20 research outputs found

    Network Intrusion Detection with Two-Phased Hybrid Ensemble Learning and Automatic Feature Selection

    Get PDF
    The use of network connected devices has grown exponentially in recent years revolutionizing our daily lives. However, it has also attracted the attention of cybercriminals making the attacks targeted towards these devices increase not only in numbers but also in sophistication. To detect such attacks, a Network Intrusion Detection System (NIDS) has become a vital component in network applications. However, network devices produce large scale high-dimensional data which makes it difficult to accurately detect various known and unknown attacks. Moreover, the complex nature of network data makes the feature selection process of a NIDS a challenging task. In this study, we propose a machine learning based NIDS with Two-phased Hybrid Ensemble learning and Automatic Feature Selection. The proposed framework leverages four different machine learning classifiers to perform automatic feature selection based on their ability to detect the most significant features. The two-phased hybrid ensemble learning algorithm consists of two learning phases, with the first phase constructed using classifiers built from an adaptation of the One-vs-One framework, and the second phase constructed using classifiers built from combinations of attack classes. The proposed framework was evaluated on two well-referenced datasets for both wired and wireless applications, and the results demonstrate that the two-phased ensemble learning framework combined with the automatic feature selection engine has superior attack detection capability compared to other similar studies found in the literature

    Towards Effective Wireless Intrusion Detection using AWID Dataset

    Get PDF
    In the field of network security, intrusion detection system plays a vital role in the procedure of applying machine learning (ML) techniques with the dataset. This study is an IDS related in machine, developed the literature by utilizing AWID dataset. There tends to be a need in balancing a dataset and its existing approaches from the analysis of its respective works. A taxonomy of balancing technique was introduced due to the lack of treatment of imbalance. This attempt has provided a proper structure defined on all levels and a hierarchical group was formed with the collected papers. This describes a comparative study on the proposed or treated aspects. The main aspect from the surveyed papers were found that: understanding of the existing taxonomies were not in detail and there were no treatment of imbalance for the utilized dataset. So, this study concludes a gathered information in these aspects. Regardless, there are factors or weakness have been seen in any adaptations of the intrusion detection system. In this context, there are few findings that are multifold with contributions. Thus, to best of our knowledge, the study provides an integration with the observation of threshold limit and feature drop selection method by random samples. Thus, the work contributes a better understanding towards imbalanced techniques from the literature surveyed. Hence, this research would benefit for the development of IDS using ML

    Adversarial Sample Generation using the Euclidean Jacobian-based Saliency Map Attack (EJSMA) and Classification for IEEE 802.11 using the Deep Deterministic Policy Gradient (DDPG)

    Get PDF
    One of today's most promising developments is wireless networking, as it enables people across the globe to stay connected. As the wireless networks' transmission medium is open, there are potential issues in safeguarding the privacy of the information. Though several security protocols exist in the literature for the preservation of information, most cases fail with a simple spoof attack. So, intrusion detection systems are vital in wireless networks as they help in the identification of harmful traffic. One of the challenges that exist in wireless intrusion detection systems (WIDS) is finding a balance between accuracy and false alarm rate. The purpose of this study is to provide a practical classification scheme for newer forms of attack. The AWID dataset is used in the experiment, which proposes a feature selection strategy using a combination of Elastic Net and recursive feature elimination. The best feature subset is obtained with 22 features, and a deep deterministic policy gradient learning algorithm is then used to classify attacks based on those features. Samples are generated using the Euclidean Jacobian-based Saliency Map Attack (EJSMA) to evaluate classification outcomes using adversarial samples. The meta-analysis reveals improved results in terms of feature production (22 features), classification accuracy (98.75% for testing samples and 85.24% for adversarial samples), and false alarm rates (0.35%).&nbsp

    Multi-Model Network Intrusion Detection System Using Distributed Feature Extraction and Supervised Learning

    Get PDF
    Intrusion Detection Systems (IDSs) monitor network traffic and system activities to identify any unauthorized or malicious behaviors. These systems usually leverage the principles of data science and machine learning to detect any deviations from normalcy by learning from the data associated with normal and abnormal patterns. The IDSs continue to suffer from issues like distributed high-dimensional data, inadequate robustness, slow detection, and high false-positive rates (FPRs). We investigate these challenges, determine suitable strategies, and propose relevant solutions based on the appropriate mathematical and computational concepts. To handle high-dimensional data in a distributed network, we optimize the feature space in a distributed manner using the PCA-based feature extraction method. The experimental results display that the classifiers built upon the features so extracted perform well by giving a similar level of accuracy as given by the ones that use the centrally extracted features. This method also significantly reduces the cumulative time needed for extraction. By utilizing the extracted features, we construct a distributed probabilistic classifier based on Naïve Bayes. Each node counts the local frequencies and passes those on to the central coordinator. The central coordinator accumulates the local frequencies and computes the global frequencies, which are used by the nodes to compute the required prior probabilities to perform classifications. Each node, being evenly trained, is capable of detecting intrusions individually to improve the overall robustness of the system. We also propose a similarity measure-based classification (SMC) technique that works by computing the cosine similarities between the class-specific frequential weights of the values in an observed instance and the average frequency-based data centroid. An instance is classified into the class whose weights for the values in it share the highest level of similarity with the centroid. SMC contributes alongside Naïve Bayes in a multi-model classification approach, which we introduce to reduce the FPR and improve the detection accuracy. This approach utilizes the similarities associated with each class label determined by SMC and the probabilities associated with each class label determined by Naïve Bayes. The similarities and probabilities are aggregated, separately, to form new features that are used to train and validate a tertiary classifier. We demonstrate that such a multi-model approach can attain a higher level of accuracy compared with the single-model classification techniques. The contributions made by this dissertation to enhance the scalability, robustness, and accuracy can help improve the efficacy of IDSs

    Predictive Modelling Approach to Data-Driven Computational Preventive Medicine

    Get PDF
    This thesis contributes novel predictive modelling approaches to data-driven computational preventive medicine and offers an alternative framework to statistical analysis in preventive medicine research. In the early parts of this research, this thesis presents research by proposing a synergy of machine learning methods for detecting patterns and developing inexpensive predictive models from healthcare data to classify the potential occurrence of adverse health events. In particular, the data-driven methodology is founded upon a heuristic-systematic assessment of several machine-learning methods, data preprocessing techniques, models’ training estimation and optimisation, and performance evaluation, yielding a novel computational data-driven framework, Octopus. Midway through this research, this thesis advances research in preventive medicine and data mining by proposing several new extensions in data preparation and preprocessing. It offers new recommendations for data quality assessment checks, a novel multimethod imputation (MMI) process for missing data mitigation, a novel imbalanced resampling approach, and minority pattern reconstruction (MPR) led by information theory. This thesis also extends the area of model performance evaluation with a novel classification performance ranking metric called XDistance. In particular, the experimental results show that building predictive models with the methods guided by our new framework (Octopus) yields domain experts' approval of the new reliable models’ performance. Also, performing the data quality checks and applying the MMI process led healthcare practitioners to outweigh predictive reliability over interpretability. The application of MPR and its hybrid resampling strategies led to better performances in line with experts' success criteria than the traditional imbalanced data resampling techniques. Finally, the use of the XDistance performance ranking metric was found to be more effective in ranking several classifiers' performances while offering an indication of class bias, unlike existing performance metrics The overall contributions of this thesis can be summarised as follow. First, several data mining techniques were thoroughly assessed to formulate the new Octopus framework to produce new reliable classifiers. In addition, we offer a further understanding of the impact of newly engineered features, the physical activity index (PAI) and biological effective dose (BED). Second, the newly developed methods within the new framework. Finally, the newly accepted developed predictive models help detect adverse health events, namely, visceral fat-associated diseases and advanced breast cancer radiotherapy toxicity side effects. These contributions could be used to guide future theories, experiments and healthcare interventions in preventive medicine and data mining

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems

    Human and Artificial Intelligence

    Get PDF
    Although tremendous advances have been made in recent years, many real-world problems still cannot be solved by machines alone. Hence, the integration between Human Intelligence and Artificial Intelligence is needed. However, several challenges make this integration complex. The aim of this Special Issue was to provide a large and varied collection of high-level contributions presenting novel approaches and solutions to address the above issues. This Special Issue contains 14 papers (13 research papers and 1 review paper) that deal with various topics related to human–machine interactions and cooperation. Most of these works concern different aspects of recommender systems, which are among the most widespread decision support systems. The domains covered range from healthcare to movies and from biometrics to cultural heritage. However, there are also contributions on vocal assistants and smart interactive technologies. In summary, each paper included in this Special Issue represents a step towards a future with human–machine interactions and cooperation. We hope the readers enjoy reading these articles and may find inspiration for their research activities
    corecore