
Title IIR approximation of FIR filters via discrete-time vector fitting

Author(s) Wong, N; Lei, CU

Citation Ieee Transactions On Signal Processing, 2008, v. 56 n. 3, p.
1296-1302

Issued Date 2008

URL http://hdl.handle.net/10722/57444

Rights

©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37893738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1296 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 3, MARCH 2008

IIR Approximation of FIR Filters Via
Discrete-Time Vector Fitting

Ngai Wong, Member, IEEE, and Chi-Un Lei, Student Member, IEEE

Abstract—We present a novel technique for approximating finite-im-
pulse-response (FIR) filters with infinite-impulse-response (IIR) structures
through extending the vector fitting (VF) algorithm, used extensively
for continuous-time frequency-domain rational approximation, to its
discrete-time counterpart called VFz. VFz directly computes the candidate
filter poles and iteratively relocates them for progressively better approxi-
mation. Each VFz iteration consists of the solutions of an overdetermined
linear equation and an eigenvalue problem, with real-domain arithmetic
to accommodate complex poles. Pole flipping and maximum pole radius
constraint guarantee stability and robustness against finite-precision
implementation. Comparison against existing algorithms confirms that
VFz generally exhibits fast convergence and produces highly accurate IIR
approximants.

Index Terms—Approximation algorithm, finite-impulse-response (FIR)
filters, infinite-impulse-response (IIR) filters, vector fitting.

I. INTRODUCTION

Vector fitting (VF) [2], [3], since its introduction in 1999, has become
a popular technique for fitting calculated or measured frequency-de-
pendent vector/matrix data with rational function approximation. Ap-
plication examples include power system and transmission line mod-
elings, electromagnetic simulation, and lately in VLSI package and
high-speed interconnect simulations [4], [5]. However, the use of VF
has been limited to the Laplace domain (s-domain), and that the fitting
thus obtained is primarily employed for model identification.

On the other hand, in digital filter design, recent research has been
drawn to the infinite-impulse-response (IIR) approximation of finite-
impulse-response (FIR) filters, e.g., [6]–[11]. This is motivated by 1)
IIR design methodology through matching to a prescribed FIR filter
prototype and 2) possible hardware savings due to the fewer multi-
pliers in IIR structures. Representative IIR approximation algorithms
include state-space model reduction and least-squares (LS) approxima-
tion [6]–[10], etc. However, in the approximation exercise, stringent
constraints like accurate magnitude and phase matching, stability, and
low algorithmic complexity have to be satisfied. Owing to the highly
nonlinear nature of the problem, so far there is no optimal algorithm in
terms of accuracy and computational cost [11].

The correspondence generalizes VF to its discrete-time or z-domain
counterpart, called VFz. Instead of the conventional use in model iden-
tification, VFz is adapted to filter design, and in particular, the IIR
approximation of FIR filters. Analogous to VF, the core of VFz is a
two-step process for refining the filter poles such that the desired re-
sponse may be accurately reproduced with usually low-order rational
functions. VFz enjoys simple coding and is numerically well-condi-
tioned with its use of partial fractions, instead of power series, as basis
functions. Unstable poles undergo reciprocal flipping; thus, stability is
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always guaranteed. The maximum pole radius can also be readily con-
strained for finite wordlength consideration. Numerical examples then
confirm the remarkable efficiency and accuracy of VFz over conven-
tional IIR approximation algorithms.

II. VECTOR FITTING

VF [2] attempts to fit the rational function
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+ d+ se

to a set of calculated/sampled data points f(sk)’s at frequencies
fskg; k = 1; 2; . . . ; Ns. The poles an and residues cn are either real
or complex conjugate pairs, and d and e are real. Starting with a set
of prescribed or approximated poles f�(0)n g; n = 1; 2; . . . ; N , and by
introducing the scaling function �(s), a linear problem is set up for
the ith iteration, namely
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i = 0; 1; . . . ; NT , where NT denotes the number of iterations when
convergence is attained or when the upper limit is reached. The un-
knowns, cn; d; e, and n, are solved through an overdetermined linear
equation formed by evaluating (1) at the Ns sampled frequency points.
It can be observed that (1) constrains (�f)(s) and �(s)f(s) to share
the same poles, which in turn implies that the original poles of f(s)
are canceled by the zeros of �(s). Solving the zeros of �(s) therefore
produces, in the LS sense, an approximation to the poles of f(s), viz.
f�

(i+1)
n g, which are then fed back to (1) as the next set of known poles.

Any unstable pole is flipped about the imaginary axis to the open left
half plane for stability. Upon convergence, the update in f�(i)n g dimin-
ishes and �(s) � 1.

Subsequently, VF represents a two-step process: constructing �(s)
and computing its zeros, such that the underlying (stable) system poles
are successively approximated. Linear equation solves and eigenvalue
solves are used exclusively in VF. Furthermore, VF is applicable to fit-
ting vectors by replacing cn; d, and e in (1), and hence f(s), by column
vectors. In that case, all entries of the fitted vector share a common set
of poles fang := f�

(N )
n g(“:=” denotes assignment). Recently, [12]

has recognized VF to be a special case of the Sanathanan–Koerner (SK)
iteration [13], but with a well-conditioned pole-based basis as com-
pared to the conventional power-series implementations.

III. DISCRETE-TIME VECTOR FITTING

Our design goal is to approximate the FIR digital filter

f(z) =

L

n=0

hnz
�n where hn 2 ; hL 6= 0 (2)

with a causal and stable IIR filter

f̂(z) =
P (z)

Q(z)
=

M

�=0 p�z
��

N

�=0 q�z
��

where p�; q� 2 ; q0 = 1: (3)

Therefore, all poles of f̂(z) (zeros of Q(z)) must lie in jzj < 1.
Using �(�) to denote complex conjugate operation, obviously, f(ej
) =

f(e�j
) and f̂(ej
) = f̂(e�j
);8
 2 [��; �). To exclude the trivial
case of f̂(z) � f(z), we assume M < L. In the following, we for-
mulate VFz as the discrete-time counterpart of VF and adopt it to IIR
filter design.
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A. Pole Relocation and Stabilization

Similar to VF, we use partial fraction basis to seek a rational approx-
imation of the FIR filter f(z) in (2). This is done by equating (approx-
imating) it to the IIR filter f̂(z) in (3), namely

f̂(z) =

N

n=1

cn
z�1 � an

+ d � f(z) =

L

n=0

hnz
�n; (4)

over the (digital) frequency band(s) of interest. Similarly, cn and an
are either real or complex conjugate pairs. We note that in (1) the “se”
term is included for a generic continuous-time passive transfer func-
tion which is not needed in the digital filter regime. To ensure stability,
the set of poles f1=ang in (4) must be within the unit circle and there-
fore janj > 1.As in (1), supposing an initial set of pole reciprocals
f�

(0)
n g; j�

(0)
n j > 1, is specified, we build
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i = 0; 1; . . . ; NT . Ambiguity in the solution for �(z) is removed by
matching it to unity as z approaches the origin. Now (5) is linear in
its unknowns cn; d, and n. Writing (5) for the Ns frequency points
zk = ej
 ;
k 2 [0; �); k = 1; 2; . . . ; Ns; Ns > 2N + 1, gives an
overdetermined linear problem. Specifically, rewriting (5) at z = zk
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which can be put into

Akx = bk (7)

where

Ak=
1

z ��
� � � 1

z ��
1 �f(z )

z ��
� � � �f(z )

z ��

x=[ c1 � � � cN d 1 � � � N ]T ; bk = f(zk):

(8)

Here, Ak and x are row and column vectors, respectively, and bk is a
scalar. Repeating (7) at the Ns frequency points and stacking the Ak’s
and bk’s into a (tall) column matrix and a vector, respectively, gives the
overdetermined linear equation for each i, namely

Ax = b: (9)

Real arithmetic is preferred in actual computation. When all poles in
(6) are real, and therefore real �(i)n ’s, x is a real vector while A and b
are complex. Accordingly, (9) is solved in the real domain by

<A

=A
x =

<b

=b
(10)

where< and= denote the real and imaginary parts, respectively. Using
the last N elements of the LS solve of x, i.e., 1 to N ; �(z) in (5) can

be reconstructed whose zeros, f1=�(i+1)n g, then form the new set of
starting poles in the next VFz iteration. Similar to the VF analysis [2],
it can be shown that the reciprocals of zeros of �(z);f�(i+1)n g, are
conveniently obtained as the eigenvalues of

	 =

�
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1

�
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. . .

�
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N
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1

1
...
1

[ 1 2 � � � N ] : (11)

	 is real when only real poles are considered. To ensure stability, it is
required that every j�(i+1)n j > 1. If it is not so, its reciprocal is taken,
viz. �(i+1)n := 1=�

(i+1)
n , such that the pole is flipped back inside the

unit circle. This has the physical meaning of multiplying the all-pass
filter

z�1 � �
(i+1)
n

1� ��
(i+1)
n z�1

to both sides of (5) (now with i := i + 1), thus changing the phase
without altering the magnitude response. Here, a real�(i+1)n is assumed
but flipping of conjugate poles follows exactly by multiplying two all-
pass filters, with conjugate poles, at a time. Such stability enforcement
parallels the pole flipping strategy in the s-domain VF. So far, only real
poles are considered. Special care must be paid to complex conjugate
poles.

B. Complex Poles

The poles in (5) or (6) must be either real or complex conjugates
such that f̂(z) stays as a real-coefficient approximant to the original
f(z) whose tap coefficients are real. In case of complex conjugate pole
pairs in (6), i.e., �(i)n+1 = ��

(i)
n , the cn’s and n’s in x must also be in

conjugate pairs. To maintain a real x, the corresponding entries in Ak

and x need to be modified. Without loss of generality, suppose the first
two poles in Ak are conjugate pair, i.e., �(i)2 = ��

(i)
1 . With reference to

(7) and (8), we have

Ak =
1

z ��

1

z ���
� � �

x = [ c1 �c1 � � � ]T : (12)

To maintain a real x, (12) is rewritten as

Ak=
1

z ��
+ 1

z ���
j 1

z ��
� 1

z ���
� � �

x=[<c1 =c1 � � � ]T :

(13)

Modification for the last N entries in Ak and x (i.e., 1 to N ) for
conjugate pole pairs follows similarly [see (14), shown at the bottom
of the page]. Subsequently, (10) is formulated and solved with these
new expressions of Ak’s and x.

To compute the zeros of �(z), which now contains complex poles,
we apply similarity transform to (11) to bring it back to a real matrix.

Ak = � � � � 1

z ��
+ 1

z ���
f(zk) �j 1

z ��
� 1

z ���
f(zk) � � �

x = [ � � � <1 =1 � � � ]T : (14)
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Fig. 1. Typical initial pole placements in VFz for the six-pole IIR approxima-
tions of general lowpass (LP), bandpass (BP), and highpass (HP) filters. All
poles are sitting on a circle with radius= 0:9.

Each pair of conjugate poles now manifest as a 2� 2 diagonal block in
	. Specifically, using the notions in (14), 	 is transformed into

	 =

<�
(i)
1 =�

(i)
1

�=�
(i)
1 <�

(i)
1

. . .

�

2

0
...

[<1 =1 � � � ] : (15)

Apart from accelerating convergence, allowing complex poles in the
(real) VFz arithmetics is critical, if not necessary, as all practical digital
filters have poles distributed in certain sectors in the complex plane. For
example, Fig. 1 shows the typical initial pole placements for general
lowpass (LP), bandpass (BP), and highpass (HP) filters.

C. Building the IIR Filter

Suppose a converged set of filter poles (or their reciprocals f�(N )
n g)

are obtained, the final step is to reconstruct the IIR filter f̂(z). With ref-
erence to (5) and (6), we should now have �(z) � 1 and the following
relationship holds:

f̂(zk) =

N

n=1

cn

z�1k � �
(N )
n

+ d � f(zk); (16)

k = 1; 2; . . . ; Ns. The residues cn of f̂(z) are computed in exactly
the same manner as in the previous two sections, except that the last
N elements in both Ak and x are now discarded. This partial fraction
decomposition of f̂(z) may then be summed up to a rational function
commonly used in IIR filter representation.

The computation of VFz lies in its two major steps: the overdeter-
mined equation solve in (10) requires O(N2Ns) operations, and the
eigenvalue solve in (11) or (15) requires O(N3) operations. As will
be discussed later, we usually choose Ns � L � 4N and NT is
consistently within 10–15, therefore overall VFz constitutes anO(N3)
algorithm.

D. Filter Stability and Finite Wordlength Consideration

Pole stability is not necessarily guaranteed in some IIR approxi-
mation algorithms (e.g., see [11]). Explicit pole computation in VFz,

however, allows simple reciprocal flipping of unstable poles whose re-
lationship to all-pass filter multiplication has been described in Sec-
tion III-A. The multiplication of all-pass filters, while preserving the
magnitude, always alters the phase response. The effect of this phase
change, however, is then offset/suppressed through the solution of (10)
which seeks the residue and dc coefficient update, under the new set of
(stable) poles, that provides the LS fit to the objective FIR frequency
samples ff(zk)g in terms of both magnitude and phase. Because the
residues are related to the numerator and therefore zeros of the rational
function approximant, this step is also known as the numerator update
or zero placement.

In hardware implementation, not only the stability of the ideal filter
but also the relative stability due to coefficient quantization has to be
considered. Specifically, finite wordlength (FWL) dictates that only a
finite and usually nonuniform constellation of poles on the unit circle
can be realized [14]. To impose a FWL stability margin [15], we adopt
the common, if ad hoc, scheme by restricting the maximum pole radius
to be inside a bound smaller than unity. Again, with the explicit poles
obtained from (11) or (15), this is simply done by a scaling of any
violating pole.

In our experiments in Section V, pole flipping always occurs during
the first few (�5) iterations before the poles eventually settle to a rel-
atively fixed region in the unit circle. The effects of maximum pole
radius and FWL are also studied in Example 5. In any case, conver-
gence is maintained despite the fact that a few more iterations may be
incurred.1 Such excellent convergence is attributed to the connection of
VFz to the Steiglitz–McBride (SM) Iteration, as discussed below.

IV. VFZ AS STEIGLITZ–MCBRIDE ITERATION

Analogous to the equivalence between VF and SK iteration
[13], [12], VFz can be regarded as a reformulation of the rational
function fitting procedure called SM iteration [17]. Using the nota-
tions from Section III, given a transfer function or response f(z),
SM iteration replaces the nonlinear LS approximation objective
GL = �N

k=1jf(zk)� (P (zk))=(Q(zk))j
2 with a linearized GSM

where

GSM =

N

k=1

1

jQ(i�1)(zk)j
2 Q(i)(zk)f(zk)� P (i)(zk)

2

: (17)

Here, P (i) and Q(i) are, respectively, the numerator and denominator
determined during the ith SM iteration (thus Q(i�1) is assumed pre-
determined). Although GSM is not equivalent to GL , by using the
triangle inequality, if we approximate f(z) by an N th-order system,
kGL �GSMk2 � 2�N+1, where �i denotes the ith singular value
of a Hankel-form matrix constructed by the coefficients hn’s of f(z),
whose order L � N [18] and �i measures the significance of the ith
approximant order. In general, SM iteration converges to a near-global-
optimal approximant as in the LS sense for noise-free data, with an a
priori error bound for an N th-order approximant

min
deg( =N)

1

2�

�

��

f(ej!)�
P (i)(ej!)

Q(i)(ej!)

2

d!

1=2

� �N+1:

(18)
Such error bound is important as it provides a certificate for the approx-
imant accuracy and can be used to select the approximant order. For ex-
ample, from our extensive experience with VFz and the Hankel-form
matrices thus analyzed, a rule of thumb is to set N � L=4 for the
number of IIR poles to obtain a good (viz. �N+1 � 0) approximation.
SM iteration has been used in digital filter design [19], [20], but the

1We note that, like VF, convergence of VFz can be destroyed by noisy fre-
quency samples so robust schemes should be used to restore it [16]. In our con-
text, the samples ff(z )g arising from the predetermined FIR prototype are
always noise free so we refrain from further elaboration.
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TABLE I
FILTER SPECIFICATIONS AND RESULTS

corresponding formulations require complicated linearization tradeoff
and additional optimization constraints. This is in contrast to the simple
codings of VFz as well as its use of numerically well-conditioned par-
tial fraction basis that eliminates high powers of z = ej! in a direct
SM implementation.

V. NUMERICAL EXAMPLES

The balanced model reduction (BMR) [7], [9] method is known to
produce good IIR approximants, but is restricted by its fast growth in
algorithmic complexity with respect to the FIR filter order. In [11], var-
ious non-model-reduction, essentially iterative, algorithms are exam-
ined, namely, the (weighted) least-squares (LS), least-squares inverse
(LSI), FIR fitting, and mixed-domain fitting. Among these, it has been
found that the LS scheme often produces the most accurate IIR ap-
proximants. Subsequently, we contrast VFz against BMR [7] and LS
[8] schemes for its accuracy and complexity. All experiments are done
in the Matlab 7.2 environment using a 512 MB-RAM 1.4-GHz laptop.
All algorithms (VFz, LS, and BMR) are coded in standard m-script
files. The FIR prototypes are designed with the Matlab routine fir1
using the window method.

Example 1: An 80-tap FIR linear-phase LP filter is reduced to a
20-pole IIR filter (recall ourN � L=4 heuristics from Section IV). The
numerator and denominator in each IIR filter are of the same order. The
filter specification and CPU times of respective algorithms are listed in
Table I. Specifically, VFz uses 100 linearly spaced sampling points in
the passband and transition band, and 30 in the stopband, and is run
for 15 iterations, which is more than sufficient. The initial poles follow
the typical LP distribution as in Fig. 1 by uniformly distributing 20
poles with a radius of 0.9 in the angle range �0:8�=2. For fairness,
the number of iterations in LS equals that in VFz. From Table I, the
iterative schemes, LS and VFz (both of O(N3) complexity), exhibit
much higher efficiency than BMR (of O(L3) complexity). The time of
VFz is slightly higher than that of LS mainly because of the eigenvalue
solve, which is not needed in the latter. Fig. 2 and Table II show the
magnitude and phase (represented by the group delay) responses, as
well as the approximation errors. Obviously, all schemes produce sat-
isfactory results but among them, VFz always renders the best approx-
imants, seen graphically and verified numerically (cf. Table II where
passband accuracy has a higher importance in filter design). In other
words, VFz achieves similar computational efficiency to LS, and com-
parable or even better accuracy than BMR.

To demonstrate the robustness and insensitivity of VFz against initial
pole placement, the starting poles are now assigned in the opposite HP
region as in Fig. 3. The “self-correcting” pole relocation can be seen
which reaches convergence after seven iterations, eventually giving the
same results as with LP starting poles (for which the convergence is
attained after only four iterations).

Example 2: A 120-tap FIR linear-phase BP filter is reduced to a
30-pole IIR filter. Again, the filter specification and CPU times are in
Table I. This time, we reduce the number of VFz sampling points and
iterations. Specifically, VFz uses 80 linearly spaced sampling points in
the passband and transition band, and 20 in the stopband, and is run for

Fig. 2. Frequency responses of the LP filters in Example 1: (a) magnitude re-
sponses and (b) passband group delays.

TABLE II
ABSOLUTE APPROXIMATION ERRORS IN EXAMPLES 1 AND 2. I: PASSBAND

MAGNITUDE, II: PASSBAND GROUP DELAY, III: STOPBAND MAGNITUDE.
THE “WINNER” IN EACH CATEGORY IS UNDERLINED

Fig. 3. VFz pole relocation of the LP filter in Example 1 using HP initial poles:
at the 3rd, 7th and 15th iterations.
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Fig. 4. Frequency responses of the BP filters in Example 2: (a) magnitude re-
sponses and (b) passband group delays.

Fig. 5. Frequency responses of IIR approximants by VFz for different numbers
of sampling points (iterations fixed at 8): (a) magnitude response and (b) pass-
band group delays.

eight iterations. Responses and errors are shown in Fig. 4 and Table II.
Similar observations as in Example 1 are obtained.

Example 3: The influence of the number of frequency sampling
points on VFz is investigated. The filter in Example 2 is used. This
time, all the sampling points are linearly spaced over [0; �), and VFz
is run for eight iterations. Fig. 5 and Table III show the results. The
group delay curve of the 61-point case is omitted since it does not give
an accurate result. Obviously, to enable solution of (9) [therefore (10)],
at least 2N +1 (N : IIR poles) points are needed. It can be observed in
Fig. 5 that in general more sampling points give rise to more accurate
approximants, but the gain quickly tapers off beyond a certain number
(100 in this test). Excessive sampling points do not improve accuracy
much but increase the CPU time. From our experience in various tests,

TABLE III
CPU TIMES OF VFZ UNDER DIFFERENT NUMBERS OF SAMPLING POINTS

(ITERATIONS FIXED AT 8)

TABLE IV
CPU TIMES OF VFZ UNDER DIFFERENT NUMBERS OF ITERATIONS (SAMPLING

POINTS FIXED AT 100)

Fig. 6. Frequency responses of IIR approximants by VFz for different num-
bers of iterations (sampling points fixed at 100): (a) magnitude response and (b)
passband group delays.

a simple rule of thumb is to set the number of sampling pointsNs to be
approximately equal to the FIR filter orderL. Furthermore, an intuitive
weighting scheme, which proves to work remarkably well as demon-
strated in Examples 1 & 2, is to assign more points in the passband and
transition band, and fewer in the stopband, thus resulting in better IIR
shaping at the frequencies of higher importance.

Example 4: The influence of the number of iterations on VFz is in-
vestigated. The filter in Example 2 is used. Now we fix the number of
sampling points to be 100 which are linearly spaced over [0; �). Fig. 6
and Table IV show the results. The group delay curve of the one-itera-
tion case is omitted since it does not give an accurate result. It can be
observed in Fig. 6 that in general more iterations give rise to more ac-
curate approximants, but the gain quickly tapers off beyond a certain
number (as few as five in this test). Excessive iterations do not im-
prove accuracy much but increase the CPU time. Moreover, if we put
80 linearly spaced sampling points in the passband and transition band,
and 20 in the stopband, the passband ripples in Fig. 6 in the one-itera-
tion curve will smoothen out. This further verifies the help of sensible
sampling point allocation in enhancing the VFz convergence as well as
accuracy. In practice, the number of VFz iterations required is filter-
and initial-pole-dependent so the terminating condition should be one
that checks for smaller relative pole update than a preset tolerance. We
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Fig. 7. Frequency responses of IIR approximants by VFz with pole radius con-
straint: (a) magnitude responses and (b) passband group delays.

have implemented this check and found that in all our experiments (in-
cluding many not reported here), VFz consistently converges in 5–15
iterations with high robustness against distributions of initial poles and
frequency sampling points. The practically bounded iterations in VFz
thereby does not add to the O(N3) algorithmic complexity.

Example 5: The effects of maximum pole radius constraint and co-
efficient quantization are investigated (cf. Section III-D). The LP filter
in Example 1 is used. A pole radius bound of 0.925 is imposed. It is
found that VFz converges in only five iterations, and the maximum pole
radius of the IIR approximant equals 0.925. The IIR filter coefficients
are then quantized and realized using stable second-order sections. The
frequency responses of the ideal, 16-bit floating- and fixed-point struc-
tures are compared in Fig. 7. It is shown that despite a minor degra-
dation in the stopband attenuation, the passband group delays in the
quantized cases are only slightly affected.

VI. REMARKS

1) An interesting observation is that VFz fitting of the desired IIR
response is consistently more accurate in the passband in both
magnitude and phase. This can be explained by investigating the
mechanism in solving the overdetermined linear (9) or (10). Take,
for instance, the LP filter in Example 1, the rows Ak (inA) and bk
(in b) corresponding to the passband zk’s have bigger norms than
those falling outside the passband. The LS solve of this system
of equations then results in an automatic weighting and produces
better “resolution” in the passband approximation.

2) In most non-model-reduction schemes, the determination of the
poles, i.e., finding the denominator of f̂(z), constitutes the most
important and difficult part in the algorithm [8], [11]. Because the
strength of VFz lies in its deterministic refinement and explicit
handling of poles, VFz is expected to outperform competing al-
gorithms in terms of approximation accuracy. This has also been
verified in our numerical examples.

3) VFz is simple in coding and concept since it is merely based on al-
gebraic fitting of the prototype response with stability guarantee.
As seen in the numerical examples, VFz exhibits high computa-
tional efficiency as in the iterative LS scheme, and comparable or
even better optimality than the BMR approach (cf. Table II for
the L2 and L1 IIR approximation errors versus the FIR proto-
type). From Section IV, the convergence of VFz tracks that of

SM iteration. To summarize the recommended settings for VFz in
the IIR approximation exercise, we may choose N � L=4 with
standard initial pole placement as in Fig. 1, Ns � L and with
(zk; f(zk))(k = 1; . . . ; Ns) evenly distributed across [0; �) or
concentrated towards the passband and transition band, and then
run VFz for 10–15 iterations or until the pole update is negligible.

4) The weighted LS version of VFz, paralleling that in the s-domain
VF [3], can be formally developed. However, this is beyond the
central theme of this correspondence and is not further elaborated.

VII. CONCLUSION

This correspondence has generalized the VF algorithm to its dis-
crete-time counterpart called VFz. The novel application of VFz in IIR
approximation of FIR filters has been investigated in depth. Starting
with a set of prescribed initial poles, VFz uses linear solves and eigen-
value computations to iteratively relocate the poles for improved ap-
proximation. Modification of VFz to allow complex poles and the ef-
fects of pole flipping and finite wordlength consideration have been
described. Numerical examples have confirmed that IIR approxima-
tion by VFz exhibits fast convergence and excellent accuracy in terms
of both magnitude and phase.
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Quickest Detection and Tracking of Spawning Targets
Using Monopulse Radar Channel Signals

Atef Isaac, Peter Willett, and Yaakov Bar-Shalom

Abstract—Recent advances have been reported in detecting and esti-
mating the location of more than one target within a single monopulse
radar beam. Successful tracking of those targets has been achieved with
the aid of nonlinear filters that approximate the targets’ states’ condi-
tional pdf, bypassing the measurement extraction stage, and operating
directly on the monopulse sum/difference data, i.e., without measurement
extraction. The problem of detecting a target spawn will be tackled in
this paper. Particle filters will be employed as nonlinear tracking filters
to approximate the posterior probability densities of the targets’ states
under different hypotheses of the number of targets, which in turn can be
used to evaluate the likelihood ratio between two different hypotheses at
subsequent time steps. Ultimately, a quickest detection procedure based
on sequential processing of the likelihood ratios will be used to decide
on a change in the underlying target model as an indication of a newly
spawning target. Radar signal processing, data association, and target
tracking are handled simultaneously.

Index Terms—Monopulse radar, particle filter, target tracking, unre-
solved targets.

I. INTRODUCTION

There has been a growing interest in the early detection of missiles
that separate from a re-entry platform. Due to the limited resolution
of monopulse radar and the fact that the separating missiles were in
essence (just moments back in time) parts of the same platform, return
signals from those objects merge altogether for a single radar measure-
ment (a matched filter sample). A simple monopulse ratio [4] estimated
DOA (direction of arrival) will erroneously correspond to a single ob-
ject that best matches the observation, nonindicative of the true number
of those separate objects, their locations, and, more important, the time
they were set apart.
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In principle, a monopulse radar provides excellent sub-beam angular
estimation by comparing energy returns of four squinted sub-beams
steered symmetrically around the expected single target location [13].
Work has been done to overcome the aforementioned problem, i.e.,
to resolve the multiple objects lying within a single monopulse radar
beam. In [5], the authors extended the complex monopulse ratio pro-
cessing concept to the two-target case by using the in-phase and quadra-
ture components of the complex monopulse ratio. They developed the
monopulse ratio conditional pdf of the amplitude of the sum signal in
[6] and then used it to develop the CRLB for the DOA estimator. In [4],
they developed an angle estimator based on the in-phase and quadrature
components of the complex monopulse ratio and the observed signal
strengths for two unresolved Rayleigh targets. A maximum-likelihood
(ML) angle estimator for both the Swerling I and Swerling III tar-
gets [13] was developed in [17]. A closed-form ML solution that re-
places the numerical search of [17] was given in [18]. By correlating
the radar’s consecutive matched filter samples on its three channels (the
sum, horizontal difference and the vertical difference channels) and uti-
lizing the models developed in [5], the authors in [20] upper bounded
the identifiability of the number of targets to five, and imposed a min-
imum description length (MDL) penalty to help in this discrimination.

However, when the ML solution of [20] was coupled to Kalman fil-
ters in [11], its tracking results proved inferior to what was obtained
when using a joint particle filter that integrated the tracking with the
measurement extraction tasks. This was done by having the particle
filter operate directly on the radar channel signals, i.e., without target
position extraction techniques based on monopulse ratio processing. In
addition, it was asserted in [19] that the techniques in [20] are ineffec-
tive at deciding the number of targets on a scan-by-scan basis when the
targets are close (which is the case when one target is spawning from
the other); this was due to the fact that the likelihood function is often
maximized by two collocated targets [6], [17], and an incorrect prefer-
ence for a single target decision is often exhibited by the MDL criterion.
Hence, some sort of memory is needed to accumulate the confidence
that an underlying system model change is taking place. For this pur-
pose, and influenced by the good tracking results in [11], we will addi-
tionally call upon the ideas from [7] to construct sequentially the like-
lihood ratio using the particles’ un-normalized weights. The likelihood
ratio at any given time step is central to classical threshold-based tests,
such as the Neyman–Pearson test that maximizes the probability of de-
tection for a given false alarm probability. However, our concern in
this paper is to detect a target spawn event in the shortest time possible,
i.e., to minimize the stopping time (the time at which a final detection
decision is taken). To this purpose, we will adopt Page’s CUSUM (cu-
mulative sum) procedure as a change detection scheme that does not re-
quire the knowledge of the starting point of a model change, to process
the sequential likelihood ratio functions as they arrive and to declare
a target spawn event whenever the CUSUM exceeds a threshold. Data
association is implicitly handled by this new algorithm whenever a de-
cision is made on the number of targets.

The paper describes the measurement model in Section II, in which
the nonlinearity of the filtering model is stressed. If the filtering
problem is nonlinear, then a particle filter offers a reasonable choice,
and in Section III we discuss the version we use: the auxiliary particle
filter. Particle filters work well for estimation (location), but we have
already seen that for the closely-spaced monopulse problem in [11].
What we offer here is an integrated determination of the number of
targets. Hypothesis testing and the “quickest-detector” Page test (see
Section V) can directly use information from the particle filters, as
described in Section IV. The paper concludes with simulation results
in Section VI.
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