
FRANÇOIS GAGNON

A CLASS OF THEORY-DECIDABLE

INFERENCE SYSTEMS

Toward a Decision Procedure for Structured Cryptographic
Protocols

Mémoire présenté
à la Faculté des études supérieures de l’Université Laval
dans le cadre du programme de mâıtrise en informatique
pour l’obtention du grade de Mâıtre ès sciences, (M.Sc.)

FACULTÉ DES SCIENCES ET DE GÉNIE
UNIVERSITÉ LAVAL

QUÉBEC

FÉVRIER 2005

c©François Gagnon, 2005

Résumé

Dans les deux dernières décennies, l’Internet a apporté une nouvelle dimension aux com-

munications. Il est maintenant possible de communiquer avec n’importe qui, n’importe

où, n’importe quand et ce, en quelques secondes. Alors que certains systèmes de

communication distribués, comme le courriel, le chat, . . . , sont plutôt informels et

ne nécessitent aucune sécurité, d’autres comme l’échange d’informations militaires ou

encore médicales, le commerce électronique, . . . , sont très formels et nécessitent de très

hauts niveaux de sécurité.

Pour atteindre les objectifs de sécurité voulus, les protocoles cryptographiques sont

souvent utilisés. Cependant, la création et l’analyse de ces protocoles sont très difficiles.

Certains protocoles ont été montrés incorrects plusieurs années après leur conception.

Nous savons maintenant que les méthodes formelles sont le seul espoir pour avoir des

protocoles parfaitement corrects. Ce travail est une contribution dans le domaine de

l’analyse des protocoles cryptographiques de la façon suivante:

• Une classification des méthodes formelles utilisées pour l’analyse des protocoles

cryptographiques.

• L’utilisation des systèmes d’inférence pour la modélisation des protocoles cryp-

tographiques.

• La définition d’une classe de systèmes d’inférence qui ont une theorie décidable.

• La proposition d’une procédure de décision pour une grande classe de protocoles

cryptographiques

Abstract

In the last two decades, Internet brought a new dimension to communications. It

is now possible to communicate with anyone, anywhere at anytime in few seconds.

While some distributed communications, like e-mail, chat, . . . , are rather informal

and require no security at all, others, like military or medical information exchange,

electronic-commerce, . . . , are highly formal and require a quite strong security.

To achieve security goals in distributed communications, it is common to use cryp-

tographic protocols. However, the informal design and analysis of such protocols are

error-prone. Some protocols were shown to be deficient many years after their con-

ception. It is now well known that formal methods are the only hope of designing

completely secure cryptographic protocols. This thesis is a contribution in the field of

cryptographic protocols analysis in the following way:

• A classification of the formal methods used in cryptographic protocols analysis.

• The use of inference systems to model cryptographic protocols.

• The definition of a class of theory-decidable inference systems.

• The proposition of a decision procedure for a wide class of cryptographic protocols.

Avant-propos

I’d first like to thank my research director, Mohamed Mejri, for the last two years

we spent together to obtain the results included in this thesis. Thank you for your

guidance, for sharing with me a part of your passion and wisdom. Thank you for

letting me explore interesting topics that were not directly related with my research

area but have nevertheless been very enriching. Thank you for the many opportunities

you provided me, Ottawa’2003 and Italy’2004 among many others.

Special thanks should go to my parents for without their unconditional support,

nothing of this would have been possible. To my father with whom I played many chess

games; to my mother who showed me the most important thing in life: ”never give up,

always fight”; to my sister who traced my way to université Laval; to my brother who

helped me pass into manhood, to Denis with whom I spent so much of my time and

with whom I had so much fun, thank you very much!

Thanks to my girlfriend for being there when I needed you the most, for sharing

my dreams, for your encouragement, for your support and most of all for loving me.

Thanks to all her family for opening me their home.

Among my colleagues at université Laval, I want to thank Claude Bolduc, Jean-

Phillipe Gagnon, Hanane Houmani, Eric Lacoursière, Majoub Langar, Vincent Math-

ieu, Mohamed Mbarki, Jean-François Morneau and Maxime Morneau for many fruitful

discussions. However, one deserve special acknowledgement for being a model in re-

search as well as in teaching; for so many discussion about school, life, research, for

helping me discover what I really wanted to do and how I should do it, for all this and

so much more, thank you Hans Bherer.

I am grateful to my reviewers Dr. Nadia Tawbi and Dr. Kamel Adi who did a great

job finding some mistakes as well as some parts that needed to be rewritten.

To my parents,

without whom nothing of this would have been possible.

To Catherine,

without whom this would have been much harder.

To Denis,

for it all started with our dreams back then.

Nothing great has ever been

accomplished without passion.

Contents

Résumé ii

Abstract iii

Avant-propos iv

Contents vi

List of Tables ix

List of Figures xi

Introduction 1

1 Cryptographic Protocols 3

1.1 Introduction . 3

1.2 Cryptography . 4

1.2.1 Cryptosystem . 4

1.2.2 Symmetric or asymmetric cryptosystem 5

1.2.3 Future way in cryptography . 8

1.2.4 Perfect cryptography assumption 9

1.3 Security properties . 9

1.4 Cryptographic protocols . 11

1.4.1 Notations . 12

1.4.2 Role abstraction . 14

1.4.3 Role generalization . 16

1.4.4 Intruder abilities . 17

1.4.5 Valid traces . 18

1.4.6 Protocol classification . 20

1.5 Flaws in protocols . 21

1.5.1 Freshness flaws . 21

1.5.2 Oracle flaws . 22

1.5.3 Type flaws . 23

Contents vii

1.5.4 Binding flaws . 24

1.5.5 Repudiation flaws . 25

1.5.6 Implementation flaws . 26

1.5.7 Others . 27

1.6 Conclusion . 27

2 Protocol Analysis 28

2.1 Introduction . 28

2.2 Refuting correctness . 29

2.2.1 DYMNA . 30

2.3 Proving correctness . 34

2.3.1 Sufficient conditions for correctness 34

2.3.2 Gavin Lowe approach . 35

2.3.3 Stand space model . 36

2.4 Deciding correctness . 40

2.5 Others . 40

2.5.1 BAN logic . 42

2.6 Conclusion . 47

3 On the Termination of Inference Proof Systems 48

3.1 Introduction . 48

3.2 Inference systems . 49

3.3 Termination of inference systems . 50

3.4 Handling termination . 51

3.5 Algorithmic transformation . 55

3.5.1 Optimization . 58

3.6 Example of inference system transformation 59

3.7 Other Methods . 61

3.7.1 Blanchet . 61

3.7.2 Kindreed &Wing . 62

3.8 Conclusion . 63

4 On the Convergence of the Transformation Algorithm 64

4.1 Introduction . 64

4.2 Message algebra . 65

4.3 Unification . 71

4.4 The transformation algorithm converges 77

4.4.1 Structured inference systems . 77

4.4.2 The transformation function . 81

4.4.3 The convergence proof . 87

4.5 The resulting inference system is terminating 89

Contents viii

4.5.1 Proof-search procedure . 90

4.5.2 A tree model for the proof-search procedure 92

4.5.3 The proof-search procedure terminates 98

4.6 Conclusion . 99

5 Decidability of Cryptoprotocols 100

5.1 Introduction . 100

5.2 A decision procedure . 101

5.3 Relaxing the structured requirement 102

5.3.1 Cryptoprotocols message algebra 102

5.3.2 Problematic rules . 104

5.3.3 Adapting the convergence result 104

5.3.4 Adapting the proof-search procedure termination result 108

5.4 The class of protocols is wide enough 109

5.5 Some decidable security properties . 110

5.5.1 Chaotic property . 110

5.5.2 Secrecy property . 115

5.5.3 Authentication property . 118

5.6 Into associative unification . 120

5.6.1 Associative unification . 120

5.6.2 A-unification is not unitary . 121

5.6.3 Associative unification can increase the size of terms 122

5.7 Implementation . 124

5.7.1 The program . 125

5.7.2 The results . 129

5.7.3 The next version . 130

5.8 Conclusion . 130

Conclusion 131

Bibliography 134

A Every rule should have finitely many premises 141

B An example of complete transformation 145

C Another example of complete transformation 148

Index 152

List of Tables

1.1 Availability testing communication protocol 1 12

1.2 Availability testing communication protocol 2 12

1.3 Availability testing communication protocol 3 13

1.4 Availability testing communication protocol 4 14

1.5 Woo & Lam protocol . 15

1.6 Extracting roles . 15

1.7 Generalizing roles . 16

1.8 Not well-formed trace 1 . 18

1.9 Not well-formed trace 2 . 19

1.10 Not well defined trace . 19

1.11 Valid trace . 20

1.12 Needham-Schroeder symmetric key distribution protocol 22

1.13 Needham-Schroeder symmetric key distribution protocol attack 22

1.14 Availability testing communication protocol 5 22

1.15 Oracle flaw . 23

1.16 Key distribution protocol with a type flaw 24

1.17 Public key distribution protocol with a binding flaw 24

1.18 Binding flaw attack . 25

1.19 Toussaint coin tossing protocol . 25

1.20 Three passes protocol . 26

1.21 Elementary flaw . 27

2.1 Extracting rules from generalized roles 31

2.2 Extracting rules from the intruder abilities 32

2.3 Extracting constraints from GR(B) . 32

2.4 Attack on the Woo & Lam protocol 33

2.5 NSL protocol . 36

2.6 NSL bundle . 37

2.7 BAN rules . 43

2.8 Needham-Schroeder protocol idealized 44

3.1 The transformation algorithm: Part I 56

List of Tables x

3.2 The transformation algorithm: Part II 57

3.3 S0
≺ and S0

< . 59

3.4 S1
≺ and S1

< . 59

3.5 S2
≺ and S2

< . 60

3.6 S3
≺ and S3

< . 60

4.1 The proof-search procedure . 91

5.1 Intruder’s rules . 104

5.2 Protocol A . 110

5.3 Protocol B . 110

5.4 Woo & Lam initial inference system . 112

5.5 Woo & Lam resulting inference system 1 112

5.6 Woo & Lam resulting inference system 2 113

5.7 Attack scenario . 113

5.8 Attack scenario . 114

5.9 Protocol C . 115

5.10 Initial inference system S for the protocol C 115

5.11 Resulting inference system S ′ for the protocol C 116

5.12 Initial inference system S for the protocol C 116

5.13 Resulting inference system S ′ for the protocol C 117

5.14 Attack scenario . 117

5.15 Forwarding attack . 118

5.16 Transformation process time result . 129

5.17 Inference System . 130

B.1 S0 . 145

B.2 S1 . 146

C.1 S0 . 148

C.2 S1 . 149

C.3 S2 . 150

C.4 S3 . 151

List of Figures

1.1 Secret and signed message . 7

2.1 Refuting correctness . 29

2.2 DYMNA general process . 30

2.3 Proving correctness . 34

2.4 Deciding correctness . 41

4.1 The proof-search tree . 93

5.1 A decision procedure . 101

5.2 Trees for simple-linear-right terms . 124

5.3 Algebra configuration . 126

5.4 Variable configuration . 126

5.5 Inference system configuration . 127

5.6 Rule configuration . 128

Introduction

Nowadays, it is essential to provide some security mechanisms in distributed systems.

Many daily utilities rely upon either confidentiality, data integrity, authentication, . . . ,

to achieve common tasks. Whether it be at a cash dispenser, when buying a book online

with a credit card or while transferring a file from work to home, a user is entitled to be

assured of a minimum of security. However, even a little security objective can amount

a great deal of efforts. Many security mechanisms rely upon cryptographic protocols,

but are those security protocols correct? What if there is a flaw no one knows about?

And if someone knows about this flaw, what can he do?

Many formal methods have been used for the analysis of cryptographic protocols;

some were even developed especially for this purpose. Among these, many are based

on logics: translating a protocol as well as security properties into formulae, and trying

to check if the properties are violated or if they hold. Model checking is also considered

for the analysis of cryptographic protocols, however it often suffers from states space

explosion. Process algebra is a recent addition to cryptographic protocol analysis and

it seems very promising.

Most of the formal methods used for the analysis of cryptographic protocols follow

this pattern: first, a mathematical model is used to represent a cryptographic protocol

and another to represent security properties. Then, they try to check whether or not

the modeled cryptographic protocol satisfies the modeled security properties. Formal

methods used for the analysis of cryptographic protocols can usually be classified in

three groups: the first one consists of methods trying to prove that a protocol is correct

(that it respects a security requirement); the second group comprise the methods trying

to prove that a protocol is not correct (that it does not respect a security requirement);

and the last one is composed of methods aiming to decide whether a protocol is correct

or not. Since establishing the correctness of a cryptographic protocol is undecidable, in

the general case, very few formal methods belong to the last group.

A possible model for a cryptographic protocol (and widely used to model many other

Introduction 2

problems) is an inference system, where security properties are modeled as formulae to

be proven using the inference system. It is already known that inference systems are

good models for cryptographic protocols; good because they form a good representation

of the behavior of a protocol and because extracting an inference system from a given

cryptographic protocol can be fully automatic.

In general, inference systems suffer from a decidability problem. That is, it is not

possible, in general, to decide if a given well-formed formula is provable in a given

inference system. As a consequence of this problem, it is not yet possible to decide the

correctness of a protocol using an inference system model.

In this thesis, we address these two problems: the decidability of basic security prop-

erties for a class of cryptographic protocols and the decidability of a class of inference

systems.

This thesis is structured as follows: The first chapter is an introduction to cryptog-

raphy and cryptographic protocols. It is intended for a beginner in this subject and

might be skipped entirely (except for Section 1.4 where our notation is introduced) by

an expert reader. Chapter 2 provides a classification of some well known formal meth-

ods used for the analysis of cryptographic protocols. Its purpose is two-fold: on one

hand, it serves as a state of the art for protocol analysis, and on the other hand it helps

to situate this thesis among other similar works. Chapter 3 is an introduction to infer-

ence systems and their decidability problem. It also presents a process transforming an

inference system into an equivalent, but decidable1, one. Chapter 4 addresses the major

problem of the transformation process presented in Chapter 3, non-termination. A class

of inference system will be defined such that the transformation process is proved to

always terminate on them. The last chapter uses the transformation process to build

a decision procedure for the correctness of a class of cryptographic protocols. Finally,

a comparison between our results and some similar ones as well as a discussion about

possible future work will serve as a conclusion.

Chapter 4 and 5 hold the results of this thesis. As far as we know, these results are

new.

1The result of the transformation will not automatically be a decidable inference system, but with

some care it will.

Chapter 1

Cryptographic Protocols

Abstract

This chapter aims to introduce the basic concepts of cryptography, crypto-
graphic protocols, security properties and flaws that could arise in crypto-
graphic protocols. A notation about cryptographic protocols that will be
used throughout this thesis will also be presented.

1.1 Introduction

The extremely fast rise of Internet and distributed systems in the last decade brought

the opportunity to exchange information with anyone, anywhere at anytime. While

some kinds of information exchange require a very low level of security, others can only

be used if one can guarantee a very secure exchange. The latter comprise, among other

things, electronic commerce, medical information exchanges and military conversations.

To achieve a basic security goal on a basic task, one uses cryptography, but to ensure

that more elaborate security properties are not violated during a complex process, one

needs to use cryptographic protocols.

The following sections give an introduction to the world of cryptography and cryp-

tographic protocols. The rest of this chapter is structured as follows: Section 1.2

introduces basic concepts in cryptography; Section 1.3 describes some common security

properties often required; in Section 1.4 we develop the formalism used to represent

cryptographic protocols as well as some important concepts and finally Section 1.5

Chapter 1. Cryptographic Protocols 4

shows some examples of flaws in cryptographic protocols.

1.2 Cryptography

Cryptology, which comes from Greek kryptos ”hidden” and logos ”word”, is considered

as the science studying principles and techniques used to transform information into

an unintelligible form that is difficult for an unauthorized person to read, while still

allowing the intended reader to recover the original message. Cryptography, together

with cryptanalysis, form the two opposite branches of cryptology. On one hand, cryp-

tographers try to develop new encryption/decryption techniques based on mathematics,

linguistics, physics, etc... to assure that messages can be exchanged in a secret way.

On the other hand, cryptanalysts aim to read encrypted messages when they are not

authorized to do so. Since cryptography is of limited importance in this thesis, we

address only some technical points here. The reader interested in a deeper history of

cryptology is referred to [62, 79].

1.2.1 Cryptosystem

Informally, a cryptographic system (or cryptosystem for short) is a pair of functions:

one used to encrypt messages and the other to decrypt encrypted messages, both using

a key. More formally, in [21], Denning defines a cryptosystem with five components

(M, C, K, E,D) and some requirements on the behavior of these components:

• A set of messagesM (clear text space).

• A set of encrypted messages C (cipher text space).

• A set of keys K.

• An encryption function E :M×K → C.

• A decryption function D : C × K →M.

• ∀k ∈ K,∀m ∈M : ∃m′ ∈ C such that E(m, k) = m′

• ∀k ∈ K,∀m ∈ M : E(D(m, k−1), k) = D(E(m, k), k−1). Where k−1 is the

decryption key corresponding to k.

Chapter 1. Cryptographic Protocols 5

• The security of the system should depend only on the secrecy of the keys. Algo-

rithms E and D can be public.

1.2.2 Symmetric or asymmetric cryptosystem

Although many cryptosystems exist, they are divided in two main classes: symmetric

and asymmetric cryptosystems.

Definition 1.2.1 (symmetric cryptosystem)

A symmetric (or secret key) cryptosystem is one where the encryption key k can be

computed from the decryption key k−1 and vice versa.

Since, in secret cryptosystem, k can be computed from k−1 and vice versa, we often

suppose that k = k−1 and thus use the same key to both encrypt and decrypt. Exam-

ples of symmetric cryptosystem are: DES, the RCx family, LUCIFER, BLOWFISH,

SAFER, . . . Detailed description of these cryptosystems together with other examples

can be found in [60, 76].

In a symmetric cryptosystem, when Alice wants to send a message m to Bob, they

first need to share a secret key k. Then Alice sends E(m, k) to Bob who can retrieve

the original message by applying the decryption operator D(E(m, k), k). Note that

here Bob is assured that D(E(m, k), k) and thus m indeed comes from Alice since only

she has access to the key k. In order to exchange a secret message, they first need

to exchange a secret key. The advantage here is that the key can be exchanged (in

a meeting) before the need to send a secret message arises. The problem with this

symmetric system is the more often a key is used, the less secure it will become. In

[21], they argue that a secret key should be used just once. Thus arises the symmetric

key exchange problem.

Definition 1.2.2 (Symmetric key exchange problem)

Whenever two persons want to exchange a secret message m, they must have beforehand

exchanged a key that will be used specifically to encrypt m.

If the number of secret messages to send is considerable (which is the case with

most secure communication such as E-commerce, military communication and so on),

the number of keys shared will be considerable. Another situation where symmetric key

exchange raises a problem is when there is a network of n persons where every person

may need to communicate secretly with any other. In this case, every n person needs

to share a key with all the other n− 1 persons.

Chapter 1. Cryptographic Protocols 6

To counter this key exchange problem, Diffie and Hellman proposed, in [24], what

would become asymmetric cryptosystem.

Definition 1.2.3 (asymmetric cryptosystem)

An asymmetric (or public key) cryptosystem is one where the encryption key k is

completely distinct from the decryption key k−1. By completely distinct, we mean that

they are not computable one from another.

Generally speaking, a public key cryptosystem works this way:

• Bob first creates a pair of keys kB and k−1
B , his public and private key respectively.

• Bob makes available his public key kB to anyone from whom he expects to receive

a secret message (the public key does not have to be secret at all but the private

key must be known only by its owner).

• When Alice wants to send a secret message m to Bob, she encrypts her message

with Bob’s public key forming c = E(m, kB) and sends him the resulting cipher

text c.

• When Bob receives the cipher text c, he decrypts it with his private key using

m = D(c, k−1
B) thus recovering the original clear text m.

Note that when Bob receives the message c, he cannot be sure if the message really

comes from Alice; since anyone has access to his public key k, anyone could have

encrypted m with k. To address this little problem, one can do the following steps to

assure the receiver of a message that it indeed comes from the claimed sender. This

process is referred to as digital signature.

Definition 1.2.4 (Digital Signature)

The digital signature is used to achieve a similar goal as handwritten signature; to

convince anyone about the origin of a message.

• Alice first creates a pair of keys kA and k−1
A , her public and private key respectively.

• Alice makes available her public key kA to anyone whom she expects to send a

signed message to (the public key does not have to be secret at all but the private

key must be known only by its owner).

• When Alice wants to send a signed message m to Bob, she encrypts her message

with her own private key forming c = E(m, k−1
A) and sends him the resulting

cipher text c.

Chapter 1. Cryptographic Protocols 7

• When Bob receives the cipher text c, he decrypts it using Alice’s public key

forming m = D(c, kA) thus recovering the original clear text m.

So Bob will be convinced that Alice sent the message since only her has access to

k−1
a . But in this case, the message m is not secret since anyone can use kA to decrypt

c and recover m. To send a message that is both secret and signed, Alice can use the

model of Figure 1.1.

Alice Bob

m E E D mD

kA
-1 kB kB

-1 kA

Secrecy

Signature

Figure 1.1: Secret and signed message

Among the public key cryptosystems, there is the famous RSA, Diffie-Hellman,

MCEliece, the Knapsack problem, Rabin, ElGamal, . . . Details about these and some

others can be found in [60, 72, 76]. Information about a public key cryptosystem

developed by Tao Renji and based on finite automata can be found in [70, 71]. Other

information on asymmetric cryptosystem is presented in [63, 75].

One should remark here that with a public key cryptosystem, the two problems

referred to as the symmetric key exchange problem of Definition 1.2.2 are no more.

There is no need to keep the exchanged key secret as the encryption keys are now

public and in a network of n persons, each needs to generate a single pair of keys.

Unfortunately, public key cryptosystem also suffers from two problems.

Definition 1.2.5 (Small space of clear text message problem)

If the size of the clear text message is too small, an intruder can perform an exhaustive

search of the clear text space to learn the value of an intended secret message.

Definition 1.2.6 (Asymmetric key exchange problem)

While retrieving Bob’s public key, Alice is vulnerable to a man-in-the-middle attack.

When Alice receives a public key k, which she believes to be Bob’s, what if k is in fact

Eve’s public key?

Chapter 1. Cryptographic Protocols 8

Example 1.2.1 (Small space of clear text attack)

Suppose that the secret message m Alice needs to send to Bob is a day of the week.

Assuming Eve knows that Alice will send a day of the week but doesn’t know which

one. Let Bob’s public key be kB and the encryption function E. Alice sends a cipher

text c that is the result of E(m, kB). Eve can learn the value of m in the following way.

Eve intercepts c, she then computes ci = E(mi, kB) (she can do this since kB and E

are of public knowledge) where i range over 1 to 7 and m1 = Sunday, m2 = Monday,

. . .Eve simply needs to find the j such that cj = c to conclude that mj = m is the

intended secret message sent from Alice to Bob.

Another major drawback of public key cryptosystems is that they are based on

mathematical problems that are believed to be intractable but not yet proved so. For

example, RSA is based on the belief that it is quite difficult to factorize a large number

into its prime factors. In this sense, it is possible (although improbable) that someone

knows a way to break RSA and exploits this knowledge to his own advantage. In fact,

one of the breakthroughs in technology that could bring down RSA is the quantum

computation. An algorithm that could factorize a number, provided that it is run on

a quantum computer, has already been developed. This algorithm is known as Shor’s

quantum algorithm for factorization. Details of this algorithm fall way beyond the scope

of this thesis but it is nevertheless a very interesting topic and can be found in [11]. In

[8], we can see some progress on quantum factorization dating from 2001.

1.2.3 Future way in cryptography

While the current generation of cryptosystems is based on difficult mathematical prob-

lems, the next one could be based on physics properties. While quantum computation

could bring a real threat to the security of today’s public key cryptosystems, it could

also provide some new, very secure, cryptosystems. In 1984, a new research field started:

quantum cryptography. Brassard & Bennet developed one of the first quantum cryp-

tosystem BB84. Since quantum cryptography is not mentioned in the rest of this thesis,

we discuss it no further, but simply state that information about this young field of

research are in [7, 8, 11].

Chapter 1. Cryptographic Protocols 9

1.2.4 Perfect cryptography assumption

In the rest of this thesis, we are interested in the analysis of cryptographic protocols. To

simplify our task, we will make the assumption of the existence of a perfect cryptosys-

tem; that is a cryptosystem that cannot be broken. Surprisingly, when dealing with

perfect encryption, flaws still arise among protocols (we talk about some of these flaws

in Section 1.5). Thus, even under the perfect cryptography assumption, there is still a

lot to do before claiming that we are secure from any attack. The perfect encryption

assumption, a part of the Dolev-Yao model in [25], can be formalized as follows:

Definition 1.2.7 (Perfect cryptography assumption)

In a perfect cryptosystem, only the operations that are intended by the cryptosystem are

allowed to be done, i.e. to decrypt a message that is encrypted under k, one absolutely

needs to know the key k−1. A perfect cryptosystem satisfies the following requirements:

• Knowing m and E(m, k), it should be impossible to compute k−1.

• Knowing E(m, k), it should be impossible to compute m without knowing k−1.

• Knowing m and E(m, k), it should be impossible to compute the key k.

• Without knowing k, it should be impossible to compute message E(m, k) for a

given m.

1.3 Security properties

When we need secure communications, secure can mean a lot of different things. To

be more precise, when talking about the security of a communication system, we talk

about the security properties it should achieve. Of the possible security properties, the

following first four are the most common, while the last four are useful in electronic

commerce. This is not intended to be an exhaustive list of security properties but

simply to give some insight about what we mean by secure. Some of these security

property definitions are from [3].

• Secrecy: This property, also known as confidentiality, allows someone to send a

private message to a specific person while being sure that nobody else can get the

information. For a protocol to preserve the secrecy of one of its component means

that it does not leak any sensitive information about this component during its

execution.

Chapter 1. Cryptographic Protocols 10

• Authentication: With the authentication property, the receiver of a message

can establish the exact identity of the sender. In other words, each time Bob

accepts a message as being from Alice, Alice must have sent exactly the same

message a while ago.

• Integrity: This property ensures that a message has not been altered since its

creation by the sender. This is a very important security property since there is a

huge difference between a message telling your bank to transfer 1 000$ from your

bank account to another and a message telling your bank to transfer 100 000$

from your bank account to another.

• Non-repudiation: Non-repudiation is defined as the impossibility for a person

involved in a communication to deny his participation in this communication. It

should be possible for Alice to prove to anyone else that Bob has participated in

a communication with her, if it is really the case.

• Chaotic: A protocol is said to be chaotic for a given key k if someone is able

to both encrypt any message m with the key k and decrypt any cipher text c

that was encrypted under k without ever knowing the value of k. That is, an

intruder uses the protocol as a ”black-box” to break a perfect cryptosystem. This

property has just been recently addressed. In [59], Mejri shows that some well

known protocols are chaotic and explains how the chaotic property should change

our view of some basic security properties.

• Fairness: In a fair protocol, participants require protection from each other,

rather than from an external intruder. For example, in electronic contract signing,

we must be able to prevent a participant to halt the process when the other has

completed his part.

• Availability: This one states that a service should always be available when a

participant wants to use that service. For example, in electronic auction, it should

be possible for everyone to bid until the time is up; otherwise, those who cannot

bid are disadvantaged.

• Anonymity: This provides the ability to make a transaction that cannot be

tracked back to its source. We say that a system is anonymous over some set of

events E if it has the following property. When an event from E occurs, it should

not be possible for an observer to identify who caused this event. In electronic

commerce, for instance, it should not be allowed that an observer, a publicity

company say, be able to deduce who purchases what.

• Money atomicity: When a money transfer is required, it should be either en-

tirely done or not at all. In other words, virtual money creation and virtual money

destruction should not be allowed.

Chapter 1. Cryptographic Protocols 11

• Good atomicity: On an electronic transaction, we want to be sure that the

consumer will receive the goods if and only if the merchant is paid.

• Certified delivery: This property, allows both the client and merchant to prove

exactly what they received from the transaction (money or goods). If there is

something wrong, those evidences can be shown to a judge to resolve the problem.

Although the cryptosystems discussed in Section 1.2 can address directly some se-

curity properties, we need stronger constructions to achieve others or multiple security

goals at a time. These constructions will be cryptographic protocols.

1.4 Cryptographic protocols

Here we describe the basic notations of cryptographic protocols and we give some

examples of such constructions. From now on, we will use {m}k instead of E(m, k).

Definition 1.4.1 (Communication protocol)

A communication protocol is a set of rules that precisely say how the different principals

of a distributed system must communicate.

We use communication protocols everyday for sending e-mail, sending ordinary mail,

talking on the phone,... etc.

Example 1.4.1 (Telephone communication protocol)

One of the best examples of communication protocols is clearly the telephone protocol.

When you want to call someone, you first need to get his (her) phone number. Then

you compose the number on your phone and wait for the other person to answer. When

you’re done talking, you simply hang up the phone.

Example 1.4.2 (Availability testing communication protocol)

Suppose Alice wants to chat with Bob. First, Alice needs to know if Bob is online

(available to chat). If he is, they can begin chatting. So Alice needs a communication

protocol to test whether Bob is online or not. The communication protocol of Table

1.1 tries to achieve this goal. If Alice receives the answer from Bob, then she knows

he’s online, unless the message does not come from Bob. To rule this possibility out,

we ask Bob to sing Message2 before sending it back to Alice. This gives us the protocol

of Table 1.2. We’ll see later that this last one does not work either.

Chapter 1. Cryptographic Protocols 12

KA = Agt

KB = Agt

Message1 A→ B : Are you online?

Message2 B → A : Yes

Table 1.1: Availability testing communication protocol 1

KA = Agt ∪ {Kb}

KB = Agt ∪ {K−1
b }

Message1 A→ B : Are you online?

Message2 B → A : {Yes}K−1
b

Table 1.2: Availability testing communication protocol 2

A cryptographic protocol is a communication protocol, with the difference that it

uses cryptography to achieve one or more security goals.

Definition 1.4.2 (Cryptographic protocol)

A cryptoprotocol is a precisely defined sequence of communication and computation

steps. A communication step transfers messages form the sender to the receiver, while

a computation step (encryption, decryption, verification, . . .) update a principal’s

internal state.

In the rest of this thesis, we use protocol or cryptoprotocol to denote cryptographic

protocol.

1.4.1 Notations

In this thesis, we adopt the standard notation for describing cryptographic protocols. A

message is composed of one or more primitive words. A message m encrypted with key

K is written {m}K and forms a word by itself. Concatenated messages are separated

by dots. Words have the following naming conventions: Encryption keys, nonces and

timestamps are respectively written K, N and T . Principals are written A, B, S and

I, where A and B stand for principals who wish to communicate, S for a trusted server

and I for a potential intruder. We use I(A) to mean that the intruder is impersonating

the principal A. Agt denotes the set of all agents that may use the system. Ki stands

Chapter 1. Cryptographic Protocols 13

for the initial knowledge of principal i. Subscripts will be used to denote an association

to a principal; for example Na is a nonce that belongs to A and Kbs is a shared key

between B and S. Ka stands for A’s public key while K−1
a denotes A’s private key. A

message m signed with A’s private key would look like {m}K−1
a

.

Through the following protocol, we want to explain some basic concepts.

KA = Agt ∪ {Na.Kb}

KB = Agt ∪ {K−1
b }

Message1 A→ B : Are you online?.Na

Message2 B → A : Yes.{Na}K−1
b

Table 1.3: Availability testing communication protocol 3

• Initial Knowledge: To describe cryptographic protocols, it is important to give

every principal some initial knowledge, that is something they know before they

even start a run of the protocol. In some cases, we suppose A and B share a

secret key; this can be stated by putting Kab in the initial knowledge of A and

B. For example, in the protocol above, A’s initial knowledge is Agt ∪ {Na, Kb}.

It means that A knows the identifiers of every principal in the system, the fresh

nonce Na (that he generated himself) and finally B’s public key. The concept of

initial knowledge allows simplifying cryptoprotocol in the sense that we do not

require an explicit key exchange to occur for A to get B’s public key. Note that,

from now on, we omit the explicit enumeration of principals’ initial knowledge as

often as possible (when it is clear from the context) to reduce the size of protocols.

• Roles and principals: Suppose Alice wants to check if Bob is available. Alice

and Bob are principals, real entities executing the protocol. In order to test Bob’s

availability, Alice will have to play the role A and Bob the role B. Roles are

protocol abstractions that denote the way principals should act and how they

perceive the different messages. If later Bob wants to check Alice’s availability,

he will then play the role A and Alice will play role B. If a protocol allows

principals to change their role from one execution to another, this is a multi-role

protocol. However, if we can attribute role A to Alice and role B to Bob, we are

in a single-role protocol. In this case Alice can check the availability of Bob while

Bob cannot check Alice’s. From now on, we assume that the protocols we are

dealing with are all multi-role protocols.

• Protocol run: A run of a protocol is an instantiation of the protocol specification

where we specify which principals will run the protocol, what role each principal

Chapter 1. Cryptographic Protocols 14

will play and the concrete value of the messages. We often use sessions to indicate

a run of a protocol.

• Nonces and timestamps: Nonces are randomly generated numbers. They are

used to warrant the freshness of messages. In other words, they prevent someone

from attacking the protocol by using old messages. In the protocol of Table 1.3,

the nonce Na is used by A as a challenge. If B is available, he can answer the

challenge to prove his availability. In the protocol of Table 1.2, which does the

same job, an intruder I might be able to convince A of B’s availability while B is

not. Suppose A tests whether B is available or not and B is. B will answer with

the message {Yes}K−1
b

, according to the protocol. If I records this message, he can

fool A whenever A asks for B’s availability in the future. This flaw exists because

there is no way for A to tell whether Message2 is fresh or not; it is not enough

to be sure that the message originates from B, it must also be fresh. Protocol of

Table 1.4 gives an example of using timestamp for freshness.

Message1 A→ B : Are you online?

Message2 B → A : {Yes.Tb}K−1
b

Table 1.4: Availability testing communication protocol 4

In this last protocol, principal B will include the value of his local clock in the

message. Now A can check whether the received message is fresh by checking

the time of B’s clock with his own (allowing a little amount of time for network

delay). The main problem with timestamp is the need for A and B to synchronize

their clocks.

1.4.2 Role abstraction

Since role abstraction and role generalization will be important in this thesis, we feel

the need to develop more on this than the mere definitions we just gave. A role is an

abstraction of a protocol in which we are only interested in a given principal’s point of

view. In other words, roles are meant to describe how a principal perceives and acts in

the protocol. It is clear that two different principals do not perceive the protocol in the

same manner. There are as much roles in a protocol as there are principals involved.

For example, let’s take the Woo & Lam protocol of Table 1.5. In this protocol, we have

three roles: A, B and S. Clearly, a principal playing the role of A does not perceive the

protocol in the same way as a principal playing the role of B because A will participate

in only the first three steps while B will participate in all five steps. The three roles of

Chapter 1. Cryptographic Protocols 15

this protocol, namely R(A), R(B) and R(S), are pictured in Table 1.6. To extract the

role of a principal p in a given protocol, we proceed in four steps:

• We take out the steps where p doesn’t participate and keep only those where p is

involved.

• For each step, we replace the principal p′ with whom p communicates by an

intruder playing his role (I(p′)). This is to emphasis the fact that the intruder

sees every exchanged message, see Section 1.4.4 for the intruder model.

• For each step, we replace the step number x by α.x to denote the step x of any

given session α (for the sake of clarity, we use α for the role of A, β for the role

of B and δ for S’s role).

• For every message, we replace each fresh message by the same message bound to

the session α by using a superscript notation. For example, the nonce Na would

become Nα
a .

1 A→ B : A

2 B → A : Nb

3 A→ B : {Nb}Kas

4 B → S : {A.{Nb}Kas
}Kbs

5 S → B : {Nb}Kbs

Table 1.5: Woo & Lam protocol

α.1 A→ I(B) : A

α.2 I(B)→ A : Nα
b

α.3 A→ I(B) : {Nα
b }kas

1 A→ B : A

2 B → A : Nb

3 A→ B : {Nb}kas

4 B → S : {A.{Nb}kas
}kbs

5 S → B : {Nb}Kbs

=⇒

β.1 I(A)→ B : A

β.2 B → I(A) : Nβ
b

β.3 I(A)→ B : {Nβ
b }kas

β.4 B → I(S) : {A.{Nβ
b }kas

}kbs

β.5 I(S)→ B : {Nβ
b }kbs

δ.4 I(B)→ S : {A.{N δ
b }kas

}kbs

δ.5 S → I(B) : {N δ
b }kbs

Table 1.6: Extracting roles

Chapter 1. Cryptographic Protocols 16

1.4.3 Role generalization

A generalized role is a generalization of a single role. For any given role, there is only

one generalized role. The goal of generalized roles is to explicitly show what verifications

a principal can do when he receives a message and how he really acts in the steps of his

role. If the principal cannot do any verification on a received message, then we replace

this message by a variable to mean that regardless of what is received, he will accept it

as a good value. From the three roles given above, we extract the three generalized roles,

namely GR(A), GR(B) and GR(S), which can be found in Table 1.7. The procedure

to produce the generalized role of a principal p is the following step.

• For every message m1,m2, ...,mn, we regard each mi and if p already knows the

value of mi, we leave it. Otherwise, if mi is of the form {mi1,mi2, ...,mip}K and

p knows the key K, we start the process back with every mij, if not, we replace

mi by a variable.

α.1 A→ I(B) : A

α.2 I(B)→ A : Nα
b

α.3 A→ I(B) : {Nα
b }kas

=⇒

α.1 A→ I(B) : A

α.2 I(B)→ A : X

α.3 A→ I(B) : {X}kas

β.1 I(A)→ B : A

β.2 B → I(A) : Nβ
b

β.3 I(A)→ B : {Nβ
b }kas

β.4 B → I(S) : {A.{Nβ
b }kas

}kbs

β.5 I(S)→ B : {Nβ
b }kbs

=⇒

β.1 I(A)→ B : A

β.2 B → I(A) : Nβ
b

β.3 I(A)→ B : Y

β.4 B → I(S) : {A.Y }kbs

β.5 I(S)→ B : {Nβ
b }kbs

δ.4 I(B)→ S : {A.{N δ
b }kas

}kbs

δ.5 S → I(B) : {N δ
b }kbs

=⇒
δ.4 I(B)→ S : {A.{Z}kas

}kbs

δ.5 S → I(B) : {Z}kbs

Table 1.7: Generalizing roles

The process of role generalization will make the following modifications on the roles:

• In the role of A: step one remains unchanged; in steps two and three, we replaced

the message Nα
b by the variable X since the nonce received is a fresh value sent

by B and thus A has no knowledge over this value and he cannot perform any

kind of verification.

Chapter 1. Cryptographic Protocols 17

• In the role of B: steps 1,2 and 5 are unchanged; in both steps 3 and 4, we had to

replace the message {Nβ
b }kas

by the variable Y to explicitly show that principal B

cannot check the value of this message since it is encrypted under a key unknown

to B, namely kas.

• In the role of S: we replace message N δ
b in both steps for the same reason as the

modification in the role of A.

In the generalized role of S, we can really see the importance of the generalized role

concept. In the protocol, S is used to decrypt the message {Nb}Kas
to allow B to check

if A has been able to answer the challenge. But in reality, S has no way to be sure that

the message he will send to B will be {Nb}Kbs
. In fact, if B sends to S any message

of the form {A.{Z}Kas
}Kbs

at step four (where Z stands for any message), the server

will answer with {Z}Kbs
regardless of the message Z. So the server should be seen as

a third party able to decrypt a message encrypted with the secret key shared between

any principal and the server provided that it is supplied with the principal identifier

(the server needs to know which key to use to decrypt the message) and that you are

a legitimate user of the system (you need a key shared with the server).

1.4.4 Intruder abilities

It is important, when talking about protocol security, to define the ability of a possible

intruder against which we need to keep information secure. We could need to have a

protocol that is secure over a passive intruder, that is one who only spies on the network

and, with the learned messages, tries to compute the secret he wants to know. However,

such a model is not realistic for a hostile environment as the Internet. In fact, over the

Internet, an intruder is not limited to spy the messages sent, but he may also create

some messages. In the worst case, we could think of an intruder being in total control

of the network; as represented by the Dolev-Yao model (see [25]) in which the intruder

can do the following:

• The intruder intercepts every message circulating on the network.

• He can send messages whenever he wants to.

• When he receives a message of the form m1.m2, he can decompose the message

to get m1 and m2.

• When he receives a message of the form {m}k and he knows the key k, than the

intruder can decrypt the message and get m.

Chapter 1. Cryptographic Protocols 18

• Knowing two messages X and Y , the intruder is able to concatenate them to form

X.Y and to encrypt them to form {X}Y .

1.4.5 Valid traces

From a protocol, we can form infinitely many traces. A trace is a sequence of commu-

nication step where every exchanged message passes through the intruder. Generally, a

trace is formed by using an interleaving of many sessions. For example, if we have a pro-

tocol with four steps M1,M2,M3 and M4, a trace could be M1,M2,M3,M1,M2,M1,M2.

Since many traces are not realizable by a given protocol, we would like to reduce to

valid traces only.

Definition 1.4.3 (Valid trace)

A trace is valid if it is well-formed and well defined.

Definition 1.4.4 (Well-formed trace)

For a trace to be well-formed, we first need that the honest principals taking part in

that trace act exactly according to the protocol. Moreover, we need the trace to be

separable in session, where every session is formed by the prefix of one and only one

generalized role. This is of course up to a substitution of the variables and principal

names for this generalized role.

Definition 1.4.5 (Well defined trace)

A trace is well defined if every message sent by the intruder is derivable from his current

knowledge. The intruder’s current knowledge is formed by his initial knowledge plus

the knowledge he can derive, by applying encryption, decryption, concatenation and

message decomposition, on the messages he has received before the current step.

1.1 A→ I(B) : A

1.2 I(B)→ A : toto

1.3 A→ I(B) : {tata}Kas

Table 1.8: Not well-formed trace 1

Example 1.4.3 (Not well-formed traces)

Here we present two examples of traces that are not well-formed and thus not valid

over the Woo & Lam protocol of Table 1.5. In Table 1.8, we have a trace composed

of only one session that is a prefix of RG(A). The problem is that no substitution

unifying the trace and RG(A) can be found since X would have to be substituted for

two values: toto and tata. For the trace in Table 1.9, we have two sessions: one with

Chapter 1. Cryptographic Protocols 19

session identifier 1 and one with session identifier 2. The session 1 is a prefix of RG(A)

with a proper substitution σ = {α ← 1, X ← toto}. However, session 2 is not a prefix

of any generalized role and thus this trace is neither well-formed nor valid.

1.1 A→ I(B) : A

1.2 I(B)→ A : toto

1.3 A→ I(B) : {toto}Kas

2.2 B → I(A) : tata

2.3 I(A)→ B : anything

Table 1.9: Not well-formed trace 2

Example 1.4.4 (Not well defined trace)

Taking the trace of Table 1.10 as an example, we can explain why it is not well defined.

The messages sent by the intruder are A and {toto}Kbs
. The intruder knows A since it

is the identifier of a principal. But for the message {toto}Kbs
, the intruder knows only

toto and does not know the key needed to encrypt the message so he cannot figure out

this message. Thus this trace is neither well defined nor valid.

1.1 I(A)→ B : A

1.2 B → I(A) : toto

1.3 I(A)→ B : {toto}Kbs

Table 1.10: Not well defined trace

Example 1.4.5 (Valid trace)

In the trace of Table 1.11, we have 5 sessions. Session 1 is a prefix of RG(B) with

the substitution σ1 = {Y ← anything}. Sessions 2 and 3 are prefix of RG(A) with

substitutions σ2 = {A ← C,B ← D,X ← Nb} and σ3 = {A ← C,B ← E,X ←

C, {Nb}Kcs
} respectively. We can also find a substitution for sessions 4 and 5 which are

prefix of RG(B) and RG(S) respectively. With the previous discussion, we conclude

that this trace is well-formed. To show it is well defined, let’s take out every message

sent by the intruder:

• At step 1.1, the intruder sends the message A, which is ok.

• At step 1.3, he sends anything, which is clearly ok.

• At step 2.2, he sends the message Nb that he received in step 1.2.

• At step 3.2, he concatenates the messages received at steps 3.1 and 2.3.

Chapter 1. Cryptographic Protocols 20

• The message of step 4.1 is common knowledge.

• At step 4.3, this is simply a replay of message 3.3.

• Message 5.4 is a replay of message 4.5.

• The last message at step 1.5 is received by the intruder at step 5.5.

From there we conclude the trace is well defined and since it is also well-formed, it is

valid.

1.1 I(A)→ B : A

1.2 B → I(A) : Nb

1.3 I(A)→ B : anything

1.4 B → I(S) : {A.anything}Kbs

2.1 C → I(D) : C

2.2 I(D)→ C : Nb

2.3 C → I(D) : {Nb}Kcs

3.1 C → I(E) : C

3.2 I(E)→ C : C.{Nb}Kcs

3.3 C → I(E) : {C.{Nb}Kcs
}Kcs

4.1 I(C)→ B) : C

4.2 B → I(C) : N ′
b

4.3 I(C)→ B : {C.{Nb}Kcs
}Kcs

4.4 B → S : {C.{C.{Nb}Kcs
}Kcs
}Kbs

4.5 S → I(B) : {C.{Nb}Kcs
}Kbs

5.4 I(B)→ S : {C.{Nb}Kcs
}Kbs

5.5 S → I(B) : {Nb}Kbs

1.5 I(S)→ B : {Nb}Kbs

Table 1.11: Valid trace

1.4.6 Protocol classification

There are many ways of classifying protocols. One can choose to classify protocols re-

garding their security goals (confidentiality, authentication, E-commerce, . . .). Another

might wish to separate protocols that use different cryptosystems (public key vs secret

key). We can also differentiate protocols by the help they require from a third party

(trusted server, judge, . . .). we will develop no further on the subject but refer the

interested reader to [52, 57, 58] for some classifications.

Chapter 1. Cryptographic Protocols 21

1.5 Flaws in protocols

Regarding the importance of cryptographic protocols (bank transactions, military secret

communications, ...), it is primordial that those protocols be correct. We should not

be content with a protocol that works in most of the cases but fails in few others. We

need flawless protocols. Basically, a flaw is a property of a protocol that contradicts

the security goals of the protocol. In [12], Landweher, Bull, McDermott & Choi defined

a flaw as follows.

Definition 1.5.1 (Security flaw)

A security flaw is a part of a program that can cause the system to violate its security

requirements. Finding security flaws, then, demands some knowledge of the system

security requirements. These requirements vary according to the system and the appli-

cation.

Definition 1.5.2 (Flawed protocol)

A protocol P is flawed with respect to a given security property when there is a valid

trace over the steps of P such that, when executing this trace, the security property is

violated.

Definition 1.5.3 (Correct protocol)

A protocol P is correct with respect to a given security property if no valid trace over

the steps of P violate the security property.

To have a good understanding of the difficulties in constructing flawless crypto-

graphic protocols or proving their correctness, it is convenient to start with a classifi-

cation of the different flaws that may arise in a protocol. The classification proposed is

based on the work of Carlsen [14] and Clark & Jacob [16].

To prove the existence of a flaw in a protocol, we give an attack on this protocol

that violates the security property. Our way to describe an attack is to give a procedure

(a valid trace as defined in Section 1.4.5) to exploit the flaw in the protocol.

1.5.1 Freshness flaws

A freshness flaw occurs when an intruder can attack the protocol by reusing messages

that he intercepted in a previous run of the protocol. The protocol of Table 1.3 contains

such a flaw, as we argued earlier to support the need of nonces and timestamps. For

another example of freshness flaw, let’s build an attack on the following protocol:

Chapter 1. Cryptographic Protocols 22

1 A→ S : A.B.Na

2 S → A : {Na.B.Kab.{Kab.A}Kbs
}Kas

3 A→ B : {Kab.A}Kbs

4 B → A : {Nb}Kab

5 A→ B : {Nb − 1}Kab

Table 1.12: Needham-Schroeder symmetric key distribution protocol

This protocol aims to distribute a symmetric key between principals A and B. After

such a distribution, it is important, among other things, that B believes that he shares

the key with A. In the attack of Table 1.13, this flaw was found by Denning & Sacco

in 1981, an intruder may be able to convince B that the key is shared with A while

it is shared with I. Suppose the intruder intercepted Message3 of a previous run of

the protocol, so I intercepted {K ′
ab, A}Kbs

, and that he has been able to figure out the

shared key K ′
ab. Although K ′

ab is not used anymore between A and B, for it is too old,

the intruder can use its knowledge of this key and attack the protocol given on Table

1.12. This attack is possible since there is no way for B to tell if either the message

received at step 3 is fresh or not.

3 I(A)→ B : {K ′
ab.A}Kbs

4 B → I(A) : {Nb}K′
ab

5 I(A)→ B : {Nb − 1}K′
ab

Table 1.13: Needham-Schroeder symmetric key distribution protocol attack

1.5.2 Oracle flaws

A cryptoprotocol has an oracle flaw if it allows an intruder to learn a secret message

or to foretell its content. The example we provide is based on the following simple

protocol.

1 A→ B : {Na}Kab

2 B → A : {Na + 1}Kab

Table 1.14: Availability testing communication protocol 5

As the protocols presented previously in tables 1.1 to 1.4, it aims to test if the

Chapter 1. Cryptographic Protocols 23

principal playing the role B is available. In the attack presented in Table 1.15, an

intruder will be able to convince principal A that B is available while it is not necessarily

the case. This attack works as follows (we suppose B is not available). First A sends a

challenge for B. The intruder will use the same challenge, in a new run of the protocol,

to learn the correct answer to this challenge. To do this, I(B) asks for A’s availability

by providing exactly the same challenge. Now A is able to answer it, since he knows

the required key, and thus provides I(B) with the answer to his own challenge. From

there I can convince A that B is available even if it is not the case.

1.1 A→ I(B) : {Na}Kab

2.1 I(B)→ A : {Na}Kab

2.2 A→ I(B) : {Na + 1}Kab

1.2 I(B)→ A : {Na + 1}Kab

Table 1.15: Oracle flaw

1.5.3 Type flaws

As messages are represented by binary string, it is important to know the length of

each submessage to retrieve them from a concatenated message.

Example 1.5.1 (Retrieving parts of a concatenated message)

Suppose the message received by a principal at a given step of a protocol run is supposed

to be Na.Kab.m. Let’s take ”01101010010110100101” as the received binary string. To

know the value of Na, Kab and m, the principal needs to know how to separate the

binary string.

A type flaw occurs when an intruder is able to switch the type of submessages and

fools the concerned principal. The protocol of Table 1.16 provides a good example of

such a flaw. The intruder lets A and B execute the first three steps of the protocol and

then sends in step four the message intercepted in step 2 ({Na + 1.Nb}Kab
). With this,

A will believe that Na + 1 is the key shared between him and B. This is possible only

if A is not able to distinguish between the type of message Na + 1 and the type of the

intended message K ′
ab.

Chapter 1. Cryptographic Protocols 24

1 A→ B : A.Na

2 B → A : {Na + 1, Nb}Kab

3 A→ B : {Nb + 1}Kab

4 B → A : {K ′
ab.N

′
b}Kab

Table 1.16: Key distribution protocol with a type flaw

Heather, Lowe & Schneider propose in [35] a technique to prevent the occurrence

of type flaw in cryptoprotocols.

1.5.4 Binding flaws

When using a public key cryptosystem, it is very important for principal A to be

convinced that the public key he has received is indeed B’s public key. A binding flaw

occurs if an intruder can convince A that B’s public key is KI , which is in fact the

public key of the intruder. With such a flaw, I will be able to read every message sent

from A to B. The protocol of Table 1.17 presents such a flaw. We discussed briefly this

kind of flaw in Section 1.2.2 see Definition 1.2.6.

1 A→ S : A.B.Na

2 S → A : S.{S.A.Na.Kb}K−1
s

Table 1.17: Public key distribution protocol with a binding flaw

In this protocol, principal A wishes to know the public key of another principal (the

one playing B’s role). In step 1, A sends a request to the server saying: I’m A, I want

to have B’s public key and here’s a nonce to ensure the freshness of the key. In step

2, the server replies by saying Here’s the public key you asked for with your nonce for

freshness, everything is signed with my private key. The problem with this protocol is

that the server does not explicitly say whose public key he is sending. The attack can

be performed as in Table 1.18.

Chapter 1. Cryptographic Protocols 25

1.1 A→ I(S) : A.B.Na

2.1 I(A)→ S : A.I.Na

2.2 S → I(A) : S.{S.A.Na.KI}K−1
s

1.2 I(S)→ A : S.{S.A.Na.KI}K−1
s

Table 1.18: Binding flaw attack

1.5.5 Repudiation flaws

There is a repudiation flaw in a cryptoprotocol when one participant can deny his

participation in a run of the protocol. A good example of this kind of flaw occurs in

the coin tossing protocol proposed by Toussaint. A description of this protocol is given

is the following table.

1 B → A : Head or Tail

2 A→ B : {Na.Head}Na
.{Na.Tail}Na

or {Na.Tail}Na
.{Na.Head}Na

3 B → A : {Na.Head}Na
or {Na.Tail}Na

4 A→ B : Na

Table 1.19: Toussaint coin tossing protocol

This protocol works as follows. In the first step, B guesses head or tail and sends

his guess to A. At step two, A creates two messages and sends them to B, the order

of the two messages must be chosen randomly: the first message is head concatenated

with Na and then, encrypted with Na; the other message is the same except that tail

replaces of head. . At step 3, B will try to guess which of the two messages contains

his choice of step 1 and will send his guess to A. A can check if B’s guess corresponds

to his initial choice and he will send to B the key Na used for encryption so B can

verify the outcome. B wins if he guessed the same in message 1 and 3, otherwise, A

wins. In [83], Toussaint showed that A and B win with the same probability (1/2).

Unfortunately, if between steps 3 and 4 A sees that B guessed correctly, he can abort

the protocol, denying his participation. Thus, either A wins or A aborts the protocol.

Chapter 1. Cryptographic Protocols 26

1.5.6 Implementation flaws

When searching for flaws in a protocol, we often suppose that the underlying cryptosys-

tem is perfect. However, it could be the case that the interaction of the messages in

the protocol together with the cryptosystem is enough to create a flaw. The three pass

protocol shown in Table 1.20 can create such a flaw if the cryptosystem used is the

XOR function.

1 A→ B : {m}Ka

2 B → A : {{m}Ka
}Kb

3 A→ B : {m}Kb

Table 1.20: Three passes protocol

Simply by using the XOR function properties, see Definition 1.5.4 below, a passive

intruder can derive the secret message m simply by collecting the 3 messages sent in

the protocol and XORing them together. Here is how to do this:

({m}Ka
⊕ {{m}Ka

}Kb
)⊕ {m}Kb

(1.1)

By the definition of using XOR as the encryption function, equation 1.1 becomes:

((m⊕Ka)⊕ ((m⊕Ka)⊕Kb))⊕ (m⊕Kb) (1.2)

This gives us, by the associativity of XOR:

(((m⊕Ka)⊕ (m⊕Ka))⊕Kb)⊕ (m⊕Kb) (1.3)

Which can be simplified, by the XOR self inverse property, to give:

(0⊕Kb)⊕ (m⊕Kb) (1.4)

Since 0 is a neutral element of the XOR operation we get:

Kb ⊕ (m⊕Kb) (1.5)

Applying commutativity and associativity once more gives us:

(Kb ⊕Kb)⊕m (1.6)

Which is the same, using self inverse property, as:

0⊕m (1.7)

That finally gives us:

m (1.8)

Chapter 1. Cryptographic Protocols 27

Definition 1.5.4 (XOR properties)

Here are some useful properties of the XOR operation:

• Identity: 0⊕X = X

• Self inverse: X ⊕X = 0

• Commutativity: X ⊕ Y = Y ⊕X

• Associativity: (X ⊕ Y)⊕ Z = X ⊕ (Y ⊕ Z)

1.5.7 Others

Other kinds of flaws may be found in cryptographic protocol. For example, we may

have a key guessing flaw if the key space is small enough to allow exhaustive search.

We may also found an elementary flaw in a protocol, that is an obvious flaw that does

not require much effort from the intruder. An example of such a flaw can be found in

the key distribution protocol of Table 1.21. In this protocol, the exchanged secret key

is not encrypted but simply signed and thus anyone reading the message of step 1 can

recover this key (since the key Ka is public knowledge).

1 A→ B : {Na.Kab}K−1
a

2 B → A : {Na}Kab

Table 1.21: Elementary flaw

1.6 Conclusion

This chapter was dedicated to cryptography and cryptographic protocols. We presented

a formalism to describe protocols, formalism that will be used throughout this thesis,

and some basic concepts such as roles and generalized roles that are important for some

other chapters. Finally, we presented some typical flaws that may arise in a protocol.

From this last part, it seems essential to develop formal tools to either prove the security

of protocols or to develop new secure protocols.

Chapter 2

Protocol Analysis

Abstract

This chapter provides some examples of different techniques based on for-
mal methods for the analysis of cryptographic protocols. We classify these
methods in four groups depending on the goals they aim to achieve. Finally,
we try to discuss the advantages and the limitations of each group and each
method.

2.1 Introduction

At the end of Chapter 1, we saw that even if a protocol is designed carefully, it may

still contain flaws. After the discovery, in 1995, of a flaw in the Needham-Schroeder

protocol, which had been used for 17 years, the community realized the importance

of having automatic formal methods for verifying cryptographic protocols; see [85]. It

is now well known that the creation of a new protocol is highly error prone and the

task of analyzing a protocol is a hard one. This chapter presents methods used for the

analysis of cryptoprotocols; it is structured in the following way: in Section 2.2, we talk

about some techniques used to find flaws in a protocol; Section 2.3 regroups techniques

used to prove the correctness of a protocol and Section 2.4 talks about methods to

decide if either a protocol is correct or not and finally in Section 2.5 we talk about

some other methods, that are either historically important or close to the approach we

will take in the next chapters, without classifying them. We do not intend to give an

exhaustive classification of formal methods, but merely to give some examples on how

formal methods may be used in analyzing protocols. For more details about the formal

Chapter 2. Protocol Analysis 29

methods used to analyze security protocols, see [55, 56].

2.2 Refuting correctness

In this section we present a method that tries to refute the correctness of a given

protocol, that is to show the protocol is flawed. As shown in Figure 2.1, if the attempt

to refute correctness is successful, then an attack against the protocol is provided and

then the protocol is classified as flawed; otherwise, if the attempt fails (no attack is

found) we cannot conclude that the protocol is flawed (since no flaw has been found)

nor that the protocol is correct (since a flaw may still be present although it has not

been found). The major drawback of this approach is that if it fails to find a flaw,

no conclusion can be drawn. The main advantage here is that when a flaw is found,

an attack scenario is provided so that we can convince anyone else that the protocol

is flawed by showing the attack or we can analyze this attack to get some knowledge

about why a flaw occurs in this protocol.

Verification process

ModelIdealization

A flaw is found

P is flawed

No flaw is found

????

Protocol P

Figure 2.1: Refuting correctness

Chapter 2. Protocol Analysis 30

2.2.1 DYMNA

DYMNA has been developed at Université Laval by Debabi, Mejri & al. [18, 19, 20] and

implemented by Massicotte [52]. This method uses the concepts of role and generalized

role (see Section 1.4.2 and 1.4.3) to extract, from the protocol, the abilities of a potential

intruder. Once these abilities are extracted and combined with the usual abilities of the

intruder, we can try to see if an intruder is able to break the security property of the

protocol. The general process of DYMNA is pictured in Figure 2.2. We explain the full

process of DYMNA verification within the example of the Woo & Lam protocol of Table

1.5 presented earlier. This protocol was designed to allow one-way authentication, that

is A wants to prove his identity to B.

Constraints

Verification

process

Inference

system
Protocol

Constraints

generation

Inference

system

generation

Security

property

????

Attack

Figure 2.2: DYMNA general process

Inference system generation:

Starting from the initial protocol, we first extract the roles of the protocol as we did

in Section 1.4.2, see Table 1.6. The role of A includes the steps marked with identifier

α, the role of B those marked with identifier β and δ is used to indicate the steps of

S’s role.

For every role, we will use the generalization process to create the generalized roles

of the protocol as we did in Section 1.4.3, see Table 1.7. Recall that the process of

role generalization aims to exhibit the true behavior of honest principals and thus the

abilities of the intruder to manipulate the protocol.

Chapter 2. Protocol Analysis 31

From every generalized role, we extract a set of inference rules that models the

ability given to the intruder by a specific generalized role. A rule R = m1 m2

m
must

be interpreted in this way: if the intruder knows messages m1 and m2, then he can

learn the message m by using the protocol. From the generalized role of an agent P ,

we extract a rule for every step s in which P is the sender, each rule is constructed like

this: for every step s′ preceding s such that P is the receiver in s′, we add the message

of step s′ to the list of premises of the rule; the message of step s is the conclusion of the

rule. In Table 2.1 we see that A’s role produce two inference rules. The first one states

that by doing nothing, the intruder can get the identity of any agent, while the second

one illustrates that if the intruder can provide a message X, then the protocol allows

him to get {X}kas
. We also see that the role of B is modeled through two rules. The

first one means that providing an agent identifier gives to the intruder a fresh nonce

generated by the agent B. The second says that the intruder can get {A.X}kbs
if he

can provide both message A and message X. Finally, we get the rule extracted from

the server’s generalized role, which says that the intruder can get {Z}kbs
by providing

{{A.Z}kas
}kbs

. In Table 2.1, together with every rule R = m1 m2

m
is associated a proof,

this proof is the trace proving how the intruder can learn message m by using the

protocol with the messages m1 and m2. Those traces will be used to build an attack if

a flaw is discovered in the protocol.

Generalized role Rule Proof

GR(A) R1 =
A

α.1 A −→ I(B) : A

GR(A) R2 = X
{X}kas

α.1 A −→ I(B) : A

α.2 I(B) −→ A : X

α.3 A −→ I(B) : {X}kas

GR(B) R3 = A

N
β
b

β.1 I(A) −→ B : A

β.2 B −→ I(A) : Nβ
b

GR(B) R4 = A Y
{A.Y }kbs

β.1 I(A) −→ B : A

β.2 B −→ I(A) : Nβ
b

β.3 I(A) −→ B : Y

β.4 B −→ I(S) : {A.Y }kbs

GR(S) R5 =
{A.{Z}kas}kbs

{Z}kbs

δ.4 I(B) −→ S : {A.{Z}kas
}kbs

δ.5 S −→ I(B) : {Z}kbs

Table 2.1: Extracting rules from generalized roles

To the set of rules extracted from the protocol, we add the rules representing the

usual intruder abilities such as encryption, decryption, . . . These rules are presented

in Table 2.2, they are: Rc used to concatenate messages, Rd1 and Rd2 both modeling

Chapter 2. Protocol Analysis 32

deconcatenation, Re for encryption, Rd for decryption and RK to exploit the initial

knowledge of the intruder. These rules have no trace associated with them since they

don’t result from an utilization of the protocol but simply of an internal computation by

the intruder. Taking the rules contained in Table 2.1 together with those of Table 2.2 we

get an inference system modeling exactly what the intruder can do in the protocol. So

the intruder can learn a message m using the protocol if and only if m is a theorem in the

corresponding inference system S when the intruder knowledge is K (noted K ⊢S m).

Rc = X Y
X.Y

Rd1 = X.Y
X

Rd2 = X.Y
Y

Re = X Y
{X}Y

Rd = {X}Y Y

X
RK = m∈K

m

Table 2.2: Extracting rules from the intruder abilities

Constraints generation:

From a given security property, we want to generate a set of constraints in such a

way that the protocol is flawed if every constraint is provable in the underlying inference

system. In our example, we want to check the one-way authentication over B for the

Woo & Lam protocol. We take each step of RG(B) one by one. If in step s B receives

a message, then the intruder must be able to provide it, if in s B sends a message,

then we add this message to the knowledge of the intruder. Every step is detailed

in Table 2.3. In step β.1, B must receive the message A, so the intruder must be

able to provide this message. In step β.2, B sends the message Nβ
b so we increase the

knowledge of the intruder with this message. We can now take the set of constraints to

be {KI ⊢ A,K1 ⊢ Y,K2 ⊢ {Nβ
b }kbs

}.

β.1 I(A)→ B : A =⇒ KI ⊢ A

β.2 B → I(A) : Nβ
b =⇒ K1 = KI ∪ {N

β
b }

β.3 I(A)→ B : Y =⇒ K1 ⊢ Y

β.4 B → I(S) : {A.Y }kbs
=⇒ K2 = K1 ∪ {{A.Y }kbs

}

β.5 I(S)→ B : {Nβ
b }kbs

=⇒ K2 ⊢ {Nβ
b }kbs

Table 2.3: Extracting constraints from GR(B)

Chapter 2. Protocol Analysis 33

Verification process:

What remains to be done is to check if every constraint is a theorem in the inference

system generated from the protocol. The main problem of DYMNA is that given a

message m and an inference system S, it is in general undecidable whether or not m is

a theorem in S. The search of a proof for m may not terminate. We will address the

problem of termination of inference systems in Chapter 3. Thus if we find a proof for

m, then we are sure the intruder can learn m from the protocol. Otherwise, we cannot

conclude. For the particular example we are working on, the three constraints KI ⊢ A,

K1 ⊢ Y and K2 ⊢ {Nβ
b }kbs

are provable as follows:

• KI ⊢ A: it follows from the fact that A ∈ KI ;

• K1 ⊢ Y : it is a simple consequence of K1 6= ∅;

• K2 ⊢ {Nβ
b }kbs

: since Nβ
b ∈ K

2, we can use R2 with {X ← Nβ
b , a ← b} to get

{Nβ
b }kbs

. The proof tree of this last constraint is shown in equation 2.1.

σ(R2)
RK2

N
β
b
∈K2

N
β
b

{Nβ
b }

(2.1)

Since all constraints are provable, we conclude that the protocol is flawed and we

can mount an attack as shown in Table 2.4. We can easily check that the trace forming

the attack is a valid trace as defined in Section 1.4.5.

1.1 I(A)→ B : A

1.2 B → I(A) : N1
b

1.3 I(A)→ B : anything

1.4 B → I(S) : {A.anything}kbs

2.1 B → I(C) : B

2.2 I(C)→ B : N1
b

2.3 B → I(C) : {N1
b }kbs

1.5 I(S)→ B : {N1
b }kbs

Table 2.4: Attack on the Woo & Lam protocol

Chapter 2. Protocol Analysis 34

2.3 Proving correctness

In this section, we present some methods designed to prove that a given protocol is

correct with respect to a specified security property. If the use of one of these methods

results in a success (a proof of the correctness of the protocol has been built), the

protocol can be marked as correct and no more analysis is required on this protocol.

On the other hand, if the method fails to prove the protocol correct, we cannot conclude

that it is flawed nor that it is correct. The general process of such methods is pictured

in Figure 2.3. The main advantage of these approaches is that when we are successful

in proving the correctness of a protocol, this protocol can thereafter be used with no

problem. The major disadvantage is that a failure does not provide any information

about the correctness of the protocol.

Verification process

ModelIdealization

A proof is found

P is correct

No proof is found

????

Protocol P

Figure 2.3: Proving correctness

2.3.1 Sufficient conditions for correctness

In [38, 39], Houmani proposes a set of sufficient conditions to assure the correctness of

a protocol with respect to the secrecy property. Given a protocol, if it respects every

condition then it is correct otherwise no conclusion may be drawn since these conditions

are not necessary. Informally, the three conditions are:

Chapter 2. Protocol Analysis 35

• Every sensitive message exchanged during an execution of the protocol must be

properly encrypted.

• An honest agent is not allowed to send an unknown message. However, an un-

known message may be used as a key to encrypt another message.

• If the message {m}k is exchanged during the protocol, then k cannot be part of

the message m.

The less restrictive are the conditions, the better is this kind of approach. Unfortu-

nately, the conditions given by Houmani seem rather restrictive in the sense that very

few existing protocol satisfy them (see [39] for a protocol satisfying these conditions).

Another disadvantage of this approach is the incompatibility with other security prop-

erties. The conditions were designed to assure secrecy and cannot be used for other

security properties. The main advantage of this result is its usefulness in protocol con-

struction. To design a secure protocol (w.r.t. secrecy), one has only to build a protocol

that respects the conditions. Very few approaches are useful in understanding and

helping the, error prone, process of protocol construction. Furthermore, new insights

are given about how to avoid forcing an honest agent to send an unknown message

(remember that in the role generalization process, the more unknown messages are sent

by an agent, the more powerful the intruder will be). Another advantage would be in

the easiness of checking whether or not a given protocol satisfies the conditions.

2.3.2 Gavin Lowe approach

The approach introduced by Lowe in [48] uses model checking on a ”small model” of

the protocol to be analyzed. The ”small model” has the property of being decidable for

the secrecy property, that is, it is possible to decide whether or not a ”small system”

fulfills secrecy using model checking tools. Unfortunately, not every protocol can be

transformed into a ”small model”. Moreover, the ”small model” is not equivalent to

the original protocol in the sense that if an attack occurs in the ”small model”, it is

not necessarily present in the original protocol. The former problem is addressed by

imposing restrictions on the protocol we analyze while the latter is said to occur on

only very few occasions (but it may appear anyway thus disallowing the use of this

technique as a decision procedure). The ”small system” of a protocol is designed in

such a way that if it is secure, with respect to secrecy, so is the original protocol. The

conditions used to assure that a protocol is transformable in a ”small model” do not

seem to be very restrictive, however some modifications over most existing protocols

Chapter 2. Protocol Analysis 36

are required for them to meet those conditions. More details about the approach can

be found in [49].

2.3.3 Stand space model

In [31, 33], Thayer Fábrega, Herzog & Guttman propose a graph-structured model

for protocols called strand space. A strand corresponds to a sequence of events (an

execution of the protocol or a sequence of action by an intruder). A strand space is a

collection of strands equipped with a graph structure generated by the causal interaction

between different strands. From the Needham-Schroeder-Lowe protocol (NSL for short)

presented in Table 2.5, we illustrate how the strand space model can be used to prove

the correctness of this protocol. NSL was proposed by Lowe to fix a flaw discovered

in the original Needham-Schroeder protocol. NSL differs from the original version only

in step 2 (B’s name was not present in the original version). The simplified version of

the protocol we use here presupposes that the principals have already exchanged their

public key.

1 A→ B : {Na.A}kB

2 B → A : {Na.Nb.B}kA

3 A→ B : {Nb}kB

Table 2.5: NSL protocol

From the protocol, we first generate the strands. In this particular case, we have the

initiator strand (corresponding to the agent A), the responder strand (agent B) and of

course the intruder strands. A strand has the form < ±t1,±t2, ...,±tn > where ti are

terms (messages) and the sign of a message stands for its direction: −a means that the

message a is received while +b means that the message b is sent. The initiator strand

from NSL is: < +{Na.A}kB
,−{Na.Nb.B}kA

, +{Nb}kb
> while the responder’s one looks

like: < −{Na.A}kB
, +{Na.Nb.B}kA

,−{Nb}kb
>. The intruder’s strands (modeling his

abilities) are independent from the protocol and look like:

• M: < +t > where t ∈ T

• F: < −g >

• T: < −g, +g, +g >

Chapter 2. Protocol Analysis 37

• C: < −g,−h, +g.h >

• S: < −g.h, +g, +h >

• K: < +k > where k ∈ Kp

• E: < −k,−h, +{h}k >

• D: < −k−1,−{h}k, +h >

Here T is a set of text messages that can be generated during the protocol and Kp

is the set of keys initially known to the intruder.

A bundle is a directed acyclic graph formed by composing together some strands. A

node in the graph is a message found in one of the strand and arrows are of two kinds:

n1 → n2 means that message n1 is sent in a given strand s1 and it is received in another

strand s2 at node n2 so n1 = +t and n2 = −t thus creating a causal link between the

two strands; n1 ⇒ n2 means that n1 is followed immediately by n2 on the same strand

s. We use n1 �C n2 to denote the fact that there is a sequence of zero or more edges

(of either kind) from n1 to n2 in a given bundle C. The relation �C expresses causal

precedence of messages in the bundle C, that is n1 �C n2 means n1 must occur before

n2. As an example, we give in Table 2.6 the bundle representing the intended execution

of the NSL protocol. Intuitively, a bundle may be seen as a valid trace as defined in

Section 1.4.5. More formally, a bundle C is a set of edges such that NC is the set of

nodes incident with C and:

• C is finite;

• C is acyclic;

• if n1 ∈ NC and n1 is a negative node, then there is a unique n2 such that n2 →

n1 ∈ C;

• if n1 ∈ NC and n2 ⇒ n1 in the strand space, then n2 ⇒ n1 ∈ C.

A B

+{Na.A}kB
−→ −{Na.A}kB

⇓ ⇓

−{Na.Nb.B}kA
←− +{Na.Nb.B}kA

⇓ ⇓

+{Nb}kB
−→ −{Nb}kB

Table 2.6: NSL bundle

Chapter 2. Protocol Analysis 38

The proofs in the strand space model are inductive-like proofs that use the existence

of a minimal member in every non-empty set. First, let’s define a subterm relation:

t1 ⊏ t2 means that t1 is a subterm of t2. ⊏ is defined as:

• a ⊏ t for t ∈ T iff a = t;

• a ⊏ k for a key k iff a = k;

• a ⊏ {g}k iff a ⊏ g or a = {g}k;

• a ⊏ g.h iff a ⊏ g, a ⊏ h or a = gh.

Next we define some technical words. A term t occurs at node n iff t ⊏ n; t originates

at node n iff n is a positive node, t occurs at n and whenever n′ precedes n on the same

strand, t 6⊏ n′; and t is uniquely originating iff t originates at a unique node n. If a

term t originates uniquely in a strand space, then it can be used as a fresh value like a

nonce or a session key.

The inductive like proof of the strand space model are based on the following lemmas:

• Let C be a bundle, then every non-empty subset of the nodes in C has a �C-

minimal members.

• Let C be a bundle and suppose S is a set of nodes such that |m| = |m′|1 implies

m ∈ S iff m′ ∈ S for all nodes m,m′. If n is a �C-minimal member of S, then n

is a positive node.

• Let C be a bundle, t a term and n ∈ C a �C-minimal members of {m ∈ C|t ⊏ m}.

t originates at node n.

These technical lemmas, see [31] for their proofs, serve as basic tools to get knowledge

about minimal element of a set. We will see how to use them in the process of proving a

protocol correct. As an example, we show that the NSL protocol of Table 2.5 is correct

with respect to the secrecy of the responder nonce, that is Nb is confidential. First we

need the following assumptions:

• Σ is a NSL strand space and C is a bundle containing the responder’s strand s

on which lies the nonce Nb;

1Let m be a node, |m| stands for the message used at node m regardless of its direction (send or

receive).

Chapter 2. Protocol Analysis 39

• Na 6= Nb and Nb is uniquely originating in Σ;

• k−1
a , k−1

b 6∈ Kp, otherwise the protocol is trivially flawed.

The correctness proof will be stated as follows: for all nodes n ∈ C such that Nb ⊏ n,

we have either {Na.Nb.B}kA
⊏ n or {Nb}kB

⊏ n. If this holds, clearly the intruder can

never learn the value of Nb. But if it doesn’t hold, it is not trivial to conclude that the

protocol is flawed. The proposition stated above is equivalent to the emptiness of the

following set:

S = {n ∈ C|Nb ⊏ n and {Na.Nb.B}kA
6⊏ n and {Nb}kB

6⊏ n}

The idea of the proof goes like this (see [31] for the full proof): suppose S is non-

empty, then it has at least one �C-minimal member, say m, and m is positive (this is

a straightforward consequence of the lemmas presented earlier). We first need to show

that m cannot lie on a regular strand (that is a strand of a legitimate agent, initiator

or responder in our case) and then that it cannot lie on an intruder strand. Thus, if

such a node cannot lie on a strand of the protocol, it cannot exist in the current strand

space, which is a contradiction with non-emptiness of S.

The main drawback of this method is that if we cannot prove the statement for the

correctness of the protocol, then we cannot conclude that the protocol is flawed. Even

if we disprove the statement, it is not necessarily the case that a flaw can be found in

the protocol. Moreover, the generation of the statement to be proved is not automatic

and thus is error prone (in cases more complex than our example, it may not be trivial

whether or not proving the statement implies proving the correctness of the protocol).

However, this approach has many advantages:

• proofs seem easy and intuitive enough to be made by humans;

• this technique gives some insight about the assumptions required for a protocol

to be correct;

• some general theorems may be proved on the bound of the intruder abilities (see

[33]);

• although not presented by Thayer Fábrega & al. some automatization of this

model is possible as proposed by Song in a tool called ATHENA, based on the

strand space model (see [81]);

Chapter 2. Protocol Analysis 40

• the authors claim that it is interesting to have a specific statement to prove

depending on the protocol and the security property considered rather than have

a general statement for all protocols.

For more relevant information about the strand space model, see [30, 32].

2.4 Deciding correctness

Few approaches have been developed with the objective to decide about the correctness

of protocols. Since the problem of telling whether a given protocol respects a given

security property is undecidable (see [15, 27, 29]), one cannot devise a general procedure

to decide the correctness of any protocol. Instead, one can hope to restrict the set of

protocols to a subset for which it may be possible to decide about their correctness, see

Figure 2.4. Given a set of conditions, if a given protocol respects those conditions, then

we are able to decide about its correctness. To be interesting, such an approach must

be the least restrictive as possible, that is we must be able to decide the correctness for

a wide interesting range of protocols. We don’t give any example of such an approach

here, but we reserve the entire Chapter 3 for a technique developed by Mejri [57] that

is close to achieve this. We chose to spend an entire chapter on this particular method

since the main part of this thesis is based on it: addressing its fundamental problem.

Note that the result we present in Chapter 5 falls under this category.

2.5 Others

Here we mention some other methods without trying to classify them and we present in

more details one of the first techniques in protocol analysis, the BAN logic. Lowe was

one of the first to use process algebra (CSP [37]) to specify and analyze cryptoprotocols,

many others followed including Abadi & Gordon with the spi-calculus [1] (an extension

of the pi-calculus [61]) and Milner with CCS [2]. Meadows used the NRL protocol an-

alyzer, see [54], to find flaws in some protocols. This methods aims to do an exhaustive

search of the state space that a protocol can be in and check if there exists a state

where the property is violated. The inductive approach of Paulson (see [66, 67]) is one

of the most famous using automatic theorem provers to generate a proof of correctness.

Although this approach has provided very good results, it suffers from two problems:

first the protocol idealization is not yet an automatic step (transforming the original

Chapter 2. Protocol Analysis 41

Verification process

ModelIdealization

P is flawedP is correct

Protocol P

Checking

Conditions
P does not respect

the conditions

P respects the conditions

Figure 2.4: Deciding correctness

protocol into the formal model), it requires specialized human intervention and thus

is error prone; second, it surely inherits the general non-termination problem of the

automatic theorem provers. Some formal methods address the generation of protocols

rather than the analysis. These methods (some of them can be found in [68, 73, 74, 82])

aim to generate a protocol that respects a given set of security properties. Most of the

works done in protocol analysis assumes that protocols are independent, that is they do

not interact. But in real applications, there is often many protocols in a shared environ-

ment (they share keys, a trusted server, . . .) and is it not possible anymore to analyze

the protocols independently. A new field of research is dedicated to the composition of

protocols. It aims to study the interaction between protocols that are composed (they

may run in parallel, one after the other or interlaced). Some of the methods addressing

composition can be found in [36, 41, 53].

Chapter 2. Protocol Analysis 42

2.5.1 BAN logic

One of the first formal methods used in the analysis of cryptographic protocol is the

BAN logic (from Burrows, Abadi & Needham). BAN models the beliefs of the partici-

pants in a protocol and the evolution of these beliefs after messages are exchanged. It

is mostly dedicated to the verification of the authentication property. The syntax of

this logic goes as follows:

• P |= X: principal P believes that X is true.

• P ⊳ X: P sees X (someone sent the message X to P).

• P ⊢ X: P said X (P sent the message X to someone).

• P |⇒ X: P rules over X (when a server is required to generate keys, we say he

rules over the keys).

• #X: X is a fresh message.

• P ↔k Q: the key k is shared between P and Q.

• 7→k P : P has a public key.

• P ⇌X Q: P and Q share the secret X.

• {X}k: message X is encrypted under the key k.

• 〈X〉Y : message X combined with message Y (it is assumed that Y is a secret

message and it proves the identity of the sender of message 〈X〉Y).

Together with the syntactic constructions comes a set of rules to manipulate beliefs:

Chapter 2. Protocol Analysis 43

R1:
P |=Q↔kP P⊳{X}k

P |=Q⊢X
R2:

P |=7→kQ P⊳{X}
k−1

P |=Q⊢X
R3:

P |=P⇌Y Q P⊳{X}Y

P |=Q⊢X

R4:
P |=#X P |=Q⊢X

P |=Q|=X
R5:

P |=Q|⇒X P |=Q|=X

P |=X
R6:

P |=Q⊢(X,Y)
P |=Q⊢X

R7:
P |=X P |=Y

P |=(X,Y)
R8:

P |=(X,Y)
P |=X

R9:
P |=Q|=(X,Y)

P |=Q|=X

R10:
P⊳(X,Y)

P⊳X
R11:

P⊳〈X〉Y
P⊳X

R12:
P |=Q↔kP P⊳{X}k

P⊳X

R13:
P |= 7→kP P⊳{X}k

P⊳X
R14:

P |= 7→kQ P⊳{X}
k−1

P⊳X
R15:

P |=#X

P |=#(X,Y)

R16:
P |=R↔kR′

P |=R′↔kR
R17:

P |=Q|=R↔kR′

P |=Q|=R′↔kR
R18:

P |=R⇌XR′

P |=R′⇌XR

R19:
P |=Q|=R↔kR′

P |=Q|=R′↔kR

Table 2.7: BAN rules

Given the Needham-Schroeder protocol of Table 1.12, we check if it achieves the

following goals which represent the bidirectional authentication:

• G1: A |= A↔kab B

• G2: A |= B |= A↔kab B

• G3: B |= A↔kab B

• G4: B |= A |= A↔kab B

The first thing to do is to transform the protocol into its idealized form (a set of

BAN’s formulas). The idealization process works in this way, for every step of the

protocol:

• non-crypted messages are removed.

• every part of an encrypted message that are not relevant for the evolution of

knowledge are also removed.

Chapter 2. Protocol Analysis 44

• the intended meaning of this step is formalized with the syntax of BAN logic.

Finally, we enumerate a set of initials hypothesis that are written in the BAN syntax.

The idealization cannot be done in a step-by-step way since a global knowledge of

the entire protocol is required to discover the intended meaning of messages. The

idealization process is not automatic and is ambiguous (as stated in [47]), in particular

with the generation of the hypothesis, and thus it is very error prone. For example, the

idealized version of the Needham-Schroeder protocol of Table 1.12 is presented in Table

2.8 together with some initial hypothesis (H1 to H11).

1 A→ S :

2 S → A : {Na, A↔
kab B, #(A↔kab B){A↔kab B}kbs

}kas

3 A→ B : {A↔kab B}kbs

4 B → A : {Nb, A↔
kab B}Kab

5 A→ B : {Nb, A↔
kab B}Kab

H1: A |= S |⇒ A↔kab B H2: A |= #Na H3: A |= A↔kas S

H4: A |= S |⇒ #(A↔kab B) H5: B |= #Nb H6: B |= B ↔kbs S

H7: B |= S |⇒ A↔kab B H8: S |= A↔kas S H9: B |= B ↔kbs S

H10: S |= A↔kab B H11: S |= #(A↔kab B)

Table 2.8: Needham-Schroeder protocol idealized

The idealization is far from being straightforward. We give here the main ideas of

idealizing the Needham-Schroeder protocol, see [13] for a more detailed explanation.

At step 2, since A knows that Na is a fresh message, then by using rule R15, he can

deduce that the key kab is also fresh. The goal of steps 4 and 5, is to convince B

that A has the shared key kab, this is why it appears in the idealization. Most of the

hypotheses concern the fact that principals share some keys and that they use nonces

in the protocol. H1, H4 and H7 represent the fact that S is trusted to produce good

keys. From the idealization of our protocol, we can start to show the four goals required

to hold for the authentication to be respected.

G1: A |= A↔kab B:

Starting from message of step 2, using H3 and R1, we can deduce:

Chapter 2. Protocol Analysis 45

A |= S ⊢ (Na, A↔
kab B, #(A↔kab B), {A↔kab B}kbs

) (2.2)

Applying H2 and R15 to equation 2.2 gives us:

A |= #(Na, A↔
kab B, #(A↔kab B), {A↔kab B}kbs

) (2.3)

Using 2.2 together with 2.3 through R4 we get:

A |= S |= (Na, A↔
kab B, #(A↔kab B), {A↔kab B}kbs

) (2.4)

Applying R9 to 2.4 we deduce:

A |= S |= A↔kab B (2.5)

A |= S |= #(A↔kab B) (2.6)

Finally from H1, 2.5 and R5 it follows that:

A |= A↔kab B (2.7)

�

G2: A |= B |= A↔kab B:

Starting from 2.6, using H4 and R1, we can deduce:

A |= #(A↔kab B) (2.8)

Applying R15 to 2.8 we get:

A |= #(Nb, A↔
kab B) (2.9)

Chapter 2. Protocol Analysis 46

From message 4 and H3, R1 takes us to:

A |= B ⊢ (Nb, A↔
kab B) (2.10)

Using both 2.9 and 2.10 in rule R4 brings us to:

A |= B |= (Nb, A↔
kab B) (2.11)

Finally, from 2.11, using R9 we establish that:

A |= B |= A↔kab B (2.12)

�

In trying to prove G3 and G4, one will fail since, as explained in [13], the protocol is

correct only under the ”strange” assumption that B believes the key kab to be fresh (B |=

#(A↔kab B)). This assumption is important since the protocol does not provide B with

a means to assure the freshness of the key. Whether or not we can add this assumption

to our set of initial hypothesis without changing the meaning of the protocol is a non-

trivial question. Although the process of proving a protocol correct is a tedious, error

prone and ambiguous one, the BAN logic has been widely used to compare new formal

methods to existing ones, to study the intended behavior of some protocols. Many other

logics were designed around the BAN ideas, trying to improve this technique. Although

it is not very well suited for automatic protocol analysis, BAN has been, and still is,

very useful for understanding protocols. In addition to the authentication property,

BAN is used to learn:

• What a protocol can accomplish?

• Which hypotheses are required for a protocol?

• Which actions in the protocol are superfluous?

• Is there any encrypted message that could be sent non-encrypted?

Chapter 2. Protocol Analysis 47

2.6 Conclusion

In this chapter, we saw that many formal methods have been developed for the analysis

of cryptographic protocols. Each method brought some insight about protocol analysis

or protocol design. Where it was once extremely relevant to produce and attack when

the protocol was flawed, it is now important to assure the correctness of a protocol.

One does not need an attack against a protocol when it is flawed, but instead wants to

know if a protocol is secure or not. This is why the methods addressing the decision

problem regarding the correctness of protocols are becoming increasingly interesting.

Chapter 3

On the Termination of Inference

Proof Systems

Abstract

In the previous chapter, while studying how to analyze cryptoprotocols using
the DYMNA approach, we stumbled upon the problem of decidability of an
inference system. This problem prevents DYMNA from being a decision
procedure for the correctness of protocols. This chapter addresses precisely
this decidability problem.

3.1 Introduction

This chapter studies the decidability problem of inference systems such as done by Mejri

in [57]. Mejri is not the only one to address the decidability (also called termination)

problem of inference systems in the context of cryptographic protocols; Blanchet [9, 10]

and Kindreed & Wing [42, 43] propose similar techniques. However, since our work is

directly based on the results from Mejri, the emphasis will be placed on his approach.

This chapter is divided in six main sections: Section 3.2 introduces inference systems;

Section 3.3 provides a way allowing us to be sure that the theory of an inference system is

decidable; Section 3.4 relates how Mejri proposes to resolve non-termination of inference

systems; Section 3.5 describes an algorithmic version of the transformation provided by

Mejri ; Section 3.6 gives an example of applying the transformation algorithm of an

Chapter 3. On the Termination of Inference Proof Systems 49

inference system; finally, Section 3.7 gives an overview of the methods used by Blanchet

and Kindreed & Wing.

3.2 Inference systems

An inference system is a set of rules where each has a set of premises p1, p2, . . . , pn and a

conclusion c. We use P(R) and C(R) to denote respectively the set of premises and the

conclusion of R. Sometimes, we use Pi(R) for the ith premise of R. Note that rules are

not allowed to have infinitely many premises. When the rule has no premise (n = 0), we

call it an axiom and denote it by R′ = �
c′
. It is well known that an inference system with

no axiom has an empty theory. The theory of an inference system S, noted TH (S), is

the set of all formulae provable in S. We use IS to denote the set of inference systems.

To test if a formula belongs to a given inference system’s theory, one traditionally uses

either backward chaining or forward chaining techniques on the rules of the inference

system.

In backward chaining, we start from a formula f and apply a rule R such that f and

C(R) are unifiable1 and have σ as their most general unifier. Now the proof of f can be

transformed in the separate proofs of {pσ|p ∈ P(R)}. If we are able to prove all these

sub-formulae, then we can conclude that f is indeed provable. Of course, more then

one rule may be applied to prove a given formula and every rule must be taken into

account if we want to decide whether or not f is provable. Given an inference system

S, it is not necessarily the case that backward chaining will terminate while trying to

prove a term. To illustrate this, suppose we take the following set of rules S to be our

inference system where xi are variables, a is a constant and f a unary function.

S = {R1 =
f(f(x1))

f(x1)
, R2 =

x2

f(f(f(x2)))
, R3 =

�

a
} (3.1)

It is obvious that the term f(b) does not belong to the theory of S. However, us-

ing backward chaining leads to explore infinitely many new terms and thus does not

terminate.

While proving f in the inference system S using forward chaining, we start from the

axioms and generate the whole theory of S in a step by step manner. After each step,

we check if f belongs to the partial theory of S (the theory built so far). A step consist

of taking every rule R ∈ S, every n-tuple t of elements in the partial theory of S (where

1Two terms m and m′ are unifiable if there exists a substitution σ such that mσ = m′σ. More

about unification can be found in Section 4.3

Chapter 3. On the Termination of Inference Proof Systems 50

n is the number of premises for the rule R) and adding σ(C(R)) to the partial theory

of S (if such a σ(C(R)) exists). σ is taken to be mgu2(t1,P1(R)) ◦mgu(t2,P2(R)) ◦ . . . ◦

mgu(tn,Pn(R)). As backward chaining, forward chaining does not always terminates.

Since backward chaining acts in a goal oriented manner, it is often used instead

of forward chaining. From now on, we are interested only in backward chaining (or a

slight modification of backward chaining).

3.3 Termination of inference systems

Definition 3.3.1 (Backward terminating inference system)

Consider t as being any well-formed term. An inference system S is backward terminat-

ing when it is not possible to loop indefinitely while using backward chaining to prove

test the membership of t in Th(S).

Since we use only backward chaining, terminating (resp. non-terminating) will be

used as a synonym for backward terminating (resp. backward non-terminating).

Definition 3.3.2 (Well-founded ordering)

A partially strict-ordered set3 (S,≺) is said to be well-founded if there are no infinite

descending sequences . . . ≺ s3 ≺ s2 ≺ s1 of elements in S.

Example 3.3.1 (Well-founded ordering)

The natural numbers N under there natural ordering > are well-founded since no se-

quence of natural numbers can descend beyond 0. But > is not a well-founded ordering

over the entire set of Z, since 0 > −1 > −2 > . . . is an infinite descending sequence.

Definition 3.3.3 (Termination ordering)

A well-founded ordering ≺ is a termination ordering if it respects the following two

conditions (see [22, 23] for more information of termination orderings):

• Monotone: (t1 ≺ t2)⇒ (tσ1 ≺ tσ2) where σ1 = {X ← t1}, σ2 = {X ← t2}

• Preserved by substitution: (t1 ≺ t2)⇒ t1σ ≺ t2σ

2mgu(t1 , t2) is the most general unifier σ of t2 and t2. That is, for any unifier θ of t1 and t2, there

is a substitution θ′ such that σθ′ = θ
3A set S is partially strict-ordered if there is a transitive, irreflexive and antisymmetric binary

relation ≺ defined on the elements of S

Chapter 3. On the Termination of Inference Proof Systems 51

We can easily show that an inference system S is terminating if there is a terminating

ordering ≺ such that for every rule R ∈ S and for every p ∈ P(R), p ≺ C(R) holds.

3.4 Handling termination

The idea proposed by Mejri to handle the termination problem of inference system is

to transform a non-terminating inference system S into an ”equivalent” (see Definition

3.4.1 S ≡ S ′) terminating one S ′. To achieve this, the rules of S are partitioned into two

sets: those that cause a problem from the point of view of termination (non-oriented

rules or non-terminating rules) and oriented rules (or terminating rules). Then, new

rules are generated, using a composition operator (see Definition 3.4.2) and added to

the inference system in the proper set. Finally, redundant rules are eliminated (see

Definition 3.4.4). The process is repeated until a fixed point is reached; the current set

of oriented rules is then equivalent to the original inference system and does not cause

any termination problems. In the following, this approach is detailed.

Definition 3.4.1 (Comparison of inference systems)

Let S1 and S2 be two inference systems:

• S1 ≤ S2 iff ∀ Th ∈ TH (S1), it is the case that Th ∈ TH (S2).

• S1 ≥ S2 iff S2 ≤ S1.

• S1 ≡ S2 iff S1 ≤ S2 and S1 ≥ S2.

Definition 3.4.2 (Rule composition)

Let R be an inference rule with n premises. Let (R1, R2, . . . , Rn) be a n-tuple of

inference rules. We define the composition of R with (R1, R2, . . . , Rn), denoted by

R ⇑ (R1, R2, . . . , Rn), to be the following inference rule:

σ(P(R1)) σ(P(R2)) . . . σ(P(Rn))

σ(C(R))

where σ = cmgu4((P1(R), C(R1)), (P2(R), C(R2)), . . . , (Pn(R), C(Rn))). The com-

position is defined only if such a σ exists.

The definition of rule composition above is extended to compose two sets of inference

rules in the following way.

4cmgu should be seen a the most general unifier of many pair of terms. See [57] for details about

cmgu

Chapter 3. On the Termination of Inference Proof Systems 52

Definition 3.4.3 (Set of rules composition)

Let S1 = {R1
1, R

1
2, . . . , R

1
n1
} and S2 = {R2

1, R
2
2, . . . , R

2
n2
} be two sets of inference rules.

We define the composition of each rule in S2 with rules in S1, written S1 # S2, by:

S1 # S2 = S1 ∪ S2 ∪ (
⋃

R2
i ∈S2

(
⋃

t∈T (S1,|P(R2
i)|)

{R2
i ⇑ t}))

where T (S, n) is the set of all n-tuple built over the element of S and {R2
i ⇑ t} = ∅

whenever R2
i ⇑ t is not defined.

Definition 3.4.4 (Simplified inference system)

Let S be an inference system, we define the simplified inference system associated with

S, written S⇓ (that is the inference system S with the redundant rules removed), as

follows: let R ∈ S, then R ∈ S⇓ if the following two conditions hold simultaneously:

• No trivial rules: ∀p ∈ P(R), p 6= C(R)

• No instantiated rules: there is no rule R′ ∈ S, (R′ 6= R) with a substitution σ

such that: σ(P(R′)) ⊆ P(R) and σ(C(R′)) = C(R).

Definition 3.4.5 (Series of inference systems)

Let S be an inference system. We partition S in S≺, the set of terminating rules, and S<

the remaining rules (the non-terminating ones). We associate to S a series of inference

system originating from S, designed by (Sn)n≥0, as follows:

• S0 = S

• Sn = (Sn−1
≺ # Sn−1

<)⇓ n ≥ 1

Definition 3.4.6 (Series convergence)

We say the series (Sn)n≥0 converges when there is a k such that Sk = Sk+1. We call Sk

a fixed point of the series.

The next two results about the composition procedure, provided by Mejri, are very

important. Lemma 3.4.1 states that the theory of an inference system is invariant under

the composition of its rules. Theorem 3.4.1 states that if no new rule is generated by

composing a non-oriented rule with oriented rules, then the current set of oriented rules

is equivalent to the whole inference system.

Lemma 3.4.1

Let S1 and S2 be two sets of inference rules. We have that S1 # S2 ≡ S1 ∪ S2.

Chapter 3. On the Termination of Inference Proof Systems 53

The idea behind this lemma (see [57] for full proof) is as follows. Let S = S1∪S2 and

S ′ = S1 # S2. S ≤ S ′: since S ⊆ S ′. S ′ ≤ S: suppose instead that Th ∈ TH (S ′) but

Th 6∈ TH (S), it must be the case that the proof of Th in S ′ uses at least a rule R 6∈ S.

But R is the result of combination of rule in S, say R = R′ ⇑ (R1, R2, . . . , Rn), thus the

same proof holds in S ′ replacing R by the sequence composing R′ with (R1, R2, . . . , Rn).

Once all rules such as R are replaced by the composition of other rules in S, we have

a proof that Th ∈ TH (S ′) using only rules of S. We conclude that Th ∈ TH (S) also

holds. Having S ≤ S ′ and S ′ ≤ S, it follows that S1 ≡ S2.

Theorem 3.4.1

Let S = S1 ∪ S2 be an inference system such that no rule in S2 is an axiom. If

(S1 # S2)⇓ = (S1 ∪ S2)⇓ then S ≡ S1.

The idea behind the theorem is the following: suppose a fixed point Sk is reached

in the series, then the combination of any rule R in Sk
< with rules in Sk

≺ gives a rule

that is redundant in Sk. Since all the combinations of R with other rules are made

redundant, R is useless; its appearance in a proof can always be replaced. So we can

safely remove R from Sk
< without changing the underlying theory. Since every rule of

Sk
< can be removed in such a way, clearly Sk ≡ Sk

≺.

From these results, we express two corollaries that are related to the series of infer-

ence systems of Definition 3.4.5. First, we can see that all inference systems of a series

(Sn)n≥0 are equivalent and in particular they are equivalent to their generator5 S (see

Corollary 3.4.1). Second, if Sk is a fixed point of the series, then S ≡ Sk
≺ (see Corollary

3.4.2).

Corollary 3.4.1

Let S be an inference system and (Sn)n≥0 its associated series. It follows directly from

Lemma 3.4.1 and from the Definition 3.4.5 that S = S0 ≡ S1 ≡ S2 ≡ . . . ≡ Sn ≡

Corollary 3.4.2

Let S be an inference system and (Sn)n≥0 its associated series. Suppose Sk is a fixed

point, then it follows from Theorem 3.4.1 that Sk ≡ Sk
≺ and from Corollary 3.4.1 that

S ≡ Sk
≺ and thus we have an inference system Sk

≺ equivalent to S such that Sk
≺ has no

termination problem.

If the series associated to S converges, we can then compute a terminating inference

system S ′ that is equivalent to S. S ′ can be used to decide if t ∈ TH (S ′) or not

and we know, from the equivalence of S and S ′, that t ∈ TH (S ′) ⇔ t ∈ TH (S).

Unfortunately, the series does not necessarily converge. As a result, we cannot directly

5The generator of a series (Sn)n≥0 is S0, the inference system to which the series is associated

Chapter 3. On the Termination of Inference Proof Systems 54

use the transformation explained above (and pictured in algorithm of Table 3.1) to

solve the non-termination problem underlying the inference system generated by the

DYMNA approach (see Section 2.2.1). Note that an inference system S extracted from a

protocol, as it is done by DYMNA, is always non-terminating due to the intruder’s rules

of message deconcatenation and decryption. The convergence (or non-convergence) of

the series associated with S will be discussed in Chapter 4. Mejri provides a way to

assure that the series associated to an inference system will be convergent; it is stated

in Lemma 3.4.2.

Lemma 3.4.2 (Proving the convergence of a series)

Let S be an inference system and (Sn)n≥0 the series associated with S. The series

(Sn)n≥0 converges iff there is t0 ∈ T and a well-founded ordering relation 4 such that:

∀n ≥ 0, R ∈ Sn ⇒ ∀t ∈ T (R) we have t 4 t0

where T is the set of all terms that are syntactically well-formed (from the point of

view of the algebra concerned) and T (R) the set of all terms forming the rule R.

Proof:

See the proof 5.6.2 in [57] p. 76.

�

Before we continue, it is important to understand that given an inference system

S, it is not necessarily the case that the transformation process will converge when

applied to S. It could be the case that two rules R1, R2 of S can be composed to form

a new rule R3 = R1 ↑ R2 such that R1 can be composed with R3 to form R4, and so

on. Example 3.4.1 shows an inference system on which such a problem arise. This is a

simple case of non-convergence, but it may be the case that a much more complicated

pattern leads to non-convergence.

Example 3.4.1 (A case of non-convergence)

Let S be an inference system containing two rules R1 and R2 defined as:

R1 =
�

{X1.m.m′.m1.Y1}

R2 =
{X2.m2.m.Y2}

{X2.m.m2.Y2}

where we use Xi, Yi to denote variables while m,m′,mi denote constants. {m} models

the encryption while m.m′ models messages concatenation (we suppose here that con-

catenation is associative). With σ3 = {X1 → X2.m2, Y2 → m′.m1.Y1}, we obtain, from

Chapter 3. On the Termination of Inference Proof Systems 55

R2 ⇑ R1 after renaming the variables, the following rule:

R3 =
�

{X3.m.m2.m′.m1.Y3}

Now, with σ4 = {X3 → X2.m2, Y2 → m2.m
′.m1.Y3}, we obtain, from R2 ⇑ R3 after

renaming the variables, the following rule:

R4 =
�

{X4.m.m2.m2.m′.m1.Y4}

finally, with σi = {Xi−1 → X2.m2, Y2 → (m2)
i−3.m′.m1.Yi−1}, we obtain, from R2 ⇑

Ri−1 after renaming the variables, the following rule:

Ri =
�

{Xi.m.(m2)i−2.m′.m1.Yi}

To prove that the transformation process does not converge for a given inference

system S one need only to show that the algorithm would generate infinitely many new

rules. However, to prove that the transformation converges for S is much harder. We

will prove it, in the next chapter, by showing that the set of rules that can be generated

from S using the rule composition process is finite.

3.5 Algorithmic transformation

We give here an algorithmic version of the transformation schema developed by Mejri

as explained in Section 3.4.

The main function TransformInferenceSystem(S) depicted in Table 3.1 computes

the series associated with the inference system S as in Definition 3.4.5. Once a fixed

point is reached, if it is the case that the series converges, the algorithm returns an

inference system equivalent to S but for which none of the rule causes a termination

problem. Given a set of rules S, there is possibly many different subsets S ′ of S such

that no rule in S ′ causes a termination problem. This is the reason why we do not

provide here an algorithm for computing the subset of terminating rule from a set of

rules. However, note that the axioms must all be considered as terminating rules. The

other auxiliary functions are presented in Table 3.2 and explained below.

Chapter 3. On the Termination of Inference Proof Systems 56

TransformInferenceSystem(S):

S = EliminateRedundantRules(S)

S ′ = S

DO

S = S ′

S≺ = GetTerminatingRules(S)

S< = S\S≺

S ′ = ComposeSetOfRules(S≺, S<)

S ′ = EliminateRedundantRules(S ′)

WHILE (S 6= S ′)

RETURN GetTerminatingRules(S)

Table 3.1: The transformation algorithm: Part I

The function EliminateRedundantRules(S) will remove the useless rules from S,

thus computing S⇓ as introduced in Definition 3.4.4. It uses the predicate IsNotSel-

fRedundant(R) that returns true iff R is not trivial (the conclusion of R is not in its

premises) and the test IsMadeRedundantBy(R,R′) that returns true whenever R is a

particular instance of R′ (that is R′ is more general than R).

The function ComposeSetOfRules(S, S ′) computes the composition operator S #

S ′ of Definition 3.4.3. It uses the function GetAllTuples(S, n) which returns a set

containing all n-tuples formed over the elements of S. Note that a tuple may contain

multiple occurrences of the same element, hence there is exactly mn n-tuples return by

GetAllTuples(S, n) where m = |S|. The last consideration about the tuple generation

function is that all rules in all tuples must be freshly renamed to avoid variable clashes.

That is, the rules appearing in a tuple are not the exact rule of the inference system,

but instances of these rules where variables are renamed. Moreover, two elements of a

same, or a different, tuple must share no variable. Although we are not always explicit

in treating this last consideration, since it is of little theoretical importance, one must

remains careful not to end up with linking variables where it should not be the case.

Finally, the function ComposeRule(R, t) is the realization of the R ⇑ t operator

(see Definition 3.4.2) where t in a n-tuple of rules and n = |P(R)|. It uses the test

Unifiable(m, m′) to check whether or not there is a substitution σ such that mσ =

m′σ. If such a substitution exists, it uses FindMgu(m, m′) to find the most general

Chapter 3. On the Termination of Inference Proof Systems 57

EliminateRedundantRules(S):

S ′ = ∅

FOR ALL R ∈ S

IF(IsSelfRedundant(R))

isRedundant = TRUE

ELSE

isRedundant = FALSE

FOR ALL R′ ∈ S such that R 6= R′

IF(IsMadeRedundantBy(R,R′))

isRedundant = TRUE

IF(isRedundant == FALSE)

S ′ = S ′ ∪ {R}

RETURN S ′

ComposeSetOfRules(S, S ′):

S ′′ = S ∪ S ′

FOR ALL R ∈ S ′

n = |P(R)|

T = GetAllTuples(S, n)

FOR ALL t ∈ T

R′ = ComposeRule(R, t)

IF (R′ 6= NULL)

S ′′ = S ′′ ∪ {R′}

RETURN S ′′

ComposeRule(R, t):

n = |P(R)|

FOR i = 1 to n

IF (Unifiable(Pi(R), C(ti)))

σi = FindMgu(Pi(R), C(ti))

ELSE

RETURN NULL

IF (AreComposable(σ1, σ2, . . ., σn))

σ = σ1 ◦ σ2 ◦ . . . ◦ σn

R′ = σ(P(t1)) σ(P(t2)) ... σ(P(tn))
σ(C(R))

RETURN R′

RETURN NULL

Table 3.2: The transformation algorithm: Part II

Chapter 3. On the Termination of Inference Proof Systems 58

substitution6 unifying m and m′. The utility function AreComposable(σ1, σ2) tests if σ1

and σ2 can be composed or if they are incompatible. For example, let σ1 = {X ← f(b)}

and σ2 = {X ← a}. Then σ1 and σ2 are incompatible (so they cannot be composed)

because they disagree on the value that should be given to X and their disagreement

cannot be overcome. Suppose instead that σ2 would have been {X ← f(Y)} and σ1

remains unchanged, then here again σ1 and σ2 disagree on the value for X, but their

disagreement can be overcome since Xσ1 and Xσ2 are unifiable by σ′ = {Y ← b}. We

provide in Section 4.3 a precise meaning for the composition7 of substitutions (σ =

σ1 ◦ σ2 ◦ . . . ◦ σn) as used in the function ComposeRule(R, t).

3.5.1 Optimization

We discuss some possible optimizations on the algorithms presented above. The first

one should result in a good speed improvement while the second would probably prove

itself useless because of the difficulty to implement it.

The first optimization takes place in the innermost loop of the function Compos-

eSetOfRules(S, S ′), that is ”FOR ALL t ∈ T”. We often obtain the following situation

that should be avoided for time consideration: we test for the composition of rule R

with tuple t and obtain that they cannot be composed since the premise Pi(R) is not

unifiable with the term ti (the element at position i in the tuple t), after that, it is

irrelevant to test if the rule R can be composed with a tuple t′ where t′i = ti. Since

there is mn−1 tuple t′ (where m is the cardinality of S) having term ti at position i

(t′i = ti), this would yield in a good speed improvement. For the sake of algorithmic

simplicity, we do not consider the optimized version.

The second optimization is found in the main function: TransformInferenceSys-

tem(S) at the line: ”S ′ = ComposeSetOfRules(S≺, S<)”. Suppose R1 ∈ S≺ and

R2 ∈ S< at the first passage in the loop and that R3 = R2 ⇑ R1 exists. Now if

R1 and R2 are still there at the second passage in the loop, the third passage, . . ., it is

useless to check for the same composition R2 ⇑ R1 since it has already been computed.

One may attempt to compose only new rules of S< with any rule of S≺ and old rules of

S< with new rules in S≺, but it is much more complicated (new rules refer to the rules

that were not present at the previous passage in the loop). A rule R ∈ S< containing

n premises may not be composable with a n-tuple of old S≺ rules, but it may be com-

posable with a n1-tuple of old S≺ rules and a n2-tuple of new S≺ rules. This yields too

6Note that here we are working in ∅-unification, thus the mgu, if it exists, is unique (See Section

4.3).
7We chose to use composition of substitution here to replace the cmgu of Mejri.

Chapter 3. On the Termination of Inference Proof Systems 59

many cases to allow a good algorithmic implementation. However, when applying the

algorithm by hand, it may decrease the amount of work dramatically. In the example

given in the next section, we apply the algorithm without this optimization. But in the

rest of this thesis, when applying the algorithm, we shall consider this optimization to

avoid useless computation.

As proposed in [10], when a rule is composed of multiple equal premises, we can

keep only one of these equal premises and remove the others. We insist on the exactly

equal since in the case that one premise has a link with the conclusion while the other

has not, we cannot always safely remove one of them. This simplification will be useful

for the proof of Lemma 4.4.1.

3.6 Example of inference system transformation

In this section, we show how to apply the transformation algorithm over the inference

system S of equation 3.1. We will use the following ordering on terms: t1 ≺ t2 iff t1
contains strictly less function symbols than t2.

S0
≺ S0

<

R2 = x2

f(f(f(x2)))
R3 = �

a
R1 = f(f(x1))

f(x1)

Table 3.3: S0
≺ and S0

<

First, we separate S = S0 into S0
≺ and S0

< as shown in Table 3.3. Next we compute

S ′ = S0
≺ # S0

< = S0
≺ ∪ S0

< ∪ {R4 = R1 ⇑ R2 = x2

f(f(x2))
}. Then we eliminate the

redundant rules of S ′ (computing S ′
⇓). Since no rule in S ′ is redundant, we rename the

variables of the newly generated rule R4 and S ′
⇓ becomes S1.

S1
≺ S1

<

R2 = x2

f(f(f(x2)))
R3 = �

a
R1 = f(f(x1))

f(x1)

R4 = R1 ⇑ R2 = x3

f(f(x3))

Table 3.4: S1
≺ and S1

<

We start back, separating S1 into S1
≺ and S1

< as shown in Table 3.4. Next we compute

Chapter 3. On the Termination of Inference Proof Systems 60

S ′ = S1
≺ # S1

< = S1
≺ ∪S1

<∪{R5 = R1 ⇑ R2 = x2

f(f(x2))
}∪{R6 = R1 ⇑ R4 = x3

f(x3)
}. Then

we eliminate the redundant rules of S ′ (computing S ′
⇓). The rule R5 is made redundant

by the rule R4 (they are exactly the same rule modulo variable renaming). We rename

the variables of the newly added rule R6 and set S2 to be S ′
⇓.

S2
≺ S2

<

R2 = x2

f(f(f(x2)))
R3 = �

a
R1 = f(f(x1))

f(x1)

R4 = R1 ⇑ R2 = x3

f(f(x3))

R6 = R1 ⇑ R4 = x4

f(x4)

Table 3.5: S2
≺ and S2

<

We start again, separating S2 into S2
≺ and S2

< as shown in Table 3.5. Next we

compute S ′ = S2
≺ # S2

< = S2
≺ ∪ S2

< ∪ {R7 = R1 ⇑ R2 = x2

f(f(x2))
} ∪ {R8 = R1 ⇑

R4 = x3

f(x3)
} ∪ {R9 = R1 ⇑ R6 = f(x1)

f(x1)
}. Then we eliminate the redundant rules of S ′

(computing S ′
⇓). The rule R7 is made redundant by R4, the rule R8 is made redundant

by R6 while the rule R9 is self-redundant (since its premise is equal to its conclusion).

We take S3 to be S ′
⇓.

S3
≺ S3

<

R2 = x2

f(f(f(x2)))
R3 = �

a
R1 = f(f(x1))

f(x1)

R4 = R1 ⇑ R2 = x3

f(f(x3))

R6 = R1 ⇑ R4 = x4

f(x4)

Table 3.6: S3
≺ and S3

<

Since S2 = S3 (see tables 3.5 and 3.6), we have reached a fixed point in the series.

We can now take S3
≺ to be an inference system equivalent to S such that all rules are

oriented with respect to the ordering ≺ defined above. Note that the ordering ≺ is not

a terminating ordering as defined in 3.3.3, so we cannot conclude that, in general, the

resulting inference system will be a terminating inference system. However, it is easy

to see that in this particular case, S3
≺ is terminating.

Chapter 3. On the Termination of Inference Proof Systems 61

3.7 Other Methods

We give here a very quick overview of two other methods developed to solve the termi-

nation problem of inference systems.

3.7.1 Blanchet

In [9], Blanchet proposes a technique very similar to the one used by Mejri to solve

the termination problem of inference systems; again in the context of cryptographic

protocols. The main difference between the two approaches is the extraction of an

inference system from a protocol. Where Blanchet introduces an approximation in the

model, Mejri is a lot more precise. In fact, Blanchet proposes a model in which a step

of the protocol can be completed several times as long as the previous steps have been

completed at least once between the same principals. This approximation introduces

the possibility to find false attacks against a protocol. As a matter of fact, if a flaw is

found within the framework of Blanchet, it is not necessarily the case that the protocol

under consideration is flawed (the trace representing the flaw can be a non-valid trace

in the sense of Definition 1.4.3).

Another difference between the two approaches is in the way rules are selected for

composition. Mejri simply partitions the entire set of rules in terminating and non-

terminating ones, always composing a non-terminating rule with terminating ones. On

the other hand, Blanchet uses an heuristic to select rules to be composed with the

objective to reduce, as much as possible, the risk of infinite looping during composition.

Blanchet also proposes to simplify some rules in the following way: if a rule R

contains the premise p = X such that X does not appear in the conclusion, the premise

p can safely be removed from R. The idea is that the intruder can clearly provide a

message to replace X, and since X has no influence on the rule R, the message provided

is unimportant. This idea of Blanchet has been important for us in at least two points:

• by removing such a premise, we were able to simplify some proofs (see the proof

of Lemma 5.3.2 for example);

• it helped understand the existential quantification of free variables (this point is

discussed at the end of Section 4.5.1)

In [10], Blanchet & Podelski propose a class of protocols, namely tagged proto-

Chapter 3. On the Termination of Inference Proof Systems 62

cols, on which the transformation algorithm of Blanchet terminates. A protocol is

tagged when all different messages are tagged (with a constant message) before being

encrypted. This tagging prevents the intruder to use a message from a step α in a

different step β. It is shown, in [35], that tagged protocols are not subject to type

flaws. Thus tagging is now seen as a good practice in protocol construction. Unfortu-

nately, among the already existing protocols, not all are tagged (some may be implicitly

tagged as mentioned in [10]). Blanchet & Podelski also propose a transformation from

a protocol to a tagged version of this protocol. The tagged version of the protocol

can then be analyzed using the method proposed by Blanchet. Unfortunately, since

the tagged version of a protocol is possibly more secure then its original version, the

tagged protocol can be declared secure while the initial version is flawed. Moreover,

since the verification can introduce a false attack (as discussed above), starting from a

non-tagged protocol and analyzing its tagged version does not, in general, provide very

good information about its security.

3.7.2 Kindreed &Wing

In [45], see also [42, 43, 44], Kindreed &Wing propose an algorithm to generate a finite

and decidable representation of the whole theory of an inference system. They do

not, like Mejri and Blanchet, propose an idealization process turning a cryptographic

protocol into an inference system. Instead, they concentrate on using existing logics to

model protocols and they provide a mean to decide these logics (represented as inference

systems).

Rules of the inference systems are separated into S-rules and G-rules. A S-rule R is

such that at least one primary8 premise of R is not smaller then the conclusion (S-rules

could be seen as our set S<). A G-rule R is such that each premise of R is smaller than

the conclusion (G-rules could be seen as our set S≺).

The theory is built using a S-rule in a forward chaining way (proving primary

premises with axioms) and then using G-rules in a backward chaining way to prove the

non-primary premises of the S-rule. The theory is completely generated when no new

formula can be generated.

8A premise is primary if it cannot be unified with any G-rule conclusion.

Chapter 3. On the Termination of Inference Proof Systems 63

3.8 Conclusion

In this chapter we presented a transformation process, from a non-terminating inference

system into a terminating one, due to Mejri in [57]. This transformation was developed

to address the problem of non-termination of the inference system extracted from a

protocol in an attempt deciding to decide the correctness of the protocol, with respect

to some restricted security properties. However, the transformation process will not

always terminate, thus we introduced a new termination problem by solving another

one. In the next chapters, we address this new termination problem and show that for

a wide class or cryptographic protocols, the transformation process always terminates.

Chapter 4

On the Convergence of the

Transformation Algorithm

Abstract

In the previous chapter, we explained how an inference system can be trans-
formed into another equivalent, but terminating one. We mentioned that
this transformation process also suffers from the termination problem. We
address here the termination problem of the transformation process.

4.1 Introduction

In this chapter, we are interested in the termination of the transformation algorithm

of Mejri (see [57]); the one presented in Chapter 3. To avoid confusion, we adopt the

following conventions:

• We will use the expression termination in the context of an inference system. An

inference system is terminating if there is a proof-search procedure for the theory

of this inference system.

• By transformation algorithm (or transformation process), we mean the algorithm

of Section 3.5 transforming a non-terminating inference system into an equivalent

(possibly) terminating inference system. When using the transformation process,

we say initial inference system for the inference system on which the transforma-

Chapter 4. On the Convergence of the Transformation Algorithm 65

tion process is first applied and resulting inference system for the inference system

returned by the transformation algorithm.

• We will talk about convergence (resp. non-convergence) to denote the termination

(resp. non-termination) of the transformation algorithm. This is inspired by

the equivalence between the termination of the transformation process and the

convergence of the associated series of inference systems.

The present chapter contains the main result of this thesis: we define a class of

inference systems, namely structured inference systems, and a partitioning of the rules

such that the transformation algorithm is shown to converge. We then prove that the

resulting inference system is terminating and we present a decision procedure for its

theory. To do this, we first need to define a message algebra, that is the message on

which we build the inference systems; this will be done in Section 4.2. Next, we will

discuss, in Section 4.3, the unification of terms and the composition of substitutions.

These points have not been formally addressed in the previous chapter, so we give a more

formal approach here. Section 4.4 contains the convergence proof of the transformation

process when applied to a structured inference system. Finally, since it is not trivial that

the resulting inference systems are terminating, we propose in Section 4.5 a decision

procedure for resulting inference systems together with a termination proof for this

procedure.

4.2 Message algebra

Before working with inference systems, we need to know which terms can be used to

build them. To define the terms that are valid (also called well-formed terms), we

propose an algebra, namely the simple-linear-sorted algebra. We need the following

definitions to introduce our simple-linear-sorted algebra (or simple-linear for short).

Definition 4.2.1 (Signature)

An order-sorted signature is a pair ((S,≤), Σ) where (S,≤) is a partially ordered set of

sorts (the types’ names) and Σ is a set of function symbols. Each function symbol is

associated with an arity i.e. the number of arguments required by this function. For

example, function f : s1 × . . .× sn → sn+1, where the si range over the domain S, has

arity n; s1× . . .× sn is called the domain of f while sn+1 is its codomain. Functions of

arity 0 are called constants.

Chapter 4. On the Convergence of the Transformation Algorithm 66

The sorts (or types as they are called from now on) can be divided into two: atomic

and non-atomic types. A type s is atomic if every term of type s has size 11, otherwise

it is non-atomic. The size will be defined more formally below. We assume from now

on that (S,≤) forms a finite forest, that is: for any s, s1, s2 ∈ S, s1 ≥ s ≤ s2 implies

s1 ≥ s2 or s1 ≤ s2. The choice to use a forest structure for the sorts will become clear

in the next section.

Definition 4.2.2 (Σ-algebra)

Let ((S,≤), Σ) be an order-sorted signature. An order-sorted Σ-algebra is a pair (A,F)

where A is an S-indexed family of sets, say A = ∪s∈SAs, and F is a Σ-indexed set of

functions {fA|f ∈ Σ}, such that for all sorts s and s′, s ≤ s′ implies As ⊆ As′ .

Definition 4.2.3 (Free algebra)

Let ((S,≤), Σ) be an order-sorted signature and X be an S-indexed set of variable

identifiers i.e. X = ∪s∈SXs such that X ∩Σ = ∅. The free Σ-algebra over X is the pair

(TΣ(X), FΣ) where:

• The S-indexed family TΣ(X) is defined as the least set satisfying:

– For all x ∈ Xs, x ∈ (TΣ(X))s;

– For all cte :→ s ∈ Σ, cte ∈ (TΣ(X))s;

– For all f : s1 × . . .× sn → s ∈ Σ and for all (t1, . . . , tn) ∈ (TΣ(X))s1 × . . .×

(TΣ(X))sn
, f(t1, . . . , tn) ∈ (TΣ(X))s.

• The Σ-indexed set of functions FΣ is made of functions fTΣ(X) : TΣ(X))s1 × . . .×

(TΣ(X))sn
where f(t1, . . . tn) ∈ (TΣ(X))s. It takes the tuple (t1, . . . , tn) to the

term f(t1, . . . , tn).

To clarify the concept of types and order between types, we give an example of

free algebra. This free algebra is the one used to describe messages in cryptographic

protocols.

Example 4.2.1 (Cryptoprotocols’ free algebra)

We consider the types Principals ,Keys ,Nonces , Int and Msg partially ordered by: type

Msg is bigger then every other type. Only the types Principals and Int are atomic, the

others are non-atomic. The functions are:

• E : Msg ×Keys → Msg ;

1We could probably define atomic type to be bounded by a constant, instead of bounded by 1. This

would require a modification on our proofs.

Chapter 4. On the Convergence of the Transformation Algorithm 67

• C : Msg ×Msg → Msg .

• K : Principals × Principals → Keys .

• N : Principals × Int → Nonces.

Some free terms of the mentioned algebra would be:

• t1 : C(p1, E(X1, K(p1, p2))

• t2 : C(E(X2, K(p2, p3)), E(X2, K(p3, P4)))

• t3 : C(p5, E(E(C(X3, p5), K(p5, p6)), K(p6, p7)))

• t4 : C(E(X4, K(p8, p9)), E(X ′
4, K(p8, p9)))

where we use pi and Xi for variables of type Principals and MSG respectively.

Variables will play a very important role in this work. Among other things, we will

distinguish between atomic variables and non-atomic variables. A variable x ∈ Xs is

atomic if s is an atomic type, otherwise it is non-atomic. We now give functions to

compute the set of atomic variables and the set of non-atomic variables from a given

term.

Definition 4.2.4 (AVar())

Given a term t, we use the function AVar(t) to get the set of atomic variables in t.

AVar(t) is defined to be:

• ∅ in the case t = cte :→ s;

• {t} in the case t ∈ Xs such that s is an atomic type;

• AVar(t1) ∪ . . . ∪ AVar(tn) in the case t = f(t1, . . . , tn).

Definition 4.2.5 (NAVar())

Given a term t, we use the function NAVar(t) to get the set of non-atomic variables in

t. NAVar(t) is defined to be:

• ∅ in the case t = cte :→ s;

• {t} in the case t ∈ Xs such that s is a non-atomic type;

Chapter 4. On the Convergence of the Transformation Algorithm 68

• NAVar(t1) ∪ . . . ∪ NAVar(tn) in the case t = f(t1, . . . , tn).

From the two definitions above, we can easily compute the set of variables in a term t

by AVar(t) ∪ NAVar(t).

Since we distinguish terms containing non-atomic variables from the other terms,

we propose the following definitions. Intuitively, a term m is invariant if its size is

preserved by substitution, that is if m contains only atomic variables.

Definition 4.2.6 (Variant and invariant term)

A term m is variant if NAVar(m) 6= ∅. Otherwise, it is invariant.

We are now ready to define the simple-linear algebra. A term t is simple-linear if it

contains at most one non-atomic variable, say X, and X occurs at most once in t.

Definition 4.2.7 (Simple-linear algebra)

Let ((S,≤), Σ) be an order-sorted signature and X be an S-indexed set of variable

identifiers i.e. X = ∪s∈SXs such that X ∩ Σ = ∅. The simple-linear Σ-algebra over X

is the pair (TΣ(X), FΣ) where:

• The S-indexed family TΣ(X) is defined as the least set satisfying:

– For all x ∈ Xs, x ∈ (TΣ(X))s;

– For all cte :→ s ∈ Σ, cte ∈ (TΣ(X))s;

– For all f : s1 × . . .× sn → s ∈ Σ and for all (t1, . . . , tn) ∈ (TΣ(X))s1 × . . .×

(TΣ(X))sn
, if:

∗ NAVar(ti) ∩ NAVar(tj) = ∅ for every i 6= j and

∗ |NAVar(f(t1, . . . , tn))| ≤ 1, then f(t1, . . . , tn) ∈ (TΣ(X))s.

• The Σ-indexed set of function FΣ is made of functions fTΣ(X) : TΣ(X))s1 × . . . ×

(TΣ(X))sn
where f(t1, . . . tn) ∈ (TΣ(X))s if NAVar(ti) ∩ NAVar(tj) = ∅ for every

i 6= j and |NAVar(f(t1, . . . , tn))| ≤ 1. It takes the tuple (t1, . . . , tn) to the term

f(t1, . . . , tn).

We choose to use the simple-linear algebra for the following reasons. The main

objective was to restrict the algebra in such a way that would allow us to control the

size growth during unification (this follows from the intuition behind Lemma 3.4.2).

The restriction to simple terms allows a simple proof to bound the size of the term t

resulting from unifying t1 with t2 (as used in the proofs of propositions 4.3.5 and 4.3.6).

Chapter 4. On the Convergence of the Transformation Algorithm 69

Linearity over non-atomic variables is very useful to prove that unification behave nicely

(see for example the proof of Proposition 4.3.3). Note that we are not sure yet if these

conditions are necessary to assure the convergence of our transformation process. We

could probably relax these conditions, but this may require a great deal of effort to

adapt the proofs.

The simple-linear algebra defined above will be the one considered for the terms

used to build rules in our inference systems. Note that the restrictions imposed by the

simple-linear algebra are only on non-atomic variables. We will say a simple-linear term

to denote a term built in the simple-linear algebra and we use T to denote the set of

simple-linear terms. From the free terms presented in Example 4.2.1, only terms t1 and

t3 are also part of the simple-linear algebra. t2 is not a simple-linear term since the

non-atomic variable X2 appears twice in the term, while t4 is not simple-linear because

it is composed of two non-atomic variables.

From now on, we shall consider the set of function symbols to be finite. We now

define some functions to allow the comparison of different terms.

Definition 4.2.8 (Size function)

Let t be a simple-linear term. The size of t is the number of atomic messages (variables

and constants) used to build it. We use Size(t) (or |t| for short) to denote the size of t.

Size(t) is:

• 1 if t ∈ X;

• 1 if t :→ s ∈ Σ;

• Size(t1) + . . . + Size(tn) if t = f(t1, . . . , tn).

Definition 4.2.9 (Subterm)

Let t be a simple-linear term. We say t′ is a subterm of t, noted t′ ⊑ t if:

• t = t′ or

• t = f(t1, . . . , tn) and ∃1 ≤ i ≤ n such that t′ ⊑ ti.

When t is a simple-linear term, we say t′ is a strict subterm of t, noted t′ ⊏ t, if t′ ⊑ t

and t′ 6= t.

Definition 4.2.10 (Term equality)

We say terms t1 and t2 are equal, denoted t1 = t2, if they are syntactically equal. We

use t1 =R t2 to say t1 equals t2 modulo renaming, that is t1σ = t2 where σ is a renaming

of variables.

Chapter 4. On the Convergence of the Transformation Algorithm 70

To define the rules of our inference systems, we will need the notion of term struc-

ture. A term structure is a high level representation of a class of terms such that

variables and constants are replaced by their corresponding type identifiers. Thus a

term structure is common to a class of term, but a given term has only one associated

term structure.

Example 4.2.2

Given the following term structure f(τ1, h(τ2, τ3)) where τi are types, the following

messages are derived from the above term structure:

• t = f(a, h(b, c))

• t′ = f(x1, h(b, c))

• t′′ = f(x1, h(x2, x3))

where a, b, c are constants of type τ1, τ2, τ3 respectively, and x1, x2, x3 are variables of

type τ1, τ2, τ3 respectively.

We now define the set of size bounded term structure. The size of a term structure

is the number of type identifier (not necessarily distinct) used to build it. The term

structure of Example 4.2.2 has size 3. Note that linearity and simplicity does not apply

to term structures.

Definition 4.2.11 (T S(v,t))

Let s be a term structure, s ∈ T S(v,t) if:

• |s| ≤ v and s contains at least one non-atomic type, or

• |s| ≤ t and s contains only atomic types.

Lemma 4.2.1

T S(v,t) is finite.

Proof:

It follows directly from the fact that there is a finite number of function symbols and a

finite number of type.

�

Chapter 4. On the Convergence of the Transformation Algorithm 71

Any term is derived from a term structure. A term t is said to derive from term

structure s if t can be obtained from s by replacing every type identifier of s either by a

variable or a constant (the use of complex term such as F (x1, x2) is not allowed in the

derivation process) of the corresponding type. We now define the set of size-bounded

simple-linear terms.

Definition 4.2.12 (T (v,t))

t ∈ T (v,t) if t is simple-linear and if there exists a term structure s ∈ T S(v,t).

It is clear that T (v,t) has infinitely many elements since we are not limited to a finite

number of variables. However, it is the case that there is a finite number of size bounded

simple-linear term different modulo renaming (this is a consequence of the finiteness of

T S(v,t) together with the fact that there is a finite number of constants).

4.3 Unification

In this section we will prove some general properties of simple-linear terms unification

under the empty equational theory2. We also provide a way to compute the most

general unifier of two terms and, more importantly, a way to compose substitutions.

For a general treatment or an introduction to unification, the reader is referred to

[6, 77, 80].

It is well-known (see [51, 78]) that ∅-unification is decidable and unitary for an

untyped algebra. It is possible to know whether two terms t and t′ are unifiable (tσ = t′σ

for some substitution σ). In the case two terms are unifiable, it is possible to compute

(using the algorithm of [51]) the most general unifier of t and t′ (mgu(t, t′)) and this

mgu is always unique. However, the unitary property does not necessarily hold for a

typed algebra. Example 4.3.1 provide a good proof that ∅-unification is not necessarily

unitary when considering a typed algebra.

Example 4.3.1

Suppose we have the following types τ1, τ2, τ3 and τ4 partially ordered by τ1 < τ3, τ1 <

τ4, τ2 < τ3 and τ2 < τ4. The terms t1 = X : τ3 and t2 = Y : τ4 are ∅-unifiable and they

possess the two, incomparable, mgu:

• σ1 = {X ← α : τ1, Y ← α : τ1}

2The functions are neither associative nor commutative, . . .

Chapter 4. On the Convergence of the Transformation Algorithm 72

• σ2 = {X ← β : τ2, Y ← β : τ2}

However, we know from [84] that having a typed algebra with sorts forming a forest

structure is a sufficient condition to get an unitary ∅-unification. That is why we made

the assumption that our sorts form a forest structure. The less restrictive condition of

having a finite set of types should pose no problem (since it is known to be finitary, see

again [84]) but would require a more complex treatment.

Using the result of [84] when sorts form a forest, we can adapt the unification

algorithm of [51] to compute the mgu of two simple-linear terms. Computing the

mgu of a pair of terms S = {(t, t′)} is done by repeatedly (and non-deterministically)

performing any of the following transformation. Select a pair of terms (t1 : τ1, t2 : τ2)

from S, if:

• (A) both t1 and t2 are variables and t1 = t2, then remove (t1, t2) from S.

• (B) both t1 and t2 are variables and τ1 < τ2, then remove (t1, t2) from S and add

(t2, t1) to S.

• (C) both t1 and t2 are variables and τ1 ⊲⊳ 3τ2, then stop with failure.

• (D) t2 is a variable and t1 is not; if τ1 ≤ τ2 then remove (t1, t2) and insert the pair

(t2, t1) in S, otherwise stop with failure.

• (E) t1 and t2 are not variables. If the two root function symbol are different, then

stop with failure, otherwise remove (t1, t2) and add the pairs (t11, t21), . . . , (t1n, t2n)

to S, where t1 = f(t11, . . . , t1n) and t2 = f(t21, . . . , t2n).

• (F) t1 is a variable which occurs somewhere else in S and t2 6= t1. If t1 ⊏ t2 or

τ1 < τ2, then stop with failure, otherwise replace every occurrence of t1 by t2 in

S, except the one in the pair (t1, t2). Note that (t1, t2) remains in S.

When no transformation applies, stop with S containing the mgu of t and t′. We first

check if for every pair (t1 : τ, t2 : τ ′) of S we have τ ′ ≤ τ , if it is not the case, the

initial terms were not unifiable. If all types checks are ok, we form the mgu σ from S

by taking every pair (t1, t2) of S and adding the affectation t1 ← t2 to σ.

When we talk about the unification of two terms t1 and t2, we assume Var(t1) ∩

Var(t2) = ∅ (if it is not the case, we can rename the variables shared between the

3τ1 ⊲⊳ τ2 means τ1 and τ2 are incomparable

Chapter 4. On the Convergence of the Transformation Algorithm 73

two terms before the unification). We are now ready to give some properties respected

in the unification of two simple-linear terms. These properties will be very helpful in

proving the convergence of the transformation algorithm.

The first property states that substituting a variable in a simple-linear term by

another simple-linear term yields a simple-linear term.

Proposition 4.3.1

Let t ∈ T and σ = {X ← t′} be such that t′ ∈ T , then tσ ∈ T .

Proof:

If X 6⊑ t, then tσ = t and it is simple-linear. Otherwise, NAVar(t) = {X}, since t

is simple and X occur exactly once in t, because t is linear. Since t′ is simple and

NAVar(t) = {X}, NAVar(tσ) = NAVar(t′), thus tσ is simple. Since t and t′ are linear,

so will be tσ.

�

The next property says that the mgu of two simple-linear terms contains only simple-

linear affectation. An affectation X ← m is simple-linear if m is simple-linear.

Proposition 4.3.2

Let t1, t2 ∈ T and σ be their mgu. If X ← m ∈ σ, then m ∈ T .

Proof:

We suppose that every pair in S is simple-linear4 (as it is the case when the algorithm

is first called), and we show the application of any transformation rule preserves this

situation.

• If we apply rule A: this rule simply removes a pair from S.

• If we apply rule B: since the pair (t1, t2) is simple-linear, the pair (t2, t1) will also

be.

• If we apply rule C: this will end up with a failure.

• If we apply rule D: this will either add the pair (t2, t1), which is simple-linear since

(t1, t2) is or it will end up with a failure.

4A pair of terms is simple-linear if both terms of this pair are simple-linear.

Chapter 4. On the Convergence of the Transformation Algorithm 74

• If we apply rule E: suppose t1 = f(t11, . . . , t1n) and t2 = f(t21, . . . , t2n). Since t1
is simple-linear, every t1i must also be simple-linear. In the same way, every t2i

is simple-linear. Thus every pair (t1i, t2i) is simple-linear.

• If we apply rule F: Let t1 = X, σ = {X ← t2} and t be any term in S. Since t2
and t are simple-linear, then tσ will also be simple-linear(see Proposition 4.3.1).

�

We now give a bound on the size of the affectations in the mgu of two simple-linear

terms. By the size of the affectation X ← m, we mean |m|.

Proposition 4.3.3

Let t1, t2 ∈ T be such that X ∈ NAVar(t1) and X 6∈ NAVar(t2) and let σ = mgu(t1, t2).

If X ← m ∈ σ, then |m| ≤ |t2|.

Proof:

Suppose we apply the unification algorithm with the initial set S = {(t1, t2)} such that

X ∈ NAVar(t1) and X 6∈ NAVar(t2). The algorithm will eventually end up with a

pair (X,m′) such that m′ ⊑ t2. Clearly here, |m′| ≤ |t2|. It is clear that only the

transformation rule F of the algorithm can increase the size of m′. If m′ contains no

non-atomic variables, then clearly |m| = |m′| ≤ t2. Now suppose NAVar(m′) = {Y }.

For the transformation rule to increase the size of m′, another pair (t′1, t
′
2) must exist

in S such that t′1 = Y . Clearly, Y cannot come from t1 since NAVar(t1) = {X}. It is

also clear that the single occurrence of Y in t2 (remember that t2 is linear) cannot be

present in two pairs (it is already in m′ of the pair (X,m′)). Thus no transformation

rule can increase the size of a term in a pair.

�

When unifying two terms t1 and t2 with σ, the result is t = t1σ = t2σ. The next

three properties concern this t. We first prove that t is simple-linear, then we bound

the size of t. These properties are the key of our convergence proof.

Proposition 4.3.4

Let σ = mgu(t1, t2) where t1, t2 ∈ T and let t = t1σ = t2σ, then t ∈ T .

Proof:

Since t1 and t2 are simple-linear terms, we know by Proposition 4.3.2 that every affec-

Chapter 4. On the Convergence of the Transformation Algorithm 75

tation in σ has the form X ← m where m is simple-linear. Proposition 4.3.1 implies

that t = t1σ = t2σ is simple-linear.

�

Proposition 4.3.5

Let σ = mgu(t1, t2) where t1, t2 ∈ T and let t = t1σ = t2σ. If NAVar(t) 6= ∅ then

|t| ≤ max (|t1|, |t2|).

Proof:

It must be the case that NAVar(t1) = {X} and NAVar(t2) = {Y } to have NAVar(t) 6=

∅. σ must contain either X ← m or Y ← m′ but not both. Suppose σ contains

X ← m. We know |t| = |t2σ| = |t2| and since t1 ≤ |t1σ| = |t|, we conclude that

|t2| ≤ max (|t1|, |t2|).

�

Proposition 4.3.6

Let σ = mgu(t1, t2) where t1, t2 ∈ T and let t = t1σ = t2σ. Suppose NAVar(t) = ∅,

then:

• 1: if NAVar(t2) = ∅, we have |t| = |t2|;

• 2: if both NAVar(t1) and NAVar(t2) are non-empty, we have |t| < |t1|+ |t2|.

Proof:

• 1: Since NAVar(t2) = ∅, we have |t| = |t2σ| = |t2|.

• 2: Suppose NAVar(t1) = {X} and NAVar(t2) = {Y }. Since NAVar(t) = ∅, σ

must contain both affectations X ← m and Y ← m′. We know |t| = |t1σ| =

|t1| − 1 + |m| < |t1|+ |m| ≤ |t1|+ |t2| by Proposition 4.3.3 and by the form of σ.

�

In the process of rules composition, we compute independently the mgu of some pairs

of terms and then compute the final mgu by composing the intermediate mgus (see the

algorithm of Table 3.2). We now explain how the composition of two substitutions can

Chapter 4. On the Convergence of the Transformation Algorithm 76

be done and also some properties about the substitution resulting of this composition.

We assume the unification is done over some NA-disjoint5 pairs of simple-linear terms

(t1, t
′
1) . . . (tn, t

′
n).

Definition 4.3.1 (Substitution conflict)

Given two substitutions σ1 and σ2. There is a conflict between σ1 and σ2 when X ←

m1 ∈ σ1 and X ← m2 ∈ σ2 where m1 6= m2. The conflict can be resolved iff m1σ = m2

for some substitution σ.

It is clear that when a conflict arises for the variable X, then X is an atomic variable

(since a non-atomic variable is present in at most one of the two terms). Thus solving

the conflicts will not change the size of any message in the substitutions. We now give

the conditions under which two substitutions are composable.

Definition 4.3.2 (Composability of substitutions)

Given two disjoint pairs of simple-linear terms (t1, t
′
1) and (t2, t

′
2) such that σi =

mgu(ti, t
′
i). The two substitutions σ1, σ2 are composable into σ = σ1 ◦ σ2 iff every

conflict between σ1 and σ2 can be resolved.

The next two properties about the composition of substitution are very important.

We let σi = mgu(ti, t
′
i) for some disjoint pairs of simple-linear terms and σ = σ1◦. . .◦σn.

Then:

Proposition 4.3.7

If X ← m ∈ σ, then m ∈ T .

Proof:

It is the application of Proposition 4.3.2 with the observation that the composition

simply resolves conflict between atomic variables.

�

Proposition 4.3.8

|t1σ1| = |t
′
1σ1| = |t1σ| = |t

′
1σ|.

Proof:

It follows directly from the observation that the size of the affectations in a substitution

remains unchanged through composition, since composition simply resolves conflicts

between atomic variables.

5Two different terms have no common non-atomic variable

Chapter 4. On the Convergence of the Transformation Algorithm 77

�

The restrictions imposed on terms to be unified do not always hold, but they do

hold for the transformation process over inference systems (some of them will hold only

for the transformation process over structured inference systems).

4.4 The transformation algorithm converges

In this section, we define a class of inference systems, namely structured inference

systems (see Definition 4.4.4), for which the transformation process always converges

when partitioning the rules in a particular manner (as explained in Definition 4.4.5).

As a direct consequence, we will have a decision procedure for every protocol whose

inference system is structured. This last point will be the subject of Chapter 5. To

achieve this convergence result, we will first model the transformation process by a

function Φ, taking an inference system and computing the next inference system of the

associated series (see def 3.4.5). Once this function is defined and some properties are

established, we prove that the recursive application of this function on any structured

inference system reaches a fixpoint, thus proving that the series converges. Of course,

we start by defining the class of structured inference systems.

4.4.1 Structured inference systems

We say that a rule is simple-linear if all the terms forming this rule (the premises and

conclusion) are simple-linear. We talk about a simple-linear inference system to denote

an inference system containing only simple-linear rules. Two rules R and R′ are equals

modulo renaming, denoted R =R R′, if C(R) =R C(R
′) and for all p ∈ P(R), there

exists a p′ ∈ P(R′) such that p =R p′ and vice versa.

In Section 3.4, we defined (see Definition 3.4.4) the simplified inference system

associated with S by S⇓. In this simplified inference system, the redundant rules were

eliminated. We give here a new definition of simplified inference system (we will denote

it by S↓ to avoid confusion). As a consequence of this new definition, the convergence

proof will be much more elegant and simple.

Definition 4.4.1 (Simplified inference system)

Let S be an inference system, we define S↓ as follows. Let R ∈ S, then R ∈ S↓ if

Chapter 4. On the Convergence of the Transformation Algorithm 78

• A: ∀p ∈ P(R), p 6= C(R) and

• B: ∀R ∈ S↓, R 6=R R′.

It is easy to see that this new definition of simplified inference system does not change

the results stated in the previous chapter. As a matter of fact, the previous definition

of simplified inference systems (see Definition 3.4.4) corresponds to an optimization in

the transformation process when compared to the present definition. Here, we allow

some useless work to be done. Thus, if the transformation process converges with the

present simplification of inference system, it surely converges with a more optimized

simplification. Note that from now on, when computing (S1 # S2)↓, we are careful not

to remove any rule of S1 ∪ S2. As a result, we always have (S1 ∪ S2) ⊆ (S1 # S2)↓.

The following two definitions introduce two conditions over rules, conditions that

will be used to define the class of structured inference systems. The condition “self-

contained” states that if a non-atomic variable X is found in the conclusion of a rule,

then X must also be in at least one premise of this rule. Condition “premises-disjoint”

imposes the different premises of a rule to be pairwise disjoint over their set of non-

atomic variables.

Definition 4.4.2 (Self-contained rule)

A rule R is self-contained iff NAVar(C(R)) ⊆
⋃

p∈P(R) NAVar(p).

Definition 4.4.3 (Premises-disjoint rule)

A rule R is premises-disjoint iff ∀i 6= j, NAVar(Pi(R)) ∩ NAVar(Pj(R)) = ∅

An inference system S is said to be self-contained (resp. premises-disjoint) iff every

rule of S is self-contained (resp. premises-disjoint). We use SC IS (resp. PD IS) to

denote the set of all self-contained (resp. premises-disjoint) inference system.

With the two conditions defined just above, and using the simple-linear algebra

defined in the previous section, we can now introduce the class of structured inference

systems. We use SIS to denote the set of structured inference systems.

Definition 4.4.4 (Structured inference system)

A simple-linear simplified inference system S is structured if S ∈ SC IS ∩ PD IS .

Given a structured inference system S, we need to separate it into two sets of rules:

one with terminating rules and the other with non-terminating rules. We will write T (S)

for the set containing all the terminating rules of S and NT (S) for the set containing all

the non-terminating rules of S. There is possibly many ways to partition S into T (S)

Chapter 4. On the Convergence of the Transformation Algorithm 79

and NT (S) depending of the algorithm used to search for a proof (backward-chaining,

forward-chaining, . . .). Note that if the transformation process converges with a given

partition, it will not necessarily converge for another partition. Definition 4.4.5 states

how this separation is done in our work and Section 4.5 exhibits a terminating algorithm

to decide the theory of the resulting inference systems.

Definition 4.4.5 (Terminating rules)

Given S ∈ SIS , the set of terminating rules from S (noted T (S)) is such that R ∈ T (S)

iff:

• NAVar(C(R)) = ∅ or

• ∀i such that NAVar(Pi(R)) = NAVar(C(R)) 6= ∅ we have that |Pi(R)| < |C(R)|

We use NT (S) to denote the set of non-terminating rules from S. From the above

definition, NT (S) = S − T (S).

Let S ∈ SIS , we define some size measures over S:

• VS: The size of the biggest variant term in S.

• CS: The size of the biggest invariant term in S.

• TS: max (CS, 2× VS).

The bound 2×VS has been chosen to reflect the unification property of Proposition

4.3.6-2.

In Section 4.2, we defined the set of size-bounded term structure. We now introduce

the set of rules constructed over term derived from size-bounded term structure.

Definition 4.4.6 (R(v,t))

Given a premises-disjoint and self-contained rule R, R ∈ R(v,t) if:

• C(R) ∈ T (v,t) and

• P(R) ⊆ T (v,t) and

• 6 ∃R′ ∈ R(v,t) such that R′ =R R and

• ∃α such that |P(R)| ≤ α.

Chapter 4. On the Convergence of the Transformation Algorithm 80

Lemma 4.4.1

R(v,t) is finite.

Proof:

Since every rule has a bounded number of premise, since there is a finite number of

size-bounded simple-linear terms different modulo renaming, infinitely many rules would

yield infinitely many rules equal modulo renaming, and thus they would be eliminated.

�

We need R(v,t) to include all rules that may be considered during the transformation

process. This is done in the next lemma.

Lemma 4.4.2

R(v,t) is complete.

Proof:

The restrictions on simple-linear terms, self-contained rules, premise-disjoint rules and

size-bounded term cause no problem, see lemmas 4.4.5, 4.4.6, 4.4.7 and 4.4.8 with 4.4.9

respectively. It is more difficult to see why allowing only rules with no more then α

premise does not affect completeness. This last point is discussed, although not formally

proved, in Appendix A.

�

It is not necessarily the case thatR(v,t) is sound, however, we need only completeness

and finiteness.

We will often consider the set of size-bounded rules constructed from a given infer-

ence system. We call it the extension of an inference system.

Definition 4.4.7 (S(v,t))

Given S ∈ SIS . The extension of S is S(v,t) = R(v,t) where v = VS and t = TS.

The next two lemmas establish the finiteness of S(v,t) and its power set. This is an

important step toward the convergence.

Lemma 4.4.3

Let S ∈ SIS , then S(v,t) is finite.

Chapter 4. On the Convergence of the Transformation Algorithm 81

Proof:

Since the set R(v,t) is finite (see Lemma 4.4.1) and S(v,t) = R(v,t), we deduce that S(v,t)

contains a finite number of rules.

�

Lemma 4.4.4

Let S ∈ SIS , then ℘(S(v,t)), the power set of S(v,t), is finite.

Proof:

Since S(v,t) is finite, it follows directly that ℘(S(v,t)) is also finite.

�

4.4.2 The transformation function

We now give a model representing the computation of the series (see Definition 3.4.5))

associated with an inference system. This representation is called transformation func-

tion. The transformation function takes an inference system and produces the next

inference system of the series.

Definition 4.4.8 (Φ())

Φ() : IS → IS . Φ(S) = (NT (S) # T (S))↓.

The transformation process applied to the inference system S is modeled by:

• S0 = S.

• S1 = Φ(S).

• S2 = Φ(Φ(S)).

• . . .

Thus, to prove the convergence of the transformation process, we show that the recursive

application of the transformation function Φ() on any structured inference system

reaches a fixpoint. To do this, we first need to understand its behavior when applied

to a structured inference system.

Chapter 4. On the Convergence of the Transformation Algorithm 82

Through the following five lemmas, we show some properties of the function Φ()

when applied to a structured inference system. These properties are: given a structured

inference system S, then

• Φ(S) is a simple-linear inference system;

• Every rule of Φ(S) is self-contained;

• Every rule of Φ(S) is premises-disjoint;

• The size of any invariant message in Φ(S) is not greater than VS;

• The size of any variant message in Φ(S) is not greater than TS;

To prove these lemmas, we assume S is a structured inference system and we pose

S ′ = Φ(S). To show that S ′ respects a property already respected by S, it is sufficient

to show that every new rule in S ′ respects the property. Thus we denote R′ any rule

added to S ′ by the function Φ(S). Since R′ is added to S ′, R′ = R ⇑ (R1, R2, . . . , Rm)

for some R ∈ NT (S) and R1, R2, . . . , Rm ∈ T (S), where:

R =
p1 . . . pm

c
Ri =

pi1 . . . pimi

ci

R′ =
p11σ . . . p1m1σ p21σ . . . p2m2σ . . . pm1σ . . . pmmm

σ

cσ

σ is defined to be σ = σ1 ◦ . . . ◦ σm, where σi = mgu(ci, pi).

Lemma 4.4.5

If S ∈ SIS , then Φ(S) will be a simple-linear inference systems.

Proof:

Since R and the Ri are all simple-linear rules, the terms c, ci, pi and pij for 1 ≤ i ≤ m

and 1 ≤ j ≤ mi are all simple-linear. By the definition of σ and property 4.3.7, we

know that every affectation X ← m in σ is such that m is simple-linear. By Proposition

4.3.1, cσ and pijσ are all simple-linear.

�

Lemma 4.4.6

If S ∈ SIS , then Φ(S) ∈ SC IS .

Chapter 4. On the Convergence of the Transformation Algorithm 83

Proof:

If NAVar(cσ) = ∅, R′ is vacuously self-contained. We suppose NAVar(cσ) = {X},

which implies NAVar(c) 6= ∅.

• In the case NAVar(c) = {X}, we know NAVar(pi) = {X} for some i because

R ∈ S and S is a structured inference system. To have NAVar(cσi) = {X}, we

must have NAVar(ciσi) = NAVar(piσi) = {X}; this can hold only if NAVar(ci) =

{Y } and σi contains Y ← m where X ∈ NAVar(m) (σi = mgu(pi, ci)). Since

NAVar(ci) = {Y }, ∃k such that NAVar(pik) = {Y } (because Ri ∈ S and S is

a structured inference system). NAVar(pikσi) = {X} by the restriction imposed

on σi above. Since σi is the only one to manipulate X and Y and since the

composition with the other mgu does not change the non-atomic variables, we

conclude that NAVar(pikσ) = {X}.

• Otherwise, NAVar(c) = {Y } and then NAVar(pi) = {Y } for some i. The

same reasoning applies here with the sole difference that it is required to have

NAVar(ci) = {X}.

�

Lemma 4.4.7

If S ∈ SIS , then Φ(S) ∈ PD IS .

Proof:

Let i and j range over [1 . . . m], k ranges over [1 . . . mi] and l over [1 . . . mj] with the

restriction that either i 6= j or k 6= l. We know that Var(pik) ∩ Var(pjl) = ∅ because:

• if i = j, pik and pjl are two premises of the rule Ri and Ri is premises-disjoint

because Ri ∈ S and S is a structured inference system;

• if i 6= j, pik and pjl belong to two rules Ri and Rj respectively and Var(Ri) ∩

Var(Rj) = ∅ (by renaming if Ri and Rj are two instances of the same rule in the

inference system).

We suppose Var(pik) = X and Var(pjl) = Y , otherwise the condition trivially holds.

• In the case i = j (then l 6= k):

– If Var(ci) = X, then Var(σ(pil)) = Y while Var(σ(pik)) is either X, ∅ or

Var(pi) none of which can be Y .

Chapter 4. On the Convergence of the Transformation Algorithm 84

– If Var(ci) = Y , then Var(σ(pik)) = X while Var(σ(pil)) is either Y , ∅ or

Var(pi) none of which can be X.

– If Var(ci) 6= Y and Var(ci) 6= X, then Var(σ(pil)) = Y while Var(σ(pik)) =

X.

• In the case i 6= j:

– If Var(ci) 6= X and Var(cj) 6= Y , then Var(σ(pjl)) = Y while Var(σ(pik)) =

X.

– If Var(ci) = X and Var(cj) = Y , then Var(σ(pik)) is either X, ∅ or Var(pi)

while Var(σ(pjl)) is either Y , ∅ or Var(pj). Since Var(pi) ∩ Var(pj) = ∅

(R is premises-disjoint because it is part of a structured inference system),

Y 6∈ Var(pi) (because Y ∈ Var(Rj) implies Y 6∈ Var(Ri)) and X 6∈ Var(pj),

it holds that Var(pik) ∩ Var(pjl) = ∅.

– If Var(ci) = X and Var(cj) 6= Y , then Var(pjl) = Y while Var(pik) is either

X, ∅ or Var(pi), none of which can be Y .

– If Var(ci) 6= X and Var(cj) = Y , then Var(pik) = X while Var(pjl) is either

Y , ∅ or Var(pj), none of which can be X.

�

Lemma 4.4.8

If S ∈ SIS , then VΦ(S) ≤ VS.

Proof:

Suppose NAVar(mσ) 6= ∅, it implies NAVar(m) = {X}. If X 6∈ Dom(σ), then clearly

|mσ| = |m| ≤ VS.

• If m = c: Let pi be the premise of R such that NAVar(pi) = NAVar(c) = {X}.

Since R ∈ NT (S), |c| ≤ |pi| and |cσi| ≤ |piσi|. By Proposition 4.3.5, |piσi| ≤

max (|pi|, |ci|), which is clearly ≤ VS. Note that property 4.3.8 assures us to have

|piσi| = |piσ|.

• If m = pab: NAVar(ca) = {X}, otherwise, X 6∈ Dom(σ). Since Ra ∈ T (S),

|pab| < |ca| and |pabσa| < |caσa|. By Proposition 4.3.5, |caσa| ≤ max (|ca|, |pa|),

which is clearly ≤ VS. Note that property 4.3.8 assures us to have |caσa| = |caσ|.

�

Chapter 4. On the Convergence of the Transformation Algorithm 85

Lemma 4.4.9

If S ∈ SIS , then CΦ(S) ≤ TS.

Proof:

In the case NAVar(m) = ∅, then clearly |mσ| = |m| ≤ TS. Thus, we suppose

NAVar(m) = {X} and NAVar(mσ) = ∅.

• If m = c: let pi be the premise of R such that NAVar(pi) = {X}. Since R ∈

NT (S), |c| ≤ |pi| and |cσi| ≤ |piσi|. By Proposition 4.3.6, we have:

– if NAVar(ci) 6= ∅, then |piσi| < |pi|+ |ci| ≤ 2× VS ≤ TS.

– else |piσi| = |ciσi| = |ci| ≤ TS.

Note that property 4.3.8 assures us that |piσi| = |piσ| and in the same way, we

know |cσi| = |cσ|.

• If m = pab: then NAVar(ca) = {X}, otherwise X 6∈ Dom(σ) and NAVar(pabσ) 6=

∅. Since Ra ∈ T (S), |pab| < |ca| and |pabσa| < |caσa|. By Proposition 4.3.6, we

have:

– if NAVar(pa) 6= ∅, then |caσa| < |ca|+ |pa| ≤ 2× VS ≤ TS.

– else |caσa| = |paσa| = |pa| ≤ TS.

Note that property 4.3.8 assures us that |caσa| = |caσ| and in the same way, we

know |pabσi| = |pabσ|.

�

We are now ready to give more general properties for Φ() when applied to structured

inference systems.

The next theorem shows that the application of the transformation function to a

structured inference system will yield a structured inference system.

Theorem 4.4.1 (SIS is closed under Φ())

If S ∈ SIS , then Φ(S) ∈ SIS .

Proof:

It follows directly from lemmas 4.4.5 to 4.4.7 and from the fact that Φ(S) is clearly

simplified (see the definition of Φ).

Chapter 4. On the Convergence of the Transformation Algorithm 86

�

The next theorem shows that the set ℘(S(v,t)) is closed under the transformation

process (remember that in the definition of S(v,t), it is required that S be a struc-

tured inference system). This result will be very important to define a new, restricted,

transformation function.

Theorem 4.4.2 (℘(S(v,t)) is closed under Φ())

Let S ∈ SIS , then S ⊆ S(v,t) and Φ(S) ⊆ S(v,t).

Proof:

Suppose S is a structured inference system and let S ′ = Φ(S). By the definition of

S(v,t), it is clear that S ⊆ S(v,t). By Theorem 4.4.1, S ′ is a structured inference system.

From Lemma 4.4.8, we know that VS′ ≤ VS and from Lemma 4.4.9 that CS′ ≤ TS. We

can conclude that S ′ ⊆ S(v,t).

�

The transformation function of Definition 4.4.8 represents the general pattern of

composition. We are interested here in showing that the transformation process con-

verges on every structured inference system. That is why we define a restricted version

of our transformation function and call it the restricted transformation function. It is

restricted on its domain and codomain.

Definition 4.4.9 (ΦS(v,t)())

Let S be a structured inference system, S(v,t) be its extended inference system and

S ′ ∈ ℘(S(v,t)). ΦS(v,t)() : ℘(S(v,t))→ ℘(S(v,t)). ΦS(v,t)(S ′) = Φ(S ′).

It is important to prove that the codomain of ΦS(v,t)() is really ℘(S(v,t)). This is

done in Proposition 4.4.1.

Proposition 4.4.1

Let S ′ ∈ ℘(S(v,t)), then ΦS(v,t)(S ′) ∈ ℘(S(v,t)).

Proof:

Let S ′ ∈ ℘(S(v,t)). By Theorem 4.4.1, Φ(S ′) is also a structured inference system and

by Theorem 4.4.2, Φ(S ′) ∈ ℘(S(v,t)).

�

Chapter 4. On the Convergence of the Transformation Algorithm 87

The transformation process is modeled by the recursive application of the trans-

formation function on a given inference system. We now define formally what is the

recursive application of the restricted transformation function on a given structured

inference system. The generalization to the transformation function of Definition 4.4.8

and to all inference systems follows easily.

Definition 4.4.10 (Recursive application of ΦS(v,t)())

Given an inference system S, the recursive application of the restricted transformation

function on S is modeled by the series ΦS(v,t)(S), ΦS(v,t)(ΦS(v,t)(S)), . . . Φn
S(v,t)(S), . . . The

recursivity stops as soon as we reach a point i such that Φi
S(v,t)(S) = Φi+1

S(v,t)(S). We say

that i is a fixpoint for ΦS(v,t)().

We now have a more specific model for the transformation process applied on struc-

tured inference systems. The convergence proof will be reduced to prove that the

recursive application of ΦS(v,t)() on S reaches a fixpoint for any structured inference

system S. From now on, we say that ΦS(v,t)() has a fixpoint to mean that the recursive

application of ΦS(v,t)() on S reaches a fixpoint.

Lemma 4.4.10

Let < P,≤> be a finite poset with a top element ⊤. If F is a growing6 map on P , then

the series F (x), F (F (x)), . . . , F n(x), . . . reaches a fixpoint for any x ∈ P .

Proof:

Suppose the series F (x), F (F (x)), . . . , F n(x), . . . never reaches a fixpoint. Since F is a

growing map, we know F (x) < F (F (x)) < . . . < F n(x) < . . . In particular, we cannot

have F i(x) = F i+1(x) because such an i would itself be a fixpoint. By definition of the

top element, we know that F i(x) ≤ ⊤ for any i. Since the set P is finite by hypothesis,

we cannot have infinitely many elements of P strictly smaller than ⊤. We then have a

contradiction with the assumption that the series does not reach a fixpoint.

�

4.4.3 The convergence proof

If we consider the set ℘(S(v,t)) together with the order relation ⊆, it is easy to see that

< ℘(S(v,t)),⊆> is a partially ordered set with bottom7 element ⊥ = ∅ and top element

6A function F is called growing if x ≤ F (x) for any element x in the domain of F .
7The bottom element of a poset < P,≤> is an element ⊥ such that ⊥ ≤ x for every x ∈ P

Chapter 4. On the Convergence of the Transformation Algorithm 88

⊤ = S(v,t). We know that ℘(S(v,t)) is finite from Lemma 4.4.4 and thus we need only to

show that the restricted transformation function is indeed a growing map on ℘(S(v,t))

to conclude that it reaches a fixpoint. This is done in Lemma 4.4.11

Lemma 4.4.11

ΦS(v,t)() is a growing map.

Proof:

It is clear that ΦS(v,t)() is a total map since for any S ′ ∈ ℘(S(v,t)), there is a S ′′ ∈

℘(S(v,t)) such that ΦS(v,t)(S ′) = S ′′. The fact that ΦS(v,t)() is growing, that is S ′ ⊆

ΦS(v,t)(S ′), follows directly from the definition of Φ (considering the new definition of

simplified inference system, see Definition 4.4.1 and the note on page 78).

�

Finally, we present the main theorem of our thesis, the transformation process con-

verge when applied on a structured inference system.

Theorem 4.4.3 (The transformation process converges for any S ∈ SIS)

Given S ∈ SIS , the transformation process converges when applied to S.

Proof:

Let S be a structured inference system. It is sufficient to show that ΦS(v,t)() has a

fixpoint to conclude that the transformation process converges for S since the transfor-

mation process applied on S corresponds to the recursive application of the restricted

transformation function ΦS(v,t)(S), ΦS(v,t)(ΦS(v,t)(S)), . . . Since ℘(S(v,t)) is a finite poset

with a top element and since ΦS(v,t)() is a growing map from ℘(S(v,t)) to ℘(S(v,t)) (see

Lemma 4.4.11), it follows from Lemma 4.4.10 that ΦS(v,t)() has a fixpoint.

�

Now that the convergence proof has been established, another important proof re-

mains to be done. We need to show, as claimed in 4.4.5, that T (S) is a terminating

inference system whenever S is a structured inference system. That is we need to show

that the theory of T (S) is decidable.

Chapter 4. On the Convergence of the Transformation Algorithm 89

4.5 The resulting inference system is terminating

When applied to a structured inference system, the transformation process converges, as

shown in Theorem 4.4.3. The transformation process will provide a resulting inference

system S such that:

• S is a structured inference system since we showed in Theorem 4.4.1 that the

function Φ() preserves the structured property;

• S ≡ T (S) since the transformation process returns a set of terminating rules.

From now on, when we talk about a resulting inference system, we mean a structured

inference system composed only of terminating rules. We use RIS to denote the set of

all resulting inference systems.

For any rule in a terminating inference system we can classify its premises in three

different groups, these groups being defined by the non-atomic variables in the premises.

A premise can always contain some atomic variables.

Definition 4.5.1 (Invariant premise)

A premise p is invariant when NAVar(p) = ∅ (the premise contains no non-atomic

variable). Thus, whenever p is an invariant premise, we have |σ(p)| = |p| for any σ.

Definition 4.5.2 (Free premise)

A premise p is said to be free in the rule R when NAVar(p) = X, but NAVar(C(R)) 6= X.

Definition 4.5.3 (Linked premise)

A premise p is said to be linked in the rule R when NAVar(p) = NAVar(C(R)) = X.

Note that there is at most one linked premise in every rule of a resulting inference

system.

In Definition 3.3.3 of the previous chapter, we established a sufficient condition to

assure the termination of an inference system with respect to backward chaining. It

is easy to see that we cannot find such a general terminating ordering for all resulting

inference system. One of the reasons is that any ordering is not necessarily preserved

under substitution, as explained in Example 4.5.1. Moreover, applying basic backward

chaining could easily lead to infinite computation as shown in Example 4.5.2. The

two examples are built within the simple-linear algebra of cryptographic protocols, as

discussed in Example 4.2.1.

Chapter 4. On the Convergence of the Transformation Algorithm 90

Example 4.5.1 (Substitution problem)

Take the following rule:

R =
E(C(p1, X1), K(p1, p2)) E(X2, K(p3, p4))

E(C(p3, C(p4, C(p5, X2)), K(p3, p5))

Clearly, R can be part of a resulting inference system since it respects the conditions

mentioned above. It is also clear that no ordering can be preserved under substitu-

tion, w.g. σ = {X2 ← p6, X1 ← C(p4, C(p5, C(p6, E(X3, K(p7, p8))))}. The message

σ(E(C(p1, X1), K(p1, p2))) will be bigger than σ(E(C(p3, C(p4, C(p5, X2)), K(p3, p5))).

Example 4.5.2 (Infinite backward chaining computation)

Take the following rule:

R =
E(C(p1, C(p2, p3)), K(p4, p5)) E(X1, K(p4, p5))

E(C(p1, C(p2, X1)), K(p4, p5))

Clearly, R can be part of a resulting inference system. Now suppose R is used in

the search of a proof for m. That is E(C(p1, C(p2, X1)), K(p4, p5)) is unified with

m through the mgu σ. Now, the search of a proof for m is reduced to the search

of a proof for both σ(E(C(p1, C(p2, p3)), K(p4, p5))) and σ(E(X1, K(p4, p5))). But to

prove the message σ(E(C(p1, C(p2, p3)), K(p4, p5))), one can surely use the rule R with

σ′ = mgu(σ(E(C(p1, C(p2, p3)), K(p4, p5))), E(C(p1, C(p2, X1)), K(p4, p5))). We now

seek to prove σ′(E(C(p1, C(p2, p3)), K(p4, p5))) and σ′(E(X1, K(p4, p5))). But again, to

prove σ′(E(C(p1, C(p2, p3)), K(p4, p5))), one can use rule R . . . and so on.

In this section, we propose a proof-search procedure very similar to backward chain-

ing. We argue that this modification is sufficient to yield a terminating proof-search

procedure. From there, we conclude that the resulting inference system will always be

a terminating one when the initial inference system is structured.

The intuition behind our modification of the backward chaining algorithm is based

on the two examples above. First, we observe that the problem pointed by Example

4.5.1 is not present in the backward chaining procedure (the free premises do not grow

when using a rule). Then, the problem pointed in Example 4.5.2 is addressed by adding

a loop detection to the backward chaining algorithm (this is our modification).

4.5.1 Proof-search procedure

In Table 4.1 we present our proof-search procedure. The procedure takes as parameters:

a list of objectives O to prove, a set of messages Proving that represent every messages

Chapter 4. On the Convergence of the Transformation Algorithm 91

ProofSearch(O,Proving , S):

IF (O = ∅)

RETURN TRUE

ELSE

LET O =< o1, o2, . . . , on > IN

O1 = O− < o1 >

Proving = Proving ∪ {o1}

FOR ALL R ∈ S

(O2, σ) = ApplyRule(o1, R)

IF (σ 6= NULL) AND (O2 ∩ Proving = ∅)

IF (ProofSearch(O2 ∔ O1σ,Proving , S))

RETURN TRUE

RETURN FALSE

ApplyRule(o,R):

σ = mgu(o, C(R))

O = P(R)σ

RETURN (O, σ)

Table 4.1: The proof-search procedure

we are currently trying to prove (the latter is used to detect loops as explained in

Example 4.5.2) and a resulting inference system S. When first invoking the procedure

to prove the simple-linear term m, the set Proving is empty.

The operator ∔ appends two lists and removes the multiple occurrences of an ele-

ment (we only keep the first occurrence of every element).

To prove a simple-linear term t, the algorithm will try every available rule until

either all rules have been tried or a proof for t has been found. If the utilization of a

rule R results in proving a term t′ that we are already trying to prove (t′ ∈ proving),

then it is useless to use R. This last point is the main difference between our proof-

search procedure and the backward chaining, it will also be important to prove the

termination of our proof-search procedure. The set proving has the following meaning.

When we try to prove t, we use R in a backward manner and generate {pσ|p ∈ P(R)}.

Chapter 4. On the Convergence of the Transformation Algorithm 92

If we can prove those pσ, then t is proved. So we are trying to prove t, but the objectives

we are working with are the pσ. What if there is a pσ such that pσ = t, that is to prove

t, using rule R, we need to prove t and some other messages? From there, if there is

a proof for all pσ (including the one equal to t), then there exists surely a proof for

t without using R. That is why the algorithm backtracks when the application of a

rule R forces us to prove a message m that we are currently trying to prove. Given a

list of objectives O =< o1, o2, . . . , on >, it is sufficient to try o1 with all the rules. In

particular, it is not necessary to check for o2 in the case o1 cannot be proved since if o1

cannot be proved, it is clear that O cannot be proved.

From this discussion, it should be clear that the proof-search procedure is complete

(if there is a proof for t in S, then the proof-search procedure will find one). The

soundness (if the proof-search procedure finds a proof for t, then there is a proof for t

in S) of the proof-search procedure follows directly from the soundness of the backward

chaining algorithm.

We want to point to the reader a somewhat strange semantic associated with our

proof-search procedure. When trying to prove a simple-linear term t such that Var(t) =

X, one usually implicitly use a universal quantifier over X. In our case, we have to put

an existential quantifier over X. That is, t will be provable iff there is a message t′ such

that tσ is provable with σ = {X ← t′}. Although this is not the meaning one usually

wants for t, it is precisely the meaning we want for every free premise. When a variable

Y is present in a premise such that Y is not in the conclusion, we are content when Y

can be replaced by anything (we do not require that Y be replaced with every possible

message).

To prove that this procedure always terminates, we model it by a tree. The possible

states of the algorithm will be the nodes of the tree, while an edge will consist in

applying the recursive procedure to get from one state to another. We will show the

tree is finite, thus implying the algorithm cannot run infinitely.

4.5.2 A tree model for the proof-search procedure

Given a resulting inference system S and a simple-linear term t, we define the tree

explored by the proof-search procedure for t in S, denoted T S
t , as:

Definition 4.5.4 (T S
t)

T S
t is an oriented tree where:

Chapter 4. On the Convergence of the Transformation Algorithm 93

(<o1>,∅)

(<pa1σa,…panσa>, {o1}) (<pb1σb,…pbnσb>, {o1})

…

(<pc1σc, …, pcnσc, pa2σa, …panσa>, {o1,,pa1σa})

…

(< pd2σc, …, pdnσc, pc2σc, …, pcnσc, pa2σa, …panσa>,
{o1,,pa1σa, pc1σc})

…

Ra Rb

Rc

Rd

…

Figure 4.1: The proof-search tree

• the nodes are pairs (O,P) where O is a list8 of simple-linear terms (the objectives)

and P is a set of simple-linear terms (the path);

• the root is (< t >, ∅);

• an edge from (O,P) to (O′, P ′) (denoted (O,P) → (O′, P ′)) represents the ap-

plication of a rule (in a backward chaining fashion) to the first objective of O.

(O,P)→ (O′, P ′) ∈ T S
t iff there is a R ∈ S and O =< o1, o2, . . . , on > such that:

– σ = mgu(o1, C(R)) exists and

– O′ = P(R)σ ∔ (O− < o1 >)σ and

– P ′ = P ∪ {o1} and

– P ′ ∩ P(R)σ = ∅.

Such a tree looks like Figure 4.1. When we need to emphasis the fact that node (O′, P ′)

is a child (in tree T S
t) of node (O,P) by the application of rule R ∈ S, we write

(O,P) →R (O′, P ′). Nodes will often be referred to by N , we then use NO and NP to

denote respectively the list O and the set P of node N .

8A list is a set where every element has a position. Multiple occurrences of a same element never

occurs in our case.

Chapter 4. On the Convergence of the Transformation Algorithm 94

We will show the proof-search procedure terminates by showing the finiteness of

T S
t . Since the proof-search procedure simply explores T S

t in a depth-first manner, the

termination of the procedure is assured by the finiteness of the tree.

We first need to justify that every node (O,P) of T S
t is such that O is a list of simple-

linear terms and P is a set of simple-linear terms. This is done in the next proposition

by showing that if a node (O,P) of T S
t is such that O is a list of simple-linear terms

and P is a set of simple-linear terms (as it is the case with the root of the tree), then

all its children (O′, P ′) are such that O′ is a list of simple-linear terms and P ′ is a set

of simple-linear terms. We use L(T) for the set of all lists formed with the terms of T .

Proposition 4.5.1

If (O,P) ∈ L(T) × ℘(T) and (O,P) →R (O′, P ′) ∈ T S
t for any t ∈ T and S ∈ RIS ,

then (O′, P ′) ∈ L(T)× ℘(T).

Proof:

Let O =< o1, o2, . . . , on >. It is clear that P ′ ∈ ℘(T), since o1 is simple-linear and

P ∈ ℘(T). Since O and P(R) contain only simple-linear terms, we need only to show

that σ contains only simple-linear affectation to deduce that O′ is a list of simple-linear

terms (using Proposition 4.3.1). σ is the mgu of two simple-linear terms, namely o1

and c (c is simple-linear since the rule R is in a resulting inference system), thus by

Proposition 4.3.2, σ contains only simple-linear affectations.

�

The next proposition states that if the node (O′, P ′) is a child of the node (O,P),

then P ′ contains exactly one more element then P .

Proposition 4.5.2

If (O,P)→R (O′, P ′), then |P ′| = |P |+ 1.

Proof:

Let O =< o1, o2, . . . , on >. It is sufficient to show that o1 6∈ P . Let N be the first node

on the path from the root to (O′, P ′) to contain o1 as an objective. Clearly, o1 6∈ NP ,

otherwise N cannot be the child of any node in the tree. If o1 ∈ P , this that means

there is a pair of nodes N1 and N2 such that N1 → N2 on the path from N to (O,P)

and o1 is the first element of N1
O. But then, a node N3 on the path from N2 to (O,P)

inclusively can have o1 as the first element of N3
O (because of the edge restriction in

Definition 4.5.4); this is a contradiction with the fact that O =< o1, o2, . . . , on >.

Chapter 4. On the Convergence of the Transformation Algorithm 95

�

Given a set (or a list) T ′ of simple-linear terms and a resulting inference system S,

we define the following size measure:

• CS(T ′): max(CS, C ′) where C ′ is the size of the biggest invariant term in T ′.

• VS(T ′): max(VS, V ′) where V ′ is the size of the biggest variant term in T ′.

• TS(T ′): max(CS(T ′), 2× VS(T ′)).

Let m be a simple-linear term, S a resulting inference system and R ∈ S. The

following proposition states that given σ = mgu(m, C(R)), every p ∈ P(R) is such that

if NAVar(pσ) = ∅ then |pσ| ≤ TS({m}) while if NAVar(pσ) 6= ∅ then |pσ| ≤ VS({m}).

Proposition 4.5.3

Let m ∈ T , S ∈ RIS , R ∈ S and σ = mgu(m, C(R)). Then ∀p ∈ P(R), pσ ∈

T (VS({m}),TS({m})).

Proof:

For every p ∈ P(R), we must show that: if NAVar(pσ) = ∅, then |pσ| ≤ TS({m}); if

NAVar(pσ) 6= ∅, then |pσ| ≤ VS({m}).

Suppose NAVar(pσ) = ∅:

• In the case p is an invariant premise: since NAVar(p) = ∅, we know that |pσ| = |p|

and since |p| ≤ TS ≤ TS({m}), it is clear that |pσ| ≤ TS({m}).

• In the case p is a free premise: it is not possible since in this case we would have

NAVar(pσ) 6= ∅.

• In the case p is a linked premise: (NAVar(p) = NAVar(C(R) = {X})

– If NAVar(m) = ∅: then |pσ| < |cσ| = |mσ| = |m| ≤ TS({m}).

– If NAVar(m) = {Y }: then σ contains both X ← m′ and Y ← m′′ (to

have NAVar(pσ) = ∅) such that |m′| ≤ |m| (see Proposition 4.3.3). Thus,

|pσ| = |p|−1+ |m′| < |p|+ |m| ≤ 2×max (|p|, |m|) ≤ 2×VS ({m},VS ({m} =

2× VS({m} ≤ TS({m}.

Suppose NAVar(pσ) 6= ∅:

Chapter 4. On the Convergence of the Transformation Algorithm 96

• In the case p is an invariant premise: it is not possible since in this case we would

have NAVar(pσ) = ∅.

• In the case p is a free premise: let {X} = NAVar(p). Since p is free, X 6⊑ C(R)).

Thus, X 6∈ Dom(σ) and hence |pσ| = |p|. And clearly |p| ≤ VS({m}).

• In the case p is a linked premise:(NAVar(p) = NAVar(C(R) = {X}). We must

have that NAVar(m) = {Y } and Dom(σ) does not contain both X and Y for

NAVar(pσ) 6= ∅ to holds. In the case X 6∈ Dom(σ), then |pσ| = |p| ≤ VS({m}.

In the case X ∈ Dom(σ), then |pσ| < |Rσ| = |mσ| = |m| ≤ VS({m}.

�

The next Lemma will be very important to prove that the proof-search procedure

always terminates.

Lemma 4.5.1

Let (O,P) → (O′, P ′) ∈ T S
t , for any given simple-linear term t and resulting inference

system S. Then O′ ∈ L(T)(VS(O),TS(O)).

Proof:

Let o ∈ O and R ∈ S be such that (O,P)→R (O′, P ′).

We will show that VS(O′) ≤ VS(O) and that CS(O′) ≤ CS(O). It will directly imply

that O′ ∈ L(T)(VS(O),TS(O)) since O′ is known to be a list of simple-linear terms (see

4.5.1).

VS(O′) ≤ VS(O):

Since VS(O′) = max(VS, V ′) and clearly VS ≤ VS(O), we need only to show that

V ′ ≤ VS(O) (that is we need to show that for every o ∈ (O′
V −OV), |o| ≤ VS(O)). But

this is easily deduced from Proposition 4.5.3.

CS(O′) ≤ CS(O):

Since TS(O′) = max(CS(O′), 2×VS(O′)) and that VS(O′) ≤ VS(O) (see the case above),

we have TS(O′) = max(CS(O′), 2 × VS(O)). It is clear that 2 × VS(O)) ≤ TS(O) (by

the definition of TS(O)). Thus it remains only to show that CS(O′) ≤ TS(O). Since

CS(O′) = max(CS, C ′) and clearly CS ≤ TS(O), it is sufficient to show that C ′ ≤ TS(O)

(that is we need to show that for every o ∈ (O′
C − OC , |o| ≤ TS(O)). But, again, this

can be deduced from Proposition 4.5.3.

�

Chapter 4. On the Convergence of the Transformation Algorithm 97

As a corollary of Lemma 4.5.1; we have, given a simple-linear term t and a resulting

inference system S, every node (O,P) in the tree T S
t is such that VS(O) ≤ VS({t}) and

TS(O) ≤ TS({t}). This is proved below.

Corollary 4.5.1

Let (O,P) be any node in T S
t , for any given simple-linear term t and resulting inference

system S. Then O ∈ L(T)(VS({t}),TS({t})).

Proof:

It follows inductively on the depth of the nodes from Lemma 4.5.1.

�

Now, for every node (O,P) in the tree T S
t , we have that VS(P) ≤ VS({t}) and

TS(P) ≤ TS({t}).

Lemma 4.5.2

Let (O,P) be any node in T S
t , for any given simple-linear term t and resulting inference

system S. Then P ⊆ T (VS({t}),TS({t})).

Proof:

Let o be any element of P . It is clear that there is a node (O′, P ′) ∈ T S
t such that

o ∈ O′. By Corollary 4.5.1, we know that o ∈ T (VS({t}),TS({t})). We then conclude that

P ⊆ T (VS({t}),TS({t})).

�

We now use the fact that P cannot grow infinitely to show that the depth of tree

T S
t is bounded. Depth(T) stands for the depth of the tree T .

Lemma 4.5.3

Depth(T S
t) ≤ |T (VS({t}),TS({t}))|, for any given simple-linear term t and resulting inference

system S.

Proof:

It is clear that if the node (O,P) is at depth i in the tree T S
t , |P | = i holds (this is

a consequence of Proposition 4.5.2 and the fact that if N is the root, then |NP | = 0).

Since we know by Lemma 4.5.2 that P ⊆ T (VS({t}),TS({t})), we cannot have a node of

depth greater than |T (VS({t}),TS({t}))|.

Chapter 4. On the Convergence of the Transformation Algorithm 98

�

We now prove that the tree T S
t is finite (it contains a finite number of nodes).

Theorem 4.5.1 (T S
t is finite)

T S
t has a finite number of nodes, for any given simple-linear term t and resulting infer-

ence system S.

Proof:

It should be clear from the facts that the depth of T S
t is finite (see Lemma 4.5.3) and

that every node has a finite number of children (a node has at most |S| children).

�

We claim that
∑|T (v,t)|

i=0 |S|i is an upper bound on the number of nodes in T S
t . It

is easy to see by induction on i that there is at most |S|i nodes at depth i (there is

only the root at depth 0, and every node has at most |S| child). Since there is no node

deeper than |T (v,t)| (see Lemma 4.5.3),
∑|T (v,t)|

i=0 |S|i is effectively an upper bound on

the number of nodes in T S
t .

4.5.3 The proof-search procedure terminates

We are now ready to show that the proof-search procedure given in Section 4.5.1 ter-

minates

Theorem 4.5.2 (The proof-search procedure terminates)

The proof-search procedure of Table 4.1 terminates when proving a simple-linear term

in a resulting inference systems.

Proof:

Let S be a resulting inference system and t a simple-linear term. The tree T S
t is finite

by Theorem 4.5.1. Since the proof-search procedure simply searches (in a depth-first

manner) through T S
t , for a proof for t, then it cannot run infinitely.

�

Chapter 4. On the Convergence of the Transformation Algorithm 99

4.6 Conclusion

We defined a class of inference systems (structured inference systems) and a way to

partition the rules such that the transformation algorithm is shown to be convergent.

We then proposed a proof-search procedure (a simple extension of backward chaining)

to decide the theory of any resulting inference system. This procedure was shown to

terminate. We can now claim this new result: the theory of any structured inference

system is decidable. It is well known that inference systems are good models for many

different problems. In the next chapter, we will see a direct application of this new

result; that is, some security properties are decidable for every cryptographic protocol

whose inference system is structured. This application of our result will illustrate its

importance since, as we will see, a wide class of interesting protocols are modeled by

structured inference systems. Of course, many other fields could benefit from this result.

Chapter 5

Decidability of Cryptoprotocols

Abstract

In this chapter, we propose a decision procedure for a class of cryptographic
protocols with respect to some basic security properties. This decision pro-
cedure is an application of the result stated on the previous chapter ”the
theory of any structured inference system is decidable”.

5.1 Introduction

As we saw in Chapter 2 Section 2.2.1, a cryptographic protocol can be modeled by an

inference system and some security properties by messages to be proved in the inference

system. We use here the transformation process presented in Chapter 3 together with

the convergence proof (for a restricted class of inference systems) of this transformation

process to decide some basic security properties about a wide class of cryptographic

protocols.

The rest of this chapter is structured as follows: we start by giving an overview

of the whole decision procedure in Section 5.2; we then argue, in Section 5.3, that

the structured property is too restrictive for cryptographic protocols, we relax this

condition and show this does not affect the convergence; Section 5.4 argue that our

decision procedure can be applied to a wide class of cryptographic protocols; Section 5.5,

illustrates some of the basic security properties that can be decided with our procedure;

Section 5.6 discusses the impact of an associative function in the algebra; finally, Section

Chapter 5. Decidability of Cryptoprotocols 101

5.7 presents our Java implementation of the inference system transformation algorithm

presented in Section 3.5.

5.2 A decision procedure

In this section, we explain the overall decision procedure for the security of a class of

cryptographic protocols. This method cannot be applied to every security property, in

Section 5.5 we will see some security properties suitable for our method. The decision

procedure we explain here is pictured in Figure 5.1.

Protocol P

Inference

system

generation

IS IS structured ???

yes

no

Apply transformation

process on IS

IS’

Constraints

generation

C

C is

provable

Search-proof

procedure

C is not

provable

Security property

Figure 5.1: A decision procedure

We start by extracting, from a given protocol P and a given security property p, the

inference system S together with a set of constraints C. This is done exactly as in the

DYMNA approach: the inference system extraction is explained in Section 2.2.1, the

constraints generation for the security property differ from one property to another, see

Chapter 5. Decidability of Cryptoprotocols 102

Section 5.5 for some examples. Next, we check if S is a structured1 inference system. In

the case S is not, we cannot decide whether or not P satisfies the security property p. We

can either use an alternative method (one of those presented in Chapter 2) or apply our

method risking non-termination. On the other hand, if S is structured, we can apply the

transformation algorithm presented in Section 3.5 to get an equivalent inference system

S ′. The transformation algorithm converges, thanks to Theorem 4.4.3. The resulting

inference system consists only of terminating rules as defined in 4.4.5. We can then use

the proof-search procedure presented in Section 4.5.1 to check if the constraints C are

provable in the inference system, remember that the proof-search procedure is known

to terminate (see Theorem 4.5.2). The proof-search procedure decides whether or not

every constraint of C is provable in S ′. From there, we can decide if the protocol P

respects the security property p.

5.3 Relaxing the structured requirement

As we explained in Section 5.2, we first check if the inference system underlying a

cryptographic protocol is structured. In the affirmative, we can decide the security

of the protocol. Unfortunately, as we will see here, no inference system modeling a

protocol is structured due to the presence of some intruder’s abilities. However, we can

isolate the problematic rules and show that the presence of these rules does not alter

neither the convergence of the transformation process nor the termination of the proof-

search procedure. We first recall the message algebra used for cryptographic protocols,

then we point which intruder’s rules are not structured2 and we show that the presence

of these particular rules does not affect our results.

5.3.1 Cryptoprotocols message algebra

As in Example 4.2.1, we use the five types Principals,Keys ,Nonces , Int and Msg with

the partial order defined to be: Principals < Msg , Keys < Msg ,Nonces < Msg and

Int < Msg ; only Principals and Int are atomic types. We use the binary functions:

• E : Msg ×Keys → Msg ;

• C : Msg ×Msg → Msg .

1We will relax the requirement that S be structured in Section 5.3
2A rule is structured if it can be in a structured inference system.

Chapter 5. Decidability of Cryptoprotocols 103

• K : Principals × Principals → Keys .

• N : Principals × Int → Nonces.

to denote respectively the encryption, the concatenation, the key sharing and the

nonce manipulation. We use Xi for variables of type Msg and Pi for variables of type

Principals. The constant used are generally limited to A, I and S for Principals and m

for Msg . Other constant are defined when needed. Note that we do not use variables

of type Keys nor Nonces.

We assume no equational theory is associated with these functions; in particular C

is not associative3. In order to lighten the notation, we use {m}k instead of E(m, k),

m1.m2 to mean C(m1.m2), KPiPj
is used instead of the formal K(Pi, Pj) and Nα

Pi
means

N(Pi, α). Since C is not associative, we assume the term m1.m2.m3 corresponds to

C(m1, C(m2,m3)). Note that the encryption function allows to encrypt a message with

a key only. In particular, we cannot encrypt a message m with another message m′ as

long as m′ is not typed as a key.

The algebra must reflect the reality as much as possible. We believe only keys

should be used to encrypt messages (see the definition of the encryption function in

Section 1.2.1), and thus this restriction is realistic. But we think concatenation should

be associative, and thus this restriction is important. We assume from now on that the

implementation of a cryptographic protocol respects these restrictions.

Note that the way the key function is defined force the cryptosystem to be sym-

metric. We will concentrate only on such protocols but it should cause no problem to

include asymmetric ones. More importantly, in the way keys are denoted, it is not per-

mitted to have multiple keys shared between principals P and P ′4. This is particularly

annoying when dealing with key exchange protocols. This problem can be overcome

easily by adding a number to the key representation (K i
PP ′ for some integer i).

Since our algebra is very simple, we can perform a simplification on the rule of our

inference systems. If a rule R contains the premise p such that p = X, X 6⊑ C(R)

and X is a non-atomic variable, then we can remove p from R without changing its

meaning. It is clear that the intruder can provide a message to fill the premise pi since:

Msg is the only non-atomic type used for variables and if the type of X is Msg , then

the intruder can provide a message as long as there is an axiom in the inference system

(having no axiom implies an empty-theory).

3We discuss briefly in Section 5.6 the case where C is associative
4In particular, we should treat KPP ′ as being the same as KP ′P , a non-problematic commutative

theory for the key function that we ignore for simplicity.

Chapter 5. Decidability of Cryptoprotocols 104

5.3.2 Problematic rules

In the set of rules modeling the intruder usual abilities (see the rules of Table 5.1), the

encryption (Re), decryption (Rd) and knowledge5 (RK) rules cause no problem since

they are clearly structured. However, the other three rules the concatenation (Rc) and

both decomposition (Rd1 and Rd2) rules are not structured. In fact, the terms forming

the conclusion of Rc and the premise of Rd1 and Rd2 are not simple-linear.

Rc = X Y
X.Y

Rd1 = X.Y
X

Rd2 = X.Y
Y

Re = X Y
{X}Y

Rd = {X}Y Y

X
RK = m∈K

m

Table 5.1: Intruder’s rules

Since every inference system modeling a cryptographic protocol must consider these

basic intruder’s abilities, no such inference system can be structured. Fortunately, we

will show that the presence of the concatenation and decomposition rules does not

change the convergence result of the previous chapter.

5.3.3 Adapting the convergence result

We first adapt our definition of structured inference systems. Our new definition in-

cludes the problematic rules stated above. This new definition allows us to work with in-

ference systems that model cryptographic protocols; we call them augmented-structured

inference systems. We will show in this section that the main result of Chapter 4 on

structured inference systems can be extended to augmented-structured inference sys-

tems.

Definition 5.3.1 (Augmented-structured inference system (SIS+))

S ∈ SIS+ if S = S ′ ∪ {Rc, Rd1 , Rd2} where S ′ ∈ SIS .

Using this new class of inference system, one can define the class of cryptographic

protocols for which we will have a decision procedure (for a restricted set of security

5Messages in the intruder knowledge are required to be invariant.

Chapter 5. Decidability of Cryptoprotocols 105

properties).

Definition 5.3.2 (Structured cryptographic protocols)

A protocol is structured if its underlying inference S is augmented-structured. That is

if S ∈ SIS+

As in the previous chapter, we need to work with an extension of augmented-

structured inference system. This extension is very similar to the one of Definition

4.4.7, except that it includes the problematic rules specific to cryptoprotocols.

Definition 5.3.3 (S
(v,t)
+)

Let S ∈ SIS , we define S
(v,t)
+ to be S(v,t) ∪ {Rc, Rd1 , Rd2}.

It is clear that < ℘(S
(v,t)
+),⊆> is a finite poset with S

(v,t)
+ as its top element. If we

can show that the power set of augmented-structured inference systems is closed under

the transformation process, the convergence will follow exactly as in Section 4.4.3.

Since we know that the power set of structured inference systems is closed under the

transformation process, we need only to show that if R′ is the result of a composition

including at least one problematic rule, then R′ ∈ S(VS ,TS). This is done in Theorem

5.3.1 with the help of the following two lemmas.

Since the rules Rc, Rd1 and Rd2 cannot be classified terminating or non-terminating

by Definition 4.4.5, we define Rc to be terminating while the two others are non-

terminating.

Lemma 5.3.1

Let S ∈ SIS and R ∈ T (S). If R′ = Rd1 ⇑ R exists, then R′ ∈ S(VS ,TS).

Proof:

We suppose R′ exists. We know the rules R,Rd1 and R′ looks like:

R =
p1 . . . pm

c
Rd1 =

X1.X2

X1

R′ =
p1σ . . . pmσ

X1σ

where σ = mgu(c,X1.X2). For the message c to be unified with X1.X2, c must have

one of the two following forms: c = X3 or c = m1.m2. In the case c = X3, since R is a

structured rule, there must be an i such that NAVar(pi) = {X3}. Clearly, |pi| ≥ 1, thus

|pi| ≥ |c| = 1, hence contradicting the fact that R ∈ T (S). So it must be the case that

c = m1.m2 and hence σ is forced to be σ = {X1 ← m1, X2 ← m2}. In the case R is

the concatenation rule (R = Rc), we have c = X3.X4 and thus R′ = X3 X4

X3
. But in this

case, R′ is redundant and eliminated in the simplification. We then suppose R 6= Rc

and we prove R′ ∈ S(VS ,TS).

Chapter 5. Decidability of Cryptoprotocols 106

• NAVar(C(R′)) ⊆ ∪p∈P(R′)NAVar(p): If NAVar(m1) = ∅, then NAVar(C(R′)) = ∅.

Suppose NAVar(m1) = {X3}, then NAVar(C(R′)) = {X3}. But we know, since

R is a structured rule, that there is an i such that NAVar(pi) = {X3}. By the

form of σ, NAVar(piσ) = {X3}.

• If i 6= j, then NAVar(piσ) ∩ NAVar(pjσ) = ∅: Since R is structured, we must have

NAVar(pi) ∩ NAVar(pj) = ∅ for any i 6= j. By the form of σ, we conclude easily

that NAVar(piσ)∩NAVar(pjσ) = ∅ for any i 6= j since NAVar(piσ) = NAVar(pi).

• X1σ ∈ T
(VS ,TS): By the form of σ, X1σ = m1. Clearly |m1| < |m1.m2|. We

know that m1.m2 = c ∈ T (VS ,TS). Since m1 is simple-linear, it is the case that

m1 ∈ T
(VS ,TS).

• For any i, piσ ∈ T
(VS ,TS): By the form of σ, it is clear that |piσ| = |pi|. Since

pi ∈ T
(VS ,TS), and since piσ is simple-linear, we have that piσ ∈ T

(VS ,TS).

�

The same result holds if we replace Rd1 with Rd2 .

Lemma 5.3.2

Let S ∈ SIS , R ∈ NT (S) and t be a tuple of T (S) rules such that Rc ∈ t. If R′ = R ⇑ t

exists, then R′ ∈ S(VS ,TS).

Proof:

Let t = (R1, . . . , Rc, . . . , Rm). We suppose, without lost of generality, that Rc occurs

only once in t. The rules looks like:

R =
p1 . . . pm

c
Rc =

X1 X2

X1.X2

R′ =
P(R1)σ . . . X1σ X2σ . . .P(Rm)σ

cσ

Let pi be the premise of R to be unified with the rule Rc, that is pi is unified with X1.X2.

For this to be possible, pi is either X3 or of the form m1.m2. In the case pi = X3, two

cases are possible:

• If NAVar(c) = {X3}: Since R ∈ NT (S), it must be the case that |pi| ≥ |c|. But

to have |pi| ≥ |c| when pi = X3 and NAVar(c) = {X3}, is must be the case that

c = X3. In this case, R is redundant and has been removed.

• If NAVar(c) 6= {X3}: Then the premises pi = X3 is useless in R since clearly the

intruder can provide a message to fill the variable. Thus pi has been removed

from R6.
6This simplification was discussed in Section 5.3.1

Chapter 5. Decidability of Cryptoprotocols 107

It remains only that pi = m1.m2 and here σi is forced to be σi = {X1 ← m1, X2 ← m2}.

We now show that R′ ∈ S(VS ,TS). Note that we are only interested in the messages X1σ,

X2σ and cσi, since all other messages of R′ can be treated exactly as in lemmas 4.4.5

to 4.4.9 and we know they behave correctly.

• NAVar(C(R′)) ⊆ ∪p∈P(R′)NAVar(p): Suppose NAVar(cσ) = {X3} which implies

NAVar(c) = {X4}. Since R is structured, there is a k such that NAVar(pk) =

{X4}.

– If pk = pi (pi is the premise of R unified with X1.X2) then NAVar(X1σ) =

{X4} or NAVar(X2σ) = {X4} (and X3 = X4).

– If pk 6= pi, then since pk is unified with ck of rule Rk, one of the pkj will be

such that NAVar(pkjσ) = {X3} (see Lemma 4.4.6).

• ∀p 6= p′ ∈ P(R′), NAVar(p) ∩ NAVar(p′) = ∅: The fact that pi is linear implies

NAVar(X1σ) ∩ NAVar(X2σ) = ∅. Since NAVar(pi) ∩ NAVar(pj) = ∅ for any

j different from i, we will have that NAVar(X1σ) ∩ NAVar(p) = ∅ for any p ∈

P(Rj)σ. The same holds for X2. For the disjointness between other pairs of

premises, the reasoning behind Lemma 4.4.7 can be applied.

• cσi ∈ T
(VS ,TS): By the form of σi we have |cσi| = |c|. Since c is simple-linear, it

is clear that cσi is also simple-linear. Moreover, since c ∈ T (VS ,TS), we conclude

cσi ∈ T
(VS ,TS).

• X1σ,X2σ ∈ T
(VS ,TS): Since pi = m1.m2 is simple-linear, m1 and m2 are both

simple-linear (and thus X1σ and X2σ are both simple-linear). It is clear that

|m1| < |pi| and |m1| < |pi|. Since pi ∈ T
(VS ,TS), we conclude m1,m2 ∈ T

(VS ,TS)

and thus X1σ,X2σ ∈ T
(VS ,TS).

�

The next theorem states that the power set of augmented-structured inference sys-

tems is closed under the transformation process.

Theorem 5.3.1

Let S ∈ SIS , S ′ ∈ ℘(S
(VS ,TS)
+). Then Φ(S ′) ∈ ℘(S

(VS ,TS)
+).

Proof:

We know by Theorem 4.4.2 that ℘(S(VS ,TS)) is closed under the transformation process.

Lemmas 5.3.1 and 5.3.2 provide the remaining arguments to conclude ℘(S
(VS ,TS)
+) is

closed under the transformation process.

Chapter 5. Decidability of Cryptoprotocols 108

�

From there, we can use the same argument as in Section 4.4.3 to show that the

transformation process converges over augmented-structured inference systems. We de-

fine a function Φ′() modeling the transformation over augmented-structured inference

systems. The augmented-structured property is preserved by the function as stated in

Theorem 5.3.1. It is clear that Φ′() is an order-preserving map from ℘(S
(VS ,TS)
+) to

℘(S
(VS ,TS)
+) (see the justification done in Lemma 4.4.11) and since ℘(S

(VS ,TS)
+) forms a

a finite poset with a top element (the top here is S
(VS ,TS)
+), Lemma 4.4.10 assures us

that the recursive application of Φ′() on any augmented-structured inference system

reaches a fixpoint and thus that the transformation process converges. The details are

not given since this would only be a repetition of the work done in the previous chapter.

5.3.4 Adapting the proof-search procedure termination result

Since the rule Rc is considered as oriented, it can (and will) be part of the resulting in-

ference system. The proof-search procedure presented in Section 4.5.1 must be adapted

to avoid a pathetic chance of infinite looping. When trying to prove a term t = X3

where X3 is a non-atomic variable, the proof-search procedure could use the rule Rc

thus generating two new terms t1 = X1, t2 = X2 to prove. But to prove both t1 and

t2, the proof-search procedure can again use Rc, . . . thus looping infinitely. To avoid

this problem, we put the following restriction on the use of the rule in the proof-search

procedure. If the message to prove is like t (it is simply a non-atomic variable), then t is

removed from the list of terms to prove (t is considered as being always provable). This

restriction is sufficient to avoid non-termination, and it is correct (it does not change

the provability nor the non-provability of any term). The correctness comes from the

following reasoning: In a proof tree for the term t′, if we are required to prove the term

t = X3 (with X3 a non-atomic variable7), it is clear that X3 can be proved8, otherwise

the theory of the inference system is empty. Thus we can simply remove t from the

list of terms to prove, since it is clearly provable and its proof will not affect the other

terms to be proved. If we can remove t without trying to prove it, we surely avoid the

non-termination problem mentioned above.

It is clear that the messages to be proved after the use of the rule Rc on the term t

will be:

7Remember that only non-atomic variables of type Msg are used.
8Remember that variables are existentially quantified

Chapter 5. Decidability of Cryptoprotocols 109

• simple-linear;

• of size smaller than t.

These two properties are sufficient to prove that the proof-search procedure always

terminates. The proof is exactly the same as the one done in Section 4.5.3 to prove the

termination of the proof-search procedure without the Rc rule.

In the rest of this chapter, especially in Section 5.5, we often talk about decidable

security properties, for example we say it is possible to decide if a protocol is confidential.

When we do so, we implicitly talk about structured protocols and not protocols in

general.

5.4 The class of protocols is wide enough

For our method to be interesting, the class of protocols concerned (namely the class of

structured protocols) must be wide. We present here some structured protocols; these

protocols are not necessarily built over the algebra we define above, they may include

asymmetric keys or multiple keys shared between two principals (both extensions to

our algebra were discussed and should cause no problem). In addition to the protocol

explicitly mentioned in this section, we can add the three passes protocol of Table 1.20

and the protocol of Table 5.9.

Among the Woo & Lam family, we mention that the protocols π1, π2 and π3 pre-

sented in [16], the original version (see Table 1.5) as well as its corrected version and

the corrected version of π1 are all structured protocols.

Both the Needham-Schroeder and the Needham-Schroeder-Lowe public-key protocols

(see [31]) are structured.

The Andrew secure RPC protocol (see [16]) is structured. However, the message

algebra would have to be improved to deal with arithmetic expression. The protocols

of tables 5.2 to 5.3 are structured.

Chapter 5. Decidability of Cryptoprotocols 110

1 A→ S : {A.B.NA}KAS

2 S → A : {A.B.NA.KAB}KAS

3 S → B : A

4 B → S : NB

5 S → B : {A.B.NB.KAB}kBS

Table 5.2: Protocol A

1 A→ S : A.B

2 S → A : {A.B.KAB}KAS

3 S → B : {A.B.KAB}KBS

Table 5.3: Protocol B

Regarding the number of literature protocols we found to be structured (and there

is probably many more), we can conclude that the class of protocol that can be decided

by our method is wide enough to be interesting.

5.5 Some decidable security properties

We give here some security properties that are decidable with the method presented

in Section 5.2. We see how we can decide if a structured protocol respects the secrecy

property or if a structured protocol is chaotic. We also discuss why our method cannot

be used (in its present form) to decide authentication even if DYMNA can deal with it.

However, we will give some possible modifications allowing to decide authentication.

5.5.1 Chaotic property

In this section, we explain how our method can be used to test if a structured protocol

is chaotic or not. We also explain how it is possible to build an attack scenario from a

proof.

As we discussed in Section 1.3, a protocol is chaotic for a given key K if the intruder

is able to both encrypt any message with the key K and decrypt any message encrypted

Chapter 5. Decidability of Cryptoprotocols 111

under K without ever learning the value of K. In [59], Mejri explains how to verify

if a protocol is chaotic regarding K using the DYMNA approach. It is required to

check if the two constraints c1 = KI ∪ {m} |= {m}K and c2 = KI ∪ {{m}K} |= m are

provable in their respective inference system. Constraint c1 states that the intruder can

encrypt any given message m with the key K while c2 states the intruder can decrypt

any message of the form {m}K . We will see how to decide if a structured protocol is

chaotic through the example of the Woo & Lam protocol (see Table 1.5). In Section

2.2.1 we computed the inference system modeling the Woo & Lam protocol (see tables

2.1 and 2.2).

Lemma 5.5.1

In the Woo & Lam protocol, the intruder can encrypt any given message m using the

key KAS.

Proof:

We take KI = {KIS} ∪ Principals ∪ {m} to be the initial knowledge of the intruder.

In Table 5.4 we can see the inference system modeling the protocol separated into

terminating and non-terminating rules as stated in Definition 4.4.5. We use the trans-

formation algorithm to get an equivalent inference system containing only terminating

rules, see Table 5.5 (the complete transformation steps are given in Appendix B). From

the resulting inference system, we apply the proof-search procedure to check if {m}KAS

is a theorem. The derivation
�
m

R3

{m}KAS

σ(R4)

with σ = {X1 ← m,P2 ← A}, provides an easy proof. We conclude, since there is a

proof for {m}KAS
, that the intruder can encrypt any given message under the key KAS.

�

Lemma 5.5.2

In the Woo & Lam protocol, the intruder can decrypt any message {m}KAS
previously

encrypted under the key KAS.

Proof:

We take KI = {KIS}∪Principals∪{{m}KAS
} to be the initial knowledge of the intruder.

The inference system modeling the protocol is the same as the one in Table 5.4 except

that rule R3 is replaced by
�

{m}KAS

Chapter 5. Decidability of Cryptoprotocols 112

T (S) NT (S)

R1 = �
P1

R2 = �
KIS

R8 = X6.X7

X6
R9 = X8.X9

X9

R3 = �
m

R4 = X1

{X1}Kp2S

R11 =
{X10}KP9P10

KP9P10

X10

R5 = P3 X2

{P3.X2}KP4S

R6 = X3 X4

X3.X4
R12 =

{P11.{X11}KP11S
}KP12S

{X11}KP12S

R7 =
X5 KP5P6

{X5}KP5P6

R10 = P7

Nα
P8

R19 =
p14.{X12}Kp14S

{X12}Kp15S

R20 =
p16 {X13}Kp16S

{X13}Kp17S

Table 5.4: Woo & Lam initial inference system

T (S ′)

R1 = �
P1

R2 = �
KIS

R3 = �
m

R4 = X1

{X1}KP2S

R5 = P3 X2

{P3.X2}KP4S

R6 = X3 X4

X3.X4

R7 =
X5 KP5P6

{X5}KP5P6

R10 = p7

Nα
P8

Table 5.5: Woo & Lam resulting inference system 1

Chapter 5. Decidability of Cryptoprotocols 113

Using the transformation process, as detailed in Appendix C, we get an equivalent

inference system containing only terminating rules, see Table 5.6. From the resulting

inference system, we apply the proof-search procedure to check if m is derivable. Axiom

R27 provides a direct proof for m and we conclude the intruder can decrypt any message

previously encrypted under KAS.

�

T (S ′)

R1 = �
P1

R2 = �
KIS

R4 = X1

{X1}KP2S

R5 = P3 X2

{P3.X2}KP4S

R6 = X3 X4

X3.X4
R7 =

X5 KP5P6

{X5}KP5P6

R10 = P7

Nα
P8

R26 = �
{m}KP18S

R27 = �
m

Table 5.6: Woo & Lam resulting inference system 2

Let’s now see how we can build the attack associated with each lemma, that is the

attack scenario allowing the intruder to encrypt a message m with KAS and the one

allowing him to decrypt any message of the form {m}KAS
.

For Lemma 5.5.1 (the intruder can encrypt any message m with KAS), the proof

only use R4 to form {m}KAS
from m. This rule was extracted from GR(A). The attack

associated with this rule (as shown in Table 2.1) is detailed in Table 5.7.

1 A→ I(B) : A

2 I(B)→ A : m

3 A→ I(B) : {m}kAS

Table 5.7: Attack scenario

For Lemma 5.5.2 (the intruder can decrypt any message of the form {m}KAS
), the

proof is provided by rule R27. But since R27 is not present in the initial inference

system, we cannot directly extract an attack from this rule. What we do is decompose

R27 using the compositions we did in Appendix C. In this way, we get:

Chapter 5. Decidability of Cryptoprotocols 114

R27

=

R11 ⇑ (R26, R2)

=

R11 ⇑ ([R20 ⇑ (R1, R3)]R2)

=

R11 ⇑ ([[R12 ⇑ R5] ⇑ (R1, R3)]R2)

Now we know that the proof tree �
m

R27 can also be represented by:

�
A

R1
�

{m}KAS

R3

{A.{m}KAS
}KIS

R5

{m}KIS

R12
�

KIS
R2

m
R11

This proof tree uses only rules in the initial inference system. Among the rules used

in the proof tree, only R5 and R12 are rules extract from the protocol, the others are

intruder abilities or knowledge. The attack we can mount is shown in Table 5.8.

1.1 I(A)→ I : A

1.2 I → I(A) : N1
I

1.3 I(A)→ I : {m}kAS

1.4 I → I(S) : {A.{m}kAS
}KIS

2.4 I → S : {A.{m}kAS
}KIS

2.5 S → I : {m}kIS
}

Table 5.8: Attack scenario

Although the transformation process was not designed for this purpose, it could be

easily adapted to allow automatic construction of attack scenario from a proof. It is

only necessary to keep, for any rule R, how it has been generated (R = R′ ⇑ R′′). This

additional information allows us to build an attack scenario from a proof. However, the

resulting attack is not always the most elegant, as we can see with the attack of Table

5.8.

Chapter 5. Decidability of Cryptoprotocols 115

5.5.2 Secrecy property

Through the next example, we illustrate two interesting features of our method. On one

hand, we show how we can decide confidentiality and on the other hand, we show that

we can easily model the intruder as being either a legitimate agent of the system or an

exterior entity. The example is based on the protocol of Table 5.9. In this protocol, we

use mA for a constant of type Msg generated by agent A. We will first check that the

message mA is confidential when the intruder is not a legitimate agent of the system,

then we will show that it is no longer the case when the intruder is a legitimate agent

(when he posses a key KIS).

1 A→ B : A.{mA}KAS

2 B → S : B.{A.{mA}KAS
}KBS

3 S → B : {A.mA}kBS

Table 5.9: Protocol C

First, we model the protocol of Table 5.9 to reflect the fact that the intruder is not

part of the system. This gives the initial inference system S of Table 5.10 where we can

see the intruder does not know the key KIS and where the intruder identifier I is not

present in the set Principals .

T (S) NT (S)

R1 = �
P1

R2 = X1 X2

X1.X2
R6 = X5.X6

X5
R7 = X7.X8

X8

R3 =
X3 KP2P3

{X3}KP2P3

R8 =
{X9}KP7P8

KP7P8

X9

R4 = �
P4.{mP4

}KP4S

R9 =
P10.{P9.{X10}KP9S

}KP10S

{P9.X10}KP10S

R5 = P5.X4

P6.{P5.X4}KP6S

Table 5.10: Initial inference system S for the protocol C

When applying the transformation process to the initial inference system S of Table

5.10, we get the resulting inference system T (S ′) presented in Table 5.11. This resulting

Chapter 5. Decidability of Cryptoprotocols 116

inference system is equivalent to the initial one but is composed only of terminating

rules (in the sense of Definition 4.4.5). From this resulting inference system, it is easy

to see that mA 6∈ TH (T (S ′)) which imply mA 6∈ TH (S). We conclude that the intruder

is not able to learn the message mA, thus mA is confidential, when the intruder is not

a legitimate agent of the system.

T (S ′)

R1 = �
P1

R2 = X1 X2

X1.X2
R3 =

X3 KP2P3

{X3}KP2P3

R4 = �
P4.{mP4

}KP4S

R5 = P5.X4

P6.{P5.X4}KP6S

R14 = �
{mP11

}KP11S

R15 = P12.X11

{P12.X11}KP13S

R17 =
P16 {X13}KP15S

{P16.X13}KP16S

R18 = �
{P17.mP17

}KP18S

R19 = P19.X14

{P20.P19.X14}KP21S

Table 5.11: Resulting inference system S ′ for the protocol C

Now, we model the protocol of Table 5.9 to reflect the fact that the intruder is part

of the system. This gives the initial inference system S of Table 5.12 where we can see

the intruder does know the key KIS.

T (S) NT (S)

R1 = �
P1

R2 = �
KIS

R7 = X5.X6

X5
R8 = X7.X8

X8

R3 = X1 X2

X1.X2
R4 =

X3 KP2P3

{X3}KP2P3

R9 =
{X9}KP7P8

KP7P8

X9

R5 = �
P4.{mP4

}KP4S

R10 =
P10.{P9.{X10}KP9S

}KP10S

{P9.X10}KP10S

R6 = P5.X4

P6.{P5.X4}KP6S

Table 5.12: Initial inference system S for the protocol C

Chapter 5. Decidability of Cryptoprotocols 117

When applying the transformation process to the initial inference system S of Table

5.12, we get the resulting inference system T (S ′) presented in Table 5.13. This resulting

inference system is equivalent to the initial one but is composed only of terminating

rules (in the sense of Definition 4.4.5). From this resulting inference system we can see

that mA ∈ TH (T (S ′)), by the rule R27, which imply mA ∈ TH (S) by equivalence. In

fact, the attack presented in Table 5.14 can be mounted by the intruder to learn the

message mA.

T (S ′)

R1 = �
P1

R2 = �
KIS

R3 = X1 X2

X1.X2

R4 =
X3 KP2P3

{X3}KP2P3

R5 = �
P4.{mP4

}KP4S

R6 = P5.X4

P6.{P5.X4}KP6S

R15 = �
{mP11

}KP11S

R16 = P12.X11

{P12.X11}KP13S

R21 =
P16 {X13}KP16S

{P16.X13}KP17S

R22 = �
{P18.mP18

}KP19S

R23 = P20.X14

{P21.P20.X14}KP22S

R25 = �
P24.mP24

R26 = P25.X16

P26.P25.X16
R29 = �

mP27
R31 =

X17 KP28S

P28.X17

R34 =
P29 {X18}KP29S

P30.P29.X18
R35 = �

P31.P32.mP32
R36 = P33.X19

P35.P34.P33.X19

R46 =
{X21}Kp38S

KP38S

{P38.X21}KP39S

R47 =
{X22}KP40S

KP40S

P40.X22
R48 =

{X23}KP42S
KP42S

P43.P42.X23

Table 5.13: Resulting inference system S ′ for the protocol C

1 A→ I(B) : A.{mA}KAS

2 I → S : I.{A.{mA}KAS
}KIS

3 S → I : {A.mA}kIS

Table 5.14: Attack scenario

Chapter 5. Decidability of Cryptoprotocols 118

5.5.3 Authentication property

Unfortunately, we cannot use the method presented in Section 5.2 to decide if a struc-

tured protocol respects the authentication property. In this section, we first discuss the

problem of authentication toward our method and we propose some simple modifica-

tions to our method to achieve the decidability of authentication.

Authentication is not yet decidable

The reason why authentication is not currently decidable in our model is that the

transformation process (on inference system) only preserves the theory between infer-

ence systems. But if there are many proofs for a term in S, there is possibly only one

proof for the same term in S ′, even with S ≡ S ′. This equivalence does not affect

the confidentiality nor the chaotic property since they only require the existence of a

proof. Unfortunately, this is not true for the authentication property. The constraint

generated for the authentication property are always provable in the inference system

modeling the protocol (using the forwarding attack); but to conclude the protocol does

not respect authentication, we must find a proof that yields an attack different from

the forwarding attack.

In the example of Section 2.2.1, we saw that the authentication property constraints

are extracted from the generalized role to attack. For the one-way authentication over

B in the Woo & Lam protocol, we saw that the constraints are: {KI ⊢ A,K1 ⊢ Y,K2 ⊢

{Nβ
b }kbs

}, where K1 = KI ∪ {N
β
b } and K2 = K1 ∪ {{A.Y }kbs

}. These constraints

are clearly provable in the underlying inference system since we can mount the attack

of Table 5.15 (this is the forwarding attack). Clearly, this attack does not yield an

authentication flaw in the protocol.

1.1 A→ I(B) : A

2.1 I(A)→ B : A

2.2 B → I(A) : N2
b

1.2 I(B)→ A : N2
b

1.3 A→ I(B) : {N2
b }Kas

2.3 I(A)→ B : {N2
b }Kas

2.4 B → I(S) : {A.{N2
b }Kas

}Kbs

3.4 I(B)→ S : {A.{N2
b }Kas

}Kbs

3.5 S → I(B) : {N2
b }Kbs

1.5 I(S)→ B : {N2
b }Kbs

Table 5.15: Forwarding attack

Chapter 5. Decidability of Cryptoprotocols 119

Thus to affirm a protocol does not respects the authentication property, we must find

a proof in the underlying system that mounts an attack different from the forwarding

attack. It is not necessarily possible to do so in a resulting inference system since

we may have lost some proofs and we may end up with only the forwarding attack

remaining. However, we can modify the transformation process in a simple way to

avoid this problem and enable the decidability of authentication.

Modifying the transformation process

The main problem with the transformation process comes from the equivalence

relation between inference systems (two inference system are equivalent if they have

the same theory). For the authentication, we need a somewhat stronger9 equivalence

(two inference system are strongly equivalent if they have the same theory and for every

terms in their theory, these terms have the same set of proof trees). We do not give

a formal definition of this strong equivalence but simply the intuition we have for the

authentication property.

We must be able to show that the transformation process preserves the strong

equivalence of inference systems, that is S1 ∪ S2 ≡s (S2 # S1)↓. To achieve this,

we must work again on the definition of a simplified inference system and we need to

change the structure of a rule. A rule R is now composed of two parts, the first part is

exactly what a rule was before (some premises and a conclusion), the second part is a

set of path we refer to it by Path(R). The set of paths corresponds to every possible

path that can be used to build a rule. The rules extracted from the protocols have

themselves as path. Now when we simplify an inference system and we eliminate a

rule R because it is a renaming of another rule R′, we update the path of R′ to be

Path(R) ∪ Path(R′). Thus when removing R (because R is a renaming of a rule R′),

we still allow the inference system to use R (in all its different form) through R′. When

we build a new rule R′ = R ⇑ (R1, . . . Rn), we set Path(R′) to be R ⇑ (R1, . . . Rn).

From there, we conjecture that the transformation process preserves not-only the

theory of its initial inference system, but also the complete set of proofs for any term.

That is, S = S1 ∪ S2 ≡s (S2 # S1)↓ = S ′. The proof of such a conjecture should be

done in the same way as the proof of Lemma 5.4.1 in [57]. However, it would be tedious

and would require many new formal definitions (path, proof tree,. . .).

It is clear that these modifications do not change the convergence in the case of a

structured inference system. However, the proof-search procedure needs to be redone.

It is not sufficient anymore to get simply the yes/no answer to whether a term is

9We use ≡s to denote this strong equivalence

Chapter 5. Decidability of Cryptoprotocols 120

provable in the resulting inference system. We now need to get the complete set of

proof associated with a term, and from this set of proofs, we can check if there is at

least one which does not correspond to the forwarding attack. Since we showed in

Section 4.5.2 that the tree to search in for proofs in finite, there is clearly a terminating

procedure to enumerate all possible proofs for a given term.

With these modifications, we can decide if a structured inference system respects

the authentication or not.

5.6 Into associative unification

Since concatenation is naturally considered to be an associative binary function, we be-

lieve the algebra would be a lot more interesting if the function C would be associative.

We discuss here the impact of having an associative function in our algebra. As we will

see, treating the associativity will create some new problems. These problems are very

difficult, almost as much as the problem of termination of inference systems itself.

This section should be seen as an insight to some ongoing and even future work.

We do not aim to give interesting results here but simply expose the problems we face

and give some ideas and intuitions about how these problems could be solved.

5.6.1 Associative unification

A-unification is unification modulo the associativity theory. Two terms t1 and t2 are

A-unifiable if there exists a substitution σ such that t1σ =A t2σ. That is, t1σ and t2σ

are either syntactically equal (as it is the case with two ∅-unifiable terms) or t1σ can be

rewritten has t2σ simply by applying the associativity law. It is often the case that when

considering A-unification, only one function is taken to be associative. We make this

assumption in this whole section. We do not survey the field of A-unification, however,

information on this can be found in [4, 34]. A-unification is a special case of the general

E-unification (where E describe an equational theory), see [5, 26, 40, 46, 64, 65].

Decidability of A-unification was first conjectured by Plotkin in [69] and then proven

by Makanin in [50]. Thus given any two terms, we can decide if they are A-unifiable.

Chapter 5. Decidability of Cryptoprotocols 121

5.6.2 A-unification is not unitary

While it is the case that two ∅-unifiable terms have a unique mgu, two A-unifiable terms

may have many ”mgu”. Since it is contradictory to talk about ”many” ”most general

unifier”, authors usually adopt the more correct expression complete-minimal set of

A-unifiers. The complete-minimal set of A-unifiers of two terms t1 and t2 is defined

to be the least set such that if σ is a A-unifier of t1 and t2, then either σ is in the

complete-minimal set of A-unifiers or there is a substitution θ in the complete-minimal

set of A-unifiers such that σ = θ ◦ θ′ for a substitution θ′. We still use mgu here to

denote the complete-minimal set of A-unifiers. Not being unitary is not necessarily a

problem, but we know from [78] that A-unification is infinitary10. The fact that A-

unification is infinitary is a problem for the convergence of the transformation process.

If an inference system contains the two rules R1 = p1

c1
and R2 = p2

c2
such that R1 is

terminating and R2 is not. Suppose c1 = C(a,X) and p2 = C(X, a), since c1 and p2

are A-unifiable and they have infinitely many mgu (as shown in Example 5.6.1), then

the composition of R2 with R1 would yield possibly infinitely many new rules and thus

lead non-termination.

Example 5.6.1 (Infinitely many A-mgu)

Let t1 = C(a,X) and t2 = C(X, a). Then t1 and t2 have infinitely many A-mgu (here

C is an associative function). They are the following:

• {X ← a}

• {X ← C(a, a)}

• {X ← C(C(a, a), a)}

• . . .

In studying the work of Clerin-Debart & Enjalbert (see [17, 28]), we found that

their result could possibly solve the infinitary problem of A-unification in the special

case of simple-linear terms. In [28] they prove that if two terms respect the unique

prefix property (UPP for short), then these two terms have a finite number of A-mgu.

The unique prefix property states that every variable must possess a unique prefix in

the terms to be A-unified. By observing the behavior of A-unification when applied of

UPP terms, we have come to believe that we can generalize this result in the following

way. The UPP needs not to hold for all variables, but only for variables that may be

replaced by the term C(X1, X2) where C is the associative function. With this new

10Two A-unifiable terms can have infinitely many incomparable mgu.

Chapter 5. Decidability of Cryptoprotocols 122

definition of the UPP, it is clear that every pair of simple-linear respects it since only

Msg variables(or equivalently non-atomic variables) can be instantiated by C(X1, X2)

and because a non-atomic variable appears at most once in the two terms (it must then

have a unique prefix).

So the first problem of A-unification seems to be solved for simple-linear terms

thanks to the result of Clerin-Debart & Enjalbert.

5.6.3 Associative unification can increase the size of terms

To assure the convergence of the transformation process, it is not sufficient to have a

finite number of A-mgu, we also need some properties to hold for A-unification. In

Section 4.3, we saw some properties of ∅-unification, we believe they all still hold for

A-unification except property 4.3.5. Property 4.3.5 states that if t is the result of ∅-

unifying t1 and t2 and if t contains a non-atomic variable, then |t| ≤ max (|t1 |, |t2 |). As

we can see in Example 5.6.2, this property does not hold for A-unification.

Example 5.6.2

Let t1 = C(C(X1, a), b) and t2 = C(C(d, e), X2). They are A-unifiable with the follow-

ing A-mgu:

• σ1 = {X1 ← C(d, e), X2 ← C(a, b)}

• σ2 = {X1 ← C(C(d, e), X3), X2 ← C(C(X3, a), b)}

The substitution σ1 causes no problem, but σ2 will cause a problem. t = t1σ2 = t2σ2 =

C(C(C(C(d, e), X3), a), b). It is the case that t contains a non-atomic variable, but

|t| = |t1| − 1 + |t2| > max (|t1|, |t2|).

This property is important to assure the convergence, it limits to a finite number the

number of rule that can be created by the transformation process.

To be able to reuse the convergence proof done in Chapter 4 in the case of A-

unification, we need to further restrict the terms to be A-unified to avoid size explosion.

Due to time limitation, we have not placed much effort on finding a wide (and interest-

ing) subclass of simple-linear terms for which A-unification is not problematic. However,

we propose a restriction on terms that we believe sufficient to keep convergence when

modeling the associativity of concatenation.

Chapter 5. Decidability of Cryptoprotocols 123

Definition 5.6.1 (Simple-linear-right term)

A term built over the simple-linear algebra of cryptographic protocol (considering here

C to be associative) is right if the non-atomic variable of this term (if it has one) is the

last term of a concatenation

Example 5.6.3

Among the following simple-linear terms, t1, t2, t3, t6 and t7 are right:

• t1 : {X1}k

• t2 : {a.X2}k

• t3 : X3

• t4 : X4.a

• t5 : {X5.{a}k}k′

• t6 : {a.{c.X6}k.b.{d.e}k′}k′′

• t7 : {a.{c.f.g}k.b.{X7}k′}k′′

We conjecture that given two simple-linear-right terms t1 and t2, t = t1σ = t2σ is

such that if NAVar(t) 6= ∅, then |t| ≤ max (|t1|, |t2|) where σ is any A-mgu of t1, t2.

We came up with this while observing terms as special trees. The father-son relation

(vertical lines) expresses the encryption while the brother relation (horizontal lines)

represents concatenation. The tree of every simple-linear-right term from Example

5.6.3 is pictured in Figure 5.2 (we omitted the keys used for encryption in the tree

representation for the sake of readability).

Given two simple-linear-right A-unifiable terms t and t′, let t′′ be the result of tσ

with σ any A-mgu of t, t′. If t has no non-atomic variables, then t′ must be a subtree11

of t and clearly |t′′| = |t|. If they both have a non-atomic variable and these are on

different level of the tree, then either t′ is a subtree of t (as it is the case when A-unifying

the terms t2 and t3 illustrated in Figure 5.2), or t′′ will end up having no non-atomic

variables (as it is the case when A-unifying the terms t6 and t7 illustrated in Figure

5.2). The remaining case is when t and t′ both have a non-atomic variable and these

are on the same level. In this case, one of t, t′ is a subtree of the other (as it is the case

with the terms t1 and t2 in Figure 5.2).

11By subtree, we regard here the tree’s structure only, not the content of the nodes.

Chapter 5. Decidability of Cryptoprotocols 124

t3: X3t2:

a X2

t6:

a b

d e c X6

t7:

a b

X7 c f g

t1:

X1

Figure 5.2: Trees for simple-linear-right terms

If the above conjecture holds, we can add the associativity to the concatenation

function without losing the convergence at the cost of restricting the class of protocols

considered to structured protocol (where structured must be redefined to take simple-

linear-right terms only).

5.7 Implementation

This section is dedicated to IST (Inference System Transformation), the Java implemen-

tation of the transformation algorithm presented in Section 3.5. IST is available on the

web page of the LSFM research group at: www.ift.ulaval.ca/∼lsfm/ or by contacting

the author at ”francois.gagnon@ift.ulaval.ca”.

IST consists mainly of four configuration steps, the transformation engine and the

result output. Since the transformation engine is the implementation of the above

algorithms, this section rather focuses on the configuration steps and the result output.

In addition to the description of IST, we present experimental results of applying IST

to some cryptographic protocols. We also present some additional features that could

be available in future versions of IST.

http://www.ift.ulaval.ca/~lsfm/

Chapter 5. Decidability of Cryptoprotocols 125

5.7.1 The program

We present here the four configuration steps, that is: type configuration, algebra con-

figuration, inference system configuration and time configuration; as well as the result

outputting of IST.

Type configuration

The user can choose an untyped algebra or a typed one. In the former case, no

additional configuration needs to be done for the type, while in the latter case, a type

ordering must be provided. At this point, the user is forced to provide an order such

that the types will be structured as a forest (i.e. τ1 ≥ τ ≤ τ2 implies either τ1 ≥ τ2

or τ1 ≤ τ2). This requirement is justified by the unification problem as discussed in

Section 4.3. The user can either manually enter all pairs defining the ordering, load the

type structure from a text file or load the type structure from a previously saved type

structure. If there is a need to distinguish between atomic and non-atomic types (as it

is the case in this thesis, see Section 4.2) the user can enter ti meaning the type named

i is atomic or Ti meaning the type named i is non-atomic. Once the user finishes the

type configuration, the program checks if the type structure is indeed a forest one. If

not, an error message appears and the user must change the structure before taking the

next step.

Algebra configuration

Once the type structure, if any, is correctly entered, the user can create his algebra.

The algebra configuration panel is pictured in Figure 5.3. The user must choose the

kind of algebra considered. It can either be the free algebra (see Definition 4.2.3), the

simple-linear algebra (the one used in this thesis, see Definition 4.2.7) or a custom al-

gebra. Selecting the custom algebra requires that an empty function be replaced with

the correct Java code and the program be recompiled (see the program documenta-

tion for more information). The user can either load a previously saved algebra (note

that loading an algebra will automatically load the type setting associated with it) or

manually create a new algebra by adding the needed variables and functions. Variable

creation, or edition, is done through the interface presented in Figure 5.4. The user

must first select a name for its variable and then a type (only in the case typed algebra

was selected in the type configuration). The function creation, or edition, is similar to

the one for variable except that the arity of the function is asked to the user and in the

case of a typed algebra, the type for every parameter as well as for the function output

is required. Once the algebra configuration is finished, the user will be asked for the

inference system configuration.

Chapter 5. Decidability of Cryptoprotocols 126

Figure 5.3: Algebra configuration

Figure 5.4: Variable configuration

Chapter 5. Decidability of Cryptoprotocols 127

Figure 5.5: Inference system configuration

Inference system configuration

Again here, the user can either manually create an inference system or load a pre-

viously saved one (note that loading an inference system will automatically load the

algebra for this inference system). The user is required to select how the rule sepa-

ration is done (which rules are considered to be oriented). The standard separation

requires that every premise be smaller than the conclusion for a rule to be oriented,

the T (S)/NT (S) separation is defined in 4.4.5, for the custom separation, Java code

must be added to an empty function and the program recompiled (see the program

documentation for more information). Rules are added with the Rule addition/edition

interface pictured in Figure 5.6. The user must specify the name for the rule as well

as the number of premises this rule has. Once the number of premises is selected, the

corresponding premise fields become editable. The user must properly fill in all ed-

itable fields (the premises and the conclusion). By properly, we mean that the terms

entered must be well-formed (with respect to the selected algebra kind, the variables

and the functions available for this algebra) and well typed (with respect to the type

structure and the type for the variables and the functions) if the algebra is typed. Once

confirming the inference system configuration is done, the program will split the rules

according to the order relation selected.

Chapter 5. Decidability of Cryptoprotocols 128

Figure 5.6: Rule configuration

Time configuration

Before starting the transformation process over the specified inference system, the

user must select a time limit for executing the program. It can be either unlimited or

limited to a given amount of time. This option is important since termination of the

transformation process is not assured in the general case.

Results

When the transformation process stops, either because the convergence is achieved

or the time limit is up, the resulting inference system (or the last inference system if

the algorithm stopped because of the time limit) is showed to the user.

From the ”File” menu, the user can directly load an algebra without configuring the

type (loading an algebra will automatically load its associated type structure), or load

an inference system without configuring the type and the algebra (loading an inference

system will automatically load its associated algebra). It is also possible to have the

resulting inference system (even the whole series of inference systems) written in a

LATEX file.

Chapter 5. Decidability of Cryptoprotocols 129

5.7.2 The results

We experimented the IST with some inference systems to check if we can count on

a good convergence time. As we can see with our results (see Table 5.16), the time

required by the transformation algorithm to produce the resulting inference system is

pretty good. The tests were done on a Pentium M 1.5 GHz processor laptop with 512

Mo RAM running Windows XP. Transformation time required is the average time over

five repetitions.

Inference system Termination assured Transformation time (ms)

Woo & Lam Π (Table 1.5) yes 174

Appendix B yes 184

Appendix C yes 410

Table 5.2 yes 1079

Table 5.3 yes 371

Table 5.9 yes 577

Woo & Lam Πf [16] no N/A

Otway-Rees [16] no N/A

Table 5.17 no 160

Table 5.16: Transformation process time result

The inference systems from Appendices B and C were extracted from the Woo &

Lam Π protocol. We simply added some axioms (intruder knowledge) to check different

security properties.

Because of the result exposed in this thesis, we were assured of the termination for

the transformation process applied on the first 6 inference systems (the termination

was not assured for the three others). The transformation over the Woo & Lam Πf

inference system could not be completed12; the system ran out of memory after about 23

minutes of computation (while computing S10). The transformation over the Otway-

Rees inference system never finished13; after 15 hours (computing S714) it was still

running (no memory problems in this case) but has not reached a convergence point.

12Note that it does mean the transformation does not converge but simply that it could not converge

with the resources allowed
13Note that it does mean the transformation does not converge but simply that it could not converge

within the allowed time
14Surprisingly, it took only 6 minutes to compute S6, but S7 could not be computed in the 15 hours

allowed.

Chapter 5. Decidability of Cryptoprotocols 130

T (S) NT (S)

R2 = X2

F (F (F (X2)))
R3 = �

a
R1 = F (F (X1))

F (X1)

Table 5.17: Inference System

5.7.3 The next version

Additional features for an eventual next version should be:

• A more user friendly and flexible graphical interface ;

• An optimization of the algorithms;

• A plug-in for the special case of modeling cryptographic protocols with inference

systems (taking an inference system in the standard notation an automatically

creating and transforming the associated inference system). This features should

also provide a customizable algorithm for testing if a term belongs to the theory

of the resulting inference system;

• Adding a more general treatment to unification thus allowing a less restrictive

treatment of the type structure.

5.8 Conclusion

In this chapter, we used the result of the previous chapter: the theory of any structured

inference system is decidable, to build a decision procedure for a class of cryptographic

protocols. We argued that this class is wide since many well-known protocols are in

this class. We also gave some examples of security properties that can be decided with

our method. Decision procedures, like this one, are quite rare since most of the existing

formal methods either aim to prove the correctness of a protocol (see Section 2.3) or to

refute its correctness (see Section 2.2).

Conclusion

As a conclusion, we sum up the results we got and contributions we made with this the-

sis, we compare our results with those of similar approaches for cryptographic protocols

analysis and we sketch some interesting future work that would enrich our results.

Contributions

Our contributions to the field of protocol analysis are:

• First, we presented in Chapter 2 a classification of formal methods dedicated

to cryptoprotocols analysis. This classification provides good insights about the

strengths and weaknesses of these formal methods. It also helps to compare new

formal methods with existing ones.

• Then, in Chapter 4, we established a strong result: The theory of a structured

inference system is decidable. To do this, we presented, among other things, a

proof-search procedure for resulting inference systems.

• In Chapter 5 we proposed a decision procedure for a wide class of cryptoprotocols.

• Finally, as told in Section 5.7, we built a Java implementation of the transforma-

tion process. This implantation confirms that inference systems are good models

for protocols.

We tickled the problem of non-empty unification in the analysis of cryptographic

protocols. This problem is by itself, very hard. Although we could not come up with

some interesting results, we mentioned some intuitions that may be investigated to get

those results. Very few methods, if any, consider the fact that concatenation should be

associative (however, not all methods needs to do a special treatment for the associa-

tivity of concatenation).

Conclusion 132

Related work

Blanchet

The worst drawback of Blanchet ’s approach is the approximation introduced during

the idealization process. While we use our method as a decision procedure, it is not

possible with Blanchet ’s. The fact that Blanchet ’s transformation algorithm does not

terminate on the Needham-Schroeder secret-key protocol as well as on many of the Woo

& Lam family protocol, while our’s terminate assure that Blanchet ’s result cannot be

more general than our’s. Both approaches can treat the fact that old keys have been

compromised, however, it seems easier to do so in our’s. Blanchet uses tuples, instead

of a binary function, to represent concatenation. This causes the problem that x.m1

cannot be unified with m2.m3.m1 when regarding concatenation as tuples while it is

unifiable when concatenation is a binary function. On the other hand, X.m1.m2.Y can

be unified with X ′.m3.m1.Y
′ in tuples while it cannot in binary functions (although

it would in associative binary function). The main advantage of Blanchet is that no

restriction is imposed on the keys used to encrypt messages while we restrict keys to be

independent of any other messages (we have a special type of messages only for keys).

Kindreed & Wing

Since the approach of Kindreed &Wing is based on existing logic modeling protocols,

like the BAN logic, it may suffer from the idealization problem. It is known, see Section

2.5.1, that transforming a protocol in the BAN logic is error prone. Moreover, in [43],

the authors had to add some extension to the BAN logic to achieve the desired goals.

They say: ”We added most of the extension above after some verification failed”. Thus,

this approach suffers from the possible incompleteness of the logics. In their restrictions

imposed on rules, they need every variable in the premise of a G-rule to be in its

conclusion. We do not have this restriction. In [45], they show that an inference system

composed of R1 = g(f(X))
g(X)

and R2 = g(X)
g(f(X))

cannot be treated by their algorithm (it

may cause non-termination), while it causes no problem with our algorithm. Thus it

is clear that their method cannot be strictly more general than our’s. However, we are

aware that they can consider a lot more of security properties since their language (the

logics themselves) is far more expressive than our’s (simple-linear terms).

Conclusion 133

Future work

The principal thing to enhance the results presented here would be a formal and deeper

consideration of A-unification. It would be interesting to define the biggest subset

of structured inference systems that remains decidable when considering associativity.

Although this problem is probably as hard, if not more, then the ones solved here, it

would greatly enrich our results. A formal proof that authentication can be decided

(to replace the informal discussion presented in section 5.5.3) is surely an interesting

next step. The enumeration of some other security properties that can be decided with

our procedure would also be interesting. Of course, the elaboration of other, different,

classes of inference systems for which we can have the convergence of the transformation

process would be of a good practical interest, namely in the field of protocols analysis.

Surely, the implementation of the transformation process should be embedded in a more

specialized program for protocol analysis. This program should take as input a protocol,

in the standard notation, together with a security property, and produce as output the

yes/no answer to the question ”does the protocol respect the security property?”. Such

a program would be terminating on, at least, structured inference systems.

Bibliography

[1] M. Abadi and A.D. Gordon. Calculus for cryptographci protocols: The spi-

calculus. In proceedings of the 4th ACM Conference on Computer and Communi-

cations Security, pages 36–47, January 1997. Link.

[2] L. Aceto and K.G. Larsen. An introduction to milner’s ccs. Link, November 2004.

[3] K. Adi. Formal Specification and Analyses of Security Protocols. PhD thesis,

Université Laval, May 2002.

[4] F. Baader and K.U. Schulz. General A- and AX-unification via optimized combi-

nation procedures. in proccedings of the second International Workshop on Word

Equation and Related Topics (IWWERT’91) - LNCS, 677:23–42, October 1991.

[5] F. Baader and K.U. Schulz. Unification in the union of disjoint equational theories:

Combining decision procedures. Journal of Symbolic Computation, 21(2):211–243,

1996.

[6] F. Baader and W. Snyder. Handbook of Automated Reasoning (Chapter 8: Unifi-

cation Theory). Elsevier Science, 2001.

[7] C. Bennet, G. Brassard, and A. Ekert. Quantum cryptography. Scientific Ameri-

can, 267(4):50–57, 1992.

[8] C. Bennet, G. Brassard, and A. Ekert. La cryptographie quantique. Dossier pour

la science, Hors-série, pages 114–118, October 2002.

[9] B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules.

In proceedings of the 14th Computer Security Foundation Workshop (CSFW’01),

pages 82–97, June 2001. Link.

[10] B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging

enforces termination. In proceedings of the 2003 Foundations of Software Science

and Computation Structures (FoSSaCS’03) - LNCS, 2620:136–152, April 2003.

Link.

http://www.research.microsoft.com/pubs/view.aspx?pubid=176
http://www.cs.auc.dk/~luca/SV/intro2ccs.pdf
http://www.di.ens.fr/~blanchet/publications/BlanchetCSFW01.html
http://www.di.ens.fr/~blanchet/publications/BlanchetPodelskiFOSSACS03.html

Bibliography 135

[11] D. Bouwmeester, A. Ekert, and A. Zeilinger. The Physics of Quantum Information.

Springer, 2000.

[12] A.R. Bull, W.S. Choi, C.E. Landweher, and J.P. McDermott. A taxonomy of

computer program security flaws, with examples. Technical Report 9591, Navel

Research Laboratory, November 1993. Link.

[13] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Technical

Report 39, DEC SRC, Link, 1989.

[14] U. Carlsen. Cryptographic protocols flaws. In proceedigs of the IEEE Computer

Security Foundations Workshop VII, pages 192–220, June 1994.

[15] I. Cervesato, N.A. Durgin, P.D. Lincoln, J.C. Mitchell, and A. Scedrov. A meta-

notation for protocol analysis. In proceedings of the 12th IEEE Computer Security

Foundations Workshop (CSFW’99), 1999.

[16] J. Clark and J. Jacob. A survey of authentication protocol literature. Link, No-

vember 1997.

[17] F. Clerin-Debart. Théorie équationnelles et de contraintes pour la déduction au-

tomatique en logique modale. PhD thesis, Laboratoire d’informatique de l’université

de Caen, Janvier 1992.

[18] M. Debbabi, M. Mejri, N. Tawbi, and I. Yahmadi. Formal automatic verification

of authentication cryptographic protocols. In proceedings of the 1st International

Conference on Formal Engineering Methods (ICFEM’97), pages 50–59, November

1997.

[19] M. Debbabi, M. Mejri, N. Tawbi, and I. Yahmadi. From protocol specifications

to flaws and attack scenarios: An automatic and formal algorithm. In proceedings

of the 6th Workshop on Enabling Technologies Infrastructure for Collaborative En-

terprises (WET-ICE’97), pages 256–262, June 1997.

[20] M. Debbabi, M. Mejri, N. Tawbi, and I. Yahmadi. A new algorithm for the au-

tomatic verification of authentication protocols: From specifications to flaws and

attack scenarios. In proceedings of the DIMACS Workshop on Design and Formal

Verification of Security Protocols, September 1997. Link.

[21] D.E. Denning. Cryptography and Data Security. ADDISON-WESLEY, January

1983.

[22] N. Dershowitz. Termination of rewriting. J. Symbolic Computation, 3:69–116,

1987.

http://citeseer.ist.psu.edu/landwehr93taxonomy.html
http://gatekeeper.research.compaq.com/pub/DEC/SRC/research-reports/abstracts/src-rr-039.html
http://www.win.tue.nl/~ecss/downloads/clarkjacob.pdf
http://dimacs.rutgers.edu/Workshops/Security/program2/debbabi/

Bibliography 136

[23] N. Dershowitz. Natural termination. Theoretical Computer Science, 142:179–207,

1995.

[24] W. Diffie and M. Hellman. New directions in cryptography. in proceedings of the

IEEE Transactions on Information Theory, 22(6):644–654, November 1976. Link.

[25] D. Dolev and A.C. Yao. On the security of public key protocols. In proceedings of

the IEEE Transactions on Information Theory, 29(2):198–208, March 1983.

[26] D.J. Dougherty and P. Johann. An improved general E-unification method. Inter-

national Conference on Automated Deduction (CADE’10) - LNCS, 449:261–276,

July 1990.

[27] N.A. Durgin, P.D. Lincoln, J.C. Mitchell, and A. Scedrow. Undecidability of

bounded security protocols. In proccedings of the Workshop on Formal Methods

and Security Protocols (FMSP’99), 1999.

[28] P. Enjalbert and F. Clerin-Debart. A case of terminaison for associative unification.

In proccedings of the second International Workshop on Word Equation and Related

Topics (IWWERT’91) - LNCS, 677:79–89, October 1991.

[29] S. Even and O. Goldreich. On the security of multi-party ping-pong protocols.

Technical Report 285, Computer Science Departement, Technion, Haifa 32000,

Israel, June 1983. Link.

[30] F.J. Thayer Fábrega, J.C. Herzog, and J.D. Guttman. Honest ideals on strand

spaces. In proceedings of the 1998 Computer Security Foundations Workshop, 1998.

[31] F.J. Thayer Fábrega, J.C. Herzog, and J.D. Guttman. Stand spaces: Why is a

security protocol correct? 1998 IEEE Symposium on Security and Privacy, 1998.

[32] F.J. Thayer Fábrega, J.C. Herzog, and J.D. Guttman. Strand space pictures. In

proceedings of the 1998 Workshop on Formal Methods and Security Protocols, 1998.

[33] F.J. Thayer Fábrega, J.C. Herzog, and J.D. Guttman. Strand space: Proving

security protocols correct. Journal of Computer Security, 7:191–230, 1999. Link.

[34] F. Fages. Associative-commutative unification. LNCS, 170:194–209, 1984.

[35] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security

protocols. In proceedings of the 13th Computer Security Foundations Workshop,

pages 255–268, 2000. Link.

[36] N. Heintze and J.D. Tygar. A model for secure protocols and their compositions.

IEEE Transaction on Software Engineering, 22(1):16–30, January 1996. Link.

http://www.cs.rutgers.edu/~tdnguyen/classes/cs671/presentations/Arvind-NEWDIRS.pdf
http://www.wisdom.weizmann.ac.il/~oded/eg83.html
http://citeseer.ist.psu.edu/fabrega99strand.html
http://citeseer.ist.psu.edu/519716.html
http://citeseer.ist.psu.edu/205085.html

Bibliography 137

[37] C.A.R. Hoare. Communication Sequential Processes. Prentice Hall International,

1985. Link.

[38] H. Houmani. Vers la correction des protocoles cryptographiques. Master’s thesis,

Université Laval, July 2003.

[39] H. Houmani and M. Mejri. Secure protocols for secrecy. In Foundations of Com-

puter Security: proceedings of the LICS’03 workshop on Foundations of Computer

Security, pages 59–68, Ottawa, Canada, 26–27 June 2003.

[40] J. Jaffar. Minimal and complete word unification. Journal of the ACM, 37(1):47–

87, January 1990.

[41] J. Jürjens. Composability of secrecy. International Workshop on Mathemat-

ical Methods, Models and Architectures for Computer Networks Security (MM-

MACNS’2001) - LNCS, 2052:28–38, 2001. Link.

[42] D. Kindred. Theory Generation for Security Protocols. PhD thesis, School of

Computer Science, Carnegie Mellon University, 1999. Link.

[43] D. Kindred and J.M. Wing. Fast, automatic checking of security protocols. In

proccedings of the 2nd USENIX Workshop on Electronic Commerce, pages 41–52,

November 1996. Link.

[44] D. Kindred and J.M. Wing. Closing the idealization gap with theory generation.

In proceedings of the DIMACS Workshop on Cryptogaphic Protocol Design and

Verification, September 1997. Link.

[45] D. Kindred and J.M. Wing. Theory generation for security protocols, July 1999.

Link.

[46] C. Kirchner. A new equational unification method: a generalisation of martelli-

montanati’s algorithm. LNCS, 170:224–248, May 1984.

[47] T. Kyntaja. A logic of authentication by burrows, abadi and needham, 1995. Link.

[48] G. Lowe. Toward a completeness result for model checking protocols. In proceedings

of the 11th Computer Security Foundation Workshop (CSFW’98), pages 96–105,

June 1998. Link.

[49] G. Lowe. Toward a completeness result for model checking protocols. Techni-

cal Report 6, Departement of Mathematics and Computer Science, University of

Leicester, 1998. Link.

[50] G.S. Makanin. The problem of solvability of equations in a free semigroup. Math.

Sbornik (English transl. in Math. USSR Sbornik 32), 103:147–236, 1977.

http://www.usingcsp.com/cspbook.pdf
http://citeseer.ist.psu.edu/440628.html
http://reports-archive.adm.cs.cmu.edu/anon/1999/CMU-CS-99-130.pdf
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/venari/www/usenix96-submit.html
http://www-2.cs.cmu.edu/~wing/publications/KindredWing97.pdf
http://citeseer.ist.psu.edu/245205.html
http://www.tml.hut.fi/Opinnot/Tik-110.501/1995/ban.html
http://www.mcs.le.ac.uk/~gl7/Security/Papers/completenessEA.ps
http://www.mcs.le.ac.uk/~glowe/Security/Papers/completeness.ps

Bibliography 138

[51] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transac-

tions on Programming Languages ans Systems, 4(2):258–282, April 1982.

[52] F. Massicotte. Une thorie des types pour les classes de failles dans les cryptopro-

tocoles. Master’s thesis, Université Laval, July 2000.

[53] P. Mateus, J. Mitchell, and A. Scedrov. Composition of cryptographic protocols

in a probabilistic polynomial-time process calculus. In proceedings of the 14th In-

ternational Conference on Concurrency Theory - LNCS, 2761:327–349, September

2003. Link.

[54] C. Meadows. The nrl protocol analyzer: An overview. Journal of Logic Program-

ming, 26(2):113–131, 1996. Link.

[55] C. Meadows. Formal methods for cryptographic protocol analysis: Emerging issues

and trends. 2003. Link.

[56] C.A. Meadows. Formal verification of cryptographic protocols: A survey. Interna-

tional Conference on the Theory and Application of Cryptology (ASIACRYPT’94)

- LNCS, 917:133–150, 1995. Link.

[57] M. Mejri. A formal automatic verification of authentication cryptographic proto-

cols. Master’s thesis, Université Laval, December 1997.

[58] M. Mejri. From Type Theory to the Verification of Security Protocols. PhD thesis,

Université Laval, Febuary 2001.

[59] M. Mejri. Chaotic protocol. In proceedings of the 2004 International Conference on

Computational Science and its Applications (ICCSA’2004) - LNCS, 3043:938–948,

May 2004.

[60] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone. Handbook of Apllied Cryp-

tography. CRC Press, 5 edition, August 2001. Link.

[61] R. Milner. The polyadic π-calculus: a tutorial. Logic and Algebra of Specification,

Springer-Verlag, 1993. Link.

[62] R.A. Mollin. An Introduction to Cryptography. Discrete Mathematics and Its

Applications. CRC Press, October 2000.

[63] R.A. Mollin. RSA and public-key cryptography. 2003.

[64] P. Narendran and F. Otto. Some results on equational unification. International

Conference on Automated Deduction (CADE’10) - LNCS, 449:276–292, July 1990.

http://citeseer.ist.psu.edu/559789.html
http://citeseer.ist.psu.edu/meadows96nrl.html
http://citeseer.nj.nec.com/586062.html
http://citeseer.ist.psu.edu/134868.html
http://www.cacr.math.uwaterloo.ca/hac/
http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-180/

Bibliography 139

[65] T. Nipkow. Unification in primal algebras, their powers and their varieties. Journal

of the ACM, 37(4):742–777, October 1990.

[66] L.C. Paulson. Proving properties of security protocols by induction. In proceedings

of the 10th Computer Security Foundations Workshop (CSFW’97), pages 70–83,

June 1997. Link.

[67] L.C. Paulson. The inductive approach to verifying cryptographic protocols. Journal

of Computer Security, 6:85–128, 1998. Link.

[68] A. Perrig and D. Song. A first step towards the automatic generation of security

protocol. In proceedings of Network and Distributed System Security, pages 73–83,

February 2000. Link.

[69] G. Plotkin. Building-in equational theories. In Proceedings of the 7th Annual

Machine Intellignece Workshop), 7:73–90, 1972.

[70] T. Renji. On finite automaton one-key cryptosystems. Lecture Notes in Computer

Science, 809:135–148, 1994.

[71] T. Renji and S. Chen. On finite automaton public-key cryptosystem. Theoretical

Computer Science, 226:143–172, 1999.

[72] G. Robin. Algorithmique et Cryptographie, volume 8 of Mathmatiques et applica-

tions. ellipses, 1991.

[73] C. Rudolph. A Model for Secure Protocols and its Application to Systematic De-

sign of Cryptographic Protocols. PhD thesis, J.-W. Goethe University Frankfurt,

December 2001. Link.

[74] H. Säıdi. Toward automatic synthesis of security protocols. In proceeding of the

Logic-Based Program Synthesis Workshop, March 2002. Link.

[75] A. Salomaa. Public-Key Cryptography. 1996.

[76] B. Schneier. Applied Cryptography. WILEY, second edition, 1996.

[77] J. H. Siekmann. Universal unification. LNCS, 170:1–42, May 1984.

[78] J. H. Siekmann. Unification Theory. Number 221 in A. Linguistic Agency Univer-

sity of Duisburg, March 1988.

[79] S. Singh. The Code Book. Doubleday, August 2000.

[80] W. Snyder. A Proof Theory for General Unification, volume 11 of Progress in

Computer Science and Applied Logic. Birkhäuser, birkhäuser edition, 1991.

http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-409.pdf
http://www.cl.cam.ac.uk/users/lcp/papers/Auth/jcs.pdf
http://citeseer.ist.psu.edu/287397.html
http://www.sit.fhg.de/english/META/meta_publications/doc/Diss-Rudolph.ps
http://ase.arc.nasa.gov/aaai2002/contributions/HSaidi.pdf

Bibliography 140

[81] D.X. Song. Athena: a new efficient automatic checker for security protocol analysis.

Link.

[82] D.X. Song, A. Perrig, and D. Phan. AGVI - automatic generation, verification

and implementation of security protocols. In proceedings of the 13th International

Conference on Computer Aided Verification (CAV’01) - LNCS, 2001.

[83] M. J. Toussaint. Verification of Cryptographic Protocols. PhD thesis, Université

de Liège, 1991.

[84] C. Walther. Many-sorted unification. Journal of the ACM, 35(1):1–17, January

1988.

[85] J.M. Wing. A symbiotic relationship between formal methods and security. In

proceedings pf the Workshops on Computer Security, Fault Tolerance, and Software

Assurance: From Needs to Solution. Technical report CMU-CS-98-188, 1998. Link.

http://www.ece.cmu.edu/~dawnsong/papers/Athena.pdf
http://www-2.cs.cmu.edu/afs/cs/project/calder/www/needs.html

Appendix A

Every rule should have finitely

many premises

We argue here that under some conditions, for every rule R with infinitely many

premises there exists another rule R′ with finitely many premises such that R ≡ R′.

Two rules R,R′ are equivalent when R can be used iff R′ can be used as well. We

do not aim to provide a formal structured proof. Instead, we give the intuitions with

which anyone should be convinced. We will illustrate that there exists a bound α on the

number of useful premise for a rule. We are not yet able to compute such a bound, nor

automatically remove some premises from a rule with more than α premises. This will

possibly be a problem when implementing our theory1. However, from the theoretical

point of view, everything will be fine.

The conditions we need are:

• the set of term structures is finite;

• the set of constants is finite;

• rules are premise-disjoint2;

Suppose R has infinitely many premises. Since the set of term structures is finite,

it must be the case that infinitely many premises of R are derived from the same term

structure s, let P(R)s be those premises. If the terms of P(R)s contain no atomic

1Note that the problem never arisen in the tests we did with our program described in Section 5.7.
2Remember that this only concerns non-atomic variables.

Appendix A. Every rule should have finitely many premises 142

variables, then, since they are disjoint over their set of non-atomic variables and there

is finitely many constants, it is clear that infinitely many of them are equal modulo

renaming. Example A.0.1 takes the case where we have only non-atomic variables.

Example A.0.1

Consider the following term structure s = f(τ1, h(τ2, τ3)) where τ1 is non-atomic while

τ2, τ3 are atomic (we suppose, for simplicity, that these types are incomparable). Let

the set of constants be {c2, c
′
2, c3, c

′
3} where ci and c′i are of type τi. Since we consider the

case where terms have no atomic variables, the following terms are possible derivations

from s:

• t1 = f(X1, (h(c2, c3)))

• t2 = f(X2, (h(c2, c
′
3)))

• t3 = f(X3, (h(c′2, c3)))

• t4 = f(X4, (h(c′2, c
′
3)))

Any other term t′ derived from s will be a renaming of one of the above, say t. Since the

conclusion of a rule is simple-linear, it may contain at most one non-atomic variable.

Thus either t′ or t is useless.

Unfortunately, it is much more complicated when atomic variables come in. The

problem with atomic variables is that premises are not required3 to be disjoint over

atomic variables. Thus two premises of a same rule can share an atomic variable. This

sharing creates possible links that are not easily analyzed. Example A.0.2 shows how

such links may cause problems.

Example A.0.2

Consider the following term structure s = h(τ1, τ1) where τ1 is atomic. One might

create a rule with infinitely many premises which are all essential by using the following

pattern (we present only the premises and leave the conclusion aside):

• h(x1, x2)

• h(x1, x2) h(x2, x3)

• h(x1, x2) h(x2, x3) h(x3, x4)

• h(x1, x2) h(x2, x3) h(x3, x4) h(x4, x5)

3We do not want to add this requirement since it will cost a lot on our expressivity.

Appendix A. Every rule should have finitely many premises 143

• . . .

• h(x1, x2) h(x2, x3) h(x3, x4) . . .h(n, n + 1)

• . . .

It seems that the dependencies between the premises prevent us from removing any of

them. However, if we consider the problem with more information, this will change.

Let {c1, c2} be the set of constants of type τ1. With this, we are able to show that if

we have three premises derived from s, then one of them is useless. This can be proved

as follows:

Proof:

The set of ground4 term formed from s is {h(c1, c1), h(c1, c2), h(c2, c1), h(c2, c2)}. Sup-

pose we have the following three premises in a rule: h(x1, x2) h(x2, x3) h(x3, x4). Then:

• If h(x1, x2) is provable5 by h(c1, c2), then h(x2, x3) has three choices

– If h(x2, x3) is provable by h(c2, c1), then h(x3, x4) is useless since it is provable

by h(c1, c2).

– If h(x2, x3) is provable by h(c2.c2), then h(x3, x4) is useless since it is also

provable by h(c2.c2).

– Else, h(c2, x3) cannot be proved. Thus either the rule cannot be used or we

must find another way to prove h(x1, x2).

• The same reasoning applies for the case where h(x1, x2) is provable by h(c2, c1).

• If h(x1, x2) is provable by h(c1, c1), then h(x2, x3) and h(x3, x4) are both provable

by h(c1, c1) and thus both useless.

• The same reasoning applies for the case where h(x1, x2) is provable by h(c2, c2)

• Else, h(x1, x2) is not provable and hence the rule cannot be used. The whole rule

is thus useless.

�

4A term is ground if it contains no variables.
5h(x1, x2) is provable by h(c1, c2) means that h(x1, x2) can be proved by replacing x1 with c1 and

x2 with c2.

Appendix A. Every rule should have finitely many premises 144

Although the above example is far from being a formal proof for the existence of

a bound on the number of premises for a rule, we can use some of its ideas to yield a

more general argument.

Consider a set of rules S, where each rule has finitely many premises (this would

correspond to the initial inference system of our transformation process6). We will take

every rule R ∈ S and generate the set of semi-ground7 rules formed from R, noted

SG(R). SG(R) is clearly finite since R has finitely many terms and we have finitely

many constants. It should be clear that R ≡ SG(R) (replacing rule R is S by the set

of rules SG(R) does not change the theory of S). Now, we can form

S ′ =
⋃

R∈S

SG(R)

such that TH (S) = TH (S ′). It is easy to see that any rule R′ built in the transformation

process over S ′ will be semi-ground. Using the discussion related to Example A.0.1, we

can conclude that a rule such as R′ cannot have infinitely many premises.

Although the idea of generating semi-ground rules works well in theory, it may not

be as good in practice. There is a possible overhead of rule compositions created by

rule duplication (one rule replaced by many semi-ground rules) that may cause time

and memory problems. However, we can now affirm that a rule is not allowed to have

infinitely many premises. How to implement this is currently an open question. Other

interesting, and unanswered, questions are:

• Given a rule R with infinitely many premises. What is the number of premises

we should keep to yield an equivalent rule with finitely many premises?

• Given a rule R with infinitely many premises. Which premises could be removed

without changing the rule?

6It is realistic and quite natural to impose the restriction that the initial inference system is com-

posed only of rules having finitely many premises.
7We call semi-ground a term without atomic variables. A semi-ground rule is a rule formed only

with semi-ground terms.

Appendix B

An example of complete

transformation

We present here the complete transformation steps used in the proof of Lemma 5.5.1 on

the inference system of Table B.1. We use the transformation algorithm presented in

Section 3.5, in particular, we use the simplification of inference system defined in 3.4.4.

T (S0) NT (S0)

R1 = �
P1

R2 = �
KIS

R8 = X6.X7

X6
R9 = X8.X9

X9

R3 = �
m

R4 = X1

{X1}Kp2S

R11 =
{X10}KP9P10

KP9P10

X10

R5 = P3 X2

{P3.X2}KP4S

R6 = X3 X4

X3.X4
R12 =

{P11.{X11}KP11S
}KP12S

{X11}KP12S

R7 =
X5 KP5P6

{X5}KP5P6

R10 = P7

Nα
P8

Table B.1: S0

The possible compositions of a rule from NT (S0) with rules from T (S0) are:

Appendix B. An example of complete transformation 146

R13 = R8 ⇑ R6 = X3 X4

X3
R14 = R9 ⇑ R6 = X3 X4

X4

R15 = R11 ⇑ (R4, R2) = X1

X1
R16 = R11 ⇑ (R5, R2) = P3 X2

P3.X2

R17 = R11 ⇑ (R7, R2) = X5 KIS

X5
R19 = R12 ⇑ R4 =

P11.{X11}KP11S

{X11}KP12S

R20 = R12 ⇑ R5 =
P11 {X11}KP11S

{X11}KP12S

R21 = R12 ⇑ R7 =
P11.{X11}KP11S

{X11}KP12S

When eliminating redundant rules, we eliminate R13, R14, R15 and R17 since they

are all self-redundant. We also eliminate R16 and R21 since they are instances of R6

and R19 respectively. Finally, R10 is made redundant by R18. Once the redundant rules

have been removed and the variables in the new rules renamed, we get the inference

system S1 given in Table B.2.

T (S1) NT (S1)

R1 = �
P1

R2 = �
KIS

R8 = X6.X7

X6
R9 = X8.X9

X9

R3 = �
m

R4 = X1

{X1}Kp2S

R11 =
{X10}KP9P10

KP9P10

X10

R5 = P3 X2

{P3.X2}KP4S

R6 = X3 X4

X3.X4
R12 =

{P11.{X11}KP11S
}KP12S

{X11}KP12S

R7 =
X5 KP5P6

{X5}KP5P6

R10 = P7

Nα
P8

R19 =
p14.{X12}Kp14S

{X12}Kp15S

R20 =
p16 {X13}Kp16S

{X13}Kp17S

Table B.2: S1

The possible compositions of a rule from NT (S1) with rules from T (S1) are (we

omit the composition already checked in the previous step):

Appendix B. An example of complete transformation 147

R22 = R19 ⇑ R6 =
P14 {X12}KP14S

{X12}KP15S

R23 = R20 ⇑ (R1, R4) = X13

{X13}KP17S

R24 = R20 ⇑ (R1, R5) = P3 X2

{P3.X2}KP17S

R25 = R20 ⇑ (R1, R7) =
X5 KP2S

{X5}KP17S

The four new rules are found to be redundant. Rules R23 and R25 are both made

redundant by R4, R22 is made redundant by R20 and R24 is an instantiation of R5.

Once the redundant rules are removed, we have S2 = S1. We can take T (S2) (which is

the same as T (S1)) as an inference system equivalent to the initial inference system.

Appendix C

Another example of complete

transformation

We present here the complete transformation steps used in the proof of Lemma 5.5.2 on

the inference system of Table C.1. We use the transformation algorithm presented in

Section 3.5, in particular, we use the simplification of inference system defined in 3.4.4.

T (S0) NT (S0)

R1 = �
P1

R2 = �
KIS

R8 = X6.X7

X6
R9 = X8.X9

X9

R3 = �
{m}KAS

R4 = X1

{X1}Kp2S

R11 =
{X10}KP9P10

KP9P10

X10

R5 = P3 X2

{P3.X2}KP4S

R6 = X3 X4

X3.X4
R12 =

{P11.{X11}KP11S
}KP12S

{X11}KP12S

R7 =
X5 KP5P6

{X5}KP5P6

R10 = P7

Nα
P8

Table C.1: S0

The possible compositions of a rule from NT (S0) with rules from T (S0) are:

Appendix C. Another example of complete transformation 149

R13 = R8 ⇑ R6 = X3 X4

X3
R14 = R9 ⇑ R6 = X3 X4

X4

R15 = R11 ⇑ (R4, R2) = X1

X1
R16 = R11 ⇑ (R5, R2) = P3 X2

P3.X2

R17 = R11 ⇑ (R7, R2) = X5 KIS

X5
R19 = R12 ⇑ R4 =

P11.{X11}KP11S

{X11}KP12S

R20 = R12 ⇑ R5 =
P11 {X11}KP11S

{X11}KP12S

R21 = R12 ⇑ R7 =
P11.{X11}KP11S

{X11}KP12S

When eliminating redundant rules, we eliminate R13, R14, R15 and R17 since they

are all self-redundant. We also eliminate R16 and R21 since they are instances of R6

and R19 respectively. Once the redundant rules have been removed and the variables

in the new rules renamed, we get the inference system S1 given in Table C.2.

T (S1) NT (S1)

R1 = �
P1

R2 = �
KIS

R8 = X6.X7

X6
R9 = X8.X9

X9

R3 = �
{m}KAS

R4 = X1

{X1}Kp2S

R11 =
{X10}KP9P10

KP9P10

X10

R5 = P3 X2

{P3.X2}KP4S

R6 = X3 X4

X3.X4
R12 =

{P11.{X11}KP11S
}KP12S

{X11}KP12S

R7 =
X5 KP5P6

{X5}KP5P6

R10 = P7

Nα
P8

R19 =
p14.{X12}Kp14S

{X12}Kp15S

R20 =
p16 {X13}Kp16S

{X13}Kp17S

Table C.2: S1

The possible compositions of a rule from NT (S1) with rules from T (S1) are (we

omit the composition already checked in the previous step):

Appendix C. Another example of complete transformation 150

R22 = R19 ⇑ R6 =
P14 {X12}KP14S

{X12}KP15S

R23 = R20 ⇑ (R1, R4) = X13

{X13}KP17S

R24 = R20 ⇑ (R1, R5) = P3 X2

{P3.X2}KP17S

R25 = R20 ⇑ (R1, R7) =
X5 KP2S

{X5}KP17S

R26 = R20 ⇑ (R1, R3) = �
{m}KP17S

The first four new rules are found to be redundant. Rules R23 and R25 are both

made redundant by R4, R22 is made redundant by R20 and R24 is an instantiation of

R5. R3 is also made redundant by R26. The inference system S2 is found in Table C.3.

T (S2) NT (S2)

R1 = �
P1

R2 = �
KIS

R8 = X6.X7

X6
R9 = X8.X9

X9

R4 = X1

{X1}Kp2S

R11 =
{X10}KP9P10

KP9P10

X10

R5 = P3 X2

{P3.X2}KP4S

R6 = X3 X4

X3.X4
R12 =

{P11.{X11}KP11S
}KP12S

{X11}KP12S

R7 =
X5 KP5P6

{X5}KP5P6

R10 = P7

Nα
P8

R19 =
p14.{X12}Kp14S

{X12}Kp15S

R26 = �
{m}K)p18S

R20 =
p16 {X13}Kp16S

{X13}Kp17S

Table C.3: S2

The possible compositions of a rule from NT (S2) with rules from T (S2) are (we

omit the composition already checked in the previous step):

R27 = R11 ⇑ (R26, R2) = �
m

R28 = R20 ⇑ (R1, R26) = �
{m}Kpp17S

The rule R28 is made redundant by R26, while R27 is not redundant. The inference

system S3 is as shown in Table C.4.

Appendix C. Another example of complete transformation 151

T (S3) NT (S3)

R1 = �
P1

R2 = �
KIS

R8 = X6.X7

X6
R9 = X8.X9

X9

R4 = X1

{X1}Kp2S

R11 =
{X10}KP9P10

KP9P10

X10

R5 = P3 X2

{P3.X2}KP4S

R6 = X3 X4

X3.X4
R12 =

{P11.{X11}KP11S
}KP12S

{X11}KP12S

R7 =
X5 KP5P6

{X5}KP5P6

R10 = P7

Nα
P8

R19 =
p14.{X12}Kp14S

{X12}Kp15S

R26 = �
{m}K)p18S

R27 = �
m

R20 =
p16 {X13}Kp16S

{X13}Kp17S

Table C.4: S3

Since there is no new composition possible from a rule in NT (S 3) and rules in

T (S3), it is clear that S4 = S3. We can take T (S4) (which is the same as T (S3)) as an

inference system equivalent to the inference system S0 of Table C.1.

Index

(O,P), 93

=R, 69

CS, 79

CS(), 95

S(v,t), 80

T (S), 79

TS, 79

TS(), 95

T S
t , 92

VS, 79

VS(), 95

⇓, 52

Φ(), 81

ΦS(v,t)(), 86

⇑, 51

∔, 91

#, 52

C(), 49

L(T), 94

P(), 49

P (), 49

R(v,t), 79

T S(v,t), 70

T , 69

T (v,t), 71

AVar(), 67

Depth(), 97

NAVar(), 67

NT (S), 79

PD IS , 78

RIS , 89

SC IS , 78

SIS , 78

TH (), 49

→ (), 93

⊏, 69

⊑, 69

℘(S(v,t)), 81

Affectation, 72

Simple-linear, 73

Size, 74

Algebra, 65

Σ-algebra, 66

Free, 66

Simple-linear, 68

Atomic, 66

Authentication, 10, 118

Chaotic, 10, 110

Composing substitution, 76

Condition

Premises-disjoint, 78

Self-Contained, 78

Convergence, 65

Cryptographic protocol (see Protocol),

12

Cryptography, 4

Perfect, 9

Cryptology, 4

Cryptoprotocol (see Protocol), 12

Cryptosystem, 4

Asymmetric, 6

Symmetric, 5

Deciding correctness, 40

Digital signature, 6

DYMNA, 30

Free premise, 89

Index 153

Generalized role, 16

Growing Function, 87

Inference system, 49

Comparison, 51

Equivalence, 51

Extended, 80

Generation, 30

Initial, 64

Resulting, 65

Series, 52

Simplified, 52, 77, 119

Size, 79

Structured, 78

Termination, 50

Initial knowledge, 13

Intruder abilities, 17

Invariant premise, 89

Linked premise, 89

Non-atomic, 66

Proof-search procedure, 90

Protocol, 12

Algebra, 102

Correct, 21

Flaw, 21

Structured, 105

Proving correctness, 34

Refuting correctness, 29

Resulting inference system, 65, 89

Role, 13, 14

Rule, 49

Composition, 51

Rules

Non-terminating, 79

Terminating, 79

Secrecy, 9, 115

Substitution, 71

mgu, 71

Composition, 76

Conflict, 76

Term

Invariant, 68

Simple-linear, 69

Size, 69

Structure, 70

Subterm, 69

Variant, 68

Termination, 64

Termination ordering, 50

Trace

Valid, 18

Well defined, 18

Well-formed, 18

Transformation algorithm, 64

Transformation function, 81

Restricted, 86

Transformation process, 64

Unification, 71

∅, 71

Associative, 120

	Résumé
	Abstract
	Avant-propos
	Contents
	List of Tables
	List of Figures
	Introduction
	Cryptographic Protocols
	Introduction
	Cryptography
	Cryptosystem
	Symmetric or asymmetric cryptosystem
	Future way in cryptography
	Perfect cryptography assumption

	Security properties
	Cryptographic protocols
	Notations
	Role abstraction
	Role generalization
	Intruder abilities
	Valid traces
	Protocol classification

	Flaws in protocols
	Freshness flaws
	Oracle flaws
	Type flaws
	Binding flaws
	Repudiation flaws
	Implementation flaws
	Others

	Conclusion

	Protocol Analysis
	Introduction
	Refuting correctness
	DYMNA

	Proving correctness
	Sufficient conditions for correctness
	Gavin Lowe approach
	Stand space model

	Deciding correctness
	Others
	BAN logic

	Conclusion

	On the Termination of Inference Proof Systems
	Introduction
	Inference systems
	Termination of inference systems
	Handling termination
	Algorithmic transformation
	Optimization

	Example of inference system transformation
	Other Methods
	Blanchet
	Kindreed &Wing

	Conclusion

	On the Convergence of the Transformation Algorithm
	Introduction
	Message algebra
	Unification
	The transformation algorithm converges
	Structured inference systems
	The transformation function
	The convergence proof

	The resulting inference system is terminating
	Proof-search procedure
	A tree model for the proof-search procedure
	The proof-search procedure terminates

	Conclusion

	Decidability of Cryptoprotocols
	Introduction
	A decision procedure
	Relaxing the structured requirement
	Cryptoprotocols message algebra
	Problematic rules
	Adapting the convergence result
	Adapting the proof-search procedure termination result

	The class of protocols is wide enough
	Some decidable security properties
	Chaotic property
	Secrecy property
	Authentication property

	Into associative unification
	Associative unification
	A-unification is not unitary
	Associative unification can increase the size of terms

	Implementation
	The program
	The results
	The next version

	Conclusion

	Conclusion
	Bibliography
	Every rule should have finitely many premises
	An example of complete transformation
	Another example of complete transformation
	Index

