
Decidable Inductive Invariants for Verification of
Cryptographic Protocols with Unbounded Sessions
Emanuele D’Osualdo
Imperial College London, UK
e.dosualdo@ic.ac.uk

Felix Stutz
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
fstutz@mpi-sws.org

Abstract
We develop a theory of decidable inductive invariants for an infinite-state variant of the Applied
π-calculus, with applications to automatic verification of stateful cryptographic protocols with
unbounded sessions/nonces. Since the problem is undecidable in general, we introduce depth-bounded
protocols, a strict generalisation of a class from the literature, for which our decidable analysis is
sound and complete. Our core contribution is a procedure to check that an invariant is inductive,
which implies that every reachable configuration satisfies it. Our invariants can capture security
properties like secrecy, can be inferred automatically, and represent an independently checkable
certificate of correctness. We provide a prototype implementation and we report on its performance
on some textbook examples.

2012 ACM Subject Classification Theory of computation → Program verification

Keywords and phrases Security Protocols, Infinite-State Verification, Ideal Completions for WSTS

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2020.31

Related Version Full version of the paper available at https://arxiv.org/abs/1911.05430.

Supplementary Material Tool available at https://doi.org/10.5281/zenodo.3950846

Funding Emanuele D’Osualdo: EU Horizon 2020 Marie Curie Individual Fellowship.
Felix Stutz: supported by Imperial College London and International Max Planck Research School
for Computer Science.

Acknowledgements We would like to thank Alwen Tiu, Roland Meyer and Véronique Cortier for
the useful feedback.

1 Introduction

Security protocols implement secure communication over insecure channels, by using crypto-
graphy. Despite underpinning virtually every communication over the internet, new flaws
that compromise security are routinely discovered in deployed protocols. Automatic protocol
verification is highly desirable, but also very challenging: the space of possible attacks is
infinite. Indeed, even under the assumption of perfect cryptography, security properties are
undecidable [21]. The most problematic feature for decidability is the necessity of considering
unboundedly many fresh random numbers, called nonces, to distinguish between various
sessions of the protocol. There has been a proliferation of verification tools [11, 3, 35, 10, 4, 26]
which can be categorised according to the way the undecidability issue is resolved. A first
approach is to only consider a bounded number of sessions, possibly missing attacks. A second
is to over-approximate the protocol’s behaviour by representing nonces with less precision,
possibly reporting spurious attacks. A third is to implement semi-algorithms, accepting that
the tools might never terminate on some protocols.

© Emanuele D’Osualdo and Felix Stutz;
licensed under Creative Commons License CC-BY

31st International Conference on Concurrency Theory (CONCUR 2020).
Editors: Igor Konnov and Laura Kovács; Article No. 31; pp. 31:1–31:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-9179-5827
mailto:e.dosualdo@ic.ac.uk
https://orcid.org/0000-0003-3638-4096
mailto:fstutz@mpi-sws.org
https://doi.org/10.4230/LIPIcs.CONCUR.2020.31
https://arxiv.org/abs/1911.05430
https://doi.org/10.5281/zenodo.3950846
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


31:2 Decidable Inductive Invariants for Cryptographic Protocols Verification

In this paper, we devise a sound and complete analysis, i.e. one that always terminates
with a correct answer, without need for approximations. We obtain this by developing
decision procedures for proving invariants of a rich sub-class of protocols with unbounded
sessions/nonces. An invariant is any property that holds for every reachable configuration. We
introduce depth-bounded protocols, a strict generalisation of the class of [18], and prove that
a class of invariants, called downward-closed, can be effectively represented using expressions
that we call limits. Our core technical results are a decision procedure for limit inclusion and
an algorithm called p̂ost that computes, from a limit L, a finite union of limits that represent
the (infinite) set of configurations reached in one step from L. By using these two components,
we obtain an algorithm to check if a limit is inductive, i.e. p̂ost(L) ⊆ L. An inductive limit
that contains the initial configuration is guaranteed to be an invariant for the protocol. We
show how to use this to prove a number of properties including depth-boundedness itself (a
semantic property), secrecy, and control-state reachability.

We define depth-bounded protocols as a subclass of a variant of the Applied π-calculus [31],
with support for user-defined cryptographic primitives, secure and public channels, stateful
principals, a Dolev-Yao-style intruder [17] supporting modelling of dishonest participants
and leaks of old keys. In particular, our results apply to any set of cryptographic primitives
that satisfy some simple axioms; examples include (a)symmetric encryption, blind signatures,
hashes, XOR. To gain intuition about depth-boundedness, consider the set of messages
Γn = {e(k1)k2 , e(k2)k3 , . . . e(kn−1)kn} which “chains” key k1 to k2, k2 to k3 and so on,
obtaining an encryption chain of length n. A depth-bounded protocol cannot produce, or
be tricked to produce, such chains of unbounded length. Note that, when computing depth,
we only consider chains that are essential: the set Γn ∪ {kn} for example has depth 1 (for
any n) because it is equivalent to the set {k1, . . . , kn}. When there is a bound d on the
depth of reachable configurations, we say that the protocol is depth-bounded. We built
a proof-of-concept prototype tool to evaluate the approach, showing that many textbook
protocols fall into the depth-bounded class.

More precisely, bounding depth alone is not enough to obtain decidability [18]: one needs
to bound the size of messages too. For type-compliant protocols [2, 13] message size can
be bounded without excluding any security violation. More generally, for typical protocols
(including all our benchmarks), our inductive invariants can be computed on the size-bounded
model, and then generalised to invariants for the unrestricted version of the protocol.

Our approach has a number of notable properties. First, once a suitable inductive
invariant has been found, it can be provided as a certificate of correctness that can be
independently checked. Second, the search of a suitable invariant can be performed both
automatically (with a trade-off between precision and performance) or interactively. Third,
supporting unbounded nonces makes it possible to reason about properties like susceptibility
to known-plaintext attacks (Section 3.1). Finally, even coarse invariants inferred with our
method can be used to prune the search space of other model checking procedures.

Related work. The pure π-calculus version of depth-boundedness was originally proposed
in [27] and developed in [24, 36, 37]. Our work builds directly on [18], which introduced
depth-boundedness for the special case of secrecy of protocols using symmetric encryption.
We generalise to a strictly more expressive class of primitives and properties, a result that
requires much more sophisticated techniques and yields more powerful algorithms.

Our theory of invariants is framed in terms of ideal completions [22], which, to the best of
our knowledge, has not been instantiated to cryptographic protocols before. Our decidability
proofs introduce substantial new proof techniques to deal with an active intruder while being
parametric on the cryptographic primitives.



E. D’Osualdo and F. Stutz 31:3

Types [16, 14, 15] can be used to capture and generalise common safe usages of crypto-
graphic primitives, and reduce verification to constraints which can be solved efficiently. We
speculate that our domain of limits and the associated algorithms could be used to define an
expressive class of solvable constraints that could be integrated in type systems.

In [14, 23] two classes of protocols with unbounded nonces are shown to enjoy decidable
verification. They consider a less general calculus ((a)symmetric encryption only, with atomic
keys), different properties (only secrecy [23], trace equivalence [14]), and restrict protocols
using (similar) syntactic conditions, obtaining classes that are orthogonal to ours.

ProVerif [4] and Tamarin [26] are two mature tools with support for a wide range of
cryptographic primitives and expressive properties, and handle unbounded sessions. Both
programs employ semi-algorithms and may diverge on verification tasks. ProVerif is known to
terminate on so-called tagged protocols [6] which are incomparable to depth-bounded protocols.
Tamarin offers an interactive mode when a proof cannot be carried out automatically. To the
best of our knowledge, there is no characterisation for a class of protocols on which Tamarin
is guaranteed to terminate.

Outline. Section 2 introduces the formal model and depth-bounded protocols. Section 3
presents our main theoretical results. In Section 4 we report on experiments with our tool
and discuss limitations. All omitted proofs can be found in the full version of the paper [19].

2 Formal Model

We introduce a variant of the Applied π-calculus as our formal model of protocols. Following
the Dolev-Yao intruder model, we treat cryptographic primitives algebraically. Assume
an enumerable set of names a, b, · · · ∈ N . A signature Σ of constructors, is a finite set of
symbols f with their arity ar(f) ∈ N. The set of messages over Σ is the smallest set MΣ which
contains all names, and is closed under application of constructors. The domain of finite sets of
messages is KΣ := ℘f (MΣ). We define size(f(M1, . . . ,Mn)) := 1+max {size(Mi) | 1 ≤ i ≤ n},
size(a) := 1, and names(a) := {a}, names(f(M1, . . . ,Mn)) :=

⋃n
i=1 names(Mi). Given

X ⊆ N and s ∈ N, we define MΣ,X
s := {M ∈MΣ | names(M) ⊆ X, size(M) ≤ s}. As is

standard, Γ,Γ′ and Γ,M stand for Γ ∪ Γ′ and Γ ∪ {M} respectively.
A substitution is a finite partial function θ : N ⇀MΣ; we write θ = [M1/x1, . . . , Mn/xn ],

abbreviated with [ ~M/~x], for the substitution with θ(xi) = Mi for all 1 ≤ i ≤ n. We writeMθ

for the application of substitution θ to the message M , and extend the notation to sets of
messages Γθ := {Mθ | M ∈ Γ}. A substitution θ is a renaming of X ⊆ N if it is defined
on X, injective, and with θ(X) ⊆ N .

I Definition 1 (Intruder model). A derivability relation for a signature Σ, is a relation
` ⊆ KΣ ×MΣ. The pair I = (Σ,`) is an (effective) intruder model if ` is a (decidable)
derivability relation for Σ, and for all M,N ∈MΣ, Γ,Γ′ ∈ KΣ, a ∈ N :

M `M (Id)
Γ ⊆ Γ′ ∧ Γ `M =⇒ Γ′ `M (Mon)
Γ `M ∧ Γ,M ` N =⇒ Γ ` N (Cut)
M1, . . . ,Mn ` f(M1, . . . ,Mn) for every f ∈ Σ with ar(f) = n (Constr)
Γθ `Mθ ⇐⇒ Γ `M for any θ renaming of names(Γ) (Alpha)
Γ, a `M ∧ a 6∈ names(Γ,M) =⇒ Γ `M (Relevancy)

The knowledge ordering for I is the relation ≤kn ⊆ KΣ ×KΣ such that Γ1 ≤kn Γ2 if and only
if ∀M ∈MΣ : Γ1 `M =⇒ Γ2 `M. We write Γ1 ∼kn Γ2 if Γ1 ≤kn Γ2 and Γ2 ≤kn Γ1.

CONCUR 2020



31:4 Decidable Inductive Invariants for Cryptographic Protocols Verification

M ∈ Γ
Γ `M

Id
Γ ` K

Γ ` p(K)
Pub

Γ, (M,N),M,N `M ′

Γ, (M,N) `M ′ PL
Γ `M Γ ` N

Γ ` (M,N)
PR

Γ, e(M)K ` K Γ, e(M)K ,M,K ` N
Γ, e(M)K ` N

SL
Γ `M Γ ` K

Γ ` e(M)K
SR

Γ, a(M)p(K) ` K Γ, a(M)p(K),M,K ` N
Γ, a(M)p(K) ` N

AL
Γ `M Γ ` N

Γ ` a(M)N
AR

Figure 1 Deduction rules for the derivability relation of Ien.

The first three axioms deal exclusively with what it means to be a deduction relation:
what is known can be derived (Id); the more is known the more can be derived (Mon); what
can be derived is known (Cut). The (Constr) axiom ensures the intruder is able to construct
arbitrary messages by composing known messages. The (Alpha) axiom justifies α-renaming
in our calculus. The (Relevancy) axiom allows us to only consider boundedly many nonces
maliciously injected by the intruder, at each step of the protocol.

In the rest of the paper, unless otherwise specified, we fix an arbitrary effective intruder
model I and omit the corresponding superscripts.

I Proposition 2. Given Γ1,Γ2 ∈ KΣ, Γ1 ≤kn Γ2 if and only if ∀M ∈ Γ1 : Γ2 ` M . As a
consequence, if ` is decidable, so is ≤kn.

Our framework uses the derivability relation as a black box and does not rely on the
way it is specified (e.g. with a rewriting system or a deduction system). It is possible to
formalise as an effective intruder model cryptographic primitives such as XOR, hashes and
blind signatures. We present here, for illustration, a model of (a)symmetric encryption, and
elaborate on extensions in Appendix A. We find it convenient to specify it with a sequent
calculus in the style of [34]. This is an alternative to more intuitive natural-deduction-style
rules, which has the key advantage of being cut-free, while admitting cut. This simplifies
considerably the proofs of properties (e.g. Lemma 21) of the intruder model.

I Example 3 (Model of Encryption). Symmetric and asymmetric encryption can be modelled
using the signature Σen = {(·, ·) , e(·)· , a(·)· , p(·)}, where (M,N) pairs messages M and N ,
e(M)N represents the message M encrypted with symmetric key N , a(M)N represents the
messageM encrypted with asymmetric key N , and p(K) is the public key associated with the
private key K. The intruder model for (a)symmetric encryption is the model Ien = (Σen,`)
where ` is defined by the deduction rules in Figure 1.

I Proposition 4. The model Σen is an effective intruder model.

2.1 A Calculus for Cryptographic Protocols
A common approach to model cryptographic primitives is to consider both constructors
(e.g. encryption) and destructors (e.g. decryption). Here messages only contain constructors,
and “destruction” is represented by pattern matching. Fix a finite signature Q of process
names (ranged over by Q) each of which has a fixed arity ar(Q) ∈ N. A protocol specification
consists of an initial process P and a finite set ∆ of (possibly recursive) definitions of the
form Q[x1, . . . , xn ] := A, with ar(Q) = n, where the syntax of P and A follows the grammar:

P ::= 0 | νx.P | P ‖P | 〈M〉 | Q[ ~M ] (process)
A ::= a〈M〉 | a(~x : M).P | A+A (action)



E. D’Osualdo and F. Stutz 31:5

Q1[ ~M1] , c〈N [ ~M ′/~x]〉.P1 +A1 Q2[ ~M2] , c(~x : N).P2 +A2

ν~a.(〈Γ〉 ‖ Q1[ ~M1] ‖ Q2[ ~M2] ‖ C)→∆ ν~a.(〈Γ〉 ‖ P1 ‖ P2[ ~M ′/~x] ‖ C)
Comm

P ≡ P ′ →∆ Q′ ≡ Q
P →∆ Q

Struct
Q[ ~M ] , c〈M〉.P +A Γ ` c

ν~a.(〈Γ〉 ‖ Q[ ~M ] ‖ C)→∆ ν~a.(〈Γ〉 ‖ 〈M〉 ‖ P ‖ C)
PubOut

Q[ ~M ] , c(~x : N).P +A Γ, ~y ` N [ ~M ′/~x] Γ ` c ~y fresh
ν~a.(〈Γ〉 ‖ Q[ ~M ] ‖ C)→∆ ν~a.ν~y.(〈Γ〉 ‖ 〈~y〉 ‖ P [ ~M ′/~x] ‖ C)

PubIn

Figure 2 Operational semantics.

We use the vector notation ~x = x1, . . . , xn for lists of pairwise distinct names. In an action
a(~x : M).P , we call ~x : M the pattern, and P the continuation; processes Q[ ~M ] are called
process calls. If Γ = {M1, . . . ,Mk} is a finite set of messages, then 〈Γ〉 := 〈M1〉 ‖ . . . ‖ 〈Mk〉.
We define P 0 := 0 and Pn+1 := P ‖ Pn. For brevity, we assume the special name in is
known to the intruder. The internal action τ , is an abbreviation for in(x : x), for a fresh x.
Processes of the form 〈M〉 or Q[~a] are called sequential. The names ~x are bound in both ν~x.P

and c(~x : M).P . We denote the set of free names of a term P with fn(P ) and the set of bound
names with bn(P ). As is standard, we require, wlog, that fn(P ) ∩ bn(P ) = ∅. When nesting
restrictions ν~x.ν~y.P , we implicitly assume wlog that ~x and ~y are disjoint. We assume there
is at most one definition for each Q ∈ Q, and that for each definition Q[x1, . . . , xn ] := A,
fn(A) ⊆ {x1, . . . , xn}. The set P consists of all processes over an underlying signature Q.

Structural congruence. We write α= for standard α-equivalence. Structural congruence, ≡,
is the smallest congruence relation that includes α=, and is associative and commutative with
respect to ‖ and + with 0 as the neutral element, and satisfies the standard laws: νa.0 ≡ 0,
νa.νb.P ≡ νb.νa.P , and P ‖ νa.Q ≡ νa.(P ‖ Q) if a 6∈ fn(P ). Every process P is congruent
to a process in standard form:

ν~x.
(
〈M1〉 ‖ · · · ‖ 〈Mm〉 ‖ Q1[ ~N1 ] ‖ · · · ‖ Qk[ ~Nk ]

)
(SF)

where every name in ~x occurs free in some subterm. We write sf(P ) for the standard form
of P , which is unique up to α-equivalence, and associativity and commutativity of parallel.
We abbreviate standard forms with ν~x.(〈Γ〉 ‖ Q) where all the active messages are collected
in Γ, and Q is a parallel composition of process calls. Let sf(P ) be the expression (SF), we
define msg(P ) = {M1, . . . ,Mm} ∪

⋃k
i=1

~Ni. Thus msg(P ) is the set of messages appearing
in a term. When m = 0, k = 0, ~x = ∅, the expression (SF) is 0.

Reduction semantics. One can think of standard forms ν~x.(〈Γ〉 ‖ Q) as runtime configura-
tions of the protocol. They capture, at a specific point in time, the current relevant names
(which encode nonces/keys/data), the knowledge of the intruder Γ, and the local state of
each participant. A sequential term Q[ ~N ] represents a single participant in control state Q
with local knowledge of messages ~N .

Principals can communicate through channels; a channel known by the intruder is
considered insecure. An input action over an insecure channel can be fired if the intruder
can produce any message that matches the action’s pattern. An output c〈M〉 to an insecure
channel c leaks message M to the intruder, who can decide to forward it angelically to a
corresponding input over c (modelling an honest step) or hijack the communication.

CONCUR 2020



31:6 Decidable Inductive Invariants for Cryptographic Protocols Verification

S[a, b, kas, kbs ] := in(na : (na, b)).νk.
(
〈e(k)kbs〉 ‖

〈
e(k)(na,kas)

〉
‖ S[a, b, kas, kbs ]

)
A1[a, b, kas ] := τ .νna.(〈(na, b)〉 ‖ A2[a, b, kas, na ] ‖ A1[a, b, kas ])

A2[a, b, kas, na ] := in
(
k : e(k)(na,kas)

)
.A3[a, b, kas, k ]

A3[a, b, kas, k ] := in(nb : e(nb)k).〈e(nb)(k,k)〉

B1[a, b, kbs ] := in(k : e(k)kbs).νnb.
(
〈e(nb)k〉 ‖ B2[a, b, kbs, nb, k ] ‖ B1[a, b, kbs ]

)
B2[a, b, kbs, nb, k ] := in(e(nb)(k,k)).Secret[k ]

Figure 3 Formal model of Example 9.

We write Q[ ~M ] , A if Q[~x] := A′ ∈ ∆ and A
α= A′[ ~M/~x], up to commutativity and

associativity of +. The transition relation →∆ is defined in Figure 2. In Rule PubIn,
~y denotes all fresh names introduced by the intruder in this step. Thanks to (Relevancy),
one can wlog ignore transitions where fn(~y) 6⊆ fn( ~M ′), since unused names would simply
not contribute to the intruder knowledge. The sets reach∆(P ) := {Q | P →∗∆ Q} and
traces∆(P ) := {Q0 · · ·Qn | P ≡kn Q0 →∆ · · · →∆ Qn} collect the processes reachable from
P and all the transition sequences from P respectively, given the definitions ∆. We omit ∆
when unambiguous.

I Definition 5 (≡kn). Knowledge congruence, P ≡kn Q, is the smallest congruence that
includes ≡ and such that 〈Γ1〉 ≡kn 〈Γ2〉 if Γ1 ∼kn Γ2.

Knowledge congruence is also characterised by

P1 ≡kn P2 ⇐⇒ sf(P1) α= ν~x.(〈Γ1〉 ‖ Q) ∧ sf(P2) α= ν~x.(〈Γ2〉 ‖ Q) ∧ Γ1 ∼kn Γ2.

Intuitively, modulo derivability, two processes P ≡kn Q are indistinguishable to the intruder
and to the principals. Formally, if P ≡kn Q then the transitions systems (P,→∆) and
(Q,→∆) are isomorphic. We thus close the reduction semantics under knowledge congruence:
we add the rule that if P ≡kn P

′ →∆ Q′ ≡kn Q then P →∆ Q.
While knowledge congruence captures when two configurations are essentially the same,

knowledge embedding formalises the notion of “sub-configuration”.

I Definition 6 (Knowledge embedding). The knowledge embedding relation P1 vkn P2 holds
if P1 ≡ ν~x.(〈Γ1〉 ‖ Q), P2 ≡ ν~x.ν~y.(〈Γ2〉 ‖ Q ‖ Q′) and Γ1 ≤kn Γ2.

I Proposition 7. P1 ≡kn P2 if and only if P1 vkn P2 and P2 vkn P1.

I Theorem 8. Knowledge embedding is a simulation, that is, for all P , P ′ and Q, if P → Q

and P vkn P
′ then there is a Q′ such that P ′ → Q′ and Q vkn Q

′.

I Example 9. Consider the following toy protocol, given in Alice&Bob notation, meant to
establish a new session key K between A and B through a trusted server S:

(1) A→ S : NA, B

(2) S → B : e(K)(NA,KAS), e(K)KBS

(3) B → A : e(K)(NA,KAS), e(NB)K

(4) A→ B : e(NB)(K,K)

Figure 3 shows the protocol formalised in our calculus. Assume the initial state is

P0 = νa, b, kas, kbs.(S[a, b, kas, kbs ] ‖ A1[a, b, kas] ‖ B1[a, b, kbs] ‖ 〈a, b〉).

Step (1) is initiated by A1 which sends some new name na to the server; since communication is
over an insecure channel, the message is just output without indicating the intended recipient.
The server receives the message (or any message the intruder may decide to forge instead)



E. D’Osualdo and F. Stutz 31:7

and outputs the fresh key k encrypted with kbs (the long-term key between B and S) and
with the pair (na, kas) (note the use of non-atomic encryption keys). In the protocol, these
two messages are sent to B but we model step (2) by B1 which just receives the message
relevant to B. The forwarding of e(k)(na,kas) from S to A is performed by the intruder
instead of B in the model.

In the last two steps, modelled by B2 and A3, B sends a nonce nb encrypted with k, to
challenge A to prove she knows k, which she does by sending back e(nb)(k,k). At this point, B
is convinced that by encrypting messages with k they will be only accessible to A. We model
this by making B2 transition to Secret[k ] after a successful challenge. We always assume
the definition Secret[k ] := in(k).Leak[k ]. A transition to Leak[k ] is only possible when the
intruder can derive k so we can check whether the secrecy assertion holds by checking that
no reachable process contains a call to Leak[k ].

Notice how A1 and B1 spawn both the continuation of the session and (recursively) a
process ready to start a new session. This creates the possibility of an unbounded number of
sessions, each of which will involve fresh na, nb, and k.

Threat model. Our reduction semantics follows the Dolev-Yao attacker model in repres-
enting the intruder’s interference: the intruder mediates every communication over insecure
channels, is able to create new names and analyse and construct messages from all the
messages that have been communicated insecurely so far. Threat models that go beyond
Dolev-Yao include dishonest participants and compromised old session keys. These aspects
are not embedded in the semantics, but can be modelled through the process definitions.
If we wanted to model compromised keys in Example 9, for instance, we could modify
the definition of B2 to B2[a, b, kbs, nb, k ] := in(e(nb)(k,k)).Secret[k ] + in(e(nb)(k,k)).〈k〉 which
makes a non-deterministic choice to declare k a secret, or to consider it as old and reveal it.
I Remark 10 (Implementable patterns). Our calculus represents message deconstruction
(e.g. decryption) with pattern matching. However, general pattern matching is too powerful:
a pattern like in(x, k : e(x)k) would obtain both the key k and the plaintext x from an
encrypted message! This is only a modelling problem: one should make sure all patterns
can be implemented using the cryptographic primitives. Consider a pattern ~x : M and let
Z = names(M) \ ~x; the pattern is implementable, if, for all θ : Z ⇀M, we have Mθ,Zθ ` y
for all y ∈ ~x.

2.2 Depth-Bounded Protocols
We can now define the class of depth-bounded protocols, a strict generalisation of the notion
in [18]. While the definitions of [18] depend on fixing the intruder to symmetric encryption
only, here we define it fully parametrically to the intruder model.

I Definition 11 (Depth). The nesting of restrictions of a term is given by the function
nestν(Q[~a]) := nestν(〈M〉) := nestν(0) := 0, nestν(νx.P ) := 1 + nestν(P ), nestν(P ‖ Q) :=
max(nestν(P ),nestν(Q)). The depth of a term is defined as the minimal nesting of restrictions
in its knowledge congruence class, depth(P ) := min {nestν(Q) | Q ≡kn P}.

I Lemma 12. Every Q is α-equivalent to a process Q′ such that |bn(Q′)| ≤ nestν(Q).

Consider for example P = νa, b, c.(〈a〉 ‖ 〈e(b)a〉 ‖ 〈e(c)b〉 ‖ 〈c〉) which has nestν(P ) = 3. The
process P is knowledge-congruent to Q = (νa.〈a〉 ‖ νb.〈b〉 ‖ νc.〈c〉) which has nestν(Q) = 1;
this gives us depth(P ) = nestν(Q) = 1. Although bn(Q) = {a, b, c}, by α-renaming all

CONCUR 2020



31:8 Decidable Inductive Invariants for Cryptographic Protocols Verification

names to x we obtain Q′ = (νx.〈x〉 ‖ νx.〈x〉 ‖ νx.〈x〉) which has the property |bn(Q′)| ≤
nestν(Q) ≤ depth(P ). More generally, Lemma 12 says that processes of depth k can always
be represented using at most k unique names, by reusing names in disjoint scopes.

Let Ss := {P ∈ P | ∀M ∈ msg(P ) : size(M) ≤ s} be the set of processes containing
messages of size at most s. The set DX

s,k is the set of processes of depth at most k ∈ N, with
free names in X, and messages not exceeding size s:

DX
s,k := {P ∈ Ss | fn(P ) ⊆ X,∃Q ∈ Ss : Q ≡kn P ∧ nestν(Q) ≤ k}.

When starting from some initial process P0, every reachable process P has fn(P ) ⊆ fn(P0)
so X can always be fixed to be fn(P0). We therefore omit X from the superscripts to
unclutter notation. The set of processes reachable from P while respecting a size bound s is
the set reachs

∆(P ) := {Q | P · · ·Q ∈ traces∆(P ) ∩ S∗s}.

I Definition 13. For some s, k ∈ N, we say the process P is (s, k)-bounded (w.r.t. a finite
set ∆ of definitions) if reachs

∆(P ) ⊆ Ds,k, i.e. from P only processes of depth at most k can
be reached, in traces respecting the size bound s.

I Example 14. Example 9 is (3, 7)-bounded. We defer the proof of this fact to Section 3.6.

I Example 15 (Encryption Oracle). The definition E[k ] := in(x : x).(〈e(x)k〉 ‖ E[k]) leads
to unboundedness as soon as the initial process contains E[k ] for some k not known to the
intruder, and size bound such that x can match messages of size greater than 1. In such case,
the intruder can inject messages (ci, ci+1) for unboundedly many i, where ci are intruder-
generated nonces. Since k is secret, the resulting reachable configurations would contain
“encryption chains” of the form νk.νc1, . . . , cn.(〈e(c1, c2)k〉 ‖ 〈e(c2, c3)k〉 ‖ . . . 〈e(cn−1, cn)k〉).
When such chains appear in a set for unboundedly many n ∈ N, the set is not depth-bounded.
This encryption oracle pattern could be considered an anti-pattern because it can be exploited
for a chosen-plaintext attack on the key k. The pattern can be usually modified or constrained
to obtain a bounded protocol. One option is to limit the verification to only consider traces
where x is of size 1.1

The two bounds s and k are very different in nature. For size, we ignore any trace that
involves messages exceeding size s. Then we determine if the depth bound k is respected by
all remaining traces. Ignoring traces exceeding s is acceptable for protocols not susceptible
to type confusion attacks and is achieved in other tools by using typing. Our method can
however be pushed beyond this limitation: In Section 4.1, we show how the results of our
analysis on the traces of bounded message size, can be generalised to results that hold for
the unrestricted set of traces.

3 Ideal Completions for Security Protocols

Our main technical contributions are the proofs needed to show that (s, k)-bounded protocols
form a post-effective ideal completion in the sense of [8]. First we outline the significance
and applications of this result, and then proceed with the proofs.

1 In Tamarin one would obtain this by typing x:fresh.



E. D’Osualdo and F. Stutz 31:9

3.1 Downward-Closed Invariants and Security Properties
Suppose we want to establish that a protocol P fulfils some security requirement. In a typical
proof, one needs to establish many intermediate facts about executions of the protocol. For
example, part of the argument may hinge on some key k being always unknown to the
intruder. This kind of property is an invariant of the protocol: it holds at every step of an
execution. Formally, an invariant of P (under definitions ∆ and size constraint s) is any
set of processes that includes reachs

∆(P ). For example, k is never leaked to the intruder
in executions of the protocol P if the set of processes Sk := {Q | 〈k〉 6vkn Q} – i.e. all the
processes where k is not public – is an invariant of P . We will focus here on the class of
vkn-downward-closed invariants. Formally, given a set of processes X, its vkn-downward
closure is the set X↓ := {Q | ∃P ∈ X : Q vkn P}. A set X is vkn-downward closed if X = X↓.
Many properties of interest are naturally downward closed. For example, the set Sk above is
downward-closed as 〈k〉 6vkn Q and Q′ vkn Q implies 〈k〉 6vkn Q

′.
The problem we need to solve is, then, how to show that a given downward-closed set X

is an invariant for a given protocol. Formally, that corresponds to checking X ⊇ reachs
∆(P )

which, by downward-closure of X, is equivalent to checking X ⊇ reachs
∆(P )↓. To prove

the latter inclusion, our strategy is to find an inductive invariant that includes the initial
state P and that is included in X. Let posts

∆(X) := {Q′ | ∃Q ∈ X,Q→ Q′ ∈ Ss} be the
set of processes reachable in one step from processes in X. An invariant X is inductive if
X ⊇ posts

∆(X), which is equivalent to requiring X ⊇ posts
∆(X)↓ if X is downward-closed.

Any inductive invariant that contains the initial process P will include reachs
∆(P ).

To turn this proof strategy into an algorithm, we need three components:
1. a recursively enumerable finite representation of downward-closed sets,
2. a way to decide inclusion between two downward-closed sets, given their representation,
3. an algorithm (called p̂osts

∆) to compute, given a finite representation of a downward-closed
set D, a finite representation of posts

∆(D)↓.
Unfortunately, downward-closed sets cannot be finitely represented in general, especially
if one considers unbounded sessions/nonces. We will show, however, that we can devise
solutions to all three items above for downward-closed subsets of Ds,k, under a mild restriction
on the intruder model. Solving problems 1 to 3 amounts to proving that Ds,k admits a
post-effective ideal completion in the sense of [22, 8]. This implies that we can decide if
the reachable configurations satisfy any given downward-closed property, by adapting the
enumeration scheme presented in [8].

I Theorem 16. Given a property D ⊆ P, and a protocol P with definitions ∆, we write
P,∆ |=s D if reachs

∆(P ) ⊆ D. If D ⊆ Ds,k is downward-closed, then P,∆ |=s D is decidable.

Proof. The algorithm runs two semi-procedures, Prover and Refuter, in parallel. The first
procedure, Prover, enumerates all the downward-closed subsets I of Ds,k. For each I, Prover
checks if
(a) P ∈ I,
(b) I is inductive, by checking p̂osts

∆(I) ⊆ I, and
(c) I ⊆ D.
If we find such a set I, then we have proven reach∆(P ) ⊆ D, and the overall algorithm can
terminate returning “True”. The second procedure, Refuter, enumerates all Q ∈ reach∆(P )
and checks if Q 6∈ D, in which case the overall algorithm can terminate returning “False”.

When P,∆ |=s D holds, then, in the worst case, Prover will eventually consider the finite
representation of reachs

∆(P )↓, which satisfies checks (a) to (c) above. In the case where
P,∆ |=s D does not hold, Refuter would eventually find a reachable process not in D. In
either case, the algorithm terminates with the correct answer. J

CONCUR 2020



31:10 Decidable Inductive Invariants for Cryptographic Protocols Verification

The above algorithm can be used to decide the following properties.

Deciding (s, k)-boundedness. The set Ds,k is itself downward-closed, so we can decide if
P is (s, k)-bounded, by deciding P,∆ |=s Ds,k.

Deciding control-state reachability and secrecy. Control-state reachability asks whether
there is an execution of the protocol which reaches a process containing a process call Q[. . .]
for some given Q. Secrecy can be reduced to control-state reachability by introducing a
definition Secret[m] := in(m).Leak[m] (for a special process identifier Leak with no definition).
In the definition of the protocol one can call Secret[m] to mark some message m as a secret,
and secrecy corresponds to asking control-state (un)reachability for Leak.

If P is (s, k)-bounded, control-state reachability for Q from P , can decided by P,∆ |=s DQ,
where DQ is the (downward-closed) subset of Ds,k of processes that do not contain calls to Q.
Notice that, when P is arbitrary, the algorithm checks (s, k)-boundedness and control-state
reachability at the same time.

Absence of misauthentication. A misauthentication happens when a principal a believes
she shares a secret n with b but b believes she shares the secret n with some other entity c. To
check this situation can never arise, we can produce the process Auth[a, b, n] when a believes
to share the secret n with b. Absence of misauthentication can be decided by P,∆ |=s A
where A = {Q ∈ Ds,k | νa, b, c, n.(Auth[a, b, n] ‖ Auth[b, c, n]) 6vkn Q }.

Susceptibility to known-plaintext attacks. The task of guessing a symmetric key is made
much easier if it is possible for the attacker to have access to an arbitrarily large number of
known nonces encrypted with the same key k. We can model this situation by asking if:

∀n ∈ N : ∃Q ∈ reachs
∆(P ) : Rn vkn Q where R = νm.(〈m〉 ‖ 〈e(m)k〉) (†)

If (†) holds for P then the intruder does have access to an unbounded supply of known
messages m encrypted with the same key k. Interestingly, the property becomes mean-
ingful only when considering unbounded number of nonces. Condition (†) is equivalent to
reachs

∆(P )↓ ⊇ {Rn | n ∈ N}↓. If we find a downward-closed inductive invariant I for P ,
such that I 6⊇ {Rn | n ∈ N}↓, then we can be sure that (†) does not hold, and P is not
susceptible to known-plaintext attacks on k. We can therefore semi-decide (†) by enumerating
all candidate I. Contrary to the previous algorithms, we are not able to provide a Refuter
procedure (we conjecture the problem is undecidable). We can get a decision procedure if,
instead of unboundedly many plaintext-encrypted pairs we ask whether a sufficiently high,
user-provided number N of such pairs can be produced. The problem can be extended to
cover the case where the known-plaintext can be any message of size at most s.

Notice how, if the protocol is found to satisfy the property, the algorithms above can
output an inductive invariant acting as an independently checkable certificate of correctness.
Although the mentioned security properties alone do not cover the full security requirements,
an effectively presented invariant can provide the foundations to prove further properties.

The algorithm of Theorem 16 relies on expensive enumeration schemes, which are mainly
a theoretical device to prove decidability. In a more practical setting, the candidate invariants
can be supplied by the user and refined interactively, avoiding the need for the enumeration
of Prover, or they can be inferred as we describe in Section 3.6.



E. D’Osualdo and F. Stutz 31:11

3.2 Bounded Processes are Well-Quasi-Ordered
We construct finite representations of downward-closed invariants by making use of the
algebraic structure of the quasi-order (Ds,k,vkn). A relation v ⊆ S × S over some set S is a
quasi-order (qo) if it is reflexive and transitive. An infinite sequence s0, s1, . . . of elements of
S is called good if there are two indexes i < j such that si v sj . A qo (S,v) is called a well
quasi order (wqo) if all its sequences are good.

We prove (Ds,k,vkn) is a wqo for any intruder model, by showing a correspondence
between processes in Ds,k and finitely-labelled forests of height at most k, which we represent
as nested multisets. The details can be found in the full version of the paper [19].

3.3 Limits and Ideal Decompositions
By exploiting the wqo structure of Ds,k, we can provide a finite representation for its
downward-closed sets. Let (S,v) be a qo. A set D ⊆ S is an ideal if it is downward-closed
and directed, i.e. for all x, y ∈ D there is a z ∈ D such that x v z and y v z. We write Idl(S)
for the set of ideals of S. It is well-known that in a well-quasi-order, every downward-closed
set is equal to a canonical minimal finite union of ideals, its ideal decomposition. To represent
downward-closed sets of Ds,k we will only need to provide finite representations of its ideals.
We represent ideals using limits, which have the same syntax as processes augmented with a
construct -ω to represent an arbitrary number of parallel components.

I Definition 17 (Limits). We call limits the terms L formed according to the grammar:

L 3 L ::= 0 | (R1 ‖ · · · ‖ Rn) R ::= B | Bω B ::= 〈M〉 | Q[ ~M ] | νx.L

I Definition 18 (Denotation of limits). The denotation of L is the set JLK := [L ]↓ where:

[ 0 ] := {0} [L1 ‖ L2 ] := {(P1 ‖ P2) | P1 ∈ [L1 ], P2 ∈ [L2 ]}

[ Q[ ~M ] ] := {Q[ ~M ]} [Bω ] :=
⋃

n∈N {(P1 ‖ · · · ‖ Pn) | ∀i ≤ n : Pi ∈ [B ]}
[ 〈M〉 ] := {〈M〉} [ νx.L ] := {νx.P | P ∈ [L ]}

We call the processes in JLK instances of L. Define nestν(L) to be as nestν on processes with
the addition of the case nestν(Lω) := nestν(L). It is easy to check that for each P ∈ JLK,
depth(P ) ≤ nestν(L). We write LX

s,k for the set of limit expressions L with free names in X
that have nestν(L) ≤ k and do not contain messages of size exceeding s. We often omit X
and understand it is a fixed finite set of names.

I Theorem 19. Limits faithfully represent ideals: I ∈ Idl(Ds,k) ⇐⇒ ∃L ∈ Ls,k : I = JLK.

3.4 Decidability of Inclusion
Now we turn to decidability of inclusion between downward-closed sets. It is well-known
that in a wqo, given the ideal decomposition of two downward-closed sets D1 = I1 ∪ . . . ∪ In

and D2 = J1 ∪ . . . ∪ Jm, we have D1 ⊆ D2 if and only if for all 1 ≤ i ≤ n, there is a
1 ≤ j ≤ m, such that Ii ⊆ Jj . Hence, decidability of ideals inclusion implies decidability of
downward-closed sets inclusion.

We extend structural congruence to limits in the obvious way, with the addition of the
law 〈M〉ω ≡ 〈M〉 obtaining that L ≡ L′ implies JLK = JL′K. We can define a standard form
for limits: every limit is structurally congruent to a limit of the form ν~x.(〈Γ〉 ‖

∏
i∈IQi[ ~Mi] ‖∏

j∈JB
ω
j ) where every name in ~x occurs free at least once in the scope of the restriction, and

CONCUR 2020



31:12 Decidable Inductive Invariants for Cryptographic Protocols Verification

dLen :=


L if L is sequential or 0
dL1en ‖ dL2en if L = L1 ‖ L2

νx.(dL′en) if L = νx.L′

(dBen)n if L = Bω

L⊗ n :=


L if L is sequential or 0
L1 ⊗ n ‖ L2 ⊗ n if L = L1 ‖ L2

νx.(L′ ⊗ n) if L = νx.L′

(B ⊗ n)n ‖ Bω if L = Bω

Figure 4 The grounding d-en : Ls,k → Ds,k and extension -⊗n : Ls,k → Ls,k operations on limits.

for all j ∈ J , Bj is also in standard form. When we write sf(L) α= ν~x.(〈Γ〉 ‖ Q ‖ R) we imply
that Q is a parallel composition of process calls

∏
i∈IQi[ ~Mi] (in which case we write |Q|

for |I|) and R is a parallel composition of iterated limits
∏

j∈JB
ω
j .

To better manipulate limits, we introduce, in Figure 4, the n-th grounding dLen and the
n-th extension L ⊗ n, of a limit L. Grounding replaces each -ω with -n, with the obvious
property that dLen ∈ JLK. An extension L⊗ n produces a new limit with each sub-limit Bω

unfolded n times. Note that extension does not alter semantics: JLK = JL⊗ nK.

The absorption axiom. The decidability proof hinges on a characterisation of inclusion
that requires an additional hypothesis on the intruder model.

I Definition 20 (Absorbing intruder). Fix an intruder model I = (Σ,`). Let ~x and ~y

be two lists of pairwise distinct names, Γ be a finite set of messages, and Γ′ = Γ[~y/~x].
Moreover, assume that names(Γ) ∩ ~y = ∅. We say I is absorbing if, for all messages M with
names(M) ⊆ names(Γ), we have that Γ,Γ′ `M if and only if Γ `M .

I Lemma 21. Ien is absorbing.

For the rest of the paper, we assume an absorbing intruder model. The absorption axiom has
a technical definition, which becomes more intuitive if understood in the context of limits
of the form L =

(
ν~x.(〈Γ〉 ‖ Q)

)ω. Imagine comparing the difference in knowledge between
dLe1 and dLe2: we have sf(dLe2) α=

(
ν~x.ν~x′.(〈Γ〉 ‖ 〈Γ′〉 ‖ Q ‖ Q′)

)
, where Γ′ = Γ[~x′/~x]. The

absorption axiom tells us that if we want to check whether a process ν~x.〈M〉 is embedded
in sf(dLe2), we only need to check if M is derivable from Γ and we can ignore Γ′. In other
words, we only need to check if ν~x.〈M〉 is embedded in dLe1.

We are now ready to prove our main result: a small model property that shows decidability
of limit inclusion. Let us present the intuition on the simpler problem of deciding inclusion
when one of the limits is a single process P , i.e. deciding if P ∈ JLK. Take P = νa, b.(〈e(a)b〉 ‖
A[b]) and L =

(
νx.(〈x〉 ‖ A[x])

)ω. Suppose we replicate the ω twice, obtaining the equivalent
limit L ⊗ 2 ≡ νx0, x1.(〈x0〉 ‖ A[x0] ‖ 〈x1〉 ‖ A[x1] ‖ L). The idea is that we can match P
against the fixed part of L⊗ 2:

P ≡kn νx0, x1.(〈e(x0)x1〉 ‖ A[x1 ]) vkn νx0, x1.(〈e(x0)x1〉 ‖ A[x0] ‖ A[x1])
vkn νx0, x1.(〈x0〉 ‖ 〈x1〉 ‖ A[x0] ‖ A[x1]) ∈ L⊗ 2

The first observation is therefore that if we can find some m such that P is embedded in the
fixed part of L⊗m, we have proven P ∈ JLK. To turn this into an algorithm, we need to prove
that there exists an n so that if we failed to embed P in the fixed part of L⊗m, for any m ≤ n
then P is not going to embed in L⊗m′ for every m′, and therefore P 6∈ JLK. In other words,
we need to know that after some threshold n, there is no point trying with bigger extensions.
Take for example P = νx, y.(B[x, y ]||B[y, x]) and L = (νx, y.B[x, y ])ω. We can try and embed
P into L⊗2 but we would fail as the fixed part expands to νx0, y0.B[x0, y0 ] ‖ νx1, y1.B[x1, y1 ].
It is easy to see that expanding further would not introduce new patterns in the fixed part
of the limit which would help embed P .



E. D’Osualdo and F. Stutz 31:13

Theorem 22 formalises the idea for general inclusion between two arbitrary limits L1
and L2: it proves that the threshold for expansion is the number of fixed restrictions of L1
plus the number of fixed process calls of L1, plus one; and it makes use of the absorption
axiom to prove the threshold is sound even in the presence of knowledge.

I Theorem 22 (Characterisation of Limits Inclusion). Let L1 and L2 be two limits, with
sf(L1) α= ν~x1.(〈Γ1〉 ‖ Q1 ‖

∏
i∈IB

ω
i ), and let n = |~x1|+ |Q1|+ 1. Then:

JL1K ⊆ JL2K ⇐⇒

{
sf(L2 ⊗ n) α= ν~x1, ~x2.(〈Γ2〉 ‖ Q1 ‖ Q2 ‖ R2) and Γ1 ≤kn Γ2 (A)
J〈Γ1〉 ‖

∏
i∈IBiK ⊆ J〈Γ2〉 ‖ R2K (B)

I Theorem 23. Given L1, L2 ∈ L it is decidable whether JL1K ⊆ JL2K.

Proof. Theorem 22 leads to a recursive algorithm. Given L1 and L2, one computes sf(L1) and
sf(L2 ⊗ n). For every α-renaming that makes condition (A) hold, one checks condition (B)
(recursively). If no renaming makes both true then the inclusion does not hold. In the
recursive case, there are fewer occurrences of ω in the limit on the left, eventually leading to
the case where L1 has no occurrence of ω, and only condition (A) needs to be checked. J

I Example 24 (Limit inclusion). Consider the following two limits:

L1 = νx1.
(
(νx2.(〈e(x2)x1〉 ‖ A[x2 ] ‖ A[x1 ]))ω

)
L2 = νy1, y3.

(
〈y3〉 ‖ A[y3 ]ω ‖ (νy2.(〈y2〉 ‖ A[y2 ]))ω

)
We prove that JL1K ⊆ JL2K by applying the recursive algorithm from Theorem 23. By
Theorem 22, here the threshold for expansion is n = 2, but we will try with n = 1. In case
we succeed, the inclusion holds. If not, we might have to increase n up to 2. This results in

L2 ⊗ 1 = νy1, y3.
(
〈y3〉 ‖ A[y3 ] ‖ A[y3 ]ω ‖ (νy2.(〈y2〉 ‖ A[y2 ]))ω ‖ (νy2.(〈y2〉 ‖ A[y2 ]))

)
≡kn νy1, y22, y3.

(
〈y3〉 ‖ 〈y22〉 ‖ A[y22 ] ‖ A[y3 ] ‖ A[y3 ]ω ‖ (νy2.(〈y2〉 ‖ A[y2 ]))ω

)
To try and match the fixed part of L1 with L2 ⊗ 1, we could α-rename x1 to y1. This works
for (A) but the remaining goal (B) cannot be shown as it does not hold because we cannot
derive 〈e(x2)y1〉 from the knowledge on the right-hand side:

Jνx2.(〈e(x2)y1〉 ‖ A[x2 ] ‖ A[x1 ])K 6⊆ J〈y3〉 ‖ 〈e(y22)y3〉 ‖ A[x1 ]ω ‖ (νy2.(〈e(y2)y3〉 ‖ A[y2 ]))ωK

Choosing the α-renaming [x1/y3 ] leaves us instead with:

Jνx2.(〈e(x2)y3〉 ‖ A[x2 ] ‖ A[x1 ])K ⊆ J〈y3〉 ‖ 〈e(y22)y3〉 ‖ A[x1 ]ω ‖ (νy2.(〈e(y2)y3〉 ‖ A[y2 ]))ωK

which holds. It suffices to expand the latter limit by 1 and to choose the renaming [x2/y2 ].
Then, e(x1)x2 ≤kn x1, x2 holds and the process calls match. Note that it is crucial to keep
A[x1 ]ω on the right side.

3.5 Computing Post-Hat
The last result we need is the decidability of a function p̂osts

∆(L) which, given a limit L,
returns a finite set of limits {L1, . . . , Ln} such that posts

∆(JLK)↓ = JL1K ∪ . . . ∪ JLnK. The
challenge is representing all the possible successors of processes in JLK without having to

CONCUR 2020



31:14 Decidable Inductive Invariants for Cryptographic Protocols Verification

L = νa, b, kas, kbs.(〈a, b〉 ‖ A1[a, b, kas ]ω ‖ B1[a, b, kbs ]ω ‖ S[a, b, kas, kbs ]ω ‖ Lω
1 )

L1 = νna.
(
〈na〉 ‖ A2[a, b, kas, na ] ‖ Lω

2
)

L2 = νk.
(
〈e(k)(a,kas)〉 ‖ 〈e(k)(b,kas)〉 ‖ 〈e(k)(na,kas)〉 ‖ 〈e(k)kbs〉 ‖ Secret[k ]ω ‖ A3[a, b, kas, k ]ω ‖ Lω

3
)

L3 = νnb.
(
〈e(nb)(k,k)〉 ‖ 〈e(nb)k〉 ‖ B2[a, b, kbs, nb, k ]

)
Figure 5 An inductive invariant for Example 9.

enumerate JLK. The key idea hinges again on the absorption axiom: we observe that to
consider all possible process calls that may cause a transition, it is enough to unfold each ω
in L by some bounded number b. Any transition taken from further unfoldings will give rise
to successors that are congruent to some of the ones already considered.

The bound b used in extending a limit, is defined as a function of the process definitions
and the intruder model. The arity of a pattern ~x : M is |~x|. Given a set of definitions ∆,
β(∆) is the maximum arity of patterns in ∆. The function γ(I) returns the maximum arity
of the constructors in the signature of I.

I Definition 25 (p̂ost). Let b = β(∆) · γ(I)s−1 + 1 and sf(L⊗ b) = ν~x.(〈Γ〉 ‖ Q ‖ R),

p̂osts
∆(L) :=

{
ν~y.
(
〈Γ′〉 ‖ Q′ ‖ R

) ∣∣ ν~x.
(
〈Γ〉 ‖ Q

)
→∆ ν~y.

(
〈Γ′〉 ‖ Q′

)
∈ Ss

}
.

I Theorem 26. p̂osts
∆(L) = {L1, . . . , Ln} =⇒ posts

∆(JLK)↓ = JL1K ∪ . . . ∪ JLnK.

3.6 Algorithmic Aspects
The limit L in Figure 5 represents an inductive invariant for Example 9, under size bound 3.
It can be proven invariant by checking that p̂ost3

∆(L) is included in L. Since the initial
process of Example 9, P0, is in JLK, the invariant certificates that any reachable process is
(3, 7)-bounded (note nestν(L) = 7) and satisfies secrecy. In fact, Lω is also inductive, proving
boundedness and secrecy for any process in (P0)ω. Since Jνk.(νx.(〈x, e(x)k〉))ωK 6⊆ JLωK,
Lω provides proof that the protocol is not susceptible to known-plaintext attacks where
arbitrary known nonces are available to the intruder encrypted with the same key.2 The
algorithms for inclusion and p̂ost can be used to check inductiveness given a candidate
invariant such as L. This leaves open the question of how to efficiently generate candidates.
The algorithm of Theorem 16 can in principle be used to enumerate all candidate invariants,
with an impractically high complexity. Luckily, a more directed inference of invariants can be
obtained by a widening operator, in the style of [37]; in fact, the invariant L was automatically
inferred from P0 using the widening of our prototype tool. The basic observation behind
invariant inference, is that from a sequence of transitions P1 →∗ P2 with P1 vkn P2, one can
deduce that the same sequence can be simulated from P2 (by Theorem 8) obtaining a P3 with
P2 vkn P3 and so on. The embedding between P1 and P2, is justified by P1 ≡kn ν~x.(〈Γ1〉 ‖ Q),
P2 ≡kn ν~x.(〈Γ1〉 ‖ Q ‖ P ); we can extrapolate the difference P and accelerate the sequence of
transitions by constructing the limit ν~x.(〈Γ1〉 ‖ Q ‖ Pω). This operation can be extended to
limits. The end product is a finite union of limits which is inductive by construction. This
procedure requires exploration of transitions and many inclusion checks, a costly combination.
To obtain a more practical algorithm, we devised two techniques: inductiveness checks
through “incorporation”, and a coarser widening.

2 The property could be extended to cover composite known-plaintext messages (of some maximum size s),
and the generation of a sufficiently high number N of plaintext-encrypted pair with the same key.



E. D’Osualdo and F. Stutz 31:15

Table 1 Experimental results. Columns: Inference of invariant fully automatic (f) or interact-
ive (i); Check of inductiveness; Secrecy proved (X), not holding (×), not modelled (◦).

Name Infer C S Name Infer C S Name Infer C S

Ex.9 4.4s f 1.8s X NHS 5.0s f 1.6s ◦ YAH 7.8s f 2.5s ◦
OR 3.4s f 1.9s ◦ NHSs 6.8s f 1.7s X YAHs1 12.3s f 2.6s X
ORl 25.0s f 3.5s × NHSr 90.9s i 20.8s × YAHs2 8.8s f 2.0s X
ORa 13.8s i 5.0s ◦ KSL 37.0s f 9.8s X YAHlk 11.9s i 17.3s X
ORs 9.8s f 2.0s X KSLr 200.6s f 31.4s X ARPC 0.5s f 0.1s X

Consider the inductiveness check
q
p̂osts

∆(L)
y
⊆ JLK implemented by checking that, for

each transition considered by p̂ost the resulting limit L′ is included by L. We observe that
L′ and L will share the context of the transition: L can be rewritten to C[Q[ ~M ]] and L′ to
C[P ] for some P . To prove inclusion of C[P ] in C[Q[ ~M ]] it is then sufficient to show that P
is embedded in C[Q[ ~M ]]. We call this check an incorporation of P in C. See Appendix D
for an example. Although incomplete in general, incorporation can prove inductiveness in
many practical examples, in a remarkably faster way.

There are cases, however, where the incorporation check fails on inductive invariants.
Consider for example an inductive invariant represented by the union of two incomparable
limits L1, L2. Suppose that for some P ∈ JL1K there is P ′ with P → P ′ ∈ JL2K \ JL1K. Then,
incorporation of P ′ in L1 would fail. To side-step this problem we replace union of limits
with parallel composition: JL1K ∪ JL2K ⊆ JL1 ‖ L2K by downward closure of J-K. Using this
over-approximation, we can try to aim for an inductive invariant which consists of exactly
one limit, and for which the incorporation check suffices. This approximation is incomplete:
some protocols require inductive invariants consisting of unions of incomparable limits.

4 Evaluation

We built a proof-of-concept tool implementing limit inclusion, inductivity check, incorporation
and a coarse widening. Currently, the tool only supports symmetric encryption, but we
plan to add support for asymmetric encryption, signatures and hashing. The source code
and all the test protocol models are available at [20] where we also provide a tutorial-style
explanation of the methodology. We summarise our experiments3 in Table 1. The tool
is instructed to compute, using the widening, an invariant for the provided model, under
given message size assumptions. When an invariant can be found, it represents a proof that
the model is depth-bounded. If the inferred invariant is leak-free, secrecy is also proven.
We model a number of well-known protocols under various threat scenarios (e.g. with or
without leak of old keys): Needham-Schröder (NHS), Otway-Rees (OR), Kehne-Schönwälder-
Landendörfer (KSL), Yahalom (YAH) and Andrew RPC (ARPC). For any example containing
a problematic encryption oracle pattern (see Example 15) we constrain the input message of
the oracle to be a nonce (message of size 1). With the exception of NHSr, ORa and YAHlk,
all the invariants were obtained fully automatically. For YAHlk we had to combine two
widened limits (the timing is the sum of the time spent computing each limit); for NHSr
and ORa we had to tweak a partially widened limit manually to make it inductive. To
simulate using invariants as correctness certificates, for each example we re-checked them for
inductiveness.

3 Tests run with Python 2.7, z3-solver v4.8, 8GB RAM, Intel CPU i5, on Linux.

CONCUR 2020



31:16 Decidable Inductive Invariants for Cryptographic Protocols Verification

4.1 Limitations

Message size bounds. Bounding message size in the analysis is not always acceptable, as it
may miss type confusion attacks. Such patterns arise, for example, in XOR-based protocols,
where considering only typed runs is not appropriate. This is problematic because in most
practical examples bigger size bounds lead to unboundedness in depth, as illustrated by
Example 15. However, not all is lost: our limits can be extended to provide invariants with
unbounded message size. The idea, detailed in Appendix B, is to first analyse a protocol
with a size bound that ensures depth-boundedness, obtaining an inductive invariant as one
or more limits; then we annotate such limits with “wildcards” (?) on occurrences of names.
A wildcarded name a? stands for an arbitrary message (of arbitrary size). By introducing
the appropriate wildcards, one can obtain an inductive invariant for the protocol with no
message size bounds. For Example 15, E[k ] ‖

(
νx.〈e(x)k〉

)ω is an inductive invariant if we
restrict x to be of size 1. Since x is never inspected , injecting larger terms in it would not
lead to new behaviour. We can therefore generalise the limit to E[k ] ‖

(
νx.〈e(x?)k〉

)ω which
is an inductive invariant for the protocol with no size bounds.

Since verification with no size bounds is undecidable, this extension is by necessity
incomplete: there are downward-closed sets that cannot be represented by extended limits.
However, since protocols typically achieve resistance to type confusion attacks by making
sure that messages of the wrong type are discarded by honest principals, this extension is very
effective. In fact, all the size bounds in our benchmarks can be lifted using this technique.

Inherent unboundedness. There are two ways a protocol may fall outside of our class. The
first is when unboundedly many participants in a session form a ring/list topology, like
the recursive protocol of [30, §6]. One can provide a partial solution by using an under-
approximate model with a ring/list of fixed size, or an over-approximate model by using
an unbounded star topology. The second way is when the intruder can produce irreducible
encryption chains and the participants would inspect them generating new behaviour. In
such cases not even extended limits can help. We deem this situation unlikely to be desirable
in a realistic protocol.

5 Conclusions and Future Work

We presented a theory of decidable inductive invariants for depth-bounded cryptographic
protocols. We showed how one can infer inductive invariants and evaluated the approach
through a prototype implementation.

From a theoretical perspective, it would be interesting to determine precise complexity
bounds for inclusion, for general intruder models. We can show that vkn is NP-complete for
any intruder model that has polynomially decidable ≤kn [33].

A direction for further improvement is extending the class of supported properties. In par-
ticular, we plan to study how invariants can be used to automatically prove diff-equivalence [5]
without bounding sessions/nonces.

Finally, we intend to explore ways in which our invariants can be integrated in existing
tools such as ProVerif and Tamarin. For instance, Tamarin performs a backwards search to
find possible attacks. Our invariants could provide a pruning technique to avoid exploring
paths that are unreachable from the initial state. Similar combinations of forward and
backward search have been shown to improve performance dramatically for analyses of
infinite-state systems such as Petri nets [7].



E. D’Osualdo and F. Stutz 31:17

References

1 Martín Abadi and Véronique Cortier. Deciding knowledge in security protocols under (many
more) equational theories. In CSFW, pages 62–76. IEEE Computer Society, 2005.

2 Myrto Arapinis and Marie Duflot. Bounding messages for free in security protocols - extension
to various security properties. Inf. Comput., 239:182–215, 2014.

3 Alessandro Armando, David A. Basin, Yohan Boichut, Yannick Chevalier, Luca Compagna,
Jorge Cuéllar, Paul Hankes Drielsma, Pierre-Cyrille Héam, Olga Kouchnarenko, Jacopo
Mantovani, Sebastian Mödersheim, David von Oheimb, Michaël Rusinowitch, Judson Santiago,
Mathieu Turuani, Luca Viganò, and Laurent Vigneron. The AVISPA tool for the automated
validation of internet security protocols and applications. In CAV, volume 3576 of Lecture
Notes in Computer Science, pages 281–285. Springer, 2005.

4 Bruno Blanchet. Modeling and verifying security protocols with the applied pi calculus and
proverif. Foundations and Trends in Privacy and Security, 1(1-2):1–135, 2016.

5 Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated verification of selected
equivalences for security protocols. J. Log. Algebr. Program., 75(1):3–51, 2008. doi:10.1016/
j.jlap.2007.06.002.

6 Bruno Blanchet and Andreas Podelski. Verification of cryptographic protocols: tagging enforces
termination. Theor. Comput. Sci., 333(1-2):67–90, 2005.

7 Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. Approaching the
coverability problem continuously. In TACAS, volume 9636 of Lecture Notes in Computer
Science, pages 480–496. Springer, 2016.

8 Michael Blondin, Alain Finkel, and Pierre McKenzie. Handling infinitely branching well-
structured transition systems. Inf. Comput., 258:28–49, 2018.

9 Michael Burrows, Martín Abadi, and Roger M. Needham. A logic of authentication. In
SOSP’89, pages 1–13. ACM, 1989.

10 Rohit Chadha, Vincent Cheval, Ştefan Ciobâcă, and Steve Kremer. Automated verification of
equivalence properties of cryptographic protocols. ACM Trans. Comput. Log., 17(4):23:1–23:32,
2016.

11 Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. DEEPSEC: deciding equivalence
properties in security protocols theory and practice. In IEEE Symposium on Security and
Privacy, pages 529–546. IEEE Computer Society, 2018.

12 Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, and Mathieu Turuani. An NP decision
procedure for protocol insecurity with XOR. In LICS, pages 261–270. IEEE Computer Society,
2003.

13 Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. Typing messages for free in
security protocols: The case of equivalence properties. In CONCUR, volume 8704 of Lecture
Notes in Computer Science, pages 372–386. Springer, 2014.

14 Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. Decidability of trace equivalence
for protocols with nonces. In CSF’15, pages 170–184. IEEE Computer Society, 2015.

15 Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. A type system for
privacy properties. In ACM Conference on Computer and Communications Security, pages
409–423. ACM, 2017.

16 Morten Dahl, Naoki Kobayashi, Yunde Sun, and Hans Hüttel. Type-based automated
verification of authenticity in asymmetric cryptographic protocols. In ATVA, volume 6996 of
Lecture Notes in Computer Science, pages 75–89. Springer, 2011.

17 Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols. IEEE Trans.
Information Theory, 29(2):198–207, 1983.

18 Emanuele D’Osualdo, Luke Ong, and Alwen Tiu. Deciding secrecy of security protocols for an
unbounded number of sessions: The case of depth-bounded processes. In CSF, pages 464–480.
IEEE Computer Society, 2017.

CONCUR 2020

https://doi.org/10.1016/j.jlap.2007.06.002
https://doi.org/10.1016/j.jlap.2007.06.002


31:18 Decidable Inductive Invariants for Cryptographic Protocols Verification

19 Emanuele D’Osualdo and Felix Stutz. Decidable inductive invariants for verification of
cryptographic protocols with unbounded sessions. CoRR, abs/1911.05430, 2019. arXiv:
1911.05430.

20 Emanuele D’Osualdo and Felix Stutz. Lemma9, version 1.0, 2020. doi:10.5281/zenodo.
3950846.

21 Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell, and Andre Scedrov. Undecidability of
bounded security protocols. In Workshop on Formal Methods and Security Protocols, 1999.

22 Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part I: completions. In
STACS, volume 3 of LIPIcs, pages 433–444, 2009.

23 Sibylle B. Fröschle. Leakiness is decidable for well-founded protocols. In POST’15, pages
176–195, 2015.

24 Reiner Hüchting, Rupak Majumdar, and Roland Meyer. Bounds on mobility. In CONCUR,
volume 8704 of Lecture Notes in Computer Science, pages 357–371. Springer, 2014.

25 Gavin Lowe. Some new attacks upon security protocols. In Ninth IEEE Computer Security
Foundations Workshop, March 10 - 12, 1996, Dromquinna Manor, Kenmare, County Kerry,
Ireland, pages 162–169. IEEE Computer Society, 1996.

26 Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The TAMARIN prover
for the symbolic analysis of security protocols. In CAV, volume 8044 of Lecture Notes in
Computer Science, pages 696–701. Springer, 2013.

27 Roland Meyer. On boundedness in depth in the π-calculus. In Giorgio Ausiello, Juhani
Karhumäki, Giancarlo Mauri, and C.-H. Luke Ong, editors, IFIP TCS, volume 273 of IFIP,
pages 477–489. Springer, 2008.

28 Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993–999, 1978.

29 David J. Otway and Owen Rees. Efficient and timely mutual authentication. Operating
Systems Review, 21(1):8–10, 1987.

30 Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of Computer Security, 6(1-2):85–128, 1998.

31 Mark D. Ryan and Ben Smyth. Applied pi-calculus. In Formal Models and Techniques for
Analyzing Security Protocols, volume 5 of Cryptology and Information Security Series, pages
112–142. IOS Press, 2011.

32 Benedikt Schmidt, Simon Meier, Cas J. F. Cremers, and David A. Basin. Automated analysis
of Diffie-Hellman protocols and advanced security properties. In CSF, pages 78–94. IEEE
Computer Society, 2012.

33 Felix Stutz. Decidable inductive invariants for verification of cryptographic protocols with
unbounded sessions. Master’s thesis, Saarland University, 2019.

34 Alwen Tiu, Rajeev Goré, and Jeremy E. Dawson. A proof theoretic analysis of intruder
theories. Logical Methods in Computer Science, 6(3), 2010.

35 Alwen Tiu, Nam Nguyen, and Ross Horne. SPEC: an equivalence checker for security protocols.
In APLAS, volume 10017 of Lecture Notes in Computer Science, pages 87–95, 2016.

36 Thomas Wies, Damien Zufferey, and Thomas A. Henzinger. Forward analysis of depth-bounded
processes. In FoSSaCS, volume 6014 of Lecture Notes in Computer Science, pages 94–108.
Springer, 2010.

37 Damien Zufferey, Thomas Wies, and Thomas A. Henzinger. Ideal abstractions for well-
structured transition systems. In VMCAI’12’, volume 7148 of LNCS, pages 445–460. Springer,
2012.

http://arxiv.org/abs/1911.05430
http://arxiv.org/abs/1911.05430
https://doi.org/10.5281/zenodo.3950846
https://doi.org/10.5281/zenodo.3950846


E. D’Osualdo and F. Stutz 31:19

A Support for Other Cryptographic Primitives

We claim the assumptions we make on the intruder model are mild, and are satisfied by
the symbolic models of many cryptographic primitives. We illustrated the treatment of
(a)symmetric encryption; treatment of hashes and blind signatures is entirely analogous. By
using the sequent calculus formalisation of [34] one can trivially extend our proofs to prove
all these primitives form an effective absorbing intruder.

Supporting XOR requires a bit more analysis on the algebraic properties of the primitives.
We take as reference the model of XOR analysed in [1, 12]. The two constructors ⊕ (of
arity 2) and 0 (of arity 0) are added to the set of constructors. Their algebraic properties
are formalised through a congruence relation:

M1 ⊕ (M2 ⊕M3) ∼= (M1 ⊕M2)⊕M3 M1 ⊕M2 ∼= M2 ⊕M1 (1)
M ⊕ 0 ∼= M M ⊕M ∼= 0 (2)

The results of [1, 12] establish that the laws (2) can be always orientated from left
to right. Formally, one can define the rewriting system  with two rules M ⊕ 0  
M and M ⊕ M  0; and the congruence ∼=AC defined by laws (1). Then the relation
 AC := (∼=AC ◦ ) is terminating, and confluent modulo ∼=AC. The set of normal forms
M⇓ := {N | M  ∗AC N 6 AC} is then guaranteed to be finite, computable, and such that
M ∼= N ⇐⇒ (M⇓ ∩N⇓) 6= ∅.

We can harmonise the equational theory of XOR with the deduction system of Figure 1
by adding the rules

Γ ` 0
Xor0

Γ `M1 Γ `M2

Γ `M1 ⊕M2
XorR

Γ,M1,M2,M1 ⊕M2 ` N
Γ,M1,M2 ` N

XorL

Γ,M,M⇓ ` N
Γ,M ` N

⇓L
Γ ` N N ∈M⇓

Γ `M
⇓R

The deduction system accurately models XOR, even if it uses ⇓ instead of ∼=: as proven
in [12, Prop. 1], one can always restrict the intruder to manipulate messages in normal form
without loosing expressive power.

We are left to prove that the derivability satisfies the effective absorbing intruder axioms.
Decidability has been proven in [1, 12]. The axioms of Definitions 1 and 20 are easily satisfied
by the same arguments we used for Ien. The proofs of (Relevancy) and absorption make use
of the fact that if N ∈M⇓ then fn(N) ⊆ fn(M).

We conjecture Diffie-Hellman exponentiation (following the model of e.g. [32]) can be
shown to satisfy our axioms in the same way we treated XOR. The main issue with Diffie-
Hellman, with respect to (Relevancy) and absorption, is the inverses law M ∗M−1 ∼= 1: by
using the law from right to left, one can involve arbitrary names in a derivation. This could
be handled in the same way we handle cancellation of XOR, by normalising derivations so
that the law is always applied left to right. We leave the formal development of this remark
as future work.

A delicate point is the bounded message size assumption. With advanced primitives like
XOR it is easier (but not inevitable) to encounter protocols for which it is impossible to
extend the results on the bounded model to the unbounded case.

CONCUR 2020



31:20 Decidable Inductive Invariants for Cryptographic Protocols Verification

B Towards Unbounded Message Size

The analysis presented in Section 3 considers only traces (and attacks) involving messages
of size smaller than some given bound s. We show here how the results of the analysis
can be generalised to inductive invariants for the full set of traces, with no restriction on
the size. Because of undecidability of the general problem, this generalisation will not be
precise for every protocol: there are protocols for which the most precise generalised limit is
trivial (i.e. does not ensure any non-trivial property of the protocol). For the protocols in
our benchmarks however, one can get precise invariants by generalising the ones inferred by
the tool.

We first introduce the syntax and semantics of generalised limits, and describe how we
can use them to generalise our benchmarks. Finally, although studying how to automate this
generalisation is beyond the scope of this paper, we briefly sketch how p̂ost can be adapted
to work on generalised limits.

Aside: finer size bounds via typing. In our development, we assumed a global size bound s.
To have finer control on the message sizes, as we do in our tool, one can introduce a primitive
form of typing. Assuming wlog that all pattern variables are unique, a typing is a partial
function ty : N ⇀ N, assigning to each pattern variable a maximum size for the messages it
can match. A typing induces a typed transition relation →∆,ty which only matches patterns
with subsitutions respecting ty; reachty

∆(P ) collects all the terms reachable from P through
→∆,ty. A typing ty of P,∆ is s-bounding if reachty

∆(P ) ⊆ Ss. One can check if ty is s-bounding
on-the-fly while computing p̂ost.

B.1 Generalised Limits
Recall the “encryption oracle” of Example 15: E[k] = in(x : x).(〈e(x)k〉 ‖ E[k]). Without
any restrictions on the pattern variable x, there is no way to prevent the encryption chains
described in Example 15. However, we can use the 2-bounding typing ty = [x 7→ 1], to
obtain the limit E[k ] ‖

(
νm.〈e(m)k〉

)ω which is inductive (wrt→∆,ty) and contains the initial
state E[k ]. Since x is never inspected, injecting larger messages in it would not lead to new
behaviour. We represent this arbitrary injection of messages in a limit by introducing a
“wildcard” annotation on occurrences of names a?.

Technically, we duplicate the set of names N to a disjoint set of ?-annotated names
N ? := {a? | a ∈ N}, and we allow messages to contain names from N ] N ?. All the
definitions of this paper can be adapted straightforwardly to support wildcards by simply not
distinguishing between a and a?. To stress the fact that a set of processes/limits contains
annotations, we annotate the set with a wildcard, e.g. L?

s,k.

I Definition 27 (Wildcard semantics). Given P ∈ P?, its wildcard semantics is defined as

WJP K :=
{
P ′

∣∣∣∣∣ sf(P ) = ν~x.(〈Γ〉 ‖ Q), P ′ ≡kn ν~x,~c.
(
(〈Γ〉 ‖ Q)[ ~M/~y ? ]

)
~y ? = names(P ) ∩N ?,names( ~M) ⊆ ~x ∪ ~c

}

For L ∈ L?
s,k, define WJLK := {WJP K | P ∈ JLK }.

With the help of wildcards, we can then take a limit L, annotate it with wildcards
obtaining a limit L?. Then we can check that the wildcards generalise the limit enough to
make it inductive wrt →∆ (i.e. without restricting the message size):



E. D’Osualdo and F. Stutz 31:21

∀P ∈ WJL?K,∀Q : P →∆ Q =⇒ Q ∈ WJL?K (3)

For our encryption oracle example, the annotated limit E[k ] ‖
(
νm.〈e(m?)k〉

)ω represents an
inductive invariant for the unrestricted semantics.

For a more realistic application of generalised limits, consider our running Example 9.
The limit of Figure 5 is inductive with respect to the typing ty = [na 7→ 1]. To remove the
size bound we only need to annotate the occurrence of na in L2 obtaining the limit L?:

L? = νa, b, kas, kbs.(〈a, b〉 ‖ A1[a, b, kas ]ω ‖ B1[a, b, kbs ]ω ‖ S[a, b, kas, kbs ]ω ‖ Lω
1 )

L1 = νna.
(
〈na〉 ‖ A2[a, b, kas, na ] ‖ Lω

2
)

L2 = νk.
(
〈e(k)(n?a,kas)〉 ‖ 〈e(k)kbs〉 ‖ Secret[k ]ω ‖ A3[a, b, kas, k ]ω ‖ Lω

3
)

L3 = νnb.
(
〈e(nb)(k,k)〉 ‖ 〈e(nb)k〉 ‖ B2[a, b, kbs, nb, k ]

)
Indeed this generalised limit is inductive: the intruder can send any message (M, b) to the

server S[a, b, kas, kbs ] := in(x : (x, b)).
(
. . .
〈
e(k)(x,kas)

〉
. . .
)
, which will use it as part of the

encryption key (M,kas). None of the input patterns of the other processes would however
be able to match the message e(k)(M,kas) unless M = na; thus this attack attempt will not
generate new behaviour, and our generalised limit captures all the reachable configurations
without assuming bounds on the size of messages.

Similarly, it is not difficult to annotate the limits of our benchmarks4 so that the
generalised limits satisfy condition (3):

ARPC: There is only one reasonable annotation: (n?
x, (k, b)). This is still inductive even

though it can be fed back as we can have a different substitutions for n?
x.

KSL: We annotate B2[a, b, kbb, kbs, n
?
x, ny] in L2 and e(nz, (b, n?

x, ))kxy in L4. A knows the
actual nx as it produced it and hence it is still inductive.
KSLr: Additionally to KSL, we annotate e(m?

x,my)kxy and B5[a, b, kbb, kbs, kab, ty,m
?
x,my]

in L7. The new message cannot flow into B3[−] or D2[−] as both pattern-match names
on the second position which are different from my. However, due to the wildcard as
parameter which could become my, B4[−] can produce B5[−]’s input message. This is
still covered and inductive but does not comply with a normal re-authentification run.
NHS: We annotate e(n?, (b, e(k, a)kbs))kas in L2. A can only match on the original n so
it is still inductive.
NHSr: Same annotations as in NHS. Additionally, we annotate e(one, s?)k. in L3 and
hence have to annotate the s in Secret[s? ] as well as Leak[s? ]. This covers all the enabled
transitions and is hence inductive.
NHSs: The same annotation as in NHS works.
OR/ORl: We annotate e(ny, (m?, (a, b)))kbs in L2. This does not enable any new transition
so it is inductive.
ORs: Same annotation as OR/ORl. But we also have to annotate the key kxy which we
declare as secret which is the difference to ORl and hence does not work here.
ORa: Similar annotation to OR/ORl. Analogously, inductivity is preserved.
YAH: We annotate e(a, (n?

a, nb))kbs in L3. This can be fed back to B2[−] and hence we
also annotate e(nb)(n?a,nb) in L5. This is still inductive.

4 For the full limits for each benchmark see [20].

CONCUR 2020



31:22 Decidable Inductive Invariants for Cryptographic Protocols Verification

YAHs1: We annotate as in YAH. The declaration of a secret happens only if A plays
back and hence it is inductive.
YAHs2: Without the size constraint for the key, the invariant obtained for YAHs1 is also
one for YAHs2.
YAHlk: We annotate e(one, s?)k in L4 which represents the case where the key k is leaked.
This annotation covers all newly enabled transitions. In case k is not leaked, there are no
new transitions. Hence, it is inductive.

B.2 Towards Automating Generalisation
Automating the check of condition (3) is beyond the scope of this paper, but we can sketch
how one would approach the problem by adapting our p̂ost definition to work on generalised
limits. The idea is that one can design a computable function p̂ostty

∆,?, a “symbolic” version
of p̂ost, and b satisfying:

L?
1 b L

?
2 =⇒ WJL?

1K ⊆ WJL?
2K (4)

post(WJL?K) ⊆ WJp̂ostty
∆,?(L?)K (5)

With these components, one can check (3) by checking p̂ostty
∆,?(L?) b L?. Note that (4) is an

implication, and (5) a subset relation: an equivalence would be impossible to achieve due to
undecidability of the general problem; we therefore only require a sound over-approximation.

Designing b requires defining an approximate version of ≤kn which can work on ?-annot-
ated sets of messages. A precise version of this can only be defined on a per-intruder-model
basis. A generic definition of b could simply extend the non-annotated inclusion check with
the axioms x? ≤kn x

? and M ≤kn x
?.

Designing a suitable p̂ostty
∆,?(L?) similarly depends on the choice of intruder-model. One

could, for example, define a symbolic matching function match(Γ?, ~x : N?) returning a finite
set of substitutions such that

Γ ` N?θ ∧ Γ ∈ WJΓ?K =⇒ ∃σ ∈ match(Γ?, ~x : N?) : N?θ ∈ WJN?σK

and use it in p̂ostty
∆,? to find all symbolic redexes. It is relatively straightforward to define

a match function that is precise enough to check the generalised limits of our benchmarks.
Exploring the design of these symbolic analyses in general is left for future work.

C Benchmarks

The Needham-Schröder protocol [28] is modelled with and without secrecy (NHS/NHSs).
The NHSr version models leaks of old session keys, which leads to a replay attack (and hence
the invariant is leaky). We provide four models of the Otway-Rees protocol [29]. OR does
not model secrecy and is used to prove the protocol depth-bounded. ORl models secrecy but
the inferred invariant contains a genuine leak, which is the result of a known type-confusion
attack. The attack substitutes a composite message for some input x that is (wrongly)
assumed to be a nonce by a principal. ORa models authentication and the invariant shows
the genuine misauthentication based on this attack. ORs models the same situation with the
assumption that x is of size one; with this assumption the inferred invariant is not leaky.

ARPC models Lowe’s modified BAN concrete ARPC protocol [25] (we model succ(-) with
pairs, i.e. succ((zero,−)) is (one,−)). We modelled the Kehne-Schönwälder-Landendörfer
protocol [25], as modified by Lowe, with (KSLr) and without (KSL) re-authentication.

We produced four models of the Yahalom protocol [9]. Our first model (YAH) does not
model secrecy and is used to establish depth-boundedness. The protocol has a type-confusion
attack (similar to the case of Otway-Rees) which does not lead to a leak of a secret. This is



E. D’Osualdo and F. Stutz 31:23

modelled in YAHs1. We rule out this type-confusion by adding a size assumption in YAHs2.
YAHlk is a variant where an additional fresh nonce is exchanged at the beginning of each
session, which makes the protocol secret even when old session keys can be leaked, a property
entailed by the inferred invariant.

D Example of Incorporation

Consider the limit L = νy.
((

νx.(A[x] ‖ B[y, x]ω)
)ω
)
. To compute p̂ost we consider the limit

L⊗ 1 = νy.
((

νx.(A[x] ‖ B[y, x] ‖ B[y, x]ω)
)
‖
(
νx.(A[x] ‖ B[y, x]ω)

)ω
)
and assume

A[x]→ νz.(A[z] ‖ B[y, z ]) ‖ B[y, x] = P.

Then, p̂ost will contain the limit L′ = C[P ] for C[•] = νy.
((

νx.( • ‖ B[y, x] ‖ B[y, x]ω)
)
‖(

νx.(A[x] ‖ B[y, x]ω)
)ω
)
. Since we are trying to prove inclusion between L and L′ = C[P ],

and L is equivalent to L⊗ 1 = C[A[x]], it seems likely that the inclusion could be proven by
matching C with C in the two limits, and by matching P in L⊗ 1. Intuitively:

νy.
((

νx.( A[x] ‖ B[y, x] ‖ B[y, x]ω )
)
‖
(

νx.(A[x] ‖ B[y, x]ω)
)ω
)

νy.
((

νx.( νz.(A[z ] ‖ B[y, z ]) ‖ B[y, x] ‖ B[y, x] ‖ B[y, x]ω )
)
‖
(
νx.(A[x] ‖ B[y, x]ω)

)ω
)

where the part in blue is P and the context C is the part in black. The arrows indicate the
sublimits that can be further unfolded to show the inclusion of C[P ].

Formally, we want to check that ∀L′ ∈ p̂osts
∆(L) : JL′K ⊆ JLK. By construction, L′ = C[P ]

for some context C such that L⊗ b = C[Q[ ~M ]]. Then, if we can find P in the fixed part of
sf(L⊗ b), conditions (A) and (B) of Theorem 22 are automatically satisfied because of the
shared context C.

CONCUR 2020


	Introduction
	Formal Model
	A Calculus for Cryptographic Protocols
	Depth-Bounded Protocols

	Ideal Completions for Security Protocols
	Downward-Closed Invariants and Security Properties
	Bounded Processes are Well-Quasi-Ordered
	Limits and Ideal Decompositions
	Decidability of Inclusion
	Computing Post-Hat
	Algorithmic Aspects

	Evaluation
	Limitations

	Conclusions and Future Work
	Support for Other Cryptographic Primitives
	Towards Unbounded Message Size
	Generalised Limits
	Towards Automating Generalisation

	Benchmarks
	Example of Incorporation

