby, ellip, yulewalk etc.

[b,aj = ellip {n, Rp, Rs,Wn) ; % for .^^^.^fy^^^^ei^j^^ioJ^.^^iS^^,,,,,.
:'^^;S|^^^^§^^^^j^^^^^lllS§j;^^OijM^ff^ll>iS^

% alternative second-order sect3^fpfllfIf!a1£l6W^ 
% sos=tf2sos(b,a,'up','none');% x up' ordering and 'None' norm 

||||||os=tf2sos (b,a, 'up', 'inf'} ; % *up r ordering and 'Infinity' norm

[h,w] = freqz(b,a f L); 1 frequency response 
h = abs(h); % magnitude response 
p = angle(freqz(b,a,L)); % phase response 
x = [b,a];

% filter with coefficients simply rounded : ||

% create new population "^f'Ms^lWK^^^^P^I
Chrom = iir_pop(Nind,xr,xmask,BaseV,n); % create population illll
gen =0 % generational counter
% work out the object function value for .each; individual : ..v:;:.:illlililll
ObjVal = iir_objf{Chrom,nl,h,hr,p, x, L);

best chromosome for minimum object .function value

% start of generationaF1oop 
while gen < MAXGEN

% assign fitness value to each individual in population 
FitnV = ranking(ObjVal);

.; % select good individuals for breeding ,: J 
Illl/SelCh = select { ' sus ', Chrom, FitnV, GGAP) ; :|||||j|| 
llllf'% recombine selected individuals - crossover "' 
IlllpelCh = recombirif 'recdis', SelCh, 1); Illllll! 
i||||% evaluate object function of offsprings
Ifllll'ObjVOf f = f eval ( ' iir_ob j f', SelCh, nl, h, hr, p, x, L) ; " " ""11111111 
illP::% reinsert good offsprings into current population

{Chrotn, ObjVal] = reins (Chrom, SelCh, 1, [1 INSRJ, ObjVal,

^increment generational counterf^^l^K^^^W^^^^^WgS^Si^^^l ll;f;:.s.
gen=gen+l !s-:;v^ ; V   ^- i . : : 
% update display and remember the best individual to date ;1|||1|;;:;;||;::;|:
[Best{gen+l r l),ix] - min(ObjVal);
xcbest = Chrom(:,ix); 

end 
% end of GA '4

Figure 3.3 Pseudo GA code for finite word length coefficient optimisation of IIR digital 
filter
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% iir__objf.m
% Calculate object function value for GA code iir ga.m
function ObjVal = iir_objf (Chrom, nl, h,hr,p, x,L) ; : ;;|

% work out population parameters :
{Nind, N va r ] - s i ze (Chrom> ; -.

y^^KysfS^^^^K^^f^mS^M^^^V^^^^^^^^^^Vn 
-.j^^XKiil^^^^^^Mm^kiM!sMi^9^K^Kii^t^K

% start of loop for each individual 
for irun = 1 :Nvar; i||^^^

% calculate coefficients ac and bcl 
xc = Chrom{:,irun}; 
be = xc{l:nl); 
ac = xc{nl-Kl;2*nl);

% work out the roots of xq..... 
gl = [abs(roots(ac))]; 
g2 = [abs(roots(be)}];

% work out the absolute magnitude and angle 
he = abs{freqz(be,ac,L));
pc = angle (f reqz (be, ac,L) } ;

% stability criteria checked, if any root "'•- 
% is > or = \ r then replace he with : large he 
if (any (gl >= 1 } }

phase checked, if any root ' !f,^r"ffiw 
% is > or - 1, then replace he with large he 
if (any(g2>=l)) 
he = 100 + he;..f^/jmimfm::'!

% workllPlIgnitude and phase errors^!^

  (length(p)

work out a weighted object value between ' ;:!1!|||| 
magnitude and phase errors

ObjVal (irun, :) = mag__err

Figure 3.4 Objective function called by the GA code for finite word length coefficient 
optimisation of IIR digital filter
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Table 3.1

Set of IIR Filter Specifications

Note that the 'ellip' function of Matlab specifies cut-off frequencies Wn between 0 and 1 where 
__________1 is the Nyquist frequency.__________

Filter

A: range (low pass)

Pass band ripple: 
Stop band attenuation:

B: range (band pass)

Pass band ripple: 
Stop band attenuation:

C: range (high pass)
Pass band ripple: 

Stop band attenuation:

Wn

0.5

IdB
40 dB

[0.3 0.7]
IdB

40 dB

0.6
IdB

40 dB

3.3.3 IIR filters - direct form

The results for direct form optimisation of IIR filters for various types, order and number of bits 

used are shown in Table 3.2. The key to filter representation e.g. DF/HP8/12 means direct form, 

high pass filter, 8 th order using 12 bits to represent the coefficients. The GA optimised results 

MP represents minimum phase and NMP represents non-minimal phase. 'Rounded' results 

represent sum of magnitude error for simply rounded coefficient values. Both the GA optimised 

and the rounded results are obtained using the absolute value of the sum of error given by 

Equation 3.14 over the full frequency range with 500 points.
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Table 3.2

GA optimisation results of summed magnitude error of Equation 3.14 over 500 frequency points 
for direct form IIR filters. MP = minimal phase and NMP = non minimal phase

Filter

Low-pass

DF/LP4/5

DF/LP4/8

DF/LP4/12

DF/LP6/5

DF/LP6/8

DF/LP6/12

DF/LP8/5

DF/LP8/8

DF/LP8/12

High-pass

DF/HP4/5

DF/HP4/8

DF/HP4/12

DF/HP6/5

DF/HP6/8

DF/HP6/12

DF/HP8/5

DF/HP8/8

DF/HP8/12

Band-pass

DF/BP4/5

DF/BP4/8

DF/BP4/12

DF/BP6/5

DF/BP6/8

DF/BP6/12

DF/BP8/5

DF/BP8/8

DF/BP8/12

Rounded

56.8062

2.6726

0.1300

103.4716

18.8755

1.2700

654.8179

1.72e+14

5.8895

71.4119

5.9536

0.3098

193.5966

44.5597

7.3556

None

None

33.4680

23.3878

2.0337

0.1042

28.3810

4.4943

0.1709

71.4771

5.9575

0.3112

GA-op MP

25.2991

1.0608

0.1300

72.7669

17.7590

2.2991

654.8179

32.0719

6.4482

35.3775

4.0801

0.2450

193.5966

19.2983

5.7735

None

None

23.7925

13.3873

1.3471

0.0567

14.1170

2.9954

0.0882

35.4355

5.9575

0.3112

GA-op NMP

16.5262

1.0608

0.1300

45.5413

6.0774

0.7048

654.8179

27.1850

5.8895

20.1340

3.0417

0.1464

155.8164

19.2983

1.4430

None

None

14.6120

12.2060

1.3471

0.0567

14.1170

0.6135

0.0821

25.7093

3.0478

0.2360
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The GA optimisation for each run over 20 generations using 120 individuals takes 

approximately 2 minutes using a Pentium-Ill computer. Typical magnitude and phase response 

results obtained for various direct form IIR filters are shown in Figures 3.2 to 3.6. Figure 3.7 

shows a typical result for a range of percentage error values obtained using Equation 3.16 

against number of bits for a 6th order direct form low pass non-minimal phase filter. The GA 

code for direct form optimisation is shown in Appendix Cl.l. A complete listing of coefficient 

values for exact filter, rounded coefficient filter, GA optimised filter with and without minimal 

phase constraints are shown in Appendix C1.2.

25
exact 
rounded coef.

0.1 02 0.3 04 0.5 06 07 O.i 09

1 .5

0.5

0.1 0.2 0.3 0.4 05 0 
fre quency (pi)

07 08 0.9

Figure 3.5 Magnitude response of a 4th order direct form low-pass filter using 5 bit coefficients 
and non-minimal phase.
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.... rounded c o ef

0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9

n 2 
u>

TJ

f °
U)
(0
S . 2 
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Figure 3.6 Phase response of a 4th order direct form low-pass filter using 5 bit coefficients and 
non-minimal phase.
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Figure 3.7 Magnitude response of a 4th order direct form low-pass filter using 5 bit coefficients 
and minimal phase.
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exact 
rounded coef.

-i——————r

exact 
GA opt.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
frequency (pi)

Figure 3.8 Magnitude response of a 4th order direct form high-pass filter using 5 bit coefficients 
and non-minimal phase.
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Figure 3.9 Magnitude response of a 6th order direct form band-pass filter using 5 bit coefficients 
and minimal phase.
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10 10
number of bits

12

Figure 3.10 Magnitude response percentage error against number of bits of a 6th order direct 
form low-pass filter and non-minimal phase.

3.3.4 IIR filters - second order section form (SOS)

The results for second-order section form optimisation of IIR filters for various types, order and 

number of bits used are shown in Table 3.3. The key to filter representation e.g. SOS/BP6/8 

means second-order section form, band pass filter, 6th order, using 8 bits to represent the 

coefficients. The GA optimised results NN represents 'None norm' and IN represents 'Infinity 

norm'. 'Rounded' results represent sum of magnitude error for simply rounded coefficient 

values both for the 'None norm' NN and the 'Infinity norm' IN as shown. Both the GA 

optimised and the rounded results are obtained using the absolute value of the sum of error 

given by Equation 3.14 over the full frequency range with 500 points. The GA optimisation for 

each run over 20 generations using 120 individuals takes approximately 2 minutes using a 

Pentium-Ill computer. Typical magnitude and phase response results obtained for some second
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order cascade form IIR filters are shown in Figures 3.8 to 3.15. Figures 3.16 and 3.17 show 

results for a range of percentage error values obtained using Equation 3.16 against number of 

bits for the SOS/HP8 non-Norm and the SOS/HP8 Infinity norm filters respectively. The GA 

code for the second order cascade form optimisation is shown in Appendix C2.1. A complete 

listing of coefficient values for exact filter, rounded coefficient filter, GA optimised filter with 

'Infinity norm' and with 'None norm' are shown in Appendix C2.2.

Table 3.3
GA optimisation results of summed magnitude error of Equation 3.7 over 500 frequency points 

for second order cascade form IIR filters. NN: None Norm, EN: Infinity norm
Filter

Low-pass

SOS/LP4/5

SOS/LP4/8

SOS/LP4/12

SOS/LP6/5

SOS/LP6/8

SOS/LP6/12

SOS/LP8/5

SOS/LP8/8

SOS/LP8/12

High-pass

SOS/HP4/5

SOS/HP4/8

SOS/HP4/12

SOS/HP6/5

SOS/HP6/8

SOS/HP6/12

Rounded-NN

42.6433

2.2285

0.2156

13.7039

3.3786

0.1844

4.3054e+012

1.4933

0.3155

26.9774

3.9268

0.2118

66.3240

3.4268

0.6927

GA-op NN

6.1447

0.9172

0.0644

8.1174

0.8437

0.0535

10.3179

1.1381

0.0628

10.3195

1.4458

0.0837

12.0048

1.5285

0.0687

Rounded-IN

78.7948

4.9949

0.1124

90.2727

9.9007

0.6900

None

73.5649

9.3633

26.9774

2.6164

0.5764

None

5.7506

4.2936

GA-op IN

6.1447

1.0973

0.0467

28.3454

3.7464

0.2449

None

18.9085

1.9365

10.3195

1.3009

0.0561

None

4.0782

0.3428
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Table 3.3 continued

SOS/HP8/5

SOS/HP8/8

SOS/HP8/12

Band-pass

SOS/BP4/5

SOS/BP4/8

SOS/BP4/12

SOS/BP6/5

SOS/BP6/8

SOS/BP6/12

SOS/BP8/5

SOS/BP8/8

SOS/BP8/12

102.2992

6.1425

0.8247

114.8468

5.8294

0.4959

114.4422

4.6612

0.7241

110.0014

15.5158

0.4568

12.8340

1.6328

0.0898

14.9344

2.5332

0.2074

21.5173

2.0228

0.1354

19.7059

2.9377

0.2097

None

152.3241

6.6315

115.2148

11.6847

0.4032

191.9780

25.9615

0.8949

152.6596

32.5462

0.8905

None

21.4905

1.8065

29.3585

3.1483

0.2462

22.4432

3.2291

0.1546

23.1082

6.4900

0.3449
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Figure 3.11 Magnitude response of a second order cascade form 4th order low-pass filter using 5 
bit coefficients and Infinity norm..
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Figure 3.13 Magnitude response of a second order cascade form 6th order low-pass filter using 8 
bit coefficients and Infinity norm.
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Figure 3.14 Magnitude response of a second order cascade form 8th order high-pass filter using 
8 bit coefficients and 'None' norm.
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Figure 3.15 Magnitude response of a second order cascade form 8th order high-pass filter using 
8 bit coefficients and 'Infinity' norm.

86



1.5 -

I
(7) 
CO
E 0.5

1.5

'E

o> 
ra 0.5

Chapter 3: Finite word length optimisation of MR filters
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Figure 3.16 Magnitude response of a second order cascade form 6th order band-pass filter using 
5 bit coefficients and 'none' norm.
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Figure 3.17 Magnitude response of a second order cascade form 6th order band-pass filter using 
8 bit coefficients and Infinity norm.
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Figure 3.18 Magnitude response of a second order cascade form 8th order band-pass filter using 
5 bit coefficients and Infinity norm.
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Figure 3.19 Magnitude response percentage error against number of bits of a second order 
cascade form 8 th order high-pass filter with 'None' norm.
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1 5 1 6

Figure 3.20 Magnitude response percentage error against number of bits of a second order 
cascade form 8th order high-pass filter with 'Infinity' norm.

3.4 Simple hill climber techniques and exhaustive search

To test the robustness and accuracy of the GA optimised results, the methods of simple hill 

climber algorithms such as the steepest ascent (SAHC) and the nearest ascent (NAHC) were 

applied to a selection of filters shown in Table 3.3 for the second-order cascade form structure 

of IIR filters. Random sampling tests for the search space as used for the GA optimisation was 

also conducted. Furthermore, for the selection of low order filters, an exhaustive search was 

conducted over a matching search space. The hill climber algorithms for this search are 

identical to those used in Chapter 2 (section 2.5) for FIR filters. The flow chart shown in Figure 

2.14 describes the hill climber algorithm used for this application. In order to maintain parity 

with the GA optimisation, approximately the same number of objective function evaluations 

were performed for the hill climber methods. The hill climber performed a maximum of 120 

objective function evaluations i.e. 12 evaluations (for filter length 12) for each loop running a 

maximum of 10 times. 20 runs of each algorithm, starting with a different randomly generated
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seed thus generates a maximum of 2400 evaluations. The GA performs a maximum of 2120 

evaluations. An important observation for the application of hill climber algorithms is that the 

search space for optimisation can extend beyond the range of+1 or -1 of the rounded values for 

each coefficient. This outcome is implicit in the evolutionary nature of the algorithms since 

mutation of the coefficient value occurs for each iteration. In this respect, there is a subtle 

difference when compared with the GA optimisation because the search space for GA is 

confined to +1 and -1 of the rounded coefficient values for the results obtained in this study. 

The hill climbers are thus subjected to a wider search space that may or may not be 

advantageous to the optimisation process. There is a possibility of obtaining a superior solution 

when compared to the GA method however, there is also a danger for the search to move 

towards areas of inferior or local minima solutions. The results of SAHC, NAHC, the random 

sampling and exhaustive search for a selection of the IIR filters are shown in Table 3.4 and the 

filter coefficients are shown in Table 3.5. The results shown with an asterisk (*) are the ones for 

which the search space has deviated greater than +1 or -1 of the rounded coefficient values. 

Note also that the exhaustive search was confined to deviation of+1, 0 or -1 of the rounded 

coefficients.

Table 3.4

GA and hill climber optimisation results of summed magnitude error of Equation 3.7 over 500 
frequency points for second order cascade form IIR filters.

Filter
l)NN/SOS/LP4/5
2)NN/SOS/LP4/8
3) IN/SOS/LP4/8
4) IN/SOS/HP4/5
5)NN/SOS/HP4/8
6)NN/SOS/BP4/5
7) IN/SOS/BP4/8

Exh. Sch
6.1447
0.9172
0.7966
9.2286
1.1778
14.9344
3.1483

Random
6.1447
0.9253
0.7966
11.5684
1.4768
22.0861
3.1483

SAHC
9.3285
0.8200*
0.8812*
11.0276
1.0779*
14.9344
3.2204

NAHC
30.3495
2.2104
1.7215*
21.6502
3.9608*
52.2511
5.0610

GA
6.1447
0.9172
1.0973
10.3195
1.4458
14.9344
3.1483

Exh. Sch = Exhaustive search
Randon=random sample
SAHC=steepest ascent hill climber
NAHC=nearest ascent hill climber
* indicates search space exceeded +1 and/or -1 of rounded coefficient values
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Table 3.5 The filter coefficients of selected filters.
* indicates search space exceeded +1 and/or -1 of rounded coefficient values

Filter 1: NN/SOS/LP4/5
Random 1 3 2 15 -9 4

14 12 15 15 0 12 
SAHC 2 3 1 15 -8 4

15 13 15 15 0 11 
NAHC 3 1 2 15 -9 5

14 14 14 15 -1 13 
Filter 2: NN/SOS/LP4/8 
Random 13 22 14 127 -78 39

127 114 127 127 0 103 
SAHC 13 22 13 127 -79 39

128* 114 127 127 -1 103 
NAHC 5 22 12 127 -79 39

125 115 127 127 0 103 
Filter 3: IN/SOS/LP4/8 
Random 12 21 13 123 -76 38

127 112 127 123 0 100 
SAHC 13 21 12 123 -74 37

129* 113 128 123 0 99 
NAHC 14* 20 12 123 -76 38

125* 116* 126 123 0 100 
Filter 4: IN/SOS/HP4/5 
Exh. Sch 1 -2 0 15 15 6

14 -4 15 15 8 12 
Random 1 -1 1 15 15 6

15 -5 15 15 9 13 
SAHC 1-1 1 15 14 6

16 -6 14 15 9 12 
NAHC 2 -1 -1 15 15 5

15 -5 13 15 9 10 
Filter S: NN/SOS/HP4/8 
Exh. Sch 8 -12 8 127 118 48

127 -38 126 127 71 104 
Rand 8 -12 8 127 119 49

127 -38 127 127 70 104 
SAHC 8 -12 8 127 119 49

126 -37* 126 127 71 104 
NAHC 11* -10* 7 127 121* 51*

126 -39 125* 127 71 104 
Filter 6: NN/SOS/BP4/5 
Random 2 4 2874

8 -15 8 8 -8 5 
SAHC 2 4 2874

7 -15 8 8 -7 4 
NAHC 4 5 2853

7-12 6 8-7 3 
Filter 7: IN/SOS/BP4/8 
Random 11 23 12 58 51 33

64 -127 64 58 -52 33 
SAHC 12 23 11 58 51 33

65 -128 64 58 -52 33
NAHC 14 25 12 58 53 33

61 -123 65 58 -53 33
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3.5 Discussion of results

As no quantifiable results of example form and structure of IIR filters and their FWL optimised 

coefficients are available in literature, an extensive range of such filters have been arbitrarily 

selected and used in this study. These cover both the direct form and the second order cascade 

form structures. The investigation of GA optimisation for each type of example filters was 

conducted and the results are reported. Table 3.2 shows the GA optimised results compared 

with the simply rounded values coefficients for the direct form IIR filters. The values listed are 

the summation of the absolute magnitude error between the exact and the approximate 

frequency response of the filter over 500 equidistant frequency points covering the full range of 

frequency spectrum from 0 to n radians. It must be recognised that for stability of IIR filters, all 

poles of the transfer function must lie inside the unit circle of the 'z' plane. This condition is 

embedded in the GA optimisation code thus leading to results that assure stable filter design. If, 

however, all the zeros of the transfer function are also either inside or on the unit circle then the 

filter generates the least phase form and is thus called a minimum phase filter. The GA 

optimisation was conducted for the case of minimum phase (MP) and non-minimum phase 

(NMP) conditions of IIR direct form filters in case of the example filter specifications. The 

results of GA optimisation listed in Table 3.2 show a significant improvement over the simply 

rounded coefficient values. Furthermore, the non-minimum phase optimised results show 

consistently improved performance of the magnitude response when compared with the 

minimum phase optimised results. In either case, the optimised results show significant 

improvement when compared with the results using the simply rounded coefficient values.

The same set of filters as used above in the direct form implementation of IIR filters were also 

GA optimised in the form of second order cascade structures. The results for this form of IIR
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filters are shown in Table 3.3. Two scaling options were used i.e. 'none norm' (NN) and the L*, 

- 'infinity norm' (IN). Note that the 'UP' ordering of pole-zero pairs of the cascade sections and 

the La,-norm scaling minimises the probability of overflow error in the realisation of the IIR 

filters. The GA optimised results using the 'none-norm' option generate largely improved 

results when compared with the 'infinity-norm' optimised results. However, in either case the 

optimised results show significant improvement when compared with the results using the 

simply rounded coefficient values. Furthermore, when compared with the optimised results of 

the direct form IIR structure shown in Table 3.2, the second-order section cascade structure 

results show significantly performance clearly demonstrating high immunity of such structures 

to FWL coefficient effects. A complete listing of the optimised coefficient values for the direct 

form and the second order cascade form are shown in Appendices Cl .2 and C2.2 respectively.

Further tests were conducted on a selection of IIR filters of the second order cascade form 

structures using the simple hill climber techniques, random sampling and exhaustive search. 

The results of these tests are shown in Table 3.4. Once again, the GA optimised results are seen 

to be consistently good. However, for some filters such as the Filter2: NN/SOS/LP4/8, FilterS: 

IN/SOS/LP4/8 and the Filter 5: NN/SOS/HP4/8, the steepest ascent hill climber method has 

generated superior results. This is significant since the search space for these algorithms can 

intrinsically extend beyond the +1 and/or -1 of the rounded coefficient values. The GA search 

space, however, is restricted to +1 or -1 of the rounded coefficients. This offers credibility to 

the simple hill climber technique and complements the GA optimisation to search for superior 

solutions for the application considered here.
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3.6 Summary of Chapter 3

The specific problem of finite word length coefficients in the realisation of IIR filters has been 

considered here. The purposeful aim is to use the procedures of genetic algorithms to optimise 

the frequency response in comparison to the exact filter response. Quantifiable metrics is based 

on the calculation of magnitude response error using Equation 3.7 over the full frequency range. 

Comparison is drawn between the simply rounded coefficient results and those obtained using 

the GA optimised coefficients. Two types of IIR filters have been considered i.e. the direct 

form and the second-order cascade form. In each case further sub-divisions have been 

considered. For direct form filters, two types i.e. minimum phase and non-minimum phase 

realisations have been considered and for second order cascade form the 'UP' ordering of poles 

in conjunction with firstly, 'Infinity' norm and then 'None' norm have been considered.

The result, as shown in Tables 3.2 and 3.3 show a distinct improvement of GA optimised results 

in comparison to the simply rounded coefficient results. A general comparison over a number 

of bits using the percentage error metric given by Equation 3.16 for selected filters have been 

shown in Figure 3.7 (for direct form) and in Figures 3.16 and 3.17 (for second order cascade 

form). In each of these figures, the GA optimised results show a distinct improvement, when 

compared to rounded coefficient results, over the whole range of bits used for coefficient 

representation.

The general conclusion of this part of the study leads to the observation that the second-order 

section realisation of IIR filters generates good results over a range of filter types. However, the 

accuracy of results is dependent on the number of bits used for coefficient representation and the 

type of implementation (see Table 3.3). The stability-check criteria have been applied to all the 

GA optimised results and a listing of the coefficient values have been included (Appendilices
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C 1.2 and C2.2). The GA optimisation of IIR filters as discussed and investigated in this chapter 

is clearly useful in the implementation of FWL coefficient structures for real-time applications. 

This study will be applied to the case of multirate quadrature mirror filter banks using IIR filters 

that will be investigated in the next chapter.

The major contributions of this part of the study are the following.

• Real integer-valued genetic algorithm codes have been developed for the optimisation of the 

finite word length constrained coefficients of IIR digital filters. The direct form and the 

second order cascade form structures have been considered. Further distinctions drawn are 

in terms of minimal and non-minimal phase IIR direct form filters and the use of 'Infinity 

norm' and 'none norm' for the case of IIR second order cascade form structures.

• hi order to establish a basis for comparative study, a number of band select filters have been 

defined as seen in Table 3.1. The GA optimised results for different filter orders and 

number of bits representing the coefficient values are seen to be vastly superior when 

compared with the simply rounded coefficient value results. These results are shown in 

Tables 3.2 and 3.3 and the actual coefficient values are listed in Appendices C1.2 and C2.2.
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Chapter 4: Optimisation and real-time implementation of a class 
of multirate quadrature mirror filter bank

Overview of Chapter 4: This chapter starts with an introductory section on the 2-channel 

multirate quadrature mirror filter (QMF) bank. Some theoretical issues regarding 

reconstruction errors and conditions for perfect reconstruction (PR) of the input signal are 

considered. The main emphasis is on the optimisation of a new design of a perfect 

reconstruction QMF bank using IIR filters. The GA optimisation of the initial design of the 

QMF bank and of the IIR filters using finite word length coefficients is investigated and 

reported. The optimised results are then applied to a real time digital signal processing kit. 

Finally, some test results for data compression achievable using different values of encoded bits 

are included.

4.1 Introduction

The issues of finite word length errors and their optimisation for real-time realisation of digital 

filters as covered in Chapters 2 and 3, has important application in the field of multirate filter 

banks. This is mainly because the design of multirate filter banks is based on the use of FIR 

and/or IIR digital filters. The real-time applications of multirate banks, such as sub-band coding 

of telephony speech signals and data compression, is based on using finite word length form of 

the input signal, digital filter coefficients and arithmetic operations on fixed-point digital signal 

processing devices. The work developed in Chapters 2 and 3 is extended to the case of real- 

time realisation of multirate filter banks that is considered in this Chapter.

Multirate processing of digital signals is involved with variable rate sampling at different stages 

of a system often resulting in efficient processing of signals. The main areas of application of
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multirate signal processing include digital audio systems, speech and image processing, 

transmultiplexers, sub-band coding and signal data compression. Multirate filter banks are of a 

specific structure with applications in spectrum analysis and sub-band coding of speech and 

image signals [Vaidyanathan, 1990]. An example of a specific form of a two-channel multirate 

structure shown in Figure 4.1 is commonly referred to as a quadrature mirror filter (QMF) bank. 

This is due to the power complementary frequency response of the low pass and high pass filters 

used.

A requirement for perfect reconstruction (PR) of the input signal through a 2-channel filter bank 

as shown in Figure 4.1 is the cancellation of amplitude, phase and aliasing distortions of the 

output signal. Theoretical methods of achieving PR are well established [Vaidyanathan, 1993]. 

However, obtaining good sub-band filters of high order and minimising reconstruction errors are 

key elements for the specified design and implementation of real systems. Most methods for 

designing a QMF bank use FIR analysis and synthesis filters. The linear phase characteristic of 

FIR filters result in the elimination of phase distortion and with appropriate choice of the 

synthesis filters, aliasing error is also eliminated. Finally, the amplitude distortion is minimised 

by an appropriate optimisation procedure to give a near-perfect reconstruction of the input 

signal. However, a large number of coefficients are required for high sub-band frequency 

separation for the implementation of FIR filters that makes their use somewhat inefficient. For 

this reason IIR filters are preferred since fewer coefficients are required for similar frequency 

response specifications although stability checks are required and in general, non-linear phase 

response of IIR filters can cause undesirable effects for specific applications such as image 

processing.
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Figure 4.1 A two channel quadrature mirror filter bank.

Most types of IIR filter banks proposed in literature either generate non-causal filters or they do 

not achieve perfect reconstruction [Vaidyanathan, 1993], [Vetterli and Kovacenic, 1995]. A 

broad class of IIR QMF banks have been extensively studied resulting in efficient all-pass based 

realisations [Vaidyanathan et al 1987]. However, phase distortion in these structures remains a 

problem due to the intrinsic non-linear phase response of IIR filters. Some form of all-pass 

equalisation must be used to overcome the phase distortion. Such an equalisation process is 

complex and is not efficient for real-time applications. Other methods reported in literature 

include mixed mode, FIR/IIR implementation. The FL, optimisation method pre-specifies the 

analysis filter (FIR or IIR) for efficient coding of the transmitted signal and the IIR synthesis 

filter bank is designed based on H*, optimisation [Chen and Francis, 1995]. Work reported in 

Zhu et al [1998], uses an all-pass IIR filter for the analysis part of the QMF bank and a non 

linear phase FIR filter that is designed using a weighted least-square (WLS) algorithm to obtain 

the synthesis filter.

Yet another class of IIR QMF bank design is based on the application of transformations. This 

category includes the use of the McClellan transformation that was originally used for

98



Chapter 4: Optimisation and real-time implementation of 
a class of multirate quadrature mirror filter bank

transforming zero-phase 1-D FIR filter to 2-D FIR filter [McClellan, 1973]. An equivalent 

generalised transformation of McClellan has been used for designing causal IIR analysis and 

synthesis filters and is shown to be flexible in being able to use a large class of transformation 

functions [Tay and Kingsbury, 1996]. The work due to Basu et al [1995] is concerned mainly 

with the theoretical issues of complete parameterisation of the filter bank system and no design 

examples for implementation are given. The work reported in Phoong et al [1995] uses a 

polyphase representation of the 2-channel QMF bank and the design of all analysis and 

synthesis filters is reduced to the design of a single transfer function. However, the design 

procedure is not direct and involves substantial constraints. A minima* design approach of IIR 

QMF banks has been reported recently [Lee and Niu, 2001]. In this work, the frequency 

response is optimised in the L^, minimax sense; however, the design of an IIR low pass 

prototype filter is based on heuristic initial assumption of coefficient values that cannot always 

assure optimal minimisation of the error function.

The multirate filter investigated in this chapter is based on a method of designing a 2-channel 

perfect reconstruction IIR filter bank using the transformation of variables technique. This 

technique was originally developed for designing multidimensional FIR filter banks [Tay and 

Kingsbury, 1993] but was later extended to the case of IIR filter banks [Tay and Kingsbury, 

1996], [Tay, 1998]. The 'transformation of variables' technique involves the use of small 

prototype filters and transformation of their variables by applying a transformation function. 

The transformation function uses a number of parameters that must be determined and 

optimised for appropriate frequency response of sub-band filter transfer functions. Although 

such a design method is simple and flexible, some heuristic assessment, based on trial-and-error 

procedure for the variables is used in order to obtain desirable results. Even so, there is no 

assurance that a near-optimal result has been obtained. It is this feature that inspired the use cf 

genetic algorithms for locating quasi-optimal values, both in the design stage of the 2-channel
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filter bank and further optimisation using finite word length constraints for real time 

implementation. The major attraction for using the 'transformation of variables' technique is 

the design of causal stable IIR filters generating good frequency band separation and satisfying 

the perfect reconstruction condition. Furthermore, this technique is flexible in being able to use 

a large class of transformation functions thus leading to a number of options for the design 

implementation in real time.

4.2 Errors in the QMF bank

X(z)

X(z)
Analysis filter bank 

Figure 4.2 Sub-band coding of a QMF bank.

Synthesis filter bank

The analysis filter bank shown in Figure 4.2 decomposes the input signal X(z) into sub-band 

signals X0(z) and Xi(z). This is followed by the synthesis filter bank that reconstructs the signal

X(z) from the sub-band signals. For real signals, the power of the original signal may not be 

equally distributed over the sub-bands. This property can be exploited constructively and can 

lead to coding gain if the sub-band signals are independently coded instead of the original signal 

[Jayant and Noll, 1984]. The coded signal can be transmitted and then decoded at the receiver 

where the original signal is reconstructed. The analysis and synthesis filters must be designed 

such that X(z) is as close as possible or even exactly the same as the input signal X(z). The 

mathematical relationship between the signals and the filters as shown in Figure 4.2 [Fliege, 

1994] is given by
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X(z) = [F0(z)
Ho(z) Ho(-z) 
H,(z)

X(Z) 
X(-z)

Equation 4.1 can be expanded to

X(z) = l/2X(z)[F0(z)H0(z) + F,(z)H,(z)] + '/2X(-z)[F0(z)Ho(-z) + F,(z)H,(-z)] 4.2

The second term of Equation 4.2 represents the aliasing caused by the overlapping of frequency 

responses due to sampling rate alteration and can be expressed as:

A(z) = '/2[F0(z)Ho(-z) + F,(z)H,(-z)] 4.3 

An alias-free realisation requires A(z) to be zero and the following choice of synthesis filters 

achieves this condition i.e.

F0(z) = H,(-z) and F,(z) =-Ho(-z) 4.4 

The first term of Equation 4.2 describes the distortion transfer function T(z) of the alias free 

filter bank i.e.

T(z) = '/2[F0(z)Ho(z) + F,(z)H,(z)] 4.5 

By using the property of Equation 4.4 then

T(z) = '/2[Ho(z)H,(-z) - H,(z)H0(-z)] 

and the output of the alias-free QMF bank is given by

X(z) = T(z)X(z) 4.6 

If T(z) is an all-pass function then 17(01 = d * 0 for all co and the QMF bank is said to be 

magnitude preserving. If T(z) has linear phase then argfTfeH] = aco + b and the filter is said to 

be phase preserving. In order for a QMF bank to be a perfect reconstruction (PR) QMF bank 

then it must be alias-free, magnitude and phase preserving.

4.3 Design procedure using transformation of variables method

Several techniques for the design of a two-channel QMF banks exist [Vaidyanathan, 1993], 

[Mitra, 1998]. The main aim of the design is to develop conditions for the analysis and
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synthesis digital filters so that the magnitude and phase response errors and the aliasing error are 

all minimised such that the perfect reconstruction characteristic of the QMF bank is closely 

satisfied. The problems of aliasing error, amplitude and phase distortions can cause degradation 

of the input signal thus a compromise solution must be found that gives an optimal condition for 

perfect reconstruction. Some of these errors are intrinsically eliminated due to the nature of the 

selected filter types and the remainder errors are minimised based on optimisation techniques. 

Further considerations are concerning computational overheads and complexity of filter 

structure in terms of throughput, power dissipation and other related costs.

The design method considered here is the transformation of variables technique proposed by 

Tay [1998]. This technique generates IIR filters with good frequency band separation that are 

casual and stable and can achieve perfect reconstruction. The basis of this method of design lies 

in the use of a set of small prototype filters and the transformation of their variables using a 

transformation function. A large range of transformation functions can be used each of which 

consist of a set of parameters that can be optimised to give the desired filter characteristics. 

This affords flexibility to the designer for 'fine-tuning' the characteristics and the final outcome, 

with relative ease.

The transformation of variables technique was initially developed for designing 

multidimensional linear phase FIR filter banks with applications to image processing [Tay and 

Kingsbury, 1993]. Further development of this technique is in designing IIR filter banks both in 

1-D and 2-D [Tay and Kingsbury, 1996], [Tay, 1998]. The low pass filters HO(Z) and F0(z) (see 

Figure 4.2) are derived from prototype filters HT(Z) and FT(Z) respectively that are both 

functions of a polynomial in Z. The transformation applied is given by Z=M(z) that satisfies the 

condition M(z) = - M(-z). 

The low pass filters are thus given by
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Ho(z) - HT(M(z)> and F0(z) = FT(M(z)) 4.7 

and the high pass filters are given by

H,(z) = z-KF0(-z) and F,(z) = z?Ho(-z) 4.8 

where K is an odd integer. 

The design of the prototype filters is subject to the constraint that

HT(Z) FT(Z) + HT(-Z) FT(-Z) = 2 4.9 

The condition of Equation 4.8 reduces the input/output relationship of the QMF bank given by 

Equation 4.2 to an alias-free form, thus

X(z) = '/2X(z)[Fo(z)Ho(z) + F,(z)H, (z)] 4.10

Using Equations 4.7, 4.8 and 4.9 the Equation 4.10 reduces to X(z) = X(z) i.e. perfect 

reconstruction.

A number of prototype filters have been considered by Tay and Kingsbury [1993] and their 

properties analysed. The most promising for sub-band filter banks is the pair obtained for the 

modified Lagrange half band filter given by 

HT(Z) = -%(Z+l)(Z-3)

FT(Z) = - i/i2[(Z + 1)(Z2 + Z - 8)] 4.11 

Furthermore, only rational transformations are considered in this work that generate IIR filters. 

The design of the prototype filters is based on the value of Z=M(ei<fl) moving on a complex 

contour 'C' given by

C = {Z:Z=M(^);-n<&<n} 4.12 

The contour that gives most flexibility and thus offers a range of possible design options is an 

elliptical contour given by

Ce(b)={Z:Z = cos(e)+jbsin(9); -7t<6<7t} 4.13

where 0 < b < 1
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A set of contours can be generated that lie between the two extreme cases by changing the value 

of V. These contours can be approximated by a transformation function for Z, of the form

z +d; z4 -2pi cosv(/ i z 2 + p? 

where P = 2Pr + 4P C - 1 and

414

i=f 1 + c , 1=1 ri - 21-cospi + 1 

the normalisation factor k assures that Z = 1 when 9 is zero.

As mentioned above, the sub-band filters obtained by using this method are casual and stable 

(see lay [1998] for proof). There are several parameters to be designed for the higher order 

transformations and a trial and error method is not practical, hence some form of optimisation 

method is more suitable. The objective function to be minimised is a function of the parameters 

c, d, r, q>, p, \p of the transformation function M(z) and is given by

L
Obj_fh = £ I M(eja)ra ) - Mi(aU | 2 W(com) 4. 1 6

m=l

note that c, d, r, q>, p, \|/ are the design parameter vectors e.g. c = [ci,... .,Cpr]. Also, M(e^Wm) is 

the frequency response of M(z) at om and Mi(com) is the desired frequency response of M(z) at 

com . Mj(co) represents the desired complex contour Ce(b). Only the passband frequencies need 

to be considered in the objective function as Mfe"") is conjugate anti-symmetric about the 

frequency n/2 (refer to [Tay, 1998] for proof). The summation is over a set of frequencies <a,, 

oj. ML where o>, = 0 and O L = rc/2 representing the passband edge. The idealised function M, 

is given by

Mi(o>) = cos6((o) - jbsin0(o) 4 - * 7 

where 0(co) = Ko n for 0 < co < 7i/2 and K is a normalisation factor= (it/2) "".
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The value of 'n' defines the roll-off requirement to be achieved by the optimisation process. A

high value of 'n' will result in a filter with sharper roll-off. W(com) in Equation 4.16 is the

weighting function and can have values of

W(com) = m, for a slow roll-off requirement i.e. positive linear weighting; or 

W(com) = L+l-m, for a sharp roll-off requirement i.e. negative linear weighting.

It must be mentioned that a sharp roll-off tends to increase the ripple, whilst a slow roll-off

tends to reduce it. For large values of n i.e. when n —> oo, then

1 for 0 < co < 7t/2 (passband)

4.18 

-1 for Tc/2 < co < 7t (stopband)

this is a typical idealised 'brick-wall' type frequency response.

The design problem of the prototype filters is thus reduced to minimising the objective function

Equation 4.16 subject to the constraints

-1 < d, < 1 and 0 < pi < 1 for stability; and 4.19 

M(z=ei't/2) = -jb 4.20 

to ensure that the complex contour passes through the point (0, -jb).

From the transformation function of Equation 4.14, it can be seen that the simplest function is 

obtained when Pr = 1 and Pc = 0. This leads to essentially only one parameter to design for the 

required response. A trial-and-error approach is then easily applied to arrive at the desired 

response. However, for higher order transformations, there are several parameters involved and 

a simple trial-and-error method is not practical. For this, a more comprehensive optimisation 

technique is required. Note that for the two cases of the transformation function used in the 

design examples considered in this work, the number of parameters required to be optimised can 

be reduced [Tay, 1998]. For example for Pr=2 and Pc=0, then
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/'1i-4\/1iJ\/1 — \ i !_/1 J \/1 J \ y i . \ 4.Z1

and for Pr=Pc=l, then

=C ~F(l 4 '22

where

p 2 - 2pcos\|/ + 1 Y r 2 + 2rcosq> + 1F =
r - 2rcoscp +1 A p + 2pcos\j/ +1

The work reported in Tay [1998] uses a trial set of 'seed' parameter values for the constrained 

optimisation algorithm function constr.m of MATLAB to obtain a converged solution. A 

global optimal solution is not assured with such gradient-based methods so a number of trial 

'seed' parameters must be used to obtain desirable results. This is a major limitation of the 

'transformation of variables' technique especially for higher order transforms and has led to the 

motivation for the work that is covered in this chapter. A genetic algorithm approach is 

developed to search for global minima. Furthermore, this work is extended towards obtaining 

finite word length, causal stable IIR filters through a second stage GA optimisation procedure 

for real-time applications as developed in Chapter 3.

4.4 Genetic algorithm implementation procedure and methodology

The major limitation of the optimisation process of the parameters of the transformation 

function covered by Tay [1998] is the use of the Matlab function 'constr.m' that is based on the 

constrained non-linear i.e. sequential quadratic programming (SQP) method. This process 

works well but is highly susceptible in converging to a local minima point. A global optimal
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solution is not assured so a number of starting seed values must be tried. This is clearly 

restrictive and the problem is further compounded for higher order transformation functions that 

consist of larger number of parameters. GA optimisation is thus a good option in such 

applications due to its intrinsic search capability over a much wider landscape of the objective 

function.

In order to obtain the final optimised design based on the transformation of variables technique 

of the QMF bank for the FWL constrained real-time realisation, a number of steps must be 

followed. In brief these are

1. Select the order of the transformation function Z=M(z) (see Equation 4.14) to be 

optimised and define the parameters of the idealised function given by Equation 4.17 

i.e. M^co) = cos6(co) - jbsin0(co), where 9(co)=Kcon for 0 < co < 7t/2 and K is a 

normalisation factor = (7t/2)'~n . Note that for n —> <x> then Mj(co) generates the standard 

ideal brick-wall frequency response.

2. The transformation function design parameters given by Cj, dj, r,, §t, pt , cpi are optimised 

using the objective function given by Equation 4.16 that is minimised i.e.

L
Obj_fh= ]>] | M(e JWm ) - M^tOn,) | 2 WCcO where W(com) is a weighting factor. A pseudo

m=l

code for this step of design optimisation using GAs is shown in Figures 4.3 and 4.4 for 

the main code and the objective function code respectively.

3. Use the prototype filters of Equation 4.11 and the optimised transformation function 

from step 2 to derive the transfer function coefficients of the digital filters using 

Equations 4.7 and 4.8. This step generates the IIR analysis and synthesis filters with
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high precision coefficients and the design stage of the QMF bank is completed. A 

pseudo Matlab code for this step is shown in Figure 4.5.

4. This step is the second stage of the process where the high precision coefficients of the 

analysis and synthesis filters are converted to the finite word length form and then 

optimised using the GA techniques developed in Chapter 3.

5. The final step is the real-time implementation of the optimised QMF bank on a digital 

signal processing hardware system.

It must be recognised that although the design stage of the QMF bank in this study generates IIR 

filters, there exist several other design methods that involve the use of FIR filters. For such 

applications the FWL optimised techniques developed in Chapter 2 can then be applied. An 

important observation in the above steps for final realisation of the QMF bank is that the 

optimisation of design is entirely independent of the FWL coefficient optimisation of the IIR 

filters. The two stages are thus considered separately since entirely different constraints and 

issues are involved with their optimisation processes. A combined code for the two stages for 

which the entire process is linked in a sequential form, however, is trivial.

The genetic algorithm used here for the design of the QMF bank is identical to the generic form 

explained in section 1.4. This is a MATLAB based algorithm developed originally for control 

systems applications [Chipperfield et al, 1993]. The main GA code has been adapted for the 

application in this work and new functions have been written for working out the error objective 

function. Figure 4.6 shows a complete flow chart procedure for obtaining a filter realisation for 

real-time implementation of the 2-channel sub-band filter banks. The specific steps followed 

for the design stage of the QMF bank GA optimisation are

1) Define the GA parameters
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Number of individuals = 200, Number of generations = 100, Generation gap = 0.9 
Reinsertion rate = 0.7, Mutation rate = 0.2, Number of frequency points sampled L = 100

2) Create population set of individuals

The starting set of parameter values r,, <j>i, q>j are initially assumed within the bounds of -2 and 

+2 although stability bounds for dj and PJ are strictly applied as defined in Equation 4.19. The 

bounded parameter values are described in a matrix 'FieldDR' and an initial population set 

consisting of random real-valued individuals is created within the bounds specified in FieldDR 

matrix. The function crtrp of the GA Matlab toolbox is used for this purpose.

3) The Objective function evaluation

The main purpose of the optimisation process here is to minimise the objective function with the 

specific aim of obtaining an approximated frequency response of the transformation function 

that is as close as possible to the desired response. The objective function used here is given by 

Equation 4. 16 i.e.

Obj_fn= ]T 1 M(eJ(0ni ) - MKaU | 2 W(o)ra)
m=l

Where W(com) is a weighting factor and it varies for different design examples considered.

4) Fitness value and ranking

The Matlab based ranking function of the GA toolbox ranks the individuals according to their 

objective function values 'Obj_fn' and returns a column vector consisting of the corresponding 

fitness value 'FitnV of the individuals. This function performs a linear ranking with a selective 

pressure (SP) of 2 [Whitley, 1998]. The fitness value assigned to the individuals is calculated 

according to the formula given by Equation 1 . 1 Chapter 1 .

5) Selection of individuals for breeding

The high-level function for selection of individuals from the population set and returning the

selected individuals in a new population is performed by the select function. The low-level
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selection function sus is called by the select function. The sus function is based on a form of 

stochastic sampling method and is implemented by obtaining a cumulative sum of the fitness 

vector 'FitnV and generating a set of equally spaced numbers between 0 and Z(FitnV) [Baker, 

1987]. The probability of an individual being selected is given by Equation 1.2 in Chapter 1.

6) Recombining individuals - crossover

The crossover function is also performed in two stages. The high-level function is recombin 

that calls the low-level function recdis. The recdis function is a discrete recombination 

function. The mating process is performed between pairs of rows. The recdis function first 

generates an internal mask table that determines which parents contribute which variables to the 

offspring. On the basis of the randomly generated mask table, the variable values are exchanged 

between the individuals and return a new population after mating.

7) Mutation

The mutbga function of the Matlab GA toolbox takes real-valued population, mutates each 

variable with given probability and returns the population after mutation. The mutbga function 

produces firstly a random internal mask table that determines which variables will mutate and 

also the sign for the step size. A second internal table generates the normalised mutation step 

size. The mutated variable is worked out as a function of the original variable and the step size 

[Muhlenbein and Schlierkamp-Voosen, 1993].

8) Reinsert offspring into new population

The new population set generated after crossover is subjected to the objective function 

evaluation of each new individual. On the basis of their fitness, the offspring are selected for 

reinsertion using the reins function into the new population. The objective function values are 

then copied to the reinserted offspring and the GA loop is then repeated for the next generation.
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A pseudo GA code for the transformation function filter optimisation and the objective function 

code are shown in Figures 4.3 and 4.4 respectively.

% Pseudo GA optimisation of transformation function parameter values

% Built field descriptor ^fSfti 
FieldDR=[-l -2 -2 0 -2;1 2 2 12];

. • ::;;...V: ; :;:;^|: : :;:j:..;;; ;: : .|';!;.-.: .".

% Initialise population 
Chrom==crtrp{NIND, FieldDRfT '"~

% Evaluate initial population
Ob j V= t vg a o b j (Chrom, z, Mi, b, W} ; :;!!: :: . ^ippPg
gen=0; %counter .......,......,.:..:... :......•:....................: Jlllillll

% Generational loop "f">mm
while gen < MAXGEK

**w;;Sii;: ^Assign fitness values to entire population 3IIIII1 
FitnV = ranking (ObjV) ; lllllll

%Select individuals for breeding mmmmm 
SelCh=select ('sus ' , Chrom, FitnV, GGAP) ; Jlllllll

%RecoM>ine individuals {crossover} il|||l| 
SelCh^recombin('recdis',SelCh);

%Apply mutation 
SelCh=mutbga(SelCh,FieldDR,

%Reinsert offspring into population 
{ Chrom ObjV] -reins (Chrom, SelCh, I, [I INSRf,ObjV,6bj:VSel5 ; ::: 1||||||||

%Increment counter 
gen=gen+l 
[m,n]=min(ObjV) ; 
ObjV(n,1! J 
OBJ(gen)=ObjV(n, 1) ;
if gen > SWOVT; % start of creep code<|||||||||||| 
% creep code here 
ObjV=tvgaobj(Chrom,z,Mi,b,W)?

Figure 4.3 Pseudo GA optimisation of the transformation function parameter values.
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Objective function for tv ga.m

function f^tvgaobj(Chrom,z,Mi,b,W);

% Optimisation function for one first-order and one 
% second order transformation function. ^':::MiSi^iS^flfi&

Fl= ( (p A 2 ) -2*p*cos (psi)
F2=( (r"2) +2*r*cos (phi) +1} / { (p^2) -f2*p*cos (psi) +1)F=F1*F2; .................

c=(F* (l+d) -b* (1-d) } / (F* {1+d} +b* (1-d) } ;

-2*r*cos (phi) +1) ;
ki=(
k2=((p A 2)-2*p*cos(psi}+l}/{
k=kl*k2;

% P - 2Pr+4Pc-l = 5 
P=5;

Mzl= ( c* ( z . "2 } +1 } . / ( ( z . A 2 } +d) ; 
Mz2=({z. A 4)*(r"2)-2*r*cos(phi)*(z. A 2}+l) . 
2*p*cos (psi ) * { z . A 2 } + (p A 2 } } ; 
Mz=k* ( z » A P ) . *Mzl , *Mz2 ; ^JiilgiJI""

f (i, l)=sum( { (abs(Mz-Mi) ) . A 2) .

Figure 4.4 Pseudo objective function code for GA optimisation of transformation function 
parameter values
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% Deriving QMF bank IIR filter transfer functions using .11 
% transformation of variable method utility {for Pr=Pc=l)

[HOb,HOa,FOb, FOa]=tvfilter(c,d,r,phi,p,psi) 

HOb,FOb: numerator of digital filter

% optimised transformation function parameters
c=0,7491;d=0. 5001; r=0 .1918;phi=l.0318 ?p=0.1097 ;f sl=l70013;:

% work out constant 'k' JI;Illl

% split the transformation function in a form Z=Zi*Z 3 /Z 2 *Z 4
Zl=[k*c(l} 0 k 0 0 0 0 OJ; Z2=[l 0 d(l)];
Z3=fr A 2 0 -2*r*cos(phi) 0 1]; Z4=[l 0 ~2*p*cos(psi) 0 pA 2]

llpdynomial multiplication is convolution fn. in Matlafeill||t||l 
IPconvfZl, Z3) ; Zd=conv{Z2 , Z4 ) ; ,y,:imx^

% work out HT (Z) prototype filter eqn. 4,11 
Hl(l:5}=Zn(l:5) ; Hi (6 :12} =Zn (6:12) +Zd; , :: , 1, 
H2 {1: 5} =Zn (1:5); H2 (6 : 12} =Zn (6:12) -3*Zd; ,j|| 

; H5=4*conv(Zd,Zd) ; iii||l ""'

% work out FT(Z) prototype filter eqn. 4 ,11 ,?f||;||l 
Z2n=conv (Zn, Zn) ; Z2d=conv (Zd, Zd) ; ^^^•HSfiStt........................
F2n=conv{Zn, Zd); Fl(1:5)=Zn(1:5); 
Fl{6tl2)=Zn{6:X2)-!-2d; F2 (1; 5}=Z2n(l; 5) ; 
F2 (6:23)=Z2n(6:23)+F2n;F2(11:23)=F2{11:23)-S*Z2d; 
F3=conv(Zd,Z2d); F4=conv(Fl,F2); F5=12*F3;

% numerator and denominator coefficients low pass analysis and :;|| 
%synthesis filters ;||| 
HOb=-H4/4; HOa=H5/4; FOb=-F4/12;

% derive numerator and denominator coefficients of high pass analysis 
%and synthesis filters i.e. Hlb, Hla, Fib, and Fla using the eqn. 4.8

Figure 4.5 Pseudo code for deriving the analysis and synthesis IIR digital filter transfer 
functions using transformation of variable method utility (for Pr=Pc=l).
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The GA optimisation of the transformation function parameter values is implemented to 

determine the individual with a minimum objective function value. After several trial runs of 

the first stage GA, it was observed that although good results were achievable, these did not 

always generate near optimal results when compared to those that were sometime obtainable 

using the gradient based optimisation function constr.m of the Matlab Optimisation toolbox. 

There is a dilemma here. The constr.m function generates good results but is dependent on 

the initial seed parameter values of the transformation function parameters. It was also observed 

that for some seed values, the constr.m function did not converge. This may be due to the 

characteristic of the transformation function landscape that represents fairly flat regions. 

Several seed values must be tried before a good desirable result is obtained. For this reason, a 

hybrid structure shown in Figure 4.6 is proposed, where a certain minimum objective function 

value is tested after the first stage GA. It was observed that this minimum value need not be too 

severe. Few trial runs of the GA give a good estimate of the minimum value thus generating a 

good set of parameter values. These are then used as seed values for the constr.m gradient 

based optimisation function to generate near optimal results. These results are an improvement 

to those reported by Tay [1998]. It must be recognised that a GA optimisation procedure alone 

cannot assure of a global optimal value. However, for this application, the parameter values
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Figure 4.6 Flowchart for realisation of causal IIR filter using a two stage GA.
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obtained from the first stage GA were found to be consistently good seed values for input to the 

constr.m optimisation function to generate desirable results. The optimal parameter values 

from the first stage are used to work out the coefficients of the causal IIR filter. The second 

stage GA is then applied to the FWL coefficient optimisation of the IIR filters as developed in 

Chapter 2. For this, the rounded coefficient values are obtained using

br = round [be 2N-'] 4.23 

where be is the high precision coefficient value and N is the number of bits.

The finite word length rounded coefficient values are used as a seed to generate a population set 

of new coefficients that are obtained by perturbing the integer values by +1, 0 or -1. A stability 

check is performed for every new individual and a high penalty is awarded to individuals not 

satisfying the stability requirements. Furthermore, the IIR filter can be implemented using 

either the direct form or a second-order cascade form structures depending on the design 

requirements. It is well recognised that a second-order cascade structure is significantly less 

sensitive to coefficient variations due to rounding effects and is therefore, the preferable 

structure form to use for the QMF bank implementation (see Chapter 3).

4.4.1 Objective function performance landscape

An initial GA search for good sub-optimal 'seed' parameter values of the transformation 

function is essential for obtaining good results. It is well recognised that a good choice of GA 

parameters in this context is essential for efficient minimisation of the objective function. The 

outcome of the objective function to be minimised can vary significantly on the GA 

performance landscape. In some instances a bimodal response is observed in which case the 

choice of some GA parameters such as population size or mutation rate can become 

substantially relevant to the outcome of the converged GA and the final objective function result
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[Gates et al, 1999]. An investigation of the transformation function parameters that would yield 

a minimum objective function value over an extensive GA performance landscape was 

conducted for a specific design example (example 3 in section 4.5). The objective function used 

in this example is shown in Equation 4.16 for which positive linear weighting is used. In an 

effort to achieve statistically significant results of the error function, each run of the GA over 

100 generations was repeated 5 times and an average value taken. The population size was 

increased in steps of 10 and mutation rate ranged from 0 to 1. Figure 4.7 shows the results. 

Other GA parameters used in this example were reinsertion rate= 0.7 and generation gap= 0.9. 

On the basis of the minimum error function shown in Figure 4.7, the GA parameters selected for 

optimisation of the transformation function coefficients are; mutation rate = 0.2, population size 

= 200 and number of generations = 100. Other parameters used are same as mentioned above.

population size mutation rate

Figure 4.7 GA performance landscape

4.4.2 Optimisation using the GA 'creep' code

In order to conduct an efficient optimisation of the GA code and to draw a comparison with the 

standard gradient and non-gradient based methods, a special GA 'creep' code was developed. 

This code is incorporated in the search algorithm and becomes operative only after the first 20 

generations of the GA code have been executed. The 'creep' code is a variation of the G-bit 

operator [Goldberg, 1983]. The G-bit improvement includes the following steps
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• Select one or more of the best strings from the current population.

• Sweep bit by bit, performing successive one-bit changes to the subject string or strings, 

retaining the better.

• At the end of the sweep insert, the best structure (or k-best structures) into the population 

and continue the normal genetic search.

The above operator is used in binary encoding, however, the GA optimisation in the design 

examples considered in this work is based on the use of real valued strings. The variation of the 

G-bit operator that has been used in the development of the GA 'creep' code is

• Select one or more of the best strings from the current population.

• Modify the string or strings slightly, by adding a small random number to each gene, 

retaining the better.

• Repeat a number of times

• Insert the modified strings into the current population.

This 'creep' code has the effect of conducting a tumbling downhill Simplex type optimisation 

found to be useful for this application thus generating good quasi-optimal results. The 

algorithm for the 'creep' code is

if gen. > 20 then switch over to creep code 

locate the best individual in the population 

add a small random value to the parameters 

repeat until 10 new individuals are formed 

replace with JO worst individuals from original

117



Chapter 4: Optimisation and real-time implementation of 
a class of multirate quadrature mirror filter bank

Atypical generational display of the objective function values for design example 3 (see section 

4.5) is shown in Figures 4.8 and 4.9. It can be seen that the GA minimises the objective 

function value fairly rapidly up to the 20th generation after which the algorithm switches over to 

the 'creep' code for further minimisation. The convergence is fairly slow without switchover to 

the 'creep' code. An example of the GA code using the 'creep' option for optimisation of the

design example 3 is shown in Appendix Dl.l.

150 
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number of gen* rat Ions

Figure 4.8 GA optimisation generational plot for design example 3 (see section 4.5)

——— no switchover 
.... with switchover

SO 60 70 
number of generations

Figure 4.9 Expanded plot of Figure 4.8 starting from 20' generation.
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4.4.3 Other standard optimisation methods used

Apart from the GA method, three other forms of standard optimisation procedures are used in 

this study for drawing a comparison. The first is the constrained optimisation technique based 

on the sequential quadratic programming methods that represent state-of-the-art in non-linear 

programming method and is executed using the constr.m function of the Matlab Optimisation 

toolbox. This method has the advantage of incorporating stability constraints required by the 

IIR filter design. However, it must be noted that the first stage GA searching for good 'seed' 

parameters of the transformation function also uses constrained search by awarding high penalty 

to individuals failing the stability test. This procedure assures the region for search is safe for 

generating stable solutions. This requirement becomes important with the subsequent two 

methods of unconstrained optimisation i.e. the gradient based Quasi-Newton method and the 

non-gradient based downhill Simplex method. The Quasi-Newton method of optimisation is 

implemented using the fminu.m function of the Matlab Optimisation toolbox. Note that the 

simplest gradient based methods such as the methods of steepest descent are highly inefficient 

for functions with long narrow valleys. However, the quasi-Newton gradient based method uses 

information about the slope of the function and formulates a quadratic model from the curvature 

information at each iteration to dictate the direction of search. This form of algorithm is the 

most favoured gradient based optimisation methods. The downhill Simplex method is a non- 

gradient based method and is implemented using the fmins.m function of Matlab 

Optimisation toolbox. This method is based on the procedure developed by Nelder and Mead 

[1965]. Such a search method uses only function evaluations and is generally most suitable for 

problems that are highly non-linear or have a number of discontinuities. Several design 

examples considered in this study are based on a hybrid approach i.e. first using GAs for 

searching over a wide landscape for promising valleys and then applying a standard 

optimisation method. The standard methods considered are; the gradient based SQP
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constr.m function, the gradient based quasi-Newton method using the fminu.m function 

and the non-gradient based downhill Simplex using the fmins.m function of the Matlab 

Optimisation toolbox. Such a comparative study gives useful insight into the optimisation 

issues, the profile of the objective function landscape and the effectiveness of the optimisation 

process for the application considered in this study. See Appendix D1.2 for the Matlab m-file 

code.

4.5 Design examples and Results

Three design examples are considered in this section. These examples are of higher order 

transformations and correspond exactly to the design examples 3,4 and 5 considered by Tay 

[1998]. The design examples 1 and 2 of [Tay, 1998] result in trivial solutions and simple 'trial 

and error' procedure can be used for their optimisation. The exact correspondence of the three 

design examples considered here gives a good basis for comparative analysis and an inference 

of the efficiency and robustness of the optimisation process.

Design Example 1

Results in this example are compared with the results of example 3 of [Tay, 1998]. 

Transformation function (see Equation 4.14) with Pr=2, Pc=0 and b=0.5 is used and negative 

linear weighting is applied. The pass-band edge is <O L = n/4 and the frequency response roll-off 

value n=10 is used. Optimised parameter values and the corresponding objective function 

values are shown in Table 4.1.
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Table 4.1 Comparative results for design example 1.

Ref.[Tay,1998]

GA+ creep code

GA+ constr .m

GA+ Simplex

GA+ Q-Newton

Ci

-0.0989

0.6497

0.6500

0.6500

0.6500

C2

0.6494

-0.0991

-0.0992

-0.0992

-0.0992

d,

0.3637

0.3639

0.3646

0.3646

0.3646

d2

-0.0526

-0.0525

-0.0529

-0.0529

-0.0529

Obj_fh

0.0441

0.0440

0.0440

0.0440

0.0440

The parameter values optimised for design example 1, as shown in Table 4.1, generate a trivial 

solution of the transformation function. The objective function of Equation 4.16 uses L=100 i.e. 

the summation is over 100 frequency points and is shown in the last column of Table 4.1. No 

significant improvement was achieved for this design example when compared with the 

optimised results of [Tay, 1998].

Design Example 2

Results in this example are compared with the results of example 4 of [Tay, 1998]. The 

transformation function is obtained using Pr=l, Pc=l and b=0.5. The pass-band edge is CO L = 

37t/8 and negative linear weighting is applied. The frequency response roll-off value used is 

n=10. Optimised parameter values and the corresponding objective function values are shown 

in Table 4.2. This design example is of a higher order transformation function involving six 

variables. Once again, the last column of Table 4.2 shows the results of the objective function 

calculated over 100 frequency points. A small improvement of the GA optimised and of the 

hybrid optimised (i.e. the GA optimisation followed by the standard optimisation methods) 

results is evident for this design example when compared with the results of Tay [1998].
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Table 4.2 Comparative results for design example 2.

Ref. [Tay, 1998]

GA+ creep code

GA+ Constr.m

GA+ Simplex

GA+

Quasi-Newton

c

0.7475

0.7478

0.7490

0.7491

0.7491

d

0.4978

0.4965

0.5000

0.5001

0.5001

r

0.1897

0.1908

0.1918

0.1918

0.1918

+

1.0304

1.0315

1.0318

1.0318

1.0318

P

0.1082

0.1045

0.1096

0.1097

0.1097

V

-0.9987

-0.9866

-1.0012

1.0013

1.0013

Obj_fn

0.1775

0.1770

0.1764

0.1764

0.1764

Design Example 3

Results in this example are compared with the results of example 5 of Tay [1998]. The 

transformation function is obtained using Pr=l, Pc=l and b=0.7. The passband edge is toL = 

0.43?! and positive linear weight is applied. The frequency response roll-off value of n=25 is 

used. Optimised parameter values and the corresponding objective function values are shown in 

Table 4.3. Once again, the results of the objective function show improvements of the GA and 

the hybrid optimised results when compared with the results of Tay [1998]. Of special interest 

here are the results of the GA+creep code that shows an improvement over the singular 

optimisation process of the 'constr.m' functions of Matlab Optimisation toolbox. However, 

further tests using the GA+gradient based quasi-Newton and the GA+non-gradient based 

downhill Simplex algorithms show further improvements of the results as seen in Table 4.3. In 

general, it is significant to mention that the GA and the hybrid optimised results were derived in 

a direct manner without the need for trial 'seed' values. The results obtained were consistently 

good thus giving confidence to the design engineer for a likely optimal outcome. Furthermore, 

this process can be applied to higher order transformation functions with larger number of 

parameter values thus giving greater flexibility for a near optimal design implementation.
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Table 4.3 Comparative results for design example 3

Ref.[8] Constr.m

GA+ creep code

GA+ Constr.m

GA+ Simplex

GA+

Quasi-Newton

c

0.7740

0.7784

0.7785

0.7785

0.7785

d

0.6704

0.6761

0.6764

0.6765

0.6764

r

0.2872

-0.2930

0.2938

0.2938

0.2938

*
1.1058

2.0348

-1.1086

-1.1086

-1.1086

P
0.2398

0.2446

0.2461

0.2461

0.2461

V
-1.1156

-1.1164

-1.1191

-1.1191

-1.1191

Obj_fn

7.3635

7.1902

7.1875

7.1875

7.1875

4.5.1 Some remarks on the optimisation process

Although, in general, real valued GAs are not highly efficient in optimisation of engineering 

design problems, the hybrid procedure used in this chapter has generated good results for the 

application considered. A number of trial GA runs showed that for most of the time, the GA 

generated near-optimal minima value although the initial population was randomly generated. 

This method is thus more robust and effective when compared to the singular gradient-based 

method of constrained optimisation used in [Tay, 1998] which is highly sensitive to starting 

point parameter values. It must also be recognised that for higher order transformations 

generating sharper roll-off filters, the number of transformation parameters increases 

significantly. A GA based optimisation procedure searching for promising optima valleys 

becomes even more relevant in such situations. This work clearly demonstrates the importance 

of hybrid GAs for optimising fitness landscapes that are dominated by local minima on a large 

scale but are smooth and well behaved in a local area. Clearly, methods of categorising 

landscapes in order to identify the most effective hybrid approach is an important issue that has 

yet to be fully investigated.
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4.6 Design of Filters for the QMF bank

hi the previous section (section 4.5), a hybrid optimisation process was considered for 

optimising the parameters of the transformation function Z. The prototype filters can then be 

generated through Equation 4.11. In this section, the low-pass/high-pass analysis/synthesis 

filters of Equations 4.7 and 4.8 will be derived from the optimised prototype filters. The design 

example 2 of section 4.5 is considered here. The optimised parameter values obtained using the 

hybrid GA are taken from Table 4.2 and listed here in Table 4.4. The choice of these values 

gives a minimal objective function value.

Table 4.4 Optimised parameter values for design example 2
c
0.7491

d
0.5001

r
0.1918

4>
1.0318

P
0.1097

V
1.0013

Obj_fh
0.1764

4.6.1 Design and Simulation in Matlab

A Matlab based code was developed for deriving the four filters Ho, F0, HI and F] based on the 

values of the parameters in Table 4.4 (see Appendix D2.1). Table 4.5 shows the coefficient 

values of the four filters. Note that Hob and Hoa represent the numerator and denominator 

coefficient values of the low pass analysis filter HO respectively. Similarly HI represents the 

high pass analysis filter and F0 and FI are low pass and high pass synthesis filters respectively. 

Figures 4.10(a) and 4.10(b) show the magnitude response of the analysis and synthesis filters 

respectively. The phase responses of the four filters are shown in Figure 4.11. It can be seen 

that the phase response is linear in the pass band region of the filters. This property contributes 

to the requirement for perfect reconstruction of the output signal.
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Table 4.5 Coefficient values of the QMF bank filters

Hob
-0.0002

0
0.0013

0
-0.0089
0.0126
0.0140
-0.0457
-0.0174
0.2321
0.5200
0.5550
0.3645
0.1620
0.0386
-0.0200
-0.0180
0.0027
0.0051

0
-0.0004

0
0.0000

H0a
1.0000

0
0.7636

0
0.0515

0
-0.0240

0
0.0068

0
-0.0006

0
0.0000

0
0
0
0
0
0
0
0
0
0

Fob
-0.0000

0
0.0000

0
-0.0001
-0.0001
0.0006
0.0008
-0.0017
-0.0056
0.0130
0.0070
-0.0404
-0.0078
0.2128
0.5085
0.6485
0.5669
0.3598
0.1514
0.0200
-0.0172
-0.0107
-0.0009
0.0035
0.0023
-0.0003
-0.0004
0.0000
0.0001

0
-0.0000

0
0.0000

F0a
1.0000

0
1.1454

0
0.2959

0
-0.0343

0
-0.0002

0
0.0035

0
-0.0006

0
0.0001

0
-0.0000

0
0.0000

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

H,b
0.0000

0
-0.0000

0
0.0001
-0.0001
-0.0006
0.0008
0.0017
-0.0056
-0.0130
0.0070
0.0404
-0.0078
-0.2128
0.5085
-0.6485
0.5669
-0.3598
0.1514
-0.0200
-0.0172
0.0107
-0.0009
-0.0035
0.0023
0.0003
-0.0004
-0.0000
0.0001

0
-0.0000

0
0.0000

H ia
1.0000

0
1.1454

0
0.2959

0
-0.0343

0
-0.0002

0
0.0035

0
-0.0006

0
0.0001

0
-0.0000

0
0.0000

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Fib
-0.0002

0
0.0013

0
-0.0089
-0.0126
0.0140
0.0457
-0.0174
-0.2321
0.5200
-0.5550
0.3645
-0.1620
0.0386
0.0200
-0.0180
-0.0027
0.0051

0
-0.0004

0
0.0000

Fia
1.0000

0
0.7636

0
0.0515

0
-0.0240

0
0.0068

0
-0.0006

0
0.0000

0
0
0
0
0
0
0
0
0
0

125



Chapter 4: Optimisation and real-time implementation of 
a class of multirate quadrature mirror filter bank

analysis filters
1.5

9> 1•o
3'c 
o>

0.5

HO H1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

synthesis filters
1.5

0) 1•

0.5

FO F1

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
frequency (pi)

Figure 4.10 Magnitude response of the analysis filters (a) and synthesis filters (b).
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Figure 4.11 Phase response of the QMF filters.
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In order to determine the amplitude distortion of the QMF bank, the overall transfer function of 

the QMF bank was derived using the transfer function of individual ILR filters. The amplitude 

distortion and group delay for the QMF bank are shown in Figure 4.12. These results clearly 

indicate close proximity to perfect reconstruction of the output signal. Further tests were 

conducted using the Simulink toolbox of Matlab. The QMF bank implementation in Simulink 

is shown in Figure 4.13. The input signal used is a random signal with uniform distribution in 

the range 1 to -1. The error signal is then obtained from the difference between the output 

signal and a delayed version of the input signal. The error signal for the optimised design 

example 2 is shown in Figure 4.14. Note that this error signal has a maximum error magnitude 

of approximately 1.5xlO~ 15 that is close to the limits of the software mathematical error bounds. 

The Simulink test results demonstrate the perfect reconstruction property of the QMF bank 

based on IIR filters designed using the optimised coefficients of the transformation of variable 

technique.

Amplitude distortion of QMF bank

Amp. 1

(

Group 25 
Delay

-

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Group delay of QMF bank

—————— JiL ——————II'F

(a)

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
frequency (pi)

Figure 4.12 Amplitude distortion (a) and group delay (b) of the overall transfer function.
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Uniform Random 
Nrniber Signal 

ToVU>rtepace
Rlter2 Downsample Upsamplel Gain2

Figure 4.13 Simulink model of the QMF bank

20 40 60 80 100 120 140 160 130 200

-0.5 -

-1 5

Figure 4.14 Error signal of the QMF bank for a random input signal (design example 2).

4.6.2 Finite word length constraints for real-time implementation

The filter coefficients shown in Table 4.5 are for direct form IIR filter implementation. These 

are infinite precision values generated using Matlab. However, for real-time implementation, 

there are two further issues that must be considered. These are; firstly, finite word length
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constraints due to either hardware limitations or efficient throughput requirements and secondly, 

using the IIR filter structure of a second order cascade form. It has been seen in Chapter 3 that 

second order cascade structures are less sensitive to FWL constraints and is thus a preferred 

option. The coefficient values of the four filters in Table 4.5 must, therefore, be converted to 

second order cascade form as given by Equation 3.5. The Matlab function that is used for this 

conversion is sos=tf2sos(b,a).

The second-stage GA optimisation for finite word length constraint of the filter coefficient 

values (see Figure 4.6) was conducted for the low pass filter Ho, using 5 bits to represent the 

coefficient values. The simply rounded values and the GA optimised values for the design 

examples 2 and 3 are shown in Tables 4.6 and Table 4.7 respectively. The magnitude response 

of the low pass HO filter for the design examples 2 and 3 are shown in Figures 4.15 and 4.16 

respectively. The GA parameters used in these examples are; number of individuals- 100, 

number of generations- 20, reinsertion rate= 1.0 and generation gap- 0.8. The GA optimised 

response clearly indicates improvements for smaller number of bits that can be used as 

implementation for fast processing on dedicated high-speed low-bit hardware for real-time 

realisation.

Table 4.6 HO coefficient values using 5 bits for design example 2.

xwaind •-• fbr, ar]
br-0 000000-10 38 85 2100000 00 0
ar=15 0 110 1000000000000000000

xjgaopt=[bo, ao]
bo^O 0000 00-1048852100000000
ao-15 0 11 0' 1 0 0 0000000000000000
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Table 4.7 HO coefficient values using 5 bits for design example 3.

xroiwd = [br, ar]
br=0 0000 00-103 8 973000000000

•f:: l)j;i>: oo loo oo oooooooooo

jjo=0 0 © 0 0 00 -103 8 97 3100000 000 
13 0 10 0000 0 0 0 0000000 000

K 1 
T3 
S"c
OJ
» n 5

Ho low pass filter using 5 bits

—— exect
..... slm ply rounded

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

—— exact
..... GA optimised

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 
frequency (pi)

0.9 1

Figure 4.15 Magnitude response of Ho low pass filter for design example 2.
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0.5

—— exact
..... GA optimised
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frequency (pi)

Figure 4.16 Magnitude response of HO low pass filter for design example 3.
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4.7 Real time implementation issues

As mentioned in section 4.6, the four direct form IIR filters of the QMF bank must firstly be 

converted to a second order cascade form of Figure 4.17 using the Matlab file 

sos=t£2sos(b,a). For real time implementation on a target DSP system the coefficients 

required to be stored from low to high data memory locations for 'n' second order sections must 

be in the form -a2i, -an, b2) , b,,, b0 i, .......... -a2n,-ai n, b2n, b ]n, bon. Note that the coefficients aoj

are always 1 so there is no need to store these coefficients. The delay elements are similarly 

stored from low to high data memory in the form dn(m), dn(m-l), dn(m-2), .......,d,(m), d,(m-l),

d,(m-2). A typical filtering algorithm using the Texas Instrument's TMS320C50 DSP assembly 

code form is shown in Figure 4.18 [Texas Instruments, 1991].

-J

——— 4 ——

a 21

—— ̂ vr

1 1
'

**

b21

f . —— 

aln

a2n
—— t —

z' 1

z' 1

—— r~\^ 

—— > ——

2n —— i ——

-)— *yw

1 st section n"1 section

Figure 4.17 Cascade form structure of IIR digital filter
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; ARl -> dj.(m-2>; AR2 -> -azl .«;^ •.*.•*.,<•«

; AR3 -> input sample (Q15
; DP=0, PM=0, ARP=3
ZPR
LACC *,15,ARl
SPLK #2
SPLK #N

RPTB ELOOP-1
LOOP:

LT
MPYA
LTA
MPY
LTA

,AR2

*-,AR2
* 4-
*-J-,ARl

LACL
*-,AR2

*-,AR2
W£$$$M:: MPY.£:•:•:•£:SviW:-:V:' 1 .- * * t 4- 
B,is:s!5;: ::i: ^^D

MPY 
ELOOP:

APAC 
llMll SACK OUTPUT,!

Figure 4.18 An example of a typical filter algorithm using the TMS320C50 assembly code.

A Matlab file sos2v.m (Appendix D2.2) generates a vector of coefficients in the ordered form 

for use with the filtering algorithm given a second order section matrix. The resulting vector 

can be converted into a hexadecimal Q-15 format and then imported into the TMS320C50 

assembly code [Texas Instruments, 1991]. The Matlab file sos2v.m also returns a vector E 

containing the rows of the second order section matrix having the 'b' (numerator) coefficients 

that lie outside the range -KcoeffO.999965. Such coefficient values cannot be represented in 

the Q-15 format so the numerator coefficients of these sections must be scaled down by some 

relevant factor before conversion to the Q-15 format. The Matlab file scsos.m (Appendix 

D2.2) conducts a scaling procedure thereby returning the scaled second order section filter 

coefficients.
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4.7.1 Testing the filters using the TMS302C50 simulator

The TMS320C50 simulator was used to test the transfer functions of the analysis and synthesis 

filters [Texas Instruments, 1994]. The simulator is a software programme that mimics the 

functions of the fixed point TMS320C50 digital signal processor. This process is useful for 

debugging the assembly code before down loading on to the real-time target system in the 

common object file format (COFF) form. The frequency response of the individual filters can 

be obtained by applying an impulse to the input of the simulator and then evaluating the Fast 

Fourier Transform (FFT) of the impulse response in Matlab [Baicher and Sherrington, 1996]. 

Figures 4.19 and 4.20 show the magnitude and phase responses of the four filters respectively. 

Note that the 16 bit FWL constraint on the coefficient values has not affected the frequency 

response of the filters and is identical to the frequency responses obtained previously (Figures 

4.10 and 4.11).

Ho Fo
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<D 1•
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<o 1
TD
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Fi
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"5.
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"o.

< 0.5

0.5 
Frequency (pi)

0.5 
Frequency (pi)

Figure 4.19 Magnitude response of the four QMF filters.
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Figure 4.20 Phase response of the four QMF filters.

4.7.2 Polyphase decomposition - a computationally efficient realisation

It is well established that polyphase decomposition of digital filters in realisations of multirate 
filter operations can facilitate computational savings in software and hardware implementations 
[Mitra, 1998], [Vaidyanathan, 1993]. Such polyphase implementations are useful for linear 
phase FIR filters and in certain structural forms of IIR filters. In order to derive the 2-branch 
polyphase decomposition of an IIR filter having a transfer function H(z) = N(z) / D(z), it is 

necessary to express the filters in the form N'(z) / D'(z2). The form of transformation function 

of Equation 4.14 ensures that the denominator of M(z) and hence the denominators of HT(M(z)) 
and FT(M(z)) are functions of z2 . This property of the denominator polynomial is clearly 
evident by examining the denominator coefficients of the filters shown in Table 4.5. Note that 
every alternative coefficient of the denominator is a zero. Therefore, the transfer function H(z) 

of the resulting filters will be of the form

-2
( =

N(z) = h 0 +h 1 z- 1 +h 2z-+... 
D(z 2 ) DCz1 )

4.24
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Separating the even and odd-indexed terms of the numerator, the transfer function is of the form

0tl(Z) —
D(z 2 )

4.25

where m = n and k = n-1 for n = even 
or m = n-1 andk = n for n = odd.

The polyphase components of H(z) are

E 0 (z) =
h 0+ h 2 z- 1 + ...-fh m z-m/2

D(z)

and

E,(z) = -
D(z)

4.26

4.27

The polyphase components are easily derived from the filter coefficients given in Table 4.5. 
The numerator values of the polyphase components are given by taking alternative coefficients 
of the numerator values and the denominator values are obtained by starting with the first 
coefficient for the denominator polynomial and taking every other value (i.e. ignoring the zero 
value coefficients). By expressing the analysis and synthesis filters of the QMF bank of Figure 
4.2 in polyphase form as shown in Figure 4.21, the efficiency of the system can be improved 
without changing its characteristics.

^

R 0 00

RI<Z)

T*

I 2

z-1

1* E' /"»"!
] (-ZJ

L ' _^ R'0 (z)

R'] (z)

I 2
z- 1

I 2 — K+)+>—<±>-> S(n)

Figure 4.21 QMF bank in polyphase form.
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The system of Figure 4.21 was tested using the Simulink toolbox of Matlab as shown in Figure 

4.22. The results obtained are identical to the results of section 4.6.1 as shown in Figure 4.14. 

The system of Figure 4.21 is more efficient since the processor speed of the filters is effectively 

halved without affecting the output. The process of polyphase decomposition achieves this.

Uniform Random 
Number

Integer Delay

Figure 4.22 Simulink model of the polyphase form QMF bank.

4.7.3 An 8 bit QMF bank in polyphase form

The block diagram of Figure 4.21 can be implemented using 8 bit fixed point arithmetic and has 

potential application in pulse code modulation (PCM) telephony signals [Crochiere, 1981]. The 

lower and higher frequency sub-bands of the QMF bank can be encoded with 8 and 4 bits 

respectively to provide a data rate compression of 4/3. Figure 4.23 shows how the scaled 

polyphase components are affected by 8-bit coefficient representation, when cascade realisation 

is used. The solid lines show the desired magnitude response and the dashed lines show the 

rounded response.
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Figure 4.23 Effect of 8-bit coefficient wordlength on polyphase components. Solid line shows

desired response and dashed line is for rounded coefficient response.
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Figure 4.24 GA optimised 8 bit coefficient polyphase components. Solid line shows desired 
response and dashed line is for GA optimised coefficient response.
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Polyphase components E0 and E, refer to the filter Ho and RO and R, refer to the filter F0 . The 

effects of 8 bit rounding appear small, with polyphase component E0 having the largest 

distortion. This is a relatively simple GA optimisation problem. Figure 4.24 shows the GA 

optimised results using the sos_ga.m file (see chapter 3). The GA optimised (dashed line) and 

the high precision actual responses (solid line) are almost identical. The phase response was not 

affected. The polyphase components of HI and F, are also optimised to produce similar results.

4.7.4 Sub-band coding of speech signals

It is well recognised that higher frequency band speech signals have lower energy levels and the 

lower frequency band signals have higher energy levels [Bellamy, 2000]. This characteristic of 

the speech signal can be exploited to improve the coding gain of the digital telephony signals. 

The bit rate assigned to each sub-band can be optimised to match the hearing perception of the 

human ear. In particular, larger number of bits per sample can be assigned to the lower 

frequency band where it is important to preserve the pitch and structure of human voice sounds. 

However, fewer numbers of bits per sample can be used for higher frequency band where noise- 

like segmented sounds have less effect on the reproduction quality. In general, a number of sub- 

bands can be used to optimise the coding compression. The scheme due to Crochiere [1981] 

splits the signal into four equal bands of 0 to IkHz, 1 to 2kHz, 2 to 3kHz and 3 to 4kHz. The 

first band is further split in to two bands of 0 to 0.5kHz and 0.5 to IkHz. Thus there is a pruned 

tree effect of five bands. However, for simplicity and ease of real-time implementation, a 

structure of splitting the speech signal into two equal bands using the QMF bank optimised and 

developed in this chapter will be considered here.
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4.8 Real time implementation on a TMS320C50 DSK

The real time hardware used to test and run the programs in this work is the TMS320C50 DSP 

Starter Kit (DSK) [Texas Instruments, 1996]. Some of the main features of the DSK are

• 40 MHz clocking

• On-chip 10k RAM

• Single access memory can be configured as program memory or data memory

• 14 bit A/D and D/A conversion using the TLC32040 Analogue Interface Circuitry

• Standard RCA connectors for analogue input/output

• PC communication through RS232 port

• On-board EPROM controls the communication

• Expandability through expansion connectors.

The DSP code can be downloaded on to the DSK and run through the RS232 serial port using 

the DSK Debugger program or the DSK Loader programs. The DSK Debugger offers 

debugging features similar to the simulator features (section 4.7.1). Also provided is the DSK 

Assembler. This generates executable *.dsk files that can be loaded and run on the DSK. The 

common object file format (COFF) files of the type *.out can also be loaded and run on the 

DSK. Figure 4.25 shows the basic block diagram of the TMS320C50 DSK. The 32K PROM 

contains the kernel program for boot loading and RS232 communication control.
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Figure 4.25 A basic block diagram of the TMS320C50 DSP kit.

4.8.1 Companding in a QMF bank structure

In this section, an appropriate method of implementing the companding process in a quadrature 

mirror filter bank will be considered. The compression procedure will normally distort the 

spectral properties of speech and therefore it cannot be applied at a point preceding the analysis 

filter bank. A more appropriate approach would be to compress each sub-band signal according 

to its characteristics in order to ensure that the useful properties of each sub-band are not altered. 

This is shown in Figure 4.26. It is assumed that the lower frequency segment of the speech has 

a peak magnitude of 1 and the higher frequency segment has a peak magnitude of 0.25. If each 

sub-band is compressed according to its peak magnitude then an improvement in signal to 

quantisation noise ratio (SQNR) is achievable while still being able to compress the data rate by 

encoding v,(n) with fewer bits. Signals v0(n) and vi(n) must be expanded by a matching 

expander before being processed by the synthesis filters.
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Figure 4.26 Sub-band compression and expansion of a QMF bank.

4.8.2 Testing and comparison of several QMF banks

A set of four two-channel QMF banks employing uniform encoding i.e. without companding 

and four two-channel QMF banks using the non-linear A-law companding (with A=87.56) were 

developed and tested on a TMS320C50 DSP kit. Look-up tables provide a mapping between 

the 12-bit codes and the compressed 8-bit codes [Bellamy, 2000]. Table 4.8 shows the modified 

compression and expansion mappings. Bits indicated by 'X' are lost during the process of 

compression-expansion. Figure 4.27 shows the structure of the 8-bit compressed code. Both 

sets use 8-8, 8-5, 8-4 and 7-5 encoding (x-y encoding stands for x bits for the lower frequency 

channel and y bits for the higher frequency channel). The encoding schemes are based on 

channel signal level and significance. The data compression achievable for the 8-8, 8-5, 8-4 and 

7-5 encoding are 64 kbps, 56 kbps, 48 kbps and 48 kbps respectively, assuming sampling rate of 

8 kHz is used. Companding is performed using Table 4.8 for the lower frequency channel. A 

similar table for the higher frequency channel is used based on 8 segments with 2 bits of 

significance for the 5 bit encoding (compression from 6 bits) and 8 segments with 1 bit of
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significance of the 4 bit encoding (compression from 5 bits). The first set of QMF banks (i.e. no 

companding) uses 8-bit A/D and D/A conversion while the second set uses 12-bit A/D and D/A 

conversion.

Sign 
bit

Segment bits
i <

Quantisation step bits
————————— 1 L 1

Figure 4.27 Structure of the 8-bit compressed code

Table 4.8 Modified compression and expansion mappings.

12-bit linear code

OOOOOOOOABCD

0000000 1ABCD

000000 1ABCDX

000001ABCDXX
00001ABCDXXX

0001ABCDXXXX

001ABCDXXXXX

01ABCDXXXXXX

11111111ABCD

11111110ABCD

1111110ABCDX

111110ABCDXX

11110ABCDXXX

1110ABCDXXXX

110ABCDXXXXX

10ABCDXXXXXX

8-bit compressed code

OOOOABCD
0001ABCD
0010ABCD
0011ABCD
0100ABCD
0101ABCD

0110ABCD
0111ABCD

1111ABCD

1110ABCD
1101ABCD
1100ABCD

1011ABCD

1010ABCD

1001ABCD
1000ABCD

12-bit expanded code

OOOOOOOOABCD

0000000 1ABCD

000000 1ABCD1
00000 1ABCD 10
0000 1ABCD 100
000 1ABCD 1000

00 1ABCD 10000

01ABCD10000

11111 11 1ABCD

11111110ABCD

1111110ABCD1

111110ABCD10

11110ABCD100

1110ABCD1000

110ABCD 10000

10ABCD 100000
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The various QMF bank models were compared based on the Mean Opinion Score (MOS) test 

[Vaidyanathan, 1993], [Porat, 1997]. This is a commonly used measure of speech quality and is 

based on evaluating the average speech quality on a scale of 1 to 5 where 1 is bad and 5 is 

excellent. A sample of 10 individuals was taken to conduct the tests. The individual scores for 

each encoding scheme were averaged to give the MOS. Table 4.9 shows the results of the test 

including the MOS values calculated. The results clearly show that the companding process 

yielded higher MOS values when compared to simple encoding of sub-band signals for identical 

encoding schemes. It must be emphasised that although the sample of ten individuals used in 

this test is relatively small and thus statistically not significant, however, a trend has clearly 

emerged that deserves further extensive investigation in the future.

Table 4.9 Mean opinion score (MOS) results for ten individuals. LP=low pass, HP=high pass.

Companding
No
No
No
No
Yes
Yes
Yes
Yes

LP
8
8
8
7
8
8
8
7

HP
8
5
4
5
8
5
4
5

5

•

•

4.5

••••

••••

4
••••

••
••••
•••
••••

3.5
•••

•••
••
•••
•

3
•••
•••••
•••

••••
••

2.5

•••
••
•••

••

2

•••
••

••••

1.5

••
••

1

•
•

MOS
3.6
2.8
2.2
2
4.2
3.5
3.4
4.3

4.9 Discussion of results and contributions of this chapter

A new design method based on the transformation of variable technique as developed by Tay 

and Kingsbury [1996] and Tay [1998] has been extensively studied in this chapter. The major 

motivational aspects of the work covered here are based on the use of 1IR filters for the design 

of perfect reconstruction 2-channel quadrature mirror filter bank. This design procedure is 

simple and it offers vast flexibility for fine-tuning of the overall system. Automating the
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optimisation process of the design of the QMF bank has further extended the work reported by 

lay [1998]. This was achieved by using genetic algorithms followed by the standard 

optimisation methods such as the gradient based quasi-Newton and non-gradient based downhill 

Simplex methods in a hybrid approach. GAs were also used in the second stage for 

optimisation of IIR filter coefficients based on finite word length constraints. This second stage 

GA optimisation is useful in the implementation of the system for real-time applications.

The general behaviour of the genetic algorithm as an optimisation tool has been investigated 

extensively for this application. This has involved developing a special 'creep' code to study 

the effects of efficiency and robustness of the GA as a stand-alone optimisation tool. The GA 

'creep' code mimics the characteristics of a downhill Simplex type tumbling behaviour 

searching for the optimal minima point. A comparison was drawn with the standard 

optimisation methods such as quasi-Newton and Simplex. The results for design examples 1, 2 

and 3 are shown in Tables 4.1, 4.2 and 4.3 respectively. The outcome evident from the results 

show that while the 'creep' code has generated good minima values, the hybrid approach is 

efficient and generates best results consistently. Furthermore, for this application, there is no 

distinction in the hybrid optimised results using the sequential programming (constr.m), the 

quasi-Newton and the downhill Simplex methods. For completeness of this part of the study, a 

brief investigation of the execution times for each method was conducted using a relatively slow 

computer (i.e. 200 MHz Pentium PC). This is shown in Table 4.10. The execution of the main 

GA code over 20 generations takes approximately 2 minutes. The 'creep' code following this 

over 80 generations takes substantially longer and is, therefore, not included here for 

comparison. The results given in Table 4.10 show that the quasi-Newton method is effective 

and the most efficient optimisation option for this application.
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Table 4.10 Execution time in seconds

GA (20 gens.)+

Constr.m

Simplex

Quasi-Newton

Design example 1
<1

<1

<1

Design example 2

1.47

4.42

1.03

Design example 3

1.25

1.33

0.87

Further contributions are in deriving the IIR filter coefficients of the QMF bank and testing the 

system using the Simulink toolbox of Matlab. The overall amplitude distortion and the error 

signal for the optimised QMF bank are shown in Figures 4.12(a) and 4.14 respectively. The 

amplitude distortion is almost entirely flat and the error signal is of the order of the software 

mathematical error limits. These outcomes clearly indicate the perfect reconstruction 

characteristic of the design as embedded in the theoretical considerations.

The deduction from the coefficient values of the individual IIR filters as seen in Table 4.5 

confirms the possibility of polyphase decomposition of the IIR filter transfer functions. This 

leads to a computationally efficient structure of the QMF bank. The implicit nature of the 

transformation function Z=M(z) of Equation 4.14 generates denominator terms of HT(Z) and 

FT(Z) of Equation 4.11 that are both functions of z2 . This property leads to the realisation of the 

polyphase form of the QMF bank as shown in Figure 4.20. This is significant here because 

although all linear phase FIR filters can be realised in a polyphase structure form of quadrature 

mirror filter bank, not all IIR filters can be decomposed directly into polyphase structures. It is 

for this reason that IIR filters are not always the best option for multirate filter bank 

applications. The advantage of using fewer number of filter coefficients for the case of IIR 

filters is lost when computationally efficient polyphase structures of linear phase FIR filters 

using larger number of filter coefficients for similar magnitude responses are used.
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The next stage of study was the implementation of the optimised QMF bank using a real time 

digital signal processor starter kit (DSK50) [Texas Instruments, 1996]. This is based on the 

Texas Instruments' TMS320C50 fixed point device. A new proposed structure for real-time test 

used for this study is shown in Figure 4.26. A process for companding was applied to the lower 

and the upper frequency segments of the speech signal. Tests were conducted using a small 

sample of individuals based on variable number of bits for encoding the input signal and the 

application or absence of the companding scheme. The results are compared using the mean 

opinion score (MOS) measure and are shown in Table 4.9. These results clearly show an 

improvement of the MOS measure by using the companding technique as proposed. The best 

results are for 7-5 encoding (i.e. 7 bit encoding for the lower half of the frequency segment and 

5 bit encoding for the upper half of the frequency segment) with companding. This represents a 

data rate of 48 kbps assuming a sampling rate of 8 kHz. The compression achievable for this 

form of signal is 4/3.

The major contributions of this chapter are summarised in the following.

• A real-valued genetic algorithm code has been developed for the optimisation of the design 

of a class of quadrature mirror filter bank that has a perfect reconstruction property.

• This code was further enhanced to include a 'creep' code option within the main GA code 

that uses a 'tumbling-like' minimisation algorithm. The new 'creep' code was developed to 

draw a comparative study with the standard quasi-Newton and Simplex optimisation 

methods. The new GA hybrid optimised results show a significant improvement when 

compared with the original design results as seen in Tables 4.1, 4.2 and 4.3. However, the 

most efficient and optimal results are obtained when a hybrid form of GA followed by 

either quasi-Newton or Simplex methods is used.

• The new GA optimised design of the QMF bank was implemented on a real-time 

TMS320C50 digital signal processing starter kit. This realisation was in a computationally
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efficient polyphase decomposition form. The FWL quantised coefficients were optimised 

using the genetic algorithm code that has been previously developed in Chapter 3. 

• Tests were conducted using the Mean Opinion Score metric that showed an improvement of 

results (shown in Table 4.9) using the 'with companding' option as proposed in Figure 4.26.

4.10 Summary of Chapter 4 and further comments

This chapter considers the use of genetic algorithms as an optimisation tool in the design of a 2- 

channel quadrature mirror filter bank. The specific class of perfect reconstruction filter bank 

using transformation of variables technique developed by Tay and Kingsbury [1993, 1996, 

1998] has been investigated. It has been shown that a hybrid process applying GAs followed by 

a standard optimisation technique such as quasi-Newton or downhill Simplex yield better 

solutions than the constrained optimisation procedure used by itself as reported in [Tay, 1998]. 

For real-time implementation, the transformation of variables design technique develops IIR 

filters (analysis and synthesis) of the form that can be executed in a computationally efficient 

polyphase structure. The filter coefficients were further optimised using GA's based on finite 

word length constraints. The analysis and synthesis filters that were optimised using GA's were 

translated into actual real-time codes for the Texas Instruments' TMS320C50 digital signal 

processor using a number of Matlab script files developed to aid in coefficient scaling and 

format transformation. Consideration was given to looking at the aspects of companding to 

improve the performance of the QMF banks designed. Several real-time tests were conducted 

using various encoding combinations of the sub-bands. The final results show that sub-band 

compression with companding has improved the performance of the two-channel QMF bank 

compared with the simple two-channel QMF bank, for the same bit rates.
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Further reduction in data rate can be achieved by encoding the sub-bands with adaptive

differential pulse code modulation (ADPCM). For speech it has been shown that differences

from one sample to the next are small, therefore a very small number of bits can be used for

transmission. In ADPCM the sample differences between consecutive samples is encoded thus

allowing improved coding efficiencies to be used. A weighting procedure is used to cover

larger sequential changes. For the two-channel QMF bank, Crochiere [1981] proposed a 4-bit

ADPCM representation for the lower frequency channel and 2-bit ADPCM representation for

the higher frequency channel. Sub-band compression can thus be used in the above schemes to

increase the quality of the transmitted speech without increasing the bit rate. Higher and more

efficient coding compression is achievable by using a multiple M-channel filter bank of

uniformly spaced frequency band segments. The design and optimisation issues of these types

of multirate filter banks will be considered in the next chapter.
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Chapter 5: Optimisation of a class of M-channel uniform filter 
bank

Overview of Chapter 5: This chapter deals with the design and optimisation issues relating to a 

class of M-channel uniform multirate filter bank. The specific case of a cosine modulated 

pseudo QMFbank is considered for which all the filter bank channels are of equal width on the 

frequency scale. The design and optimisation of the filter bank is based on the use of a single 

prototype filter. The optimisation process uses a genetic algorithm technique and the results 

are compared with the optimised results using the quasi-Newton and downhill Simplex methods. 

Tests and results of a hybrid GA approach are also included.

5.1 Introduction

The issues of design and optimisation considered in Chapter 2 for finite word length FIR digital 

filters and for multirate quadrature mirror filter banks considered in Chapter 4 are extended to 

the case of uniform multiple-band filter banks that is studied in this Chapter. The prototype 

filters used for the design of the uniform filter banks considered here are based on the use of 

FIR analysis and synthesis filters. The real-time application of these filter banks on fixed-point 

devices using finite word length constraints to the specific areas such as telephone speech signal 

coding and compression can then be implemented.

The application of uniform 2-channeI filter banks, as discussed in chapter 4, is sometimes not 

sufficient for real signals. The choice then is to use a multiple number of frequency bands so 

that better resolution is obtained. An M-channel uniform filter bank consists of low-pass, band 

pass and high-pass filters partitioning the frequency spectrum into equal widths and equidistant 

from their centre frequencies. In general, the design and practical realisation of M-channel
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uniform and non-uniform filter banks for real-time applications with perfect reconstruction 

property, is a difficult problem to solve. However, theoretical design issues for uniform filter 

banks with perfect reconstruction property, has now been resolved [Vaidyanathan, 1987(a), 

I987(b)]. In these, the lattice structure combinations are given that lead to paraunitary transfer 

matrices of the analysis filters. The coefficients are numerically optimised such that the transfer 

functions of each channel give optimal selectivity. Filter banks developed using this technique 

are robust and immune to quantisation constraints of filter parameters. However, a major 

drawback is the complexity of design for real-time applications that increases significantly with 

increased number of channels.

A more acceptable and practical method of design is based on the use of cosine modulation for 

which all the M-channel filters are derived from a single prototype. Two significant advantages 

of this method of design are

• The analysis and synthesis filters are of equal lengths and the overall design of the filter 

bank is based on the design of just one prototype filter plus modulation overhead.

• During the design phase, the number of filter parameters required for optimisation is small.

The closed form approximate solution for designing M-channel uniform filter bank based on 

cosine modulation technique for which only the directly adjacent aliasing spectra are 

compensated for by an appropriate mechanism, is considered here. Due to the approximate 

nature of reconstruction of such filter banks, these are commonly referred to as pseudo QMF 

systems.
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5.2 Maximally decimated uniform filter bank

The structure of a maximally decimated M-channel uniform filter bank is shown in Figure 5.1. 

The input signal is assumed to have a bandwidth of n radians with respect to the sampling rate 

at the input and output of the filter bank. The bandwidth of each of the filters is n/M radians. 

Since the sampling rate of each sub-band signal is reduced by a factor of M, then such a 

structure is referred to as a maximally decimated filter bank [Vaidyanathan, 1993].

X(z)

Ho(z)

H /-_\\(z)

HM.,(z)

x,(n)

xM-i(n)

4-M

4.M •

-I'M

u,(n)

uM-i(n)

TM

tM

tM

v,(n)

VM-i(n)

Go(z)

G,(z)

GM-I(Z)

<• X(z)

analysis filter bank synthesis filter bank 

Figure 5.1 M-channel maximally decimated uniform multirate filter bank.

The analysis of the expression for X(z) in terms of X(z) will assume the absence of quantisation 

and coding errors. Each sub-band signal through the analysis filter bank is given by

Xk(z) = Hk(z)X(z) 5.1 

wherek = 0,l,2,....,M-l. 

The decimated signals uk(n) have z-transforms given by

Uk(z)= — Z 1 Hk(z 1/M W/ )X(z-1/M W / ) 5.2 
M ^=o

where W=WM =

The output of the expanders are given by
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Vk(z) - Uk(zM) = _L Mf1 Hk(zWOX(zW') 53 
M /=o

and the reconstructed signal is given by

M-l
X(z) = SGk(z)V(z) 54

k=0 

1 M-ll~M-l , "I
or X<z> = 1^Z\ ZGk(z)Hk(zW') X(z W') 5 5

M (=0 Lk=0 J

For simplicity X(z) can be written as

M-l
X(z) = ZAXz)X(zW') 56e=o

where

A<(z) = — *ZGk(z) Hk(z W') for 0 < t < M-l 5.7 M k=o

The term X(zW') for t *• 0 represents the shifted version of the spectrum X(z). The 

reconstructed output is, therefore, a linear combination of the input signal and its M-l uniformly 

shifted aliasing components. For £ = 0, Equation 5.5 can be written as

1 M-l
X(z)= — ZGk(z)Hk(z).X(z) 5.8 

M k=o

This represents the transfer function of the filter bank. Also since, for perfect reconstruction, no 

distortions are expected i.e. X(z) = X(z), then for a practical system the distortion function is 

given by the linear distortions of the filter bank and represented by

Ao(z)= --SGk(z)Hk(z) 5.9
M k =o

Note that when |Ao(z)| is not an all pass condition then there will be amplitude distortion and if 

AO(Z) has non-linear phase, then there will be phase distortion.

The aliasing components of the input signal must normally be worked out individually for 

^=1,2,...,M-1 for which the components do not cancel each other. However, in practice an
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aliasing function is defined that describes the overall summing of uncorrelated aliasing 

components in the filter bank. This is given by

M-l 1 M-l
Aaiias(z) = , I — ZGk(z) Hk(z W) 510

Y e=\ |M k=o

For perfect reconstruction, the choice of analysis/synthesis filters must be such that aliasing is 

completely cancelled and A0(z) is a pure delay. The system is then free from aliasing, 

amplitude and phase distortions.

5.3 Cosine modulated M-channel pseudo QMF bank

The theory of pseudo QMF systems based on cosine modulation design has been extensively 

reported in literature [Rothweiler, 1983], [Chu, 1985], [Cox, 1986], [Nguyen, 1992] and 

[Vaidyanathan, 1993]. Further developments of this form of design methodology have been 

reported in [Lin and Vaidyanathan, 1995], [Goh and Lim, 1998] and [Agenti and Del Re, 2000]. 

The procedure for designing these types of filter banks can be summarised by the following

• The filter bank channels are all of equal width and formed by shifting the lowpass prototype 

to equidistant frequency shifts. The transfer functions of adjacent channels are 

approximately power complementary between their centre frequencies. This condition 

leads to the distortion function being approximately a delay.

• The alias cancellation applies only to the directly adjacent channels and all other alias 

spectra components are assumed to be suppressed by the high stop-band attenuation of the 

prototype filter.

The approximate nature of the design of such filter banks is the reason for the term 'pseudo' 

QMF bank.
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5.3.1 Design considerations

The key design requirement of a cosine-modulated pseudo-QMF filter bank is to obtain an 

appropriate transfer function of the prototype filter that will generate approximately power 

complementary frequency responses of frequency-shifted replicas about the centre frequencies. 

Also that the stop-band attenuation of the prototype filter is sufficiently large so that all alias 

spectra, apart from the directly adjacent one, are suppressed. A commonly used prototype filter 

in this application of the filter bank is approximated by the square root raised-cosine 

characteristic [Fliege, 1994]. The frequency response for such a low pass filter is given by

CO
for —Ul-

P(j<») = -I cos

0

for
Icol l-r<i^< 5.11

Icol 
for ^>

Where co c is the cut-off radial frequency and V is the roll-off factor that lies in the range 0<r <1. 

For r-»0, the ideal brick-wall type of low pass filter is approximated with a cut-off frequency 

co c . Taking the inverse Fourier Transform of the transfer function of Equation 5.11 gives the 

impulse response p(n) as shown below

p(n) =
fHJ.lAte Uil T ivi.siii nil.L M J L M J

M '-( 4ra )2 .on
5.12

Where M is the number of channels of the filter bank and n/2M is the bandwidth of the 

prototype filter.

The special condition for n-»0 is given by
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5.13M

and for n= ± M/4r when this is an integer value then the corresponding limits are

rp(±M/4r)= —— FV 5.14M

For a realisable causal filter, the impulse response must be symmetrically truncated and 

appropriately time-shifted. The causal impulse response that is obtained by convolving with 

itself results in the M* band filter. The resulting raised-cosine characteristic is then 

approximately obtained. The overlapping of alias components of the spectra in the design of 

analysis and synthesis filter banks can be minimised by properly selecting the weighting factors 

that cause a small shift in the corresponding frequency responses. The closed form expressions 

for the impulse response of the analysis and synthesis filter banks [Fliege, 1994] are given by 

for analysis filter bank

hk(n)= 2 p(n) cos.[(k+l/2)(n-(N-l)/2)7t/M + (-l)krc/4] 5.15 

for synthesis filter bank

gk(n)= 2 p(n) cos.[(k+l/2)(n-(N-l)/2)7t/M - (-l)kJt/4] 5.16 

where k= 0,1,2,...,M-1 and N is the number of coefficients used for the prototype filter.

5.3.2 Design examples

An 8-channel uniform filter bank is considered here based on the cosine modulation design 

using a square root raised-cosine prototype filter. The bandwidth of the prototype filter must be 

n/16 in this example for M=8 (note that: bandwidth of the prototype filter is half the bandwidth 

of individual channels). Three design examples are considered in this section based on FIR 

filter lengths (i.e. number of coefficients) of N=39, 141 and 257. The higher order filter is 

normally expected to perform significantly better, both in terms of overall linear distortion and 

aliasing error, when compared to the lower order filter. However, there are clear issues about
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real-time implementation and computational overheads, that become significant when larger 

number of filter coefficients are used.

Due to the approximately complementary frequency responses of the frequency-shifted replicas 

of the prototype filter for the cosine modulated design, an optimisation process based on 

marginally changing the specifications of the prototype filter can be expected to generate 

improved results. This conjecture was applied to test by using two variables i.e. the bandwidth 

of the prototype and the roll off factor 'r'. The bandwidth of the prototype filter was assumed to 

be some value 7t/Mp, where Mp is a real valued number approximately equal to 2M (for an 8 

channel system Mp =16). Due to the variation in the value of Mp, the restriction on 'r' i.e. 0<r 

<1 no longer applies. The roll off value 'r' is thus allowed to vary in the range 0 to 2. The 

characteristic of the square root raised cosine prototype filter with r =0.5 could offer sufficient 

stop band separation for higher order filters but for lower order filters 'r' may be closer to 1 to 

allow for adequate aliasing error cancellation.

5.3.3 Peak distortions

Two types of distortions are considered here to represent the quality of the output signal of the 

filter bank. The first is the amplitude distortion given by Equation 5.9 and represented by the 

peak to peak ripple of M|A0(z)| i.e.

Epp = max[M|A0(z)|]- min[M|A0(z)|] 5.17 

The second is the aliasing distortion that is derived by taking the maximum value of Aahas(z) 

(Equation 5.10) over all co. This gives the worst possible peak aliasing distortion i.e.

EA = max[Aaiias(z)] 5 18
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5.3.4 Simulink tests

Each of the optimised design examples was tested using the Simulink toolbox of Matlab version 

5.3. A typical test configuration is shown in Figure 5.2. The input applied to the filter bank is a 

random signal with uniform distribution in the range 1 to -1. The error signal ve is then 

obtained from the difference between the output signal and an appropriately delayed version of 

the input signal. The root mean square value of the error signal is then calculated using

5.19

Where K is the number of sampled points of the error signal. A value of K=1000 was used for 

the tests conducted and reported here. Also, the maximum peak to peak magnitude of the output 

error signal is derived and is represented by outpp .
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Figure 5.2 A Simulink test circuit for an 8 band uniform filter bank.
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5.3.5 Optimisation methods

Three optimisation methods are used in the present study. The first method is based on using 

the downhill Simplex algorithm due to Nelder and Mead [1965] and has been implemented as 

the fmins. m function of the optimisation toolbox of Matlab. The second method is a gradient 

based unconstrained quasi-Newton method implemented as f mi nu.m function of Matlab. The 

third method is based on a simple real-valued genetic algorithm developed as a Matlab toolbox 

by Chipperfield et al [1993]. A GA code developed for the present work based on this toolbox 

and used for the optimisation process is shown in Appendix El.l. The choice for the selection 

of these three methods is based on the unknown nature of the landscape profile of the function 

under test. Genetic algorithm is efficient at conducting an extensively parallel search over a 

wide landscape that may be highly discontinuous. However, it may be less efficient at 

optimising a potential minima point. The Simplex algorithm is a non-gradient based search 

method that optimises using a 'tumbling' action and performs well in a highly discontinuous 

environment although it may be slow and becomes less efficient than the gradient based 

methods for problems of order greater than two. The unconstrained gradient based quasi- 

Newton method works well in a continuous environment but is susceptible to getting polarised 

within a local minima point. The starting 'seed' values are thus crucial towards identifying a 

more global minima point both for the Simplex and the quasi-Newton algorithms. Some 'trial- 

and-error' attempts for the starting 'seed' values, therefore, become inevitable in such cases.

5.3.6 GA optimisation methodology and pseudo code

The genetic algorithm used here for the design of the uniform M-channel filter bank is identical 

to the generic form explained in section 1.4, Chapter 1. This is a Matlab based algorithm 

developed originally for control systems applications [Chipperfield et al, 1993]. The main GA
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code has been adapted for the application in this work and new functions have been written for 

working out the error objective function. The specific steps followed for the design stage of the 

QMF bank GA optimisation are shown here and the pseudo GA code is shown in Figure 5.3.

1) Define the GA parameters

The GA parameters used for the design examples i.e. N=39, 141 and 257 are given by

GGAP=0.8; % generational gap
INSR=0.8; % reinsertion rate
MAXGEN= 10; % number of generations
Nind=100; % population size
MutRate=0.1; % mutation rate

2) Create population set of individuals

The starting set of parameter values of prototype filter bandwidth is defined in the bounds Mp= 

13 to 19, the roll-off factor is defined in the bounds r= 0 to 2 and the trade-off parameter is 

defined in the bounds cc= 0.1 to 0.9. The bounded parameter values are described in a matrix 

'FieldDR' and an initial population set consisting of random real-valued individuals is created 

within the bounds specified in FieldDR matrix. The function crtrp of the GA Matlab toolbox is 

used for this purpose.

3) The Objective function evaluation

The main purpose of the optimisation process here is to minimise the objective function with the 

specific aim of minimising the overall magnitude and aliasing error so that a perfect 

reconstruction characteristic is closely met. The error objective function to be minimised and 

used in the optimisation process is based on the multiple objectives of linear distortion (Epp) and 

maximum aliasing distortion (EA) and is given by
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Obj_err= a Epp +(1 -a)EA 5.20 

Where a is the trade-off parameter given by 0 < a < 1. Note that Epp and EA are defined by 

Equations 5.17 and 5.18 respectively.

4) Fitness value and ranking

The Matlab based ranking function of the GA toolbox ranks the individuals according to their 

objective function values 'Obj_err' and returns a column vector consisting of the corresponding 

fitness value 'FitnV of the individuals. This function performs a linear ranking with a selective 

pressure (SP) of 2 [Whitley, 1998]. The fitness value assigned to the individuals is calculated 

according to the formula given by Equation 1.1 in Chapter 1.

5) Selection of individuals for breeding

The high-level function for selection of individuals from the population set and returning the 

selected individuals in a new population is performed by the select function. The low-level 

selection function sus is called by the select function. The sus function is based on a form of 

stochastic sampling method and is implemented by obtaining a cumulative sum of the fitness 

vector 'FitnV and generating a set of equally spaced numbers between 0 and S(FitnV) [Baker, 

1987]. The probability of an individual being selected is given by Equation 1.2 in Chapter 1.

6) Recombining individuals - crossover

The crossover function is also performed in two stages. The high-level function is recombin 

that calls the low-level function recdis. The recdis function is a discrete recombination 

function. The mating process is performed between pairs of rows. The recdis function first 

generates an internal mask table that determines which parents contribute which variables to the 

offspring. On the basis of the randomly generated mask table, the variable values are exchanged 

between the individuals and return a new population after mating.
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7) Mutation

The mutbga function of the Matlab GA toolbox takes real-valued population, mutates each 

variable with given probability and returns the population after mutation. The mutbga function 

produces firstly a random internal mask table that determines which variables will mutate and 

also the sign for the step size. A second internal table generates the normalised mutation step 

size. The mutated variable is worked out as a function of the original variable and the step size 

[Muhlenbein and Schlierkamp-Voosen, 1993].

8) Reinsert offspring into new population

The new population set generated after crossover is subjected to the objective function 

evaluation of each new individual. On the basis of their fitness, the offspring are selected for 

reinsertion using the reins function into the new population. The objective function values are 

then copied to the reinserted offspring and the GA loop is then repeated for the next generation.

Note that the design of the closed form uniform filter bank based on cosine modulation method 

eliminates phase distortion and also eliminates aliasing approximately. So it merely remains to 

reduce amplitude distortion for which a=l in Equation 5.20 [Vaidyanathan, 1993]. However, 

for lower order prototype filters (such as N=39) the effect of aliasing distortion may contribute 

significantly towards the overall distortion. The appropriate choice for a then becomes an 

important consideration in the optimisation process of the multiple objective error function. 

Such a method for optimising a combination of objectives can lead to producing a single 

compromise solution that may need no further interaction with the decision-making strategy. 

However, in the application considered here, the choice for a can be arbitrarily selected thus 

some fine-tuning of the aggregating function is required in order to obtain a good compromise 

solution. A simplistic analysis was conducted for this purpose based on the design example 1
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(i.e. N=39, M=8) and the results are shown in section 5.4. A more generalised multiple 

objective optimisation process involves consideration of a vector of objectives that must be 

traded off in order to obtain the best compromise solution. On this issue, a concept of non- 

inferiority or Pareto optimality is used to characterise the objectives [Censor, 1977], [Zadeh, 

1963] and [Fonsesca and Fleming, 1998]. These considerations are beyond the scope of the 

present work being studied here. However, methods for categorising landscapes in order to 

identify the most effective decision making strategy is an important area that has yet to be fully 

investigated.

% Pseudo GA code for optimisation of a M-Channel uniform filter bank 
% GA characteristics

FieldDR = [13 0 0.1; % variables: Mp, r and alpha: lower bound 
19 2 0.9}; % upper bound

% create initial population within the bounds specified in FieldDR
matrix.
Chroin = crtrp(Nind, FieldDR);

% calculate objective function
ObjVal = ufga_obj(Chrom); :
(Best(gen+1} ,ix] = min(ObjVal};

% generational loop : ;
while gen < MAXGEN .'-.': ,

% Fitness
FitnV = ranking(ObjVal); ;
% Selection
SelCh = select('sus', Chrom,FitnV,GGAP);
% crossover
SelCh = recombin{'recdis', SelCh, 1);
% mutation
SelCh = mutbga(SelCh,FieldDR, MutRate) ;
% calculate objective function
ObjVOff = fevalf'ufga_obj',SelCh); : ; :
% reinser best individuals
[Chrom, ObjVal] = reins(Chrom, SelCh,1,1, ObjVal, ObjVOff);
gen = gen + 1
[Best(gen+1,1),ixj = min(ObjVal)
acbest = Chrom(ix,:); ! . y ' : : ;. : >: • 

end . . . .... ' . •• : . ...-•••• '- - . :

Figure 5.3 A Pseudo GA code for optimisation of an M-Channel uniform filter bank.
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% objective function for 8-channel uniform filter 
function f = ufga_obj (Chrom) ; 
[Nind,Nvar]=size (Chrom) ; 
for irun = l:Nind; 

ac = Chrom{irun,:);

aO=ac(l); al=ac(2); a2=ac(3);

N=141; % number of filter coefficients
Mp=aO; % bandwidth variable for the prototype filter
r=al; % roll off value
alpha=a2; % trade-off parameter

% define prototype filter
% derive analysis filters
% derive synthesis filters
% derive distortion function
% derive aliasing fuction
% calculate the objective function
err = alpha* (max{T)-min(T)) + (1-alpha)*max(Tal);

f {irun,:} = err; 
end

Figure 5.4 Pseudo objective function code for optimisation of an M-Channel uniform filter 
bank.

5.4 Some results

A number of tests were conducted based on a standard design method using the square root 

raised cosine characteristic of the prototype filter derived using Equation 5.12 and the closed 

form expressions for the analysis and synthesis filters as given by Equations 5.15 and 5.16. 

Some comparisons are also made with the results of other researchers. Vaidyanathan [1993, pp. 

336] lists the coefficients of a FIR low pass prototype filter used in the design of an 8 channel 

pseudo QMF bank by using the closed form expressions of Equations 5.15 and 5.16. However, 

the coefficients were optimised using a non-linear optimisation package [Press et al, 1989] 

based on the minimisation of a composite objective function formed using a 'trade-off 

parameter between the linear distortion and the stop band attenuation of the prototype filter. 

This design was reconstructed using Matlab version 5.3 package and the results so derived were
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tested against the optimised results of the square root raised cosine prototype filter. Another 

comparison was drawn with the graphical results of Fliege [1994, pp. 202] based on the square 

root raised cosine prototype filter. No reconstruction of this design example was possible since 

the roll-factor is not specified. However, the optimisation procedures developed in the present 

work were applied to this example using the same number of coefficients (i.e. N=257) and some 

comparisons were made based on the visually observable results of Fliege [1994].

5.4.1 Design example 1: For N=39 and M=8

The choice for N=39 in this design example was made so that it offers a comparison with the 

results given by Vaidyanathan [1993, pp. 336] (note that Vaidyanathan uses one more i.e. N=40 

coefficients). Comprehensive test results for the three optimisation methods i.e. Simplex, quasi- 

Newton and genetic algorithm, for different values of the trade-off parameter a are shown in 

Table 5.1 (a), (b) and (c) respectively. Here, the variables Mp, r, Epp and EA have been defined 

previously (sections 5.3.2 and 5.3.3). However, 'c' is a compensating factor that scales the 

optimised FIR prototype filter coefficients with an appropriate rectangular window such that the 

average gain in the passband of the prototype is unity. Also, Vmu and outpp are the root mean 

square and the maximum peak to peak error values respectively taken from the Simulink test 

results as discussed in section 5.3.4. Table 5.1 (d) shows the results of the reconstructed 8- 

channel pseudo QMF bank taken from Vaidyanathan [1993].

Comparing the results of the three optimisation methods, the downhill simplex method results 

given in Table 5.1 (a) show a clear trend in the variation of Epp and EA against the trade-off 

parameter a. It must be recognised that the objective function being minimised is a function of 

the two parameters Epp and EA However, when these two parameters are considered in 

isolation of the Simulink results, they do not convey a full picture of the quality of the system in 

terms of the overall output response. For this reason, the two parameters, \ms and outpp as
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defined in section 5.34, are crucial towards assessing the overall performance of the system. In 

general, it is also observed that when v^ is a minimum then outpp is also a minimum. This 

condition forms the basis for the choice of the parameters to be used for the prototype filter in 

the design of the pseudo-QM filter bank. The results of the quasi-Newton method shown in 

Table 5.1 (b) behaved somewhat erratically and did not perform as well as the Simplex method. 

The GA optimised results as shown in Table 5.1(c) performed well, however, the best minima 

results were not as good as the best results of the Simplex method. Further comparison with the 

reconstructed results taken from Vaidyanathan [1993, pp 336] and given in Table 5.1(d) show a 

significant improvement of the new optimised results. This optimisation study was extended 

further by using the GA optimised results of Table 5.1(c) as starting 'seed' values for the 

Simplex method. The results of this hybrid approach are shown in Table 5.2. Again the 

Simulink test results show a certain trend in terms of the trade-off parameter a, however, no 

significant advantage is evident in comparison with the direct Simplex method results of Table

The best optimised results taken from Table 5.2 for a = 0.1 generate coefficients of the 

prototype filter as shown in Table 5.3. Note that only the first half of the coefficients are shown 

due to the linear phase characteristic of the prototype filter. These values were used to plot the 

frequency responses of the prototype filter and the eight analysis filters of the pseudo-QMF 

bank as shown in Figures 5.5 (a) and (b) respectively. The linear and aliasing distortion 

responses are shown in Figures 5.6 (a) and (b) respectively. The Simulink test error signal for a 

random input with uniform distribution in the range -1 to 1 is shown in Figure 5.7. The 

reconstructed plots of the optimised coefficients given by Vaidyanathan [1993] are shown in 

Figures 5.8 (a) and (b) for the prototype filter response and the analysis filter responses 

respectively. The linear and aliasing distortions are shown in Figures 5.9 (a) and (b) 

respectively and the Simulink test error plot is shown in Figure 5.10.
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5.4.2 Design example 2: For N=141 and M=8

The three optimisation methods as used in the design example 1 are also used in this case. 

However, the best GA optimised results showed significant improvement over the best Simplex 

or quasi-Newton method results. Tables 5.4(a), (b) and (c) show the results of the Simplex, 

quasi-Newton and GA optimisation methods respectively. These results clearly indicate a 

strong dependency of the optimisation process on the starting 'seed' values for the Simplex and 

quasi-Newton methods. An interesting outcome of this observation leads to a brief 

understanding of the objective function profile. While for the case of design example 1, the 

objective function has a sufficient slope for the Simplex algorithm to 'tumble' towards a global 

minima point, this does not appear to happen in the case of design example 1. The objective 

function profile for the design example 2 clearly indicates regions that are sufficiently flat for 

the Simplex or the quasi-Newton methods to optimise towards local minima points. The genetic 

algorithm method, however, is seen to be flexible and robust in searching towards a global 

minima point over a wide landscape. A hybrid approach in this case would be an effective 

strategy in the search towards a global minima point.
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Table 5.1

(a) Optimised results using downhill Simplex method with seed values Mp=16 01 and 
r=0.51forN=39

a
0.0100
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

Mp
17.1368
17.1540
17.1843
17.2698
17.5029
18.5612
19.5677
19.4841
19.4861
19.4653
19.4258

r
1.2063
1.2109
1.2189
1.2411
1.2984
1.5090
1.6617
1.6500
1.6503
1.6474
1.6418

c
1.0355
1.0360
1.0369
1.0396
.0465
.0773
.1056
.1032
.1033
.1027
.1017

Epp
0.0038
0.0037
0.0036
0.0033
0.0025
0.0009
0.0007
0.0007
0.0007
0.0007
0.0007

EA
0.0005

0.00050
0.00053
0.0007
0.0011
0.0025
0.0027
0.0027
0.0027
0.0027
0.0027

Vnns

0.0012
0.0012
0.0013
0.0013
0.0028
0.0063
0.0069
0.0069
0.0069
0.0069
0.0069

ouV
0.0078
0.0078
0.0102
0.0102
0.0325
0.0675
0.0723
0.0724
0.0724
0.0725
0.0725

(b) Optimised results using unconstrained 
Mp=16.01 and r=0.51 for N=39

quasi-Newton method with seed values

a
0.0100
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

Mp

17.2316
17.2632
18.1130

17.7412
16.8521
18.5781
17.7911
18.4758

r
results
results
1.2313
1.2394
1.4283
results
1.3523
1.1461
1.5118
1.3631
1.4944

c
did
did

1.0384
1.0394
1.0644

did
1.0535
1.0263
1.0778
1.0550
1.0749

Epp
not
not

0.0034
0.0033
0.0013

not
0.0019
0.0081
0.0009
0.0018
0.0010

EA
converge
converge
0.0006
0.0006
0.0021

converge
0.0016
0.0008
0.0025
0.0017
0.0024

Vnns

0.0014
0.0015
0.0053

0.0039
0.0024
0.0063
0.0042
0.0062

OUtpp

0.0141
0.0166
0.0582

0.0446
0.0168
0.0677
0.0469
0.0662

(c) Optimised results using GA with Mp range = 13 to 19 and 'r' range = 0 to 2 for N=39
a

0.0100
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

Mp
17.1570
17.4690
17.2164
17.4292
17.4690
17.4292
17.4565
17.8809
17.4312
17.0328
17.0211

r
1.2144
1.2870
1.2248
1.2811
1.2870
1.2797
.2870
.3820
.2811
.8707
.8672

c
1.0360
1.0453
.0378
.0442
.0453
.0442
.0451
.0576

1.0443
1.0299
1.0296

EPP
0.0041
0.0032
0.0039
0.0028
0.0032
0.0029
0.0027
0.0017
0.0028
0.0006
0.0006

EA
0.0005
0.0010
0.0005
0.0010
0.0010
0.0010
0.0010
0.0018
0.0010
0.0187
0.0186

Vnns

0.0013
0.0024
0.0013
0.0024
0.0024
0.0023
0.0025
0.0045
0.0024
0.0465
0.0464

OUtpp
0.0101
0.0275
0.0105
0.0282
0.0275
0.0271
0.0295
0.0505
0.0280
0.3184
0.3178

(d) Reconstructed results derived using the optimised prototype coefficients taken from 
Vaidyanathan [1993] forN=40

EPP
0.0108

EA
0.0023

Vms

0.0061
OUtpp

0.0406
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Table 5.2

Optimised results using hybrid downhill Simplex method with seed values taken from GA 
results of Table 5.1 (c) for N=39.

a
0.0100
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

Mp
17.1367
17.1541
17.1846
17.2697
17.5025
18.9648
19.5060
19.6209
19.5569
17.6164
17.6164

r
1.2063
1.2109
1.2190
1.2411
1.2983
1.5739
1.6531
1.6690
1.6602
2.0354
2.0354

c
1.0355
1.0360
1.0369
1.0396
1.0465
1.0888
1.1038
1.1070
1.1053
1.0459
1.0459

EPP
0.0038
0.0037
0.0036
0.0033
0.0025
0.0007
0.0007
0.0007
0.0007
0.0000
0.0000

EA
0.0005
0.0005
0.0005
0.0007
0.0011
0.0027
0.0027
0.0027
0.0027
0.0204
0.0204

*rms

0.0012
0.0012
0.0013
0.0013
0.0028
0.0068
0.0069
0.0069
0.0069
0.0520
0.0520

OUtpp

0.0078
0.0078
0.0102
0.0102
0.0325
0.0714
0.0724
0.0722
0.0723
0.3411
0.3411

Table 5.3

Optimised prototype filter coefficients using parameters taken from Table 5.2 for a = 0.1 for 
design example 1 (N=39). Only the first half of the coefficients are shown.

n

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

P(n)

-1.1829E-04
-1.5375E-03
-2. 949 IE-03
-4.0909E-03
-4.6664E-03
-4.3725E-03
-2.9317E-03
-1.2420E-04
4.1815E-03
1.0005E-02
1.7239E-02
2.5645E-02
3.4865E-02
4.4439E-02
5.3841E-02
6.2516E-02
6.9928E-02
7. 560 IE-02
7.9164E-02
8.0379E-02
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(a) prototype fill • r response

.3.

E

Figure 5.5 Magnitude frequency response for N=39 (Table 5.2 optimised results): (a) prototype 
filter and (b) all channels.
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Figure 5.6 Overall distortion for N=39 (Table 5.2 optimised results): (a) linear and (b) aliasing.
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Figure 5.7 Simulink test error signal for a random input with a uniform distribution [-1,1] for 
N=39 (Table 5.2 optimised results).
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(a) prototype H 11 e r response
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Figure 5.8 Magnitude frequency response for N=40 (Vaidyanathan [1993] optimised results): 
(a) prototype filter and (b) all channels.
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Figure 5.9 Overall distortion for N=40 (Vaidyanathan [1993] optimised results): (a) linear and 
(b) aliasing.
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Figure 5.10 Simulink test error signal for a random input with a uniform distribution [-1,1] for 
N=40 (Vaidyanathan [1993] optimised results).
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Due to the dependency of the optimisation process on the trade-off parameter a, the GA search

method was further enhanced for this design example by including a as the third variable. The

search for the minima value, therefore, includes a range for prototype filter bandwidth 7t/Mp

where Mp varies from 13 to 19 (for an 8 band QMF bank), the roll-off factor Y varies in the

range 0 to 2 and parameter a varies in the range 0.1 to 0.9. The GA optimised results are shown

in shown in Table 5.4(c). These results were then used as starting 'seed' values for the Simplex

method and the final optimised results obtained are shown in Table 5.4(d). The hybrid

optimised results show a significant improvement over the directly optimised results for the

Simplex and the quasi-Newton methods and a marginal improvement over the GA optimised

results. The best optimised results taken from Table 5.4(d) generate coefficients of the prototype

filter as shown in Table 5.5. Note that only the first half of the coefficients are shown due to the

linear phase characteristic of the prototype filter. These values were used to plot the frequency

responses of the prototype filter and the eight analysis filters of the pseudo-QMF bank as shown

in Figures 5.11 (a) and (b) respectively. The linear and aliasing distortion responses are shown

in Figures 5.12 (a) and (b) respectively. The Simulink test error signal is shown in Figure 5.13.
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Table 5.4

(a) Optimised results using downhill Simplex method with seed values Mp=1601 and 
r=0.51forN=141

a
0.0100
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

Mp
16.0077
15.9993
15.9991
15.9991
15.9992
15.9992
15.9992
15.9992
15.9992
15.9992
15.9992

r
0.4788
0.4878
0.4880
0.4881
0.4881
0.4881
0.4881
0.4881
0.4881
0.4880
0.4880

c
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

Epp
0.0109
0.0103
0.0102
0.0102
0.0102
0.0102
0.0102
0.0102
0.0102
0.0102
0.0102

EA
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002

Vrms

0.0017
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018

OUtpp

0.0096
0.0121
0.0121
0.0122
0.0122
0.0122
0.0122
0.0122
0.0122
0.0121
0.0121

(b) Optimised results using quasi-Newton 
forN=141

method with seed values Mp=16.01 and r=0.51

a
0.0100
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

Mp
16.0076
16.0039
16.0068
16.0060
15.9992
15.9988
15.9991
15.9988
15.9991
15.9992

r
0.4788
0.4829
0.4798
0.4806
0.4881
0.4877
0.4881
0.4877
0.4881
0.4881
results

c
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

did

t-pp
0.0109
0.0106
0.0108
0.0108
0.0102
0.0103
0.0102
0.0103
0.0102
0.0102

not

EA
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002

converge

Vrms

0.0017
0.0017
0.0017
0.0017
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018

OUtpp
0.0096
0.0104
0.0097
0.0099
0.0122
0.0121
0.0122
0.0121
0.0122
0.0122

(c) Optimised results using GA with Mp range=13 to 19, 'r' range 
0.1to0.9forN=141.

0 to 2 and alpha range=

a
0.1045

Mp
16.0169

r
0.9015

c
1.0005

Epp

0.0022
EA

0.0002
Vrms

0.0005
OUtpp

0.0029

(d) Optimised results using hybrid downhill Simplex method with seed values taken from 
GA results of Table 5.3 (c) for N=141.

a
0.1045

Mp
16.0055

r
09064

c
1 .0002

bpp

0.0015
EA

0.0002
Vrms

0.0004
OUtpp

0.0027
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Table 5.5

Optimised prototype filter coefficients using parameters taken from Table 5.4(d) for design 
example 2 (N=141). Only the first half of the coefficients are shown.

n

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

P(n)

-1.5804E-04
-2.4737E-04
-3.0927E-04
-3.3339E-04
-3.1408E-04
-2.5148E-04
-1.5187E-04
-2.7163E-05
1.0639E-04
2.3023E-04
3.2590E-04
3.7767E-04
3.7494E-04
3.1403E-04
1.9924E-04
4.2807E-05
-1.3625E-04
-3.1426E-04
-4.6589E-04
-5.6755E-04
-6.0083E-04
-5.5552E-04
-4.3170E-04
-2.4059E-04
-3.9658E-06
2.4799E-04
4.8012E-04
6.5674E-04
7.4658E-04
7.2755E-04
5.9072E-04
3.4288E-04
7.2684E-06
-3.7798E-04
-7.6341E-04
-1 0939E-03

n

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

P(n)

-1.3155E-03
-1.3832E-03
-1.2679E-03
-9.6292E-04
-4.8720E-04
1.1323E-04
7.6797E-04
1.388 IE-03
1.8754E-03
2.1338E-03
2.0822E-03
1.668 IE-03
8.7859E-04
-2.5026E-04
-1.6290E-03
-3.1152E-03
-4.5190E-03
-5.6 15 IE-03
-6.1590E-03
-5.9069E-03
-4.6386E-03
-2.1796E-03
1.5782E-03
6.6598E-03
1.2997E-02
2.0423E-02
2.8678E-02
3.7424E-02
4.6260E-02
5.4747E-02
6.2444E-02
6.8934E-02
7.3854E-02
7.6924E-02
7.7967E-02
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Figure 5.11 Magnitude frequency response for N=141 (Table 5.4(d) optimised results): (a) 
prototype filter and (b) all channels.

(a) linear dtstorllo 10* (b) aliasing distorlioi

0 . S 
frequency (pi)

Figure 5.12 Overall distortion for N=141 (Table 5.4(d) optimised results): (a) linear and (b) 
aliasing.
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Figure 5.13 Simulink test error signal for a random input with a uniform distribution [-1,1] for 
N=141 (Table 5.4(d) optimised results).
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5.4.3 Design example 3: For N=257 and M=8

The choice for N=257 in this design example was made as it offers a comparison with the 

graphical results given by Fliege [1994, pp. 202]. However, no prototype filter coefficients are 

included and no value of the roll-off factor V is specified so a reconstruction of the filter banks 

was not possible. It is mentioned though that the linear distortion can be reduced by selecting 

the bandwidth of the prototype to be a value rc/15.92 instead of Tt/16. The graphical plots of the 

linear distortion and aliasing given by Fliege [1994] have been used to estimate the peak to peak 

linear distortion EPP=0.0085 and the maximum aliasing distortion EA= 0.0008. The results of 

the Simplex optimisation process developed in this work are shown in Table 5.6(a) for the 

starting 'seed' values of Mp=16.01 and r=0.51. The GA optimised results and their use as 

starting 'seed' values in the hybrid optimisation of the Simplex method are shown in Tables 

5.6(b) and (c) respectively. Again, as in design example 2, the objective function profile 

indicates regions of sufficient flatness to prevent convergence of the Simplex method towards a 

global minima point. The starting 'seed' values for the Simplex method as obtained using the 

GA optimised results are again useful in converging towards improved results for this design 

example.

The best optimised results taken from Table 5.6(c) generate coefficients of the prototype filter as 

shown in Table 5.7. Note that only the first half of the coefficients are shown due to the linear 

phase characteristic of the prototype filter. These values were used to plot the frequency 

responses of the prototype filter and the eight analysis filters of the pseudo-QMF bank as shown 

in Figures 5.14 (a) and (b) respectively. The linear and aliasing distortion responses are shown 

in Figures 5.15 (a) and (b) respectively. The Simulink test error signal for a random input with 

uniform distribution in the range -1 to 1 is shown in Figure 5.16. Significant improvement of 

these optimised results is evident when compared to the estimated results given by Fliege [1994] 

and shown in Table 5.6(d).
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Table 5.6

(a) Optimised results using downhill Simplex method with seed values Mp=16.01 and 
r=0.51forN=257

a
0.0100
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

Mp
15.9966
16.0021
16.0022
16.0021
16.0022
16.0021
16.0021
16.0021
16.0021
16.0021
16.0021

r
0.5289
0.5030
0.5029
0.5028
0.5030
0.5022
0.5022
0.5022
0.5017
0.5017
0.5017

c
0.9997
1.0001
1.0001
1.0001
1.0001
1.0001
1.0001
1.0001
1.0001
1.0001
1.0001

t-pp
0.0062
0.0016
0.0016
0.0016
0.0016
0.0016
0.0016
0.0016
0.0016
0.0016
0.0016

EA
0.0001
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002

Vrms

0.0008
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0004
0.0004
0.0004

OUtpp
0.0052
0.0036
0.0036
0.0036
0.0036
0.0035
0.0035
0.0035
0.0035
0.0035
0.0035

(b) Optimised results using GA with Mp range=13 to 19, 'r' range = 0 to 2 and alpha range= 
0.1to0.9forN=257.

a
0.1045

Mp
16.0169

r
1.0095

c
1.0005

Epp
0.0020

EA
0.0001

Vrms

0.0003
OUtpp

0.0027

(c) Optimised results using hybrid downhill Simplex method with seed values taken from 
GA results of Table 5.3 (c) for N=257.

a
0.1045

Mp
15.9989

r
1.0037

c
1.0000

tpp
0.0008

EA
0.0001

Vrms

0.0002
OUtpp

0.0022

(d) Estimated results taken from graphical plots of Fliege [ 1994] for N=257.

E™
0.0085

EA
0.0008
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Table 5.7

Optimised prototype filter coefficients using parameters taken from Table 5.6(c) for design 
example 3 (N=257). Only the first half of the coefficients are shown.

n

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

P(n)

-7.691 IE-05
-7.5048E-05
-6.1428E-05
-3.7787E-05
-7.4663E-06
2.5047E-05
5.4780E-05
7.7025E-05
8.8079E-05
8.5848E-05
7.0226E-05
4.3179E-05
8.5 12 IE-06
-2.8655E-05
-6.2635E-05
-8.8034E-05
-1.0060E-04
-9.7902E-05
-7.981 IE-05
-4.8568E-05
-8.5377E-06
3.4385E-05
7.3634E-05
1.0296E-04
1.1743E-04
1.1420E-04
9.3071E-05
5.6630E-05
9.9320E-06
-4.0169E-05
-8.6007E-05
-1.2026E-04
-1.371 IE-04

n

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

-1
-1
-6

P(n)

.3319E-04

.0822E-04

.5170E-05
-9.9664E-06
4.9322E-05
1.0363E-04
1 4426E-04
1.6425E-04
1.5952E-04
1.2965E-04
7.8110E-05
1.1918E-05
-5.9296E-05
-1
-1
-1
-1
-1
-9
-1
7.
1.
2.
2.
2.
1.

.2465E-04

.7363E-04

.9775E-04

.9197E-04

.5563E-04

.2826E-05

.1967E-05
5256E-05
5553E-04
1590E-04
4579E-04
3877E-04
9382E-04

1.1577E-04
1.4895E-05

-9
-1

.4338E-05

.9529E-04
-2.7157E-04
-3
-3

0963E-04
0101E-04

n

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

-2
-1
-1

1
2

P(n)

.4403E-04

.4442E-04

.497 IE-05
2598E-04
5703E-04

3.5682E-04
4
3
3
1
1

-1
-3
-4
-5
-5
-4
-2
-1
2.
4.
6.
8.
7.
6.
3.
2.
-3
-7
-1
-1
-1
-1

0736E-04
9702E-04
2287E-04
9172E-04
985 IE-05
.6880E-04
.4573E-04
.8195E-04
.5240E-04
.4018E-04
.3988E-04
.5942E-04
.9987E-05
4596E-04
9869E-04
9666E-04
0269E-04
9019E-04
4835E-04
8546E-04
9746E-05
.7273E-04
.6307E-04
.0770E-03
.2542E-03
.2477E-03
.0330E-03

n

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

-6
-3
6
1

P(n)

.1474E-04

.0059E-05
5227E-04
3374E-03

1.9146E-03
2
2

2708E-03
3071E-03

1.9554E-03
1
5
-1

1940E-03
9326E-05
.3471E-03

-2.8593E-03
-4.2542E-03
-5
-5
-5

.2669E-03

.6123E-03

.0115E-03
-3.2210E-03
-6
4.
1.
1.
2.
3.
4.
5.
6.
6.
7.
7.
7.

.0860E-05
5 60 IE-03
0626E-02
8002E-02
6436E-02
557 IE-02
4963E-02
4113E-02
2502E-02
9635E-02
5076E-02
8485E-02
9646E-02
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Figure 5.14 Magnitude frequency response for N=257 (Table 5.6(c) optimised results): (a) 
prototype filter and (b) all channels.
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Figure 5.15 Overall distortion for N=257 (Table 5.6(c) optimised results): (a) linear and (b) 
aliasing.
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Figure 5.16 Simulink test error signal for a random input with a uniform distribution [-1,1] for 
N=257 (Table 5.6(c) optimised results).
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5.5 Discussion of results

The design of a class of uniform M-channel filter bank considered in this chapter is based on the 

cosine modulation technique. A single low pass prototype FIR filter is used to derive the M- 

channel filters that are all of equal width and are equally spaced on the frequency scale. The 

approximate closed form expressions of the impulse response of the analysis and synthesis 

filters are derived such that only the directly adjacent aliasing spectra is compensated and 

reduced. However, there is still a problem with the amplitude distortion that must be considered 

for minimising the overall error. It is this limitation and an opportunity for reducing the aliasing 

and the magnitude distortions that was inspirational towards the study covered in this chapter.

The design of the low pass prototype filter is based on a square root raised cosine characteristic 

[Fliege, 1994]. This form of filter offers flexibility in terms of the cut-off frequency and roll-off 

factor that are found to be useful parameters in the optimal design of the uniform filter bank. It 

must be recognised that although the low pass prototype filter is of a linear phase FIR form, the 

analysis and synthesis filters derived from the prototype are FIR but in general, have a non 

linear phase response. The closed form expressions for the uniform filter bank design 

eliminates phase distortion and is therefore, not relevant for consideration in the overall 

optimisation scheme.

Tests were conducted for three design examples all using M=8 channels but with different 

number of coefficients of the FIR prototype filter. This choice was based on the available 

results reported in literature by other researchers so that a comparative study could be 

conducted. In design example 1, the number of coefficients used is N=39. This design is 

comparable with the results reported in [Vaidyanathan, 1993]. The new GA and hybrid 

optimised results for this design example show a substantial reduction of the overall distortion
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when compared with the optimised results generated using a non-linear optimisation package as 

reported in [Vaidyanathan, 1993]. The complete results are shown in Tables 5.1 and 5.2 and the 

graphical results are plotted in Figures 5.5 to 5.10.

In design example 2, the number of coefficients used is N=141. Although no direct comparison 

of this design example is available in literature, it is instructive to compare the new optimised 

results with the graphical results of Fliege [1994] for which N=257. The new optimised results 

as shown in Table 5.4 for N=141 are a significant improvement over the graphical results of 

Fliege [1994] as seen in Table 5.6 (d) for N=257. Furthermore, the new optimised results of 

design example 3 for N=257 show a small improvement over the results of design example 2. 

This is instructive as it clearly leads to the choice that a design engineer has in terms of quality 

of the system and the computational overheads.

5.6 Summary and conclusions of Chapter 5

A novel approach to the minimisation of the amplitude distortion and aliasing error for a 

maximally decimated M-channel uniform filter bank has been investigated in this chapter. The 

use of a square root raised cosine prototype filter to obtain an M-channel uniform filter bank by 

cosine modulation technique has been considered. The closed form solution for the impulse 

response of the analysis and synthesis FIR filters eliminates phase distortion and minimises 

aliasing error. It remains then to minimise the amplitude distortion by some optimisation 

process. One example of an 8-channel uniform filter bank given by Vaidyanathan [1993, pp. 

336] uses a prototype filter for which the coefficients were optimised using a non-linear 

optimisation package [Press et al, 1989]. This is based on minimisation of a composite 

objective function formed using a trade-off parameter between the amplitude distortion and the 

stop band attenuation of the prototype filter. The emphasis is towards minimising the amplitude
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distortion with the implicit acceptance that aliasing error is sufficiently small and therefore, not 

significant in the overall performance of the filter bank system.

The novel contribution towards the optimisation process as covered in this chapter, is to use the 

flexibility of the square-root raised cosine FIR prototype filter for which the bandwidth and the 

roll-off factor are allowed to be perturbed in the quest for optimality. The objective function 

that must be minimised is of a composite form using a trade-off parameter between the 

maximum peak-to-peak amplitude distortion Epp and the maximum overall aliasing error EA . 

This procedure does not preclude the aliasing error from being used as a parameter that may 

influence the overall quality of the system. Furthermore, there is an opportunity to study the 

effect of amplitude distortion and aliasing error and their inter-dependence on the overall 

performance of the system.

While the raw minimisation results for Epp and EA in themselves give only a brief understanding 

of the system performance, a better understanding is achieved by conducting the Matlab 

Simulink toolbox tests of the full system as shown in Figure 5.2. The error signal generated 

from these tests give a predictable measure of the system behaviour under real-time conditions. 

A plot of Epp and EA against the trade-off parameter a taken from the results of the design 

example 1, Table 5.1(a), is shown in Figure 5.17. This plot also includes the corresponding root 

mean square value v^ of the error signal taken from the Simulink tests of Figure 5.2. A clear 

dependence of the maximum aliasing error EA is evident on the overall performance of the 

system with v^s reducing with decreased EA .
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Figure 5.17 A plot of maximum peak to peak magnitude distortion Epp, maximum aliasing 
error EA and root mean square Vnm value of the Simulink error signal against the trade-off 
parameter a for test results of design example 1, Table 5. l(a).

Three optimisation methods were used to minimise the composite objective function. These 

are; the non-gradient based Simplex method, the gradient based unconstrained quasi-Newton 

method and the genetic algorithm method. These were applied to the case of three design 

examples based on different number of coefficients of the prototype filter i.e. N=39, 141 and 

257. The general outcome of the results showed a dependency of the starting 'seed' values on 

the optimally converged values for both the Simplex and the quasi-Newton methods. The 

genetic algorithm method generated good results although further minimisation was possible 

with a hybrid procedure of applying the Simplex method by using the GA optimised results as 

the starting 'seed' values. A further enhancement of the GA code was the inclusion of the trade 

off parameter a as the third variable that assisted in automating the optimisation procedure.

A comparison of the results for the design example 1 shows a significant improvement over the 

results of Vaidyanathan [1993]. This is clearly evident when comparing both the amplitude 

distortion and the aliasing error as shown in Figures 5.6 and 5.9. Further tests using the 

Simulink toolbox show a substantial reduction of the error signal for the new optimisation 

procedure as seen in Figure 5.7 when compared to the reconstructed results of Vaidyanathan 

[1993] as seen in Figure 5.10. The results of design example 3 i.e. for N=257 can be compared
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with the graphical results of Fliege [1994]. Again significant improvement of the new results is 

evident. The design example 2 using N=141 has no other source for comparison. However, it is 

instructive to compare these results with those of design example 3 for N=257. The 

improvement of amplitude distortion, aliasing error and the Simulink error signal is fairly small 

for a substantially larger number of coefficients used for the filter bank design in example 3. 

Thus there is clearly a choice for the designer in terms of computational overheads against the 

overall performance of the filter bank system.

The major contributions of this part of the study are the following.

• A real-valued genetic algorithm code has been developed for the optimisation of a uniform 

maximally decimated M-channel filter bank. Further modification of this code involved 

inclusion of the quasi-Newton and the Simplex codes for a comparative and hybrid study.

• The design of the uniform M-channel filter bank is based on the cosine modulation 

technique, for which a square root raised cosine form of a prototype filter is used. The 

design optimisation process involved perturbing the bandwidth and the roll-off factor of the 

prototype filter. Significantly improved new results using the GA and hybrid optimisation 

are given in Tables 5.1, 5.4 and 5.6.

The new results reported in this chapter shows an effective means for realising an optimal 

uniform multirate filter bank that is based on FIR filters. The design is direct and is easily 

implemented in real time. For real signals, however, the ensemble average of the energy varies 

in the frequency sub-bands that may be of unequal widths. Thus for optimal coding efficiencies, 

non-uniform filter banks are desirable. This issue will form the basis of the study, investigation 

and optimisation that is covered in the next chapter.
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Chapter 6: Optimisation of a class of M-channel non-uniform 
filter bank

Overview of Chapter 6: This chapter deals with the issues of non-uniform multirate filter banks. 

This form of filter bank can split the input signal into non-uniformly spaced segments on the 

frequency scale thus leading towards efficient coding gains of real time signals. Two design 

methods are considered here; the first method is based on the transformation of a FIR prototype 

filter by means of sine or cosine multiplication to the designated frequency bands. The second 

method is based on using multiple square root raised cosine prototype filters from which the 

analysis and synthesis filters are derived using the closed form approximation as covered in 

Chapter 5. Some theoretical issues are included and the optimisation of the filter bank design 

using GAs and a hybrid approach is investigated. Finally, several design examples are tested 

and the results reported.

6.1 Introduction

The issues of design and optimisation considered in Chapter 2 for finite word length FIR digital 

filters and for multirate filter banks considered in Chapters 4 and 5 are extended to the case of 

non-uniform multiple-band filter banks that is studied in this Chapter. The prototype filters 

used for the design of the non-uniform filter banks considered here are based on the use of FIR 

analysis and synthesis filters. For real signals, the ensemble average of the energy can vary 

significantly in different frequency bands. High coding gain is thus achievable by using non- 

uniform multirate filter banks (NUF) as shown in Figure 6.1.

All filter banks suffer from the usual problems of amplitude, phase and aliasing errors thus the 

constraints for perfect reconstruction (PR) can be extensive. The case for maximally decimated
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M-channel uniform filter banks, as covered in Chapter 5, is well studied and PR conditions are 

well established [Vaidyanathan, 1993]. Non-uniform banks, however, have particular problems 

for PR for which extensive constraints exist. Mostly, therefore, the problem is reduced to 

relaxing constraints at the expense of errors and finding methods for minimising the errors. 

Consequently, optimisation techniques are commonly used in the design, development and 

implementation of non-uniform filter banks. Several examples of NUF bank design and 

optimisation techniques have been reported in literature. Hoang and Vaidyanathan [1989] cover 

the concept of a compatible set 'rk ' and its requirement for cancelling aliasing. Design methods 

that allow perfect reconstruction and transformation of non-uniform into uniform filter banks is 

reported in [Kovacevic and Vetterli, 1993]. Other examples of NUF bank design based on the 

use of multiple-prototype LP filters and cosine modulation that allows cancellation of the main 

aliasing component are considered in [Wada, 1995], [Jeong-Jin and Byeong, 1995], [Argenti 

and Del Re, 1996] and [Argenti et al, 1998]. Mehr and Chen [1999, 2000] have reported the 

optimal design of NUF banks by minimisation of the H-2 and H-infinity norms of the error 

system. Another approach based on the time-domain design of FIR filters is reported by Nayebi 

etal[1993].

In this Chapter, two methods based on direct design approach using FIR low pass prototype 

(baseband) filters are considered. The first design method uses transformation of the prototype 

filters by sine or cosine multiplication as developed by Chu [1985] and Wada [1995]. The 

second method is an extension of the design procedure covered in Chapter 5 of this thesis that 

uses multiple square root raised cosine prototype filters from which the analysis and synthesis 

filters are derived using the closed form approximation. The optimisation process considered in 

the present work applies to the overall NUF bank as shown in Figure 6.1, including the 

decimators and expanders. This method leads to the minimisation of amplitude and aliasing 

distortion in a combined manner. An impulse (in the form of a dirac-delta function) is applied
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to the network of Figure 6.1 and the Fourier transform of the response is calculated, giving the 

transfer function of the network. In the case of the first design method, the cut-off frequencies 

of the prototype filters are allowed to vary independently by a small amount 6fck thus changing 

the bandwidth of the analysis and synthesis filters by a small amount. For the second design 

method the bandwidth parameter 'Mp ' and the roll-off factor Y of individual prototype filters 

are allowed to change by a small amount thus leading towards an optimised system. The 

optimisation process is applied to the transfer function of the network to minimise the distortion. 

For this optimisation procedure, it was observed that a direct use of gradient based quasi- 

Newton or down hill Simplex methods are highly sensitive to starting 'seed' values. There is no 

assurance of a global minima point being attained. For this reason, the genetic algorithm 

method is used to search for good results over a wider landscape of frequency response 

variations for each set of prototype filters. The standard minimisation methods are then applied 

to further optimise the results through a hybrid approach.

X(z)

Ho

1

*r0

u

1 r0

ATr,

U0

i X(z)

analysis filter bank synthesis filter bank 

Figure 6.1 Non-uniform multirate filter bank with integer decimators and integer expanders.

6.2 Theory and design issues

An M-channel non-uniform filter bank with integer decimation factors rk, k = 0, ...., M-l as 

shown in Figure 6.1 will be considered here. The input-output relationship in the z-domain is 

given by:
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n-\

Gk(z) J_ £ Hk(zW?k ).X(zW?k ) 6.1
k=o r k 1=0

where Wrk = e'j27l/rk

The design of the NUF bank will be constrained to the case of maximally decimated integer 

values for which the following applies

M-l

Most examples of NUF banks fell into the category of 'incompatible sets' of rk i.e. at least one 

shifted copy of X(ejtl)) does not have a compatible pair at the output of another expander. In this 

case, complete elimination of aliasing is impossible for non-ideal filters. However, such filter 

banks may be resolved into a tree-structured form representing uniform filter banks [Hoang and 

Vaidyanathan, 1989]. This property is useful in working out an overall aliasing error [Argenti 

and Del Re, 1996]. Assuming L is the least common multiple of the rk 's and Rk are integers 

such that L= rk Rk. Then, the non-uniform bank is resolved into an L-channel uniform bank 

with the new transfer functions of analysis filters given by: ztr* Hk(z), t=0, Ric-1 and z trt Gk(z), 

t=0,...., Rk-1 f°r synthesis filters. The reconstructed output signal is then given by

L.} 
X(z)=£ X(zW[) A*(z) 6.3

1=0

where Aj (z) denotes the components given by

M-l Ri-1
Ai(z) =_L £ Hk(z Wf. ) Gk(z) X WL* 6.4

L k=o t=o

For t =0, the linear distortion function is obtained and is given by

A0(z)=_L£ Hk(z)Gk(z) 6.5
rk k=0

In the absence of aliasing, Ao(z) is the transfer function and the NUF bank is a linear time 

invariant system. The various aliasing components X(zW[) of the input signal, where
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^=1,....L-1, that do not cancel each other out should therefore, be considered separately. An 

overall aliasing error function is defined as

L-l 1/2

6.6

6.2.1 Design method one

For the case of design method one, the bandwidth of the analysis filter for the positive frequency 

range 0 to + rc is given by

BWk = — (k = 0,....,M-

The centre frequency of the analysis filters from 0 to TC is given by

1 1

6.7

6.8

where co Co = 0, co Cl = it — + — and G> CM , = TC

The required transfer functions of the analysis filters are given by

« . i i . . «
I 1 °>ck -

Hk(z) = K 2rk

0 elsewhere 

for k=l,.....,M-2

also

Ho(z) =

and

HM-I(Z) =

CO < —

0 elsewhere

Ck 2r

1 71 - -
rM ., 

0 elsewhere

< co <

6.9

6.10

6.11
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The design of the analysis filters is based upon coefficient optimised low pass FIR prototype 

filters of the impulse response vk(n). The impulse response of analysis filters is then obtained 

using

N + lI vk»nj.costa>ckin- 
hk(n) =

vk(n).cos{o) Ck(n -~)} for k: even

vk(n).sin{co Ck(n-^)} fork: odd 6.12

Where the number of coefficients N=MK and K is an odd number. Also, n=l,...,N and 

k=0,...,M-l. co^ represents the centre frequency of the analysis filters and the impulse response 

then becomes 2hk(n) for k= 1,... .M-2.

The synthesis filters are obtained using

Gk(z) = (-iVHWz) 6.13 

fork = 0,...,M-l

The impulse response of prototype LP filters vk(n), is designed with cut-off frequencies given 

by 7t/rk for k=0 and k=M-l and 7t/2rk for k=l,...,M-2. These cut-off frequencies are 

independently perturbed slightly to obtain an optimised transfer function of the complete 

network of Figure 6.1.

6.2.2 Design method two

This method is based on the design of a cosine-modulated pseudo-QMF filter bank for which 

the constraint is to obtain an appropriate transfer function of the prototype filter that will 

generate approximately power complementary frequency responses of frequency-shifted 

replicas about the centre frequencies. A commonly used prototype filter in this application of 

the filter bank is approximated by the square root raised-cosine characteristic [Fliege, 1994].
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The frequency and impulse response for such a low pass filter is given by Equation 5.11 and 

5.12 respectively. The analysis and synthesis filters are derived using Equations 5.15 and 5.16 

respectively.

The non-uniform filter bank is derived from the pseudo-QMF cosine modulated uniform filter 

bank by using multiple prototypes p(n) and deriving the appropriate analysis and synthesis 

filters represented by Equations 5.15 and 5.16. The optimisation process is then based upon 

using the prototype variables i.e. bandwidth 7C/2M = jt/Mp and the roll-off factor V for each of 

the low pass FIR prototype filters to optimise the overall distortion of the filter bank.

6.2.3 Design examples and tests

A number of design examples are considered here based on the two design methods mentioned 

above. Two broad categories of design examples covered are based on a 3-band and a 5-band 

non-uniform filter banks. Both of these filter banks conform to the case of maximally 

decimated integer valued structures as shown in Figure 6.1. For each of these NUF banks, tests 

are conducted using different lengths of FIR filter prototypes. A comparison is then drawn 

between each of the test results based on the optimised results for the following errors, 

i) The maximum peak to peak ripple of the amplitude distortion Epp given by

Epp = max[|A0(z)|]- min[|A0(z)|] 6.14 

ii) Aliasing distortion that is derived by taking the maximum value of Aa | ias(z) over all o>.

This gives the worst possible peak aliasing distortion i.e.

EA = max[Aa,ias(z)] 6.15 

iii) Matlab Simulink tests based on a test circuit of the form shown in Figure 6.2 using a

random signal at the input with uniform distribution in the range -1 to +1. The error

signal ve is then obtained from the difference between the output signal and an
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appropriately delayed version of the input signal. This error signal is used to calculate 

the root mean square value given by v™ and the maximum peak to peak error voltage 

given by outpp .
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Figure 6.2 A Matlab Simulink test circuit for a 5-band non-uniform filter bank.

6.2.4 Optimisation methods

Three optimisation methods are used in this section of the study. The first method is based on 

using the downhill Simplex algorithm due to Nelder and Mead [1965] and has been 

implemented as the fmins .m function of the optimisation toolbox of Matlab. The second 

method is a gradient based unconstrained quasi-Newton method implemented as fminu.m 

function of Matlab. The third method is based on a simple real-valued genetic algorithm 

developed as a Matlab toolbox by Chipperfield et al [1993]. Two GA codes were developed for 

the two design methods applied for this work. These codes are shown in Appendices Fl. 1 and 

F1.2 respectively. The choice for the selection of these three methods of optimisation is based 

the same reasoning as mentioned in section 5.3.5 of Chapter 5. The results of these optimisation
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methods have again shown that the hybrid approach of generating good 'seed' values using the 

GA method and then applying the Simplex or the quasi-Newton method results in good 

minimisation of the objective function.

6.2.5 GA optimisation methodology and pseudo code

The genetic algorithm used here for the design of the non-uniform M-channel filter bank is 

identical to the generic form explained in section 1.4, Chapter 1. This is a Matlab based 

algorithm developed originally for control systems applications [Chipperfield et al, 1993]. The 

main GA code has been adapted for the application in this work and new functions have been 

written for working out the error objective function. The specific steps followed for the design 

stage of the QMF bank GA optimisation are shown here and the pseudo GA code is shown in 

Figure 6.3 and the pseudo code to evaluate the objective function is shown in Figure 6.4.

1) Define the GA parameters

The GA parameters used for the various design examples are given by

GGAP=0.8; % generational gap

INSR=0.8; % reinsertion rate

MAXGEN= 10; % number of generations

Nind= 100; % population size

MutRate=0.01; % mutation rate

2) Create population set of individuals

The starting set of parameter values for design method 1 is based on the variation of the cut-off 

frequency 8fCk of each low pass prototype filter used. For design method 2, the variations of the 

bandwidth Mp and the roll-off factor r for the low pass prototype filters are used. The bounded 

parameter values are described in a matrix 'FieldDR' and an initial population set consisting of
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random real-valued individuals is created within the bounds specified in FieldDR matrix. The 

function crtrp of the GA Matlab toolbox is used for this purpose.

3) The Objective function evaluation

The main purpose of the optimisation process here is to minimise the objective function with the 

specific aim of minimising the overall magnitude and aliasing error so that a perfect 

reconstruction characteristic is closely met. The error objective function to be minimised and 

used in the optimisation process is given by

E = max [20 log, 0|FFT(y(n))|]- min [20 log, 0 |FFT(y(n))|] 6.16 

where y(n) is the impulse response of the network of Figure 6.1 when the input impulse applied 

is given by x(n)=l,0,0.....0.

4) Fitness value and ranking

The Matlab based ranking function of the GA toolbox ranks the individuals according to their 

objective function values 'Obj_err' and returns a column vector consisting of the corresponding 

fitness value 'FitnV of the individuals. This function performs a linear ranking with a selective 

pressure (SP) of 2 [Whitley, 1998]. The fitness value assigned to the individuals is calculated 

according to the formula given by Equation 1.1 in Chapter 1.

5) Selection of individuals for breeding

The high-level function for selection of individuals from the population set and returning the 

selected individuals in a new population is performed by the select function. The low-level 

selection function sus is called by the select function. The sus function is based on a form of 

stochastic sampling method and is implemented by obtaining a cumulative sum of the fitness 

vector 'FitnV and generating a set of equally spaced numbers between 0 and S(FitnV) [Baker, 

1987]. The probability of an individual being selected is given by Equation 1.2 in Chapter 1.
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6) Recombining individuals - crossover

The crossover function is also performed in two stages. The high-level function is recombin 

that calls the low-level function recdis. The recdis function is a discrete recombination 

function. The mating process is performed between pairs of rows. The recdis function first 

generates an internal mask table that determines which parents contribute which variables to the 

offspring. On the basis of the randomly generated mask table, the variable values are exchanged 

between the individuals and return a new population after mating.

7) Mutation

The mutbga function of the Matlab GA toolbox takes real-valued population, mutates each 

variable with given probability and returns the population after mutation. The mutbga function 

produces firstly a random internal mask table that determines which variables will mutate and 

also the sign for the step size. A second internal table generates the normalised mutation step 

size. The mutated variable is worked out as a function of the original variable and the step size 

[Muhlenbein and Schlierkamp-Voosen, 1993].

8) Reinsert offspring into new population

The new population set generated after crossover is subjected to the objective function 

evaluation of each new individual. On the basis of their fitness, the offspring are selected for 

reinsertion using the reins function into the new population. The objective function values are 

then copied to the reinserted offspring and the GA loop is then repeated for the next generation.
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% pseudo GA and hybrid optimisation code for non-uniform filter bank

% GA characteristics here

% low pass prototype filter variable parameters

% build a field descriptor for search space 
FieldDR = {-a -a -a -a -a ; % lower bound 

a a a a a]; % upper bound 
% create initial population 
Chrom = crtrp(Nind, FieldDR); 
% generational counter

while gen < MAXGEN

FitnV = ranking(ObjVal); % fitness

SelCh = select('sus',Chrom, FitnV,GGAP); % selection

SelCh = recombin{'recdis', SelCh, 1); % recombine - crossover

SelCh = mutbga(SelCh,FieldDR, MutRate); % mutation

ObjVOff = feval('nuf5b_obj',SelCh); % evaluate objective fn.

[Chrom, ObjVal] = reins(Chrom, SelCh,1,1, ObjVal, ObjVOff); % reinsert 

gen = gen + I

xbest = Chrora{ix,:); 
end

x(l}=xbest(l) ;x(2)=xbest(2);x(3)=xbest(3);x(4)=xbest(4);x(5)=xbest(5) ;

% second stage for optimisation using Simplex algorithm of the form 
% x=frains{'fun5b_obj',x)

% new optimised parameters of the prototype filters

Figure 6.3 Pseudo GA and hybrid optimisation code for the non-uniform filter bank.

% pseudo objective function code 
function f = nuf5b_obj (Chrom) ; 
% starting values

% evaluate overall transfer function 
yt=20*(loglO(abs(fft(bt))));

Obj_err = max(yt(1:5000))-min(yt(1:5000));
end .::•"•'•

Figure 6.4 Pseudo objective function code for the non-uniform filter bank GA code.
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In this work, genetic algorithms have been used to generate a pool of population set of small 

independent perturbations of the prototype LP filter cut-off frequencies given by 6fck , 

k=0,.....,M-l for the case of design method 1. The procedure of ranking, crossover and 

mutation are then applied through a number of generations to obtain a set of variables that 

minimise the given objective function. This allows for search over a wide landscape of possible 

solutions. Further optimisation is then applied using the standard quasi-Newton or the down 

hill Simplex algorithm. A block diagram of the complete process is shown in Figure 6.5. A 

similar optimisation procedure is applied for the case of design method 2 where the variables are 

bandwidth and roll-off parameters.

Start GA and 
create 

population set 
ofSfCk

Display best 
results and use 
as seed for 
simplex 
optimisation

—————— > Gen. = 
gen+1

—————— *

No

K
Yes

Max. \ 
gen. ?

\/

Calculate E 
for each Sf^ 
combination

1
E - ranking, 
crossover and 
mutation

Figure 6.5 Flow chart showing the GA optimisation procedure.

6.3 Some results

A number of tests were conducted based on the two design methods mentioned above and using 

different number of non-uniform bands and coefficients for the low pass filter prototypes. 

Design method 1 is based on the direct transformation of low pass prototypes developed using 

f irl .m function of Matlab. This function generates the classical Hamming-windowed, linear 

phase filter with cut-off frequency fck . Transformation of the prototype filters is achieved by
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sine or cosine multiplication to the appropriate band as developed by Chu [1985] and Wada 

[1995]. Some comparison is also made with the graphical results of Wada [1995], although no 

reconstruction was possible since the coefficient values for the prototype filters are not 

specified. However, the optimisation procedures developed in the present work were applied to 

this example using the same number of coefficients (i.e. N=45 for a 5-band non-uniform filter 

bank) and some comparisons were made based on the visually observable results of Wada 

[1995].

Design method 2 is based on an extension of the method used in Chapter 5 for the development 

of uniform filter banks. Multiple prototype low pass filters developed using the square root 

raised cosine method are used for the case of non-uniform filter banks. The method of pseudo- 

QMF bank using cosine modulation is then applied to derive the analysis and synthesis filters 

using the closed form approximation. The variables in this case are the bandwidth parameter 

Mp and the roll-off factor 'r'.

Three design examples are considered here and all of these fall in the category of maximally

decimated NUF banks. These are:

Example 1: A 3-band structure with r0=2, r,=6, r2=3 and N=27 and 51.

Example 2: A 5-band structure with r0=4, r,=12, r2=6, r3=6, r4=3 and N=45 and 65 - case 1.

Example 3: A 5-band structure with r0=8, r,=8, r2=4, r3=4, r4=4 and N=31, 45 and 65 - case 2.

All of the above design examples fall in the category of 'incompatible sets' i.e. at least one 

shifted copy of X(eJO)) does not have a compatible pair at the output of another expander. In this 

case, complete elimination of aliasing is impossible for non-ideal filters. However, these 

examples can be resolved into a tree-structured form representing the uniform filter banks

197



Chapter 6: Optimisation of a class of M-channel non-uniform filter bank

[Hoang and Vaidyanathan, 1989]. This property is useful in working out the overall aliasing 

error function given by Equation 6.6.

6.3.1 Design example 1: For a 3-band NUF bank

Design method 1

The 3-band non-uniform filter bank structure is designed using rk values of: r0=2, r,=6 and r2=3 

for which M=3. The results for the design method 1 for N=27 and 51 are shown in Figures 6.6 

and 6.8 respectively. The corresponding Simulink test error signal results are shown in Figures 

6.7 and 6.9 respectively. The tabulated results for the 3-band NUF bank are shown in Table 6.1 

where Epp is the maximum peak to peak amplitude distortion as given by Equation 6.14 and EA 

is the maximum aliasing distortion given by Equation 6.15. 8fc0, 5fc | and 5fc2 are small 

frequency perturbations of the cut-off frequency of the prototype filters. Also, v^ and outpp are 

the root mean square and maximum peak to peak values for the Simulink test results of the error 

signal.

Table 6.1 Results for the 3-band NUF bank using design method 1.

N
27
51

EPP
0.0809
0.0143

EA
0.5436
0.3765

5fc0
0.0338
0.0162

5fc,
0.0276
0.0161

5fc2
0.0290
0.0162

Vrms

0.0145
0.0024

outpp
0.1103
0.0156
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(a) frequency response ofanalysls fillers (t> ) lln e a r d Is to rtlo n

0 5 
frequency (pi)

0 .5 
frequency (pi)

(c) overall transfer function
1

0 .8

0 .6

0 .4

0 .2

0

-0 .2

-0 .4

-0 .6

-0 .8 

-1

(d) aliasing distortion

1000 2000 3000 4000 5000 
frequency (Hz)

0 5 
frequency (pi)

Figure 6.6 For a 3-band NUF bank using design method 1 and N=27 (a) magnitude frequency 
response of all analysis filters (b) transfer function of the network assuming aliasing is zero (c) 
overall transfer function of the network of Figure 6.1 (d) aliasing distortion.

Figure 6.7 Simulink test error signal for a random input with uniform distribution [-1,1] for the 
3-band NUF bank - design method 1 using N=27.
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3-band NUF bank - design method 1 using N=51
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Design method 2

The results for the design method 2 for N=27 and 51 are shown in Figures 6.10 and 6.12 

respectively. The corresponding Simulink test error signal results are shown in Figures 6.11 and 

6.11 respectively. The tabulated results are shown in Table 6.2 where Mpk is the bandwidth 

parameter and rfkis the roll-off factor.

Table 6.2 Results for the 3-band NUF bank using design method 2.

N
27
51

Epp
0.0438
0.0116

EA
0.2458
0.2568

Mpo
3.9870^
3.9997

M,,,
12.0197
12.0003

MD2
5.9764
6.0024

rfo
0.3229
0.3255

rfi
0.9825
0.9701

1*2

0.4610
0.4839

Vrms

0.0088
0.0025

OUtDD
0.0606
0.0193
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Figure 6.10 For a 3-band NUF bank using design method 2 and N=27 (a) magnitude frequency 
response of all analysis filters (b) transfer function of the network assuming aliasing is zero (c) 
overall transfer function of the network of Figure 6.1 (d) aliasing distortion.
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Figure 6.11 Simulink test error signal for a random input with uniform distribution [-1,1] for 
the 3-band NUF bank - design method 2 using N=27.
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Figure 6.12 For a 3-band NUF bank using design method 2 and N=51 (a) magnitude frequency 
response of all analysis filters (b) transfer function of the network assuming aliasing is zero (c) 
overall transfer function of the network of Figure 6.1 (d) aliasing distortion.
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-0005 -

Figure 6.13 Simulink test error signal for a random input with uniform distribution [-1,1] for 
the 3-band NUF bank - design method 2 using N=51.

6.3.2 Design example 2: For a 5-band NUF bank - case 1

Design method 1

The 5-band non-uniform filter bank structure for case 1 is designed using rk values of r0=4, 

ri=12, r2=6, r3=6, r4=3 and M=5. The results for the design method 1 for N=45 and 65 are 

shown in Figures 6.14 and 6.16 respectively. The corresponding Simulink test error signal 

results are shown in Figures 6.15 and 6.17 respectively. The tabulated frequency perturbations 

of the prototype filters are shown in Table 6.3.

Table 6.3 Results for the 5-band NUF bank - case 1 using design method 1.

N
45
65

Sfco

0.0189
0.0123

5fc,
0.0129
0.0123

5fc2
0.0183
0.0124

8fe3

0.0181
0.0122

5fc4

0.0187
0.0138
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Figure 6.14 For a 5-band NUF bank - case 1 using design method 1 and N=45 (a) magnitude 
frequency response of all analysis filters (b) transfer function of the network assuming aliasing 
is zero (c) overall transfer function of the network of Figure 6.1 (d) aliasing distortion.
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Figure 6.15 Simulink test error signal for a random input with uniform distribution [-1,1] for 
the 5-band NUF bank - case 1 using design method 1 and N=45.
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Figure 6.16 For a 5-band NUF bank - case 1 using design method 1 and N=65 (a) magnitude 
frequency response of all analysis filters (b) transfer function of the network assuming aliasing 
is zero (c) overall transfer function of the network of Figure 6.1 (d) aliasing distortion.
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Figure 6.17 Simulink test error signal for a random input with uniform distribution [-1,1] for 
the 5-band NUF bank - case 1 using design method 1 and N=65.
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Design method 2

The results for the design method 2 for N=45 and 65 are shown in Figures 6.18 and 6.20 

respectively. The corresponding Simulink test error signal results are shown in Figures 6.19 and 

6.21 respectively. The tabulated frequency perturbation parameters of the prototype filters are 

shown in Table 6.4 and the comparative results for design methods 1 and 2 are shown in Table 

6.5.

Table 6.4 Results for the 5-band NUF bank - case 1 using design method 2.

N
45
65

MDO
7.9539
7.9985

MDl
24.3619
24.0960

MD2
11.9338
12.1078

M,*
11.8205
11.9236

MD4
5.9719
6.0084

r0
0.3559
0.2655

n
1.0867
0.7929

r2
0.5258
0.3907

r3
0.4807
0.3921

f4

0.2652
0.2051

Table 6.5 Comparative results for the 5-band NUF bank - case 1.

N
45
45
65
65

type
Design - 1
Design - 2
Design - 1
Design - 2

Epp
0.1441
0.1051
0.0312
0.0489

EA
0.1800
0.1826
0.1812
0.1714

Vrms

0.0170
0.0172
0.0061
0.0094

OUtDD
0.1249
0.1231
0.0403
0.0578
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Figure 6.18 For a 5-band NUF bank - case 1 using design method 2 and N=45 (a) magnitude 
frequency response of all analysis filters (b) transfer function of the network assuming aliasing 
is zero (c) overall transfer function of the network of Figure 6.1 (d) aliasing distortion.
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Figure 6.19 Simulink test error signal for a random input with uniform distribution [-1,1] for 
the 5-band NUF bank - case 1 using design method 2 and N=45.
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Figure 6.20 For a 5-band NUF bank - case 1 using design method 2 and N=65 (a) magnitude 
frequency response of all analysis filters (b) transfer function of the network assuming aliasing 
is zero (c) overall transfer function of the network of Figure 6.1 (d) aliasing distortion.
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Figure 6.21 Simulink test error signal for a random input with uniform distribution [-1,1] for 
the 5-band NUF bank - case 1 using design method 2 and N=65.
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6.3.3 Design example 3: For a 5-band NUF bank- case 2

The 5-band non-uniform filter bank structure for case 2 is designed using rk values of: r0=8, 

r^S, r2=4, r3=4, r4=4 and M=5. The choice for this filter bank structure was based on the use of 

filter bands in the mixed excitation linear prediction (MELP) decoder as specified by the U.S. 

standard [MELP standard draft, 1998]. As part of the decoding process, a mixed excitation 

signal is generated as a sum of the filtered pulse and noise excitations. The band pass filter 

coefficients for the filtering stage are given in Appendix A of the MELP standard and is 

reproduced here as shown in Appendix F2.1. The study conducted here on the filter bank used 

for the MELP decoder is based on an analysis of the efficacy of the NUF bank simply as a 

system for being able to reconstruct the signal that is applied at the input. It must be recognised 

that identical filter bands are used for both the pulse as well as the noise excitation signals that 

are subsequently added to form the mixed excitation signal.

The coefficients of Appendix F2.1 are used both for the analysis filter bank as well as the 

synthesis filter bank for test purposes conducted in this study. The results of the amplitude and 

abasing distortions are shown in Figure 6.22. The Simulink test error signal is shown in Figure 

6.23. Based on design method 1, the procedure developed in this work was applied to the 

structure of the filter bank defined in this example. Same number of coefficients i.e. N=31 were 

used. The optimised results of the amplitude and aliasing distortions are shown in Figure 6.24. 

The Simulink test error signal is shown in Figure 6.25 and the coefficients for each analysis 

filter band are shown in Appendix F2.2. It must be emphasised that although the new optimised 

results show clear improvement when compared to the results of the MELP filter band, the tests 

conducted here are based entirely on the requirement for reconstructing the applied input signal. 

Extensive tests that are normally applied to the MELP decoder system are beyond the scope of 

the present work. The filter bank structure in this section was also studied using filter lengths of
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N=45 and 65 and the optimised results are shown in Figures 6.26 and 6.28 for the amplitude and 

aliasing distortions respectively and the Simulink error results are shown in Figures 6.27 and 

6.29 respectively. The tabulated results are shown in Tables 6.6 and 6.7.

Table 6.6 Results for the 5-band NUF bank - case 2 using design method 1.

N
31
45
65

5fc0
0.0243
0.0183
0.0124

6fc,
0.0280
0.0179
0.0125

5fc2

0.0191
0.0181
0.0124

6fa
0.0261
0.0182
0.0129

5fC4

0.0269
0.0198
0.0124

Table 6.7 Comparative results for the 5-band NUF bank - case 2.

N
31
31
45
65

type
MELP - standard

Optimised - design method 1
Optimised - design method 1
Optimised - design method 1

Epp
0.6109
0.1678
0.0337
0.0180

EA
0.2565
0.0601
0.2717
0.2558

Vrms

0.1854
0.0390
0.0062
0.0038

OUtpp
1.2930
0.2497
0.0446
0.0251
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Figure 6.22 For the MELP 5-band NUF bank using N=31 coefficients given in Appendix F2.1. 
(a) magnitude frequency response of all analysis filters (b) transfer function of the network 
assuming aliasing is zero (c) overall transfer function of the network of Figure 6.1 (d) aliasing 
distortion.

Figure 6.23 Simulink test error signal for a random input with uniform distribution [-1,1] for 
the MELP 5-band NUF bank using N=31 coefficients given in Appendix F2.1.
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Figure 6.24 Optimised results using design method 1 for the MELP 5-band NUF bank using 
N=31 coefficients given in Appendix F2.2. (a) magnitude frequency response of all analysis 
filters (b) transfer function of the network assuming aliasing is zero (c) overall transfer function 
of the network of Figure 6.1 (d) aliasing distortion.
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Figure 6.25 Simulink test error signal for a random input with uniform distribution [-1,1] for 
the optimised results using design method 1 for MELP 5-band NUF bank using N=31 
coefficients given in Appendix F2.2.
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Figure 6.26 Optimised results using design method 1 for the 5-band NUF bank - case 2 for 
N=45. (a) magnitude frequency response of all analysis filters (b) transfer function of the 
network assuming aliasing is zero (c) overall transfer function of the network of Figure 6.1 (d) 
aliasing distortion.
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Figure 6.27 Simulink test error signal for a random input with uniform distribution [-1,1] for 
the optimised results using design method 1 for a 5-band NUF bank - case 2 and N=45.
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Figure 6.28 Optimised results using design method 1 for the 5-band NUF bank - case 2 for 
N=65. (a) magnitude frequency response of all analysis filters (b) transfer function of the 
network assuming aliasing is zero (c) overall transfer function of the network of Figure 6.1 (d) 
aliasing distortion.
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Figure 6.29 Simulink test error signal for a random input with uniform distribution [-1,1] for 
the optimised results using design method 1 for a 5-band NUF bank - case 2 and N=65.
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6.4 Discussion of results

Two design methods gave been considered in this chapter for the implementation of the 

maximally decimated non-uniform filter banks where all the decimation factors are integer- 

valued. A number of design examples are investigated using the hybrid optimisation technique 

that combines the genetic algorithm search followed by the traditional downhill simplex 

method. The results covered in section 6.3 show significantly improved outcome through the 

optimisation process. The design method-1 is based on the use of multiple prototype low pass 

filters and their transformation by sine or cosine multiplication as developed by Chu [1985] and 

Wada [1995]. However, the optimisation technique developed in this work is new. The 

variable used to minimise the objective function is a small independent perturbation of the cut 

off frequency of the individual prototype filters. This process assures the flat pass band 

response of the standard FIR filter as given by the f irl .m function of Matlab and it also 

retains the stop-band attenuation. A small perturbation of the cut-off frequencies will alter the 

bandwidths of the filter bank slightly from its specified values, however this change is fairly 

insignificant and should have no impact on real systems. The minimisation of the magnitude 

and aliasing distortions is clearly significant as is evident in the design examples covered in 

section 6.3. This is evident both in the magnitude and aliasing distortion graphs and the 

Simulink test error signal results.

The second design method considered for study in this chapter is based on the use of multiple 

square root raised cosine prototype low pass filters from which the analysis and synthesis filters 

are derived using the cosine modulation technique. The optimisation process for this method is 

based on the independent perturbation of the roll-off factor and the bandwidth parameters of the 

individual filters. This form of design and optimisation technique for non-uniform filter banks 

is new and no evidence of optimisation based on this method is available in literature.
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A comparative study of the hybrid optimised results for the design example - 1 (i.e. for a 3-band 

NUF bank) and design example - 2 (i.e. for a 5-band NUF bank case 1), clearly show some 

disparity between design methods 1 and 2. No clear preference between the two methods has 

emerged. This is evident as seen in the tabulated results shown in Tables 6.1 and 6.2 for design 

example 1 and in Table 6.5 for design example 2. The optimised results of design example 2 for 

N=45 can be compared with the graphical results of Wada [1995]. Significant improvement in 

the linear distortion is evident for the new optimised results. However, no further comparison is 

possible since Wada [1995] gives no coefficient values of the prototype filters.

The design example 3 is specifically formulated to satisfy the NUF bank structure used in the 

MELP decoder [MELP standard draft, 1998]. The filter band coefficients are specified in 

Appendix A of MELP U.S. Standard and used here to derive the magnitude and aliasing 

distortions as shown in Figure 6.22. The Simulink test error results are shown in Figure 6.23. 

The optimised graphical results using design method - 1 and same number of coefficients (i.e. 

N=31) are shown in Figures 6.24 and 6.25. The comparative tabulated results are shown in 

Table 6.7. These results clearly show a significant improvement of the new optimised 

coefficients listed in Appendix F2.2 over the original MELP filter band.

6.5 Summary of Chapter 6 and further comments

A novel approach to the optimisation technique is proposed and investigated in this chapter 

where an impulse (in the form of a dirac-delta function) is applied to the entire network of 

Figure 6.1 and the Fourier Transform of the response is derived, giving the overall transfer 

function of the network. The optimisation process then minimises the difference between the 

maximum and the minimum value of the overall transfer function. This method leads to the
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minimisation of the magnitude and the aliasing distortion in a combined manner thus giving 

optimal results without the need for working out optimality as a compromise between the 

maximum aliasing distortion and the maximum linear distortion in the absence of aliasing.

A number of severe theoretical constraints for the design of optimal maximally decimated NUF 

banks are relaxed in favour of a direct design approach based on the use of hybrid optimised low 

pass FIR prototype filters. Two direct design methods have been studied. Method one is based 

on the use of standard FIR low pass prototypes and their transformation using sine or cosine 

multiplication. The optimisation technique used for this method is based on marginally 

perturbing the cut-off frequencies of the prototype filters independently to minimise the 

objective function. The second design method is based on using a square root raised cosine FIR 

low pass prototype filters. The analysis and synthesis filters are derived from the prototype 

filters by the cosine modulation technique. The optimisation process for this design method is 

based on independently perturbing the roll-off factor and the bandwidth parameters of the 

prototype filters. Although the non-uniform filter banks considered in this study are restricted to 

the type using integer-valued decimators, this study can be easily extended to the case of NUF 

banks using rational valued decimators.

The main contributions of this part of the study are the following.

• Real-valued genetic algorithm codes have been developed for the optimisation of the non- 

uniform M-channel maximally decimated filter banks using integer decimators. Two design 

methods were considered. The first method uses transformation of low-pass prototype 

filters by sine or cosine multiplication and the second method is based on the cosine 

modulation technique. Further modification of the codes involved inclusion of the Simplex 

code for comparative and hybrid optimisation study.
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• The hybrid optimisation process is applied to the entire network of the non-uniform filter 

bank. The variables are the cut-off frequency of the prototype filters for design method one 

and the bandwidth and the roll-off factors for design method two. The variables are 

independently perturbed for the respective design methods and the overall transfer function 

of the filter bank network is optimised more minimal errors. The minimisation of the 

magnitude and aliasing errors is thus achieved in a combined manner. Significantly 

improved new results using the GA and hybrid optimisation are given in Tables 6.1, 6.2, 6.5 

and 6.7.

Several design examples have been considered to demonstrate the potency of the design and 

optimisation techniques developed in this study. The specific and some comparative results 

further substantiate this. The use of a hybrid optimisation process has demonstrated a strong 

synergy between the regulated random chance based technique of genetic algorithms that work 

well over a wide landscape of possible discontinuous functions and a standard minimisation 

algorithm such as down hill Simplex, that works well for largely continuous functions.
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Chapter 7: Conclusions and further work

Overview of Chapter 7: This chapter draws a summary, the contributions and concluding 

remarks of the main focus of study that is discussed, investigated and reported in this thesis. 

Some suggestions for further work are also included.

7.1 A summary and the contributions

The main focus and contribution of this thesis is the study and application of the genetic 

algorithm optimisation method in the area of digital filters and multirate filter banks. For the 

case of digital filters, the optimisation was conducted for finite word-length coefficient 

constraints that would inevitably lead to changes of the transfer function of the filters. Both, 

finite and infinite-impulse response digital filters have been considered for optimisation. For 

the case of multirate filter banks the design issues and their optimisation of three types of 

structures is considered. These are; a 2-channel quadrature mirror filter, a multiple M-channel 

uniform filter bank and a multiple M-channel non-uniform filter bank. Where possible, the GA 

optimised results are compared with the results obtained using alternative optimisation methods.

Chapter 2 covers GA optimisation for ten FIR band select filters. A comparison is drawn with 

the results taken from [Kodek and Steiglitz, 1981] that were optimised using the integer 

programming method. The following contributions are claimed with respect to the outcome of 

results covered in Chapter 2.

Contribution 1: A real integer-valued genetic algorithm code has been developed for the 

optimisation of finite word length constrained coefficients of FIR digital filters. The new GA 

optimised results are significantly superior when compared with the integer programming
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method optimised results taken from [Kodek and Steiglitz, 1981]. The comparative results are 

shown in Tables2.4 and 2.5 and the new coefficient values are listed in Table 2.3. Further 

comparison of the GA optimised results was conducted with the simple hill climber algorithms. 

The results for a selection of the FIR digital filters are shown in Table 2.7.

Contribution 2: The GA optimised results for FIR filters demonstrate the assertion that the 

maximum deviation derived using statistical methods [Chan and Rabiner, 1973] as given by 

Equations 2.25 and 2.26 holds well as is evident from the GA optimised results seen in Figures 

2.6 and 2.8.

In Chapter 3, the finite word-length coefficient optimisation for IIR filters both of the direct 

form and of the second order cascade form structures was covered. Due to the recursive nature 

of such filters, there is a distinct possibility that the FWL coefficient constraint could cause an 

otherwise stable filter to become unstable. The condition for assuring stability of the final 

optimised design imposes an extra constraint on the optimisation process. There is also an issue 

about the susceptibility to changes in the transfer function for different IIR filter structures. 

Some work in this topic has been previously reported in [Harris and Ifeachor 1995, 1998] and 

[Arslan and Horrocks, 1995]. However, no quantifiable metric for a comparative study was 

available. For this reason, a set of IIR filters are proposed and listed in Table 3.1. GA 

optimisation tests were conducted for these filters for different order values and number of bits 

representing the FWL coefficients. The outcome of the tests is listed in Tables 3.2 and 3.3 for 

the direct form and the second order cascade form structures respectively. The following 

contribution for the study in Chapter 3 is thus claimed.

Contribution 3: Real integer-valued genetic algorithm codes have been developed for the 

optimisation of the finite word length constrained coefficients of IIR digital filters. The direct
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form and the second order cascade form structures have been considered. The GA optimised 

results for different filter orders and number of bits representing the coefficient values are seen 

to be vastly superior when compared with the simply rounded coefficient value results. These 

results are shown in Tables 3.2 and 3.3 and the actual coefficient values are listed in 

Appendices C 1.2 and C2.2. Further comparison of the GA optimised results was conducted with 

the simple hill climber algorithms. The results for a selection of the HR digital filters are shown 

in Table 3.4.

Multirate processing of digital signals is an important area that has significant applications in 

digital audio systems and in speech and image processing. A basic form of a multirate system is 

the quadrature mirror filter bank with specific applications in sub-band coding and data 

compression of speech signals. The issues of design, optimisation, simulation and real-time 

implementation of a specific class of a QMF bank [Tay, 1998] are considered in Chapter 4. The 

GA optimisation is applied in two stages for the final realisation of the design. In the first stage, 

the issues of design optimisation are considered. While in the second stage, issues relating to 

finite word-length coefficient optimisation of filters using genetic algorithms as developed in 

the earlier chapters are applied for real-time implementation on a target DSP hardware system.

In order to test the potency and robustness of the GA method, a new 'creep' code was developed 

that performed a 'tumbling like' minimisation algorithm. This code was applied to the first 

stage design optimisation and the results were compared with results obtained using the standard 

gradient and non-gradient based minimisation methods. These comparative results are shown in 

Tables 4.1, 4.2 and 4.3 respectively for the three design examples studied. For the design stage 

the new GA 'creep' code performs well in the optimisation cycle when compared with the direct 

form GA code, as is evident from Figures 4.8 and 4.9. However, when compared with a hybrid 

method of GA optimisation followed by a standard quasi-Newton or downhill Simplex method,
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then the hybrid scheme generates significantly improved results and is also more efficient. 

Furthermore, the new optimised results show significant improvement when compared with the 

original design results of Tay [1998] as seen in Tables 4.1, 4.2 and 4.3 for three design examples 

respectively.

The following contribution is thus claimed for this part of the study.

Contribution 4: A real-valued genetic algorithm code has been developed for the optimisation 

of the design of a class of quadrature mirror filter bank that has a perfect reconstruction 

property. This code -was further enhanced to include a 'creep' code option within the main GA 

code that uses a 'tumbling-like' minimisation algorithm. The new 'creep' code was developed 

to draw a comparative study with the standard quasi-Newton and Simplex optimisation 

methods. The new GA hybrid optimised results show a significant improvement when compared

•with the original design results as seen in Tables 4.1, 4.2 and 4.3.

For the real-time implementation of the optimised design, several issues are relevant for 

discussion and are listed here.

• The design of the QMF bank develops IIR filters for the sub-bands, both analysis and 

synthesis filters and has a perfect reconstruction characteristic.

• The transfer function of the IIR filters is of the type that can be decomposed directly into a 

computationally efficient polyphase form.

• For telephone quality speech signal coding and compression, the polyphase components are 

optimised using 8-bit finite word-length coefficients. The GA optimised magnitude 

responses are shown in Figure 4.24.
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• An idea of companding for the QMF bank is introduced as seen in Figure 4.26. This 

structure is tested for a number of sub-band quantised signal values using different number 

of bits. The real-time testing and comparisons were drawn using the Mean Opinion Score 

metric. The results for a sample of individuals are shown in Table 4.9.

The optimised design from stage one was implemented on a real-time system. For this the 

transfer function of the IIR filters were firstly decomposed into the computationally efficient 

polyphase components and then FWL coefficients were optimised using genetic algorithms. An 

idea of companding for the QMF bank is introduced as seen in Figure 4.26. The real-time tests 

were conducted on a digital signal processing starter kit based on the fixed point TMS320C50 

processor. The tests using the Mean Opinion Score show a trend towards improvement for the 

'with companding' option as seen in Table 4.9. The sample of individuals used is small and 

thus statistically not significant. The contribution for this part of the study is as follows.

Contribution 5: The new GA optimised design of the QMF bank was implemented on a real- 

time TMS320C50 digital signal processing starter kit. Tests were conducted using the Mean 

Opinion Score metric that showed an improvement of results using the 'with companding' 

option as proposed in Figure 4.26.

The study of a two-channel filter bank as discussed in Chapter 4 was extended to the case of a 

uniform M-channel filter bank in Chapter 5. This form of a multiple channel filter bank has a 

potential for improved signal coding efficiency and compression gain. The design and 

optimisation of the uniform M-channel filter bank is based on the cosine modulation technique. 

For this, all the sub-bands of the filter bank are derived from a single low-pass prototype filter. 

The overall optimisation of the filter bank is then based on the appropriate choice of the 

prototype filter parameters. A square root raised-cosine form of the low-pass prototype filter
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that has a linear phase FIR characteristic was used for this application. For this form of filter, 

two parameters i.e. the bandwidth and the roll-off factor were marginally perturbed to generate 

improved results of the overall filter bank. The optimisation process was based on the use of 

genetic algorithms and the standard gradient and non-gradient based methods.

The GA and hybrid optimised results for the design of a uniform, maximally decimated, 8- 

channel filter bank for the design example 1 as seen in Table 5.1 shows a substantial 

improvement when compared with the optimised results of a non-linear optimisation package 

that is reported in [Vaidyanathan, 1993]. Furthermore, the new optimised results for design 

example 2 as seen in Table 5.4 for N=141 (i.e. number of filter coefficients) show a significant 

improvement over the graphical results of Fliege [1994] as given in Table 5.6(d) for N=257. It 

is also instructive to note that the improvement of the optimised results between design example 

2 for N=141 and the design example 3 for N=257 is fairly small. This observation has clear 

implications for the designer in terms of accuracy of design implementation and computational 

overheads of throughput. The major contribution of this part of study is the following.

Contribution 6: A real-valued genetic algorithm code has been developed for the optimisation 

of a uniform maximally decimated M-channel filter bank. Further modification of this code 

involved inclusion of the quasi-Newton and the Simplex codes for a comparative and hybrid 

study. Significantly improved new results using the GA and hybrid optimisation are given in 

Tables 5.1, 5.4 and 5.6.

The study of a uniform M-channel filter bank was extended to the case of a non-uniform M- 

channel filter bank and is covered in Chapter 6. This form of a filter bank has a potential for 

matching the spectral sub-bands more closely to the ensemble average of the energy of real 

signals. High coding gain with minimal loss of spectral quality is thus achievable. However,

224



Chapter 7: Conclusions and further work

extensive theoretical and practical design constraints exist for achieving the perfect 

reconstruction characteristic of the non-uniform filter banks. The problem is then reduced to 

relaxing constraints in favour of ease of design and then using optimisation techniques for 

minimising the errors. Two methods of direct design based on using FIR low-pass prototype 

filters were investigated in this study. The first method is based on the transformation of the 

low-pass prototype by sine or cosine multiplication and the second method is based on the 

cosine-modulated pseudo QMF bank method. The second method of design is an extension of 

the design procedure used in Chapter 5 for uniform M-channel filter banks for which multiple 

prototype low pass filters are used to achieve appropriate frequency band shifts.

The hybrid optimisation process using a genetic algorithm and the Simplex method is applied to 

the network of a non-uniform filter bank. The minimisation of the magnitude and aliasing 

distortion is achieved in a combined manner by working out the overall transfer function of the 

network. This is achieved by marginally perturbing independently the cut-off frequencies of the 

prototype filters for the case of design method one. For the second design method, the 

bandwidth and the roll-off factor parameters of the square root raised-cosine prototype filters are 

independently perturbed. The optimised results for a number of design examples are shown in 

Tables 6.1, 6.2, 6.5 and 6.7. The main contributions of this part of the study are stated as 

follows.

Contribution 7: Real-valued genetic algorithm codes have been developed for the optimisation 

of the non-uniform M-channel maximally decimated filter banks using integer decimators. Two 

design methods were considered. Further modification of the codes involved inclusion of the 

Simplex code for comparative and hybrid optimisation study. The hybrid optimisation process 

is applied to the network of the non-uniform filter bank. The minimisation of the magnitude and
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aliasing errors is thus achieved in a combined manner. Significantly improved new results 

using the GA and hybrid optimisation are given in Tables 6.1, 6.2, 6.5 and 6.7.

7.2 Suggestions for further work and conclusions

There are clearly a number of issues that have remained unanswered and others that have only 

partially been resolved. These are thus good candidates for further research and investigation. 

Some of these issues are discussed here.

• Categorisation of objective function landscapes

An important area for investigation towards an effective means for GA optimisation is an 

understanding of the objective landscapes and their categorisation on the basis of their 

relationship with the GA and hybrid regimes. Most applications of GAs are conducted by 

using trial parameters based either on intuitive initial trials or on prior knowledge of similar 

problem situations and their solution. A good understanding of the GA and hybrid process 

and its relationship with the objective function landscape will clearly help in the robust and 

effective optimisation process.

A starting point for the investigation into this problem must be a detailed description or 

display of the objective function landscape profile. This is not an easy problem to articulate 

due to the multidimensional nature of the objective function used in many engineering 

related applications. Some insight into this problem can, however, be gained by simplifying 

the objective function into a series of three-dimensional functions. An objective function 

profile then begins to emerge. The next stage is to investigate the objective function in 

relation to the GA parameters. A simple test for the population size and mutation rate 

against the objective function was conducted in Chapter 4, Figure 4.7 of this study. 

However, other GA parameter types such as fitness function, crossover and selection were
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not tested. Each of these could have a bearing on the effectiveness of the GA process. Of 

wider interest here is an issue about broad categorisation of the objective function 

landscapes of target applications for the effective and efficient GA process.

Optimal telephony speech signal compression using a non-uniform filter bank 

The optimised speech signal coding and compression using a uniform 2-channel filter bank 

was considered in Chapter 4 of this study. Further improvement of the compression gain is 

achievable using an optimised non-uniform filter bank. The methods of FIR filter finite 

word length optimisation developed in Chapter 2 and the design optimisation methods of 

non-uniform filter bank developed in Chapter 6 can be applied for this purpose. 

Furthermore, companding issues considered in Chapter 4 can be extended and applied to 

this application with the purposeful aim of improving the mean opinion score metric for the 

quality of compressed telephony speech signal.

A commonly used structure of the non-uniform filter bank for this application is based on a 

five-band split of the input signal given by 0 - 0.5, 0.5 - 1.0, 1.0 - 2.0, 2.0 - 3.0, 3.0 - 4.0 

kHz when the sampling frequency is 8 kHz. A number of quantisation schemes are 

recommended [Porat, 1997 pp. 497]. This structure of the filter bank is identical to the one 

considered as design example 3 in Chapter 6 (section 6.3.3). It must also be noted that sub- 

band coding is applied in the compression of the high-fidelity audio signals. The study 

covered in Chapter 6 can also be extended to this application. A typical bit rate for hi-fi 

audio is about 700 kbits per second per channel. The MPEG standard for compression 

defines 32 sub-bands for which a compression ratio of 5.5 is achievable. This generates a 

bit rate of 128 kbits per second per channel for almost compact disc like music quality.
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• Optimisation of non-uniform filter banks using rational number decimation factor

This problem is a direct extension of the issues considered in Chapter 6 with the exception 

that instead of using integer valued decimation factors, rational number decimation is used. 

The use of rational numbers as decimators can give further refinement to the sub-band 

frequency widths of the filter bank. This means that a closer approximation to the ensemble 

average of the energy of real signals can be matched. The theoretical issues of design of 

these type of filter banks so that the errors due to magnitude, phase and aliasing can be 

minimised has been previously considered and reported in literature [Wada, 1996], [Argenti 

and Del Re, 1998]. Of interest here is to use the optimisation methods developed in Chapter 

6 and to seek for improved results.

• Use of parallel GAs in the optimisation of digital filters and multirate filter banks

The development of parallel GAs is an important area that has seen some applications in the 

field of digital signal processing [Xu and Daley, 1995], [Kwong and Chan, 1997]. The 

parallel GA is composed of several sequential algorithms operating simultaneously. The 

main aspect of linkages between the sequential algorithms is by means of the genetic 

operation of migration. For the case of a FWL coefficient digital filter then the 

chromosome is defined by a set of coefficients representing the specific filter. The 

distinguishing feature of migration can then be implemented by transferring a copied 

version of the distinct set of filter coefficients with minimum error function in each local 

population to the neighbouring node. This procedure generally enhances the performance 

of the algorithm. This process can also be extended to the case of multirate filter banks and 

their performance tested against those of the simple GA.

Finally in conclusion, the use of genetic algorithms as an effective and robust optimisation tool 

in the field of digital filters and multirate filter banks has been substantially demonstrated in this

228



Chapter 7: Conclusions and further work

study. For the specific area of FWL coefficient constraints of digital filters, genetic algorithms 

alone are shown to have generated superior results when compared with other methods of 

optimisation reported in literature. However, for the design optimisation of multirate filter 

banks, genetic algorithms performed well in a hybrid format. This was achieved by conducting 

an initial search over a wide landscape using genetic algorithms and then 'homing-in' on the 

best individuals by using recognised optimisation tools such as the quasi-Newton or the Simplex 

method.
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A1 Published Papers

This appendix contains abstracts of papers published during the course of this study.

A1.1 Optimisation of finite word length FIR and MR digital filters through 
genetic algorithms

Published in the proceedings of the IEE sponsored International Conference on 

Communication, Computer & Power, Muscat, Oman, pp. 183-187, December 7-10, 1998.

This paper describes a MATLAB based genetic algorithm (GA) method for optimisation of 

frequency response of finite and infinite impulse response (FIR/IIR) digital filters under the 

constraint of finite word length (FWL) coefficients. A quantifiable approach is followed for 

comparing the results. The constraints for optimisation of FIR and different structures for IIR 

niters is considered and subsequently applied to the GA optimisation procedure.

A1.2 A two stage genetic algorithm for optimisation of causal IIR perfect 
reconstruction multirate filter banks

Published in the proceedings of the IEEE and IEE sponsored Congress on Evolutionary 

Computation (CEC 99), Washington D.C., USA, pp 897-903, July 6-9, 1999.

This paper describes a procedure for the optimisation of two channel perfect reconstruction 

filter banks using causal infinite impulse response (IIR) digital filters through the transformation 

of variables method. A two stage genetic algorithm is used for the optimisation procedure 

where the first stage GA searches for near optimal values of the transformation function 

variables. The second stage GA optimises the filter coefficients for finite word-length effects 

for real time implementation of causal IIR filters. Some examples are presented and their 

results included to show the efficacy of this method for real time implementation.
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A1.3 Comparative study for optimisation of causal IIP perfect 
reconstruction filter banks

Published in the proceedings of the IEEE and 1EE sponsored Congress on Evolutionary 

Computation (CEC 00), San Diego, USA, pp 974-977, July 16-19, 2000.

This paper considers a comparative study for optimisation of causal infinite impulse response 

(IIR) filters with applications to perfect reconstruction quadrature mirror filter (QMF) banks. A 

hybrid procedure is applied where a constrained genetic algorithm is first used to search the 

objective function landscape for a promising valley. Sub-optimal filter parameters are then 

further optimised using four different methods. These are; new GA based 'creep code', gradient 

based constrained Sequential Quadratic Programming the Quasi-Newton method and a non- 

gradient based downhill Simplex method. Finally, a comparison is drawn between each of the 

four methods of optimisation

A1.4 Optimisation of a class of non-uniform multirate filter banks - a 
genetic algorithms approach

Presented at the IEEE sponsored 3rd International Conference on Information, Communications 

and Signal Processing, (ICICS, 2001), Singapore, October 15-18, 2001.

This paper considers the design and optimisation issues of a class of non-uniform filter (NUF) 

banks. Standard optimisation method based on down hill Simplex algorithm is applied after an 

initial search over a wider landscape using genetic algorithms (GAs). This hybrid approach 

helps in locating an optimal minima point. The optimisation process is applied to the transfer 

function of the entire network to minimise the amplitude and aliasing distortions. The design 

method of NUF banks is based on using multiple low pass prototype filters that are transformed 

by sine or cosine multiplication to the appropriate filter banks. Maximally integer decimated 

structures are considered using FIR filters.
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B1 GA code for FIR filter

Bl.l GA code for finite word length coefficient optimisation of an FIR digital filter

% fir_ga.m
%
% [bo]=fir_ga(b,n,BASE,PRSZ)
%
% GA optimisation of a FIR filter
% Returns GA optimised vector bo given vector b of an FIR
% filter and the quantisation factor (Ex. for Q15 format n=15)
% BASE is the maximum peak variance within the population
% For PRSZ=1 the GA will preserve zero patterns within the filter
% For PRSZ=0 the GA will ignore zero patterns within the filter
%
% version 2: created: 3rd Jan 2002
%
% filter 1: A15/5 - specifications

fp = 0.4;
fs = 0.5;
f = [0 fp fs 1]; % frequency band edges
m = [1 1 0 0]; % desired magnitude response
ne = 14; % filter order
bok = [0 1 1 0 -2 1 5 7 5 1 -2 0 1 1 0] ;
b = remez(ne,f,m) ;
nbits=5;
bokl=bok(l: (ne/2) ) ;
bok=[bok fliplr(bokl)];
b = remez (ne, f, m, w) ;

PRSZ=0; 
BASE=1; 
n=nbits-l;

% GA parameters

NIND=100; 
MAXGEN=10; 
GGAP=0.8; 
INSR=0.8; 
L=500;

[M,w]=freqz(b,l,D ; 
M=abs (M) ;

lb=length(b) ;
lc=ceil(lb/2) ;
coefs=[round((2"n)*b(1:lc))];

if 2*lc > Ib
coefs2=coefs(1:lc-l);
coefsrnd=[coefs fliplr(coefs2)]; 

else
coefsrnd=[coefs fliplr(coefs)]; 

end
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coefsrnd=coefsrnd/2 /x n;

[R,w]=freqz(coefsrnd,1,L); 
R=abs(R) ;

L=length(coefs) ;

if PRSZ==1
for i=l:l 

% if b(i)==0 % preserve zeros in b(i)
if coefs{i)==0 % preserve zeros in rounded coeffs

MSK(i)=0; 
else

MSK(i)=l; 
end 

end 
else

MSK=ones(1,1); 
end

% Built field descriptor 
for 1=1:1

FieldDR(l,i)=coefs(i)-BASE-0.4999;
FieldDR(2,i)=coefs(i)+BASE+0.4999; 

end
FieldDR(1, :)=FieldDR(l, :) .*MSK; 
FieldDR(2, : )=FieldDR(2, :) .*MSK;

warning off;
% Initialise population
Chrom=round(crtrp(NIND,FieldDR));

% Evaluate initial population 
ObjV=fir_obj (Chrom,Ib,lc,M,L,n,R, fp, fs) ;

[m, z)=max(ObjV); 
Chrom(z, :)=coefs;

ObjV=fir_obj(Chrom,lb,lc,M,L,n,R,fp,fs); 

gen=0; %counter

% Generational loop 
while gen < MAXGEN

%Assign fitness values to entire population 
FitnV = ranking(ObjV);

%Select individuals for breeding 
SelCh=select('sus', Chrom, FitnV, GGAP);

%Recombine individuals (crossover) 
SelCh=recombin('recdis',SelCh);

%Evaluate offspring, call objective function 
ObjVSel=fir_obj(SelCh,Ib,lc,M,L,n,R,fp,fs) ;

%Reinsert offspring into population
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[Chrom ObjV] =reins(Chrom,SelCh,1, [1 INSR],ObjV,ObjVSel);

%Increment counter
gen=gen+l;
[m,z]=min(ObjV);
OBJ=ObjV(z,l); 

end
warning on; 
[m,z]=min(ObjV) ; 
for i=l:lc

bo(i)=Chrom(z,i); 
end 
for i=(lc+l):lb

bo(i)=Chrom(z,lb+1-i); 
end 
bo;
bo=bo/(2 A n); 
[GAop,w]=freqz(bo,1,w) ; 
GAop=abs(GAop) ;

% plot results here 
GAp=GAop(1:(fp*L)); 
GAs=GAop((fs*L):L);

Mp=M(l:(fp*L)); 
Ms=M((fs*L):L);

Rp=R(l:(fp*L)); 
Rs=R((fs*L):L);

opkp=opk(l:(fp*L)); 
opks=opk{(fs*L):L);

range=(((ne+2)/2):ne+1); 
b_GA=(bo*2 A n); 
b_GA=b_GA(range) ' ; 
b_rnd=(coefsrnd*2 A n); 
b_rnd=b_rnd(range)'; 
b_IP=bok(range)'; 
b_GRIP=[b_GA b_rnd b_IP] '

max_err_D_GA=max (max (abs (1-GAp) ) , max (abs (GAs) ) ) ; 
max_err_D_RD=max (max (abs (1-Rp) ) ,max (abs (Rs) ) ) ; 
max_err_D_IP=max(max(abs(1-opkp)),max(abs(opks))); 
max_err_D_EX=max (max (abs (1-Mp) ) ,max (abs (Ms ) ) ) ;

max_err_D_BD=(2 A (-nbits))*(sqrt ( ( (2*(ne+1) )-l)/3) )+ max_err_D_EX;

maxerr_D_GRIPEB=[max_err_D_GA max_err_D_RD max_err_D_IP max_err_D_EX 
max_err_D_BD]

sum_err_D_GA=(sum((abs(1-GAp)) . A 2)+sum((abs(GAs) ) . A 2) ) ; 
sum_err~D~RD=(sum((abs(1-Rp)). A 2)+sum((abs(Rs)). A 2)); 
sum_err_D_IP=(sum{(abs(1-opkp)). A 2)+sum((abs(opks) ) . A 2)); 
sum_err_D_EX=(sum( (abs(l-Mp)) . A 2)+sum( (abs(Ms)) . A 2)); 
sumerr_D_GRIPE=[sum_err_D_GA sum_err_D_RD sum_err_D_IP sum_err_D_EX] 
% end of GA
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% Optimisation function for FIR filter
% utility code for use with fir_ga.m optimisation

function f=fir_obj(Chrom,Ib,lc,M,L,n,R,fp,fs) ;

S=size(Chrom); 

for i=l:S(l);

for k=l:lc
bb(k)=Chrom(i,k); 

end

for k=(lc+l):lb
bb(k)=Chrom(i,lb+l-k); 

end

[GA,w]=freqz-!bb/ (2 A n) ,1,L) ; 
GA=abs (GA) ; 
GAp=GA(l:(fp*L)); 
GAs=GA((fs*L):L);

% objective function
f(i,l)=(sum((abs(1-GAp)). A 2)+sum{(abs(GAs))."2))+10*max((max(abs(1-
GAp))),max(abs(GAs)));

% alternative objective function
% f(i,l)=max((max(abs(1-GAp))),max(abs(GAs)));

end;
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Appendix C - GA code and optimised results for MR filter

C1 GA code and optimised results for direct form IIR filter

Cl.l GA code for finite word length coefficient optimisation of a direct form IIR 
digital filter

% iir_ga.m
%
% [bo,ao]=iir_ga(b,a,nbits,BASE)
%
% GA optimisation of IIR direct form filter
% Returns GA optimised vectors 'bo 1 and 'ao' given by vectors
% 'b 1 and 'a 1 of an IIR filter coefficients represented by
% finite number of bits given by 'nbits'.
% BASE is the peak variance within the population set.
%
% G.S.Baicher UWCN version 2: April 2002

% GA characteristics
GGAP =0.8; % generation gap
INSR = 1; % insertion rate of offspring
MAXGEN = 20; % maximum number of generations
Wind = 120; % population size

% Digital Filter characteristics

nbits =12; % number of bits
BASE = 1;
n = 4; % filter order
L = 500; % number of frequency points
nl = n+1; % filter order plus 1
maxnum = 2 Anbits - 1; % maximum number

% Filter design procedure
% could use several filter design functions such as
% butter, cheby, ellip, yulewalk etc.

% elliptical filter

Wn = 0.5; % Cut-off frequency for low pass filter
Rp = l; % dBs of ripple in passband
Rs = 40; % stop band attenuation dBs
[b,a] = ellip(n,Rp,Rs,Wn);
[h,w] = freqz(b,a,L); % frequency response
h = abs(h); % magnitude response
p = angle(freqz(b,a,L)); % phase response
x = [b,a];
% Set the maximum and minimum values for coefficients
% lower bound 'vlb' and upper bound 'vub'

if (any(x < 0)) 
% If there are negative coefficients then sign bit is used

maxnum = floor(maxnum/2);
vlb = -maxnum * ones(l, 2*nl);
vub = maxnum * ones(l, 2*nl);

else 
% otherwise, all positive coefficients

vlb = zeros(l,2*nl);
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vub = maxnum * onesfl, 2*nl); 
end

% Set the biggest value equal to maxnum.
[m, mix] = max(abs (x) ) ; % m = max value, mix = i_th element
factor = maxnum/m;
x = factor * x; % Rescale other filter coefficients
xorig = x;

% filter with coefficients simply rounded
xr = round(x) ;
br = xr(1:nl);
ar = xr(nl+l:2*nl);
hr = abs(freqz(br,ar,L));
pr=angle(freqz{br,ar,L));

xmask = l:2*nl;

% Remove the largest coefficient value from the list 
% of values that can be changed

xmask([mix]) = [ ] ;

% random number added to coefficients + or - Base value 
% except the largest, used in create population function 
BaseV = 2*BASE;

% create new population

Chrom = iir_pop(Nind,xr,xmask,BaseV, n) ';

Best = NaN*ones(MAXGEN+1,1); % Reset Counter
gen =0 % generational counter

% work out the object function value for each chromosome 
ObjVal = iir_objf{Chrom,nl,h,hr,p,x, L);

% best chromosome for minimum object function value
[Best(gen+1),ix] = min(ObjVal) ;
Best
xcbest = Chrom(:,ix);
xcbestl = xcbest';

% start of generational loop 
while gen < MAXGEN

% assign fitness value to each individual in population 
FitnV = ranking(ObjVal);

% select good individuals for breeding 
SelCh = select('sus',Chrom 1 ,FitnV,GGAP);

% recombine selected individuals - crossover 
SelCh = recombin('recdis', SelCh, 1);

% evaluate object function of offsprings
ObjVOff = feval ( 'iir_objf , SelCh 1 , nl, h, hr,p, x, L) ;
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% reinsert good offsprings into current population 
[Chrom, ObjVal] = reins(Chrom 1 , SelCh, I, [1 INSR], ObjVal, 

ObjVOff);

Chrom = Chrom';

%increment generational counter 
gen=gen+l

% update display and remember the best individual to date
[Best(gen+l,1),ix] = min(ObjVal};
Best

xcbest = Chrom(:,ix); 
xcbestl = xcbest'; 

end

% results
% best individual performance
bo = xcbestl(1:nl);
ao = xcbestl(nl+l:2*nl);
ho = abs(freqz(bo,ao,L));
po = angle(freqz(bo,ao,L));
err_GA = sum(abs(h-ho)) % total GA-opt magnitude error
err_rnd = sum(abs(hr-h)) % total rounded coef magnitude error
% end of GA

% iir_objf.m
% Calculate object function value for GA code iir_ga.m
% G.S.Baicher UWCN version 2: April 2002 ~

function ObjVal = iir_objf(Chrom, nl,h,hr,p,x,L);

% work out population parameters 
[Nind,Nvar] = size(Chrom);

% start of loop for each individual 
for irun = IrNvar;

% calculate coefficients ac and be 
xc = Chrom(:,irun); 
be = xc(l:nl); 
ac = xc(nl+l:2*nl);

% work out the roots of xc
gl = [abs(roots(ac))];
g2 = [abs(roots(be))];
% work out the absolute magnitude and angle
he = abs(freqz(be,ac,L));
pc = angle(freqz(be,ac,L));

% stability criteria checked, if any root 
% is > or = 1, then replace he with large he 
if (any(gl >= 1)) 

he = 100 + he; 
end
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% minimum phase checked, if any root
% is > or = 1, then replace he with large he
if (any(g2>=l)}
he = 100 + he; 

end
% work out magnitude and phase errors 
mag_err = sum(abs(h-hc)); 
ph_err = sum(abs(p-pc)); 
m=floor(length(p)/2);

% work out a weighted object value between
% magnitude and phase errors
mag_er_rnd=surn(abs (h-hr) ) ;
ObjVal(irun, :} = mag_err + 0. 001*ph_err;
end

% iir_pop.m
% create an initial real value population
% G.S.Baicher UWCN version 2: April 2002

function Chrom = iir_pop(Nind,xr,xmask r BaseV, n);

Nind=Nind-l;
% start a counter
count =1;
aO=xr(n+2);
% continue while number of individuals in population
% is less than Nind
while count < Nind;

% add a random number to coefficients except the largest 
for k = l:Nind; 
Fix = xmask(1); 
xnew = xr;

for i = xmask;
rndNu = (round(rand(1,1).*BaseV(ones(1,1})) - (BaseV/2)) 1 ;
xnew(i) = xnew(i) + rndNu;
Fix = i; 

xnew(n+2)=aO; 
end

xnl(k,:) = xnew; 

count = count + 1;

end 
end
Chrom = [xr 

xnl] ;
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C1.2 GA optimised finite word length coefficients of direct form IIR digital filters

b,a - exact coefficient values; br, ar - rounded coefficients; bom, aom - GA optimised with 
minimal phase; bon, aon - GA optimised with non-minimal phase

filter
Low-pass 
4th order
DF/LP4/5

DF/LP4/8

DF/LP4/12

Low-pass 
6* order
DF/LP6/5

DF/LP6/8

DF/LP6/12

Low-pass 
8th order
DF/LP8/5

DF/LP8/8

coefficients
b =
a =

0.1044 0.2702 0.3663 0.2702 0.1044 
1.0000 -0.6120 1.1131 -0.4946 0.2452

br= 1 4 5 4 1 
ar= 13 -8 15 -7 3 
bom= 03442 
aom= 13 -8 15 -7 4 
bon= 2 4 5 3 1 
aon = 13 -8 15 -7 4
br = 
ar = 
bo = 
ao = 
min.
br =
ar = 
bo = 
ao = 
min.
b =
a-
br = 
ar = 
bom 
aom

12 31 42 31 12 
114 -70 127 -56 28 

12 31 42 31 12 
114 -69 127 -56 28 

phase same as non-min. phase
192 497 674 497 192 
1839 -1125 2047 -910 451 
192 497 674 497 192 
1839 -1125 2047 -910 451 

phase same as non-min. phase
0.0757 0.1762 0.3244 0.3660 0.3244 0.1762 0.0757 
1.0000 -0.9901 2.2229 -1.6076 1.4668 -0.6326 0.2446
1122211 
7 -7 15 -11 10 -4 2 

= 02122 1.1 
-7-8 15 -10 10 -4 2

br = 4 10 19 21 19 10 4 
ar= 57 -57 127 -92 84 -36 14 
bom- 5 11 19 21 18 10 4 
aom = 57 -57 127 -91 84 -36 15 
bon= 5 10 19 20 18 9 4 
aon= 57 -57 127 -92 84 -36 14
br- 70 162 299 337 299 162 70 
ar= 921 -912 2047 -1480 1351 -583 225 
bom= 71 162 299 336 299 162 71 
aom= 921 -913 2047 -1480 1351 -583 226 
bon= 70 162 299 337 299 162 70 
aon= 921 -911 2047 -1480 1352 -583 226
b = 
a =
br- 
ar = 
bo- 
ao = 
min.
hr =

0.0703 0.1534 0.3549 0.4694 0.5696 0.4694 0.3549 0.1534 0.0703 
I 0000 -1.1409 3.3229 -2.9368 3.8651 -2.4740 1.7875 -0.6780 0.2450
011222110 
4 -4 13 -11 15 -10 7 -3 1 
011222110 
4 -4 13 -11 15 -10 7 -3 1 

phase same as non-min. phase
2 5 12 15 19 15 12 5 2

C-5



Appendix C - GA code and optimised results for MR filter

ar= 33 -37 109 -96 127 -81 59 -22 8 
bom= 2 5 11 15 18 15 11 5 2 
aom= 33 -38 109 -97 127 -81 59 -22 8 
bon= 2 5 12 15 20 15 13 5 3 
aon= 33 -38 109 -96 127 -80 60 -22 9

DF/LP8/12 br= 37 81 188 249 302 249 188 81 37
ar= 530 -604 1760 -1555 2047 -1310 947 -359 130
bom= 37 81 188 248 302 248 188 81 37
aom= 530 -604 1760 -1555 2047 -1310 947 -359 130
bon= 37 81 188 249 302 249 188 81 37
aon= 530 -604 1760 -1555 2047 -1310 947 -359 130

filter
High-pass 
4th order
DF/HP4/5

DF/HP4/8

DF/HP4/12

High-pass 
6th order
DF/HP6/5

DF/HP6/8

DF/HP6/12

coefficients
b= 0.0619 -0.1103 0.1521 -0.1103 
a= 1.0000 1.5035 1.7320 0.9858

0.0619 
0.3146

br= 1-1 1-1 1 
ar= 9 13 15 9 3 
bon= 1-12-11 
aon= 9 12 15 8 3 
bom- 0-1 1-10 
aom = 9 14 15 9 3
br= 5 -8 11 -8 5 
ar= 73 110 127 72 23 
bom= 6 -9 11 -7 4 
aom= 73 110 127 72 23 
bon= 5 -8 11 -8 4 
aon= 73 110 127 72 23
br= 73 -130 180 -130 73 
ar= 1182 1777 2047 1165 
bom= 74 -131 180 -129 72 
aom= 1182 1778 2047 1165 
bon= 74 -130 180 -131 73 
aon= 1182 1776 2047 1165
b= 0.0448 -0.0345 0.1062 -0.0714 
a= 1.0000 2.4213 4.0615 4.1074

372 

371 

372
0.1062 -0.0345 0.0448 
2.9524 1.3082 0.3193

br =0000000 
ar= 4 9 15 15 11 5 1 
bom- 0000000 
aom= 4 10 15 15 11 5 1 
bon= 1 1 1 1 1 0 0 
aon= 4 10 15 15 11 5 1
br= 1-1 3-2 3-1 1 
ar= 31 75 126 127 91 40 10 
bom= 2-1 4-1 3 0 1 
aom= 31 76 125 127 91 41 10 
bon= 1 0 3-1 4-1 2 
aon= 31 76 125 127 91 41 10
br= 22 -17 53 -36 53 -17 22 
ar= 498 1207 2024 2047 
bom= 23 -18 53 -36 52 -18 22 
aom= 498 1207 2025 2047

1471 652 159 

1471 652 159
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High-pass 
8* order
DF/HP8/5
DF/HP8/8
DF/HP8/12

bon = 
aon =

b = 
a =

22 -17 52 
498 1207

0.0417 
1.0000

0.0006 
3.1620

-36 53 
2024

0.1216 
6.8304

-17 23 
2047

-0.0212 
9.5157

1471

0.1571 
10.0263

652

-0.0212 
7.6017

159

0.1216
4.2435

0.0006 
1.5524

0.0417 
0.3205

None
None
br = 
ar = 
bom = 
aom = 
bon = 
aon =

9 0 
204 

= 9
= 204 

g 
204

25 -4 32 -4 25 0 9 
646 1395 1943 2047 

0 25 -4 32 -4 25 0 9 
646 1395 1942 2047 

0 24 -4 32 -5 25 -1 9 
646 1395 1942 2047

1552 

1551 

1552

866 

866 

867

317 

316 

317

65 

65 

65

filter
Band-pass 
4th order
DF/BP4/5

DF/BP4/8

DF/BP4/12

Band-pass 
6th order
DF/BP6/5

DF/BP6/8

DF/BP6/12

coefficients
b= 0.2234 0.0000 -0.4300 -0.0000 0.2234 
a= 1.0000 -0.0000 0.3491 -0.0000 0.3330
br= 3 0-6 0 3 
ar= 15 0 5 0 5 
bom= 40-603 
aom= 15 0 5 0 5 
bon= 2 0-6 0 4 
aon = 15 0 6 0 5
br= 28 0 -55 0 28 
ar= 127 0 44 0 42 
bom= 29 0 -55 0 28 
aom= 127 0 44 0 42 
bon= 29 0 -55 0 28 
aon= 127 0 44 0 42
br= 457 0 -880 0 457 
ar= 2047 0 715 0 682 
bom= 457 0 -880 0 457 
aom= 2047 0 716 0 682 
bon = 457 0 -880 0 457 
aon= 2047 0 716 0 682
b= 0.0982 0.0000 -0.2162 -0.0000 0.2162 0.0000 -0.0982 
a= 1.0000 -0.0000 0.9531 -0.0000 0.8714 -0.0000 0.2895
br= 1 0-3 0 3 0-1 
ar= 15 0 14 0 13 0 4 
bom= 2 0-3 0 3 0-1 
aom= 15 0 15 0 13 0 4 
bon= 2 0-3 0 3 0-1 
aon= 15 0 15 0 13 0 4
br= 12 0 -27 0 27 0 -12 
ar= 127 0 121 0 111 0 37 
bom= 12 0 -27 0 27 0 -12 
aom= 127 0 122 0 110 0 36 
bon- 13 0 -28 0 27 0 -12 
aon- 127 0 121 0 111 0 37
br= 201 0 -443 0 443 0 -201 
ar = 2047 0 1951 0 1784 0 593
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bom= 201 0 -443 0 442 0 -200
aom= 2047 0 1952 0 1784 0 593
bon= 201 0 -443 0 442 0 -201
aon= 2047 0 1951 0 1784 0 593

Band-pass 
order

b= 0.0619 0.0000 -0.1103 -0.0000 0.1521 0.0000 -0.1103 -0.0000 0.0619 
a- 1.0000 -0.0000 1.5035 -0.0000 1.7320 -0.0000 0.9858 -0.0000 0.3146

DF/BP8/5 br= 1 0 -1 0 1 0 -1 0 1 
ar= 9 0 13 0 15 0 9 0 3 
bom= 10-1010000 
aom= 90 14 0 15 0903 
bon= 1-1-101-1-100 
aon= 9 0 13 0 15 0 9 0 3

DF/BP8/8 br= 5 0-8 0 11 0-8 0 5 
ar = 73 0 110 0 127 0 72 0 23 
bom= 5 0-8 0 11 0-8 0 5 
aom= 73 0 110 0 127 0 72 0 23 
bon= 5 0-8 0 11 0-8 0 4 
aon = 73 0 110 0 127 0 72 0 23

DF/BP8/12 br= 73 0 -130 0 180 0 -130 0 73
ar- 1182 0 1777 0 2047 0 1165 0 372
bom= 73 0 -130 0 180 0 -130 0 73
aom= 1182 0 1777 0 2047 0 1165 0 372
bon= 73 0 -130 0 180 0 -130 0 73
aon= 1182 0 1778 0 2047 0 1165 0 371
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C2 GA code and optimised results for second order cascade form IIR 
filters

C2.1 GA code for finite word length coefficient optimisation of a second order 
cascade form IIR digital filter

% sos_ga.m
% soso=sos_ga(sosba,nbits,BASE)
% GA optimisation of IIR filter finite wordlength
% coefficients using biquad second order sections in a cascade
*,
% Returns GA optimised vector 'soso' given by vector
* 'sosba' of an IIR filter coefficients represented by
% finite number of bits given by 'nbits'.
% BASE is the peak variance within the population set.
%
"* G.S.Baicher UWCN version 2: April 2002

% GA characteristics

GGAP = .8; % generation gap
INSR = 1; % insertion rate of offspring
MAXGEN = 15; % maximum number of generations
Nind = 120; % population size

% Digital Filter characteristics
n = 8; % filter order
L = 500; % number of frequency points
nbits =8; % start with number of bits
maxnum = 2"nbits - 1; % maximum number

% Filter design procedure 

* elliptical filter

Wn = 0.5; *, Cut-off frequency for filter
Rp = 1; % dBs of ripple in passband
Rs = 40; % stop band attenuation dBs
[b,a] = ellip(n,Rp,Rs,Wn) ;
sos=tf2sos(b,a,'up','none'); % 'None 1 norm
%sos=tf2sos (b,a, 'up 1 , ' inf' ) ; '^ 'Infinity' norm
sosba=sos;
[h,w] = freqz(b,a,L); % frequency response
h = abs(h); % magnitude response
p = angle(freqz(b,a,L)}; % phase response
x = [b,a];

% Set the maximum and minimum values for coefficients
'*. lower bound 'vlb 1 and upper bound 'vub'
if (any(any(sos < 0)))
% If there are negative coefficients then sign bit is used

maxnum = floor(maxnum/2);
vlb = -maxnum * onesd, 6* (n/2) ) ;
vub = maxnum * onesd, 6* (n/2)); 

else
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% otherwise, all positive coefficients
vlb = zeros(1, 6*(n/2));
vub = maxnum * ones(l, 6*(n/2)); 

end
% Set the biggest value equal to maxnum.
[m, mix] = max(max(abs (sos) ) ) ; % m = max value, mix = i_th element 
factor = maxnum/m;
sos = factor * sos; % Rescale other filter coefficients 
sosorig = sos;

% filter with coefficients simply rounded
sosr = round(sos);
sosrx = sosr/vub{l);
[br,ar]= sos2tf(sosrx);
hr = abs(freqz(br,ar,L)};
sosra = [] ;
for i = l:n/2 % for low and high pass filters
sosra = [sosra, sosrfi,:)];
end
[m, mix] = max(abs(sosra));

sosmask = [1:6*(n/2)]; % for low and high pass filters

% Remove the largest coefficient value 
sosmask([mix]) = [];

% random number added to coefficients + or - (BaseV/2) 
% except the largest, used in create population function 

BaseV = 2;

% create new population
Chrom = sos_pop(Nind,sosra,sosmask,BaseV,maxnum) ' ;
Best = NaN*ones(MAXGEN+1,1); % Reset Counter
gen =0; % generational counter

% work out the object function value for each chromosome 

ObjVal = sos_objf(Chrom, h,p,sosra,L,maxnum);

% best chromosome for minimum object function value

[Best(gen+1) ,ix] = min(ObjVal);
Best;
xcbest = Chrom(:,ix);
xcbestl = xcbest 1 ;

% start of generational loop 
while gen < MAXGEN

% assign fitness value to each individual in population 

FitnV = ranking(ObjVal);

% select good individuals for breeding 
SelCh = select('sus',Chrom 1 ,FitnV,GGAP);

% recombine selected individuals - crossover 
SelCh = recombinf'recdis', SelCh, 1);

% evaluate object function of offsprings
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ObjVOff = fevalf'sos_objf',SelCh 1 , h, p, sosra, L,maxnum) ;

% reinsert good offsprings into current population 
[Chrom, ObjVal] = reins(Chrom 1 , SelCh, 1, [1 INSR], ObjVal, 

ObjVOff);

Chrom = Chrom';

^increment generational counter
gen=gen+l
% update display and remember the best individual to date
[Best(gen+1,1),ix] = min(ObjVal);
Best
xcbest = Chrom(:,ix);
xcbestl = xcbest 1 ;
end

% results: best individual performance
xcl = xcbestl(1:6);
xc2 = xcbestl (1:12);
xc3 = xcbestl(13: 18) ;
xc4 = xcbestl(19:24) ;
xcbestl = [xcl;xc2;xc3;xc4];
soso=xcbestl;
xcbestl = xcbestl./maxnum;
[bcbestl, acbestl] = sos2tf(xcbestl);
hcbestl = abs(freqz(bcbestl,acbestl,L));
pcbestl = angle(freqz(bcbestl,acbestl,L));
err_GA = sumfabs(hcbestl-h))
err_rnd= sum (abs(hr-h))
soso

* end of GA

k sos_objf.m
% Calculate object function value for
% GA sos_ga.m
*;

* G.S.Baicher UWCN version 2: April 2002

function ObjVal = sos_objf(Chrom, h,p,sosra,L,maxnum);

*. work out population parameters 
[Nvar, Nind] = size(Chrom); 
'*. start of loop for each individual 
for irun = l:Nind
xc = Chrom(:,irun);
xc = xc 1 ;

t calculate roots for stability check 
acl = xc (4 : 6) ;
gl = abs(roots(acl)); 

ac2 = xc(10:12);
g2 = abs(roots(ac2)); 

ac3 = xc(16:18);
g3 = abs(roots(ac3)); 

ac4 = xc(22:24);
g4 = abs(roots(ac4));
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g = [gl g2 g3 g4]; 
xcl = xc(1:6); 
xc2 = xc(7:12) ; 
xc3 = xc(13:18) ; 
xc4 = xc(19:24) ; 
xc = [xcl;xc2;xc3;xc4]; 
xc = xc./maxnum; 
[be, ac] = sos2tf(xc); 
% work out the absolute magnitude and angle

he = abs(freqz(be,ac,L));
pc = angle(freqz(be,ac,L)); 

% stability criteria checked 
if any(any(g >= 1))

he = 100 + he; 
end
% work out magnitude and phase errors 
mag_err = sum(abs(h-hc)); 
ph_err = sumfabs(p-pc)};

% work out a weighted object value 
ObjVal(irun,:) = mag_err + 0.001*ph_err; 
end

* sos_pop.m
% create an initial real value population
%
* G.S.Baicher UWCN version 2: April 2002

function Chrom = sos_pop(Nind,sosra,sosmask,BaseV,maxnum);
Nind=Nind-l;
xr4=sosra(4) ;
* start a counter
count = 1;
% continue while number is less than Nind
while count < Nind;

* add a random number to coefficients except the largest 

for k = l:Nind; 
Fix = sosmask(1); 
sosnew = sosra;
for i = sosmask
rndNu = (round(rand(1,1).*BaseV(ones(1,1))) - (BaseV/2))'; 

sosnew(i) = sosnew(i) + rndNu; 
[m mix]=max(sosnew); 
if m>maxnum
sosnew(mix)=maxnum; 

end
Fix = i; 

sosnew(4)=xr4; sosnew{10} =xr4 ; sosnew{16)=xr4; sosnew(22)=xr4;

end
sosnljk,:) = sosnew;
count = count + I; 

end 
end 
Chrom = [sosra

sosnl]; 
i end
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C2.2 GA optimised finite word length coefficients of second order cascade form IIR 
digital filters

sosba - exact coefficients; sosr - rounded coefficients; soso - GA optimised 
jN - 'Infinity' norm and NN - 'None' norm
filter
Low-pass 4th order

IN/SOS/LP4/5

IN/SOS/LP4/8

IN/SOS/LP4/12

Low-pass 6th order

IN/SOS/LP6/5

IN/SOS/LP6/8

IN/SOS/LP6/12

Low-pass 8th order

coefficients
sosba = 

0.1011 
1.0332

sosr = 
1 2 

15 13 
soso = 

2 3 
15 12

sosr = 
12 21 

127 113 
soso = 

13 21 
127 113

sosr = 
200 

2047 
soso = 

200 
2047

0.1720 0.1011 1.0000 -0.6106 0.3029 
0.9153 1.0332 1.0000 -0.0013 0.8094

1 15 -9 4 
15 15 0 12

1 15 -9 4 
14 15 0 12

12 123 -75 37 
127 123 0 99

12 123 -76 38 
127 123 0 100

341 200 1981 -1210 600 
1813 2047 1981 -3 1604

341 200 1981 -1210 600 
1812 2046 1981 -3 1603

sosba = 
0.1083 0.1723 0.1083 1.0000 -0.7713 0.3353 
0.1674 0.0875 0.1674 1.0000 -0.2183 0.7651 

4.1753 0.8969 4.1753 1.0000 -0.0006 0.9535
sosr = 

0 1 
1 0 

15 3 
soso =

1 1
1 0 

15 2
sosr = 

3 5 
5 3 

127 27 
soso = 

4 5 
4 3 

127 28
sosr = 

53 
82 

2047 
soso = 

53 
82 

2047

04-31 
14-13 
15 4 0 3

14-31 
0403 
14 4 0 3

3 30 -23 10 
5 30 -7 23 
127 30 0 29

2 30 -24 10 
5 30 -7 22 
127 30 0 28

84 53 490 -378 164 
43 82 490 -107 375 
440 2047 490 0 467

84 53 490 -377 164 
43 83 490 -107 375 
439 2047 490 0 467

sosba =
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IN/SOS/LP8/5
IN/SOS/LP8/8

IN/SOS/LP8/12

0.1039
0.2191
0.1698
18.1744

0.1624
0.0985
0.
0

0206
.8913

0 1039
0.2191
0 1698
18.1744

1.0000
1.0000
1.0000

1.0000

-0.8081
-0.2777
-0.0550

-0.0001

0.3445
0.7639
0.9410

0.9892
None
sosr =

1 1
2 1
1 0

127 6
soso =

1 2
1 1
1 0

127 6
sosr =

12
25
19

2047
soso =

12
25
19

2047

1
2
1

7
7
7

-6
-2
0

127 7

1
1
1

7
7
7

-5
-1
-1

127 7

18
11
2
100

19
12
2

101

2
5
7

0 7

2
5
6

0 6

12
25
19
2047

11
25
19

2047

113
113

113
113

113
113

113
113

-91
-31
-6

0

-90
-31
-6

0 112

39
86

106
111

38
86

106

filter

High-pass 

4th order

NN/SOS/HP4/5

NN/SOS/HP4/8

NN/SOS/HP4/12

High-pass 
6th order

NN/SOS/HP6/5

coefficients
sosba = 

0.0619 -0.0911 0.0619 1.0000 
1.0000 -0.3104 1.0000 1.0000

0.9406 0.3846 
0.5630 0.8179

sosr = 
1-1 1 15 14 6 

15 -5 15 15 8 12 
soso = 

1-1 1 15 15 6 
14 -6 14 15 9 13

sosr = 
8 -12 8 127 119 49 

127 -39 127 127 71 104 
soso = 

8 -12 8 127 119 49 
126 -38 126 127 70 103

sosr = 
127 -186 127 2047 

2047 -635 2047 2047 
soso = 

127 -186 127 2047 
2047 -635 2047 2047

sosba = 
0.0448 -0.0578 0.0448 1.0000 
1.0000 0.1034 1.0000 1.0000 
1.0000 0.4171 1.0000 1.0000

1925 787 
1152 1674

1926 788 
1153 1675

1.0735 0.4268 
0.7429 0.7827 
0.6049 0.9557

sosr =
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NN/SOS/HP6/8

NN/SOS/HP6/12

High-pass 

8th order

NN/SOS/HP8/5

NN/SOS/HP8/8

NN/SOS/HP8/I2

1-1 1 14 15 6 
14 1 14 14 10 11 
14 6 14 14 8 13 

soso = 
1 -1 0 14 15 6 

14 1 14 14 10 11 
14 7 15 14 8 13

sosr = 
5-7 5 118 127 50 

118 12 118 118 88 93 
118 49 118 118 72 113 

soso = 
5-75 118 127 50 

117 11 118 118 89 92 
117 49 117 118 72 113

sosr = 
85 -110 85 1907 

1907 197 1907 1907 
1907 795 1907 1907 

soso = 
85 -110 86 1907 

1907 197 1907 1907 
1908 795 1907 1907

sosba = 
0.0417 -0.0520 0.0417 1.0000 
1.0000 0.1808 1.0000 1.0000 
1.0000 0.5062 1.0000 1.0000 
1.0000 0.5733 1.0000 1.0000

2047 814 
1417 1493 
1153 1823

2047 814 
1417 1493 
1153 1823

1.1035 0.4378 
0.7933 0.7835 
0.6502 0.9442 
0.6150 0.9898

sosr = 
1-1 1 14 15 6 

14 2 14 14 11 11 
14 7 14 14 9 13 
14 8 14 14 8 13 

soso = 
0-1 1 14 15 6 
14 1 14 14 10 11 
15 8 15 14 9 13 
15 9 13 14 7 12

sosr = 
5-65 115 127 50 

115 21 115 115 91 90 
115 58 115 115 75 109 
115 66 115 115 71 114 

soso = 
5-65 115 127 51 

114 21 114 115 91 90 
115 58 116 115 75 109 
114 67 115 115 71 114

sosr = 
77 -96 77 1855 

1855 335 1855 1855 
1855 939 1855 1855 
1855 1064 1855 1855 

soso =

2047 812 
1472 1453 
1206 1752 
1141 1836
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78
1855
1855
1854

-96
335
939
1063

77
1854
1854
1855

1855
1855
1855
1855

2047
1472
1207
1141

812
1453
1751
1836

filter
Band-pass 
4lh order

IN/SOS/BP4/5

IN/SOS/BP4/8

IN/SOS/BP4/12

Band-pass 
6th order

IN/SOS/BP6/5

IN/SOS/BP6/8

IN/SOS/BP6/12

coefficients
sosba = 

0.2014 0.3990 0.2014 
1.1095 -2.1979 1.1095

1.0000 0.8972 0.5771 
1.0000 -0.8972 0.5771

sosr = 
131764 
8 -15 8 7 -6 4 

soso =
231753 
8 -15 8 7 -7 4

sosr = 
12 23 12 58 52 33 
64 -127 64 58 -52 33 

soso = 
12 23 11 58 51 33 
64 -127 64 58 -52 33

sosr = 
188 372 188 

1033 -2047 1033 
soso = 

189 372 187 
1034 -2047 1034

sosba = 
0.0935 -0.0000 -0.0935 
0.7120 -1.2742 0.7120 
1.4739 2.6376 1.4739

931 836 537 
931 -836 537

931 836 537 
931 -836 537

1.0000 -0.0000 0.4487 
1.0000 -1.0497 0.8032 
1.0000 1.0497 0.8032

sosr = 
10-1603 
4-746-65 
8 15 8 6 6 5

soso = 
100604 
3-636-65 
8 15 7 6 6 5

sosr = 
5 0 -5 48 0 22 

34 -61 34 48 -51 39 
71 127 71 48 51 39 

soso = 
4 -1 -5 48 0 22 

34 -61 35 48 -51 39 
71 127 72 48 51

sosr =
73 0 -73

39

776 0 348
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Band-pass
8th order

IN/SOS/BP8/5

IN/SOS/BP8/8

IN/SOS/BP8/12

553 -989 553 776
1144 2047 1144 776

soso =
73 0 -72 776

552 -989 553 776
1143 2047 1144 776

sosba =
0.1622 0.3021 0.1622 1.0000 
0.1735 -0.3233 0.1735 1.0000
0.8287 -1.2597 0.8287 1.0000
2.6559 4.0370 2.6559 1.0000

sosr =
111422
1-114-22
3-534-43
10 15 10 4 4 3

soso =
011432
0-1 14-22
3-53443
10 15 10 4 4 3

sosr =
5 10 5 31 17 20
5 -10 5 31 -17 20

26 -40 26 31 -35 28
84 127 84 31 35 28

soso =
4 9 6 31 17 20
6 -10 5 31 -18 20

27 -39 25 31 -35 28
84 127 84 31 35 28

sosr =
82 153 82 507
88 -164 88 507

420 -639 420 507
1347 2047 1347 507

soso =
82 153 82 507
88 -164 88 507

420 -640 421 507

-815
815

0
-814

814

0.5475 
-0.5475
-1.1162
1.1162

278
-278

-566
566

277
-278

-566
1348 2047 1348 507

623
623

348
623

623

0.6202 
0.6202
0.9044
0.9044

314
314
459

459

314
314
458

566 459

filter coefficients

Low-pass 4 order sosba =
0.1044 0.1777 0.1044 1.0000 -0.6106 0.3029 
1.0000 0.8859 1.0000 1.0000 -0.0013 0.8094

NN/SOS/LP4/5 sosr =
2 3 2 15 -9 5 
15 13 15 15 0 12

soso =
23 1 15 -9 4 
14 12 15 15 0 12
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NN/SOS/LP4/8

NN/SOS/LP4/12

Low-pass 6th order

NN/SOS/LP6/5

NN/SOS/LP6/8

NN/SOS/LP6/12

Low-pass 8th order

NN/SOS/LP8/5

sosr = 
13 23 13 127 -78 38 

127 113 127 127 0 103 
soso = 

14 22 13 127 -78 39 
126 114 127 127 0 103

sosr = 
214 364 214 2047 -1250 
2047 1813 2047 2047 -3 

soso = 
214 364 213 2047 -1250 

2046 1813 2048 2047 -3

620 
1657

620 
1656

sosba = 
0.0757 0.1204 0.0757 1.0000 -0.7713 0.3353 
1.0000 0.5230 1.0000 1.0000 -0.2183 0.7651 
1.0000 0.2148 1.0000 1.0000 -0.0006 0.9535

sosr = 
1 2 1 15 -12 5 

15 8 15 15 -3 11 
15 3 15 15 0 14 

soso = 
1 2 1 15 -11 5 

15 9 16 15 -2 11 
15 3 16 15 0 14

sosr = 
10 15 10 127 -98 43 

127 66 127 127 -28 97 
127 27 127 127 0 121 

soso = 
10 15 9 127 -99 43 

126 67 128 127 -28 97 
127 28 127 127 0 121

sosr = 
155 246 155 2047 -1579 

2047 1071 2047 2047 -447 
2047 440 2047 2047 -1 

soso = 
155 246 155 2047 -1578 

2047 1072 2047 2047 -447 
2047 440 2047 2047 -1

686 
1566 

1952

686 
1566 

1952
sosba = 

0.0703 0.1098 0.0703 1.0000 -0.8081 0.3445 
1.0000 0.4498 1.0000 1.0000 -0.2777 0.7639 
1.0000 0.1213 1.0000 1.0000 -0.0550 0.9410 
1.0000 0.0490 1.0000 1.0000 -0.0001 0.9892

sosr = 
1 2 1 15 -12 5 

15 7 15 15-4 11 
15 2 15 15 -1 14 
15 1 15 15 0 15

soso = 
1 2 1 15 -12 5 

15 7 15 15-3 11
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NN/SOS/LP8/8

NN/SOS/LP8/12

14 3
15 1

sosr =
9 14
127 57
127 15
127 6

soso =
9 14
127 57
127 15
127 6

sosr =
144
2047
2047
2047

soso =
144
2047
2047
2046

14 15 -1 14
14 15 1 14

9 127 -103 44
127 127 -35 97
127 127 -7 120
127 127 0 126

9 127 -103 44
126 127 -36 97
126 127 -7 120
127 127 0 126

225 144
921 2047
248 2047
100 2047

225 144
920 2047
248 2046
100 2046

2047
2047
2047
2047

2047
2047
2047
2047

-1654
-569
-113
0

-1654
-569
-113

0

705
1564
1926

2025

705
1564
1927

2025

filter

High-pass 
4th order

NN/SOS/HP4/5

NN/SOS/HP4/8

NN/SOS/HP4/12

High-pass 

Border

NN/SOS/HP6/5

coefficients
sosba = 

0.0619 -0.0911 0.0619 1.0000 
1.0000 -0.3104 1.0000 1.0000

0.9406 0.3846 
0.5630 0.8179

sosr = 
1-1 1 15 14 6 

15 -5 15 15 8 12 
soso = 

1-1 1 15 15 6 
14 -6 14 15 9 13

sosr = 
8 -12 8 127 119 49 

127 -39 127 127 71 104 
soso = 

8 -12 8 127 119 49 
126 -38 126 127 70 103

sosr = 
127 -186 127 2047 

2047 -635 2047 2047 
soso = 

127 -186 127 2047 
2047 -635 2047 2047

sosba = 
0.0448 -0.0578 0.0448 1.0000 
1.0000 0.1034 1.0000 1.0000 
1.0000 0.4171 1.0000 1.0000

1925 787 
1152 1674

1926 788 
1153 1675

1.0735 0.4268 
0.7429 0.7827 
0.6049 0.9557

sosr = 
1-1 1 14 15 6
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14 l 14 14 10 11 
14 6 14 14 8 13 

soso =
1 -1 0 14 15 6 

14 1 14 14 10 11 
14 7 15 14 8 13

NN/SOS/HP6/8 sosr =
5-75 118 127 50 

118 12 118 118 88 93 
118 49 118 118 72 113 

soso =
5-75 118 127 50 

117 11 118 118 89 92 
117 49 117 118 72 113

NN/SOS/HP6/12 sosr = 
85 

1907 
1907 

soso = 
85
1907
1908

-110 85 1907 2047 814
197 1907 1907 1417 1493
795 1907 1907 1153 1823

-110 86 1907 2047 814
197 1907 1907 1417 1493
795 1907 1907 1153 1823

High-pass 

8th order

sosba =
0.0417 -0.0520 0.0417 1.0000 1.1035 0.4378 
1.0000 0.1808 1.0000 1.0000 0.7933 0.7835 
1.0000 0.5062 1.0000 1.0000 0.6502 0.9442 
1.0000 0.5733 1.0000 1.0000 0.6150 0.9898

NN/SOS/HP8/5 sosr =
1-1 1 14 15 6 
14 2 14 14 11 11 
14 7 14 14 9 13 
14 8 14 14 8 13

soso =
0-1 1 14 15 6
14 1 14 14 10 11
15 8 15 14 9 13
15 9 13 14 7 12

NN/SOS/HP8/8 sosr =
5-6 5 115 127 50 
115 21 115 115 91 90 
115 58 115 115 75 109 
115 66 115 115 71 114 

soso =
5-65 115 127 51

114 21 114 115 91 90
115 58 116 115 75 109
114 67 115 115 71 114

NN/SOS/HP8/12 sosr = 
77 

1855 
1855 
1855 

soso = 
78

-96 
335 
939 
1064

-96

77 1855 2047 812
1855 1855 1472 1453
1855 1855 1206 1752
1855 1855 1141 1836

77 1855 2047 812
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1855 335 1854 
1855 939 1854 
1854 1063 1855

1855 1472 1453 
1855 1207 1751 
1855 1141 1836

filter
Band-pass 
4th order

NN/SOS/BP4/5

NN/SOS/BP4/8

NN/SOS/BP4/12

Band-pass 
6th order

NN/SOS/BP6/5

NN/SOS/BP6/8

NN/SOS/BP6/12

coefficients
sosba = 

0.2234 0.4426 0.2234 1.0000 0.8972 0.5771 
1.0000 -1.9811 1.0000 1.0000 -0.8972 0.5771

sosr = 
232874 
8-15 8 8-7 4 

soso = 
242874 
8 -15 7 8 -7 4

sosr = 
14 28 14 64 58 37 
64 -127 64 64 -58 37 

soso = 
14 28 14 64 57 37 
64 -127 64 64 -57 37

sosr = 
231 457 231 
1033 -2047 1033 

soso = 
231 457 230 
1033 -2047 1033

sosba = 
0.0982 -0.0000 -0.0982 1 
1.0000 -1.7896 1.0000 1 
1.0000 1.7896 1.0000 1

1033 927 596 
1033 -927 596

1033 926 596 
1033 -927 596

.0000 -0.0000 0.4487 
0000 -1.0497 0.8032 
.0000 1.0497 0.8032

sosr = 
10-1804 
8-15 8 8-9 7 
8 15 8 8 9 7

soso = 
10-1803 
8 -15 9 8 -9 6 
8 14 8 8 9 6

sosr =
7 0 -7 71 0 32 

71 -127 71 71 -74 57 
71 127 71 71 74 57 

soso = 
7 0 -7 71 1 32 

71 -127 71 71 -74 57 
71 127 72 71 75 57

sosr = 
112 0 -112 

1144 -2047 1144 
1144 2047 1144 

soso = _____________

1144 0 513 
1144 -1201 919 
1144 1201 919
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112 1 -113 1144 1 513
1144 -2047 1144 1144 -1201 919
1145 2047 1144 1144 1202 919

Band-pass 

8th order

sosba =
0.0619 0.1154 0.0619 1.0000 0.5475 0.6202 
1.0000 -1.8630 1.0000 1.0000 -0.5475 0.6202 
1.0000 -1.5200 1.0000 1.0000 -1.1162 0.9044 
1.0000 1.5200 1.0000 1.0000 1.1162 0.9044

NN/SOS/BP8/5 sosr = 
0 1 
8 -15

0845 
88-45

8 -12 8 8 -9 7 
8 12 8 8 9 7 

soso =
011844 
8 -15 8 8 -5 5 
7-11 8 8-9 7 
7 11 7 8 9 6

NN/SOS/BP8/8 sosr =
4 8 4 68 37 42 
68 -127 68 68 -37 42 
68 -104 68 68 -76 62 
68 104 68 68 76 62

soso =
4 8 5 68 37 42 

69 -127 69 68 -38 42 
68 -103 68 68 -76 61 
68 103 68 68 76 62

NN/SOS/BP8/12 sosr = 
68 

1099 
1099 
1099 

soso = 
68 

1099
1099
1100

127 68 1099 602 681
-2047 1099 1099 -602 681
-1670 1099 1099 -1226 994
1670 1099 1099 1226 994

127 68 1099 601 681
-2047 1099 1099 -602 681
-1670 1098 1099 -1227 994
1670 1099 1099 1227 994
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Appendix D - GA and hybrid optimisation codes for a QMF bank

D1 GA optimisation codes for a QMF bank using MR filters

Dl.l GA optimisation of transformation function parameter values including the 
'creep' code

% Main Code

% tv_ga
%
% GA optimisation of coefficients c,d,r,phi,p,psi
%
% G.S.Baicher ver:2 Sept 1999

NIND=200;
MAXGEN=100;
GGAP=0.9;
INSR=0.7;
MutRate=0.2 ;
SWOV=10; %Switchover operator
SWOVT=20; %Switchover transition

b=0.7; n=25; wL=0.43*pi; L=100;
OBJ=0; clear j;
w=linspace(0,wL,L);
z=exp(j*w);
Qw=((pi/2)"(1-n))*w. A n;
Mi=cos(Qw)-j*b*sin(Qw);
W=1:L;
%W=fliplr(W); % Weighting - positive(%), negative( )

% Built field descriptor 
FieldDR=[-l -1 -2 -1 -2;1 12 12];

% Initialise population 
Chrom=crtrp(NIND,FieldDR);

% Evaluate initial population 
ObjV=tvgaobj(Chrom,z,Mi,b,W);

gen=0; %counter 
% Generational loop 
while gen < MAXGEN

%Assign fitness values to entire population 
FitnV = ranking(ObJV);

%Select individuals for breeding 
SelCh=select('sus', Chrom, FitnV, GGAP);

%Recombine individuals (crossover) 
SelCh=recombin('recdis',SelCh);

%Apply mutation
SelCh=mutbga(SelCh,FieldDR,MutRate) ;

%Evaluate offspring, call objective function
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ObjVSel=tvgaobj(SelCh,z,Mi,b,W);

%Reinsert offspring into population
[Chrom ObjV]=reins(Chrom,SelCh,1, [1 INSR],ObjV,ObjVSel) ;

%Increment counter 
gen=gen+l 
[m,n]=min(ObjV); 
ObjV(n,l)
OBJ(gen)=ObjV(n,l); 
if gen > SWOVT 
disp('switchover') 
%[m,n]=min(ObjV); 
[e,u]=max(ObjV); 
for i=l:SWOV

[e,u]=max(ObjV);
Chrom(u,l)=Chrom(n,1) + ((rand/50)-0 . 01) ;
Chrom(u,2)=Chrom(n,2) + ((rand/50)-0 . 01) ;
Chrom(u,3)=Chrom(n,3) + ((rand/50)-0. 01) ;
Chrom(u,4)=Chrom(n,4) + ((rand/50)-0.01) ;
Chrom(u,5)=Chrom(n,5) + ((rand/50)-0.01) ;
ObjV(u,1)=0; 

end
ObjV=tvgaobj(Chrom,z,Mi,b,W); 
end

end

[m, n] =min (ObjV) ;
d=Chrom(n,1);
r=Chrom(n,2);
phi=Chrom(n,3);
p=Chrom(n,4);
psi=Chrom(n,5);
Fl=((p A 2)-2*p*cos
F2=((r A 2)+2*r*cos
F=F1*F2;
c=(F*(1+d)-b*(1-d) )/(F*(1+d)+b*(1-d)) ;
f=m;
c,d,r,phi,p,psi,f

(r A 2)-2*r*cos 
(p"2)+2*p*cos
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% Objective function for tv_ga.m 

function f=tvgaobj (Chrom, z,Mi,b,W) ;

% Optimisation function for one first-order and one 
% second order transformation function.

S=size (Chrom) ; 

for i=l:S(l) ;

d=Chrom(i, 1) ; 
r=Chrom(i, 2 ) ; 
phi=Chrom(i, 3) ; 
p=Chrom(i, 4) ; 
psi=Chrom(i, 5) ;

Fl=( (p A 2)-2*p*cos (psi )+!)/( (r A 2)-2*r*cos(phi)+l) ; 
F2=( (r A 2)+2*r*cos (phi )+!)/( (p A 2) +2*p*cos (psi) +1) ; 
F=F1*F2; 
c=(F*(l+d)-b*(l-d) )/(F

kl=(
k2=( (p"2)-2*p*cos (psi)+l)/ ( (r~2 ) -2*r*cos
k=kl*k2;

% P = 2Pr+4Pc-l = 5 
P=5;

Mzl=(c*(z. A 2)+l) ./( (z. A 2)+d) ;
Mz2=( (z. A 4)* (r A 2)-2*r*cos (phi)* ( z . A 2 ) +1) . / ( ( z .
2*p*cos(psi)* (z. /s 2) + (p A 2) ) ;
Mz=k* (z. A P) . *Mzl.*Mz2;

f (i,l)=sum( ( (abs (Mz-Mi) ) . A 2) . *W) ; 

end;
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D1.2 Hybrid optimisation using GA followed by standard methods

% tvgaoptS
% GA optimisation of coefficients c,d,r,phi,p,psi
% using the constr.m, fmins.m and the fminu.m functions
% constr.m is a constrained optimisation algorithm using the
% Sequential Quadratic Programming (SQP) method.
% fmins.m is a unconstrained optimisation algorithm using the
% simplex search method of Nelder and Mead.
% fminu.m is a unconstrained optimisation algorithm using the
% default procedure based on BFGS quasi-Newton method. An alternative
% procedure based on DFP formula can be used by setting options(6)=1.

% G.S.Baicher UWCN

first part of this code is the same as in Appendix 4.1 for 20 
generations .

x =[c,d,r,phi,p,psi] ;
f_ga=f
x_ga=x
xold=x;

% start optimisation algorithm 

x(l)=[]; xO=x;

% constrained optimisation constr.m
x = constr ( ' tvgacob2 ' , xO, [],[],[],[] , z,Mi,b,W) ;

=x(l); r=x(2); phi=x(3); p=x(4); psi=x(5);

Fl={ (p A 2)-2*p*cos (psi)+l)/ ( (r A 2)-2*r*cos
F2=( {r A 2)+2*r*cos(phi)+l)/( (p A 2) +2*p*cos (psi) +1) ;
F=F1*F2;
c=(F*(l+d)-b* (1-d) )/(F

kl=( (1+d)/ (1+c) ) ;
k2=((p"2)-2*p*cos (psi )+!)/( (r A 2) -2*r*cos (phi) +1) ;
k=kl*k2;

% P = 2Pr+4Pc-l = 5

P=5;

Mzl=(c*(z. A 2)+l) . /( (z. A 2)+d) ; 
Mz2=((z.-4)*(r A 2)-2*r*cos( Phi)*(z. A 2)+l) ./( (z.M)
2*p*cos(psi)* (z.~2)+(p A 2) ) ; 
Mz=k*(z. A P) .*Mzl.*Mz2;

f_c3=sum( { (abs(Mz-Mi) ) . A 2) .*W) 
x_c3 = [c,d,r,phi,p,psi]

x=xold;
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x (!) = [] ; xO=x;

* unconstrained simplex algorithm fmins.m 
x = fmins ( 'tvgasob2' ,xO, [),[], z, Mi, b,W) ;

d=x(l); r=x(2); phi=x(3); p=x(4); psi=x(5);

Fl=( (p"2)-2*p*cos (psi)+l) / ( (r"2)-2*r*cos
F2=( (r"2)+2*r*cos (phi)+l) / ( (p~2 ) +2*p*cos
F=F1*F2;
c=(F* (l+d)-b* (1-d) )/ (F* (l+d)+b* (1-d) ) ;

kl=
k2=( (p"2)-2*p*cos (psi)+l)/ ( (r~2)-2*r*cos
k=kl*k2;

% P = 2Pr+4Pc-l = 5 
P=5;

Mzl=(c* (z."2)+l) ./ ( (z."2)+d) ;
Mz2=( (z.M)* (r"2)-2*r*cos (phi)* ( z . A 2 ) +1 ) . / ( ( z . "4 ) -
2*p*cos (psi)* (z."2)+(p"2) } ;
Mz=k* (z."P) .*Mzl.*Mz2;

f_s3=sum( ( (abs (Mz-Mi) ) . "2} . *W) 
x_s3 = [c,d,r,phi,p,psi]

x=xold;
x (!) = []; xO=x;

% unconstrained quasi-Newton algorithm fminu.m 
x = fminu ( ' tvgasob2 ' , xO, [ ] , [ ] , z,Mi,b, W) ;

d=x(l); r=x(2); phi=x ( 3 ) ; p=x(4); psi=x(5);

Fl={ (p"2)-2*p*cos (psi)+l) / ( (r"2)-2*r*cos fphi)+l) ;
F2=( (r"2)+2*r*cos (phi)+l) / { (p"2 ) +2*p*cos
F=F1*F2;
c=(F* {l+d)-b* (1-d) ) / (F* (l+d)-b* (1-d) ) ;

kl=( (1+d)/ (1+c) ) ;
k2=f (p"2)-2*p*cos (psi)+l) / ( (r"2 ! -2*r*cos
k=kl*k2;

- P = 2Pr+4Pc-l = 5 
P=5;

Mzl=(c* (z. A 2)+l) ./ ( !z."2)+d! ;
Mz2=( (z."4) * (r"2)-2*r*ccs (phi!* f z . "2 ) +1 ) . / ! ( z . "4 } -
2*p*cos (psi)*{z."2)+(p"2) ) ;
Mz=k* (z."P) .*Mzl.*Mz2;

f_qN3=sum( ( (abs (Mz-Mi) ) ."2) . *W) 
x qN3 = [c,d,r,phi,p,psi]
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function f=tvgasob2 (xO, z,Mi,b, W) ;

% Objective function for one first-order and one 
% second order transformation function.

% G.S.Baicher UWCN

x=xO;
d=x(l); r=x(2); phi=x(3); p=x(4); psi=x(5);

Fl=( (p A 2)-2*p+cos (psi)+l)/ ( (r A 2)-2*r*cos
F2=( (r A 2)+2*r*cos (phi)+l)/ ( (p A 2) +2*p*cos
F=F1*F2;
c=(F* (l+d)-b* (1-d) ) / (F* (l+d)+b* (1-d) ) ;

kl=( (1+d)/ (1+c) ) ;
k2=( (p"2)-2*p*cos (psi)+l)/ ( (r~2 ) -2*r*cos
k=kl*k2;

% P = 2Pr+4Pc-l = 5 
P=5;

Mzl=(c*(z. A 2)+l) ./( (z. A 2)+d) ;
Mz2=( (z. M) * (r A 2) -2*r*cos (phi) *(z. A 2)+l)./((z.M)-
2*p*cos (psi)* (z. A 2)+(p A 2) ) ;
Mz=k* ( z . A P } . *Mz 1 . *Mz2 ;

f=sum( ( (abs (Mz-Mi) ) . A 2) .*W) ;
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D2 Matlab utility codes for deriving QMF bank IIR filters

D2.1 Deriving QMF bank IIR filter transfer functions

% transformation of variable method utility (for Pr=Pc=l)
%
% [HOb,HOa,FOb,FOa]=tvfilter (c, d, r,phi, p,psi)
%
% HOb,FOb: numerator of digital filter
% HOa,FOa: denominator of digital filter
% design example 2

c=0. 7491; d=0. 5001; r=0. 1918; phi=l. 0318 ;p=0. 1097 ;psi=l. 0013;

kl=(
k2=( (p A 2)-2*p*cos(psi)+l)/ ( (r A 2) -2*r*cos (phi) +1) ;
k=kl*k2;

Zl=[k*c(l) 0 k 0 0 0 0 0] ; 
Z2=[l 0 d(l)] ;
Z3=[rA 2 0 -2*r*cos (phi) 0 1] ; 
Z4=[l 0 -2*p*cos (psi) 0 p"2];

Zn=conv{Zl,Z3) ; 
Zd=conv(Z2,Z4) ;

Hl(l:5)=Zn(l:5) ; 
Hl(6:12)=Zn(6:12)+Zd; 
H2(l:5)=Zn(l:5) ; 
H2(6:12)=Zn(6:12)-3*Zd; 
H4=conv(Hl,H2) ; 
H5=4*conv(Zd, Zd) ;

Z2n=conv(Zn, Zn) ; 
Z2d=conv(Zd,Zd) ; 
F2n=conv(Zn, Zd) ; 
Fl(l:5)=Zn(l:5) ; 
Fl(6:12)=Zn(6:12)+Zd; 
F2(l:5)=Z2n(l:5) ; 
F2(6:23)=Z2n(6:23)+F2n; 
F2(11:23)=F2 ( 11 : 23) -8*Z2d; 
F3=conv(Zd,Z2d) ; 
F4=conv(Fl,F2) ; 
F5=12*F3;

HOb=-H4/4; HOa=H5/4; FOb=-F4/12; FOa=F5/12; 
for i=l: (length (FOb)-l) ;

Hlb(i)=( (-1) A (i) )*FOb(i) ; 
end; 
for i=l: (length (FOa)-l) ;

Hla(i )=-!*( (-D A (i) )*FOa(i) ; 
end;

Hlb (length ( FOb ) ) =FOb (length ( FOb ) ) ; 
Hla (length (FOa) ) =FOa (length (FOa) ) ; 
Hla( (length(Hla)+l) : (length (Hlb) ) )=0;
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for i=l:(length(HOb)-l);
Flb(i)=-l*((-1)*(i))*HOb(i) ; 

end; 
for i=l:(length(HOa)-l);

Fla(i)=-l*( (-1) A (i) )*HOa(i); 
end;

Fib(length(HOb))=HOb(length(HOb)); 
Fla(length(HOa))=HOa(length(HOa)); 
Flat(length(Fla}+l):(length(Fib)))=0;

H0a((length(HOa)+l):(length(HOb)))=0; 
F0a( (length (FOa)-1-1) : (length (FOb) ) )=0;
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D2.2 Generating IIR filter coefficients and scaling utility

function [C,I]=sos2v(sos)

% sos2v.m

% [C,I]=sos2v(sos)

% Creates a vector of coefficients given the sos coefficient matrix 
% Matrix I contains the rows of sos having numbers greater than 
0.9999695

s=size(sos); 
n=[6 5 3 2 1]; 
m=[-l -1111]; 
c=l; 
1=0;

for i=l:s(1); 
flag=l; 
for r=l:5;

u=r+(i*5}-5; 
C (u) =sos (i, n (r) ) ; 
C(u)=C(u)*m(r); 
if C(u)>0.9999695 

if flag==l 
I(c)=i; 
c=c+l; 
flag=0; 

end;
elseif C(u)<-l 

if flag==l 
I(c)=i; 
c=c+l; 
flag=0; 

end; 
end; 

end; 
end;

function [sos2]=scsos(sos,I,S);

% scsos .m
%
% [sos2]=scsos(sos,I,S);
%
% Scales the b coefficients of sos matrix by the factors contained in
% S. Matrix I contains the rows to be scaled.

l=length(I); 
sos2=sos;

for i=l:l;
sos2(I(i),l:3)=sos2(I(i},l:3)./S(i);

end;
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Appendix E - GA code for optimisation of a M-Channel uniform filter bank

E1 GA optimisation code for a M-Channel uniform filter bank

El.l GA code for optimisation of a M-Channel uniform filter bank

% Genetic Algorithm to optimise the amplitude distortion
% and aliasing error of an 8-channel uniform multirate
% filter bank using the square root raised cosine prototype
% filter and cosine modulation method
% GA characteristics
GGAP=0.8; % generational gap
INSR=0.8; % reinsertion rate
MAXGEN=10; % number of generations
Nind=100; % pop size
MutRate=0 . 1 ; % mutation rate

FieldDR = [13 0 0.1; % variables: Mp, r and alpha: lower bound 
19 2 0.9] ; % upper bound

% create initial population 
Chrom = crtrp(Nind, FieldDR);

Best = NaN*ones (MAXGEN+1, 1) ; % set counter
gen = 0
ObjVal = ufga_obj (Chrom) ;
[Best (gen+1) , ix] = min (ObjVal);
acbest = Chrom(ix, :);
while gen < MAXGEN

FitnV = ranking (ObjVal) ;
SelCh = select ( 'sus ', Chrom, FitnV, GGAP) ;
SelCh = recombin ( ' recdis ' , SelCh, 1) ;
SelCh = mutbga (SelCh, FieldDR, MutRate) ;
ObjVOff = fevalf 'ufga_obj ', SelCh) ;
[Chrom, ObjVal] = reins (Chrom, SelCh, 1,1, ObjVal, ObjVOff);
gen = gen + 1
[Best (gen+1, 1) ,ix] =min(ObjVal)
acbest = Chrom(ix,:); 

end

aO=acbest (1) ; al=acbest (2) ; a2=acbest (3) ;

N = 141; % number of filter coefficients
Mp= aO; % prototype filter bandwidth variable
r = al; % roll off value 0<r<l
alpha=a2; % trade-off parameter

% Square root raised-cosine prototype filter

nl=-( (N-D/2) :-l;
nu=l: ( (N-D/2) ;
hlsrcn=( (4*r*nl) .*(cos( ( (pi*nl*(l+r) )/Mp)) ) )+(Mp*sin( ( (pi*nl*(l-
r))/Mp) ) ) ;
hlsrcd=(l-( (4*r*nl/Mp) . * (4*r*nl/Mp) ) ) .*(pi*nl*Mp) ;
hlsrc=hlsrcn. /hlsrcd;

husrcn=((4*r*nu) .*(cos( ( (pi*nu* (1+r) ) /Mp) ) ) ) +{Mp*sin{ { (pi*nu* (1- 
r) )/Mp) ) ) ;
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husrcd=(l- ( (4*r*nu/Mp) .* (4*r*nu/Mp) ) ) .* (pi*nu*Mp) ; 
husrc=husrcn. /husrcd;

hscrO=(l/Mp) + ( (r/Mp)*(
hsrc=[hlsrc hscrO husrc] ;
[H,w] =freqz (hsrc, 1) ;
plot (w/pi/2,20*loglO (abs (H) } ) ; grid;

M=8; % number of channels 

% analysis filters

b=hsrc;
n=l : length (b) ;
bO=(2*b) . *cos ( ( (0+(l/2) ) * ( (n- ( (N+D/2) ) *pi/M) )+( (-1) A 0)* (pi/4) ) ;
[hO,w]=freqz (bO, l,w) ; hO=abs (hO) ;
bl=(2*b) .*cos( ( (l+(l/2) )*( (n-( (N+D/2) ) *pi/M) )+( (-1) A l) * (pi/4 ) ) ;
[hl,w]=freqz (bl, l,w) ; hl=abs (hi) ;
b2=(2*b) .*cos( ( (2+ (1/2) )*( (n- { (N+D/2) ) *pi/M) ) + ( (-1) A 2) * (pi/4) ) ;
[h2,w]=freqz (b2, 1, w) ; h2=abs (h2) ;
b3=(2*b) .*cos( ((3+ (1/2) )*( (n-( (N+D/2) )*pi/M)) + ( (-1) A 3) * (pi/4) ) ;
[h3,w]=freqz(b3,l,w) ; h3=abs (h3) ;
b4=(2*b) . *cos( ( (4+ (1/2) )*( (n-( (N+D/2) ) *pi/M) ) + ( (-1) A 4 ) * (pi/4 ) ) ;
[h4,w]=freqz (b4,l,w) ; abs(h4);
b5=(2*b) . *cos( ( (5+ (1/2) )* ( (n- ( (N+D/2) ) *pi/M) ) + ( (-1) A 5) * (pi/4 ) ) ;
[h5,w]=freqz (b5, l,w) ; h5=abs (h5) ;
b6=(2*b) .*cos( ( (6+(l/2) )*( (n-( (N+D/2) ) *pi/M) ) + ( (-1) A 6) * (pi/4) ) ;
[h6,w]=freqz(b6,l,w) ; h6=abs (h6) ;
b7=(2*b) .*cos( ( (7+ (1/2) )*{ (n-( (N+D/2) ) *pi/M) ) + ( (-1) A 7) * (pi/4) ) ;
[h7,w]=freqz (b7, l,w) ; h7=abs (h7) ;

% Synthesis filters

bsO=(2*b) .*cos ( ( (0+(l/2) )*( (n- ( (N+D/2) ) *pi/M) )-( (-1) A 0) * (pi/4) ) ; 
[hsO,w]=freqz (bsO, 1, w) ; hsO=abs (hsO) ;
bsl=(2*b) .*cos( ( (l+(l/2) )*( (n-( (N+D/2) ) *pi/M) )-( (-1) A l) * (pi/4) ) ; 
[hsl, w] =freqz (bsl, 1, w) ; hsl=abs (hsl) ;
bs2=(2*b) .*cos( ( (2+ (1/2) )*((n-( (N+D/2) ) *pi/M) ) - ( (-1) A 2) * (pi/4 ) ) ; 
[hs2,w]=freqz (bs2, l,w) ; hs2=abs (hs2) ;
bs3=(2*b) .*cos( ( (3+ (1/2) )*{ (n- ( (N+D /2) ) *pi/M) ) - ( (-1) A 3) * (pi/4 ) ) ; 
[hs3,w]=freqz (bs3, l,w) ; hs3=abs (hs3) ;
bs4=(2*b) . *cos( ( (4+ (1/2) )*( (n- ( (N+D/2) ) *pi/M) )-( (-1) A 4) * (pi/4 ) ) ; 
[hs4,w]=freqz (bs4, l,w) ; hs4=abs (hs4) ;
bs5=(2*b) .*cos( ( (5+ (1/2) )*( (n- ( (N+l) /2) ) *pi/M) )-( (-1) A 5 ) * (pi/4 ) ) ; 
[hs5,w]=freqz (bs5, l,w) ; hs5=abs (hs5) ;
bs6=(2*b) .*cos( ( (6+ (1/2) ) * ( (n- ( (N+l) /2) ) *pi/M) ) - ( (-1) A 6) * (pi/4 ) ) ; 
[hs6,w] =freqz (bs6, 1, w) ; hs6=abs (hs6) ;
bs7=(2*b) .*cos { ( (7+{l/2) ) * { (n- ( (N+D/2) ) *pi/M) )- ( (-1) A 7) * (pi/4) ) ; 
[hs7,w]=freqz(bs7,l,w) ; hs7=abs(hs7) ;

% amplitude distortion function

TO=conv(bO,bsO) ; Tl=conv(bl,bsl) ;
T2=conv(b2,bs2) ; T3=conv(b3,bs3) ;T4=conv(b4,bs4) ; 
T5=conv(b5,bs5) ; T6=conv(b6,bs6) ;T7=conv(b7,bs7) ; 
Tn=(TO+Tl+T2+T3+T4+T5+T6+T7) ; 
[T,w]=freqz(Tn,l) ; 
T=abs (T) ;
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% aliasing fuction

1=1;
e=exp(j*2*pi*l+n/M);

balO=bO.*e; ball=bl.*e;ba!2=b2.*e; ba!3=b3.*e; 
ba!4=b4.*e; ba!5=b5.*e;ba!6=b6.*e; ba!7=b7.*e;

TaO=conv(bsO,balO);Tal=conv(bsl,ball); 
Ta2=conv(bs2,bal2);Ta3=conv(bs3,bal3); 
Ta4=conv{bs4,bal4);Ta5=conv(bs5,ba!5); 
Ta6=conv(bs6,bal6);Ta7=conv(bs7,ba!7);

Tall=(TaO+Tal+Ta2+Ta3+Ta4+Ta5+Ta6+Ta7)/8; 
Tall=abs(Tall); Tall=(Tall.*Tall);

1=2;
e=exp(j*2*pi*l*n/M);
balO=bO.*e; ball=bl.*e;ba!2=b2.*e; ba!3=b3.+e;
ba!4=b4.+e; ba!5=b5.*e;ba!6=b6.*e; ba!7=b7.*e;

TaO=conv(bsO,balO);Tal=conv(bsl,ball); 
Ta2=conv(bs2,bal2);Ta3=conv(bs3,ba!3); 
Ta4=conv(bs4,ba!4);Ta5=conv(bs5,ba!5) ; 
Ta6=conv(bs6,ba!6);Ta7=conv(bs7,ba!7);

Tal2=(TaO+Tal+Ta2+Ta3+Ta4+Ta5+Ta6+Ta7)/8; 
Tal2=abs(Tal2); Tal2=(Tal2.*Tal2);

1=3;
e=exp(j*2*pi*l*n/M);
balO=bO.*e; ball=bl.*e;ba!2=b2.*e; ba!3=b3.*e;
ba!4=b4.*e; ba!5=b5.*e;ba!6=b6.*e; ba!7=b7.*e;

TaO=conv(bsO,balO);Tal=conv(bsl,ball) ; 
Ta2=conv(bs2,bal2);Ta3=conv(bs3,ba!3}; 
Ta4=conv(bs4,bal4);Ta5=conv(bs5,ba!5); 
Ta6=conv(bs6,bal6) ;Ta7=conv(bs7,ba!7} ;

Tal3=(TaO+Tal+Ta2+Ta3+Ta4+Ta5+Ta6+Ta7)/8;
Tal3=abs(Tal3) ; Tal3=(Tal3.*Tal3) ;
1=4;
e=exp(j*2*pi*l*n/M) ;
balO=bO.*e; ball=bl.*e;ba!2=b2.*e; ba!3=b3.*e;
ba!4=b4.*e; ba!5=b5.*e;ba!6=b6.*e; ba!7=b7.*e;

TaO=conv(bsO,balO);Tal=conv(bsl,ball); 
Ta2=conv(bs2,bal2);Ta3=conv(bs3,bal3); 
Ta4=conv(bs4,bal4);Ta5=conv(bs5,ba!5) ; 
Ta6=conv(bs6,bal6);Ta7=conv(bs7,bal7);

Tal4=(TaO+Tal+Ta2+Ta3+Ta4+Ta5+Ta6+Ta7)/8; 
Tal4=abs(Tal4); Tal4=(Tal4.*Tal4);

1=5;
e=exp(j*2*pi*l*n/M);
balO=bO.*e; ball=bl.*e;ba!2=b2.*e; ba!3=b3.*e;
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ba!4=b4.*e; ba!5=b5 . +e;ba!6=b6 . *e; ba!7=b7.*e;

TaO=conv(bsO,balO) ;Tal=conv(bsl,ball) 
Ta2=conv(bs2,bal2) ;Ta3=conv(bs3,bal3) 
Ta4=conv{bs4,bal4) ;Ta5=conv (bs5, ba!5) 
Ta6=conv(bs6,bal6) ;Ta7=conv (bs7,ba!7 )

Tal5= (TaO+Tal+Ta2+Ta3+Ta4+Ta5+Ta6+Ta7 ) /8 ; 
Tal5=abs (Tal5) ; Tal5= (Tal5 . *Tal5) ;

1=6;
e=exp(j*2*pi+l*n/M) ;
balO=bO.*e; ball=bl . *e;ba!2=b2 . *e; ba!3=b3.+e;
ba!4=b4.*e; ba!5=b5 . *e;ba!6=b6 . *e; ba!7=b7.*e;

TaO=conv(bsO,balO) ;Tal=conv(bsl,ball) ; 
Ta2=conv(bs2,bal2) ;Ta3=conv(bs3, ba!3) ; 
Ta4=conv(bs4,bal4) ;Ta5=conv (bs5,ba!5) ; 
Ta6=conv(bs6,bal6) ;Ta7=conv(bs7,bal7 ) ;

Tal6= (TaO+Tal+Ta2+Ta3+Ta4+Ta5+Ta6+Ta7) /8; 
Tal6=abs (Tal6) ; Tal6= (Tal6. *Tal6) ;

1=7;
e=exp(j*2*pi*l*n/M) ;
balO=bO.*e; ball=bl . *e;ba!2=b2 . *e; ba!3=b3.*e;
ba!4=b4.*e; ba!5=b5 . *e;ba!6=b6 . *e; ba!7=b7.*e;

TaO=conv(bsO,balO) ;Tal=conv(bsl,ball) ; 
Ta2=conv(bs2,bal2) ;Ta3=conv(bs3, ba!3) ; 
Ta4=conv(bs4,bal4) ;Ta5=conv(bs5,bal5) ; 
Ta6=conv(bs6,bal6) ;Ta7=conv(bs7,bal7) ;

Tal7=(TaO+Tal+Ta2+Ta3+Ta4+Ta5+Ta6+Ta7) /8; 
Tal7=abs (Tal7) ; Tal7= (Tal7 . *Tal7 } ;

Talias=sqrt (Tall+Tal2+Tal3+Tal4+Tal5+Tal6+Tal7 } ;

% aliasing distortion function 
[Tal, w]=freqz (Talias, 1) ; 
Tal=abs(Tal) ;

mbest=aO 
rbest=al 
alpha=a2

Epp=max ( T ) -min ( T )
Ea=max (Tal)
err = alpha* (max (T) -min (T) }+ (1-alpha) *max (abs (Tal) )
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% objective function for 8-ch uniform filter GA 
function f = ufga_obj(Chrom);

[Nind,Nvar]=size(Chrom); 
for irun = l:Nind;

ac = Chrom(irun,:);

aO=ac(l); al=ac(2); a2=ac(3);

N=141; % number of filter coefficients
Mp=aO; % bandwidth variable for the prototype filter
r=al; % roll off value
alpha=a2; % trade-off parameter

the following are same as in the main code above ——- 
% prototype filter 
% analysis filters 
% synthesis filters 
% distortion function 
% aliasing fuction 
% aliasing error

% objective function
err = alpha*(max(T)-min(T))+ (1-alpha)*max(Tal);

f (irun, :) = err; 
end
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Appendix F - GA and hybrid optimisation codes for non-uniform fitter banks

F1 GA and hybrid optimisation codes for non-uniform filter banks

Fl.l GA and hybrid optimisation code for non-uniform filter bank using design 
method -1

% Test for non-uniform filter banks using design method - 1
% with FIR low pass prototype filters with Hamming window as default
% and SGA to optimise the distortion

% GA characteristics

GGAP=0.8; % gen. gap 
INSR=0.8; % re-insertion rate 
MAXGEN=10; % max. no. of generations 
Nind=100; % pop size 
MutRate=l/Nind; % mutation rate

fcO=(l/4); fcl=(l/24); fc2=(l/12); 
fc3=(l/12); fc4=(l/3); 
a=0.03;
FieldDR = [-a -a -a -a -a ; % lower bound 

a a a a a]; % upper bound

Chrom = crtrp(Nind, FieldDR);% create initial population 
Best = NaN*ones(MAXGEN+1,1); % counter 
gen = 0

ObjVal = nuf5b_obj(Chrom) ; 
[Best(gen+1),ix] = min(ObjVal); 
xbest = Chrom(ix,:);

while gen < MAXGEN
FitnV = ranking(ObjVal);
SelCh = select('sus',Chrom,FitnV,GGAP) ;
SelCh = recombin('recdis', SelCh, 1);
SelCh = mutbga(SelCh,FieldDR, MutRate) ;
ObjVOff = feval('nuf5b_obj',SelCh);
[Chrom, ObjVal] = reins(Chrom, SelCh,1,1, ObjVal, ObjVOff);
gen = gen + 1
[Best(gen+1,1),ix] =min(ObjVal)
xbest = Chrom(ix,:); 

end

x(l)=xbest(1);x(2)=xbest(2);x(3)=xbest(3);x(4)=xbest(4);x(5)=xbest(5);

% second stage for optimisation using Simplex algorithm of the form
% x=fruins (' fun5b_obj ' ,x)
wl=512;
M=5; % number of filter banks
N=17; % odd number giving transition bandwidth
K=M*N;
n=l:K;

% new cut-off frequencies of LP prototype filters 
fcO=(l/4)+x(l); fcl=(l/24)+x(2); fc2=(l/12)+x(3) ; 
fc3=(l/12)+x(4); fc4=(l/3)+x(5);
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% generate impulse 
inl=zeros(1,9999) ; 
inl=[l inl];

% transfer function 
bO=firl(K-l,fcO); 
bOd=upfirdn(inl,bO,1,4); 
bOu=4*upfirdn(bOd,bO,4,1);

bl=firl(K-l,fcl); wcl=pi*(7/24); 
wnl=2* (sin(wcl* (n- ( (K+D/2) ) ) ) ; 
flna=wnl.*bl; flns=-flna; 
bld=upfirdn(inl,fIna,1,12); 
blu=12*upfirdn(bid,-flna,12,1);

b2=firl(K-l,fc2); wc2=pi*(5/12);
wn2=2*(cos(wc2*(n-((K+l)/2)))); f2na=wn2.*b2;
b2d=upfirdn(inl,f2na,1,6);
b2u=6*upfirdn(b2d,f2na,6,1);

b3=firl(K-l,fc3); wc3=pi*(7/12); 
wn3=2* (sin(wc3* (n- ( (K+D/2) ) ) ) ; f3na=wn3.*b3; 
b3d=upfirdn(inl,f3na,1,6); 
b3u=6*upfirdn(b3d,-f3na,6,l);

b4=firl(K-l,fc4); wc4=pi;
wn4=(cos (wc4* (n- ( (K+D/2) ) ) ) ; f 4na=wn4 . *b4;
b4d=upfirdn(inl,f4na,1,3);
b4u=3*upfirdn(b4d,f4na,3,1);

bt=bOu(1:10000)+blu(l:10000)+b2u(1:10000)+b3u(1:10000)+b4u(1:10000) ;
yt=20*(loglOfabs(fft(bt))));
plot(1:5000,yt(1:5000),'b 1 )
axis{[0 5000 -2 2]);
xbest

% analysis and synthesis filters

[hO,w]=freqz(bO,l,w); hO=abs(hO); hO=20*loglO(hO); 
W=w/pi;

wnl=2*(sin(wcl* (n-( (K+D/2) ) ) ) ; 
flna=wnl.*bl; flns=-flna; 
[hln,w]=freqz(flna,l,w); hln=abs(hln); 
hln=20*loglO(hln);

wn2=2* (cos (wc2*(n-( (K+D/2) ) ) ) ; f2na=wn2 . *b2; 
[h2n,w]=freqz(f2na,l,w) ; h2n=abs(h2n); 
h2n=20*loglO(h2n);

wn3=2*(sin(wc3*(n-( (K+D/2) ))); f 3na=wn3 . *b3; f3ns=-f3na; 

[h3n,w]=freqz(f3na,l,w); h3n=abs(h3n); 
h3n=20*loglO(h3n);

b4=firl(K-l,fc4);
wn4=(cos (wc4* (n-( (K+D/2) ) ) ) ; f 4na=wn4 . *b4;
[h4n,w]=freqz(f4na,l,w); h4n=abs(h4n);
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h4n=20*loglO(h4n);
TO=conv(bO,bO); Tl=conv(fIna,fIns};
T2=conv(f2na,f2na); T3=conv(f3na,f3ns);T4=conv(f4na, f4na) ;
Tn={TO+Tl+T2+T3+T4);

[T,w]=freqz(Tn,l); 
T=abs(T); 
TdB=20*loglO(T);

%aliasing distortion
L=12; rO=4; rl=12; r2=6; r3=6; r4=3;

1=1;
er=exp(j*2*pi*l*n/L); 
baO=bO.*er; TalO=conv(baO,bO); 
bal=flna.*er; Tall=conv(bal,fIns); 
ba2=f2na.*er; Tal2=conv(ba2,f2na); 
ba3=f3na.*er; Tal3=conv(ba3,f3ns); 
ba4=f4na.*er; Tal4=conv(ba4,f4na);

AlO=TalO*(1+exp(-j*2*pi*rO*l/L)+exp{-j*2*pi*rO*2*l/L) ) ;
All=Tall*l;
A12=Tal2*(l+exp(-j*2*pi*r2*l/L));
A13=Tal3*{l+exp(-j*2*pii r3*l/L});
A14=Tal4*(l+exp(-j*2*pi*r4*l/L)+exp(-j*2*pi*r4*2*l/L)+exp(-
j*2*pi*r4*3*l/L)};

T1=(A10+A11+A12+A13+A14)/L; 
Tl=abs(Tl);T1=T1.*T1;

1=2;
er=exp(j*2*pi*l*n/L);
baO=bO.*er; TalO=conv(baO,bO);
bal=flna.*er; Tall=conv(bal,fins);
ba2=f2na.*er; Tal2=conv(ba2,f2na);
ba3=f3na.*er; Tal3=conv(ba3,f3ns);
ba4 = f4na.*er; Tal4=conv(ba4,f4na) ;
A10=TalO*(l+exp(-j*2*pi*rO*l/L)+exp(-j*2*pi*rO*2*l/L) ) ;
All=Tall*l;
A12=Tal2*(l+exp(-j*2*pi*r2*l/L));
A13=Tal3*(1+exp(-j*2*pi*r3*l/L) ) ;
A14=Tal4*{l+exp(-j*2*pi*r4*l/L)+exp(-j*2*pi*r4+2*l/L)+exp(-
j*2*pi*r4*3*l/L)); 
T2=(A10+A11+A12+A13+A14)/L; 
T2=abs(T2);T2=T2.*T2;

1=3;
er=exp(j*2*pi*l*n/L);
baO=bO.*er; TalO=conv(baO,bO);
bal=fIna.*er; Tall=conv(bal,fIns) ;
ba2=f2na.*er; Tal2=conv(ba2,f2na);
ba3=f3na.*er; Tal3=conv{ba3,f3ns);
ba4=f4na.*er; Tal4=conv(ba4,f4na);
A10=TalO*(l+exp(-j*2*pi*rO*l/L)+exp(-j*2*pi*rO*2*l/L) ) ;
All=Tall*l;
A12=Tal2*(1+exp(-j*2*pi*r2*l/L));
A13=Tal3*(1+exp(-j*2+pi*r3*l/L));
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A14=Tal4*(1+exp(-j*2*pi*r4*l/L)+exp(-j*2*pi*r4*2*l/L)+exp(- 
j*2*pi*r4*3*l/L)); 
T3=(A10+A11+A12+A13+A14)/L; 
T3=abs(T3);T3=T3.*T3;

1=4;
er=exp(j*2*pi*l*n/L);
baO=bO.*er; TalO=conv(baO,bO);
bal=fIna.*er; Tall=conv(bal,fins);
ba2=f2na.*er; Tal2=conv(ba2,f2na);
ba3=f3na.*er; Tal3=conv(ba3,f3ns);
ba4=f4na.*er; Tal4=conv(ba4,f4na);
A10=TalO*(1+exp(-j*2*pi+rO*l/L)+exp(-j*2*pi*rO*2*l/L));
All=Tall*l;
A12=Tal2*(1+exp(-j*2*pi*r2*l/L));
A13=Tal3*(1+exp(-j*2*pi*r3*l/L));
Al4=Tal4*(1+exp(-j*2+pi*r4*l/L)+exp(-j*2*pi*r4*2*l/L)+exp(-
j*2*pi*r4*3*l/L));
T4=(A10+A11+A12+A13+A14)/L;
T4=abs(T4);T4=T4.*T4;

1=5;
er=exp(j*2*pi*l*n/L);
baO=bO.*er; TalO=conv(baO,bO);
bal=flna.*er; Tall=conv(bal,fins);
ba2=f2na.*er; Tal2=conv(ba2,f2na);
ba3=f3na.*er; Tal3=conv(ba3,f3ns);
ba4=f4na.*er; Tal4=conv(ba4,f4na);
A10=TalO*(1+exp(-j*2*pi*rO*l/L)+exp(-j*2*pi*rO*2*l/L) ) ;
All=Tall*l;
A12=Tal2*(1+exp(-j*2*pi*r2*l/L));
A13=Tal3*(1+exp(-j*2*pi*r3*l/L));
A14=Tal4*(1+exp(-j*2*pi*r4*l/L)+exp(-j*2*pi*r4*2*l/L)+exp (-
j*2*pi*r4*3*l/L));
T5=(A10+A11+A12+A13+A14)/L;
T5=abs(T5);T5=T5.*T5;

1=6;
er=exp(j*2*pi*l*n/L);
baO=bO.*er; TalO=conv(baO,bO);
bal=flna.*er; Tall=conv(bal,fins);
ba2=f2na.*er; Tal2=conv(ba2,f2na);
ba3=f3na.*er; Tal3=conv(ba3,f3ns);
ba4=f4na.*er; Tal4=conv(ba4,f4na);
A10=TalO*(1+exp(-j*2*pi*rO*l/L)+exp(-j*2*pi*rO*2*l/L) ) ;
All=Tall*l;
A12=Tal2*(1+exp(-j*2*pi*r2*l/L));
A13=Tal3*(1+exp(-j*2*pi*r3*l/L) ) ;
A14=Tal4*(1+exp(-j*2*pi*r4*l/L)+exp(-j*2*pi*r4*2*l/L)+exp(-
j*2*pi*r4*3*l/L));
T6= (A10+A11+A12+A13+A14) /L;
T6=abs(T6);T6=T6.*T6;

1=7;
er=exp(j*2*pi*l*n/L); 
baO=bO.*er; TalO=conv(baO,bO); 
bal=fIna.*er; Tall=conv(bal,fins); 
ba2=f2na.*er; Tal2=conv(ba2,f2na);
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ba3=f3na.*er; Tal3=conv (ba3, f 3ns ) ;
ba4=f4na.*er; Tal4=conv (ba4, f 4na) ;
A10=TalO* (l+exp(-j*2*pi*rO*l/L)+exp(-j*2*pi*rO*2*l/L) ) ;
All=Tall*l;
A12=Tal2*{H-exp(-j*2*pi*r2*l/L) ) ;
A13=Tal3* (1+exp (-j*2*pi*r3*l/L) ) ;
Al4=Tal4* (1+exp (- j *2*pi*r4*l/L) +exp (- j *2*pi*r4*2+l/L) +exp (-
j*2*pi*r4*3*l/L) ) ;

T7=(A10+A11+A12+A13+A14)/L;
T7=abs (T7) ;T7=T7 . *T7;

1=8;
er=exp(j*2*pi*l*n/L) ;
bad=bO.*er; TalO=conv (baO, bO) ;
bal=f Ina. *er; Tall=conv(bal, fins) ;
ba2=f2na. *er; Tal2=conv(ba2, f2na) ;
ba3=f3na. *er; Tal3=conv(ba3, f 3ns) ;
ba4=f 4na. *er; Tal4=conv(ba4 , f4na) ;
A10=TalO* (1+exp (- j *2*pi*rO*l/L) +exp (- j *2*pi*rO*2*l/L) ) ;
All=Tall*l;
A12=Tal2* (1+exp (- j*2*pi*r2*l/L) ) ;
A13=Tal3* (1+exp (- j *2*pi*r3*l/L) ) ;
A14=Tal4* (1+exp (- j *2*pi*r4*l/L) +exp (- j*2*pi*r4*2*l/L) +exp (-

T8=(A10+A11+A12+A13+A14)/L; 
T8=abs (T8) ;T8=T8.*T8;

1=9;
er=exp(j*2*pi*l*n/L) ;
baO=bO.*er; TalO=conv(baO,bO) ;
bal=f Ina. *er; Tall=conv(bal, fins) ;
ba2=f2na. *er; Tal2=conv(ba2, f 2na) ;
ba3=f3na. *er; Tal3=conv (ba3, f3ns) ;
ba4=f 4na. *er; Tal4=conv (ba4, f 4na) ;
A10=TalO* (1+exp (- j*2*pi*rO*l/L) +exp (- j*2*pi*rO*2*l/L) ) ;
All=Tall*l;
A12=Tal2* (1+exp (- j *2*pi*r2*l/L) ) ;
A13=Tal3* (1+exp (- j *2*pi*r3*l/L) ) ;
A14=Tal4*{ 1+exp (- j *2*pi*r4*l/L) +exp(- j*2*pi*r4*2*l/L) +exp (-
j*2*pi*r4*3*l/L) ) ;
T9= (A10+A11+A12+A13+A14 ) /L;
T9=abs (T9) ;T9=T9.*T9;

1=10;
er=exp ( j*2*pi*l*n/L) ;
baO=bO.*er; TalO=conv(baO,bO) ;
bal=flna.*er; Tall=conv (bal, fins) ;
ba2=f2na.*er; Tal2=conv(ba2, f2na) ;
ba3=f3na. *er; Tal3=conv(ba3, f 3ns) ;
ba4=f4na.*er; Tal4=conv(ba4, f 4na) ;
A10=TalO*( 1+exp (- j *2*pi*rO*l/L) +exp (- j *2*pi*rO*2*l/L) ) ;
All=Tall*l;
A12=Tal2* (1+exp (- j *2*pi*r2*l/L) ) ;
A13=Tal3* (1+exp (- j *2*pi*r3*l/L) ) ;
A14=Tal4*( 1+exp (-j*2*pi*r4*l/L) +exp(- j*2*pi*r4*2
j*2*pi*r4*3*l/L) ) ;
T10= (A10+A11+A12+A13+A14 ) /L;
T10=abs (T10) ;T10=T10 . *T10;
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1=11;
er=exp(j*2*pi*l*n/L); 
baO=bd.*er; TalO=conv(baO,bO); 
bal=flna.*er; Tall=conv(bal,fins); 
ba2=f2na.*er; Tal2=conv(ba2,f2na); 
ba3=f3na.*er; Tal3=conv(ba3,f3ns); 
ba4=f4na.*er; Tal4=conv(ba4, f4na) ;
A10=TalO*(l+exp(-j*2*pi*rO*l/L)+exp(-j*2*pi*rO*2*l/L) ) ;
All=Tall*l;
A12=Tal2*(l+exp(-j*2*pi*r2*l/L));
A13=Tal3*(1+exp(-j*2*pi*r3*l/L));
Al4=Tal4*(l+exp(-j*2*pi*r4*l/L}+exp(-j*2*pi*r4*2*l/L)+exp(- 
j*2*pi*r4*3*l/L)); 
T11=(A10+A11+A12+A13+A14)/L; 
Tll=abs(Tll);T11=T11.*T11;

Talias=sqrt(T1+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11) ;

[Tal,w]=freqz(Talias,1); 
Ea=abs(Tal); 
EadB=20*loglO(Ea);

Epp=max(T)-min(T);Ea=max(Ea); 
fc=[x(l) x(2) x(3) x(4) x(5)];

% Objective function for the GA code 
% NUF bank with 5-bands design example 2 
% based on design method -1 
function f = nuf5b_obj(Chrom);

M=5; % number of filter banks
N=17; % odd number giving transition bandwidth
K=M*N;

% starting values

[Nind,Nvar]=size(Chrom) ; 
for irun = l:Nind; 

x = Chrom(irun,:);

fcO=(l/4)+x(l) ; fcl=(l/24)+x(2); fc2=(1/12)+x(3) 
fc3=(l/12)+x(4); fc4=(l/3)+x(5); 
inl=zeros(1,9999); 
inl=[l inl]; 
inl=inl';

bO=firl(K-l,fcO); 
bOd=upfirdn(inl',bO,l,4); 
bOu=4*upfirdn(bOd,bO,4,1);

bl=firl(K-l,fcl); n=l:K; wcl=pi*(7/24) ; 
wnl=2*(sin(wcl*(n-((K+l)/2)))); 
flna=wnl.*bl; flns=-flna; 
bld=upfirdn(inl',flna,1,12); 
blu=12*upfirdn(bid,-fIna,12,1);
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b2 = firl(K-l, fc2); wc2=pi*(5/12) ; 
wn2=2* (cos(wc2* (n-( (K+D/2) ) ) ) ; f2na=wn2. *b2; 
b2d=upfirdn(inl',f2na,l,6); 
b2u=6*upfirdn(b2d,f2na,6,l);

b3=firl(K-l,fc3); wc3=pi*(7/12);
wn3=2*(sin(wc3*(n-((K+1J/2)))); f3na=wn3.*b3; f3ns=-f3na;
b3d=upfirdn(inl',f3na,1,6);
b3u=6*upfirdn(b3d,-f3na,6,1);

b4=firl(K-l,fc4); wc4=pi;
wn4=(cos (wc4* (n-( (K+D/2) ) ) ) ; f4na=wn4.*b4; 
b4d=upfirdn(inl',f4na,1,3); 
b4u=3*upfirdn(b4d,f4na,3,1);

bt=bOu(1:10000)+blu(1:10000)+b2u(l:10000)+b3u(l:10000)+b4u(1:10000) ;
yt=20*(loglO(abs(fft(bt))));
plot(1:5000,yt(1:5000),'b 1 )
axis([1 5000 -2 2]);
err = max(yt(1:5000))-min(yt(1:5000) );
f (irun, :) = err;
end
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F1.2 GA and hybrid optimisation code for non-uniform filter bank using design 
method - 2

% Test for non-uniform filter banks
% using square root raised cosine prototypes

% GA characteristics

GGAP=0.8; % gen. gap 
INSR=0.8; % reinsertion rate 
MAXGEN=10; % max. no. of generations 
Nind=100; % pop size 
MutRate=l/Nind;

d=0.8;rl=0.5; ru=2.0
FieldDR = [7+d 23+d 11+d 11+d 5+d rl rl rl rl rl; % lower bound 

9-d 25-d 13-d 13-d 7-d ru ru ru ru ru]; % upper bound

% create initial population
Chrom = crtrp(Mind, FieldDR);
Best = NaN*ones(MAXGEN+1,1); % counter
gen = 0

ObjVal = rc5b_obj(Chrom);
[Best(gen+1),ix] = min(ObjVal);
xbest = Chromfix,:);

while gen < MAXGEN
FitnV = ranking(ObjVal};
SelCh = select('sus',Chrom,FitnV,GGAP);
SelCh = recombin('recdis', SelCh, 1} ;
SelCh = mutbga{SelCh,FieldDR, MutRate);
ObjVOff = feval('rc5b_obj',SelCh);
[Chrom, ObjVal] = reins(Chrom, SelCh,1,1, ObjVal, ObjVOff);
gen = gen + 1
[Best(gen+1,1),ix] =min(ObjVal)
xbest = Chrom(ix,:);

end

N=45; % number of filter coefficients 
M0=4; Ml=12; M2=6; M4=3; 
x=xbest;

MpO=x(l); Mpl=x(2); Mp2=x(3); Mp3=x(4); Mp4=x(5); 
rO=x(6);rl=x(7);r2=x(8);r3=x(9); r4=x(10) ;

x=[MpO,Mpl,Mp2,Mp3,Mp4,rO,rl,r2,r3,r4] ;

% second stage optimisation using the simplex algorithm of the form 
% x=fmins('rc5b_obj',x);

MpO=x(l); Mpl=x(2); Mp2=x(3); Mp3=x(4); Mp4=x(5); 
rO=x(6);rl=x(7);r2=x(8);r3=x(9); r4=x(10);

xbest=[MpO,Mpl,Mp2,Mp3,Mp4,rO,rl,r2,r3,r4]
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% prototype filter number 0 
nl=-{ (N-D/2) :-l; 
nu=l: ( (N-l

M=MpO; r=rO;
hlsrcn=((4*r*nl).*(cos(((pi*nl*(1+r))/M))))+(M*sin(((pi*nl*(1-
r))/M)));
hlsrcd=(l-((4*r*nl/M).*(4*r*nl/M))).*(pi*nl*M);
hlsrc=hlsrcn./hlsrcd;
husrcn=((4*r*nu).*(cos(((pi*nu*(1+r))/M))))+(M*sin(((pi*nu*(1-

husrcd= (1- ( (4*r*nu/M) . * (4*r*nu/M) ) ) . * (pi*nu*M) ; 
husrc=husrcn . /husrcd; 
hscrO=(l/M)+{ (r/M)* ( (4/pi)-l) ) ; 
hsrcO=[hlsrc hscrO husrc];

% prototype filter number 1 

M=Mpl; r=rl;

hlsrcn=( (4*r*nl) . * (cos ( ( (pi*nl*(l+r) ) /M) ) ) }+(M*sin( ( (pi*nl*(l-
r) )/M) ) ) ;
hlsrcd=(l- ( (4*r*nl/M) .* (4*r*nl/M) ) ) .* (pi*nl*M) ;
hlsrc=hlsrcn. /hlsrcd;
husrcn=( (4*r*nu) . * (cos ( ( (pi*nu* (1+r) ) /M) ) ) ) + (M*sin( ( (pi*nu* (1-
r) )/M)) ) ;
husrcd=(l- ( (4*r*nu/M) . * (4*r*nu/M) ) ) .* (pi*nu*M) ;
husrc=husrcn . /husrcd;
hscrO=(l/M)+( (r/M)*( (4/pi)-l) );
hsrcl=[hlsrc hscrO husrc];

% prototype filter number 2

M=Mp2 ; r=r2 ;

hlsrcn=( (4*r*nl) .* (cos ( ( (pi^nl* (1+r) ) /M) ) ) )+(M*sin( ( (pi*nl* (1-

hlsrcd=(l-( (4*r*nl/M) .* (4*r*nl/M) ) ) .*(pi*nl*M) ;
hlsrc=hlsrcn. /hlsrcd;
husrcn=( (4*r*nu) . * (cos ( ( (pi*nu*(l+r) ) /M) ) ) )+(M*sin( ( (pi*nu* (1-
r) )/M) ) ) ;
husrcd=(l-( (4*r*nu/M) . * (4*r*nu/M) ) ) .* (pi*nu*M) ;
husrc=husrcn . /husrcd;
hscrO=(l/M)+( (r/M)* ( (4/pi)-l) ) ;
hsrc2=[hlsrc hscrO husrc];

% prototype filter number 3

M=Mp3; r=r3;

hlsrcn=( (4*r*nl) . * (cos( ( (pi*nl*(l+r) ) /M) ) ) )+(M*sin( ( (pi*nl*(l-

hlsrcd=(l- ( (4*r*nl/M) .* (4*r*nl/M) ) ) .* (pi*nl*M) ;
hlsrc=hlsrcn. /hlsrcd;
husrcn=( (4*r*nu) .* (cos ( ( (pi*nu* (1+r) ) /M) ) ) )+(M*sin( ( (pi*nu* (1-
r) }/M) } ) ;
husrcd=(l-( (4*r*nu/M) . * (4*r*nu/M) ) ) . * (pi*nu*M) ;
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husrc=husrcn./husrcd; 
hscrO=(l/M) + ( (r/M)* 
hsrc3=[hlsrc hscrO husrc];

% prototype filter number 4 

M=Mp4; r=r4;

hlsrcn={(4*r*nl).*(cos(((pi*nl*(1+r))/M))))+(M*sin(((pi*nl*(1-
r))/M)));
hlsrcd=(l-((4*r*nl/M).*(4*r*nl/M))).*(pi*nl*M);
hlsrc=hlsrcn./hlsrcd;
husrcn=((4*r*nu).*(cos(((pi*nu*(1+r))/M)}))+(M*sin(((pi*nu*(1-
r))/M)));
husrcd=(l-((4*r*nu/M).*(4*r*nu/M))).*(pi*nu*M);
husrc=husrcn./husrcd;
hscrO=(l/M)+((r/M)*((4/pi)-l));
hsrc4=[hlsrc hscrO husrc];

% analysis and synthesis filters

M=MO ; 
b=hsrcO; 
n=l:length(b);
bO=(2*b).*cos(((0+(l/2))*((n-( (N+D/2) ) *pi/M) ) + ( (-1) A 0) * (pi/4) } ; 
[hO,w]=freqz(bO,l,w); hO=abs(hO); hO=20*loglO(hO); 
bOs=(2*b) .*cos(((0+(l/2))*((n-((N+l)/2))*pi/M))-((-1)"0}*(pi/4)) ;

M=M1;
b=hsrcl;
bl=(2*b) .*cos ( ( (3+(1/2) )*( (n-( (N+D/2) ) *pi/M) ) + ( (-1) A 3) * (pi/4) ) ;
[hl,w]=freqz(bl,l,w); hl=20*loglO(abs(hi)) ;
bls=(2*b) . *cos( ( (3+(1/2) )*( (n-( (N+D/2) } *pi/M) )-( (-1) A 3) * (pi/4) ) ;

M=M2 ;
b=hsrc2;
b2=(2*b) . *cos( ( (2+(1/2) )*( (n-( (N+D/2) } *pi/M) ) + ( (-1) "2) * (pi/4) ) ;
[h2,w]=freqz(b2,l,w); h2=20*loglO(abs(h2));
b2s=(2*b) . *cos( ( (2+(1/2) )*( (n-( (N+D/2) ) *pi/M) }-( (-1) "2) * (pi/4) ) ;

M=M2;
b=hsrc3;
b3=(2*b) .*cos( ( (3+(1/2) )*( (n-( (N+D/2) ) *pi/M) ) + ( (-1) A 3) * (pi/4) ) ;
[h3,w]=freqz(b3,l,w); h3=20*loglO(abs(h3));
b3s=(2*b) .*cos( ( (3+(l/2) )*({n-( (N+D/2) ) *pi/M) )-( (-1) A 3) * (pi/4) ) ;

M=M4 ;
b=hsrc4;
b4=(2*b) .*cos( ( (2+(1/2) )*( (n-( (N+D/2) ) *pi/M) ) + ( (-1) A 2) * (pi/4) ) ;
[h4,w]=freqz(b4,l,w); h4=20*loglO(abs(h4) ) ;
b4s=(2*b) .*cos( ( (2+(l/2))M(n-((N+D/2))*pi/M))-( (-1) A 2) * (pi/4) ) ;

TO=conv(bO,bOs); Tl=conv(bl,bls); 
T2=conv(b2,b2s) ; T3=conv(b3,b3s);T4=conv(b4,b4s) ;

Tn=(TO+Tl+T2+T3+T4); 

% distortion function
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[T,w]=freqz(Tn,l); 
T=abs(T) ;
TdB=20+loglO(T);

% aliasing fuction

*********** same as in Appendix 6.3.1 **********

[Tal,w]=freqz(Talias,1); 
Ea=abs(Tal); 
EadB=20*loglO(Ea); 
Epp=max(T)-min(T) 
Ea=max(Ea)

% objective function for GA code for 5-band 
% NUF bank using design method - 2 
function f = rc5b_obj (Chrom) ;

M0=4; Ml=12; M2=6; M4=3; 

% starting values

[Nind,Nvar] =size (Chrom) ; 
for irun = l:Nind;

x = Chrom ( irun, :); 
% analysis filters
MpO=x(l); Mpl=x(2); Mp2=x(3); Mp3=x(4); Mp4=x(5); 
rO=x(6) ;rl=x(7) ;r2=x(8) ;r3=x(9) ; r4=x(10) ; 
N=45; 
nl=-{ (N-1J/2) :-l;

M=MpO; r=rO;
hlsrcn=( (4*r*nl) .* (cos ( ( (pi*nl* (1+r) ) /M) ) ) )+(M*sin{ ( (pi*nl* (1-
r) )/M) ) ) ;
hlsrcd=(l-( (4*r+nl/M) .* (4*r*nl/M) ) ) . * (pi*nl*M) ;
hlsrc=hlsrcn. /hlsrcd;
husrc=fliplr (hlsrc) ;
hscrO=(l/M)+( (r/M)* ( (4/pi)-l) ) ;
hsrcO=[hlsrc hscrO husrc] ;

% prototype filter number 1

M=Mpl; r=rl;

hlsrcn=( (4*r*nl) .* (cos ( ( (pi*nl* (1+r) ) /M) ) ) ) + (M*sin( ( (pi+nl* (1-

hlsrcd=(l-( (4*r*nl/M) . * (4*r*nl/M) ) ) .+ (pi*nl*M) ; 
hlsrc=hlsrcn. /hlsrcd; 
husrc=fliplr (hlsrc) ; 
hscrO=(l/M)+( (r/M)*( (4/pi)-l) ) ; 
hsrcl=[hlsrc hscrO husrc];

% prototype filter number 2 

M=Mp2; r=r2;
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hlsrcn=( (4*r*nl) . * (cos { ( (pi*nl*(l+r) ) /M) ) ) )+(M*sin{ ( (pi*nl*(l- 
r) ) /M) ) ) ;
hlsrcd=(l- ( (4*r*nl/M) .* (4*r*nl/M) ) ) .* (pi*nl*M) ; 
hlsrc=hlsrcn. /hlsrcd; 
husrc=fliplr (hlsrc) ; 
hscrO=(l/M) + ( (r/M)*( (4/pi)-l) ) ; 
hsrc2=[hlsrc hscrO husrc] ;

% prototype filter number 3

M=Mp3; r=r3;
hlsrcn=( (4*r*nl) .* (cos ( ( (pi*nl* (1+r) ) /M) ) ) )+(M*sin( ( (pi*nl* (1-

hlsrcd=(l-( (4*r*nl/M) . * (4*r*nl/M) ) ) .* (pi*nl*M) ; 
hlsrc=hlsrcn. /hlsrcd; 
husrc=fliplr (hlsrc) ; 
hscrO=(l/M) + ( (r/M)* ( (4/pi)-l) ) ; 
hsrc3=[hlsrc hscrO husrc];

% prototype filter number 4
M=Mp4; r=r4;
hlsrcn=( (4*r*nl) .* (cos ( ( (pi*nl* (1+r) ) /M) ) ) ) +(M*sin( ( (pi*nl* (1-

hlsrcd=(l- ( (4*r*nl/M) .* (4*r*nl/M) ) ) .* (pi*nl+M) ; 
hlsrc=hlsrcn. /hlsrcd; 
husrc=fliplr (hlsrc) ; 
hscrO=(l/M) + ( (r/M)*( (4/pi)-l) ) ; 
hsrc4=[hlsrc hscrO husrc];

% analysis and synthesis filters
M=MO ;
b=hsrcO;
n=l: length (b) ;
bO=(2*b) .*cos( { (0+(l/2) )*( (n-( (N+D/2) ) *pi/M) ) + ( (-1) A 0) * (pi/4) ) ;
bOs=(2*b) .*cos( ( (0+(l/2) )* ( (n-( (N+D/2) ) *pi/M) )-( (-1) A 0) * (pi/4 ) ) ;
M=M1 ;
b=hsrcl;
bl=(2*b) .*cos ( ( (3+ (1/2) ) * ( (n- ( (N+D/2) ) *pi/M) ) + ( (-1) "3) * (pi/4) ) ;
bls=(2*b) .*cos( ( (3+ (1/2) )*( (n- ( (N+D/2) ) *pi/M) )-( (-1) A 3) * (pi/4) ) ;
M=M2 ;
b=hsrc2;
b2=(2*b) ,*cos( ( (2+ (1/2) )*( (n-( (N+D/2) ) *pi/M) )+( (-1) A 2 ) * (pi/4 ) ) ;
b2s=(2*b) .*cos( ( (2+ (1/2) )*( (n-( (N+D/2) ) *pi/M) } - ( (-1) A 2) * (pi/4 ) );
M=M2;
b=hsrc3;
b3=(2*b) .*cos( ( (3+(l/2) )*( (n- ( (N+D/2) ) *pi/M) ) + ( (-1) A 3) * (pi/4) ) ;
b3s=(2*b) .*cos( ( (3+ (1/2) )*( (n- ( (N+D/2) ) *pi/M) )-( (-1) A 3) * (pi/4) ) ;
M=M4 ;
b=hsrc4;
b4=(2*b) .*cos(((2+(l/2) )*( (n-( (N+l) /2) ) *pi/M) ) + ( (-1) A 2) * (pi/4) ) ;
b4s=(2*b) .*cos( ( (2+ (1/2) )*( (n- ( (N+D/2) ) *pi/M) ) - ( (-1) A 2 ) * (pi/4) ) ;

% transfer function

*********** same as in Appendix 6.3.1 ******* 
err=max(yt (1:5000) ) -min (yt (1 : 5000) ) ; 
f (irun, : ) = err; 
end
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F2 Coefficients for the MELP decoder filter bank

F2.1 Coefficients taken from MELP US Federal Standard - Appendix A

0-500 Hz
-0.00302890
-0.00701117
-0.01130619
-0.01494082
-0.01672586
-0.01544189
-0.01006619
0.00000000
0.01474923
0.03347158
0.05477206
0.07670890
0.09703726
0.11352143
0.12426379
0.12799355
0.12426379
0.11352143
0.09703726
0.07670890
0.05477206
0.03347158
0.01474923
0.00000000
-0.01006619
-0.01544189
-0.01672586
-0.01494082
-0.01130619
-0.00701117
-0.00302890

500-1000 Hz
-0.00249420
-0.00282091
0.00257679
0.01451271
0.02868120
0.03621179
0.02784469
0.00000000
-0.04079870
-0.07849207
-0.09392213
-0.07451087
-0.02211575
0.04567473
0.10232715
0.12432599
0.10232715
0.04567473
-0.02211575
-0.07451087
-0.09392213
-0.07849207
-0.04079870
0.00000000
0.02784469
0.03621179
0.02868120
0.01451271
0.00257679
-0.00282091
-0.00249420

1000-2000 Hz
-0.00231491
0.00990113
0.02086129
0.00000000
-0.03086123
-0.02180695
0.00769333
0.00000000
-0.01127245
0.04726837
0.10106105
0.00000000
-0.17904543
-0.16031428
0.09497157
0.25562154
0.09497157
-0.16031428
-0.17904543
0.00000000
0.10106105
0.04726837
-0.01127245
0.00000000
0.00769333
-0.02180695
-0.03086123
0.00000000
0.02086129
0.00990113
-0.00231491

2000-3000 Hz
0.00231491
0.00990113
-0.02086129
0.00000000
0.03086123
-0.02180695
-0.00769333
0.00000000
0.01127245
0.04726837
-0.10106105
0.00000000
0.17904543
-0.16031428
-0.09497157
0.25562154
-0.09497157
-0.16031428
0.17904543
0.00000000
-0.10106105
0.04726837
0.01127245
0.00000000
-0.00769333
-0.02180695
0.03086123
0.00000000
-0.02086129
0.00990113
0.00231491

3000-4000 Hz
0.00554149
-0.00981750
0.00856805
0.00000000
-0.01267517
0.02162277
-0.01841647
0.00000000
0.02698425
-0.04686914
0.04150730
0.00000000
-0.07353666
0.15896026
-0.22734513
0.25346255
-0.22734513
0.15896026
-0.07353666
0.00000000
0.04150730
-0.04686914
0.02698425
0.00000000
-0.01841647
0.02162277
-0.01267517
0.00000000
0.00856805
-0.00981750
0.00554149
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F2.2 Optimised coefficients for the MELP decoder derived using design method - 1.

0-500 Hz
0.00115449
0.00056857
-0.00054142
-0.00270295
-0.00603678
-0.00982600
-0.01235591
-0.01117221
-0.00375041
0.01160217
0.03491244
0.06409449
0.09510722
0.12274316
0.14185831
0.14868968
0.14185831
0.12274316
0.09510722
0.06409449
0.03491244
0.01160217
-0.00375041
-0.01117221
-0.01235591
-0.00982600
-0.00603678
-0.00270295
-0.00054142
0.00056857
0.00115449

500-1 000 Hz
0.00177634
0.00294002
0.00316472
0.00175675
-0.00003817
0.00231816
0.01344729
0.03117056
0.04242094
0.02866649
-0.01975593
-0.09044007
-0.14936487
-0.15883315
-0.10258844
0.00000000
0.10258844
0.15883315
0.14936487
0.09044007
0.01975593
-0.02866649
-0.04242094
-0.03117056
-0.01344729
-0.00231816
0.00003817
-0.00175675
-0.00316472
-0.00294002
-0.00177634

1000-2000 Hz
0.00063104
-0.00016315
0.00208261
0.00000000
-0.01191956
-0.01366229
0.00862268
0.01804098
0.00057685
0.02099278
0.06936930
0.00000000
-0.17408769
-0.16935148
0.10508014
0.28708773
0.10508014
-0.16935148
-0.17408769
0.00000000
0.06936930
0.02099278
0.00057685
0.01804098
0.00862268
-0.01366229
-0.01191956
0.00000000
0.00208261
-0.00016315
0.00063104

2000-3000 Hz
0.00232510
-0.00102785
0.00024646
-0.00490030
0.00446913
0.01389190
-0.02344390
0.00000000
0.00891769
0.01470710
0.02594843
-0.12722144
0.07299819
0.17507684
-0.26516237
0.00000000
0.26516237
-0.17507684
-0.07299819
0.12722144
-0.02594843
-0.01470710
-0.00891769
0.00000000
0.02344390
-0.01389190
-0.00446913
0.00490030
-0.00024646
0.00102785
-0.00232510

3000-4000 Hz
-0.00079102
-0.00077181
0.00279205
-0.00378835
0.00097558
0.00654825
-0.01408511
0.01227760
0.00513561
-0.03166337
0.04589679
-0.02243309
-0.04911514
0.15083362
-0.24116031
0.27729118
-0.24116031
0.15083362
-0.04911514
-0.02243309
0.04589679
-0.03166337
0.00513561
0.01227760
-0.01408511
0.00654825
0.00097558
-0.00378835
0.00279205
-0.00077181
-0.00079102
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