158 research outputs found

    A Spatial-Epistemic Logic for Reasoning about Security Protocols

    Full text link
    Reasoning about security properties involves reasoning about where the information of a system is located, and how it evolves over time. While most security analysis techniques need to cope with some notions of information locality and knowledge propagation, usually they do not provide a general language for expressing arbitrary properties involving local knowledge and knowledge transfer. Building on this observation, we introduce a framework for security protocol analysis based on dynamic spatial logic specifications. Our computational model is a variant of existing pi-calculi, while specifications are expressed in a dynamic spatial logic extended with an epistemic operator. We present the syntax and semantics of the model and logic, and discuss the expressiveness of the approach, showing it complete for passive attackers. We also prove that generic Dolev-Yao attackers may be mechanically determined for any deterministic finite protocol, and discuss how this result may be used to reason about security properties of open systems. We also present a model-checking algorithm for our logic, which has been implemented as an extension to the SLMC system.Comment: In Proceedings SecCo 2010, arXiv:1102.516

    Decidable Inductive Invariants for Verification of Cryptographic Protocols with Unbounded Sessions

    Get PDF
    We develop a theory of decidable inductive invariants for an infinite-state variant of the Applied ?calc, with applications to automatic verification of stateful cryptographic protocols with unbounded sessions/nonces. Since the problem is undecidable in general, we introduce depth-bounded protocols, a strict generalisation of a class from the literature, for which our decidable analysis is sound and complete. Our core contribution is a procedure to check that an invariant is inductive, which implies that every reachable configuration satisfies it. Our invariants can capture security properties like secrecy, can be inferred automatically, and represent an independently checkable certificate of correctness. We provide a prototype implementation and we report on its performance on some textbook examples

    How to prevent type-flaw attacks on security protocols under algebraic properties

    Full text link
    Type-flaw attacks upon security protocols wherein agents are led to misinterpret message types have been reported frequently in the literature. Preventing them is crucial for protocol security and verification. Heather et al. proved that tagging every message field with it's type prevents all type-flaw attacks under a free message algebra and perfect encryption system. In this paper, we prove that type-flaw attacks can be prevented with the same technique even under the ACUN algebraic properties of XOR which is commonly used in "real-world" protocols such as SSL 3.0. Our proof method is general and can be easily extended to other monoidal operators that possess properties such as Inverse and Idempotence as well. We also discuss how tagging could be used to prevent type-flaw attacks under other properties such as associativity of pairing, commutative encryption, prefix property and homomorphic encryption.Comment: 16 pages, Appeared in proceedings of Security with Rewriting Techniques (SecRet09), Affiliated to CSF Symposium 2009, Port Jefferson, NY

    A class of theory-decidable inference systems

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2004-2005Dans les deux dernières décennies, l’Internet a apporté une nouvelle dimension aux communications. Il est maintenant possible de communiquer avec n’importe qui, n’importe où, n’importe quand et ce, en quelques secondes. Alors que certains systèmes de communication distribués, comme le courriel, le chat, . . . , sont plutôt informels et ne nécessitent aucune sécurité, d’autres comme l’échange d’informations militaires ou encore médicales, le commerce électronique, . . . , sont très formels et nécessitent de très hauts niveaux de sécurité. Pour atteindre les objectifs de sécurité voulus, les protocoles cryptographiques sont souvent utilisés. Cependant, la création et l’analyse de ces protocoles sont très difficiles. Certains protocoles ont été montrés incorrects plusieurs années après leur conception. Nous savons maintenant que les méthodes formelles sont le seul espoir pour avoir des protocoles parfaitement corrects. Ce travail est une contribution dans le domaine de l’analyse des protocoles cryptographiques de la façon suivante: • Une classification des méthodes formelles utilisées pour l’analyse des protocoles cryptographiques. • L’utilisation des systèmes d’inférence pour la mod´elisation des protocoles cryptographiques. • La définition d’une classe de systèmes d’inférence qui ont une theorie décidable. • La proposition d’une procédure de décision pour une grande classe de protocoles cryptographiquesIn the last two decades, Internet brought a new dimension to communications. It is now possible to communicate with anyone, anywhere at anytime in few seconds. While some distributed communications, like e-mail, chat, . . . , are rather informal and require no security at all, others, like military or medical information exchange, electronic-commerce, . . . , are highly formal and require a quite strong security. To achieve security goals in distributed communications, it is common to use cryptographic protocols. However, the informal design and analysis of such protocols are error-prone. Some protocols were shown to be deficient many years after their conception. It is now well known that formal methods are the only hope of designing completely secure cryptographic protocols. This thesis is a contribution in the field of cryptographic protocols analysis in the following way: • A classification of the formal methods used in cryptographic protocols analysis. • The use of inference systems to model cryptographic protocols. • The definition of a class of theory-decidable inference systems. • The proposition of a decision procedure for a wide class of cryptographic protocols

    Compiling and securing cryptographic protocols

    Get PDF
    Protocol narrations are widely used in security as semi-formal notations to specify conversations between roles. We define a translation from a protocol narration to the sequences of operations to be performed by each role. Unlike previous works, we reduce this compilation process to well-known decision problems in formal protocol analysis. This allows one to define a natural notion of prudent translation and to reuse many known results from the literature in order to cover more crypto-primitives. In particular this work is the first one to show how to compile protocols parameterised by the properties of the available operations.Comment: A short version was submitted to IP
    • …
    corecore