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Summary

In this thesis, two computationally efficient structures of symmetric FIR filters are

discussed: the parallel filter and the frequency-response masking (FRM) struc-

ture.

A basic parallel filter is composed of a parallel prefilter and an equalizer. A

new design method based on weighted least square (WLS) is proposed to jointly

optimize all subfilters in a parallel filter. New equations are developed to estimate

the lengths of subfilters in a jointly optimized basic parallel filter.

When subfilters in a FRM filter are jointly optimized, lengths of two masking fil-

ters are reduced. This reduction makes some original design equations inaccurate

for jointly optimized FRM filters. A new set of design equations are developed.

These equations give accurate estimations of subfilter lengths and the interpola-

tion factor in a jointly optimized FRM filter.

An even-length FIR filter is proposed to be utilized as the prototype filter in

a FRM filter. New structures are proposed for the synthesis of FRM filters

vi



with even-length prototype filters. Sequential quadratic programming (SQP) is

utilized to jointly optimize all the subfilters in a FRM filter.

In addition, a new design method is proposed to improve design efficiency of

jointly optimized FRM filters. This method is based on a dynamic frequency

grid points allocation scheme, resulting in significant savings in memory and

computing time.
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Chapter 1

Introduction

In 1928, Harry Nyquist articulated his famous sampling theorem [1], and it was

mathematically proven by Claude Shannon in 1949 [2]. The sampling theorem is

a fundamental theorem of digital signal processing (DSP). In the past decades,

more and more new DSP algorithms have been developed. These new algorithms

effectively reduce the complexity and improve the performance of DSP systems.

At the same time, with the development of integrated circuits and digital signal

processors, DSP techniques are widely employed in fields of communications,

satellite, radar, audio and image processing.

Digital filters play an important role in the field of DSP. Digital filter can be clas-

sified into two classes: finite impulse response (FIR) filters and infinite impulse

response (IIR) filters. FIR filters have the advantage of guaranteed stability,

which is often a fatal problem that IIR filters have to face. Moreover, symmetric

1
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FIR filter provides linear phase frequency response, which is important in many

applications. However, an IIR filter generally has a lower complexity than a cor-

responding FIR filter. The arithmetic computation cost for every output sample

of a FIR filter is higher, especially when the transition bandwidth is narrow. Re-

cently, more and more computationally efficient digital filter structures have been

proposed to reduce the filter complexity. Meanwhile, many new design methods

were developed to shorten the design time, or improve the performance of digital

filters. Digital filters have become more attractive than ever.

1.1 Literature Review

In the past decades, many new computationally efficient FIR structures have been

proposed to reduce the number of multipliers and adders in a FIR filter. The

number of multipliers and adders of a FIR filter is determined by the filter length.

At the same time, design methods, such as the Remez iterative exchange design

method [3, 7, 8], require that the filter length is known in advance. Therefore, it

is needed to estimate the filter length accurately. The literature review begins

with the length estimation of a FIR filter.
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1.1.1 Low Pass FIR Filter Length Estimation

The length of a linear phase low pass FIR filter, N , is affected by four parameters:

passband ripple δp, stopband ripple δs, passband edge fp and stopband edge fs.

The relationship between N , δp, δs and transition bandwidth ∆F (∆F = fs−fp)

is given in [9, 10, 12]. In [9] and [10], Herrmann et al. gave the filter length

estimation as

N̂1(∆F, δp, δs) =

〈
D∞(δp, δs)

∆F
− f(δp, δs) ·∆F + 1

〉
(1.1)

where

D∞(δp, δs) =
[
a1(log10 δp)

2 + a2 log10 δp + a3

]
log10 δs +

[
a4(log10 δp)

2 + a5 log10 δp + a6

]
(1.2)

f(δp, δs) = b1 + b2(log10 δp − log10 δs) (1.3)

a1 = 5.309× 10−3, a2 = 7.114× 10−2

a3 = −4.761× 10−1, a4 = −2.660× 10−3

a5 = −5.941× 10−1, a6 = −4.278× 10−1

b1 = 11.01217, b2 = 0.51244.

In (1.1), 〈a〉 denotes the nearest odd integer from a (For example, 〈6.1〉 = 7).

Besides the formula proposed in [9] and [10], Kaiser [12] independently proposed

another formula to estimate FIR filter length, i.e.

N̂2(∆F, δp, δs) =

⌈
−20 log10

√
δpδs − 13

14.6∆F
+ 1

⌉
(1.4)
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were, dae denotes the minimum integer greater than or equal to a. In (1.4), N̂2

is an odd integer.

Equations (1.1) and (1.4) consider the odd length FIR filter cases, but do not

take into account of the effects of passband and stopband edges. Ichige, Iwaki

and Ishii developed a new formula to estimate the length of a low pass FIR

filter [64, 67, 73]. Their formula is much more accurate than Equation (1.1) and

(1.4), because it takes into account of effects of bandedges. The filter length can

be estimated by

N(fp, ∆F, δp, δs) = N1(fp, ∆F, δp) + DN(fp, ∆F, δp, δs) (1.5)

where,

N1(fp, ∆F, δ) = dNc(∆F, δ)· {g(fp, ∆F, δ) +

g(0.5−∆F − fp, ∆F, δ) + 1}/3e (1.6)

Nc(∆F, δ) =

⌈
1.101{− log10(2δ)

1.1}
∆F

+ 1

⌉
(1.7)

g(fp, ∆F, δ) =
2

π
arctan

{
v(∆F, δ)

(
1

fp

− 1

0.5−∆F

)}
(1.8)

v(∆F, δ) = 2.325(− log10 δ)−0.445(∆F )−1.39 (1.9)

DN(fp, ∆F, δp, δs) = dNm(∆F, δp, δs) ·
{
h(fp, ∆F, 1.1)−

[h(0.5−∆F − fp, ∆F, 0.29)− 1]/2}e (1.10)

Nm(∆F, δp, δs) = 0.52 · log10(δp/δs)

∆F
(− log10 δp)

0.17 (1.11)

h(fp, ∆F, c) =
2

π
arctan

{
c

∆F

(
1

fp

− 1

0.5−∆F

)}
. (1.12)

Although formulas reviewed so far have different accuracy, all of them indicate
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that the length of a FIR filter is approximately proportional to the reciprocal of

the transition bandwidth ∆F . A very narrow transition bandwidth will result

in a long FIR filter. To reduce the complexity of the FIR filter, many filter

structures have been proposed which reduce the complexity of the filter.

In the following sections, these FIR structures will be reviewed one by one.

1.1.2 Prefilter-Equalizer Approach

The essence of the prefilter-equalizer approach is to compose a filter using two

subfilters. It can be synthesized by following two steps [23]:

(1) Select an efficient “prefilter” for the given specification. The requirement

for this prefilter is to have a minimum number of multipliers, while having

a reasonably large stopband attenuation.

(2) Design an “equalizer” to compensate the frequency response of the prefilter,

and cascade the prefilter with the “equalizer” to achieve the desired overall

specifications.

With the help of the prefilter’s stopband attenuation, the equalizer and the overall

prefilter-equalizer structure will generally require less multipliers compared with

a filter designed in a direct form
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Much effort has been made to reduce the complexity of both the prefilter and the

equalizer. It is preferred that the prefilter is a multiplier-free filter. In [22] and

[23], Adams and Willson proposed to use the “recursive running sum” (RRS) [14]

filter as the prefilter in the design of a low pass filter. A RRS FIR filter is a low

pass filter, having equally spaced zeros on the unit circle, and provides about 13

dB attenuation in the stopband (with respect to the passband peak at normalized

radian frequency ω = 0). The implementation of a RRS filter requires L (L is an

integer) delays and two adders, which is simple and efficient. If large stopband

attenuation is required, several RRS prefilters can be cascaded to produce the

desired stopband attenuation. As RRS filters are free from multiplication, the

total number of multipliers required for an overall filter depends on the equalizer.

Generally speaking, the equalizer requires less arithmetic operations than a tra-

ditional FIR filter does. Therefore, the prefilter-equalizer structure may reduce

the number of multipliers. If a high-pass or bandpass prefilter is desired, the

corresponding prefilter can be transformed from a low pass prototype RRS filter.

Another prefilter approach is the simple symmetric sharpening (SSS) structure

[15]. The SSS structure improves the frequency response in both the passband

and the stopband by using a filter repeatedly. Adams and Willson [27] modified

the SSS structure to improve its performance. Each subfilter in the modified SSS

structure is still a RRS filter, which leads to a multiplier-free prefilter.

Another prefilter proposed by Adams and Willson in [27] is Bateman-Liu filter

[19], which comes from a communication technique called delta-modulation. All
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the coefficients of Batenman-Liu filter have the values of 0, +1 or -1, which

eliminate the multipliers in the filter. They noticed that the increased order of

Batenman-Liu filter could only improve the performance of the filter slightly.

Therefore, a short Batenman-Liu filter is adopted as a prefilter.

Vaidyanathan and Beitman proposed a new family of prefilters [31], based on

the well-known Dolph-Chebyshev functions [5]. Therefore, the coefficients of

low order Chebysev polynomial are often simple combinations of powers of two.

The implementations of these prefilters are multiplier-free. Compared with RRS

filters, the prefilters based on the Dolph-Chebysev functions have another advan-

tage, i.e. the designers have more choice of the prefilter parameters because the

coefficients of the prefilter is not limited to be all ones. This advantage makes

the design of the prefilter become more flexible.

Lian and Lim [50] proposed a new prefilter structure based on the combination

of two cosine functions. When the cosine function is negative and its square is

positive, a stopband is formed. The sum of a cosine function and its square results

in an acceptable stopband attenuation. Lian and Lim’s prefilter can provide 18

dB stopband attenuation, which is higher than the stopband attenuation of a

RRS prefilter.

Lian and Lim [53, 57, 65] also proposed a filter with a parallel structure . Here,

it is referred to as a parallel prefilter. The parallel prefilter is composed of two

subfilters in parallel: an odd-length filter and an even-length FIR filter. The
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two subfilters are both interpolated M times and connected in parallel. One or

more stopbands are formed at the frequencies where the passband magnitude of

the odd-length filter is positive and the magnitude of the even-length filter is

negative. The parallel prefilter can provide about 30 dB stopband attenuation.

Another approach for the prefilter-equalizer structure is to use cyclotomic poly-

nomial (CP) filters as prefilters. Cyclotomic polynomials were originally used to

simplify complex-valued computation [66], or in the development of minimum

complexity circular algorithms [18]. In [33], Babic et al. described how to cas-

cade cyclotomic polynomial filters (CPF’s) to form a multiplier-free, linear phase

filter. Kikuchi et al. [35,40] used CPF’s to form efficient prefilters. They searched

over a field of 24 eligible polynomial responses, and determined the prefilter ac-

cording to the search result. However, their method is based on a trial-and-error

approach leading to suboptimal designs.

To design more efficient prefilters, Hartnett and Boudreaux-Bartels [51] proposed

a straightforward automated method to form efficient prefilters using CPF’s.

They chose the first 104 CP’s which only contain the coefficients {0, 1, -1},

such that the prefilters are multiplier-free. As the root of each of these CP’s

are distinct, each CPF can provide unique stopband attenuation. By cascading

several different CPF’s, a wide range of CP prefilters are available. The RRS

(used in [22,23,27]) filter is just a special case of the cyclotomic polynomial filter.
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Oh and Lee proposed a mixed integer linear programming (MILP) method [29]

to design CP prefilters [60, 61]. They first formulated the CP prefilter design

problem as an optimization problem with a linear objective function, and solved

the optimization problem by the MILP algorithm. A new approach for the design

of prefilter-equalizer filter was introduced in [72], where equalizer is based on the

interpolated second order polynomial (ISOP) [69] in the case of FIR or inverse

of the interpolated first order polynomial (IIFOP) for the IIR. They selected

optimal CP’s for both the prefilter and equalizer by the method in [61].

All the materials reviewed above focus on the prefilter design. To reduce the

number of multipliers in the equalizer, Cabezas and Diniz [42] introduced the

concept of interpolation [28] into the design of equalizer. When an efficient pre-

filter is adopted, the prefilter provides enough stopband attenuation. The pass-

band replicas of the interpolated equalizer in the stopband can be removed by

the prefilter. The interpolated equalizer approach greatly reduces the number of

required multipliers in the equalizer.

Another prefilter-equalizer filter proposed by Diniz and Cabezas [44] is based on

the concept of “filter sharpening” developed by Kaiser and Hamming [15], which

is generalized by Saramäki [34]. The equalizer is designed by sharpening identical

subfilters, which are RRS filters or comb filters.

In this section, different design methods of the prefilter-equalizer filter have been

reviewed. All these methods reduce the complexity of FIR filters. In next section,
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another filter structure, interpolated finite impulse filter (IFIR), will be reviewed.

1.1.3 Interpolated Finite Impulse Filter Approach

The interpolated finite impulse filter (IFIR) [28] was introduced by Neuvo et

al. . The IFIR approach yields significant savings in terms of multipliers and

adders in both linear and nonlinear cases. Here, only the linear case is reviewed.

The design of an IFIR filter involves two subfilters: interpolated impulse response

filter HM(zL), and the interpolator filter G(z). For a given linear phase FIR filter

HM(z) (this is called model filter), an interpolated impulse response filter HM(zL)

is formed by replacing each delay in HM(z) by L delays. Note that the period of

HM(ejLω) is 2π/L, and the passband replicas appear in the desired stopband. Any

passband of HM(zL) in [0, π] can be used as the passband of the overall filter. The

purpose of the interpolator G(z) is to attenuate the undesired passband replicas

of HM(zL) to meet the desired stopband requirement. It is very important to

note that the passband and transition bandwidth of the interpolated model filter

are 1/Lth of the corresponding model filter HM(z). According to Equation (1.1)-

(1.12), the length of a linear phase FIR filter is almost inversely proportional to

the transition bandwidth. Compared with a direct design of the same transition

bandwidth, the interpolated filter only requires about 1/Lth of the number of

nonzero coefficients. Therefore, the numbers of required multipliers and adders

are reduced approximately to 1/Lth of the original direct design. Meanwhile,

the numbers of multipliers and adders in G(z) are small due to G(z)’s relatively
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wide transition bandwidth. Thus, the total number of nonzero coefficient of the

IFIR filter can be reduced greatly, and thus the IFIR filter has a much lower

complexity, compared with a direct conventional design.

Saramäki et al. [36] proposed two methods to design IFIR filters. The first method

is based on Remez multiple exchange algorithm. The design method is applied

to both single stage and multiple stage implementation of the interpolator G(z).

This method optimizes the model filter HM(z) and the interpolator G(z) simulta-

neously. Therefore, the number of needed multipliers and adders can be reduced

to the minimal value. Their second method is to derive a new interpolator struc-

ture based on RRS filters [14]. The new interpolator structure overcomes the

limitations of RRS filters, such as moderate stopband attenuation. Meanwhile,

the new interpolator can still keep the property of linear phase. Saramäki et

al. [36] also analyzed the optimal conditions of these two methods.

To realize a multiplier-free interpolator, cyclotomic polynomials and B-spline

functions were proposed to be used to design the interpolator. Kikuchi, et al.

[37] proposed to design the interpolator by utilizing cyclotomic polynomials [18].

They selected 24 CP’s and summarized the selected CP’s as a chart diagram.

The coefficients of selected CP’s take the values of 0, 1 or -1 only. The maximum

number of addition of each interpolator selected from their set will not exceed

10, and the number of delay elements will not exceed 12. Interpolators based on

these 24 CP’s can also be applied to bandpass and highpass filters.
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Pang et al. [41,45] proposed to design the interpolator by utilizing B-spline func-

tions. The mth order interpolator is implemented by cascading m 1st order in-

terpolators. Coefficients of the interpolator take the values of 0 or 1 for low pass

filter case, and 0, 1 or -1 for highpass case. For both cases, the interpolator only

requires simple shifting and addition operations.

1.1.4 Frequency-Response Masking Approach

Although IFIR filters can effectively reduce the arithmetic operations of FIR fil-

ters with narrow transition bands, they are only suitable for the design of FIR

filters with narrow passbands. To synthesize sharp FIR filters with arbitrary

passband width, Lim [32] proposed the frequency-response masking (FRM) ap-

proach. The FRM approach utilizes a very sparse set of coefficients, and reduces

the number of multipliers and adders tremendously. The price paid for the com-

plexity reduction is a slight increase in the effective filter length. Compared with

other low complexity FIR filter synthesis techniques, the FRM approach has the

smallest group delay [38].

A FRM filter is composed of three subfilters: one odd-length prototype filter

Ha(z), and two masking filters HMa(z) and HMc(z). The prototype filter Ha(z)

is interpolated M times, namely each delay z−1 of Ha(z) is replaced by M de-

lays z−M . The frequency response of the interpolated prototype filer Ha(e
jMω)

is periodical with a period of 2π/M . The transition bandwidth of the interpo-
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lated prototype filter is reduced to 1/M th of that of the original prototype filter.

To realize any arbitrary passband width, the concept of complementary filter is

utilized. The complementary filter Hc(z
M) and the interpolated prototype filter

Ha(z
M) satisfy the complementary condition, which is |Ha(e

jMω)+Hc(e
jMω)| = 1.

In actual implementation, Hc(z
M) can be realized by subtracting the output of

Ha(z
M) from the delayed version of the input signal. Two masking filters HMa(z)

and HMc(z) remove undesired passband replicas of Ha(e
jMω) and Hc(e

jMω), re-

spectively in the stopband. At last, the outputs of HMa(z) and HMc(z) are added

together, to form the output of the overall FRM filter.

Much effort has been made to reduce the complexity of FRM filters further.

Based on the traditional design methods of linear programming in [32], Lim and

Lian [48] analyzed the optimal conditions, where the total number of a FRM fil-

ter is the smallest is said to be optimal, for single stage and multiple stage FRM

filters. They derived an equation to estimate the optimum interpolation factor

M for the prototype filter, and analyzed the complexity of a K-stage design. The

criterion for selecting the optimum value of K and a multistage ripple compensa-

tion technique were also presented in [48]. Chen and Lee [52,59] proposed another

practical criterion to choose the interpolation factor M . As the filter length is

approximately proportional to the reciprocal of the filter’s transition bandwidth,

Chen and Lee proposed to use the sum of reciprocals of three subfilters’ transition

bandwidths as the criterion to find the optimum interpolation factor M .

Besides the basic FRM structure proposed by Lim [32], many modified FRM



CHAPTER 1. INTRODUCTION 14

structures were proposed. When the interpolation factor M becomes high, the

transition bandwidths of the two masking filters become sharper, which result

in increasing the orders of the two masking filters. Yang et al. [39] introduced

the concept of “frequency compression” in the design of two masking filters to

overcome the difficulty mentioned above. In this approach, two masking filters

HMa(z) and HMc(z) are interpolated NM times, and a third low pass filter E(z)

removes the unwanted passband replicas of HMa(z
NM ) and HMc(z

NM ).

The masking filter factorization approach proposed by Lim and Lian [54] can

further reduce the complexity of a FRM filter. The frequency responses of the

two masking filters are quite similar except near the transition bands of the

overall filter. This makes it possible to realize the two masking filters by a pair

of relatively simple equalizers H ′
Ma(z) and H ′

Mc(z) cascaded by a common filter

Hx(z). The filter Hx(z) realizes the common parts of the frequency responses

of HMa(z) and HMc(z). Two equalizers H ′
Ma(z) and H ′

Mc(z) compensate the

differences between the desired frequency responses of HMa(z) and HMc(z) and

the frequency response of the common filter Hx(z), respectively.

Lian et al. [77] proposed to replace the prototype filter by an IFIR filter. The

drawback of this approach is that one masking filter may become very long. To

overcome this drawback, Yang and Lian further improved the approach in [77]

by introducing one more masking filter Mc(z) in between the prototype filter and

the two masking filters [81]. The masking filter Mc(z) is interpolated Lc times,

and it can extend the transition bandwidths of two masking filters.



CHAPTER 1. INTRODUCTION 15

Another important aspect of FRM filter design is to find a way to optimize FRM

filters. Besides the traditional design method of utilizing linear programming

in [32], Saramäki and Lim proposed a design method based on Remez exchange

method [70, 83]. Chen and Lee [52, 59] proposed to use weighted least square

(WLS) algorithm to design FRM filters. But, all the methods above design each

subfilter separately, which can only result in suboptimum solutions.

A method which designs all the subfilters simultaneously is very likely to improve

the design result of a FRM filter. Many new design methods based on nonlinear

optimization techniques were proposed to jointly optimize the three subfilters in

a FRM filter. These methods include Saramäki’s two-step method [75,80,93], Yu

and Lim’s weighted least square (WLS) approach [79], semidefinite programming

(SDP) design method [91] and second-order cone programming (SoCP) design

method [92, 99] proposed by Lu and Hinamoto, and the WLS approach [101]

proposed by Lee et al.. All these design methods mentioned above can result

in the reduction of the numbers of multipliers and adders compared with the

iterative design methods.

In this section, different structures and design methods of FRM filters have been

reviewed. These structures and design methods further improve the efficiency of

FRM filters.
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1.2 Outline

The rest of this thesis is organized as follows.

Chapter 2: The parallel prefilter is first reviewed. A design method based on

weighted least square (WLS) criterion is proposed to jointly optimize the parallel

prefilters and its equalizers. Design examples show that the proposed design

method yields more savings of multipliers and adders.

Chapter 3: The design problem of a basic parallel filter is first formulated as a goal

attainment problem. By analyzing the effects of different parameters, formulas

and a table are presented to estimate the lengths of subfilters in a basic parallel

filter. Accuracy of the presented formulas and table are shown to be satisfactory.

Chapter 4: A suitable interpolation factor M can effectively reduce the complexity

of a FRM filter. Based on some new observations, a new set of equations is derived

to find subfilter lengths and the optimum value of M for jointly optimized FRM

filters.

Chapter 5: Problems are first pointed out if the prototype filter in a FRM filter is

even-length. A new design method is proposed to design FRM filters, including

FRM filters utilizing even-length prototype filters. New structures are proposed

to utilize odd interpolation factor M with an even-length prototype filter. Design

examples show that an even-length prototype filter may result in more savings of

multipliers and adders, compared with an odd-length prototype filter.
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Chapter 6: Factors affecting the density of frequency grid points in the design of

FRM filters are first analyzed. A new dynamic frequency grid point allocation

scheme is proposed to save required memory and computation time. A design

example shows the efficiency of the new frequency grid point allocation scheme.

It should be pointed out that all the filters discussed are all symmetric FIR filters

in this thesis.

1.3 Statement of Originality

The following items are claimed to be original.

1. The weighted least square (WLS) design method for parallel filters (Chapter

2).

2. Formulas to estimate subfilter lengths in a jointly optimized basic parallel

filter (Chapter 3).

3. Formulas to estimate subfilter lengths and the optimal interpolation factor

M in a jointly optimized FRM filter (Chapter 4).

4. Utility of even-length filter as the prototype filter in a FRM filter and

corresponding new filter structures (Chapter 5).

5. Dynamic frequency grid point allocation scheme for FRM filter design

(Chapter 6).
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Chapter 2

Filter Design Based on Parallel

Prefilter

In this chapter, FIR filter structures based on the parallel prefilter and the itera-

tive design method are first reviewed. The weighted least square (WLS) method

is presented for the design of parallel prefilter and its equalizer. This method

optimizes the coefficients of subfilters simultaneously, and further improves the

efficiency of the parallel prefilter and its equalizer.

2.1 Introduction

In the past decades, many methods have been proposed to reduce the complexity

of digital filters [22, 23, 28, 32, 48, 58, 70, 83]. Among them, the prefilter-equalizer

20
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structure [22, 23] and interpolated finite impulse response (IFIR) filter [28] are

computationally efficient for the synthesis of sharp FIR filters with narrow pass-

band. For a sharp filter with arbitrary passband bandwidth, frequency-response

masking (FRM) approach is one of the most efficient techniques [32, 54, 58, 83],

at the expense of slightly increased filter order.

The parallel FIR filter proposed in [53, 57, 65] is suitable for both narrow and

moderately wide transition bandwidth, by utilizing the combination of an even-

length and an odd-length symmetric FIR filter as a prefilter, which provides

higher attenuation in the stopband while having less distortion in the passband,

compared with an RRS prefilter in [22,23].

To further improve the efficiency of a parallel filter, a joint optimization method is

highly desired. In this chapter, a new design method based on WLS is proposed to

jointly optimize the parallel prefilter and its equalizer. Design examples show that

the proposed method leads to more savings in terms of arithmetical operations

compared with the original iterative method.

The organization of this chapter is as follows. In Section 2.2, filter structures

based on the parallel prefilter are first reviewed. The WLS design method is

presented in Section 2.3 for the design of the parallel prefilter and its equalizer.

Design examples are given in Section 2.4, and a conclusion is drawn in Section 2.5.
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2.2 Structures Based on Parallel Prefilter

2.2.1 Parallel Prefilter

Consider a first order even-length linear-phase FIR filter with the z-transform

transfer function He(z) = 1 + z−1. Its zero-phase frequency response can be

written as

He(e
jω) = cos

(ω

2

)
. (2.1)

The linear phase term has been dropped for the sake of expository clarity through-

out this chapter. Since the He(z) is an even-length filter, its interpolated fre-

quency response He(e
j2ω) will have a positive value in the normalized frequency

interval [0, 0.5π] and a negative value in the interval [0.5π, π] as shown in Fig-

ure 2.1(a). Let Ho(z) to be another odd-length filter that is designed such that

its interpolated frequency response Ho(e
j2ω) approximates He(e

j2ω) in the inter-

val [0, 0.5π], Ho(e
j2ω) will have a positive frequency component in the interval

[0.5π, π] that approximates |He(e
j2ω)|, as shown in Figure 2.1(b). Since

Ho

(
ej2(π−ω)

)
= h

(
No + 1

2

)
+ 2

(No−1)/2∑
n=1

h(n) cos ((No − 2n + 1)(π − ω))

= h

(
No + 1

2

)
+ 2

(No−1)/2∑
n=1

h(n) cos ((No − 2n + 1)ω) (2.2)

= Ho

(
ej2ω

)
,

Ho(e
j2ω) is positive in [0.5π, π]. In a similar way, we can have that

He

(
ej2(π−ω)

)
= −He

(
ej2ω

)
, (2.3)



CHAPTER 2. FILTER DESIGN BASED ON PARALLEL PREFILTER 23

which means that He(e
j2ω) is negative in the interval [0.5π, π]. Therefore, a

stopband can be created in the interval [0.5π, π] by connecting He(z
2) and Ho(z

2)

in parallel, as shown in Figure 2.1(c). Note that additional delay elements must

be added to He(z
2) to make sure that the group delay of He(z

2) and Ho(z
2) are

the same.
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Figure 2.1: The frequency responses of (a) He(z
2), (b) Ho(z

2) and (c) Hp(z)

.

The z-transform transfer function of the new filter Hp(z) is given by

Hp(z) =
1

2

[
z−

Noi−3

2 He(z
2) + Ho(z

2)
]

(2.4)

where Noi is the filter length of Ho(z
2). The new filter Hp(z) is called as a parallel

prefilter, because it consists of two subfilters in parallel.

With the parallel prefilter Hp(z), a prefilter-equalizer based filter can be formed
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Figure 2.2: A realization structure for a basic parallel filter

as

H(z) = Heq(z
2)

[
z−

Noi−3

2 He(z
2) + Ho(z

2)
]
. (2.5)

The above z-transform transfer function has a gain of two. To normalize it, the

coefficients of Heq(z) should be divided by 2. Note that the equalizer Heq(z) is

interpolated by a factor of 2 in Equation (2.5). This is to reduce the complexity

of Heq(z) as the stopband attenuation of Hp(z) is large enough to get rid of the

passband replica of Heq(z) in [π−ωs, π], where ωs is the stopband edge of Heq(z
2).

Figure 2.2 shows one of the possible implementation structures for the proposed

filter. It should be pointed out that additional delays should be added to He(z
2)

to keep the phase frequency responses of He(z
2) and Ho(z

2) the same.

From now on, a FIR filter composed of a parallel prefilter and its equalizer in-

terpolated by a factor of 2 is referred as a basic parallel filter. In next section,

an iterative design method will be reviewed, which is for the design of a basic

parallel filter.
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2.2.2 Iterative Design Method for Parallel Prefilter

To form a basic parallel filter, two subfilters are needed, i.e. Ho(z) and the

equalizer Heq(z). It is a well known fact that an even-length symmetric FIR

filter contains a zero at z = −1, i.e. we can always decompose an even-length

prototype filter into two filters: He(z) = (1 + z−1) and Heq(z). It is noted that

the frequency response of Hp(z) is very close to that of He(z
2) in the passband.

Hence, the design of the basic parallel filter can start with the design of an even-

length prototype filter Hpro(z) with the passband and stopband edges at 2 times

of desired passband and stopband edges. The passband and stopband ripples of

Hpro(z) are the same as the desired filter. Factorizing the 1 + z−1 from Hpro(z),

we have

Hpro(z) = (1 + z−1)Heq(z) = He(z)Heq(z). (2.6)

The He(z) and Heq(z) in (2.6) can be used as initial prefilters to obtain Ho(z).

Let the frequency response of Ho(z) be expressed in the form of a Fourier series,

Ho(e
jω) =

∑
n

α(n)Trig(n, ω) (2.7)

where α(n) is the nth Fourier series coefficient and Trig(n, ω) is a trigonometric

function depending on the type of filter used. Substituting (2.7) into (2.5), we

have

H(ejω) =
1

2
Heq(e

j2ω)

[
cos(ω) +

∑
n

α(n)Trig(n, 2ω)

]
. (2.8)
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Let δ(ω) be the maximum allowable frequency response deviation at frequency

ω. Two functions can be defined as follows:

δ±p = 1− 1

2
cos(ω)Heq

(
e2jω

)± δ(ω) (2.9)

δ±s = −1

2
cos(ω)Heq

(
e2jω

)± δ(ω). (2.10)

In the passband, we have

δ−p (ω) 6 1

2
Heq

(
e2jω

) ∑
n

α(n)Trig(n, 2ω) 6 δ+
p (ω). (2.11)

In the stopband, we have

δ−s (ω) 6 1

2
Heq

(
e2jω

) ∑
n

α(n)Trig(n, 2ω) 6 δ+
s (ω). (2.12)

Linear programming [25], modified Remez exchange method [11,23], or any other

suitable technique may be used to solve (2.11) and (2.12). Once Ho(z) is designed,

Heq(z) should be optimized again to reduce the overall complexity further. This

can be done by swapping the role of Ho(z) with Heq(z) in the above design

procedure.

2.2.3 Filter Structures Based on Parallel Prefilter

In a basic parallel filter, all subfilters are interpolated by 2. This structure can

be generalized to any even interpolation factor. Assuming that all the subfilters

in Figure 2.2 are interpolated by a factor of M , we have

H(z) = 0.5[Ho(z
M) + z−

(No−Ne)M
2 He(z

M)]Heq(z
M) (2.13)
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where Ne and No are the lengths of He(z) and Ho(z), respectively, M must be an

even number to avoid half sample delay. At the same time, No should be larger

than Ne. If Ne > No, we have

H(z) = 0.5[z−
(Ne−No)M

2 Ho(z
M) + He(z

M)]Heq(z
M). (2.14)

From now on, we call this generalized filter and related filter structures as parallel

filters. Note in the generalized parallel filters, He(z) is not necessary a 1st-order

filter.

In (2.13) and (2.14), The frequency responses are shown in Figures 2.3(a), (b)

and (c). To form the overall filter, a masking filter Hmsk(z) is needed to remove

unwanted passband replicas in the stopband, as shown in Figure 2.3(c). The

transfer function of the overall filter is

H(z) = 0.5[z−
(Ne−No)M

2 Ho(z
M) + He(z

M)]Heq(z
M)Hmsk(z) (2.15)

or

H(z) = 0.5[Ho(z
M) + z−

(No−Ne)M
2 He(z

M)]Heq(z
M)Hmsk(z) (2.16)

depending on the lengths of Ho(z) and He(z). Figure 2.4(a) shows one realization

structure of the overall filter H(z).

The structure shown in Figure 2.4(a) is suitable for the synthesis of the narrow

passband case. If a wider passband is desired, Figure 2.4(b) suggests a possible

solution. Now Ho(z
M) and He(z

M) are still in parallel, and the output of He(z
M)

is subtracted from the output of Ho(z
M). If Heq(z) is odd-length, its output is
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jMω) − He(e
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jMω) −
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subtracted from the delayed input signal. Otherwise, its output is added with

the delayed version of the input signal. The transfer function of the overall filter

is

H(z) = [z−
M(max(No,Ne)+Neq−2)

2 ±Hpw(z)Heq(z
M)]Hmsk(z) (2.17)

where

Hpw(z) = 0.5[z−
(Ne−No)M

2 Ho(z
M)−He(z

M)] (2.18)

or

Hpw(z) = 0.5[Ho(z
M)− z−

(No−Ne)M
2 He(z

M)] (2.19)

depending on the lengths of He(z) and Ho(z), and Neq is the length of the equal-

izer Heq(z). Note that additional delay elements must be added to Ho(z
M) or

He(z
M) to make sure the group delay of Ho(z

M) and He(z
M) are the same in

Figure 2.4.

In this section, different filter structures are reviewed. These structures are all

based on the parallel prefilter. They can be utilized to design FIR filters with

a narrow or moderately wide transition band. In next section, a WLS design

method will be presented to optimize all the subfilters simultaneously.
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2.3 Weighted Least Square Design Method for

Parallel Prefilter-Equalizer

In this section, the discussion is limited to the design of a basic parallel filter

reviewed in Section 2.2.1. Other structures reviewed in Section 2.2.3 can be

designed in a similar way, only slight modifications are needed.

2.3.1 Design Problem Formulation

The parallel filter in Section 2.2.1 uses an even-length subfilter He(z) of length 2.

The design starts with an even-length prototype filter Hpro(z) with passband and

stopband bandedges set at two times of the given specifications. The equalizer

Heq(z) is obtained by factorizing He(z) = 1+z−1 from the prototype filter Hpro(z).

Ho(z) is determined using He(z) and Heq(z) as prototype filters. Once Ho(z) is

decided, an iterative procedure is employed to further optimize He(z) and Heq(z)

by minimizing the ripples in the passband and stopband, one at a time, in order

to reduce the overall complexity. In each step of the above procedure, only one

subfilter is designed, and linear programming [25] can handle this problem.

However, the iterative procedure does not fully explore the property of a parallel

prefilter. The advantage of combining an even-length and an odd-length subfil-

ter to form a prefilter Hp(z) is the ability to create a stopband with sufficient

attenuation. The attenuation depends largely on the similarity of |Ho(e
j2ω)| and
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|He(e
j2ω)| in the normalized frequency interval [0.5π, π]. Because He(z) is fixed

to a first order linear phase FIR filter, the filter length of Ho(z) goes up if a large

stopband attenuation is required. The difference between lengths of Ho(z) and

He(z) can be quite large in some designs.

It is easy to verify that frequency responses of the even and odd-length filters

with close lengths can be very similar, except for the cases where the normalized

band-edges are close to π. Based on this observation, it is reasonable to believe

that the length of Ho(z) is likely to be reduced if the length of He(z) increases

from 2 to some extent. This may result in complexity reduction and increased

stopband attenuation for the prefilter. However, the increased order in He(z)

makes the design of overall filter more difficult, as the reviewed design procedures

in Section 2.2.2 are no longer applicable to the new parallel prefilter. A global

optimization of the overall filter requires the design of subfilters He(z), Ho(z) and

the equalizer Heq(z) to be done simultaneously. One algorithm which can solve

this problem is the WLS algorithm. In the rest of this section, a detailed WLS

design method is presented.

Suppose Ne is the length of the even-length filter He(z), and No is the length of the

odd-length filter Ho(z). When Ne is not fixed to be two, the transfer function of

the prefilter Hp(z) is represented by Equations (2.13) or (2.14). Correspondingly,

the transfer function of the overall filter is

H(z) = Heq(z
2)

[
z−(No−Ne)He(z

2) + Ho(z
2)

]
if No > Ne. (2.20)
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H(z) = Heq(z
2)

[
He(z

2) + z−(Ne−No)Ho(z
2)

]
if Ne > No. (2.21)

As in Section 2.2.1, the coefficients of Heq(z) should be divided by 2, to normalize

the gain of H(z) in (2.20) and (2.21).

When extra delay elements are added and the phase frequency responses of He(z
2)

and Ho(z
2) are the same, we can drop the phrase terms, and the zero-phase

frequency response of the overall filter is

H(ejω) = Heq(e
2jω)[He(e

2jω) + Ho(e
2jω)]. (2.22)

Suppose the coefficient vector of Ho(z) is ho. The frequency response of Ho(z
2)

can be expressed as

Ho

(
e2jω

)
= ho

(
No + 1

2

)
+ 2

No−1
2∑

i=1

ho(i) cos[(No − 2i + 1)ω]. (2.23)

If a vector go is defined as

go =

[
2ho(1) 2ho(2) · · · 2ho

(
No − 1

2

)
ho

(
No + 1

2

)]T

, (2.24)

we have

Ho

(
e2jω

)
= go

T [cos((No − 1)ω) cos((No − 3)ω) · · · cos(ω) 1]T . (2.25)

Similarly, we can define another vector ge as

ge =

[
2he(1) 2he(2) · · · 2he

(
Ne

2

)]T

(2.26)
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where he is the coefficient vector of He(z). So

He(e
2jω) = ge

T [cos((Ne − 1)ω) cos((Ne − 3)ω) · · · cos(ω)]T . (2.27)

If the equalizer Heq(z) is odd-length and its coefficient vector is heq, then a vector

geq is defined as

geq =

[
2heq(1) 2heq(2) · · · 2heq

(
Neq − 1

2

)
heq

(
Neq + 1

2

)]T

. (2.28)

So the frequency response of the interpolated equalizer Heq(z
2) is

Heq

(
e2jω

)
= geq

T [cos((Neq − 1)ω) cos((Neq − 3)ω) · · · cos(ω) 1]T . (2.29)

Substituting (2.25), (2.27) and (2.29) into (2.22), we have the frequency response

of the overall system

H(ejω) = {go
T [cos((No − 1)ω) cos((No − 3)ω) · · · cos(ω) 1]T +

ge
T [cos((Ne − 1)ω) cos((Ne − 3)ω) · · · cos(ω)]T} · (2.30)

{geq
T

[
cos[(Neq − 1)ω] cos[(Neq − 3)ω]T · · · cos(ω) 1

]T}.

If the equalizer Heq(z) is even-length, the definition of geq is

geq =

[
2heq(1) 2heq(2) · · · 2heq

(
Neq

2

)]T

. (2.31)

Equation (2.29) is changed to

Heq(e
2jω) = geq

T [cos((Neq − 1)ω) cos((Neq − 3)ω) · · · cos(ω)]T . (2.32)
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Equation (2.30) is changed to

H(ejω) = {go
T [cos((No − 1)ω) cos((No − 3)ω) · · · cos(ω) 1]T +

ge
T [cos((Ne − 1)ω) cos((Ne − 3)ω) · · · cos(ω)]T} · (2.33)

{geq
T

[
cos[(Neq − 1)ω] cos[(Neq − 3)ω]T · · · cos(ω)

]T
.}

The design vector is defined as

g = [go
T ge

T geq
T ]T . (2.34)

Therefore, the frequency response of the overall FIR filter H(ejω) is a function of

g.

The design of the parallel prefilter and its equalizer is carried out on a dense set

of grid points in the passband and stopband. For any grid point ωk ∈ [0, 2πfp]∪

[2πfs, π], the error function E(ωk) can be defined as

E(ωk) = H
(
ejωk

)−Hd

(
ejωk

)
(2.35)

where

Hd

(
ejωk

)
=





1 ωk ∈ [0, 2πfp]

0 ωk ∈ [2πfs, π].

(2.36)

The WLS objective function is defined as

f(g) =
∑

k

W (ωk)E
2(ωk) (2.37)

where W (ωk) is a weighting function. The design task is to minimize f(g) in

Equation (2.37) .
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2.3.2 BFGS Iterative Procedure

The design begins with the determination of a set of frequency grid points. After

a set of suitable grid points in the frequency domain is determined, the solution

of the WLS objective function can be determined by any nonlinear unconstrained

design method. There are two often used methods. One is the Davidon-Fletcher-

Powell (DFP) method [26]. The solution of DFP method converges to the in-

verse of Hessian, where Hessian is a matrix in Taylor’s expansion [78]. A more

direct way is Broydon-Fletcher-Goldfarb-Shanno (BFGS) method [30] because

the BFGS method converges to the Hessian itself. Here, the BFGS method is

utilized to minimize f(g) in (2.37).

The design procedure is given below:

Step 1: Determine the initial value of g0 by designing each subfilter separately

using Remez exchange method [11], or linear programming [25]. Determine the

maximum iteration limitation N , and tolerances for stopping criteria ε1, ε2 and ε3.

Set the initial matrix A0 to be a unit matrix I, and the iteration counter i=0.

Step 2: Determine the search direction as

Aisi = −∇f(gi) (2.38)

and update the design vector

gi+1 = gi + αisi (2.39)
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where si is the search direction, and αi is the step size determined by

min
αi

f(gi+1) = f(gi) + αisi. (2.40)

Details will be presented in Section 2.3.3 about the determination of αi.

Step 3: Stop if one of the conditions below is satisfied:

1. ∇f(gi+1)
T∇f(gi+1) 6 ε3 (converged)

2. |f(gi+1)− f(gi)| 6 ε2 (function not changing)

3. (gi+1 − gi)
T (gi+1 − gi) 6 ε1 (design not changing)

4. i > N (maximum iteration limitation exceeded)

Step 4: Update metric Ai and i by

Y = ∇f(gi+1)−∇f(gi) (2.41)

B =
Y Y T

Y T (gi+1 − gi)
(2.42)

C =
∇f(gi)∇f(gi)

T

∇f(gi)T si

(2.43)

Ai+1 = Ai + B + C (2.44)

i = i + 1 (2.45)

And go to Step 2.

When one iteration is converged, the solution is not equiripple. To obtain an

equiripple solution, the weighting function W (ωk) needs updating after each it-
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eration. The initial value of W (ωk) can be set to

W (ωk) =





1 ωk ∈ [0, 2πfp]

δp/δs ωk ∈ [2πfs, π]

(2.46)

and W (ωk) is updated by using the Lim-Lee-Chen-Yang algorithm in [47]. Af-

ter W (ωk) is updated, Step 1 to 4 are repeated until an equiripple solution is

obtained.

2.3.3 Gold Section Method

In Equations (2.40) and (2.39), αi is determined by the Gold Section Method.

The detailed steps are given below [78]:

Step 1: Choose the lower and upper bounds of αi, i.e. αlow
i and, tolerance

ε = (∆αi)final/(α
up
i − αlow

i ),

τ = (
√

5 − 1)/2, and number of iteration N = −2.078 ln ε. Let the iteration

number i be equal to 1. αlow
i can be set to 0, and αup

i can have the value of 1.

Step 2: α1 = ταlow
i + (1− τ)αup

i ; f1 = f(α1);

α2 = (1− τ)αlow
i + ταup

i ; f2 = f(α2);

Step 3: if i > N , quit;

Step 4: if f1 > f2,

αlow
i = α1; α1 = α2; f1 = f2
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α2 = (1− τ)αlow
i + ταup

i ; f2 = f(α2)

i = i + 1

Go to Step 3;

2.3.4 Analytical Calculation of Derivatives

In Equations (2.38), (2.41) and (2.43) the derivative of ∇f(g) is needed. To

improve the efficiency of the iterative procedure in Section 2.3.2, the analytical

calculation ∇f(g) is desired. This is because analytical calculation saves much

more calculation time, compared with the numerical way. In this section, the

analytical expression of ∇f(g) is derived.

Suppose the equalizer Heq(z) is odd-length. According to Equation (2.37), the

derivative of f(g) should be

∇f(g) = 2
∑

k

W (ωk)E(ωk)∇gE(ωk)

= 2
∑

k

W (ωk) [H(ωk)−Hd(ωk)]∇g [H(ωk)−Hd(ωk)]

= 2
∑

k

W (ωk) [H(ωk)−Hd(ωk)]




∇goH(ωk)

∇geH(ωk)

∇geqH(ωk)




. (2.47)
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According to Equations (2.25) and (2.30),

∇goH(ωk) = Heq(e
2jωk)




cos((No − 1)ωk)

cos((No − 3)ωk)

...

cos(ωk)

1




. (2.48)

Similarly,

∇geH(ωk) = Heq(e
2jωk)




cos((Ne − 1)ωk)

cos((Ne − 3)ωk)

...

cos(ωk)




. (2.49)

If the equalizer Heq(z) is odd-length,

∇geqH(ωk) =
(
Ho(e

2jωk) + He(e
2jωk)

)




cos((Neq − 1)ωk)

cos((Neq − 3)ωk)

...

cos(ωk)

1




. (2.50)

Otherwise,

∇geqH(ωk) =
(
Ho(e

2jωk) + He(e
2jωk)

)




cos((Neq − 1)ωk)

cos((Neq − 3)ωk)

...

cos(ωk)




. (2.51)
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If the above WLS design method is applied to the filter structures in Section 2.2.3,

the masking filter Hmsk(z) can be designed simultaneously with other subfilters

by changing the design vector to be

g = [gT
o gT

e gT
eq gT

msk]
T (2.52)

where gmsk is a vector of Hmsk(z), similar to previously defined ge, go and geq.

Corresponding equations of the frequency response of the overall filter, the error

function, the objective function, and the analytical derivative expressions need

slight modifications. The modifications are easy, and not listed here. One design

example of the filter structure in Figure 2.4(a) will be presented in next section.

2.4 Design Examples

In this section, three design examples are presented. The first one is a low pass

baseband filter for the IS-95 CDMA system. The second one is a low pass filter

with high attenuation, and the last design example is a sharp FIR filter with

narrow passband.

In the CDMA systems, a baseband digital bandlimiting filter is required to achieve

zero Inter-Symbol Interference (ISI) at the expense of as little excess bandwidth

as possible. The IS-95 CDMA standard recommends a pair of 48 taps symmet-

ric linear-phase FIR filter as the baseband filter. The passband ripple of the

filter should be less than 1.5dB from DC to 590kHz and the stopband atten-

uation should be greater than 40dB from 740kHz onwards. The signal rate is
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4.9152MHz (=4× 1.2288MHz). The implementation of such a baseband filter in

the transmitter has been reported in [49, 63, 71, 74, 76]. These implementations

are very cost effective as they utilize simple combinational logic or table look-up

techniques to replace the costly multiplier based on the fact that the word length

of the input signal is 1 bit. But at the receiver side, the multiplier is unavoidable

as the input signal samples consists of multiple bits. As a result, more power and

large chip area are required.

Here, a basic parallel filter is utilized to implement the IS-95 low pass filter.

If we use the iterative method in Section 2.2.2 to design the IS-95 filter, the

lengths of He(z), Ho(z) and Heq(z) are 2, 5 and 23, respectively. By the methods

in [24,43,82], Ho(z) is quantized into 5 bits sum-of-power-of-two (SPOT) terms,

and Heq(z) is of 6 bits SPOT terms. If the WLS method is utilized, the lengths

of He(z), Ho(z) and Heq(z) are 4, 3 and 22, respectively. The quantization result

is that the He(z) and Ho(z) are of 4 bits SPOT term, and Heq(z) are of 5 bits

SPOT terms. If the IS-95 48 Tap filter is quantized in the same way, it is of 7

bits SPOT terms. Figure 2.5 shows the frequency responses of a RRS prefilter,

and the parallel prefilters designed by the iterative and WLS methods. From

Figure 2.5 we can see that the WLS design method results in the largest stopband

attenuation. Figure 2.6 shows the frequency responses of the IS-95 48-tap filter,

and two basic parallel filters designed by different methods. Figure 2.7 shows the

frequency responses of each subfilter designed by the WLS design method.

In actual implementation, Heq(z) is cascaded with the parallel combination of
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Figure 2.7: Frequency responses of each subfilter designed by WLS methods

Ho(z) and He(z) as shown in Figure 2.2. After comparing the various FIR im-

plementation schemes, a direct form linear phase approach shown in Figure 2.8

is employed to implement the Heq(z), Ho(z), and He(z).

For a transmitter, it is noticed that the input to the IS-95 baseband filter is a 1

bit stream. The input goes into a delay chain and two delayed inputs are summed

based on the coefficient symmetric property of a linear-phase FIR filter. This sum

is then multiplied with the appropriate coefficient, which is shown as the dashed

line box in Figure 2.8. Because the input to the filter is a 1 bit bipolar signal, the

dashed box can be reduced to a decoding logic as shown in Table 2.1, assuming

an input high represented by ‘1’ and an input low by ‘-1’. Depending on the input

signals of ‘A’ and ‘B’, the output of the dashed box takes values of 0, −2hk or

2hk. Table 2.1 suggests a simple and efficient way of implementing the coefficient
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Figure 2.8: Direct form linear FIR structure for IS-95

multiplication. The fixed values , 0, −2hk and 2hk, can be implemented as the

constant value in a look-up table approach, and applied to the inputs of a 3-1

multiplexer. The ‘A’ and ‘B’ can be used to create the selection signals for the

multiplexer resulting in the output being the coefficient itself, the negated and

zero. It is noted that 0, 2hk and −2hk are all even integers, so the least significant

bit of multiplexers’ output will always be zero. As a result, the word-length of

the accumulator can be reduced by 1 bit. The final output can be formed by

padding a zero to the end of the accumulator’s output.

For Ho(z) and He(z), and the IS-95 receiver, the input is no longer 1-bit stream.

Therefore, the decoding logic in Table 2.1 can’t be used. The multiplications

are implemented in a shifter manner. Assume that the input of a receiver is
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A B hk

0 0 −2hk

0 1 0

1 0 0

1 1 2hk

Table 2.1: Decoding logic table used on the computation of sampled values

of 8 bits. Heq(z), Ho(z) and He(z) are implemented using Direct-form I. To

compare the performance of the basic parallel filter designed by iterative method

in Section 2.2.2, by WLS method in Section 2.3, and the original 48-tap IS-

95 filter, ASIC designs are carried out. The above filters are coded in VHDL,

and synthesized by Synopsys Design Compiler using 0.35 µm CMOS technology.

Power consumption is analyzed by Synopsys Power Compiler. Tables 2.2 and

2.3 show the comparison between original IS-95 filter and the basic parallel filter

used in both transmitter and receiver. It can be seen from Tables 2.2 and 2.3

that the basic parallel filter achieves considerable savings in terms of silicon area

and power dissipation.

The second design example is a low pass filter. The normalized passband edge

and stopband edge are 0.17 and 0.2, respectively. The passband ripple is 0.01,

and the stopband ripple is 0.0001. The length of the minimax optimum design

meeting this specification is 109. If the design method in Section 2.2.2 is utilized,

the lengths of He(z), Ho(z), and Heq(z) are 2, 17 and 53, respectively. The total

number of coefficients is 72, a 33% saving in the number of multipliers compared
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with the minimax optimum design. If the WLS design method is utilized, the

lengths of He(z), Ho(z) and Heq(z) are 6, 5 and 55, respectively. The total

number of coefficients is 66, which saves 6 taps compared with the design by the

iterative method. Meanwhile, the stopband attenuation of the filter designed by

WLS method reaches -84.7dB, exceeding both the minimax optimum design and

the result obtained by the iterative method in Section 2.2.2. Figure 2.9 shows

the frequency response of the WLS designed overall filter.

The third design example is a low pass filter with narrow passband width, and

sharp transition band. The passband and stopband edges are 0.05 and 0.06,

respectively. The passband and stopband deviations are both 0.01. The length

of minimax optimum design meeting this set of specifications is 200. If we use

the parallel filter structure in Figure 2.4(a) with M = 6 and design the filter by

the WLS method, the lengths of He(z), Ho(z), Heq(z) and Hmsk(z) are 2, 3, 35

and 6 respectively. The total number of taps is 46, which is only 23 per cent of

that of the minimax optimum design. The group delay is 11.06% longer than the

Number of Number of Number of Gates

SPOT Terms Adders (Receiver) Transmitter Receiver

IS-95 48-Tap 44 66 1510 5569

Iterative design 27 38 1251 5087

Proposed WLS design 22 34 1103 4556

Table 2.2: Complexity comparison of IS-95 48-tap filter, iterative design, and

proposed WLS design
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Power Consumption

Transmitter Receiver

IS-95 48-tap 460.27µW 2.0mW

Iterative Design 360.95µW 1.5mW

Proposed WLS design 113.89µW 1.3mW

Table 2.3: Power consumption comparison of IS-95 48-tap filter, iterative design,

and proposed WLS design
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Figure 2.9: Frequency response of design example 2 by WLS method
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Figure 2.10: Frequency response of design example 3 by WLS method

minimax optimum design. The frequency response is shown in Figure 2.10.

2.5 Conclusion

In this chapter, the parallel prefilter, its iterative design method, and correspond-

ing filter structures are first reviewed. A new WLS design method is proposed

for the design of parallel prefilter and its equalizer. The success of the WLS

method is due to the fact that it can optimize all the subfilters simultaneously.

Design examples show that the WLS method improves the efficiency of a parallel

prefilter for both moderately wide and narrow transition bandwidth cases.



Chapter 3

Length Estimation of Basic

Parallel Filter

In last chapter, the parallel prefilter and its corresponding filter structures were

reviewed. These filter structures can be used to design FIR filters with a narrow

or moderate transition band. To further improve the efficiency of the parallel

prefilter and its equalizer, a new WLS design method was proposed, which jointly

optimizes all the subfilters.

Before an actual design begins, we need to estimate the lengths of the parallel

prefilter and its equalizer. In this chapter, we will develop formulas and a table

to estimate the lengths of a parallel prefilter and its equalizer.

50
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3.1 Introduction

Filter length estimation plays an important role in the field of filter design. A

filter design task can be regarded as finding a set of coefficients satisfying the

given specifications. At the same time, the number of coefficients should be

reduced as small as possible. Generally speaking, it is an iterative procedure

to reach such a smallest number of coefficients. A good filter length estimation

can effectively reduce the iteration times. Ichige et al. proposed a good length

estimation equation in the design of a symmetric FIR filter [64, 67, 73]. Their

equation is much more accurate than equations proposed by Herrmann et al. [9]

and Kaiser [12].

However, the filter length estimation becomes more difficult when a filter consists

of several subfilters. The ripple of one subfilter can be compensated by ripples

of other subfilters. This compensation helps reduce the complexity of the overall

filter. When nonlinear optimization techniques are introduced [75,79,91,99] into

filter designs, the estimated subfilter lengths according to [9,12,64,67,73] may be

much larger than actual values. The reason behind this phenomena is because

nonlinear optimization techniques can design all the subfilters simultaneously,

and make the ripple compensation more effectively.

In this chapter, the length estimation of a low pass basic parallel filter will be

exploited. A basic parallel filter refers to the parallel prefilter and its equalizer as

shown in Figure 2.2 with M = 2, where M is the interpolation factor in a basic
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parallel filter. A basic parallel filter is the base for the design of a multistage

parallel filter [57].

The organization of this chapter is as follows. In Section 3.2, problems and

corresponding solutions related to the length estimation of a basic parallel filter

are presented. Section 3.3 analyzes the effects of different parameters to the filter

length, and develops formulas and a table to estimate the length of each subfilter

in a basic parallel filter. The accuracy of the proposed formulas and table are

evaluated in Section 3.4. Section 3.5 makes some conclusions.

3.2 Problems and Solutions of Length Estima-

tion of a Basic Parallel Filter

There exist two main problems related to developing length estimation formulas

for a basic parallel filter: length combination and computing time. In this section,

we present solutions for both of them. We also discuss the length relationship

between the even-length and odd-length subfilters in a basic parallel filters.

3.2.1 Length Combination

Our target is to find formulas to estimate lengths of subfilters in a basic parallel

filter. Estimating subfilter lengths of a basic parallel filter is more complex than
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that of a single FIR filter. One problem is length combination. Due to the fact

that a basic parallel filter consists of three subfilters, there may exist different

length combinations satisfying the same set of filter specifications. That is to say

two or more basic parallel filters have the same total number of coefficients, and

they satisfy the same set of specifications. However, their subfilter lengths are

different. For example, consider a low pass FIR filter with the following specifica-

tions: passband ripple δp = 0.01, stopband ripple δs = 4.553× 10−4, normalized

passband and stopband edges at fp = 0.221 and fs = 0.244, respectively. At least

two set of filters satisfy the above specifications, i.e. lengths of Ho(z), He(z) and

Heq(z) are 7, 8 and 65, or 9, 10 and 61. The total length for each set is the same.

According to our observations, shorter Ho(z) and He(z) result in smaller passband

and stopband ripples. Therefore, the solution to the length combination problem

is to find shorter Ho(z) and He(z) for a basic parallel filter, if there exists different

length combinations. The reason is that the ripple of the overall parallel filter is

mainly determined by the equalizer, and the longer equalizer will have smaller

ripples [12].

3.2.2 Computing Time

To improve the efficiency of a basic parallel filter, a WLS design method has

been proposed in Chapter 2. The WLS design method converts the design task

to an unconstrained optimization problem. However, a converged solution of this



CHAPTER 3. LENGTH ESTIMATION OF BASIC PARALLEL FILTER 54

unconstrained optimization problem can not guarantee an equiripple solution,

and the weighting function has to be updated several times to obtain an equiripple

solution. Each time when the weighting function is updated, the optimization

procedure has to be repeated to minimize the target function, until an equiripple

solution is found.

The above procedure will be acceptable for the design of one basic parallel filter

at a time. However, for length estimation of basic parallel filters, the WLS de-

sign method is too time-consuming to be acceptable. This is because thousands

of basic parallel filters must be designed to collect enough data. The required

computing time will be prohibitively long if the WLS method is utilized. At

the same time, Remez [3, 7, 8] or linear programming [4, 25] can not be utilized,

either. This is because Remez or linear programming can only design subfilters

separately, which can’t fully exploit the efficiency of a basic parallel filter. There-

fore, a new design method must be found, which can optimize all the subfilters

simultaneously with high convergence speed.

To reduce computing time, the design task is formulated as a goal attainment

problem. A goal attainment problem can be solved very fast in the Matlab

environment. Therefore, the difficulty of long computing time faced by the WLS

design method can be overcome. Detailed formulation is as follows.

A low pass filter has four parameters: passband ripple δp, stopband ripple δs,

passband edge fp, and stopband edge fs. No matter what specific structure the
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actual filter utilizes, the frequency response of a symmetric FIR filter is fully

determined by its coefficient vector g ( g is used here to be consistent with the

discussion in Chapter 2). As far as a basic parallel filter is concerned, it has three

subfilters, namely an even-length filter He(z), an odd-length filter Ho(z), and an

equalizer Heq(z). Their coefficient vectors ge, go and geq determine the frequency

response of the overall basic parallel filter H(z). A single vector g can be used

to denote these three vectors. That is to say

g = [gT
e gT

o gT
eq]

T (3.1)

and H(ejω) is a function of g, or

H(ejω) = F (g). (3.2)

Suppose Hd(e
jω) is the ideal frequency response of a filter. The task of designing

a filter is to find a suitable g to satisfy

−δp 6 H(ejω)−Hd(e
jω) 6 δp (3.3)

in the passband, and to satisfy

−δs 6 H(ejω)−Hd(e
jω) 6 δs (3.4)

in the stopband.

Defining w = δs/δp, (3.4) is changed to be

−wδp 6 H(ejω)−Hd(e
jω) 6 wδp. (3.5)
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For a given set of frequency grid points ωi ∈ [ 0, 2πfp ] in the passband, where

i = 1, 2, · · · , K, (3.3) is equivalent to 2K conditions. The (2i − 1)th and (2i)th

conditions are

H(ejωi)− δp 6 Hd(e
jωi) (3.6)

−H(ejωi)− δp 6 −Hd(e
jωi). (3.7)

Similarly for ωi ∈ [ 2πfs, π ] in the stopband, where i = K + 1, K + 2, · · · , N , we

can have

H(ejωi)− wδp 6 Hd(e
jωi) (3.8)

−H(ejωi)− wδp 6 −Hd(e
jωi). (3.9)

Therefore, for ωi ∈ [ 0, 2πfp ] ∪ [ 2πfs, π ], where i = 1, 2, · · · , N , we have total

2N conditions. By setting

F2i−1(g) = H(ejωi) (3.10)

F2i(g) = −H(ejωi) (3.11)

F ∗
2i−1 = Hd(e

jω) (3.12)

F ∗
2i = −Hd(e

jω) (3.13)

and W = [1, 1, · · · , 1︸ ︷︷ ︸
2K

, w, w, · · · , w︸ ︷︷ ︸
2(N−K)

], the filter design task can be formulated as

min
g

δp

such that Fi(g)−Wiδp 6 F ∗
i i = 1, 2, · · · , 2N

(3.14)
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where Wi=W (i).

Equation (3.14) is of the standard format of a goal attainment problem [13]. A

Matlab function fgoalattain [68] is available for solving the goal attainment prob-

lem. In the actual implementation of function fgoalattain, sequential quadratic

programming (SQP) [16, 17, 20, 21] is utilized. Due to the efficiency and high

convergence speed of SQP, the function fgoalattain can return a solution for our

design task very fast. Meanwhile, the weight vector W does not need updating

during the design procedure, which makes the design a straightforward procedure.

Compared with the WLS design method in Section 2.3, the goal attainment is

improves the design speed of one given design example. However, this improve-

ment is at the expense of larger memory space. Because the goal attainment

method is a constrained optimization method, more memory is needed to deal

with those constraint conditions. For the same design task, the WLS method in

Section 2.3 requires less memory because the WLS method is an unconstrained

optimization method. As far as the design result is concerned, these two design

method can return comparable design results. Design examples in Section 2.4

have been tried in both methods. These two methods require the same subfilter

lengths, and result in almost the same passband and stopband ripples.
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3.2.3 Length Relationship between Ho(z) and He(z)

A basic parallel filter is suitable for the design of narrow and moderately wide low

pass filters. Therefore, the passband width is selected in the range of [0.02, 0.22].

At the same time, the transition bandwidth is selected in the range of [0.01, 0.1].

Meanwhile, passband and stopband ripples can also affect the subfilter lengths in

a basic parallel filter. To make sure our developed formula accurate for different

passband and stopband ripples, we let passband and stopband ripples vary in

the range of [10−5, 0.316]. The above range contains most designs for practical

applications. The selected passband edges are evenly distributed in the range

of [0.02, 0.22]. At the same time, selected transition bandwidth, passband and

stopband ripples (dB) are also evenly distributed in the range mentioned above.

The filter length estimation of a basic parallel filter needs to determine three

different subfilter lengths. If the exhaustive search is carried out for each design

example, the computing time will be prohibitively long. Exhaustive search was

carried out only for selected design examples in the range mentioned above. To

save time, we must find a relationship between the lengths of these subfilters.

We tried about 400 design examples. According to these examples, it is found

that the total coefficient number of a basic parallel filter is minimized when No,

the length of odd-length filter Ho(z), and Ne, the length of even-length filter
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He(z), have the following relationship:

No =





Ne − 1 Ne > 2

Ne + 1 Ne = 2.

(3.15)

This conclusion is quite helpful to reduce computing time in searching the min-

imal total length of a basic parallel filter. This is because the above conclusion

eliminates one searching variable, and make the problem simpler.

3.3 Length Estimation Formulas for Basic Par-

allel Filters

3.3.1 Equalizer Length Estimation

In the following subsections, we will analyze how different parameters affect the

lengths of subfilters in a basic parallel filter. These parameters include passband

ripple δp, stopband ripple δs, passband edge fp, and stopband edge fs. Generally

speaking, Neq, the length of the equalizer Heq(z), is much longer than Ne or No.

Therefore, we will first develop a formula to estimate Neq.

A basic parallel filter is suitable for the design of narrow and moderately wide

low pass filters. To develop a filter length formula, δp, δs, fp and fs are varied

as described in Section 3.2.3 to represent a range of filters. We first consider the

relationship between Neq and δs.
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a) Relationship between Neq and δs

In the case of a single filter, the filter length is proportional to the logarithms of

passband and stopband ripples. For a jointly optimized basic parallel filter, it is

necessary to verify whether Neq is still proportional to the logarithm of stopband

ripple δs. Therefore, we let the stopband ripple vary from 1× 10−2 to 1× 10−5,
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Figure 3.1: Relationship between Neq and δs (logarithmic scale)

Legend fp fs δp

Data1 0.05 0.08 0.01

Data2 0.068 0.091 0.01

Data3 0.124 0.139 0.01

Data4 0.216 0.234 0.01

Table 3.1: List of parameters used in Figure 3.1
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and fix the other filter parameters which are listed in Table 3.1. The x-axis of

Figure 3.1 is in logarithmic scale to observe the relationship between Neq and

log10 δs.

Observation 1: From Figure 3.1, it can seen that Neq is approximately linear

to log10 δs, for a given passband ripple, passband edge and stopband edge. Based

on this observation, we can have the following equation,

Neq = k1 log10 δs + c1 (3.16)

where k1 and c1 are parameters to be determined.

b) Relationship between Neq and δp

The same conclusion can be drawn for the relationship between Neq and δp. Let

us vary the passband ripple from 1 × 10−2 to 1 × 10−5 while keeping the other

parameters fixed, and observe the variation of Neq. The variation of Neq is plotted

in Figure 3.2, and the other filter parameters are listed in Table 3.2.

Observation 2: From Figure 3.2, it can be seen that Neq is approximately

proportional to log10 δp, for a given stopband ripple, passband edge and stopband

edge. Therefore, we can have the following equation

Neq = k2 log10 δp + c2 (3.17)

where k2 and c2 are parameters to be determined.
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Figure 3.2: Relationship between Neq and δp (logarithmic scale)

Legend fp fs δs

Data1 0.086 0.1347 0.01

Data2 0.118 0.1506 0.01

Data3 0.135 0.1765 0.01

Data4 0.168 0.1928 0.01

Table 3.2: List of parameters used in Figure 3.2

c) Relationship between Neq and ∆F

From now on, ∆F is used to denote the normalized transition bandwidth of the

overall basic parallel filter. Here, the concept of central frequency is introduced.

Central frequency of a low pass filter is defined as fc = (fp + fs)/2. Then fp and



CHAPTER 3. LENGTH ESTIMATION OF BASIC PARALLEL FILTER 63

fs can be calculated using fc and ∆F

fp = fc −∆F/2 (3.18)

fs = fc + ∆F/2. (3.19)

When fc and ∆F are determined, corresponding passband edge fp and stopband

edge fs are determined as well. Therefore, Neq’s relationships with fc and ∆F

are equivalent to its relationships with passband and stopband edges. The main

reason for introducing the concept of central frequency fc is because it is more

convenient to study Neq’s relationships with fc and ∆F . Therefore, we try to

find the relationship between Neq and ∆F and fc.

In the case of a single FIR filter, the filter length is inversely proportional to the

transition bandwidth. For a jointly optimized basic parallel filter, it is possible

that Neq is proportional to the inverse of the transition bandwidth. Therefore,

we fix the other filter parameters which are listed in Table 3.3, and observe the

variation of Neq when the transition bandwidth ∆F varies in the range of [0.01,

0.1]. Figure 3.3 shows the relationship between Neq and ∆F . The x-axis of

Figure 3.3 is the inverse of ∆F .

Observation 3: According to Figure 3.3, Neq is proportional to the inverse of

the transition bandwidth ∆F . we have

Neq =
k3

∆F
+ c3 (3.20)

where k3 and c3 are to be determined.
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Figure 3.3: Relationship between Neq and inverse of transition bandwidth

Legend fc δp δs

Data1 0.06 0.02 3.16× 10−3

Data2 0.09 0.02 3.16× 10−5

Data3 0.11 0.02 3.16× 10−4

Data4 0.17 0.05 5.62× 10−4

Table 3.3: List of parameters used in Figure 3.3

d) Relationship between Neq and fc

In the case of a single FIR digital filter, Ichige et al. [64, 67, 73] pointed out

that fc could affect the length of the FIR filter. To make sure our developed

formulas are accurate, we need to observe the relationship between Neq and fc.

The other parameters are fixed, and the variation of Neq is observed when fc
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changes. Figure 3.4 shows the variation of Neq with the change of fc, while the

other parameters are listed in Table 3.4.

Observation 4: From Figure 3.4, Neq is larger when fc is near 0, or 0.25.

Observation 5: Neq is almost constant when fc is in the interval [0.08 0.18].

According to Observations 4, a quadratic curve is used to fit the curves in Fig-

ure 3.4 while taking the effect of δs into account, i.e.

Neq = k4 log10(δs)f
2
c + k5 log10(δs)f

2
c + c4 (3.21)

where k4 and c4 are to be determined.

e) Formula for Neq Estimation

Combine (3.16) to (3.21), the following formula is heuristicly established to esti-

mate Neq,

Neq =

(
A log10 δp + B log10 δs + C

∆F
+ D

)

· (E log10(δs)f
2
c + F log10(δs)fc + G)

(3.22)

Least square (LS) criteria is utilized to determine parameters in equation (3.22).

Suppose N̂eq is the actual length of the equalizer. The parameters in equation

(3.22) are determined by

min
∑

|N̂eq −Neq|2 (3.23)

Approximately three thousand low pass basic parallel filters were designed. The

selection of filter specifications is the same as described in Section 3.2.3. Nor-

malized central frequency and transition bandwidth are evenly distributed in the
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selected range. Passband and stopband ripples are selected to be logarithmi-

cally distributed, which is equivalent to even distribution in dB. For example, in

Figure 3.4 each line corresponds to one hundred design examples. The central

frequency fc of these design examples are linearly distributed in the range of

[0.02, 0.21].
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Figure 3.4: Relationship between Neq and fc

Legend ∆F δp δs

Data1 0.022 0.02 3.16× 10−4

Data2 0.025 0.02 0.01

Data3 0.025 0.02 0.001

Data4 0.03 0.015 0.001

Table 3.4: List of parameters used in Figure 3.4
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The parameters in Equation (3.22) is determined by using the actual lengths of

equalizers N̂eqs of these design examples and the LS method of (3.23), and the

following expression is obtained:

Neq =

(−0.33 log10 δp − 0.34 log10 δs − 0.35

∆F
+ 0.7

)

· (−0.92 log10(δs)f
2
c + 0.29 log10(δs)fc + 1.04) .

(3.24)

By trying different initial solutions, the global optimum solution is obtained.

According to Observation 5, Neq can be regarded as having a constant value if

fc ∈ [0.08, 0.18], i.e.

Neq = c5. (3.25)

Therefore, (3.22) can be simplified to be

Neq =
A log10 δp + B log10 δs + C

∆F
+ D. (3.26)

By least squares criterion, we obtain

Neq =
−0.3 log10 δp − 0.33 log10 δs − 0.26

∆F
+ 0.8. (3.27)

3.3.2 Even and Odd-Length Filter Length Estimation

In this section, we do the filter length estimation for Ne. No can be determined

by (3.15). The same procedure as that in the determination of Neq is used.

a) Relationship between Ne and δs
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Figure 3.5: Relationship between Ne and δs

The relationship between Ne and δs is plotted in Figure 3.5 using the data listed

in Table 3.1.

Observation 6: From Figure 3.5, it can be seen that Ne increases when stopband

ripple decreases.

b) Relationship between Ne and δp

The relationship between Ne and δp is plotted in Figure 3.6 using the data in

Table 3.2. The curves corresponding to data 1 and data 4 overlap with each

other in Figure 3.6.

Observation 7: According to Figure 3.6, it can be seen that Ne increases when

the passband ripple δp decreases.
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Figure 3.6: Relationship between Ne and δp

c) Relationships between Ne and Transition Bandwidth ∆F and Cen-

tral Frequency fc

To find the relationship between Ne and ∆F , the transition bandwidth of the

overall filter, we use the data in Table 3.3 to obtain Figure 3.7. The curves

corresponding to data 2 and data 3 overlap with each other in Figure 3.7.

Observation 8: Ne is independent of the transition bandwidth ∆F , according

to Figure 3.7. We also note that Ne increases when the central frequency fc

increases, according to the listed fc in Table 3.3.

d) Ne Estimation

According to collected data, Ne generally has a small value, in the range from
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Figure 3.7: Relationship between Ne and transition bandwidth

2 to 14. The most suitable value of Ne, which will result in a simple basic

parallel prefilter, is mainly determined by two parameters, central frequency fc

and stopband ripple δs. Although passband ripple can affect the value of Ne to

some extent, the estimation of Ne is accurate enough if we ignore the effect from

passband ripple δp. This will be verified in next section.

Because Ne is small, and its variation is much slower than Neq, a look-up table

strategy is more suitable for the estimation of Ne. According to the same set of

design examples determining Neq in Section 3.3.1, Table 3.5 lists possible estima-

tion of Ne. If the passband ripple is quite small such as 0.001 or smaller than the

stopband rippler, a larger value of Ne should be considered.
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fc

Stopband Attenuation (dB)

40 45 50 55 60 65 70 75 80 85 90 95 100

0.05 2 2 2 2 2 2 2 2 4 4 4 4 4

0.075 2 2 2 2 2 2 2 4 4 4 4 4 4

0.1 2 2 2 2 2 4 4 4 4 4 4 6 6

0.125 2 2 2 4 4 4 4 4 4 6 6 6 6

0.15 2 4 4 4 4 4 6 6 6 6 6 6 8

0.17 4 4 4 4 6 6 6 6 6 6 6 6 8

0.18 4 4 4 4 6 6 6 6 6 6 6 8 8

0.19 4 4 4 6 6 6 6 6 6 6 8 10 12

0.20 4 4 6 6 6 6 6 6 6 8 10 10 12

0.21 4 6 6 6 6 6 6 8 10 10 12 12 14

0.22 6 6 6 6 6 8 8 8 10 10 12 14 14

Table 3.5: Ne estimation table
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3.4 Verification

To verify the accuracy of Equations (3.24) and (3.27), and Table 3.5, another

approximately two thousand design examples are used. The selection methodol-

ogy of specifications of new design examples is the same as what is described in

Section 3.2.3. New design examples are selected to have different specifications

from design examples in Section 3.3. The error distributions of Equations (3.24)

and (3.27), and Table 3.5 are listed in Tables 3.6 to 3.8. These tables demonstrate

that Equations (3.24) and (3.27) we developed , and Table 3.5 we summarized

are accurate.

3.4.1 Accuracy Analysis of Neq Estimation

When we analyze the accuracy of estimation equations and table, Neq is used

to denote the estimated value calculated, which is calculated according to the

specifications of the design example and Equations (3.24) or (3.27). N̂eq is the

actual length of the corresponding equalizer. The error is defined as |N̂eq −Neq|.

As shown in Table 3.6, the errors of 33.03% of all the design examples are 0, and

46.16% of all the design examples have an error of 1, if Equation (3.24) is used to

estimate the length of the equalizer. As shown in Table 3.6, only 1.97% of all the

design examples have an error greater than 3. Table 3.7 shows the corresponding

error distribution of Equation (3.27). According to Tables 3.6 and 3.7, we can
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see that Equations (3.24) and (3.27) can provide good estimation of the length

of the equalizer. Tables 3.6 and 3.7 also show that Equation (3.24) gives a more

accurate estimation of the length of the equalizer than Equation (3.27), which is

expected.

Errors |N̂eq −Neq| Percentage of total design examples

= 0 33.03

= 1 46.16

= 2 13.68

= 3 5.16

>3 1.97

Table 3.6: Neq error distribution for equation (3.24)

Errors |N̂eq −Neq| Percentage of total design examples

= 0 32.74

= 1 42.19

= 2 16.99

= 3 5.16

>3 2.92

Table 3.7: Neq error distribution for equation (3.27)



CHAPTER 3. LENGTH ESTIMATION OF BASIC PARALLEL FILTER 74

3.4.2 Accuracy Analysis of Ne Estimation

Data collected in this section are also used to examine the accuracy of Table 3.5.

When fc or stopband attenuation falls between the values listed in Table 3.5,

the smaller value is adopted for Ne. For example, if fc is 0.1 and the stopband

attenuation is 63 dB, Ne is estimated as 2. N̂e is the actual length, and Ne is the

estimated value. The resulting error distribution is shown in Table 3.8, similar

to tables in Section 3.4.1.

From Table 3.8, it can been seen that Equation (3.15) and Table 3.5 can provide

us satisfactory estimation of the length of the even-length subfilter.

Errors |N̂e −Ne| Percentage of total design examples

= 0 69.05

= 2 30.95

Table 3.8: Ne error distribution

3.5 Conclusion

In this chapter, some problems facing the filter length estimation of a jointly

optimized basic parallel filter are first pointed out. Solutions to these problems

are presented. The effects of different parameters on the lengths of subfilters in a

jointly optimized basic parallel filter are analyzed. Based on the collected data,

two formulas are developed to estimate the length of equalizer Heq(z). A table

is summarized to estimate the length of the even-length filter He(z). The length
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of the odd-length filter Ho(z) is determined by an empirical relationship between

Ne and No. Accuracy analysis shows that both the developed equations and the

summarized table can provide satisfactory estimation of the subfilter lengths of

a jointly optimized basic parallel filter. It should be pointed out that the equa-

tions and table are summarized according to some experiments, and not proved

in mathematics. They are only a result of experience. At the same time, it is

worth noting that these equations and tables are applicable to other optimiza-

tion techniques. This is because the use of nonlinear optimization techniques

is intended to produce a globally optimized design, e.g. a filter with minimum

number of coefficients satisfying the given specifications. Hence, no matter what

methods are used, the resulting FRM filters should approach a same destination,

i.e. the final filter could be quite similar. Therefore, these equations and table

can be used when other nonlinear optimization techniques are utilized.



Chapter 4

Design Equations for Jointly

Optimized Frequency-Response

Masking Filters

The introduction of nonlinear optimization techniques to the design of frequency-

response masking (FRM) filters has changed the way how FRM filters are syn-

thesized. It allows all subfilters in a FRM structure to be optimized jointly

resulting in further savings in the number of arithmetic operations. Under the

joint optimization, a new set of design equations is necessary not only for a more

computationally efficient filter, but also for the simplification of design process

and the reduction of design time. In this chapter, we present a set of design equa-

tions that helps to determine filter lengths and the optimum interpolation factor

76



CHAPTER 4. DESIGN EQUATIONS FOR FRM FILTERS 77

in a FRM filter under joint optimization. It is shown, by means of examples,

that the proposed design equations lead to a better estimation of the optimum

interpolation factor and filter lengths for subfilters.

4.1 Introduction

Frequency-response masking (FRM) approach is one of the most computationally

efficient techniques for the design of linear phase arbitrary bandwidth sharp FIR

digital filters [32, 39, 48, 54–56, 59, 75, 77, 79–81, 83–102]. The structure of a basic

FRM filter is shown in Figure 4.1, and Figure 4.2 shows the frequency responses

of subfilters in a FRM structure. The creation of a FRM filter starts with a

prototype filter Ha(z) whose transition bandwidths are M times wider than that

of the overall filter H(z) as shown in Figure 4.2(a). A periodic narrow transi-

tion width filters Ha(z
M) is created by interpolation, i.e. replacing each delay

element in both Ha(z) with M delay elements, as shown in Figure 4.2(b). The

interpolation narrows the transition bandwidths of Ha(z) by compressing their

frequency responses, which produces extra passbands. The complementary part

Hc(z
M) is obtained by subtracting the output of Ha(z

M) from a delayed version

of the input signal, as shown in Figure 4.1. Parts of these extra passbands fall

into the stopband region of the overall filter. Two masking filters HMa(z) and

HMc(z), as in Figures 4.2(c) and (e), are cascaded with Ha(z
M) and Hc(z

M),

respectively, to remove the unwanted passbands. The outputs of HMa(z) and
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Figure 4.1: Basic FRM filter structure

HMc(z) are combined to form the overall filter. Figures 4.2(c) and (d) show the

situation of Case A, and Figures 4.2(e) and (f) show the situation of Case B. The

design equations and the derivation of optimum interpolation factors for single

and multiple stages FRM filters can be found in [32,48].

In a FRM filter, the savings in terms of number of multipliers are closely related

to the interpolation factor applied to the prototype filter. A larger interpolation

factor reduces the complexity of prototype filter at the cost of longer masking

filters. There exists an optimum interpolation factor Mopt for a given set of

specifications that leads to a minimum total number of coefficients in a FRM

filter. Such an optimum Mopt can be estimated using a formula given in [48]:

Mopt ≈ 1

2
√

∆F
(4.1)

where ∆F is the normalized transition bandwidth of a FRM filter. The deriva-

tion of (4.1) is based on an assumption that the complexity of a FRM filter is

minimized when the transition bandwidths of the two masking filters are the

same. Such an assumption may not hold for the FRM filters designed using an

iterative design procedure [48]. Nevertheless, (4.1) gives a good estimation of the
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(e) Two masking filters for Case B (f) Overall FRM of Case B
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optimum M and narrows the search region for the optimum M to a few integers.

Much research effort has been made to improve the computational efficiency of

FRM filters in recent years. A notable effort is to employ nonlinear optimization

techniques to jointly optimize the three subfilters in a single stage FRM structure

[75,79,80,91–93,99]. Such an approach leads to about 20% additional savings in

terms of number of multipliers. However, it was reported in [75] that (4.1) is no

longer accurate for an optimum M under the joint optimization. A new formula

was given in [75]:

Mopt =
1√

3.2∆F
. (4.2)

However, the authors of [75] did not show how accurate (4.2) is. In this chapter we

present a new set of formulas for the estimation of filter lengths and the optimum

M in a jointly optimized FRM filter. The new design equations are derived from

the observations made based on a few hundreds of FRM filters jointly optimized

by the sequential quadratic programming (SQP) algorithm [17]. The proposed

formulas produce much more accurate results than those reported in [32,48,75].

The rest of chapter is organized as follows. In Section 4.2, we highlight the

differences between the original and jointly optimized FRM filters, and discuss the

impacts of joint optimization on the interpolation factor and subfilter lengths. In

Section 4.3, we introduce a new filter length estimation equation for the prototype

filter. In Section 4.4, further observations are made to masking filters and an

equation is derived to estimate the total length of the two masking filters. A

new expression for the estimation of the optimum M is presented in Section 4.5
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together with design examples which verify the accuracy of proposed formulas.

Conclusion remarks are drawn in Section 4.6.

4.2 Impacts of Joint Optimization on FRM Fil-

ters

A typical jointly optimized FRM filter employs three subfilters which have very

different amplitude responses compared to those in an original FRM structure.

This is because of the involvement of nonlinear optimization techniques that help

to reshape all the subfilters in a FRM structure. As a result, the filter lengths

of subfilters are reduced. The most obvious change in the amplitude responses

is the prototype filter as shown in Figures 4.3(a) and (b). Its normalized DC

gain is no longer 1 and the DC level is shifted. The ripple in the passband is

considerably increased, especially near the edges of the transition bands. Such

changes have little impact on the filter length of the prototype filter according

to design examples [75, 79, 80, 91–93, 99]. But they affect the two masking filters

greatly. The transition bands of the masking filters become very close to each

other and are widened. The widening of transition bandwidths in both masking

filters yields additional savings in the number of multipliers and allows a larger

interpolation factor compared to the one used in a FRM filter designed by an

iterative method. The authors of [75] first noticed the increase in the interpolation

factor and proposed an estimation formula (4.2). Design examples show that (4.2)
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Figure 4.3: The frequency responses of various filters in jointly optimized FRM

approach

gives a better estimation than (4.1). But the estimated value is still slightly away

from the optimum M and requires a few iterations to reach an optimum design.

The question is whether there is a need to develop a more accurate formula for

the interpolation factor. To answer this question, let us examine how a FRM

filter is designed under the joint optimization methods. It starts with an initial

solution that derives from one of the iterative design processes in [32,48,83], i.e.

the interpolation factor is determined by a search method introduced in [48].
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The initial filter lengths of prototype filter Na , and the two masking filters NMa

and NMc, can be determined by assuming that the ripple magnitudes are 85%

of the allowed ripple magnitudes of the overall FRM filter. Nonlinear optimiza-

tion techniques are employed to jointly optimize all subfilters leading to further

reduction in the filter lengths. As the nonlinear optimization procedure does not

include the interpolation factor M and filter lengths in the objective function,

the resulting FRM filter is an improved version of the initial design. It is likely

to find a better solution if a different M is used. In order to find the best design,

an exhaustive search is necessory which involves an iterative procedure, i.e. vary

the M , calculate the filter lengths, jointly optimize all subfilters, and gradually

reduce the length of each subfilter to reach a minimum complexity for a given

M . This is a very time consuming procedure. Thus an accurate formula for the

optimum interpolation factor is necessary to simplify the design task.

To derive an interpolation factor estimation formula, we notice that the FRM

filters designed with joint optimization methods coincide the assumption made

in [48] about the masking filters, i.e. the transition bandwidths of the two mask-

ing filters are the same for a minimum complexity FRM filter. It is clear from

examples in [75,79,80,91–93] that the transition bandwidths are almost the same

for the two masking filters. However, their lengths are not the same. This implies

that the standard filter length estimation formula is no longer valid for subfilters

in a FRM structure because of the shapes of all subfilters differ from the stan-

dard low pass filters. Thus new filter length estimation formulas are necessary
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in the derivation of an optimum interpolation factor. Note from Figure 4.3 that

the shape of the prototype filter differs from that of the two masking filters. We

should develop the length estimations for the prototype filter and masking filters

separately.

4.3 Filter Length Estimation for Prototype Fil-

ter

The filter length of a low pass filter is normally determined by a set of filter

specifications, i.e. the normalized passband and stopband edges fp and fs, and

the passband and stopband ripples δp and δs. The length estimation should be

able to give a reasonable good match between the estimated length and actual

filter length for a given set of specifications, i.e. varying the bandedges or ripples

should not affect the accuracy of the formula. For the case of FRM filters, it is not

necessary to develop the formula to cover all the normalized frequencies from 0 to

0.5. This is because the FRM approach is suitable for the synthesis of arbitrary

bandwidth sharp transition bandwidth filters, mainly from moderate to wide

bandwidth. For the cases of narrowband filters, the FRM approach simplifies to

an IFIR structure [28, 48]. Therefore, we set the following restrictions for FRM

filters designed in the rest of this chapter. The normalized passband edges are

limited to in the region of [0.1, 0.4]. At the same time, the transition bandwidth

of a FRM filter is limited to a range of [0.002, 0.012]. This region contains
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most designs for a single stage FRM approach. To make sure that the developed

formulas are accurate for different passband and stopband ripples, we vary the

passband and stopband ripples from 10−1 to 10−5. The interpolation factor M

varies between 4 to 20 based on the given transition bandwidth of [0.002, 0.012].

Based on our experience, the length Na of a jointly optimized prototype filter

Ha(z) is very close to the one designed by traditional iterative methods. The

main reason behind this phenomenon could be that the transition bandwidth of

the prototype filter remains the same for the traditional and jointly optimized

designs. In [32], Na is estimated by assuming that the ripples of Ha(z) are 85%

of the allowed, and by using Kaiser’s equation [12]. Therefore,

Na(∆F, δp, δs) =
−20 log10

√
δpδs − 11.59

14.6M∆F
+ 1. (4.3)

The above equation is not very accurate if the length of the prototype filter is

long. To improve its accuracy, we modify the coefficients in Kaiser’s equation,

resulting in

Na(∆F, δp, δs) =
k1 log10

√
δpδs − k2

k3M∆F
+ k4 (4.4)

where k1, k2, k3 and k4 are parameters to be determined. A few hundreds of data

points are collected from the FRM filters optimized with SQP technique. The

bandedges, transition bandwidths, ripples, and interpolation factors are limited

to ranges as described in the beginning of this section. The values of k1, k2, k3

and k4 are obtained from collected data points using the method of least squares
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Figure 4.4: The absolute values of estimation errors of Na

fitting. The modified formula is given by

Na(∆F, δp, δs) =
−9.9 log10(δpδs)− 8.6

16.3M∆F
+ 3.33. (4.5)

The absolute errors, i.e. the absolute values of the difference between actual and

estimated lengths based on (4.3) and (4.5), are calculated and plotted in Figure

4.4. From the figure, it is clear that Equation (4.5) provides a better estimation

for the length of prototype filters than Equation (4.3).

4.4 Masking Filter Length Estimation

The estimation of length for each masking filter is a very difficult task based on

our experience. We notice that the lengths of two masking filters are exchangeable
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for many designs while the resultant overall filters satisfy the same specifications.

To show this, let us consider the design of a low pass filter with normalized

passband and stopband edges at 0.191 and 0.197, respectively. The passband

and stopband ripples are both 0.01. The optimum interpolation factor is 9 after

exhaustive search. The lengths of 3 subfilters are Na = 39, NMa = 27 and

NMc = 19, where Na is the length of the prototype filter, and NMa and NMc

are the lengths of two masking filters. The frequency responses of subfilters and

the overall filter are shown in Figure 4.5. For the same M value, another set

of subfilters can be found which satisfies the given specifications and uses the

same number of coefficients as in the first design. The filter lengths are Na = 39,

NMa = 19 and NMc = 27. The lengths of masking filters are swapped compared

to the first design. The frequency responses of subfilters and the overall filter

are shown in Figure 4.6. Many other design examples we tried show the same

property.

This phenomena is very interesting and prompts us to find the sum of the lengths

of masking filters instead of individual lengths. Recall from [32] that the sum of

transition bandwidths of masking filters is related to M , i.e.

∆FM = ∆fMa + ∆fMc =
1

M
(4.6)

where ∆fMa and ∆fMc are the transition bandwidths of two masking filters. We

are interested to know whether it is possible to use a modified Kaiser’s formula

for the estimation of the sum of the lengths of masking filters. Substituting (4.6)
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into Kaiser’s formula, we have

NMsum = NMa + NMc =
k1 log10

√
δpδs − k2

k3/M
+ k4. (4.7)

After simplification, we have

NMsum = NMa + NMc = kM log10(δpδs)− qM + c (4.8)

where NMa and NMc are lengths of masking filters HMa(z) and HMc(z), respec-

tively, δp and δs are the passband and stopband ripples, respectively, of the mask-

ing filters, and k, q, and c are variables yet to be determined. To verify the validity

of (4.8), let us carry out a few experiments. In each experiment, the FRM filters

are optimized by SQP. One of the parameters among bandedges, interpolation

factor, and ripples is varied from one design to another, while the rest of the pa-

rameters are kept unchanged. The relationship between NMsum and the selected

parameter is analyzed.

It is interesting to note that (4.8) is not a function of transition bandwidth. To

gauge the impact of transition bandwidth on NMsum, let us fix the passband

edge, ripples, and M as shown in Table 4.1 and vary the stopband edge. Figure

4.7 shows the relationship between NMsum and the normalized transition band-

width of FRM filters. It is clear that NMsum remains a constant if the change in

transition bandwidth is limited to a small range. For a large range from 0.002

to 0.012, NMsum varies very little for each data set. Thus, the implication from

(4.8) that NMsum is independent of the transition bandwidth has been verified

by these experiments.
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To verify the relationship between NMsum and δs, we fix fp, fs, δp and M as

shown in Table 4.2. The δs is varied from 10−1 to 10−5. The relationship between

NMsum and δs is plotted in Figure 4.8. It is obvious from Figure 4.8 that NMsum

changes almost linearly with the logarithm of stopband ripple δs or

NMsum ≈ k1 log10 δs + c1. (4.9)

The same conclusion can be drawn for the passband ripple if we use the speci-

fications listed in Table 4.3, i.e. varying δp from 10−1 to 10−5 while keeping the

rest unchanged. Figure 4.9 confirms an approximate linear relationship between

NMsum and the logarithm of passband ripple δp, i.e.

NMsum ≈ k2 log10 δp + c2. (4.10)

In (4.9) and (4.10) k1, k2, c1, and c2 are constants yet to be decided.

To show the relationship between NMsum and M , we choose a set of low pass

filters with different bandedges and passband and stopband ripples as shown in

Table 4.4. For each set of specifications, we design the FRM filters using SQP

by varying M from 4 to 20. The sums of masking filter lengths are calculated

and shown in Figure 4.10. It is not difficult to conclude from Figure 4.10 that

the sum of the lengths of the masking filters can be approximated by a linear

relationship with M , i.e.

NMsum ≈ k3M + c3. (4.11)

where k3 and c3 are constants yet to be found.
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Figure 4.7: Relationship between NMsum and transition bandwidth of the overall

FRM filter

Legend fp δp δs M

data1 0.11 0.05 0.005 11

data2 0.14 0.01 0.001 12

data3 0.16 0.03 0.001 10

data4 0.21 0.01 0.01 6

data5 0.24 0.08 0.005 9

data6 0.28 0.001 0.05 8

data7 0.33 0.005 0.03 5

data8 0.37 0.08 0.01 14

Table 4.1: Filter specifications used in Figure 4.7
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Figure 4.8: Relationship between NMsum and stopband ripple

Legend fp fs δp M

data1 0.1 0.102 0.1 17

data2 0.14 0.142 0.08 12

data3 0.18 0.183 0.05 10

data4 0.22 0.224 0.03 8

data5 0.26 0.265 0.02 9

data6 0.3 0.306 0.01 11

data7 0.34 0.347 0.008 8

data8 0.38 0.388 0.005 7

Table 4.2: Filter specifications used in Figure 4.8
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Figure 4.9: Relationship between NMsum and passband ripple

Legend fp fs δs M

data1 0.12 0.122 0.1 15

data2 0.17 0.173 0.05 10

data3 0.21 0.214 0.03 11

data4 0.26 0.265 0.02 9

data5 0.32 0.326 0.01 10

data6 0.35 0.357 0.005 5

data7 0.39 0.4 0.001 8

Table 4.3: Filter specifications used in Figure 4.9



CHAPTER 4. DESIGN EQUATIONS FOR FRM FILTERS 94

4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

M

N
M

su
m

data1
data2
data3
data4
data5
data6

Figure 4.10: Relationship between the sum of the lengths of masking filters and

interpolation factor M

Legend fp fs δp δs

data1 0.1 0.104 0.05 0.01

data2 0.14 0.146 3.16×10−3 0.001

data3 0.18 0.185 0.01 0.01

data4 0.25 0.257 0.001 0.05

data5 0.285 0.288 0.001 0.001

data6 0.33 0.338 0.005 0.08

Table 4.4: Filter specifications used in Figure 4.10
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Equations (4.9), (4.10) and (4.11) confirm that (4.8) is valid. The values of

k, q and c in Equation (4.8) can be determined by the method of least squares

fitting. A few hundreds of FRM filters with different specifications are designed by

SQP. The obtained optimum interpolation factor and filter lengths for bandedges

shaping filter and masking filters are used as data points for curve fitting. The

final NMsum is found to be

NMsum = −1.15M log10(δpδs) + 0.02M + 5.24. (4.12)

The second term in the above equation is much smaller than the other two terms.

By ignoring it, we obtain the final filter length sum estimation formula:

NMsum = −1.15M log10(δpδs) + 5.24. (4.13)

4.5 Optimum Interpolation Factor

Based on Equations (4.5) and (4.13), the complexity of a FRM filter can be

estimated by

N = Na + NMsum

=
−9.9 log10 (δpδs)− 8.6

16.3M∆F
−1.15M log10(δpδs) + 8.57. (4.14)

An optimum M that minimizes the N can be easily found from the above equation

if the partial derivative of N with respect to M is set to zero. This leads to the

following equation.

Mopt =

√
9.9 log10(δpδs) + 8.6

18.75∆F log10(δpδs)
. (4.15)
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Generally speaking, 9.9 log10(δpδs) is much larger than 8.6. If we ignore 8.6 and

make a little compensation to it, a simplified estimation of Mopt is obtained as

Mopt ≈ 1√
2.25∆F

. (4.16)

To compare the accuracy of different estimations, two design examples are chosen

for verification. The first example is taken from [32] with following specifications:

δp = 0.01, δs = 0.01, fp = 0.3 and fs = 0.305. In [32], M = 6 and M = 9

are identified as optimum interpolation factors, where the total length of three

subfilters are both 119. When nonlinear optimization technique is applied to

this design, M = 6 leads to a design with the total length of 101 (Na = 67,

NMa = 21 and NMc = 13) [100]. For M = 9 , the total length is reduced to 91

with Na = 45, NMa = 27 and NMc = 19. Exhaustive search confirms that the

optimum interpolation factor is 9 for this example. The frequency responses of

subfilters and the overall filter are shown in Figures 4.11 and 4.12, respectively.

The second example is taken from [75] with following parameters: δp = 0.01, δs =

0.001, fp = 0.2 and fs = 0.201. In [75], two interpolation factors, M = 16 and

M = 21, are used. M = 16 is calculated using (4.1), and M = 21 produces the

best design. The total filter length is 267 for M = 16, with Na = 161, NMa = 48

and NMc = 58. For M = 21, the total length is 257 with Na = 123, NMa = 56

and NMc = 78.

Table 4.5 compares the accuracy of length estimation formulas given by Kaiser’s

equation and the proposed equations (4.5) and (4.13). Table 4.6 lists the esti-
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Figure 4.11: Frequency responses of various subfilters in example 1
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mation results of (4.1), (4.2), (4.15) and (4.16). It is clear from both tables that

proposed design equations provide much better estimation.

Design Example Design Example

in [32](M = 9) in [75](M = 21)
Method

Na NMsum Na NMsum

[32]a 45 33+41=74 127 96+132=228

Proposed 45 47 123 126

Actual Value 45 46 123 134

Table 4.5: Comparison of filter length estimation

aFilter lengths are estimated by Kaiser’s equation and ripples of each filter are set to 85%

of the given specifications.

Equation Design Example in [32] Design Example in [75]

(4.1) 7 16

(4.2) 8 18

(4.15) 9 21

(4.16) 9 21

Actual Optimum M 9 21

Table 4.6: Comparison of interpolation factor
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4.6 Conclusion

In this chapter, we have presented a set of new formulas for the estimation of

the length of the prototype filter, the total length of two masking filters, and

the optimum interpolation factor for a jointly optimized FRM filter. It is shown

that an accurate optimum interpolation factor can be found if the Kaiser’s filter

length estimation formula is modified for the prototype filter and the total length

of masking filters. About 200 design examples confirmed the accuracy of the pro-

posed length estimation equations, and two design examples show the accuracy

of the new interpolation factor estimation equations.



Chapter 5

Design of Frequency-Response

Masking Filters With

Even-Length Prototype Filters

The frequency-response masking (FRM) technique is one of the most compu-

tationally efficient techniques for the synthesis of narrow transition bandwidth

FIR filters. In this chapter, we discuss problems faced in the original FRM ap-

proach when an even-length prototype filter is utilized. New FRM structures are

proposed to make use of even-length prototype filters in the FRM approach. A

design method based on sequential quadratic programming is presented. Design

examples show that the proposed structures and design method lead to better

results compared to original FRM filters with odd-length prototype filters.

100
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5.1 Introduction

The frequency-response masking (FRM) technique proposed by Lim [32] has been

proven to be one of the most efficient ways to design sharp FIR filters with

arbitrary passband bandwidth. Much effort has been made to improve the FRM

technique [48,54,70,75,77,79,85,86,91,92,99], including both theoretical analysis

and practical design methods.

However, all reported FRM structures and optimization methods only employ an

odd-length filter as the prototype filter. The usage of an even-length filter as the

prototype filter in a FRM filter has never been explored. In fact, many problems

surface if an even-length filter is used as the prototype filter. In this chapter,

the detailed analysis will be first presented on why an even-length filter is not as

good a candidate as an odd-length filter for the prototype filter. Solutions will be

provided to overcome the shortcomings for an even-length prototype filter. Two

new FRM structures suitable for even-length prototype filters are introduced in

this chapter. Design examples show that the new FRM structures produce FRM

filters better than that of original FRM structure.

This chapter is divided into five sections. Problems related to the usage of an

even-length prototype filter in a FRM structure are revealed in Section 5.2. Sec-

tion 5.3 develops the design method based on sequential quadratic programming

(SQP). Modified FRM structures proposed for even-length prototype filters are

introduced in Section 5.4. A conclusion is drawn in Section 5.5.
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5.2 Ripple Analysis of FRM Using Even-length

Prototype Filter

It is a well known fact that the zero phase passband magnitude of an interpolated

low pass even-length symmetric FIR filter can be either 1 or -1 within the nor-

malized frequency from 0 to 0.5. When such a filter is used as a prototype filter

in a FRM structure, it produces a complementary prototype filter whose gain in

the passband will be either 1 or 2, as shown in Figure 5.1(a). The z-transform

transfer function of a FRM filter utilizing an even-length prototype filter is the

same as the original FRM filters, and can be expressed as

H(z) = Ha

(
zM

)
HMa(z) +

[
z−

(Na−1)M
2 −Ha

(
zM

)]
HMc(z). (5.1)

Note that the interpolation factor M should be even when an even-length pro-

totype filter is used in order to avoid the half sample delay. The zero phase

frequency response of the overall filter is given by [32]

H(ejω) = Ha

(
ejMω

)
HMa

(
ejω

)
+

[
1−Ha

(
ejMω

)]
HMc

(
ejω

)
. (5.2)

The frequency responses of various subfilters in a FRM filter with an even-length

prototype filter are shown in Figure 5.1. It is clear that there are a total of 4

transition bands that can be utilized to form the transition band of the overall

filter as indicated in Figures 5.1(c), (e), (g) and (i) respectively. The cases shown

in Figures 5.1(c) and (e) correspond to Cases A and B of the original FRM filter
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Figure 5.1: The frequency responses of subfilters and the overall FRM filter in the

basic FRM filter with an even-length prototype filter (a) Interpolated prototype

and complementary filter, (b) Two masking filters of Case A, (c) Overall FRM

Filter of Case A, (d) and (e) Case B, (f) and (g) Case C, (h) and (i) Case D
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with an odd-length prototype filter, respectively. The cases in Figures 5.1(g)

and (i) exist only under the circumstance that an even-length prototype filter is

employed. We denote the case in Figures 5.1(f) and (g) as Case C, and the case

in Figures 5.1(h) and (i) as Case D. These two cases do not seem practical as

they require the masking filter HMc(z) having the same transition bandwidth as

the overall filter, as shown in Figures 5.1(f) and (h).

To design a FRM filter based on an even-length prototype filter, it is interesting

to know how the ripple of the overall filter is affected by the even-length prototype

filter. Compared with the original FRM filter with an odd-length prototype filter,

the protuberant shape of the complementary filter Hc(e
jMω) in frequency regions

II, III, V and VI in Figure 5.1(a) may alter the ripple of the overall filter. A

detailed analysis of ripples in frequency regions II, III, V and VI for Case A will

be presented below. The same procedures can be applied to Cases B, C and D.

For other frequency regions, the analysis is the same as in [32], which will not be

repeated here.

Let us denote the desired value and deviation by G(ω) and δ(ω), respectively, of

the overall filter. Similarly, Gp(ω) and δp(ω) are defined as the desired value and

deviation, respectively, of the interpolated prototype filter, GMa(ω) and δMa(ω)

are the desired value and deviation, respectively, of HMa(e
jω), and GMc(ω) and

δMc(ω) are the desired value and deviation, respectively, of HMc(e
jω). Substitut-
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ing the desired values and deviations into Equation (5.2), we have

G(ω) + δ(ω) = [Gp(ω) + δp(ω)] [GMa(ω) + δMa(ω)]

+ [1−Gp(ω)− δp(ω)] [GMc(ω) + δMc(ω)] .

(5.3)

In Region II, which is the passband of the overall filter, G(ω) = GMa(ω) =

GMc(ω) = 1. Substituting this into Equation (5.3) and ignoring the second-order

terms, we have

δ(ω) ≈ Gp(ω)δMa(ω) + [1−Gp(ω)] δMc(ω). (5.4)

Note that we are only interested in the maximum value of δ(ω). As−1 < Gp(ω) <

0 in this region, the maximum ripple δM(ω) is

δM(ω) = |δMa(ω)|+ 2 |δMc(ω)| . (5.5)

Similarly, in the frequency region III, the ripple of the overall filter can be found

by substituting Gp(ω) = −1 into Equation (5.4),

δ(ω) = 2δMc(ω)− δMa(ω). (5.6)

So the maximum ripple δM(ω) should be

δM(ω)| = |δMa(ω)|+ 2|δMc(ω)|. (5.7)

In Region V, which is the stopband of the overall filter, G(ω), GMa(ω) and GMc(ω)

equal to 0. Substituting this into Equation (5.3) and ignoring the second-order

terms, we have

δ(ω) ≈ Gp(ω)δMa(ω) + [1−Gp(ω)] δMc(ω). (5.8)
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We notice that Equation (5.8) is the same as Equation (5.4) and the value of

Gp(ω) is equal to that in Region II. Thus, the maximum ripple can be expressed

by Equation (5.5) for Region V. Following the same procedure, the maximum

ripple δM(ω) in Region VI is found to be the same as that in Region III.

According to Equations (5.5) and (5.7), the ripples in frequency regions II, III,

V and VI can be much larger than the ripple of any one of the masking filters. If

traditional design methods such as linear programming [32] or Remez method [70]

are used to design each subfilter separately, the ripples of two masking filters must

be no greater than half of the masking filter in the original FRM filter with an

odd-length prototype filter. The reduced ripples of masking filters require longer

masking filters. From the above analysis, it seems that an even-length prototype

filter is not suitable for a FRM filter due to the large ripple in the frequency

regions II, III, V and VI. However, an even-length prototype filter can still be

utilized in a FRM filter if a nonlinear optimization technique is applied in the

design of FRM filters. The design example in next section shows that an even-

length prototype filter can result in less complexity in a FRM filter for the same

interpolation factor M .
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5.3 Design Method Based on Sequential Quadratic

Programming

This section is divided into five subsections. The design task is first formulated

as a minimax optimization problem. The details of the proposed optimization

method are given in Sections 5.3.2 and 5.3.3. Based on the minimax optimization,

Section 5.3.4 gives the design procedure of a FRM filter. In the last subsection,

some design examples are presented.

5.3.1 Problem Formulation

According to (5.2), the frequency response of the overall FRM filter can be ex-

pressed as:

H(ω, g) = [gT
a Ca(ω)][gT

MaCMa(ω)] +
[
1− gT

a Ca(ω)
]
[gT

McCMc(ω)]

= [gT
a Ca(ω)][gT

MaCMa(ω)− gT
McCMc(ω)] + gT

McCMc(ω).

(5.9)

If the prototype filter Ha(z) is an odd-length FIR filter,

ga = [ha((Na + 1)/2) 2ha(1) 2ha(2)

· · · 2ha((Na − 3)/2) 2ha((Na − 1)/2)]T
(5.10)

and the function Ca(ω) should be

Ca(ω) = [1 cos((Na − 1)Mω/2) · · · cos(2Mω) cos(Mω)]T . (5.11)

If the prototype filter Ha(z) is an even-length FIR filter,

ga = [2ha(1) 2ha(2) · · · 2ha((Na − 2)/2) 2ha(Na/2)]T (5.12)
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and the vector Ca(ω) has the form

Ca(ω) = [cos((Na − 1)Mω/2) · · · cos(3Mω/2) cos(Mω/2)]T . (5.13)

If two masking filters are of odd-length, then

gMa = [hMa((NMa + 1)/2) 2hMa(1) · · · 2hMa((NMa − 1)/2)]T (5.14)

CMa(ω) = [1 cos((NMa − 1)ω/2) · · · cos(ω)]T (5.15)

gMc = [hMc((NMc + 1)/2) 2hMc(1) · · · 2hMc((NMc − 1)/2)]T (5.16)

CMc(ω) = [1 cos((NMc − 1)ω/2) · · · cos(ω)]T . (5.17)

Otherwise, they are both of even-length, and

gMa=[2hMa(1) 2hMa(2) · · · 2h((NMa − 2)/2) 2h(NMa/2)]T (5.18)

CMa(ω)=[cos((NMa − 1)Mω/2) · · · cos(3ω/2) cos(ω/2)]T (5.19)

gMc=[2hMc(1) 2hMc(2) · · · 2h((NMc − 2)/2) 2h(NMc/2)]T (5.20)

CMc(ω)=[cos((NMc − 1)Mω/2) · · · cos(3ω/2) cos(ω/2)]T . (5.21)

The g in Equation (5.9) has the form

g = [gT
a gT

Ma gT
Mc]

T . (5.22)

Suppose the passband edge and stopband edge are at ωp and ωs, respectively,

then the ideal frequency response of the overall filter is

Hd(ω) =





1 ω ∈ [0, ωp]

0 ω ∈ [ωs, π].

(5.23)
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And the error function is defined as

Error(ω, g) = W (ω)|H(ω, g)−Hd(ω)| (5.24)

where

W (ω) =





1 ω ∈ [0, ωp]

δp/δs ω ∈ [ωs, π]

(5.25)

The design is carried out over a selected set of dense grid points ωk ∈ Ω =

[ 0, ωp ] ∪ [ ωs, π ]. Suppose there is a total of n grid points in Ω, and the

maximum value of E(ω, g) over Ω is γ. The design problem can be formulated

as a minimax problem:

min
g

γ

subject to: E ≤ Γ (5.26)

where g is the coefficient vector yet to be determined to minimize the merit

function φ(g) ≡ max(E), and E is given by

E =




Error(ω1, g)

Error(ω2, g)

...

Error(ωn, g)




and Γ = [ γ γ · · · γ ]Tn×1.
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5.3.2 Design Method Based on SQP

To utilize SQP method to solve the minimax problem, (5.26) should be first con-

verted to a quadratic programming problem. In [17], Brayton et. al. demonstrated

that for a positive definite matrix H̃ , the step ∆g 6= 0 obtained by solving

min
g

1
2
∆gT H̃∆g + ∆γ

subject to: E +
(∇gE

T
)
∆g ≤ Γ + ∆Γ

(5.27)

is in a direction of descent for the function φ(g) ≡ max(E). That is to say that

the ∆g obtained in (5.27) can make max(E)
∣∣
g=g0+ε∆g

less than max(E)
∣∣
g=g0

,

where g0 is a start point, and ε is a suitable small positive number.

Define a new variable z = [ γ gT ]T , and ∆zT = [ ∆γ ∆gT ]T . So we can transform

(5.27) into

min
z

1
2
∆zT H∆z + cT ∆z

subject to: A∆z ≤ b (5.28)

where H =




0 01×m

0m×1 H̃


, c = [1 01×m]T , A = [−1m×1 ∇gE

T ] and b = Γ−E,

m is the length of g, 0i×j is a i × j zero matrix, and −1m×1 is a column vector

whose elements are all −1. In (5.27) and (5.28), ∇gE is calculated according to

the parity of the length of each subfilter in a FRM filter, referring to Equations

(5.9)-(5.21). The problem (5.28) can be solved by the method introduced in [6],

or the Matlab function quadprog or qp [68].
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5.3.3 Hessian Matrix Update

In (5.27), it is required that H̃ is positive definite. The initial value can be

the identity matrix I. However, if H̃ is fixed to be the identity matrix I, the

convergence speed will be slow. In [17], Brayton et al. pointed out that BFGS

updating method works well for (5.28). Here, the Hessian matrix H is updated

by the BFGS method [26].

The update of Hessian matrix H is according to the Lagrangian function of

(5.26). The Lagrangian function is given by [17],

L =
n∑

i=1

λiError(ωi, g). (5.29)

According to (5.29), the Lagrangian function is independent of γ. Therefore, the

partial derivative ∂L/∂γ = 0. For the tth iteration, we have

∇zL
(t)(g, λ(t)) =




0

∇gL
(t)(λ(t))


 . (5.30)

Define d = ∇zL(g(t+1), λ(t+1))−∇zL(g(t), λ(t+1)). According to (5.30), we have

d =




0

∇gL
(t+1)(λ(t+1))


−




0

∇gL
(t)(λ(t+1))




=




0

∇gL
(t+1)(λ(t+1))−∇gL

(t)(λ(t+1))


 . (5.31)
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Calculate

ξ=∆gT H̃
(t)

∆g

ψ=∆gT [∇gL
(t+1)(λ(t+1))−∇gL

(t)(λ(t+1))]

θ=





1 if ∆zT d ≥ 0.2∆gT H̃
(t)

∆g

0.8ξ

ξ − ψ

otherwise.

(5.32)

Then calculate

w = θd + (1− θ)H(t)∆z (5.33)

where

H(t)∆z =




0 01×m

0m×1 H̃
(t)






4γ

∆g




=

[
0 (H̃

(t)
∆g)T

]
.T (5.34)

According to (5.31) to (5.34), the first component of w is zero, so w can be

expressed as

w =




0

w̃


 . (5.35)

The initial value of H̃ is an identity matrix I. The H̃ is updated as

H̃
(t+1)

= H̃
(t) −

H̃
(t)

∆g∆gT H̃
(t)

∆gT H̃∆g

+
w̃w̃T

∆gT w̃

. (5.36)
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5.3.4 Design Procedure

In Sections 5.3.2 and 5.3.3, we have presented an algorithm based on SQP for

solving the minimax problem. When this algorithm is applied to the FRM filter

design, the detailed design procedure is given as follows

1. Determine the initial solution g0 as in [32] or [70];

2. Set H̃ to be an identity matrix I, and construct matrix H . Solve problem

(5.28) by calling quadprog or qp function in Matlab, and obtain the search

direction;

3. Determine the step size ε by

min
ε
{max{E

∣∣
g=g0+ε∆g

}} (5.37)

4. If
∣∣ max{E

∣∣
g=g0+ε∆g

}−max{E
∣∣
g=g0

}
∣∣ 6 ε, terminate the iterative process.

Here, ε is a predetermined tolerance.

5. Update Hessian matrix H according to Equations (5.31)-(5.36).

6. Go back to Step 2.

It should be pointed out that the algorithm above can only result in a local

minimum point over the design space. Different initial solution should be tried

to find a near-global optimal solution.
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5.3.5 Design Example

To illustrate the proposed SQP design method, let us redesign the example in [32],

i.e. normalized passband and stopband edges are at 0.3 and 0.305, respectively.

The ripples in both passband and stopband are 0.01. The interpolation factor is

set to 9, and the subfilter lengths are Na = 45, NMa = 41 and NMc = 33. The

passband and stopband ripples of our design and those reported in [32] and [91]

are listed in Table 5.1. It is obvious that our new design method results in the

smallest passband and stopband ripples. The frequency response of our design is

shown in Figure 5.2.

Passband Ripple (dB) Stopband Attenuation (dB)

Design Result in [32] 0.0896 40.96

Design Result in [91] 0.0674 42.25

Our Design Result 0.0661 42.40

Table 5.1: Comparison of different design results

If an even-length prototype filter is used in the FRM structure of Figure 4.1 for

the same specifications, the interpolation factor M must be even to avoid half

sample delay. Therefore, M is chosen to be 6. Subfilter lengths, passband ripple

δp, and stopband attenuation δs are listed in Table 5.2. The frequency response

of the FRM filter with an even-length prototype filter is shown in Figure 5.3.

It is obvious that an even-length prototype filter results in less taps in the given
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HMa(z) and HMc(z), (c) overall filter, and (d) passband ripples of the overall

filter
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example when the interpolation factor is 6. However, the interpolation factor is

limited to an even integer. Such a constraint significantly reduces the design space

and may lead to a suboptimum solution. For the given example, the best FRM

design requires 47 taps (Na = 45, NMa = 27, NMc = 19) with the interpolation

factor of 9, which is 4 taps less than the FRM with an even-length prototype

filter designed above whose interpolation factor M is 6. Therefore, it is necessary

to find new FRM filter structures enabling odd interpolation factors in a FRM

filter with an even-length prototype filter. In next section, new structures will be

proposed to solve the problems mentioned above.

Filter structure Na NMa NMc δp (dB) δs (dB)

Even-length prototype filter 68 13 19 0.0843 40.31

Odd-length prototype filter 67 13 21 0.0818 40.57

Table 5.2: Ripple comparison of FRM filters with odd-length and even-length

prototype filters
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5.4 Modified Structures for FRM with Even-

Length Prototype Filters

Note from Figure 4.1 that the input signal passes through (Na − 1)/2 delays in

order to form a complementary output. If Na is an odd number, (Na − 1)M/2 is

always a natural number. However, if Na is an even number, M must be an even

number to avoid half sample delay. This requirement prohibits the usage of an

even-length prototype filter when M is odd.

To utilize an even-length prototype filter when M is odd, we modify the original

FRM filter structure into one shown in Figure 5.4, which is suitable for Case A

in Figures 5.1(b)-(c). We call this structure as modified FRM structure I. The

frequency responses of various subfilters in the modified FRM structure I are

shown in Figure 5.5. The frequency response of Fa(z) now is

Fa(e
jω) = Ha(z

M)HMa(z)
∣∣
z=ejω

= e−jω(MNa+NMa−M−1)/2Ra(Mω)RMa(ω) (5.38)

where Ra(ω) and RMa(ω) are the magnitude frequency response of the prototype

filter Ha(z) and the masking filter HMa(z), respectively. The solid line in Fig-

ure 5.5(c) shows the shape of Fa(e
jω). The frequency response of its complement

is

Fc(e
jω)=z−

(MNa+NMa−M−1)

2 − Fa(z)|z=ejω

=e−jω(MNa+NMa−M−1)/2 · [1−Ra(Mω)RMa(ω)].

(5.39)
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Figure 5.4: Modified FRM structure I

The dashed line in Figure 5.5(c) shows the frequency response of the comple-

mentary part. Masking filter HMc(z), whose frequency response is the dashed

line as shown in Figure 5.5(b), removes the additional passband beyond ωs. The

frequency response of the overall filter is shown in Figure 5.5(d). The z-transform

transfer function of the modified FRM filter I is given by

H(z) = z−
NMc−1

2 Ha(z
M)HMa(z)+

[z−
MNa+NMa−M−1

2 −Ha(z
M)HMa(z)]HMc(z).

(5.40)

In the modified FRM structure I, (MNa +NMa−M−1)/2 delay components are

used to form the complement filter Fc(z). It is easy to avoid half sample delay in

the proposed structure, i.e. use an even-length masking filter HMa(z) when M is

odd, or an odd-length HMa(z) when M is even.

The modified structure FRM I is suitable for any interpolation factor with an

even-length prototype filter. It should be mentioned that the modified structure

FRM I causes slight increase in group delay compared with the original FRM

structure. The increase in group delay depends on the length of the masking
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Figure 5.6: Frequency response of modified structure I for Case B

filter HMa(z). However, the amount of increased group delay is not significant

because of two reasons. First, nonlinear optimization techniques such as SQP

helps reducing the length of HMa(z). Moreover, the group delay of the overall

filter is mainly determined by Ha(z
M). The group delay of HMa(z) contributes

only to a small percentage of the overall filter’s group delay.

The modified FRM structure I proposed above is only suitable for Case A. For

Case B, the proposed structure is not very efficient because it requires the mask-

ing filter HMc(z) to have the same transition bandwidth as the overall filter.

Figure 5.6 shows the frequency response of the modified structure I for Case B.
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To avoid the sharp transition band for the masking filter HMc(z), we can change

the masking filter HMa(z) to a bandpass filter. The new FRM structure is shown

in Figure 5.7. The frequency responses of various subfilters are shown in Fig-

ure 5.8. The frequency response of Fa(z) = Ha(z
M)HMa(z) is now a bandpass

signal with a sharp transition band. The transition bandwidth of the low pass

masking filter HMc(z) is extended compared with the one in Figure 5.6. This

new structure is denoted as modified FRM structure II. The z-transform transfer

function of is given by

H(z) = [z−
MNa+NMa−M−1

2 −Ha(z
M)HMa(z)]HMc(z). (5.41)

The idea of using a bandpass masking filter HMa(z) can be applied to Cases C

and D of the FRM filter with an even-length prototype filter. For Cases C and

D shown in Figures 5.1(f)-(i), it requires the masking filter HMc(z) to have the

same transition bandwidth as the overall filter. Such a requirement makes these

cases unattractive, although SQP and other nonlinear optimization techniques

can extend the transition bandwidth of HMc(z) to some extent.

If HMa(z) is chosen to be a bandpass filter with passband gain of -1 for Case C as

shown in Figure 5.9(b), the frequency response of Fa(z) will be a bandpass signal

with sharp transition bandwidth. The transition bandwidth of HMc(z) can be

extended. Figure 5.9(b) shows the frequency response of HMc(z) for Case C. The

corresponding Fa(e
jω) and Fc(e

jω) are shown in Figure 5.9(c). The frequency

response of the overall filter for Case C is shown in Figure 5.9(d). The realization
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structure for Case C is the same as that in Figure 5.4. The difference between

Case A and Case C is that the masking filter HMa(z) in Case A is a low pass

filter with passband gain equal to 1, while the masking HMa(z) filter in Case C

is a bandpass filter with passband gain of -1.

Input
)(zH Mc

2
1−−+− MNMN Maa

z

Output

)( M
a zH )(zH Ma

)(zFa

Figure 5.7: The realization structure of modified FRM II
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For Case D, it can be implemented using the structure in Figure 5.7. The fre-

quency responses of various subfilters are shown in Figures 5.9(e) and (f).

In both modified FRM structures I and II, the masking filters HMa(z) and HMc(z)

are not in parallel. Therefore, their lengths are not required to have the same

parity to keep the same group delay.

To illustrate our new proposed structure for FRM filter with an even-length

prototype filter, we redesign the low pass filter taken from [32]. The normalized

passband and stopband edges are 0.3, and 0.305, respectively. The passband and

stopband ripples are 0.01. To satisfy the given specification, the original FRM

requires an interpolation factor of 9. Case D can be used. Table 5.3 lists designs

using different approaches. It is easy to see that the even-length prototype filter

requires the least total number of coefficients. The frequency responses of the

FRM filter with an even-length prototype filter is drawn in Figure 5.10.

Another design example is taken from [75] and [91]. The normalized passband and

stopband edges are at 0.2 and 0.201, respectively. The passband and stopband

ripples are 0.01 and 0.001, respectively. The interpolation factor M is set to

21. It is of Case A of FRM filter with even-length prototype filter. Table 5.4

shows the comparison of different approaches. It is obvious that an even-length

prototype filter results in further savings in terms of the number of coefficients.

The frequency responses of the FRM filter with an even-length prototype filter

are shown in Figure 5.11.



CHAPTER 5. FRM WITH EVEN-LENGTH PROTOTYPE FILTER 125

���

ωπ�
�

� )( ωjM
a eH

���

ωπ�
�

�

sωpω

���

ωπ�
�

�

sωpω

�

���

ωπ�
�

� )( ωjeH

pω

�	�

ωπ�
�

�

�
�

ωπ�

�

sωpω

sωpω

)( ωj
Mc eH

sω

��

)( ωj
c eF

��

)( ωj
a eF

)( ωj
Ma eH

)( ωj
Ma eH

)( ωj
Mc eH

)( ωjeH

��

Figure 5.9: Frequency responses of each subfilter and the overall FRM filter in

modified FRM structure II of Cases C and D (a) Prototype filter (b) Two masking

filters for Case C (c) Fa(e
jω) and Fc(e

jω) (d) Overall FRM of Case C (e) Two

masking filters for Case D (f) Overall FRM of Case D



CHAPTER 5. FRM WITH EVEN-LENGTH PROTOTYPE FILTER 126

Filter structure Na NMa NMc δp (dB) δs (dB)

Odd-length prototype

filter (SQP approach)
45 27 19 0.086 -40.15

Odd-length prototype

filter (WLS Approach [79])
45 28 22 ≈ 0.087 ≈ −40a

Even-length prototype

filter (SQP Approach)
46 20 21 0.084 -40.34

Table 5.3: Comparison of design results from different design methods

aExact data not provided by the author.

Filter structure Na NMa NMc

Odd-length prototype filter in [75] and [91] 123 56 78

Even-length prototype filter 124 52 71

Table 5.4: Subfilter length comparison of different approaches

5.5 Conclusion

In this chapter, we first analyzed the problems in a FRM structure using an

even-length FIR filter as the prototype filter. To overcome the difficulties caused

by even-length prototype filters, the SQP optimization technique is utilized to

design the three subfilters simultaneously. The given examples show that a FRM

structure with an even-length prototype filter has a better performance than that
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Figure 5.10: Frequency Response of (a) Prototype filter Ha(z
9), (b) masking

filters HMa(z) and HMc(z), (c) Overall filter, and (d) passband ripple of the

overall filter
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of a FRM with an odd-length prototype filter. New structures suitable for even-

length prototype FRM filters were proposed. It was shown, by means of design

examples, that the proposed FRM structures yield better results compared with

the original FRM structures. For all the nonlinear optimization techniques, they

all reshape parts of the interpolated prototype filter to have a negative magnitude.

If the prototype is even-length, this reshaping will be easier. Therefore, an even-

length prototype filter and further reduces the complexity in a FRM filter.



Chapter 6

A Dynamic Frequency Grid Point

Allocation Scheme for Efficient

Design of Frequency-Response

Masking FIR Filters

6.1 Introduction

In the past few years, various new methods have been proposed for the design

of optimum frequency-response masking (FRM) filters [32]. Besides traditional

linear programming [32] and Remez exchange methods [70,83], several nonlinear

optimization techniques have been utilized to design FRM filters, including the

130
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two-step optimization method [75], the weighted least square (WLS) approach

[79,101], the semi-definite programming (SDP) method [91], and the second-order

cone programming (SoCP) method [92,99].

No matter which design method is utilized, the frequency response of a FRM filter

is optimized on a dense set of frequency grid points. Obviously, the density of the

frequency grid points must be sufficient enough so that the given specifications are

not violated at frequencies in between any two frequency grid points. However,

there has been no report on how to determine such a dense frequency grid for the

design of a FRM filter until now. For the case of a single FIR filter, Yang and

Lim [46] proposed that the frequency grid spacing λ should be

λ =
0.5−∑

i ∆i

k ·N (6.1)

where
∑

i ∆i is the total normalized transition bandwidth, N is the filter length,

and k is a grid spacing factor to be determined. Here, deviation of a filter is

defined as the maximum value of ripple. A larger value k makes the actual

deviation δ̂ closer to δ, where δ is the deviation detected by the frequency grid

points, at the expense of more memory space and CPU time [46]. To address this

issue, Yang and Lim proposed a dynamic frequency grid point allocation scheme

for the efficient design of equiripple FIR filters [62]. However, the methods in [46]

and [62] are not well suited for FRM filters. The reasons are two-fold. First,

the parameters in Equation (6.1) are hard to determine in case of FRM filters,

especially when a nonlinear optimization technique is utilized to design a FRM

filter. According to our experience, the grid scheme determined according to
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Equation (6.1) is too sparse for a FRM filter design when a nonlinear optimization

technique is utilized.

Second, the dynamic allocation scheme in [62] is based on the fact that the

frequency positions of local extrema of a symmetrical FIR filter do not shift a

lot between two consecutive optimization iterations. Therefore, the algorithm

in [62] could only take into account frequency grid points corresponding to local

ripple extrema. For a FRM filter that involves a few subfilters, each iteration

during the optimization may lead to a local extremum that is quite different

from the previous iteration. This phenomena makes dynamic allocation scheme

fail to guarantee convergence under WLS method for a FRM filter. Moreover, the

convergence of a single WLS iteration does not result in an equiripple solution

as reported in [47, 79]. The weighting function must be updated (such as the

algorithm in [47]) several times before a quasi-equiripple solution is found. This

results in a two-loop algorithm in [62]. For FRM filters, the WLS approach such

as [79] generally requires much more computations than a single FIR filter does,

due to the nonlinear relationship between the ripple of the overall filter and the

ripple of each subfilter. In this case, the total computation load will become very

high for the design of a very sharp FRM filter.

In this chapter, a new dynamic frequency grid point allocation scheme is pro-

posed. The new allocation scheme is suitable for the efficient design of a FRM

filter. The organization of this chapter is as follows: in Section 6.2, the ripple

of FRM filters designed by nonlinear optimization techniques is analyzed first.
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In Section 6.3, a two-stage design method is proposed, and the detailed design

procedure is given. Section 6.4 discusses how the sparse and dense frequency grid

points are allocated. Section 6.5 gives different convergence criteria for sparse

and dense frequency grid point allocation scheme. A design example is shown

in Section 6.6 to demonstrate the effectiveness of the new frequency grid point

allocation scheme, and conclusion is drawn in Section 6.7.

6.2 Ripple Analysis for Jointly Optimized FRM

Filters

A basic FRM structure is shown in Figure 4.1. In this section, we only analyze

the ripples of low pass FRM filters. Suppose the passband and stopband edges

of a low pass prototype filter Ha(z) are θ and φ, respectively, as shown in Figure

6.1(a). When nonlinear optimization techniques are utilized in the design of low

pass FRM filters, the bandwidths of two masking filters HMa(z) and HMc(z) can

be extended up to (2π−φ+θ)/M for Case A, or (2π+φ−θ)/M for Case B, where

M is the interpolation factor of the prototype filter. For a low pass FRM filter,

the transition bands of two masking filters are assumed to be in the frequency

regions [(2mπ − θ)/M, (2(m + 1)π − φ)/M ] for Case A (see Figure 6.1(c)), and

[(2(m − 1)π + θ)/M, (2mπ + φ)/M ] for Case B (see Figure 6.1 (e)). Design

examples in [75, 79, 91, 92, 99] support the above assumption. m is an integer

less in M [32]. Figure 6.2 shows the frequency responses of three subfilters of
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a low pass FRM filter designed by a nonlinear optimization technique. As the

distribution of extrema of a FRM filter determines the density of the frequency

grid points, let us first analyze the ripple of a FRM filter jointly optimized by a

nonlinear optimization technique before the presentation of a dynamic frequency

grid point allocation scheme.

For the sake of expository clarity, we drop the phase frequency response in the

rest of this section. Let Ga(ω) and δa(ω) be the desired value and deviation of the

frequency response of the interpolated prototype filter, Ha(e
jMω). Similarly, let

{GMa(ω), δMa(ω)} and {GMc(ω), and δMc(ω)} be the desired value and deviation

of the frequency responses of the two masking filters, HMa(e
jω) and HMc(e

jω),

respectively. Now we can express the desired value G(ω) and deviation δ(ω) of

the overall FRM filter as

G(ω) + δ(ω) = [Ga(ω) + δa(ω)][GMa(ω) + δMa(ω)]

+[1−Ga(ω)− δa(ω)][GMc(ω) + δMc(ω)].

(6.2)

Due to different values of GMa(ω) and GMc(ω), we can divide the whole frequency

region into two regions as indicated in Figures 6.1(c) and (e): in Region I GMa(ω)

and GMc(ω) have constant value, and in Region II GMa(ω) and GMc(ω) drop

from 1 to 0. The effects of Ha(e
jMω), HMa(e

jω) and HMc(e
jω) on the ripple of

the overall FRM filter will be examined in different frequency regions one by one.

Frequency Region 1: In this region, GMa(e
jω) = GMc(e

jω) = G(ω) = C. This

region includes the passband and stopband of two masking filters: C = 1 in the
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Figure 6.1: Frequency response of each subfilter when nonlinear optimization

methods utilized (a) prototype filter and complementary filter, (b) interpolated

prototype filter and complementary filter, (c) two masking filters for Case A, (d)

Overall FRM filter for Case A, (e) two masking filters for Case B and (e) Overall

FRM filter for Case B
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Figure 6.2: Design example of a FRM filter designed by SQP

passband or C = 0 in the stopband. For a low pass FRM filter, it is the region

[0, (2mπ−θ)/M ]∪ [(2(m+1)π−φ)/M, π] for Case A, or [0, (2(m−1)π+θ)/M ]∪

[(2mπ+φ)/M, π] for Case B. Substituting the value of C into Equation (6.2) and

ignoring second order terms, Equation (6.2) can be simplified to

δ(ω) = Ga(ω)[δMa(ω)− δMc(ω)] + δMc(ω). (6.3)

In this region, Ga(ω) is no longer a constant value when a nonlinear optimization

method is utilized. The value of δ(ω) is determined by Ga(ω), δMa(ω) and δMc(ω).

An important problem we must consider is what is the number of extrema in a

FRM filter. The number of extrema of two masking filters are determined by

the lengths of HMa(z) and HMc(z), which are the same as the case of a single

FIR filter. For the interpolated prototype filter, Ga(ω) is no longer a constant
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value of 1 or 0 in the passband and stopband. Actually it has arch-shape as

shown in Figure 6.2. At each bandedge of Ha(z
M), Ga(ω) has an extremum.

At ω = kπ/M where k is an integer, Ga(ω) has another extremum. Therefore,

in the interval [2(m − 1)π/M, 2mπ/M), there are total 6 extrema for Ga(ω).

Meanwhile, there are totally 6M + 1 extrema in [0, π]. From Figure 6.1(b), it

is clear that the number of extrema of Ga(ω) in the passband is 6m for Case

A, or 6m − 4 for Case B. Figures 6.1(b), (c) and (e) reveal that there are 4

extrema for Ga(ω) in the transition bands of two masking filters for Case A and

6 extrema for Case B. Therefore, in the stopband of two masking filters, Ga(ω)

has 6M −6m−3 extrema for Case A, or 6M −6m−1 extrema for Case B. These

extrema of Ga(ω) increase the number of extrema in the FRM filters. Moreover,

the nonconstant Ga(ω) makes δ(ω) a nonlinear combination of δMa(ω) and δMc.

This also increases the number of extrema in Frequency Region 1. The number

of extrema of δ(ω) can now be classified into 2 groups: one group is caused by the

ripples of two masking filters, and another group is caused by the nonconstant

gain of the prototype filter. Therefore, more frequency grid points are needed to

deal with the extrema caused by Ga(ω) besides the frequency grid points needed

by HMa(z) and HMc(z).

Frequency Region 2: This region is the transition bands of two masking filters

HMa(z) and HMc(z). For Case A, the region is ((2mπ−θ)/M, (2(m+1)π−φ)/M).

For Case B, it is ((2(m − 1)π + θ)/M, (2mπ + φ)/M). In this region, δMa(ω) =

δMc(ω) = 0 as HMa(z) and HMc(z) are both in their transition band. Therefore,
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Equation (6.2) can be simplified to

G(ω) + δ(ω) = GMc(ω) + Ga(ω)[GMa(ω)−

GMc(ω)] + δa(ω)[GMa(ω)−GMc(ω)].

(6.4)

Equation (6.4) can be decomposed into two equations:

G(ω) = GMc(ω) + Ga(ω)[GMa(ω)−GMc(ω)] (6.5)

and

δ(ω) = δa(ω)[GMa(ω)−GMc(ω)]. (6.6)

Here, G(ω) = 1 in the passband of the overall FRM filter, and G(ω) = 0 in the

stopband of the overall FRM filter.

According to Equation (6.6), the deviation δ(ω) in Frequency Region 2 is de-

termined by the deviation of the interpolated prototype filter Ha(z
M), and the

gain of two masking filter HMa(z) and HMc(z). Because δ(ω) is dependent on

δa(ω), the number of local extrema of δ(ω) in this region is related to the filter

length of the prototype filter Ha(z) and its interpolation factor M . In this region,

the two masking filters are both in their transition bands, and their gains drop

from 1 to 0 gradually. As the two endpoints of this region are not included in

this region, 1 and 0 are two limits of both GMa(ω) and GMc(ω), but not their

extrema. One of GMa(ω) and GMc(ω) may have an extremum in this region, to

guarantee the tenableness of (6.5), as shown in Figure 6.2 and design examples

in [75, 79, 91, 92, 99]. As a result, the number of extrema of δ(ω) in Frequency

Region 2 is mainly determined by the extrema of δa(ω). In other words, the
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number of frequency grid points in Frequency Region 2 are determined by the

length of the prototype filter Ha(z) and the interpolation factor M .

With the above analysis, we are ready to propose a new set of conditions to

determine the frequency grid spacing based on Equation (6.1). In Frequency

Region 1, it has been shown that the number of extrema of a FRM filter is

determined by all three subfilters. N in Equation (6.1) takes the value of longer

filter length between HMa(z) and HMc(z). k in Equation (6.1) should have a

larger value than the value in the case of a single FIR filter, to provide extra

frequency grid points needed by Ga(ω). For the case of a single FIR filter, k

takes a value of 8 ∼ 10 [46]. We recommend that k takes value of 15 ∼ 20 for a

FRM filter. In Frequency Region 2, the number of extrema is mainly determined

by the filter length of Ha(z) and its interpolation factor M . N is M times of the

length of filter Ha(z). k can be slightly larger than that in the case of a single

FIR filter. We suggest that k takes a value of 10 ∼ 15.

6.3 A New Two-Stage Design Method Based on

Sequential Quadratic Programming

It is possible to jointly optimize all the subfilters in a FRM structure using the

WLS approach [79]. However, the WLS approach requires updating the weighting

function after each convergence of the WLS design vector. The fact that a local
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extremum may move makes a dynamic frequency grid point scheme not suitable

for WLS approach. In practice, the above fact make it almost impossible for

a WLS approach to obtain an equiripple solution for a FRM filter if a sparse

frequency grid point scheme such as the scheme in [62] is used.

When the sequential quadratic programming (SQP) technique [17] is used, weight-

ing function does not need updating no matter what frequency grid point allo-

cation scheme is adopted. Details of the design procedure of the SQP technique

can be found in Section 5.3, and will not be repeated here.

Although SQP is efficient for jointly optimizing all the subfilters in a FRM struc-

ture, the high density of the required frequency grid point increases the computing

amount, and reduces the design efficiency. To further improve the efficiency, a

sparse frequency grid point allocation scheme is highly desired. This leads to the

two-stage design method described below, which uses a sparse dynamic frequency

grid point allocation scheme in the first stage.

The new two-stage design method is based on the SQP optimization technique.

Figure 6.3 shows the design procedure of our new method. During initialization,

the initial value of the design vector h = [hT
a , hT

Ma, hT
Mc]

T is determined as de-

scribed in [32] or [70], where ha, hMa, hMc are the coefficients of Ha(z), HMa(z),

and HMc(z). An initial set of sparse frequency grid points is also determined

during initialization. There are two stages in the proposed method: a sparse fre-

quency grid is first used followed by a much higher dense frequency grid. In Stage
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Figure 6.3: Flowchart for the dynamic frequency grid point scheme
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1, the SQP iterative procedure is terminated after several iterations, and the opti-

mization convergence status is analyzed. If the optimization result does not meet

the condition of “near convergence”, which will be defined in Section 6.5, actual

extremal points are searched, and a new sparse set of frequency grid points is

formed. A new SQP iterative procedure is carried out again. If the condition of

“near convergence” is satisfied, a dense set of frequency grid points is formed, and

steps in Stage 2 are followed. The convergence condition in Stage 2 is different

from the decision in Stage 1. The difference between convergence conditions in

the two stages will be discussed later in Section 6.5. Other steps in Stage 2 are

the same as that in Stage 1.

The purpose of using a sparse frequency grid in Stage 1 is to save memory and

CPU time. However, a problem faced by the sparse frequency grid is that the

actual extrema may never be detected by the sparse frequency grid. The actual

deviation δ̂ which is detected by a very dense frequency grid points will be larger

than the deviation δ detected by the sparse frequency grid points. This prob-

lem also exists in a fixed dense frequency grid scheme, which can be solved by

increasing the number of frequency grid points at the expense of increased mem-

ory requirement, more CPU time, and reduced efficiency. However, increasing

the number of frequency grid points is not suitable for the sparse frequency grid

point scheme. To detect the actual deviation δ̂ while not reducing the efficiency,

the sparse frequency grid is updated regularly and a dense frequency grid is used

in Stage 2 to guarantee the given specifications are satisfied everywhere in the
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frequency domain. Although the memory and CPU time requirement for each

iteration of SQP algorithm in Stage 2 is high, the needed iteration numbers in

Stage 2 can be controlled to be within an acceptable level. To minimize the

number of optimization iterations in Stage 2, it becomes very important in Stage

1 to decide on the convergence of h, which will be discussed in Section 6.5.

6.4 Dynamic Frequency Grid Point Allocation

Scheme

During initialization, a sparse frequency grid is formed by choosing N in Equa-

tion (6.1) to be the length of the longer filter between HMa(z) and HMc(z) in

Frequency Region 1. In Frequency Region 2, N should be M times the length of

Ha(z). Because the initial frequency grid points are used during the first iteration

in Stage 1, k in Equation (6.1) can be as small as 3 in both Frequency Regions

1 and 2. The frequency grid points are allocated evenly in Frequency Regions 1

and 2.

To solve the problem that the frequency positions of local extrema may move

during two consecutive iterations of SQP algorithm, the most direct way is to

insert several extra frequency grid points between two consecutive extrema. At

the same time, all the extrema of the current iteration are also included in the

set of updated frequency grid points for next iteration. The purpose of inserting
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these extra frequency grid points is to guarantee that the ripples at most local

extrema can be reduced to some extent. In fact, these inserted extra frequency

grid points and the regular updating of the sparse frequency grid turn out to

be able to realize such a purpose. At the same time, the computing speed is

improved because the frequency grid point scheme is sparse which reduces the

computing amount.

As analyzed in Section 6.2, the number of extrema for a FRM filter in Frequency

Regions 1 and 2 is determined by different terms. It is reasonable to insert

different numbers of frequency grid points between two consecutive extrema in the

two regions. We might insert L1 frequency grid points between two consecutive

extrema in Frequency Region 1, and L2 frequency grid points in Frequency Region

2. Due to the fact that the ripple in Frequency Region 1 is determined by three

ripple terms, L1 should have a larger value than L2. According to our experience,

L1 can be in the range from 4 to 8, and L2 can be in the range from 1 to 4 in

Stage 1. In Stage 2, L1 and L2 should be 3 to 7 times the values in Stage 1. In

both Stages 1 and 2, the frequency grid points are evenly distributed between

two consecutive extrema.

To update the frequency grid points, actual extremal points are searched after

deciding whether h has converged in both Stages 1 and 2. The search is done

on a fixed set of frequency grid points. The fixed frequency grid point scheme is

determined according to (6.1). N is the same as described in Section 6.2. In [62],

Yang and Lim suggested k = 40 to search for the extremal points. When the
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effects of nonconstant Ga(ω) are taken into account, this k value is too small to

detect the actual extremal points. According to our experience, k should be in the

range of 80− 160 in Frequency Region 1 depending on the value of interpolation

factor M . If needed, k can have a larger value for a large M . In Frequency

Region 2, 60M − 100M will be enough to detect all the actual extremal points.

Generally speaking, k increases with M .

6.5 Convergence Criteria for Dynamic Grid Points

Allocation Scheme

Convergence criteria are always important to any optimization technique, because

they determine the termination of an optimization procedure. Generally speak-

ing, an optimization procedure is terminated if one of following requirements is

satisfied.

1. The change in the objective function value is less than the predefined dif-

ference tolerance ε1.

2. The change in design vector h is less than a predefined difference tolerance

value ε2.

3. The predefined maximum iteration number is reached.
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The predefined maximum iteration number is always a large number. If any

among the first two conditions above are satisfied, h is said to have converged.

However, it is unnecessary and inefficient to wait until h has converged to ter-

minate the SQP algorithm in Stage 1. Since the frequency grid is very sparse in

Stage 1, the actual extrema are not likely to be detected by the sparse frequency

grid. When the design vector h converges in Stage 1, the given specifications are

satisfied only at these sparse grid points. Actual ripples in between these grid

points may still be larger than the given specifications. So the convergence of h

makes no sense.

To improve efficiency, the SQP algorithm is terminated after just several itera-

tions. The maximum iteration number of the SQP algorithm in Stage 1 is chosen

to be a small number, such as five. When this maximum iteration number is

reached, ripples at most local extrema can be reduced to some extent. It is

possible that the maximum deviation may increase, especially during iterations

right after the initialization. But the maximum deviation will decrease after the

frequency grid points are updated and new SQP iterations are carried out.

It is not likely for h to converge within just several iterations in Stage 1. So

the concept of “near convergence” is introduced to provide an exit for Stage 1.

The design vector h is considered to be near converged when the following two

conditions are satisfied.
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1. The change of objective function value between two consecutive frequency

grid point updates is less than n · ε1, where ε1 is the predefined error toler-

ance, and n is greater than 1.

2. The maximum deviation detected by the sparse frequency grid points is less

than the given specifications.

A suitable value of n can effectively reduce the number of iterations in Stage 2.

According to our experience, n should be in the range from 1.5 to 3. The second

condition is to guarantee that the given set of specifications are met everywhere

in the frequency domain. If the second condition can’t be satisfied, that means

one or some of the subfilter lengths should be increased. If the second condition

is satisfied and the deviation detected by the sparse frequency grid points is much

less than the given specification, one or some of the subfilters can be reduced.

The convergence criteria in Stage 2 are the same as usual, which were given at

the beginning of this section.

6.6 Design Example

In this section, a design example is given to demonstrate the effectiveness of our

new algorithm. The normalized passband and stopband edges of the filter are

at 0.4π and 0.406π, respectively. The passband and stopband ripples are 0.01

and 0.001, respectively. The lengths of subfilters are Na = 81, NMa = 34 and
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NMc = 38. M is chosen to be 11. Tables 6.1 and 6.2 show the comparison

between the fixed frequency grid point allocation scheme and dynamic frequency

grid point allocation scheme. It should be pointed out that the grid number

and the memory usage of the dynamic frequency grid point allocation scheme are

averaged values. Both fixed and dynamic frequency grid point allocation schemes

are programmed in Matlab 6.5, and are run on a Pentium IV PC of 2.5GHz. It

can be seen from Tables 6.1 and 6.2 that the new dynamic frequency grid point

scheme achieves significant savings in the memory usage and CPU time, while

result in almost the same design result.
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Allocation Scheme
Frequency Grid Memory Usage CPU Time

Point Number (MB) (Hour)

Fixed Frequency Grid
4715 21.1 10

Point Allocation Scheme

Dynamic Frequency Grid
1151 4.0 0.6

Point Allocation Scheme

Saving (%) 75.6 81.0 94.0

Table 6.1: Comparison of design costs of fixed and dynamic frequency grid point

allocation schemes

Allocation Scheme Max Passband Deviation Max Stopband Deviation

Fixed Frequency Grid
9.988× 10−3 9.992× 10−4

Point Allocation Scheme

Dynamic Frequency Grid
9.994× 10−3 9.973× 10−4

Point Allocation Scheme

Table 6.2: Comparison of design result of fixed and dynamic frequency grid point

allocation schemes
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6.7 Conclusion

In this chapter, ripple analysis is first done for FRM filters designed by non-

linear optimization techniques. A new dynamic frequency grid point allocation

scheme is proposed for the efficient design of FRM filters utilizing nonlinear opti-

mization techniques. Combining the proposed scheme with the SQP optimization

technique, significant reductions in both memory usage and computing time have

been achieved, compared with traditional fixed frequency grid point scheme. The

design example verifies the effectiveness of the proposed scheme.
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Conclusion

In this thesis, FIR filter structures based on the parallel prefilter and the iterative

design method are first reviewed. The iterative design method fixes the length of

the even-length filter He(z) to be 2, and only a suboptimal solution is obtained.

To further improve the efficiency of the parallel prefilter and its equalizer, the

weighted least square (WLS) technique is utilized. Design examples show the

effectiveness of the WLS approach.

Given the fact that nonlinear optimization techniques can effectively reduce the

filter length of a parallel prefilter and its equalizer, new equations are needed

to estimate the filter lengths of a parallel prefilter and its equalizer, which are

designed by a nonlinear optimization technique. To save computing time, the

filter design task is formulated as a goal attainment problem. This goal attain-

ment problem can be solved by a Matlab function, fgoalattain. By utilizing the

151
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function fgoalattain, thousands of basic parallel filters are designed, and equa-

tions and a table are developed to estimate subfilter lengths in a basic parallel

filter. Accuracy analysis shows that the accuracy of the developed equations and

look-up table is satisfactory.

Frequency-response masking (FRM) is another efficient FIR filter structure. FRM

is suitable for the design of a sharp filter with arbitrary passband bandwidth. In

the past few years, nonlinear optimization techniques have been utilized to design

FRM filters. These techniques extend the transition bandwidth of two masking

filters, and reduce the filter lengths of two masking filters. With the introduction

of nonlinear optimization techniques to FRM, the existing estimations of the op-

timum interpolation factor are no longer accurate. To develop a new equation to

estimate the optimum interpolation factor of a FRM filter designed by a nonlinear

optimization technique, new equations are first developed to estimate the length

of the prototype filter and the total length of two masking filters. Based on the

new developed equations, a new equation is derived for the optimum interpolation

factor.

Until now, all the reported designs utilize an odd-length FIR filter as the proto-

type filter in a FRM filter. In this thesis, problems that arise if an even-length

FIR filter is utilized as the prototype filter in a FRM filter are first analyzed.

In fact, nonlinear optimization techniques can overcome the difficulties faced by

even-length prototype filters. A new nonlinear optimization design method is

proposed to design a FRM filter. The new design method is based on the se-
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quential quadratic programming (SQP) approach. By this new method, a FRM

filter with an even-length prototype filter can have performance comparable with

a FRM filter with an odd-length prototype filter. Two more filter structures are

proposed, which are suitable for the synthesis of FRM filters with even-length

prototype filters. Design examples show that these two filter structures lead to

further savings in the number of multipliers and adders.

Finally, the distribution of ripple extrema of FRM filters designed by nonlin-

ear optimization techniques is analyzed. A fixed frequency grid point allocation

scheme is proposed based on the analysis of the distribution of ripple extrema. To

save memory and CPU time, a dynamic frequency grid point allocation scheme is

proposed. The new dynamic scheme uses sets of sparse frequency grid points to

save memory and CPU time in the first stage. In the second stage, a set of highly

dense frequency grid points is utilized to guarantee that the given specifications

are satisfied everywhere in the frequency domain.

As far as the filter structures discussed in this thesis, they are all designed in the

domain of real number. Further work can be carried out in the domain of integer.

This is more attractive because integer solutions are easier to be implemented.

At the same, the design methods discussed in this thesis should also be applicable

to the design of other digital filter structures. New problems are quite possible

to appear when these methods are applied to the design of other filter structure.

How to solve these problems is the task for further research.
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