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abstract 
 

This thesis contributes novel predictive modelling approaches to data-
driven computational preventive medicine and offers an alternative 
framework to statistical analysis in preventive medicine research. In 
the early parts of this research, this thesis presents research by 
proposing a synergy of machine learning methods for detecting 
patterns and developing inexpensive predictive models from healthcare 
data to classify the potential occurrence of adverse health events. In 
particular, the data-driven methodology is founded upon a heuristic-
systematic assessment of several machine-learning methods, data pre-
processing techniques, models’ training estimation and optimisation, 
and performance evaluation, yielding a novel computational data-
driven framework, Octopus. 

Midway through this research, this thesis advances research in 
preventive medicine and data mining by proposing several new 
extensions in data preparation and preprocessing. It offers new 
recommendations for data quality assessment checks, a novel multi-
method imputation (MMI) process for missing data mitigation, a novel 
imbalanced resampling approach, and minority pattern reconstruction 
(MPR) led by information theory. This thesis also extends the area of 
model performance evaluation with a novel classification performance 
ranking metric called XDistance. 

In particular, the experimental results show that building 
predictive models with the methods guided by our new framework 
(Octopus) yields domain experts' approval of the new reliable models’ 
performance. Also, performing the data quality checks and applying 
the MMI process led healthcare practitioners to outweigh predictive 
reliability over interpretability. The application of MPR and its hybrid 
resampling strategies led to better performances in line with experts' 
success criteria than the traditional imbalanced data resampling 

i 



 

techniques. Finally, the use of the XDistance performance ranking 
metric was found to be more effective in ranking several classifiers' 
performances while offering an indication of class bias, unlike existing 
performance metrics. 

The overall contributions of this thesis can be summarised as 
follow. First, several data mining techniques were thoroughly assessed 
to formulate the new Octopus framework to produce new reliable 
classifiers. In addition, we offer a further understanding of the impact 
of newly engineered features, the physical activity index (PAI) and 
biological effective dose (BED). Second, the newly developed methods 
within the new framework. Finally, the newly accepted developed 
predictive models help detect adverse health events, namely, visceral 
fat-associated diseases and advanced breast cancer radiotherapy 
toxicity side effects. These contributions could be used to guide future 
theories, experiments and healthcare interventions in preventive 
medicine and data mining. 
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about this thesis 
I can only show you the door. You’re the one that has to walk through it. 

 
   Morpheus, The Matrix  

 

When reading the table of contents, you will notice the diversity of the 
covered topics in this thesis. This interdisciplinary thesis provides 
researchers with a little bit of every consideration the author crossed to 
complete this research and its practical work—enough to get you and others 
to continue this research. Data mining is a very wide field, and adding it to 
preventive medicine makes it even wider, so wide indeed that a thesis ten 
times the size of this one wouldn’t be able to cover it all. For each chapter, 
we picked a different aspect of the work we considered in the development 
cycle of this research. To narrow down the content, some hard decisions had 
to be made to keep this thesis from collapsing any bookshelf! 

I hope it serves as a continuum point to this research field—your doorway 
into the exciting world of interdisciplinary research.  

Thesis roadmap 

Chapters 1 to 3 offer the theoretical background research, heuristically and 
systematically examining available data mining methods in the data 
science community and their acceptability in modelling real-world 
problems, notably healthcare. The deep understanding of such methods 
and their applications confine critical considerations and decisions taken 
to formulate our data-driven framework in chapter 4 necessary to execute 

xii 



 

the practical case studies in chapters 5 and 6 and finally conclude the 
contribution to the knowledge of this thesis in chapter 7. 

r Chapter 1 is an introduction that describes this research, the essential 
abstraction of its domain and its objectives in preventive medicine. 

 
r Chapter 2 starts a research review journey to formulate the data-driven 

modelling flow adopted to build the later chapters. It critically reviews 
the data cleaning, preparation, and transformation approaches 
available to be integrated into the formulated approach. In much of its 
content, it presents various debates regarding the effectiveness of their 
use and their deployment sequence. 

 
r Chapter 3 reviews and depicts a selection of machine learning 

algorithms considered for our predictive data-driven approach. It also 
presents a justification of choice and various debates regarding their 
effectiveness and adjustments based on reported experiments in the 
literature. We thoroughly review a variety of performance metrics 
available for evaluating classification modelling. In addition, the 
chapter analyses critical debates regarding each metric’s suitability for 
assessing modelling outputs. 

 

r Chapter 4 formulates our new data-driven framework for modelling 
susceptibility to adverse health events. The formulation of our data-
driven framework is based on an informed decision reached by 
systematic and heuristic considerations for the methods reviewed in the 
previous chapters. This chapter integrates multiple methods and 
provides justifications concerning their selection and sequence of 
application where needed. Within the framework, the chapter 
introduces a new approach to handling missing data, a new concept of 
information theory-driven resampling technique to enhance imbalanced 
learning and proposes a new performance metric design for imbalanced 
binary classifiers. 
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In Chapters 5 and 6, we apply the formulated data-driven framework to 
model two different case studies.  Then we conclude our new contributions 
to knowledge in Chapter 8 of this thesis: 

 
r Chapter 5 presents the predictive modelling of visceral fat-associated 

diseases case study by applying the newly formulated framework. This 
is demonstrated by the collaborative development of new machine-
learning prediction models approved by life sciences experts as potential 
inexpensive tools to screen patients for susceptibility to such diseases. 
 

r  Chapter 6 applies the new framework to predict advanced radiation 
therapy acute skin toxicity. This is supported by the collaborative 
development of new machine-learning prediction models approved by 
clinicians and physicians as potential inexpensive tools to predict 
susceptibility to acute desquamation (skin toxicity). 

 
r Chapter 7 concludes this thesis and touches on the met objectives, 

limitations and implications of the work in a more-or-less independent 
and impartial manner, opening the door wide for future research 
opportunities. 

 
Whom this thesis is for 

This interdisciplinary thesis is a cross-contribution to data science and 
healthcare. Seasoned data scientists may see that we only scratch the 
surface of some of the topics. For other readers from other domains, there 
may be some prerequisites to fully grasp the thesis. A minimal 
understanding of statistics and machine learning is recommended before 
diving into this thesis’s practical projects.  
 
Therefore, this thesis is written in a language suited to a wide range of 
academic audiences to attract a larger interest from the healthcare and 
data science communities. Such an interest encourages new researchers 
from both domains to continue with this research. Therefore, any 

xiv 



 

recommendations for improvements a reader can add to this thesis deserve 
the author's ultimate appreciation. Apart from the case studies, this thesis 
write-up lacked reviews. The author solely developed the narrative of this 
thesis with no one's guidance. 
 
Models and data resources downloads 

To enhance the interdisciplinary collaboration with healthcare experts, we 
acknowledged that coding is going to be a barrier to full involvement in this 
research; therefore, the author opted to use the Waikato Environment for 
Knowledge Analysis (WEKA) for practical examples in this research 
journey and thesis.  

Over the past two decades, WEKA has developed into a much 
respected and stable machine learning environment, enhancing the 
reproducibility of data mining outputs and being widely used by academics.  

Besides offering detailed steps for reproducibility, all the developed 
models are uploaded to the GitHub repository. These shall be made 
accessible to the readers; access can be granted upon making an online case 
application to the author. 

 
The data is bounded by data transfer agreements, prohibiting sharing or 
transferring such resources outside the boundaries of approved 
researchers. However, the data can be accessed upon research application 
approvals. Applications are made directly to the UK Biobank and 
European REQUITE Consortium. 
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Chapter 
Introduction 

 
 
 
 
 
 
 
 
 
 
 
 

achine Learning (ML), a subtopic of Artificial Intelligence (AI), 

provides trend discovery, similarities recognition and anomaly 
detection techniques used in multiple domains that require the 
discriminative power it offers. A domain of which is medical 

research. In medical research, ML models various health and clinical 
attributes with their combined contribution to enhancing patients' Quality 
of Life (QoL). It is also applied in treatment planning research and 
predicting the risk of developing non-communicable diseases in preventive 
medicine [1]. 

Moreover, it is applied in overall patient management research, such 
as hospital capacity forecasting and intelligent monitoring in Intensive Care 
Unit (ICU) admissions and mortalities [2]. However, there is still a debate 
about whether integrating ML methods in healthcare systems can enhance 
medical specialists' decision-making and improve diagnostics and 
healthcare quality [3].   

M 

This chapter covers 

n Thesis statement 

n Research Aim 

n Research Objectives 
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ML model-based schemes provide entities for outcome inference from 
patient data. Patterns are extracted from experts' knowledge and the 
available electronic health records (EHR) to construct decision support 
systems. In some cases, depending on the model's complexity, specialists 
may face a problem interpreting the contributing factors that lead to the 
model's decision [3].  

Decision support systems use symbolic ML techniques, such as 
supervised learning, to embed learning into the system while producing a 
systematic description of the health variables, ultimately categorising the 
health condition. Supervised learning uses a set of patients' cases, AKA 
examples, to systematically describe the clinical variables attributing to a 
health condition's determination [1]. A model's systematic description of 
variables can vary from simple rules in decision stumps to weights and 
coefficients (parameters) of complex functions. This type of learning is then 
taken to predict health conditions for new uncategorised cases. Such models 
may improve existing systems' performance for categorising existing 
conditions or embed new capabilities (knowledge) to classify new health 
conditions. The latter models can be considered initial hypotheses to drive 
further experimentation. In a research setting, learning from patients' data 
has several challenges [4]. The data are characterised by incompleteness, 
errors, noise and inexactness (inappropriate transformation). Various 
statistical and ML methods can deal with such challenges; some are proven 
more efficient than others. This adequacy is often associated with improved 
medical decision-making [4].  

In health care, there is always the need for more effective early 
screening for health conditions. Some medical domains, like preventive 
medicine, promote preventive healthcare to improve patient well-being. The 
ultimate goal is to prevent disease, disability and death. In a way, it seeks 
ways to intercept the potential development of future adverse health events 
so that suitable countermeasures can be implemented to prevent such 
events [5]. The rising demand for preventive healthcare services has 
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reshaped how modern medicine treats diseases. Preventative healthcare is 
rapidly emerging as the most inexpensive means of saving lives [6]. The first 
step to saving costs and lives can be achieved by identifying those 
susceptible to diseases and complications. Recent publications explored the 
potential of machine learning algorithms to carry out such tasks [7]. This 
interest also resulted in the publishing of additional guidance for healthcare 
professionals on models' evaluation and interpretation [7].  

Although preventive medicine strategies may seem new, they have 
been examined historically for years [8]. The key problem is that many 
machine learning studies in this field, in general, are exploratory as it comes 
with a huge variety of methods. Also, the developed models may not have 
reliable predictions [9][10]. While these machine learning models show high 
accuracy on their own test datasets, their performance is questionable in 
real-world settings where the input data can vary drastically, resulting in 
unreliable prediction results [10]. 
 
This thesis aims to produce a new methodology and predictive models in the 
field of machine learning for preventive medicine. We believe that in order 
to have ML models' performances approved by healthcare experts, there is 
a need to reshape their contribution to the data mining processes. And in 
order to meet the healthcare research objectives, we will incorporate their 
expertise appropriately into a new methodology. They will be involved in the 
case studies conceptualisation, data acquisition, preparation, features 
selection, features engineering, modelling and performance evaluation.  

Therefore, our research integrates both machine learning and 
healthcare experts together, leveraging their expert knowledge and sound 
judgement to develop new models that effectively address new inexpensive 
potential solutions to real-world preventive healthcare challenges. 
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1.1 Thesis Statement 

This thesis uses machine learning (ML) approaches to develop a data-driven 
methodology to produce new models for predicting adverse health events in 
preventive medicine. With the hope that the new models would gain 
approval from the domain experts as an inexpensive step to a solution. Thus, 
this thesis investigates the following statement: 
 

A reliable data-driven framework can be formed to build tools for 

preventive medicine to predict adverse health events, approved by 

experts in true interdisciplinary case studies. 

1.2 Research aim 
The aim of this thesis is to develop new reliable ML models for preventive 
medicine by formulating a data-driven methodology. The new models are to 
be assessed by healthcare experts as potential new tools to detect patients' 
susceptibility to adverse health events. The new models may be used to 
predict potential deterioration in individuals’ health and Quality of Life 
(QoL). 
 

1.3 Primary research objectives 
A. Investigate and assess challenges, scientific debates and considerations of 

applying various data mining methods and ML algorithms to integrate them 
into a new data-driven methodology.  

B. Formulate a new methodology from the selected methods for Machine 
Learning predictive modelling. The methodology is to be assessed by 
attempting to solve preventive medicine case studies systematically. This 
should show the combinations of chosen methods achieving a desired data-
driven predictive outcome. The logic behind these methods and choices is to 
be made clear and justified. The applied methodology/framework must 

“ 
” 
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demonstrate the structural workflow of using the collection of methods to 
model the new preventive healthcare problems. 

C. Apply the newly formulated methodology/framework to new case studies in 
the field of preventive medicine by building new predictive models to predict 
susceptibility to adverse health events. 

D. Assess the new models and performances as potential new tools for early 
screening alongside healthcare domain experts. 
 

1.4 Secondary research objectives 
To investigate issues affecting the performance of the new predictive models. 
From cited research and recommendations, try to create novel methods to 
tackle gaps in the field and enhance understanding. Such novel contribution 
can be in any area within the scope of this thesis statement, including data 
preparation, modelling, evaluation, etc. 

 
Finally, while reading this thesis, the reader will observe various 
recommendations and contributions throughout this research journey. Any 
novel methods within the scope of this thesis are applied as proof of concept 
where an opportunity arises. We hope the readers see our humble 
contributions as new opportunities for other researchers to take our findings 
and progress them further. 
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Chapter  
Data Preparation Literature Review 

 
 
 
 
 

 

 

 

 

 

ata mining is a process of preparing and modelling data to extract 
knowledge, propose conclusions, and enhance decision-making in 
real-world applications. Most data mining methods focus on the 

modelling phase of the data mining goal and assume that the collected data 
is correct and suitable for analysis. However, in the real world, there is a 
massive inheritance to date of methods and algorithms that were developed 
starting from the 1950s. Each algorithm's use is bound to the data mining 
problem at hand. Predictive modelling, i.e., supervised learning, is a 
function that maps an input to an output based on example input-output 
pairs in a cohort of patients based on a feature vector of recorded responses, 
measurements or readings that belong to each patient. Models’ evaluation 
is the final phase before deployment into real-world applications. Evaluating 
the models comes with many metrics; each has an interpretation of the 
model’s performance. Using any of these metrics relies upon their potential 

D 

This chapter covers and reviews 

n The data-driven modelling flow 

n Modelling conceptualisation 

n Data quality assessment 

n Scales of measurements 

n Exploratory Data Visualisation 

n Data preparation and feature engineering 
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to satisfy the domain experts’ success criteria within the data mining project 
to produce the desired outcomes. In this chapter, we review various 
literature available to briefly explain and assess the use of various common 
data exploration and preparation methods. We also review the effectiveness 
of their application under various settings in various studies. This chapter 
also identifies gaps in the literature regarding the use of such methods, 
starting from problem conceptualisation, data quality assessments (DQA) at 
source, and possible methods to declare, visualise, clean and engineer the 
data. 
Following the recommendation presented in this chapter can lead to 
important decisions that impact the formulation of this thesis methodology 
and its execution on predicting adverse events in preventive medicine case 
studies. 
 

2.1 The data-driven modelling flow 

The sequence of the data mining process can be illustrated in Figure 2.1. 
From Figure 2.1, the data mining process goes through different phases: 
collecting readings and measurements, storing them adequately in data 
repositories (sources), a sequence of investigations and explorations followed 
by data modifications, and passing through algorithms generating data 
models deployed in applications that produce insights.  

Through the data mining flow, we recognise a challenge presented in 
the vast inheritance of algorithms [11], making it harder to choose among 
them; however, defining the modelling objectives and the data type for the 
task at hand narrows down such a choice. It is also worth mentioning that 
no ultimate algorithm performs the best in all data mining tasks. One must 
remember that developing data-driven models is not about approving or 
disapproving an algorithm for a specific job. Instead, it is about the 
adjustments that led a model closer to meeting domain experts’ success 
criteria. 
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Fig. 2.1 Sequence of data mining tasks and phases 

 

2.2 Modelling conceptualisation 

The initial step for new data mining projects is constructing a clear concept 
of the targeted outcome. Defining the initial objectives leads to determining 
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the type of modelling task. Data modelling tasks fall within two areas 
descriptive vs predictive [12]. Descriptive models detect the relationships in 
the data and discover patterns of the data studied, for example, Clustering, 
Summarisation, Association rule, Sequence discovery etc. Predictive 
modelling has been defined in many different ways [12]. One study [13] by 
Delen & Demirkan describes it as having the data as a prerequisite when 
making authoritative predictions via forecasting and simulation to address 
the occurring event and its causes. Another study by Lechevalier, 
Narayanan, & Rachuri [14] describes predictive modelling as using 
statistical, machine learning, and data mining to discover facts to predict 
unknown future events when investigating a specific domain problem. A 
predictive model anticipates unidentified data values using the identified 
values, for example, Classification, Regression, Time series analysis etc. 

Based on the aims and objectives to create models to predict patients’ 
development developing adverse health events from patients’ health 
records, the scope meant that this thesis adopts a data-driven predictive 
modelling approach. 

The Health and Safety Executive regulatory body (HSE) in the UK 
defines the Risk assessment as a method of identifying the cause of injury 
or illness, deciding how likely it is that someone could be harmed and how 
seriously in order to take action to eliminate the cause, or if this isn’t 
possible, control the risk [15]. Research carried out by Perkin and Balbus 
stated that efforts to protect persons at elevated risk, however, are hindered 
by varying interpretations of the term “susceptible” [16]. They show 
numerous variations in definitions of susceptibility. The definitions not only 
tend to be different in scientific and policy settings but also vary between 
and within disciplines and professions. Concepts of susceptibility focus on 
the ability of an individual to resist harm, the probability that an individual 
will react to a specific exposure, the comparison of an individual’s 
susceptibility to that of the majority of the population, or the variation of 
individual states of vulnerability within a population. Definitions or 
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descriptions of susceptibility sometimes embody more than one of these 
concepts, with the dominant one affecting how susceptibility is addressed in 
risk assessment and risk management processes [16].  

Over time, individuals in the same discipline share interpretations of 
terms and develop a commonly accepted definition that may never be 
formally recognised. For our modelling conceptualisation, this thesis does 
not describe the varying definitions of susceptibility within various domains 
except those within the scope of patients’ health. Therefore, we focus on the 
general, medical, biological, and epidemiological definitions from Perkin and 
Balbus' research [16].  

In English, the term “susceptible” is once defined as “accessible or 
especially liable or subject to some influence”. This definition shows that 
“susceptible” describes an inherent characteristic of some entity, which may 
or may not be a living being, and states that an external factor interacts 
with that entity. Beyond this relational concept, however, this definition 
remains broad. 

Moreover, among all other definitions in various dictionaries, there is 
a consensus that the term implies that an external factor changes the entity 
somehow. The Oxford and Webster definitions further describe that the 
external factor influence may be neutral, beneficial or adverse events such 
as disease or injury. Webster’s dictionary adds that the extent of influence 
can be acute, chronic, or delayed effects combined with the dependence on a 
portal of entry, dose, and virulence or toxicity of the agent, the natural and 
acquired resistance of the host, and lifestyle. In the medical and biological 
domain, susceptibility has a variety of descriptions as the state of being open 
to disease or infection, the state of being readily affected or acted upon; 
diminished immunity to disease, especially to an infection; the likelihood of 
the individual to develop ill effects from an external agent [16], the latter is 
found in Stedman’s Medical Dictionary. Further definitions were also 
presented in more depth; susceptibility is the net influence of a large set of 
variables. Another goes into more detail, stating that susceptibility is the 
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enhanced responsiveness regardless of cause, and susceptible individuals 
are those who respond to toxic or carcinogenic substances at doses 
significantly lower than that to which the general population responds. The 
previous definition naturally led to a new sub-term of susceptibility known 
as “Hyper-Susceptibility”; given a high enough dose, everyone is susceptible 
to a toxic reaction to an environmental agent, and those who react 
abnormally to the greatest extreme are “hypersusceptible.” In Epidemiology, 
Susceptibility is defined as the relative propensity of an individual or 
population to develop dysfunction or disease or an individual’s intrinsic or 
acquired traits that modify the risk of illness.  

Perkin and Balbus' paper [16] surveys the definition of susceptibility 
in depth across domains and in relation to other terms, including sensitivity. 
They found little agreement about the appropriate terminology for the 
physiological state, noting that susceptibility, hyper-susceptibility, high-
risk, sensitivity, and hyper-sensitivity are used almost interchangeably [16]. 
They recommended that the term susceptibility requires an urgent formal 
or even a legal definition for risk assessments as there is no consensus on 
the definition. In addition, they suggested when susceptibility is addressed 
to develop risk assessment methods or conduct a risk assessment for a 
specific agent, one of these definitions should be cited, or a consensus 
definition should be set to ensure that the interdisciplinary audience will 
clearly understand the scope of susceptibility intended. 

Their proposed definition to be used in interdisciplinary research is: 
“Susceptibility is a capacity characterisable by intrinsic and extrinsic factors 
that modify the impact of a specific exposure upon risks/severity of outcomes 
in an individual or population.” [16] 
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2.3 Data Quality Assessment 
Often, once the data mining objectives are perceived, data is required. Data 
can be collected from measurements, surveys, observations, reports, records, 
experiments, devices, images etc. Data can also be obtained from 
repositories and data showcases. Some sources are unrestricted (open 
access) [17], while access fees and legal agreements restrict others [18] [19]. 
Finding a source for large sets of health data representing a large population 
is proven challenging in many aspects; some are related to privacy and 
access controls, demographics, population characteristics, cost and expertise 
in collecting as accurate data as possible. Besides issues like missing 
observations, noise and errors in datasets, other problems may arise; in 
particular, clinical and medical datasets often come with many technical 
challenges, such as the curse of dimensionality, bias, and the inherent 
limitations of observation study and the inability to test causality resulting 
from residual confounding and reverse causation [20][21]. 

Also, never undermine data quality issues; the evaluation of data 
missingness, descriptive statistics and format do not fully provide a 
complete picture of the dataset’s quality as described by the data source. The 
manual review of quality is a resource-intensive task, and there are no 
evidence-based or community-driven metrics for assessing research data 
quality [22]. There are many frameworks for Datasets Quality Assessment 
(DQA) [23], but they are objectives-centric and context-dependent. This 
issue can be problematic since clinical research datasets are often 
phenotype-based, require a unique patient cohort, or is specific to a set of 
participating medical centres. In addition, research investigators frequently 
develop ad-hoc metrics specific to their study, hence cannot be replicated 
[21]. 

2.4 Scales of Measurements  
Medical research modelling studies [24][25] are often criticised for not 
declaring how data types are handled when used to build their statistical 
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models. Many medical research statistical models [26-31] treat data as 
either categorical or numeric in encoding, imputation and feature 
engineering. 

In 1946, Stanley Smith Stevens was the first to raise the issue of 
measurement scales in statistics, as he created a taxonomy of measurement 
[32]. Stevens stated that measures are defined as the assignment of 
numerals to objects or events according to rules. Such assignments’ rules 
lead to different kinds of scales and other types of measurements. This 
statement signified the importance of making explicit (a) the various rules 
for the assignment of numerals, (b) the mathematical properties (or group 
structure) of the resulting scales, and (c) the statistical operations applicable 
to measurements made with each type of scale [32]. As a result, Stevens 
created four data measurement scales: Ratio, Interval, Ordinal and nominal. 
Over time, other researchers criticised Stevens’ classification of scales, 
adding more scales to the topology of measurements [33]. 

The machine learning domain inherited parts of Steven’s topology 
and introduced multiple measurement scales in various interpretations. 
Some statisticians [34] merged ratio and interval types into quantitative 
and referred to ordinal measurements as ordered categorical values. The 
categorical variables are called qualitative or discrete [34]. Others combine 
ratio and interval in a numerical pot and use a topology of three scales; 
numerical, ordinal and categorical [35]. Some online-active data scientists 
classified the measurements as continuous, ordinal and nominal [36], while 
others scientists went for discrete vs continuous values. Therefore, 
interpreting data dictionaries from various data sources may seem 
confusing and inconsistent. Different domains adopt one topology over 
another. Thus, the absence of a consistent framework for thinking and 
communicating data types [37] to domain experts can hinder 
interdisciplinary ML studies. The problem worsens in data transformation 
and may slow down data cleaning. However, for a start, we can safely say 



 - 14 - 

that machine learning data scales measurement types are ultimately split 
between categorical and numerical. Besides, other data types, such as 
binary and date-time, should not be left out. In all cases, we believe that 
converting features to the correct data types results in conceptualising the 
data mining problem, enhancing data preparation, selecting applicable 
modelling ML algorithms, making the modelling process faster and likely 
improving models’ performances and interpretability. 

 We emphasise the importance of having a uniform strategy for 
classifying data types within a data science project that closely conforms to 
the data source description and appeals to domain experts’ understanding. 
Thus, we present six measurement scale types with a strategy to account for 
their processing in the modelling phase: Nominal, Binary, Ordinal, Count, 
Time and Interval. 

The nominal type of categorical value is discrete and holds no 
arithmetic significance. Their groups do not have a specific order; hence the 
man and median are meaningless to describe them. Ordinal values are also 
discrete but can be ranked or sorted; however, the mathematical significance 
of their quantification is not known, i.e., the distance between any two 
measurements is not defined. If the ordinal is assumed to have equal 
magnitudes, it can be encoded as discrete numeric intervals similar to Likert 
scales [38]. Another option is to consider ordinal responses as nominal data 
where each category has no mathematical relationship with the other [36]. 
A common type of measurement scale is Binary data; it is a special 
categorical case of one out of two responses, indicating a count, an interval 
or a nominal label. This measurement type can be accounted for as of own 
kind in machine learning modelling [36]. On the other hand, Counts are 
discrete numeric natural numbers similar to interval values; they hold 
mathematical significance and follow a Poisson distribution [39]. Exact 
measurements are known as Interval data. Such reading precision does not 
matter when modelled with machine learning; they may hold discrete or zero 
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values on a continuous scale of measurements. Finally, Time data is a 
repetitive type of continuous data that can describe any period. Such data is 
relevant to Time Series models with a time component that is very crucial 
to the model. There are various ways of engineering time-date data types 
into features. 

There is no uniform topology in statistics that can be used across all 
data mining projects to assign value types. Besides Steven’s, in 1977, 
Mosteller and Tukey proposed a new seven-level typology [40], and in 1998, 
Nicholas R. Chrisman expanded the list of levels of measurement to ten [41].  

In practice, addressing data measurement types in data-driven modelling 
depends on the capabilities of the tool of choice. Various modelling tools have 
built-in perspective strategies to handle specific data measurement types 
before consuming a variable by the modelling algorithm. Stevens’s typology 
also raised the debate of having a meaningful statistical description of 
attributes characteristics, i.e., central tendency and dispersion, since it 
differs for each scale. Table 2.1 shows methods of describing the attributes 
based on their data types [42]. 

Table 2.1. Descriptive statistics per the classification of variable measurement 

Type Classification Variability 
Descriptive Statistics 

Central tendency Dispersion 

Interval Numeric Continuous Mode, Median, 
Arithmetic mean 

Range, Standard 
Deviation 

Ratio Numeric Continuous 

Geometric mean, 
Harmonic mean, 
Arithmetic mean, 
Mode and Median 

Studentised range, 
coefficient of variation 

Time Numeric Continuous Index of Dispersion (Variance-to-mean ratio) 

Count Numeric Discrete Index of Dispersion (Variance-to-mean ratio) 

Ordinal Numeric|Nominal Discrete Median, Mode (if 
numeric) Range (if numeric) 

Nominal Nominal Discrete Mode Frequencies 

Binary Binary|Nominal Discrete None Frequencies 
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2.5 Exploratory Data Visualisation 

Using data-driven insights to create actionable strategies and deploy 
valuable initiatives is essential. The graphical representations of 
information (charts) play a prominent role in data exploration. It assists in 
interpreting gathered data from real-world applications by exposing its 
structure and exploiting its complex sets of numerical figures. 

From an analytics point of view, the use of charts and their complexity 
vary depending on the dimensionality of the data and the type of analysis 
performed, univariate, bivariate or multivariate. There are many examples 
of conventional graphical representation, including bar charts, column 
charts, line graphs, area graphs, surface charts, scatter plots, pie charts and 
spider (Radar) plots. The higher the number of variables, the higher the 
complexity of analysing all possible relationships among the variables on a 
single two-dimensional. One approach to simplify the complexity of 
visualising multiple dimensions is to reduce the dimensionality of the 
dataset to eigenvectors that preserve the portion of pattern within the data 
most, known as Principal Component Analysis (PCA), developed by Karl 
Pearson in 1901[43]. PCA compresses the data dimensionality by projecting 
each data point only onto the first few PCA vectors (Principal Components). 
Some of the benefits of PCA are the 2D compressed projection of the data, 
the reduction of modelling time and the removal of correlated features in 
large dimensional data, which improves the modelling performance for 
algorithms impacted by multi-collinearity. 

However, the disadvantages may outweigh the benefits. Through the 
transformation to the PCA components plane, the original visual 
representation of the collected variables disappears, resulting in low visual 
interpretability and increasing numeric interpretability, which in turn 
prevents domain experts from observing the association and contribution of 
each of the originally collected attributes individually [44]. This 
transformation could make it harder to draw conclusions or deduce further 
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hypotheses for further studies on specific attributes in the collected data. 
Also, PCA makes additional assumptions that may be considered 
disadvantageous. PCA represents a transformation of data features that 
captures the features’ linear relationships. At the same time, this is not the 
general case for all features; further transformation of non-linear features 
into linear may be required, such as log transform. Keeping in mind that 
PCA is pruned to favour features with larger magnitudes of scale, which 
means further transformations may be necessary, such as scaling. Also, PCA 
sensitivity to scale imposes outliers’ removal or mitigation before analysis. 
Despite adding Kernel-PCA extension to PCA to deal with the non-linearity 
problem of features, dimensionality reduction often results in loss of 
information. PCA components try to cover the maximum variance among 
the variables in the dataset. Still, if the number of Principal Components is 
not carefully selected, they may miss some information compared to the 
original set of predictors [44]. 

Unlike PCA compression of features into effectively new transformed 
features, Independent Component Analysis (ICA) is an alternative approach 
to visualise higher dimensional data [45]. ICA decomposes a multivariate 
feature into independent components (mixtures). Each predictor feature can 
be extracted from a set of feature mixtures by taking the inner product of a 
weight vector and those feature’s mixtures where this inner product 
provides an orthogonal projection of the feature mixtures, then finding such 
a weight vector. One method for doing so is known as the Projection Pursuit 
(PP), proposed by Kruskal in 1969 [46]. PP locates the projection from high- 
to low-dimensional space, revealing the data set's most detailed structure 
while reserving the original features' presence. Once a projection of interest 
out of a set of projections is found, existing structures (such as clusters) can 
be extracted and analysed separately. Friedman and Tukey first 
implemented PP in 1974 with automatic machine-chosen interesting low-
dimensional projections of a high-dimensional point cloud [47]. Therefore, 
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the major advantage offered by the PP method implementation is that it 
bypasses the “curse of dimensionality”. It was extended with additional 
practical features supplementing the automatic machine-selected (blind) 
view of most interest. The new features were proposed in 2007 by Joe Faith, 
known as Targeted Projection Pursuit (TPP) [48] and were later 
implemented in 2011. TPP implementation is user interactive. It allows 
exploring complex datasets with up to 100s of features to find patterns 
(projections) of interest. TPP exploits PP’s ability to bypass the “curse of 
dimensionality” by recognising that most of the feature space is empty. 
Thus, TPP allows for exploring the space of projections by manipulating 
individual data points or groups of points directly in a multidimensional 
scatter plot. Once the user chooses a projection, existing structures (such as 
clusters) can be extracted and analysed separately [48]. Historically, one 
drawback of TPP methods is the high demand for computational resources, 
and nowadays, this is no longer a barrier since it can be performed on a 
personal device. Figure 2.2 illustrates the difference between data 
visualisation of non-linear data with PCA's two principal components and 
the TPP of all features. 

 
Fig. 2.2 Illustration of TPP advantage over PCA projections of a non-linear dataset  

 

Figure 2.2 illustrates the automatic (blind) TPP projection of the binary 
classes among 122 predictors, shows a better (more interesting) view of the 
data, almost showing five different clusters within the dataset with observed 
high inter-cluster dissimilarity and intra-cluster similarity. In contrast, the 
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user-selected visualisation shows two clusters of interest, one of which 
seems to have a low intra-cluster similarity. However, the earlier projection 
offers a more detailed insight. Here, the conventional (also automatic) PCA 
appears to show 2~3 clusters of patterns. The additional benefits of 
visualising the blind TPP projections are demonstrated by preserving the 
original features when PCA seems to have considerably suppressed the 
number of inconsistent data points (i.e., outliers and extreme values). 

TPP may not be the perfect answer to a multi-dimensional 
visualisation of data points. Yet, it seems the simplest in users' eyes to 
interpret and take control of and supports the delivery of the objectives of 
our projects. We live in a three-dimensional world, but everything we see is 
first recorded on our retinas in only two dimensions. Therefore, visualising 
data points in higher dimensions has always been a challenging topic in 
research due to our sight limitations to seeing rendered images in 2D views. 

Data scientists in the industry addressed this problem in many 
different creative ways, from visualising the data in a matrix of pairs, using 
parallel coordinates, kernel density plots, and adding depth, hue, size, and 
shape to the plots. Adding more dimensions makes it harder to go around 
the limitation of the two-dimensional rendering device to visualise our data. 

2.6 Data preparation and feature engineering 

Raw data often come with multiple problems, such as value errors, 
missingness, incorrect coding, incorrect formatting, etc. Data preparation 
aims to improve the data content to provide better-extracted knowledge from 
the modelling process. Therefore, such data requires selective extraction, 
organisation and formatting and once transformed, the data may show 
indications, raise questions or provide answers. Specific tasks, like data 
imputation and outlier detection, are conventional data preparation 
methods that could impact the modelling outputs, often known as data 
cleaning techniques. In some frameworks [49] data preparation also 
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includes pre-processing that transforms the data so that machine learning 
algorithms can consume (algorithm-understandable format); it also consists 
of any enrichment, reduction, enhancement and feature engineering. 

We consider all the steps between data collection and modelling, 
including any statistical analysis and data transformation, to be data 
preparation steps because tasks between the two phases deliver the 
transition from raw data to information [49] [50]. 

Since data preparation directly impacts the models’ success rate, it is 
vital to be performed in a reproducible flow in the data mining environment 
[51]. Therefore, any data pre-processing should adopt the following sequence 
of steps: (1) perform data pre-processing on the training dataset; (2) record 
the statistical parameters required for pre-processing the training dataset; 
(3) Perform the same data pre-processing methods on the test dataset in 
isolation by using the same statistical parameters learnt from the pre-
processing of the training dataset [51]. These recommendations are also 
based on empirical studies by Weiss & Provost (2001) behind a machine 
learning predictive model (classifier) performance being affected by the class 
distribution of the training data [52]. 

Historically, some modelling algorithms, including various Machine 
Learning techniques, showed preferences among applied methods to 
transform data [53]. Depending on the data type, strategies could be used, 
such as conversion, discretisation, normalisation, sampling, etc. Additional 
transformation techniques are proven beneficial when handling class 
imbalance in datasets [53]. Some preparation steps are known to improve 
the model’s performance. Previously, various methods have been applied to 
vary each of these pre-processing steps. However, there are no standard 
systematic procedures to compare these methods’ impact on the modelling 
performance [54] [55]. Furthermore, data pre-processing (Figure 2.3) is 
grouped into two types; supervised and unsupervised data pre-processing; 
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each type can be performed at two levels; instance (individual records) and 
attribute (variables) levels [56]. 

 

Fig. 2.3 Data pre-processing types  

Data pre-processing is considered unsupervised if the response variable does 
not govern the data transformation per attribute or instance. Therefore, any 
conversion to the values held within an attribute or a record is performed 
independently from the class. For attributes, removing useless features, 
converting data type, unsupervised discretisation methods, treating missing 
observations, outlier detection, feature scaling, binarisation, and others are 
examples of unsupervised data pre-processing techniques [57]. For 
instances, randomising records, removing duplicate records, resampling 
records, removing outliers, and others are considered unsupervised pre-
processing tasks [57]. However, if the response variable governs pre-
processing, the latter becomes supervised because any transformation to the 
values held within the attribute or a record depends on the class [58]. For 
attributes, supervised discretisation, feature selection, and others are 
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examples of supervised data pre-processing techniques. Resampling 
techniques addressing imbalanced learning are examples of supervised pre-
processing steps applied at the instances level [58]. There are a wide variety 
of data pre-processing methods; however, we only can review a handful of 
them. 

2.6.1 Records randomisation 

Shuffling dataset records is advised before performing pre-processing tasks, 
such as splitting the dataset into training test subsets. This technique 
randomly reorders the instances with a random number generator that is 
set with a new seed value whenever it processes a new set of cases. Its effect 
is known to prevent the records selection bias and provides assurances 
against any accidental bias. As a result, comparable groups are produced 
with eliminated bias if any was present at the source or in data collection 
phases [59]. 

2.6.2 Useless features elimination 

This technique removes variables that do not vary or vary too much. All 
constant nominal and numeric attributes are considered useless and 
eliminated before any analysis based on their distinct recorded readings, 
including nominal variables that exceed the maximum variance percentage 
setting [60]. Nominal variables that do not vary or vary too much are 
considered useless data. Nominal data that varies too much, storing almost 
a category per record, could map a one-to-one relationship to the output 
variable, compromising the learning process. Here we note extreme cases 
rather than having a large number of categories. All constant attributes that 
do not vary are useless because they hold no learnable differences to 
distinguish the endpoint. The maximum variance percentage for a 
variable(𝜒) is calculated by: 

𝑴𝒂𝒙𝒊𝒎𝒖𝒎	𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆	𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 =
𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝒅𝒊𝒔𝒕𝒊𝒏𝒄𝒕	𝒗𝒂𝒍𝒖𝒆𝒔	
𝑻𝒐𝒕𝒂𝒍	𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇𝒗𝒂𝒍𝒖𝒆𝒔	 	× 𝟏𝟎𝟎 



 - 23 - 

If the attribute’s maximum percentage of variance is greater than allowed, 
i.e., 99%, it is considered useless [60]. 

2.6.3 Feature binarisation  

This task constructs new features by transforming a raw data attribute of 
any entity into vectors of binary numbers. Even the most complex concepts 
can be transformed into the binary form [61]. In the usual label encoding, 
potentially when categorising records, the categorical values also 
proportionally increase as the number of distinct records increases. 
Standard categorical encoding (labelling) assumes that the larger the 
entries of a categorical value, the better the category; this assumption 
causes bias towards certain groups in categories with larger records in 
variables. One hot encoding resolves such a problem [61]. It is a binarisation 
process by which categorical variables are converted into a form that could 
be provided to ML algorithms to improve prediction performance [62]. It 
converts a nominal variable into multiple attributes. This method is also 
used for variables that have a large number of categories. The categorical 
value (label) represents a group of entries in the dataset; the values start 
from 0 and go up to N-1 categories. One-Hot encoding binarises each 
category, converting every categorical value into a new feature. 

2.6.4 Missing data investigation 

Missing data is a popular area that should be handled with care in crucial 
decision-making models. The recommended strategies for missingness 
remedies vary depending on the missing data pattern, missingness levels, 
missingness type, the domain where it originated from, the problem we want 
to model, etc [63]. In the real world, raw data collection usually comes with 
multiple cavities in the data; this is also the case for this research’s clinical 
and healthcare data. There are two types of caveats; one is missing a set of 
variables, and the other is missing observations’ values for present 
variables. In most cases, data missingness refers to missing values for one 



 - 24 - 

or more variables per record which will be discussed in this subsection. 
There are many reasons for missing data; some are natural, like when 
participants opted out of a study, preferred not to disclose some information, 
the subject’s death, etc. However, it also can be systematic due to collection 
procedures and design, improper collection (instability), data management 
and devices issues, etc. (An area where data repositories, such as the UK 
Biobank, are very explicit about [64]). 

In that sense, missing data can be unknown, unrecorded, undisclosed 
or irrelevant, etc. There may be a good reason why the attribute’s value is 
unknown. Perhaps it is based on a decision made, on the evidence available, 
not to collect a particular measurement; that might imply some information 
about the record other than the fact that the value is simply missing [63]. A 
scenario emerges when doctors and clinicians analyse clinical datasets 
provided for healthcare study; in some cases, a diagnosis could be identified 
from a range of tests, procedures or treatments a patient underwent, 
regardless of the test’s output. In such a scenario, the missing outcome of 
tests can be ignored. 

The previous scenario emphasises that only medical experts from the 
specialist domain who are familiar with the data can make an informed 
judgement about whether a missing observation has some significance or 
should be considered an ordinary missing observation. That scenario raises 
the importance of a systematic review of missing readings from medical 
datasets from four different angles before embarking on a missing value 
handling strategy [65].  

Feeding variables directly to machine learning algorithms and 
relying on their general embedded methods to handle missingness in 
medical datasets may not be entirely appropriate. This is because machine 
learning schemes run under the assumption that there is no particular 
significance to the fact that a record or a group of records contain missing 
observations in a variable [65]. Therefore, when observing domain experts’ 
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activities in healthcare research and before embarking on a strategy to 
handle missingness, four areas should be investigated to assess the meaning 
of missing values. These areas are the causal missingness of observations, 
the type of non-response, the missingness pattern and the proportion of 

missing data [65]. 

A) Causal missingness distinguishes between random versus selective 
loss of data. When reviewing the literature on this particular issue, we find 
that in 2001, Paul D. Alison divided the cause of missingness into three 
types [66] depending on the potential cause of data missingness: Missing 
Completely at Random (MCAR), Missing at Random (MAR), and Missing 
Not at Random (MNAR). MCAR missing values are unrelated to a process 
causing this missingness; hence it is considered random. Assume a dataset 
with two variables, a dependent variable 𝒀 with missing response 𝑹 and a 
dependant variable 𝑿. The probability of missing value 𝑹 does not depend 
on anything. 𝑿obs and 𝑿mis are any observed and missing values for 𝑿, 

respectively. 𝝍 represents any other value. MCAR condition is given by [66]: 

𝑷(𝑹|𝒀, 𝑿) = 𝑷E𝑹F𝒀, 𝑿𝒐𝒃𝒔, 𝑿𝒎𝒊𝒔𝒔G = 𝑷(𝑹|𝝍) 

MAR missing observations may be due to a relationship between the missing 
data and recorded observations for other variables; however, one cannot be 
sure due to a cavity in the declared data or missing a related variable. This 
cause of missingness can be defined by [66]: 

𝑷(𝑹|𝒀, 𝑿) = 𝑷E𝑹F𝒀, 𝑿𝒐𝒃𝒔, 𝝍G 

MNAR is the most severe type of missingness. It may be due to a 
relationship between the missing data and observed data or missing values 
for other present or missing variables. The missingness is expressed [66] in 
relation to an unknown probability P(A):  

𝑷(𝑹|𝒀, 𝑿) = 𝑷(𝑨) 
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Since the missing values are unknown, one cannot be entirely sure about 
the probability of missingness. Besides, many missing data exploration 
methods assume that the missingness cause is MCAR or MAR [67]. For 
example, techniques like the T-test may establish an MCAR type [68], but it 
is not totally accurate. Heckman-type selection models explore MNAR data 
[69] [70]. 

B) Missingness Non-response is a common research survey issue of 
missingness that investigates the subject’s (unit) preferences in answering 
questions in a survey. We find this topic is widely also spread in the 
literature. For example, in 2010, Yan and Curtin described the types of non-
response in a survey [71].  

They describe two types of non-response missingness: unit non-
response and item non-response [71]. Unit non-response refers to the 
complete missingness of a record’s responses. Where Item non-response is 
selective missingness at a record level for a subject that relates to the 
absence of answers to specific questions, an example is a subject who 
answered most of a questionnaire but decided to skip a few unanswered. 
Historically, for such a case, different statistical treatments, adjustments 
and causes were described [72][73]. Unit non-response has a larger spread 
in a dataset than item non-response. There are many techniques to address 
unit non-response, such as reweighting methods proposed by Pérez-Duarte 
et al. [74] and weighting estimates by the Horvitz-Thomson Estimator [75]. 
Item non-response severely threatens data quality since it reduces dataset 
size if only completed cases are used in any modelling. Imputation 
techniques can be used to substitute for missing values to avoid the 
shrinkage of sample size. However, it is still problematic if an item non-
response represents non-ignorable missing data. Non-ignorable missing 
data occur when the missing data pattern is correlated with the values of 
the dependent variable (output variable) [76]. Various imputation and 
modelling methods are developed to compensate for item non-response [76]. 
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C) Missingness patterns can assist scientists in identifying the type of 
missingness in the dataset, leading to more suitable strategies for handling 
missingness. Van Buuren's book “Flexible Imputation of Missing Data” 
describes three key patterns of missingness in a dataset. There are multiple 
patterns of missingness patterns; Monotone vs Non-monotone (Arbitrary) 
missing data patterns, Univariate vs Multivariate and Connected vs 
Unconnected [77]. 

A monotone missingness pattern is systematic in the data. For 
example, assume having a dataset with variables 𝑿𝟏,𝑿𝟐,𝑿𝟑, …, 𝑿𝒑; To have 
a monotone pattern is specific to the event for a variable value 𝑿𝒋 is missing 
that implies all subsequent variables values are missing 𝑿𝒌 are missing 
where 𝒌>𝒋. Alternatively, when 𝑿𝒋 is observed for a subject, it is assumed 
that all previous 𝑿𝒌 for 𝒌<𝒋 are also observed for the same subject. Monotone 
missingness occurs in longitudinal studies with drop-out. If the pattern is 
not monotone, it is called non-monotone or Arbitrary. A non-monotone 
pattern indicates that missingness is random [77]. 

A missing data pattern is said to be univariate if there is only one 
variable with missing data. Missingness that occurs everywhere is knowns 
as multivariate missing data. A missing data pattern is considered 
connected if any absent data point can be reached from any other present 
data point through a sequence of horizontal or vertical moves in the dataset 
and is considered unconnected otherwise [77]. 

Generally, one cannot be sure whether data are missing at random or 
whether the missingness is related to unobserved predictors or the missing 
data themselves. The fundamental difficulty is that these potential “lurking 
variables” are unobserved-by definition, so one can never rule them out. We 
generally must make assumptions or check with reference to other studies. 
Another practical approach is to try to include as many predictors as possible 
in a model so that the “missing at random” assumption is reasonable. For 
example, a strong assumption may be that non-response to the earnings 
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question depends only on sex, race, and education. However, this is much 
more plausible than assuming that the probability of non-response is 
constant or depends only on one of these predictors [78]. 

D) Missingness proportions for each variable and each record must be 
computed to help decide which variables or records should be considered 
candidates for removal or data imputation [79]. 

2.6.5 Missing data mitigations 

Missing observations treatment depend not only on the reason for 
missingness or possible pattern of missing values but also on the spread of 
missingness, the dataset size, the volume of affected records and the 
required analyses on the dataset. One must remember that the primary goal 
of missingness remedies is not guessing a missing value itself; instead, it is 
for obtaining reasonable parameter estimates about the relationship 
between variables to provide the best guess. In practice, we try to include as 
many predictors as possible in a model to make the “missing at random” 
assumption reasonable [78]. Missing data treatments fall within three main 
groups: deletion, single imputation and model-based methods [79]. Different 
imputation techniques introduce different values to complete the data; 
hence are expected to perform differently on various datasets. The level of 
performance may be assessed on how close the completed values are to the 
known hidden (intentionally missing) values; the technique that best 
recovers the actual data “wins”; this approach can only be applied in 
simulation and not in the real world; this method was proposed in 1975 as 
proposed by Gleason and Staelin [80]. Another recent approach compares 
selected metrics such as the Sum of Square Error (SSE) to differentiate 
imputation techniques performance (excluding deletion) over incremented 
proportions of missing data in a sample of the original data [79]. Whichever 
the case, one must never forget that the missing data requiring imputation 
is unknown in the real world. Thus, we cannot quantify the quality of a 
missingness treatment based on how well it can recreate the actual data. 



 - 29 - 

Imputation is not a prediction [77]; in simulation, imputing with predicted 
values may lead to realistic imputations if the predicted values are close to 
the precise true hidden values; the method may have the ability to 
reconstruct the missing values from the available data. But this will only 
indicate that no information was missing in the first place; it was only 
concealed in a different form of coding or within another value in a variable, 
i.e., a derived variable [77]. 

In recent years, with the development of machine learning, many 
algorithms embedded models-based, deletion (by ignoring) or single 
imputation methods of handling missing data within; Early ML algorithms 
such as ID3 (Iterative Dichotomiser 3) decision tree by Quinlan (1979) 
simply ignores the missing numeric values or treats nominal missing values 
as a new category [81]. In Gaussian processes, Gharamani and Jordan 
(1994) published a method to handle missing values as hidden variables and 
impute them with a variant of the Expectation Maximisation (EM) 
algorithm [82]. For Kernel methods, Smola and Hofmann (2005) described 
how to handle missing observations with a variant of Support Vector 
Machines (SVM) [83]. Chen and Guestrin, in 2016, described Extreme 
Gradient Boosting (XGB) trees that come with extensions to handle missing 
observations, so they can process the data without imputing missing values 
via a sparsity awareness extension [84].  

Finally, we believe that Machine Learning algorithms that treat the 
missing values by ignoring them or accounting for them as a separate group, 
in a sense, are not handling missing values. To handle missing values 
correctly, one must ensure that the estimated data points are not excessively 
utilised in the predictive model (inducing bias) to produce predictions. Also, 
one should ensure that most of the model learning, decisions and parameter 
tuning are made on observed data points. For example, we should avoid a 
scenario where an estimated value is used in evaluating a node split in a 
decision tree; this is another demonstration of machine learning algorithms 
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misestimating the importance of a missing value in a record. And here is a 
brief background review of various methods of missing data treatment [66]: 

A) Deletion is one way to eliminate the problem of missing data. Objects 
are retained as per completeness in target data for the specific analysis and, 
ultimately, modelling.  

Deletion has three types: Case-wise deletion, Pair-wise deletion and 
Variable dropping. Case-wise deletion, also knowns as complete case 
analysis, deletes any record (case) with a minimum of one missing 
observation and retains those without any missing values across all 
variables. Pair-wise deletion, also known as available case analysis, 
depending on the case study, records are retained as per completeness in 
target variables for the specific analysis; other records with missingness will 
be discarded. This deletion method typically results in bespoke instances 
kept in a dataset for each different analysis. Variable dropping discards a 
whole variable for all records in the dataset. In some data sources, i.e., the 
UK Biobank [19], raw data has a property of stability; In some cases, the 
number of records could be small and growing where the data stability for 
some variables is referred to as Accruing, ongoing or updatable. If the 
portion of available observations in such variables is small compared to the 
remaining variables, the complete variable is removed from the analysis. In 
healthcare research, case-wise deletion may be used as a remedy for missing 
data only if the proportions of missing data (all observations) are below 5% 
(a rule of thumb). Also, case-wise and pair-wise deletion should not have 
certain patients’ groups, i.e., those who were identified as very vulnerable to 
a disease or those identified as immune to a disease specifically if 
missingness was suspected to be lost to follow-up or opt-out of a trial [85].  

The 5% threshold also assumes that the missing data is MCAR or 
MAR (Little’s test can also be performed) [86]. Therefore, if the missing 
observations are MCAR/MAR (hard to prove), the case-wise deletion shall 
suffice, and the modelling on the observed remaining data will not be biased 
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[87]; otherwise, the analysis will be at risk of biased results, and no 
statistical method can absolutely account of the potential bias [88]; 
Weighting-Case Analysis can be used to weight the complete-cases by 
modelling the missingness to reduce the potential bias introduced in the 
available-case [79]. In the medical domain, a clinical trial is said to be 
confirmative if missingness within any predictor variable is below 40% and 
treated with considered unbiased imputation technique. Variable dropping 
should be exercised on predictor variables whose missing values exceed the 
40% threshold; otherwise, the analysis can only be used for hypothesis-
generating results [89]. 

B) Simple imputation methods substitute missingness with a new 
(predicted) observation. Some of these methods are simple such as single 
value substitution, and others are more complex. Examples of single 
imputation include mean and median, hot-deck and cold-deck, last 
observations carried forward (LOCF), baseline observation carried forward 
(BOCF), indicator variable substitution, information-based imputation, 
logical rule imputation and random imputation.  Mean, Median or Mode 
imputation replaces missing values by the mean (marginal average), the 
median (the midpoint) or the mode (the most repeated value) of a frequency 
distribution. It is thought that the median imputation is more robust when 
in the presence of data outliers; However, all single imputation techniques 
could potentially severely distort the distribution [79]. Although such 
methods are straightforward, they reduce the strength of associations 
between variables, pulling any present correlations towards zero due to the 
reduction of the data's variability (change). Furthermore, if such a 
replacement happened at a large enough scale, it would bias the data 
analysis toward that single replacement value [78] [88].  

Hot deck imputation replaces missing observations with a randomly 
selected value from other present observations for the same attribute in the 
dataset. The missing observations are known as recipient units, and the 
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values of the present observations providing the values for imputation are 
called donor units [90].  

Cold deck imputation is similar to the hot deck imputation except that 
the pool of donor records is held in a different dataset used for the same 
purpose of analysis [90]. Both methods require grouping similar 
observations in a dataset, then selecting the donor units from the same 
imputation cell as the recipient units makes the imputation random with 
replacement in the case of hot deck or without in the case of cold deck [91]. 
This technique is used by the US Census Bureau [92].  

LOCF, also known as the sample-and-hold approach, recommends 
replacing the missing values in the treatment outcome variable with 
observations from pre-treatment measures. In clinical trials and 
longitudinal studies, this method assumes that patients’ health for those 
who were given treatment improved better compared with the health of 
those who didn’t receive treatment, hence encouraging replacing missing 
values with pre-treatment measures. [79]  

BOCF accounts for partial treatment or medical trial dropouts. So, it 
imputes values for subjects who had at least a single exposure to a drug or 
treatment and dropped out by not completing the entire course of treatment 
[79]. After receiving partial treatment, the expectations in observations for 
subjects see an improvement, deterioration, or no change in the post-
baseline measurements for a subject. Subjects who do not have a value at 
the endpoint (baseline outcome) because they dropped out are assumed 
(imputed) to have had “no change”. The assumptions run by LOCF and 
BOCF are often unrealistic and can lead to underestimating the actual effect 
of treatment [93].  

Indicator variable substitution is used for nominal and numeric 
variables with missing observations. In the case of nominal variables, 
missing values are substituted with an additional dummy category. In 
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continuous variables, an extra indicator is used to identify missing values, 
such as zero or the mean without a preference. This approach is widely used 
in social sciences. However, the absence of interaction between the indicator 
and values in other predictors could yield biased coefficient estimates in 
statistical models such as regression, where the slope is forced to remain the 
same across groups with missing observations [78]. 

Information-based imputation technique imputes values based on 
information stored in other variables [78]. For example, the annual salary 
is a common variable with high missing observations. It is logical to find the 
household occupier profession and substitute missing observations with the 
average salary for that profession from the population; these imputations 
may propagate logically valid measurement errors.  

Logical-rule imputation does not rely on assumptions and requires 
the missing-data mechanism to be known. Suppose the data acquired from 
a data source is well-declared. In that case, it is worth reviewing the data 
collection rules and survey designs that potentially lead to a better 
understanding of the data transaction [78].  

In simple random sampling imputation (SRSI), samples are randomly 
drawn from the dataset to impute the missing value. SRSI is reported to 
distort the distribution of the independent variables with high missingness 
[94]. 

C) Model-based imputation methods use a predictive model to estimate 
the missing observations. In this case, the dataset is split into two subsets 
for the variable under evaluation: one subset holds the present observations 
only used as a training set for the model, and the other contains all missing 
values requiring estimation [66]. Many modelling methods can be used, such 
as Regression, K-Nearest Neighbour (KNN), Maximum Likelihood 
Imputation (MLI), Expectation Maximization Imputation (EMI), Decision 
Tree-based Missing Value Imputation (DMI) and Multiple Imputation (MI). 
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In general, both prediction and imputation models provide an estimated 
value that is hidden or unknown. However, imputation cannot be regarded 
as a prediction. Imputation indicates that the missing values cannot be 
accessed, and its estimation cannot be validated. Unlike imputation, 
prediction modelling assumes access to the true unknown value can be 
either instantly, in the case of simulation (hidden) or in the future (awaiting 
to occur). Therefore model-based imputation estimation should not be 
assessed in a similar way to prediction models. 

In Regression, the variables in the dataset are used to create a 
regression model using the available observations in the variable to impute 
as an output. There are various types of regression, such as linear, stochastic 
and logistic [95]. Linear regression uses all variables to build a regression 
model where the variables subject to imputation are considered an output. 
Stochastic regression imputation is a deterministic regression imputation 
with an added random error component [96]. The logistic regression 
technique can be used for imputing missing data. It produces a probability-
based model [97]. The model estimates the probability of an observation 
occurring depending on the values of the other categorical or numerical 
independent variables. Regression model imputation, in general, benefits 
from accounting for the relationship between variables. Despite linear and 
logistic regression models’ prediction of the most likely value of the missing 
observation, they do not supply uncertainty about that value which, by turn, 
overestimates the model’s fit and correlations between variables. Stochastic 
regression is used for numeric and categorical missing values imputation 
and uses the same procedure as standard regression imputation. It 
introduces uncertainty by adding an extra step of augmenting each 
predicted value with a residual term. It aims to preserve the variability in 
the data; however, it tends to underestimate the standard error leading to 
increased false positive predictions [98]. 
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KNN completes missing values with the mean of the k values coming from 
the k most similar complete observations [99]. The similarity of observations 
is determined using a distance function, i.e., Euclidean, Manhattan, etc. The 
present observations in the dataset must be normalised before imputation 
since this method is pruned to bias towards variables with larger 
magnitudes. KNN can reasonably impute missing values and estimate both 
categorical and numerical observations. The similarity-based estimation 
takes into account the correlation between variables. However, the choice of 
the parameter k is experimental. There are multiple methods to solve the 
problem of the k parameter [100]. The model could become unstable if k is 
too small or too large.  

Maximum Likelihood Estimation (MLE) fits an optimal distribution 
to the data by comparing multiple models to determine the best fit. Fitting 
a distribution to the data results in a better generalisation of the data to 
predict further data points [101]. There are different types of distributions, 
such as normal, exponential, beta, gamma, Bernoulli and others [102]. 
Fitting a distribution to the data requires determining the shape of the 
required distribution and shifting the location of the centre of the 
distribution multiple times to obtain the best likelihood of observing the 
recorded measurements. Maximum Likelihood estimation uses the log-
likelihood function to estimate parameters for the model. This method shifts 
the distribution to determine the mean and the standard deviation location, 
maximising the likelihood estimate of the observed data points. There are 
multiple methods to compare various fit distributions (models). One 
approach uses the Kullback-Leibler Information Theory [103] to quantify 
the loss of information when using a probability density function to 
approximate (model) another probability distribution function. Another 
approach to selecting the best-fit model was described by Hirotugu Akaike 
and known as Akaike Information Criterion [104]. It imposes a penalty on 
models for using a higher number of parameters and penalises more complex 
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models. Therefore, if the criterion is small, the model will have a higher 
likelihood of being the best-fit model. Although the National Research 
Council of the National Academies advisory panel recommends methods 
that provide valid type I error rates (False positive), such as Maximum 
Likelihood under explicitly stated assumptions [105], current commercially 
available methods are only available for the continuous numeric type of 
variables. There are two types of Maximum Likelihood imputation: A Direct 
Maximum Likelihood and Full Information Maximum Likelihood. There 
remains a conservative limitation to using MLE as it relies on having strong 
predictor variables to produce an efficient imputation of missing values. 
Furthermore, it assumes that all variables that are relevant to the problem 
are present. Conventional maximum likelihood estimation does not work 
well in the presence of latent (hidden or not observed) variables [106]. 

Unlike MLE, Expectation Maximization Imputation (EMI), an 
emerging technique from maximum likelihood estimation, performs 
imputation in the presence of latent variables [107]. It runs two cycles. First, 
it estimates the values for the latent variables; this step is known as the 
estimation step (E-Step). The second step, the maximisation step (M-Step), 
optimises the model to maximise the parameters of the model explaining the 
data. There remain some limitations for EMI; it can be very slow, even on 
the fastest computer. It works best when you only have a small proportion 
of missing data (MAR type), and the dimensionality of the data isn’t too big. 
Although EM accounts for latent variables, to our knowledge, the current 
commercially available methods are only available for the continuous 
numeric type of variables [107].  

The practical limitation of EMI towards imputing numeric type 
variables is approached by creating a hybrid imputation technique known 
as Decision Tree-based Missing Value Imputation (DMI) [108]. Since EM is 
expected to perform better for a data set with higher correlations than a data 
set with lower correlations, DMI exploits the correlation behaviour by 
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finding horizontal segments within a data set where there are higher 
correlations than the correlations over the whole data set. Finding such 
segments is done via a decision tree algorithm (C4.5), EMI is then applied 
within various horizontal segments to the numerical variables, and the 
imputation of categorical variables missingness is handled by the decision 
tree algorithm using majority class values within the leaves [108]. DMI was 
reported to outperform the use of EMI alone over multiple missing data 
patterns; however, it is not widely trailed in various studies [108]. 

In the 1970s, Donald B Ruben developed a powerful statistical 
Multiple Imputation (MI) technique. This method has three steps. First, 
imputation with any method of choice leading to M > 2 completed datasets 
(some say that 5–10 sets are usually sufficient); however, the literature 
suggests that the number of imputations needed in MI is a function of the 
rate of missing information in a data set [109].  Rubin, in 1987 provided a 
formula to compute the relative efficiency of M to break the infinite number 
of iterations. A data set with a large amount of missing information requires 
more imputations [110]. These M imputed datasets have the same observed 
values, but the imputed values are different, reflecting the uncertainty 
about imputation. Second, analyse each completed dataset; each parameter 
set estimate will differ somewhat because the data differs slightly. Finally, 
pool the results by calculating the variation in parameter estimates [110]. 
MI overcomes the problem of having small standard errors produced by 
statistical imputation techniques, such as regression, as it incorporates the 
uncertainty inherent in the imputation process. However, MI is not always 
quick or easy. Efficient MI requires that the missing data be ignorable, and 
it requires a very good imputation model. A good imputation model depends 
on having strong predictor variables estimating the missing values [111]. 
There are three types of MI: single-value regression analysis, monotonic 
imputation and the Markov chain Monte Carlo (MCMC) method [112]. 
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There is a consensus that the proportion of missing data is directly related 
to the quality of statistical inferences. Hence, there is an agreement on the 
issues introduced with missing data and the occurrence of bias which 
specific methods can conceive in the statistical analysis if applied at 
different missingness proportions. The consensus is that avoiding missing 
data is every scientist’s first call. However, there is no consensus on the 
exact levels (thresholds) at which missingness conditions allow a specific 
method of missingness treatment to be applied. Additionally, there is no 
established cut-off from the literature regarding an acceptable percentage of 
missing data in a data set for valid statistical inferences [113]. The 
previously mentioned thresholds of 5% for ignorability in MCAR and MAR 
data and 40% for variable dropping are only recommendations based on 
various studies [86] [89].  

Also, one of Scheffer's letters in 2002 [114] highlighted a slightly 
different ignorability threshold of a maximum of 10% missingness levels to 
conclude MCAR/MAR missingness type that allows for likelihood-based 
imputation. Therefore, Multiple Imputation, EM imputation and regression 
imputation are all valid, provided the missingness mechanism is not NMAR 
and the percentage of missing data is not too great [114]. Scheffer thresholds 
are based on observing the combinations of proportion and type of 
missingness versus preserving the variance structure (mean and standard 
deviation) towards the complete data. Scheffer recommended that case-wise 
deletion is very wrong except in MCAR and noted that single imputation 
methods could work for MAR type, but only if less than 10% of the data is 
missing. However, if the variance structures in the data are important [115], 
one should not use these methods, specifically the mean imputation method, 
where the missing data proportion is greater than 5%. 

Finally, Scheffer highlighted that MI works well, up to 25% on MNAR 
data. However, many modern missing data methods (e.g., MI, EMI, MLE) 
assume the MAR type of missingness. Thus, including variables in the 
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statistical inferential modelling that could explain the missingness makes 
the MAR condition more plausible [113]. Hence, the literature often 
recommends adding more variables in a statistical model to make the 
missing data ignorable [116]. 

2.6.6 Feature scaling 

Data comes in different distributions and magnitudes. Centring shifts 
numeric input attributes in the given dataset to zero-mean. Centring any 
attribute requires deducting the mean from all data points for that attribute. 
Monotonic scaling converts the features from having different dimensional 
units and magnitudes of measurement into unified dimensionless features 
(common scale) [117]. This type of scaling is also known as non-
dimensionalization. Centring and monotonic scaling are considered types of 
feature engineering (monotonic transformation) [117].  

A monotonic transformation transforms one set of observations into 
another set of values to preserve the order relevance of the observations 
[117]. It was reported that feature scaling could vary your modelling results 
while using certain machine learning algorithms or may have a minimal or 
no effect on others [118 – 120]. In particular, feature scaling is needed when 
a dataset contains highly varying magnitudes, units and range features. For 
example, the problem may emerge when using an instance-based machine 
learning algorithm, K-Nearest Neighbour, that utilises a distance function 
between two data points in their computations for modelling. KNN considers 
the magnitudes of features and neglects the units of measurement; hence 
predictive modelling results would vary greatly among different units with 
enormous magnitudes. The features with higher magnitudes will weigh 
more in the distance calculations than features with lower magnitudes. In 
general, algorithms that are distance based, such as KNN, require feature 
scaling. Feature scaling may be necessary for all curve fitting machine 
learning algorithms (linear/non-linear regressions), logistic regression (LR), 
Support Vector Machine (SVM), Artificial Neural Networks (ANN), 
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clustering algorithms, the like of k-means clustering etc. Machine Learning 
algorithms which do not rely on the above conditions do not require feature 
normalisation (scaling). Graphical-model-based classifiers, such as Naive 
Bayes (NB), Decision Trees and tree-based ensemble methods, such as 
Random Forest (RF) and C4.5, don’t require their features to be scaled. Still, 
it might be beneficial to standardise (scale) the data because NB calculates 
the probability function of events for individual variables in its prediction. 
At the same time, the rest utilise rules such as impurity and entropy 
measures and hence do not require scaling to be applied [121]. There are 
many techniques of feature scaling. The effect of feature scaling on 
modelling is also a wide area of research. In this thesis, we only can review 
a handful of these methods, including the Z-score, minimum-maximum, 
mean, unit-length and L-Norm normalisation techniques. 

A) Standardisation, also known as normalisation, the Z-score scales the 
values of each feature in the data to have a zero mean and standard 
deviation of 1. Every 𝑖&' Recorded observation in the 𝑗&' numeric variable, 
𝑥() is converted into a unified unit of standard deviation 𝜎), where	𝑥*O  is the 

mean of the 𝑗&' predictor and �́�() is the new standardised observation [118]. 

The Z-score is given by: 

�́�𝒊𝒋 =
𝒙𝒊𝒋 − 𝒙,O
𝝈𝒋

 

This method of scaling is linear and assumes that the distribution of the 
variable follows the normal distribution. Therefore, a preceding 
transformation may be required for a variable to a normal distribution 
where such a transformation is often non-linear and may distort 
associations with other variables [118]. 

B) Minimum-maximum normalisation is an interval-based scaling 
method [118]. This method usually scales a feature’s values to the range [0, 
1] or [-1, 1]. 
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𝚨- = T
𝑨 − 𝑨𝒎𝒊𝒏

𝑨𝒎𝒂𝒙 −	𝑨𝒎𝒊𝒏
U 	× (𝑫 − 𝑪) + 𝑪 

A’ is the new scaled min-max normalised data, C is the new minimum value, 
D is the new maximum value, and [C, D] is a predefined interval. This 
technique is more suitable for variables that follow a non-normal 
distribution. But it is sensitive to the presence of outlier observations [118]. 

C) Scaling to unit-length normalisation is widely used in machine 
learning to scale the components of a feature vector such that the complete 
vector has a length unit [118]. Assume a random predictor 𝑋 with a set of 
observations 𝑥1 to 𝑥2, the vector length is defined by ‖𝑋‖. Normalised 
observation 𝑥3̀ where 𝑥( ∈ 𝑋 in the n-dimensional Euclidean space ℝ2 can be 
calculated by, 

𝑿 =	 ^

𝒙𝟏
𝒙𝟐
⋮
𝒙𝒏

` 	⇒ 	 ‖𝑿‖𝟐 =	bc𝒙𝒊𝟐
𝒏

𝒊6𝟏

= d𝒙𝟏𝟐 + 𝒙𝟐𝟐 + 𝒙𝟑𝟐 +⋯+ 𝒙𝒏𝟐 	⇒ 	𝒙8̀ =	
𝒙𝒊

‖𝑿‖𝟐
 

This method may be best suited when dealing with variables with hard 
boundaries whose values are always capped with a valid range controlled by 
a device, such as sensor data. However, in health applications, this may not 
be suitable in cases where measurements in a variable don’t have 
boundaries. Also, the effect of having outliers could be overpowering in this 
type of scaling [118]. 

D) Mean scaling can be used for algorithms that assume zero-centric data, 
If the maximum and minimum values of a given predictor are 𝑥)(:(2)	and 

𝑥)(:<=) respectively, the variable can then be transformed into a range of 

values. Every 𝑖&' recorded observation in the 𝑗&' numeric variable, 𝑥(), is 

transformed, where	𝑥*O  is the mean of the 𝑗&' predictor and �́�() is the new 

normalised observation. Thus:  

�́�𝒊𝒋 =
𝒙𝒊𝒋 − 𝒙,O

𝒙𝒋(𝒎𝒂𝒙) − 𝒙𝒋(𝒎𝒊𝒏)
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Like the Minimum-Maximum, the Mean normalisation is also sensitive to 
the presence of outlier observations [119]. 

E) Rational scaling is based on the rational function. For each value of an 
attribute, 1 is divided by the attribute value. It is defined as: 

�́�𝒊𝒋 =
𝟏
𝒙𝒊𝒋

 

This type of scaling changes the arithmetic significance of outlier data 
points. This change may not be an issue if such data points are ignorable or 
removable. Still, it could be a problem in health datasets if the outliers are 
not ignorable, representing a phenomenon [119]. 

F) Logarithmic scaling is a normalisation technique that computes a 
predictor's log of observed values. This conversion compresses a wide range 
of values into a narrow range. Log scaling is particularly helpful when the 
variation of data values belongs only to a few instances, and the majority of 
your samples have little variation in recorded values. For illustration, 
Figure 2.4 shows a hypothetical distribution of a variable. It is observed that 
the greatest outcome was a zero-value at the peak of the distribution, and 
the smaller values make the rest of the variations of the variable’s values at 
the tail. Log scaling changes the distribution and helps to improve the 
prediction model performance [122]. This method converts a skewed 
distribution to a normal or less-skewed distribution. However, if a variable 
contains negative observations or values below 1, the log transform is 
undefined and cannot be applied directly. Therefore, to overcome this 
limitation, such values can be summed with a large known positive value 
that makes them greater than 1. Then, the scaler can be successfully applied 
only when the feature conforms to the power law. 
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Fig. 2.4 Illustration of a distribution before (left) and after (right) log scaling 

G) Maximise Normalisation is a special case of feature scaling where only 
the maximum value for an attribute is known. It is defined by: 

�́�𝒊𝒋 =
𝒙𝒊𝒋

𝒙𝒋(𝒎𝒂𝒙)
 

Still, if the range is known, then it is more appropriate to normalise within 
the known range; this is known as Scaling to a range [119] [122] and is 
defined by:  

�́�𝒊𝒋 =
𝒙𝒊𝒋 − 𝒙𝒋(𝒎𝒊𝒏)

𝒙𝒋(𝒎𝒂𝒙) − 𝒙𝒋(𝒎𝒊𝒏)
 

Like all other boundary-based scalers, both methods are sensitive to outliers 
and extreme values. 

H) Maximum Absolute Scaling automatically scales the data to a [-1,1] 
range by dividing every observation by its maximum absolute value. This 
scaler neither centres the distribution at zero nor shifts the data [123].  

�́�𝒊𝒋 =
𝒙𝒊𝒋

𝒎𝒂𝒙EF𝒙𝒋FG
 

I) Robust Scalar scales the observations according to the quantile range 
(IQR: Interquartile Range)[123]. It essentially removes the median and 
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scales the data between the 1st quartile (25th quantile) and the 3rd quartile 
(75th quantile). This method is not affected by outliers and extreme values 
which usually lay outside the interquartile range, hence not participating in 
the scaling calculations for data points. However, the outliers themselves 
are still present in the transformed data; thus, a separate outlier treatment 
is recommended [123]. 

�́�𝒊𝒋 =
𝒙𝒊𝒋 − 𝑸𝟏(𝒙𝒋)

𝑸𝟑(𝒙𝒋) − 𝑸𝟏(𝒙𝒋)
 

J) Quantile Transformer is a non-linear feature scaling technique that 
converts the variable distribution to a normal distribution. It computes a 
variable's cumulative distribution function (CDF) and maps its recorded 
observations to a normal distribution using a quantile function. This type of 
scaling is reported to improve the modelling performance [124]. However, 
although this technique is resistant to outliers, it will distort associations, 
including linear relationships such as correlation among variables [124]. 

K) L-Norm Scaling works differently from all the previous scaling 
techniques. Unlike the earlier scalers, the transform observations on the 
individual predictor values, L-Norm transforms the observations on each 
individual record, hence known as an instance-based scaling technique. 
Each instance (record) of the dataset with at least one non-zero recorded 
observation is scaled independently of other instances so that its norm 
equals 1[125].  

There are different Norm indices for each of those; each defines a different 
way to measure the magnitude of the instance vector, i.e., L1-Norm is also 
known as the Manhattan Distance, which sums the absolute difference of 
the components of each instance vector. L2-Norm, also known as the 
Euclidean norm, where each observation of the sample vector is squared, 
this will inflate the weight of any present outliers and could skew the 
results.  
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L-∞ Norm returns the largest element within the sample vector; therefore, 
only the largest element within the records has any effect. However, this 
type of transformation completely changes the information within each 
variable. Furthermore, it impacts all machine learning techniques since it 
changes the associations and linear relationships among variables, such as 
correlation. Therefore, the calculations of any rules used for classification 
modelling, i.e., purity and entropy in the case of decision trees, for example, 
also change [125]. 

From the previous review, when considering the methods described earlier, 
some scaling techniques are sensitive to outliers and extreme values. Others 
are more robust. Also, some scalers change the underlying distribution of 
the data itself, leading to changes in associations among variables in the 
dataset. Each scaling technique has characteristics which can be leveraged 
to improve or deteriorate the performance of a prediction model. However, 
choosing the right scaler is often a trial-and-error process, and no single best 
scaler works every time.  

Generally speaking, a scaler is deemed suitable mainly by the type of 
data at hand and which machine learning algorithm we apply. One safe way 
is to try all the scaling methods on training data and pick the best-
performing scaled-data model on test data, but this is a time-consuming 
approach, especially for larger datasets. Additionally, from the previous 
review of scalers' advantages and limitations, the modelling efficiency when 
choosing a specific scaler is potentially dependent on multiple elements. 
Such elements are the distribution of the raw variable, the presence of 
outliers, the associations among variables, and the particular assumptions 
or rules made by the modelling algorithm to learn to classify.  

Variable scaling has always been unsupervised, not taking the class 
into account; in that context, some researchers tried to rank the scaling 
methods based on their effectiveness in improving the accuracy performance 
of a collection of various machine learning classifiers [124]. But soon, they 
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concluded that despite seeing some improvement in some models, no single 
scaling approach is observed that can be ranked top performer among all of 
the scaling techniques [124].  

Other researchers took a supervised normalisation approach [126]. In 
2006, Yang et al. published a new supervised attribute scaler as a pre-
processing step for the KNN classifier based on the features' discriminant 
power. Each attribute is scaled by multiplying it with a learned weight [126]. 
The attribute weights are learned by taking the original labelled dataset 
with N instances and creating a new dataset with N*K instances, where K 
is the number of neighbours selected. To this end, each instance in the 
original dataset is paired with its K nearest neighbours, creating K pairs. 
Then, an instance in the new dataset is created for each pair with the same 
number of attributes as in the original data. An attribute's value in this new 
instance is set to the absolute difference between the corresponding 
attribute values in the pair of original instances. The new instance's label 
depends on whether the two instances in the pair have the same class label 
or not, yielding a two-class classification problem. A logistic regression 
model with non-negative coefficients is learned from this data, and the 
resulting coefficients are used as weights to rescale the original data. This 
process assumes that distance in the original space is measured using 
Manhattan distance because the absolute difference is taken between 
attribute values. The method can optionally be used to learn weights for a 
Euclidean distance. In this case, squared differences are taken rather than 
absolute differences, and the square root of the learned coefficients is used 
to rescale the attributes in the original data [126].  

Still, there remains a limitation in Yang’s approach; all the features, 
excluding the class, are assumed to be numeric and do not permit the 
presence of missing values [126]. 

Researchers in another study tried to solve the problem of selecting 
the best scaler with a more dynamic approach [127], by which the choice of 
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scaling techniques is automated by applying machine learning algorithms 
to predict the most appropriate (best-suited) scaling approach. Such a 
dynamic approach utilises a set of complexity measures extracted from the 
training datasets considering class-oriented measurements in each set as 
features in a dynamic classification model [127]. The data complexity 
measures are metrics used to quantify the difficulty of a classification 
problem [128][129]. There are various complexity measures for each dataset. 
These measures are categorised into five main measurement areas: class 
overlapping, class separability, geometry, topology and density of manifolds 
[130]. The study trained 14 popular algorithms with complexity features 
extracted from 48 different datasets comparing the z-score and min-max 
scalers. The models returned high accuracy, which may not necessarily be 
the best measure for all classification tasks. Due to the large computational 
work required to conclude the effectiveness of these models, a significant 
number of datasets is needed to test these models to draw a conclusion for 
only two scalers! 

A gap in the literature remains and is worth exploring by future 
researchers, the use of mixed scalers within a single dataset while achieving 
comparable magnitudes of measurements. There may be an added value in 
applying multiple scaling techniques to different variables within a dataset. 
The added value of such local transformation usually serves the overall 
modelling process and enhances the features by eliminating issues such as 
skewness and varieties of magnitudes.  

Feature scaling is an essential step in data pre-processing. Thus, it is 
imperative to decide which feature scaling to use. Therefore, many 
comparison studies of scaling methods for various popular algorithms exist. 
Unfortunately, this variety of studies only means that feature scaling 
remains a trial-and-error process without a unified approach to their 
application. 
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Finally, in healthcare, where machine learning model interpretability is 
important [131], scaled features’ interpretability should be mitigated. 
Scaling techniques alter the original observations to new mapped values 
losing their original clinical interpretability; therefore, the final model will 
be subject to interpretability issues. De-normalisation (De-scaling) can 
always be applied to understand the decision criteria in rule-based models 
such as decision trees, for example. Still, de-scaling may not be sufficient to 
evaluate more complex models such as curve-fitting ones. Also, in cases 
where the data requires error detection and corrections, feature scaling may 
be necessary before initiating some imputation techniques. 

2.6.7 Abnormal records detection 

Many machine learning algorithms and data pre-processing techniques are 
sensitive to the training features’ range and distribution. Outliers are 
abnormal values that skew the classifier and may deteriorate a model’s 
performance by potentially producing misleading results. They also prolong 
the algorithms' training time. Outliers may occur erroneously due to sensors’ 
faults, systems behavioural irregularities, manual or automatic fraudulent 
behaviours, including cyber-attacks, human error, instruments malfunction 
or genuinely through a natural change in population characteristics. 
Unfortunately, there is no agreed mathematical definition of outliers and 
extreme values; some may define them as the same. These abnormal 
observations require detection and a course of action in all cases. Such data 
points, in fact, depend on how you define their relative presence to the rest 
of the data points in a dataset. Here we define outliers as data points that 
appear inconsistent with the rest of the data values, while extreme values 
are further away, residing at the boundaries of all values for an input 
feature. Outliers and extreme data points can be illustrated in the scatter 
plot in Figure 2.5 for illustration purposes only. 
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Fig. 2.5 Adaptive projection illustration of outliers and extreme values 

 
There are many methods to detect such abnormal values [132]. However, 
some are more sophisticated than others. For example, visualisation 
techniques such as univariate plots, i.e., histograms or multivariate scatter 
plots, examine each variable’s values or groups of related variables. Others 
perform statistical tests such as Inter Quartile Range (IQR) test [132]. 
 
A) Inter Quartile Range or IQR test [132] assumes a distribution and 
looks for values more than 2 or 3 standard deviations from the mean or 1.5 
times from the first or third quartile, as illustrated in Figure 2.6. 
 

 

Fig. 2.6 Box plot illustrates an IQR test for detecting outliers (O) and extreme values (EV) 
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B) Proximity methods are more sophisticated methods that detect 
abnormal values via clustering methods such as the K-means algorithm 
[132]. K-means identifies the natural clusters in the dataset by marking the 
clusters’ centroids. Then, by marking a fixed distance (i.e., the Euclidean 
distance) of the distance from cluster centroids, abnormal data points can be 
filtered. Feature scaling is maybe an essential preparation step before using 
such a technique. See Figure 2.7 for an illustration. 

 

Fig. 2.7 Illustration of detecting abnormal values via K-means clustering 

It is a common practice that domain experts examine abnormal data points 
before embarking on retaining or discarding them. Especially in health 
research, despite how proportionally small the abnormalities, they may be 
a phenomenon that needs addressing, i.e., a rare response to a new 
treatment. If they are errors, they may be corrected or substituted with 
information stored in other variables since discarding them may bias the 
analysis if they were proportionally large [132]. 

If the abnormal observations are simply errors or not a phenomenon, 
deleting the outliers is the most straightforward approach. If the deletion 
option is the researcher’s choice, a similar ratio to complete-case analysis in 
missing data can be advised by following the 5% ratio to avoid statistical 
bias. Otherwise, retaining the outliers is recommended in their original 
form. If they are larger than 5% of all observations, advanced projection 
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methods, such as the spatial sign technique [133], can be used to suppress 
their effect. 
C) Advanced projection techniques project the variables’ values into a 
multidimensional sphere [133]. In this approach, all instances have the 
same distance to the sphere's centre. To achieve this, all the variables must 
be standardised then all instances are normalised with the L-Norm function 
(i.e., Euclidean Norm). Figure 2.8 shows the transformation of abnormal 
data points. 

 

Fig. 2.8 Illustration of advanced projection transformation of abnormalities in linear data 

 

A limitation of applying such a technique is due to applying L-Norm which 
distorts the natural associations among input features. An alternative 
strategy is to model the data with robust learners to outliers such as 
Decision Trees. 

2.6.8 Feature rounding 

When dealing with continuous numeric variables such as fractions, ratios or 
proportions, the high precision in these raw values may not be needed. 
Hence, they could be rounded from high-precision percentages into numeric 
integers. These newly converted integers can be directly used as raw values 
or as categorical (discrete) features to train the machine learning 
algorithms.  
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However, certain types of rounding may result in a bias towards or 
away from a certain value, which could affect the overall model error and 
disturb the original data distribution. Rounding can also increase or 
decrease entropy, affecting the modelling output. One may think rounding 
is a form of discretisation (binning or bucketing) but on a larger scale. It was 
reported to enhance the efficiency of the machine learning algorithms 
training [134]. 

Feature rounding converts a number represented using the float or a 
higher precision fixed-point format into a lower precision fixed-point 
representation. This conversion is a matter of some importance to consider 
while performing modelling on fixed-point numeric attribute values. There 
are many feature rounding techniques [135], such as Directed rounding to 
an integer, Rounding to the nearest integer and Randomised rounding to an 
integer. 

A) Directed rounding to an integer has four methods where the 
disposition from the original values is all directed towards or away from the 
same limiting value +∞, 0 or −∞. Directed rounding is used in interval 
arithmetic. The different types of directed rounding are rounding down (take 
the floor), rounding up (take the ceiling), rounding towards zero (truncating) 
and rounding away from zero (rounding towards infinity) [135]. Directed 
rounding to integer methods results in accumulating rounding errors toward 
individual values. Methods which round the tiebreaker towards or away 
from zero treat positive and negative values symmetrically; hence they are 
free from overall positive/negative bias if the original numbers are positive 
or negative with equal probability. But they still would have a bias towards 
zero or infinity, respectively. 

B) Rounding to the nearest integer rounds a value to its nearest integer. 
It requires some tie-breaking criterion for cases when the observation value 
is precisely located midway between two integers (the fraction part of the 
value is exactly 0.5). By rounding a large set of fixed-point numbers with 
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uniformly distributed fractional parts, the rounding errors with all values 
will statistically compensate each other, eliminating those with 0.5 
fractional parts. Therefore, it is expected that the mean value of the rounded 
numbers is equal to the mean value of the original numbers when the 
numbers with fractional part 0.5 are removed from the set. There are six 
types of rounding to the nearest integer: round half up, round half down, 
round half towards zero, round half away from zero, round half to even and 
round half to odd. And from their names, they are centred on the tiebreak 
value of 0.5. [135]. Rounding half to even-odd values eliminates the tie-
breaking rule bias towards positive/negative bias and bias towards or away 
from zero. The downside to rounding half to even-odd is that it distorts the 
distribution by increasing the probability of evens relative to odds or vice 
versa. 

C) Randomised rounding rounds the fractional part 0.5 up or down 
without remembering the rule for rounding using a random seed. 
Randomised rounding has two types, Random tie-breaking and Stochastic 
rounding [134]. In Random tie-breaking, if the fractional part of 𝒙 is 0.5, 
choose 𝑦 randomly among 𝒙+𝟎.𝟓 and 𝒙−𝟎.𝟓, with equal probability. All other 
values are rounded to the closest integer. This rule eliminates overall bias. 
In Stochastic rounding, rounding follows one of the closest straddling 
integers with a probability dependent on the proximity. The probability of 
rounding 𝒙 to ⌊𝒙⌋ is proportional to the proximity of 𝒙 to ⌊𝒙⌋. Machine 
learning training can benefit from randomised rounding to an integer; it is 
effectively bias-free among all values despite their scaler property. 
Stochastic rounding is an unbiased rounding scheme with the desirable 
property that the expected rounding error is zero [134]. 

 Finally, substituting floating-point observations with fixed-point 
arithmetic points comes with significant gains, efficiency and computational 
throughput while potentially may impact the machine learning model’s 
performance. 
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2.6.9 Feature discretisation 

This feature conversion, aka binning, transforms numeric data into nominal 
data by putting the numeric values into distinct groups whose length is 
fixed. Multiple studies reported that various methods of discretisation 
impact Naïve Bayes (NB) and Bayesian Network ML models’ performance 
[136][137]. For example, Yang and Web compared the performance of the 
NB classifier on a dataset with nine different discretisation methods [138].  

In their study [138], Naïve Bayes classifiers showed a lower 
classification error and an improved classifier overall performance on data 
pre-processed by some discretisation methods. In the past, it was well 
established in the literature that Naïve Bayes models show a significant 
performance improvement with discretisation [139]. Naïve Bayes models 
were always known for their efficiency, optimality and accuracy. Such an 
improved performance led to widespread implementations of NB learners 
incorporating built-in discretisation methods. Other algorithms that benefit 
from discretisation are Decision Trees (DT). However, the discretisation 
methods enhancing the NB classifier’s performance may not yield the same 
improvement on DT [138]. The learning context of the algorithm is a core 
driver to witnessing such an improvement [139]. NB classifier is 
probabilistic and selects the class with the highest probability for a given 
instance. It is plausible that it is less important to form intervals dominated 
by a single class for NB classifier than for DT driven by decision rules based 
on entropy and purity. Thus, discretisation methods that pursue pure 
intervals might not enhance NB classifiers [138]. Besides, NB classier 
assumes attributes’ independence. Therefore, in the NB case, there is no 
need to calculate the joint probabilities of multiple attribute values. Thus, 
discretisation methods that capture inter-dependencies among attributes 
might be less applicable to NB [138].  

In a classification problem, discretisation methods that do not utilise 
the class labels in the discretisation process are considered unsupervised 
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techniques. In contrast, discretisation methods that use the class labels are 
known as supervised discretisation methods. In other words, unsupervised 
discretisation methods are class-independent, while supervised methods are 
class-dependent [140]. Common examples of unsupervised attribute 
discretisation techniques are Equal-width Binning and Equal-Frequency 
Binning [141]. On the other hand, method 1R and Entropy-Based Binning 
are examples of supervised attribute discretisation. 

A) Equal-width binning discretisation method divides the range of 
observations within an attribute into 𝐾 intervals of equal size (range) 
without using the response (class) information. 

B) Equal-Frequency Binning is also known as Equal-Depth (height) 
binning. This discretisation method divides the data into 𝐾 groups, each 
containing approximately the same number of values (samples).  

There are two key issues associated with unsupervised discretisation, 
first is how to select the number of bins and how to decide on their width. 
For the previous unsupervised methods, one way of determining 𝐾 is by 
looking at the histogram and trying different intervals or groups.  

Yang and Web developed an automatic approach, Proportional k-
Interval Discretization (PKID) [142], and later developed Weighted 
proportional k-Interval Discretization (WPKID) [143]. Both methods were 
developed mainly for Naïve Bayes to discretise numeric attributes using 
equal frequency binning by forcing the number of bins to equal the square 
root of the number of numeric attribute’s values. Both methods tune 
discretisation bias by adjusting discretised interval size and number 
proportional to the number of training instances. WPKID improves PKID 
when used for smaller datasets [142] [143]. 

C) Method 1R is a supervised discretisation algorithm developed by Holte 
[144] in 1993. It is proven effective on the standard datasets commonly used 
for evaluation. First, 1R sorts the continuous data values, and then the 
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range of the continuous variable is divided into several disjoint intervals. 
Next, the boundaries of those intervals are adjusted based on the response 
class labels associated with the values of the feature (continuous variable). 
Each interval contains a predefined minimum number of instances, usually 
six instances by default based on Holte’s empirical experiments, except for 
the last bin. The boundary adjustment continues until the next bin of values 
belonging to a class differs from the majority class in the adjacent interval 
[144]. 

D) Entropy-Based Binning uses a greedy split approach. In 1993, Fayyad 
and Irani proposed a multi-interval discretisation of continuous attributes 
for classification learning (MDL) [145]. It uses the information theory to 
minimise the entropy within a variable based on the class label. Intuitively, 
it finds the best split so that the bins are as pure as possible, where the 
majority of the values in a bin map to the same class label, which means 
finding the best degree of attribute separability influence on the class labels. 
The best discretisation is characterised by finding the split with the 
maximal information gain, which entails maximising the entropy function 
over all possible boundaries. The process of calculating the entropy is 
repeated recursively until the best split is selected as a binary discretisation 
(Stopping criterion 𝛿 is met). MDL was empirically regarded as beneficial to 
classification learning algorithms using information entropy minimisation 
to select cut-off points [145]. 

Generally, we acknowledge that unsupervised discretisation methods aim to 
maximise the interdependence between the variable observations and their 
corresponding class labels for a given classification problem. Also, they aim 
to minimise information loss while transforming from continuous to discrete 
values. 

However, this discretisation can be disadvantageous if it reduces a 
classifier's ability to distinguish between the class labels. This reduction is 
attributed to grouping instances with different class labels into the same 
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interval. In real-world data, it is unusual to encounter uniformly distributed 
data endpoints in all variables in a single dataset. Usually, there is a 
mixture of data points from several classes in each interval. Therefore, 
supervised discretisation can be performed at best to enhance the dataset in 
the modelling process and improve the overall model’s interpretability. 

2.6.10 Data-level adjustments for imbalanced-learning 

Data level adjustment to improve imbalanced learning is a supervised data 
pre-processing strategy, aka data resampling, governed by the response 
labels in a classification problem. It primarily deals with real-world data 
problems, which often are imbalanced from various domains, including the 
healthcare domain. The scenario of data imbalance exists when a class of 
interest is not uniformly distributed among the categories. This problem 
occurs in two ways: a natural imbalance or a rarity of examples. Thus, the 
imbalance could be related to the lack of occurrences in nature for a specific 
phenomenon or possibly the large cost or time to collect enough data about 
a problem. Many practitioners plagued by the issue are working in isolation 
and in large research communities actively, looking into ways to alleviate 
the class imbalance problem [146]. Class imbalance is associated with 
classification modelling problems known as the accuracy paradox [147]. In 
this problem, the distribution of examples across the classes is skewed.  

There is no consensus in the research community on what threshold 
must be met for a given dataset to suffer from the imbalance problem, either 
for binary-class or multi-class situations. The distribution can vary from a 
slight bias to a severe imbalance where there is one example in the minority 
class for hundreds, thousands, or millions of samples in the majority classes. 
As a result of modelling such distributions, the classifiers produce a highly 
accurate predictive performance on the data as a whole but very poorly for 
the minority class (typically the class of interest). In 2001, Weiss and Provost 
argued whether the class distribution of the training data should match the 
“natural” distribution of the data [52]. Both analysed the relationship 
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between training class distribution and classifier performance on twenty-
five data sets and concluded that the natural distribution usually is not the 
best distribution for learning. When the data set size is limited, a different 
class distribution should be selected. They quoted their empirical 
observation [52], 

“When learning from a balanced class distribution, the classifiers generally 

come up with fewer but more accurate classification rules for the minority 

class than for the majority class.”  
Weiss and Provost (2001) 

This observed behaviour exists because the minority class often comprises a 
more homogeneous set of entities, while the majority class usually 
corresponds to “everything else.” Their results interpreted the classifier 
behaviour when examining the learning curves for each class label. The 
learning curve for the minority group was always above, the overall model 
learning curve positioned in the middle, while the majority-class learning 
curve was placed at the bottom. Thus, the test examples of the minority class 
always have a higher error rate than those of the majority class [52]. 

The proof produced from Weis and Provost's work regarded the 
natural distribution as often not the best choice for learning. This proof 
resulted in extensive follow-up research in the data science community to 
develop approaches to find the optimal training class distribution for 
classification learning by adjusting (resampling) the training dataset. The 
strategies followed their work were split between developing a progressive, 
adaptive sampling strategy that incrementally requests new examples 
based on the improvement in classifier performance or selecting training 
instances based on the current error rate for each classifier so that more 
data is provided to the learner has higher error rates [52]. Based on these 
two strategies, several approaches emerged with various techniques [148]. 

These approaches are random over and under-sampling, informed 
under-sampling, synthetic sampling with data generation, adaptive 
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synthetic sampling, sampling with data cleaning, cluster-based methods 
and boosted sampling [148]. And depending on the choice of the instances of 
interest, these methods can be described as either selective, non-selective or 
combined. 

A) Random over-sampling (ROS) was proposed by (Ling & Li, 1998) to 
solve a problem with classification in marketing data [149]. Their way to 
tackle class imbalance in classification is to generate new samples in the 
under-represented classes and append data to the original dataset. The most 
straightforward strategy is to create new samples by randomly sampling 
(with replacement) the currently available samples. This technique is a non-
selective method that balances the class distribution by multiplying 
examples of minority class (a process of duplication). Focussed Over 
Sampling (FOS) is the selective variations of ROS where the replication of 
examples happens only at the border between two classes. Although this 
method makes the classes functionally equivalent, it has dire consequences. 
Since it appends duplicated data to the original training set, the multiple 
copies of examples overpower their original pattern, leading to overfitting. 

B) Random under sampling (RUS) is a simple method for adjusting the 
balance of the original dataset. It reduces the majority class by randomly 
omitting instances to match the number of examples in the minority class 
or a closer ratio [148] [150]. Removing instances from the majority class may 
cause the classifier to miss important patterns within the majority class. 
However, RUS was reported to be effective in producing competitive clinical 
results against other methods in the medical domain [151]. 

C) Synthetic minority oversampling technique (SMOTE) is an 
advanced over-sampling technique introduced by Chawla [152]; it aims to 
enrich the minority class by generating artificial examples in the minority 
class instead of duplicating the existing instances to avoid the problem of 
overfitting. By doing so, the examples in the minority class become less rare 
and more general. The artificial data is generated based on the feature space 
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similarities between existing minority records using K-Nearest Neighbour 
(KNN). SMOTE showed cases of success in various applications [153]. The 
synthetic samples help reduce the “overpowering” effect introduced in ROS. 
But over-generalisation was reported as a major drawback of SMOTE [154]. 
Overgeneralisation occurs as SMOTE inflates the distribution of the original 
data. The trained model then shows a sufficient small learning error and 
test error. These small errors give the perception that a SMOTE-trained 
model can apply to all other external sets just to find the opposite since the 
SMOTE-training data no longer represents the population of interest. 
SMOTE only generated further research questions on using mixed types of 
values and how to find the optimum data points and regions in the data to 
populate artificial samples. 

The original SMOTE method works on continuous variables, and 
different variations emerged, such as SMOTE-Nominal (SMOTE-N) and 
SMOTE-Nominal-Continuous (SMOTE-NC) for mixed data types [155]. In 
2005, Han proposed controlled versions of SMOTE’s generation of artificial 
samples [156], which produced further variations of the technique. 
Examples of which are borderline-SMOTE1 and borderline-SMOTE2, focus 
on examples near the classes near borderlines are oversampled [156].  

Deterministic SMOTE (SMOTE-D) is a version that eliminates the 
random component of the original SMOTE [157] by estimating the portions 
of standard deviation within the data where the population of artificial 
samples is not required. More methods were developed by incorporating 
classifiers in SMOTE to find the applicable partitions of the data where the 
population of synthetic data is required by using a hyper-plane classifier, 
Support Vector Machine, to make SVM-SMOTE [158]. In 2015, Santos et al. 
proposed a clustering-based approach with K-means to generate new 
samples in minority class clusters creating CB-SMOTE [159]. Their 
development came after realising that the previous controlled versions of 
SMOTE were found later to amplify noise in datasets. Another hierarchal 
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clustering SMOTE combination approach was soon proposed in 2017 by Ma 
& Fan, called Clustering Using Representatives SMOTE (CURE-SMOTE) 
[160], which outperformed some of the previous versions on different 
datasets. 

D) Adaptive synthetic sampling (ADASYN) is another method that tries 
to solve problems introduced by SMOTE, generating the same number of 
artificial samples and increasing the overlapping between classes. ADASYN 
uses a systematic approach to adaptively create varying amounts of artificial 
data according to their distributions. The key idea of the ADASYN algorithm 
is to use a density distribution function as a criterion to automatically decide 
on the number of synthetic samples to be generated for each minority 
example by adaptively changing the weights of various minority data points 
to compensate for skewed distributions [161]. 

E) Cluster centroid under-sampling (CCUS) is a clustering-based 
prototype generation under-sampling algorithm. CCUS generates prototype 
examples from the majority class to reduce its size using K-means clustering 
to reach the minority sample size. The majority class is synthesised with the 
centroids of the K-means method instead of the original samples [162]. One 
downside of this method is that it can reduce the sparsity of the dataset, 
which could impact classifiers' decisions, such as decision trees. 

F) Cluster-based oversampling (CBO) algorithm tackles the “within-
class” imbalance problem. It uses the K-means clustering technique for both 
classes. Each training example is then assigned to the cluster that exhibits 
the smallest distance vector magnitude. Once all examples are assigned to 
clusters with each class, the CBO algorithm inflates all class clusters other 
than the largest by oversampling so that all clusters are the same size as 
the largest. This technique was also integrated with different oversampling 
strategies such as SMOTE [163]. 
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G) Tomek link (T-link) removal is regarded as a guided under-sampling 
technique, also known as a guided under-sampling technique developed by 
Ivan Tomek in 1976 [164], to clean the overlapping introduced from 
sampling methods such as synthetic generation techniques. Therefore, 
overlapping samples from the majority and minority classes can be removed. 
A T-Link exists if the two examples from the opposite class are nearest 
neighbours of each other. Therefore, only boundary instances and noisy 
instances will have nearest neighbours. By removing overlapping examples, 
one can establish well-defined class clusters in the training set, which may 
lead to better-defined classification rules improving the classification 
performance. This combined method was applied to the arterial blood 

pressure data and the Ecoli2 data set. It was reported to have enhanced the 
classification performance when using T-Link combined with other 
sampling techniques such as RUS, SMOTE, or ROS [150]. Although T-Link 
removes noisy examples from the dataset, many examples may be removed 
if the decision border is unclear between classes. 

H) One-sided selection (OSS) is a hybrid under-sampling technique by 
Kubat and Matwin in 1997 [165]. Kubat and Matwin classify the instances 
in any dataset as belonging to one of four categories. The first is instances 
susceptible to class-label noise that will suffer due to one class-label leakage 
into the other class. The second type of instances is borderline instances, 
considered unreliable since they easily send one instance from one class to 
the wrong side of the classifier boundary. The third type is redundant 
instances which can take over by other examples in the dataset, and such 
instances only increase the classification cost; these can be obtained by 
removing all borderline and noise examples from both classes. The last type 
is safe instances that are easy to predict by classifiers and are worth keeping 
for future classification tasks [165].  

With the T-link approach, OSS detects the borderline and the 
examples suffering from the class-label noise. Then it removes the majority 
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class instances that participate in forming T-Links and the redundant 
instances using the KNN (K=1) rule to form a new training set.  

The power of this technique lies in not losing any information about 
the minority group who are usually a condition, disease or risk-positive 
patients. However, a drawback to this method is that it requires a significant 
execution time and high consumption of processing resources [166]. 

I) Condensed nearest neighbour (CNN) is a method for guided under-
sampling, also known as Closest Nearest Neighbour. Hart developed this 
method in 1968 [167]. CNN primarily aims to identify redundant 
observations using the KNN (K=1) rule to decide whether an example is kept 
or removed. The result is a subset of a collection of examples that yields no 
loss in model performance, referred to as a minimal consistent set. Hart 
quoted: 

“…the notion of a consistent subset of a sample set. This is a subset 

which, when used as a stored reference set for the NN rule, correctly 

classifies all of the remaining points in the sample set”. 
The CNN Rule (Hart Corresp.), 1968 

CNN also gives the benefit of reducing the memory requirements for the K-
NN classifier.  Ivan Tomek (1976) suggested two possible modifications [164] 
for CNN. First, since the CNN method selects samples randomly, it results 
in a retention of unnecessary samples and occasional retention of internal 
rather than boundary samples [164]. The modifications use the T-Links 
procedure to locate all cross-class nearest neighbours (NNs). Suppose the 
instances in the minority class are held constant (not subject to sampling); 
in that case, the procedure can be used to find all those instances in the 
majority class closest to the minority class and then remove them. These 
excluded instances are regarded as ambiguous instances [164]. 

J) Edited nearest neighbour (ENN) is an under-sampling technique that 
can be applied to each instance in the majority class, allowing those 



 - 64 - 

misclassified instances belonging to the minority class to be removed and 
those correctly classified to remain. It is also known as the cleaning under-
sampling technique, developed by Wilson in 1972 [168].  

ENN applies a K-NN algorithm and reduces (edits) the dataset by 
removing instances that do not agree enough with their neighbourhood. 
First, ENN identifies the three nearest neighbours (K=3) for each 
observation; then, it removes all observations whose class labels differ from 
the 2/3 nearest neighbour. Thus, for each instance in the training dataset, 
the three nearest neighbours are computed; if 𝑥 instance belonging to the 
majority class is misclassified by its three nearest neighbours, then 𝑥 is 
removed from the dataset. Otherwise, 𝑥 is a minority class instance and is 
misclassified by its three nearest neighbours; therefore, the majority class 
instances among 𝑥 neighbours are removed. Ivan Tomek developed an 
extended version of ENN called Repeated-ENN [169] that repeats the 
algorithm's execution multiple times, which removes more data points since 
the number of neighbours of the internal nearest neighbours’ algorithm 
increases at each iteration. Tomek called this approach Unlimited ENN 
because, after a certain number of iterations, the training set becomes 
immune to further reduction.  The ENN algorithm avoids the issue of over-
fitting; however, like other under-sampling techniques, there is a risk of 
omitting useful examples from the models. 

K) NearMiss under-sampling technique, proposed by Zhang & Mani in 
2003, randomly selects examples from the original dataset from the majority 
class to reach the minority class sample size or a closer ratio [170]. Unlike 
RUS, Near Miss contains a heuristic for sampling. Heuristic rules are based 
on the nearest neighbours’ algorithm, which computes the average distance 
to the neighbours and pre-selects the examples of interest. There are three 
Near-Miss under-sampling types: NearMiss-1, NearMiss-2 and NearMiss-3. 

NearMiss-1 selects instances from the majority class with the 
smallest average distance to the three closest instances from the minority 
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class. NearMiss-2 selects examples from the majority class with the smallest 
average distance to the three furthest instances from the minority class. 
Finally, NearMiss-3 involves selecting a given number of majority class 
instances for each instance in the minority class that is closest.  

  However, there are some reservations about the Near Miss approach. 
The presence of noise and outliers can alter nearMiss-1. This implies that 
examples of the targeted class are selected around noise examples; 
therefore, examples next to the boundaries are selected. NearMiss-2 does 
not have this effect since it does not focus on the nearest examples but on 
the farthest ones. NearMiss-3 is probably the version less affected by noise 
due to the first step in its sampling selection [170]. 

L) Neighbourhood cleaning rule (NCR) is an under-sampling technique 
developed by Jorma Laurikkala in 2001. It combines the Condensed Nearest 
Neighbour (CNN) Rule to remove redundant examples, and the Edited 
Nearest Neighbours (ENN) Rule to remove noisy or ambiguous examples. 
CNN is applied in a one-step manner, and then the misclassified instances 
by a KNN classifier are removed, as per the ENN rule. However, unlike OSS, 
fewer redundant instances are removed, and more focus is given to 
“cleaning” the retained examples; by doing so, the objective becomes less 
focused on improving the class distribution balance but more on the quality 
of instances retained to improve the classification [171]. 

M) Instance hardness threshold refers to instances in the datasets that 
are hard to classify correctly. There are hardness measures (data set 
complexity measures) [172] to understand why some instances are harder to 
classify correctly than others—the same set of measures mentioned earlier 
being used in investigating the efficiency of normalisation techniques.  

  This data sampling method looks at one complexity measure, class 
overlapping, that is considered a principal contributor to instance hardness. 
Also, the misclassification of an instance is dependent on the learning 
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algorithm used in modelling the task it belongs to and its relationship to 
other instances in the training dataset. Generalisation beyond a single 
machine learning algorithm performance can be achieved by aggregating 
the results from multiple machine learning algorithms. Therefore, the 
instance hardness definition is based on the behaviour of a set of 
classification learning algorithms selected due to their diversity, utility, and 
wide practical applicability. A hardness property for each instance in a 
dataset indicates the likelihood that an instance will be misclassified. For 
example, outliers and mislabelled instances are expected to have high 
instance hardness since a machine learning classification algorithm is forced 
to overfit such data points to classify them correctly. Instance hardness aims 
to find the probability that an instance in a particular dataset will be 
misclassified. The notion of instance hardness is found using Bayes’ theorem 
[173]. One reservation here is that instance hardness is classifier-
dependent; this dependency bounds the probability outputs. Therefore, it is 
not always possible to produce a single dataset with a specific number of 
examples for modelling across all classification algorithms. 

Sampling methods are the dominant approach in the imbalanced 
learning community since they are easy to implement and tackle imbalanced 
learning in a straightforward manner. However, it is worth mentioning that 
class resampling is one of many tactics to mitigate the class imbalance 
challenge known as the data-level adjustment strategy. Other adjustments 
exist at the classifier level, such as Cost-Sensitive Learning, Ensemble 
Methods, Active Learning and Anomaly Detection with One-Class Learning. 
In addition, there are algorithm-specific modifications for SVM and Kernel-
based methods [146]. In the data science community, it is also believed that 
it is an evaluation-level problem due to having less adequate performance 
metrics that can be wrapped by classifiers. 

In practice, we cannot favour one method over another when dealing 
with a class imbalance issue, especially from the literature. Various studies 
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were conducted on different datasets and produced ambiguous results; 
Anand et al. conducted an empirical study and concluded that RUS data-
level approach outperformed the algorithmic tactic of weighted SVM [174]. 
Another study by Li et al. in molecular biology used Granular Support 
Vector Machines (GSVMs) to under-sample the training data (GSVM-RU) 
and produced a high-class discrimination G-mean and accuracy of ~	90% 
and concluded good performances on imbalanced data [175]. On the 
contrary, Liu et al. conducted an empirical study and concluded that cost-
sensitive classification performance is best for unequal classes [176]. 
McCarthy et al. [177] compared the sampling strategy and the cost-sensitive 
approach to understand under which circumstances either strategy applies 
but later concluded that there is no consistent winner for maximising 
classifier performance. However highlighted, on large datasets with more 
than 10,000 examples, it appears that cost-sensitive learning often 
outperforms the resampling strategies, although it does not happen in every 
case. And surprisingly, the same study found that ROS beats RUS, although 
the behaviour differs widely for each data set [177]. Other researchers 
performed their own algorithmic medication to outperform cost-sensitive 
methods [178]. And before all, Quinlan also published a study favouring 
ensemble methods such as bagging and boosting to improve decision tree 
(C4.5) classification on imbalanced data [179]. 

Several research issues remain open in using sampling strategies for 
imbalanced learning. One concerns the acceptable level for dataset 
elimination, duplication, or generation. In some cases, these samples could 
partially represent a phenomenon, mainly in health and life sciences, such 
as susceptibility to an infection or a rare response to a treatment associated 
with influencing factors that cannot be exhaustively gathered.  

Another issue relates to the use of augmented data. In recent years, 
there has been increased scrutiny over using synthetic data in machine 
learning in the health domain. There have been concerns that algorithms 
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trained with biases in sample selection fail when deployed in health settings, 
and their results are sufficiently different from those acquired from the 
training data [180]. A recent empirical study by Vandewiele et al. 
investigated the use of oversampling techniques, including hybrid sampling 
approaches on multiple health datasets. It concluded that such resampling 
techniques, including SMOTE (and its variations), ADASYN, CBO and 
others provide overly optimistic predictions when tested on unseen data due 
to class label leakage [181].  

Despite the above concerns, however, the medical domain seems not 
to dismiss such methods and accepts using synthetic data generation as a 
tool for scientific discovery, although adopting the built models on the 
artificial data for diagnoses is improper [180]. 

2.6.11 Feature selection 

After scoping all applicable variables for analysis with the domain experts' 
help, feature selection selects a group from the variables that may improve 
the modelling performance.  

This pre-processing technique is a supervised strategy governed by response 
labels. It primarily assesses the relevance of the input feature presented to 
the machine learning model to enhance decision-making. Having more 
features may result in more discriminative power; however, the opposite 
behaviour was empirically reported true when Decision Tree (C4.5) and 
Instance-based models (KNN) showed deterioration with additional 
irrelevant features [182 -184]. Other algorithms, such as Naïve Bayes, are 
more robust when presented with irrelevant attributes [185]. Therefore, the 
attribute selection methods consider how the algorithm and the training set 
interact to achieve the best possible performance by interpreting the concept 
of “relevance”. 
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Unfortunately, there is no consensus on interpreting the meaning of feature 
relevance [186 – 188]. For example, historically, the term feature relevance 
was interpreted as: 

i. A feature	𝑋( is said to be relevant to a concept 𝐶 if 𝑋( appears in every 

Boolean formula that represents 𝐶 and is irrelevant otherwise.  

ii. Relevant features as those whose “values vary systematically with 
category membership. 

iii. 𝑋( is relevant if the probability of the label (given all features) can 
change when knowledge about the value of 𝑋( is eliminated. 

The third definition was formulated by Kohei and John in 1997 [188]. Both 
argued the first two definitions and demonstrated that each of those 
definitions leads to unexpected results and may result in the misperception 
of relevant features as irrelevant. They also claimed two degrees of 
relevance, “Strong” and “Weak”. Their definition of feature relevance was 
driven in light of describing the Bayes algorithm as an optimal classifier. 
Therefore, a feature is strongly relevant if its removal alone will lead to 
performance degradation of an optimal Bayes classifier. This means strong 
relevance implies that the feature is indispensable in the sense that it 
cannot be removed without loss of prediction accuracy. However, a weak 
feature relevance suggests that the feature can sometimes contribute to 
prediction accuracy. Therefore, a Bayes classifier must use all strongly 
relevant features and possibly some weakly relevant features. Relevant 
features do not mean optimality, an optimal subset of features in a 
hypothesis space is the subset that yields the highest accuracy and adding 
another feature will only deteriorate the model’s accuracy [188]. Also, 
optimality does not imply relevance. Hence, according to Kohei and John’s 
definition [188], relevance does not imply membership in the optimal feature 
subset. And irrelevance does not imply that a feature cannot be in the 
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optimal feature subset. We define feature selection as the process of finding 
a subset of the original attributes that yields an optimal model performance. 

It is common to precede machine learning modelling with an attribute 
selection stage that strives to eliminate all but the most relevant attributes. 
This process could be helpful due to existing high throughput technologies 
and their recent advancements resulting in high dimensional data and the 
potential adverse effect of irrelevant attributes on machine learning 
schemes. In addition, feature selection methods reduce the dimensionality 
of the data by discarding irrelevant attributes to improve the performance 
of learning algorithms and speed up the model training time. However, 
depending on the feature selection method, some may outweigh the 
computation involved in model building. Therefore, feature selection is 
treated as handy but sometimes mandatory in the modelling process. 
Feature selection also addresses two additional challenges, models’ 
interpretability and stability [189]. 

The best way to select relevant attributes is manually, based on a 
deep understanding of the learning problem and what the attributes 
actually mean [190]. However, automatic methods can also be useful. 
Reducing the dimensionality of the data by deleting unsuitable attributes 
improves the performance of learning algorithms.  

There is no one way to sort feature selection methods. Azuaje, 
Whitten and Frank [182] classify feature selection techniques into two main 
types, scheme-independent and scheme-specific. Guyon and Eliddeef's 
survey describes three groups of feature selection techniques filters, 
wrappers and embedded methods [191]. We proceed with the earlier 
grouping, which seems more general and includes the latter.  

A) Scheme-independent feature selection algorithms make an 
independent evaluation of features' strength or relevance based on general 
characteristics of the data; these techniques assess the input variables 
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without accounting for the intended machine learning algorithm for 
modelling. Chandrashekar and Sahin's survey describes examples of such 
methods [192], including Mutual Information techniques (MI) such as 
Information Gain and Gain Ratio and Correlation Evaluation. Typically, 
these scheme-independent methods use Ranking Methods to order the 
attributes with a score to reflect their usefulness for the classification 
problem. Alongside the variables' ranking criterion (score), a threshold can 
be applied to remove variables below a certain calculated level of usefulness. 
Thus, a useful attribute in a classification problem contains useful 
information about the different classes in the data. Therefore, the feature 
that does not influence the class labels is considered useless, hence, 
discarded.  

There are multiple caveats to scheme-independent methods [182]. 
First, the scheme-independent techniques do not account for interactions 
with other input variables; their evaluation is class label-focussed. Second, 
their selection criteria are driven by the assumption that a feature can be 
independent of the input data but cannot be independent of the class labels. 
Feature interactions play a major part in some machine-learning models; 
therefore, the subset of features conceived by these methods may not be 
optimal, and a similar accuracy may be achieved with a different subset of 
features for the same classifier. Last, their role is centric on finding the 
features that lead to the best accuracy. However, model accuracy may not 
be the most reliable performance metric for evaluating a classifier’s 
performance in imbalanced learning. 

The correlation evaluation criteria [192] are based on the Pearson 

correlation coefficient R. The input data s𝑥() , 𝑦>t consists of N samples 𝑖 =

1	𝑡𝑜	𝑁 with D variables 𝑗 = 1	𝑡𝑜	𝐷, 𝑥( is the ith sample and 𝑦> is the class 
label 𝑘 = 1	𝑡𝑜	𝑌. where 𝑐𝑜𝑣(	) is the covariance and 𝑣𝑎𝑟(	) the variance. The 
coefficient R is given by: 
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𝑹(𝒊) =
𝒄𝒐𝒗(𝒙𝒊, 𝒀)

�𝒗𝒂𝒓(𝒙𝒊) ∗ 𝒗𝒂𝒓(𝒀)
 

A limitation of the correlation ranking of variables is that it can only detect 
linear dependencies between the input variable and target output [192]. 

Mutual Information (MI) criteria are based on information theory from 
Shannon’s definition of entropy [192]. The information contained in the 
output (entropy) Y is given by: 

𝑯(𝒀) = 	−c𝒑(𝒚) 𝐥𝐨𝐠E𝒑(𝒚)G
𝒚

 

Once a variable X is observed in the presence of Y indicates that the 
uncertainty in Y is reduced, the conditional entropy is expressed by: 

𝑯(𝒀|𝑯) = 	−cc𝒑(𝒙, 𝒚) 𝐥𝐨𝐠E𝒑(𝒚|𝒙)G
𝒚𝒙

 

If X reduces the uncertainty of Y, then the reduction of uncertainty in Y is 
given by:    𝑰(𝒀, 𝑿) = 𝑯(𝒀) − 𝑯(𝒀|𝑿) 

Therefore, if X and Y are independent, they will have no mutual information, 
equalling zero. A variable can be considered dependent on the target 
variable if the mutual information is greater than zero. But since not all 
variables are discrete, the Kullback–Leibler divergence measure, K [193], is 
calculated between the two variable distributions densities by:  

𝑲(𝒇, 𝒈) = �𝒇(𝒚)𝒍𝒐𝒈�
𝒇(𝒚)
𝒈(𝒚)� 

There are multiple implementations of feature selection based on the 
mutual information concept, such as the Information Gain (IG), proposed by 
Quinlan, the Gain Ratio [194][195], which is an extension to the Information 
Gain, and the Mean Decrease Impurity (Gini Information Function) [196]. 
When these methods evaluate continuous variables, they utilise a 
discretisation technique such as MDL.  
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Research by Raileanu and Stoffel [197] showed that, theoretically and 
practically, there is no way to determine the best attributes’ filter, as 
reflected in many other empirical case studies [197]. Moreover, Based on 
Chandrashekar and Sahin's survey [192], the modelling results of the 
mutual information feature selection can be poor due to the absence of inter-
feature mutual information. The MI and Correlation criteria feature 
selection techniques are also known as filter methods since a ranker always 
accompanies these methods with a filtering threshold set to select 𝑑 < 𝐷 
features.  

The advantage of such techniques is that they are computationally 
light and are reported by Guyon and Elisseeff to avoid overfitting the 
training data [191]. However, based on their survey, filter methods have 
some drawbacks too. For example, these methods may not result in choosing 
the optimal set of features, although redundant features might be obtained; 
hence, better class separation can be obtained by adding presumably 
redundant variables.   

In terms of correlation, a perfect correlation among features indicates 
redundancy and adds no additional information to the classification when 
using them. However, a very high correlation does not imply the absence of 
feature complementarity. Variables complementarity can be described as a 
phenomenon known as information synergy, in which two features together 
provide more information about the class variable than the sum of their 
individual information [192]. 

Following up from feature complementarity, with MI techniques and 
correlation techniques, it is reported on multiple datasets that a variable 
deemed useless (worthless) on its own with the filter methods can provide a 
significant performance improvement when modelled with other predictors. 
The results imply that multiple worthless variables by themselves can be 
useful together [191]. 
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Historically, accounting for the inter-correlation and feature 
redundancy in feature selection was addressed by scientists. Hall, in his 
thesis in 1998, proposed the Correlation-based Feature Subset (CFS) 
selection method [198]. CFS is an iterative filter approach that assesses the 
predictive ability of each variable individually in addition to the degree of 
redundancy among them, favouring sets of attributes that are highly 
correlated with the class but with low intercorrelation. Before Hall, in 1996, 
Liu and Setiono Brassard (based on Bartley Las Vegas Algorithm, 1996) 
developed a probabilistic Las Vegas Algorithm filter (LVF), known as a 
Consistency Filter [199] to bypass the issue of interactions between 
predictors by relying on the consistency of the class values when a subset of 
the training instances is projected on the set of filtered attributes. This 
method relies on randomness driven by multiple rounds of execution. Each 
round generates a random subset of features 𝑆 from the predictors set. 𝑆 has 
a criterion known by the inconsistency rate, which is compared to the 
inconsistency rate of the best subset. If both subsets are consistent, then 𝑆 
is regarded as the new best subset. The inconsistency rate is calculated by 
counting the number of instances occurring in the group with the most 
common class values subtracted from the number of instances occurring in 
the group (the inconsistency count). Finally, an overall inconsistency is 
calculated by summing up the inconsistency counts in all groups of a 
matching instance divided by the total number of instances. Lui and 
Setiono’s tests on multiple datasets of different sizes showed that the data 
size could be significantly reduced by more than half when using their filter 
[199]. CFS and LVF approaches are usually used in conjunction with a 
search engine that seeks to find the smallest subset of attributes to fulfil the 
filtering criteria. In the case of the consistency filter, typically, the longer 
the filter is allowed to run, the better the result, as per Lui and Setiono's 
results. 
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Search Engines define how to traverse the predictors' space of all possible 
variable subsets to find a subset that fulfils the search evaluation criteria. 
Many search strategies were implemented in the past, such as Greedy Hill 

Climbing, Best-first, Greedy Stepwise and Ranking Search. Greedy Hill 
Climbing assess the local changes to the current subset of attributes. The 
local changes affect either the removal or insertion of a predictor into the 
subset. The mechanism that decides the initiation of removal is known as 
the direction of search, which can be forward (algorithm starts with 
attribute addition), backward (algorithm starts with attribute elimination) 
or bi-directional [191]. Best-First performs greedy hill climbing but with 
backtracking; backtracking allows for specifying the number of consecutive 
non-improving nodes to be encountered, so when the search is less 
promising, the algorithm backtracks to a more-promising attributes’ subset 
[200]. Greedy Stepwise searches the attributes’ space and may start with 
no/all features or from an arbitrary point in the feature space, just like Best-
First, but without backtracking; instead, it terminates as soon as the 
addition or removal of the best remaining attribute degrades the evaluation 
criteria. It also can rank the attributes by traversing the space from one side 
to the other in the order that these attributes are selected [200]. 

Attributes selection with Machine Learning algorithms as a filter by 
Whitten, Frank and Hall [182] describes how a machine learning algorithm 
can be used for attribute selection. Machine learning algorithms can be used 
for attribute selection. For example, a decision tree algorithm is applied first 
to the whole dataset, and only the attributes that constructed the tree are 
selected as features. This selection is known to affect different learning 
algorithms. In particular, a decision tree filter could improve the 
performance of the K-nearest neighbour (KNN) algorithm. They reported 
that the new KNN model outperformed the decision tree model built with 
the same filtered feature. Another example is using a Support Vector 
Machine (SVM) for feature selection to build linear models that rank the 
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attributes based on the size of the coefficients. Of course, one must ensure 
all features are scaled beforehand to ensure coefficients are comparable. 

B) Scheme-specific selection algorithms. The performance of an 
attribute subset with scheme-specific selection is measured in terms of the 
learning scheme’s classification performance using just those attributes 
[182].  

Wrapper methods are a type of scheme-specific predictor selection 
technique. The use of wrapper methods for feature selection was 
implemented by John and Kohavi [201]. It is named wrapper because the 
learning algorithm is wrapped into the selection procedure. In other words, 
they use the input features as a black box and their performance as the 
objective function to evaluate the variable subset. Suboptimal subsets are 
determined by using search algorithms which find a subset heuristically. 
Several search algorithms can be used to find a subset of variables which 
maximises the objective function (classification performance). However, the 
search would grow exponentially for a higher number of attributes. Thus, 
exhaustive search methods can become computationally intensive for larger 
datasets. Depending on the search algorithms, the Wrapper methods can be 
divided into Sequential Selection Algorithms and Heuristic Search 
Algorithms. 

Sequential selection algorithms begin with an empty set (complete 
set) and add features (remove features) until the maximum objective 
function is satisfied. To speed up the selection, a criterion is chosen that 
incrementally increases the objective function until the maximum is reached 
with the minimum number of features. Heuristic search algorithms, such as 
Genetic algorithms (GA) by Vafaie and DeJong [202], are applied to the 
wrapper methods to evaluate different subsets to optimise the objective 
function. Different subsets are generated by searching around in a search 
space or generating solutions to the optimisation problem. 
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Embedded Methods aim to reduce the computation time of wrapper methods 
for reclassifying different subsets. The primary approach is to incorporate 
feature selection into the training process. For example, Peng and Long 
proposed the max-relevancy, min-redundancy (MRMR) feature selection 
[203], a method based on MI. A two-stage approach is implemented; the first 
is to select the optimal number of features, k, which gives the lowest cross-
validation classification error. In the second stage, wrapper methods are 
used to evaluate different subsets of size k, or direct evaluations are done on 
different subsets to find the subset which consistently results in the lowest 
classification error. In 2010, Mundra and Rajapakse provided a framework 
for combining MI and Wrapper approach for feature selection in Gene 
Ontology Analyses [204]. They reported that their method improved the 
identification of cancer tissues from benign tissues on several benchmark 
datasets. 

Historically, feature selection has been investigated in data mining 
for decades since the early 1960s. Also, in 1978 Kitter published an early 
survey for feature selection algorithms [200]. Best-First search and genetic 
algorithms are standard artificial intelligence techniques (Goldberg, 1989; 
Winston, 1992) [205][206]. In 1994, John et al. experiments showed the 
performance of decision tree learners deteriorating when new attributes 
were added [207]. Almuallin and Dietterich (1991) produced the idea of 
finding the smallest attribute set that carved up the instances uniquely 
[208] and was further developed by Liu and Setiono (1996) with a 
probabilistic approach to select features [190]. Kibler and Aha (1987) [209] 
and Cardie (1993) [210] both investigated the use of decision tree algorithms 
to identify features for nearest-neighbour learning; Holmes and Nevill-
Manning (1995) used OneR to order features for selection [211]. Kira and 
Rendell (1992) used instance-based methods to select features, leading to a 
scheme called Relief for Recursive Elimination of Features [212]. In 2004, 
Gilad-Bachrach et al. showed how this scheme can be modified to work 
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better with redundant attributes [213]. Prior to that, in 2000, Hall 
implemented the correlation-based feature-selection method [214]. Wrapper 
methods for feature selection originated in 1994 from John et al. [207]. Later 
in 1997, Kohavi and John developed a framework for the wrapper approach 
[188]. Guyon et al. in 2002 presented and evaluated the recursive feature-
elimination scheme in conjunction with support vector machines [215]. In 
2009, Gütlein et al. investigated how to speed up scheme-specific selection 
for datasets with many attributes using simple ranking-based methods 
[216]. In 2017, Lui et al. studied meta-feature selection evaluators [2017], 
one of which is cost-sensitive feature evaluation by weighting or resampling 
the training data according to a supplied cost matrix or by making the base 
attribute evaluator cost-sensitive to demonstrate the significance of cost-
sensitive feature selection for the real-world imbalanced data [217]. 

In our view, whichever feature selection method is applied, there is a 
possible limitation in many predictive modelling applications, where the 
structure of the problem being studied evolves over time or differs by 
population, i.e., "non-stationary" or “heterogenous”. Both of these can 
introduce systematic differences between the training and test sets 
rendering some models useless. Nevertheless, models also may be 
incorrectly specified and vary by modeller biases and/or arbitrary choices of 
features. When this occurs, there may be an illusion that the changes in the 
external samples negatively impact the predictions made, whereas the 
actual reason could be that the model has missed a critical predictor and/or 
included a confounded predictor. Perhaps, including all logically available 
applicable features in the model, regardless of their calculated relevance, is 
more appropriate so any future issues of data structure changes would 
surface. 

2.6.12 Data Errors detection and handling 

Earlier in this literature review, we established outliers and extreme values 
detection methods are subjectively effective in spotting inconsistent data 
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points. The detected data points via these methods may or may not be 
erroneous. But as a result, follow-up actions taken are to handle these 
inconsistencies before the modelling process. 

Here we focus on validating consistent data points that hold 
erroneous values but hide in the data distribution from abnormality 
detection techniques. In such scenarios, conventional statistical methods 
may fail to spot these errors for correction. They can be troublesome to 
identify without domain experts' help and a clear strategy to detect such 
points for correction or removal.  

While domain advice is specific within every case study, the applied 
strategy to discover these errors can be the same for all studies. Therefore, 
we adopted two techniques, Equivalence Class Partitioning (ECP) and 
Boundary value analysis (BVA), from the Test Engineering discipline to 
identify system defects. These are adapted to spot erroneous data points 
empirically [218]. 

Applying both methods to datasets requires prior knowledge of the 
data collection and survey design. The same knowledge was described 
previously to perform logical rule imputation and form valid assumptions 
about the data for information-based imputation.  

In 2008, Beer and Mohacsi used both methods to efficiently generate 
test data by covering all semantic dependencies plus all (n-dimensional) 
boundaries with a minimum set of test data [218]. In 2015, Baht and Qadri 
conducted an analytical and empirical investigation and produced a 
framework to compare these two testing techniques effectively [219]. ECP 
and BVA methods exploit semantic relationships and dependencies within 
𝑛	 × 	𝑚 dimensional dataset. However, as described by Arnicane in 2009, 
applying both methods is highly complex [220].  

We are the first to explore using both methods in data science 
research. Reasons for its non-existence in data science literature may 
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include the time-consuming manual work involved. Nevertheless, its 
adoption might be useful in clinical data science research projects where 
data was manually collected while considering the criticality of the 
prediction task of the health-related outcome. We must emphasise that 
applying such a strategy will risk prolonging the data preparation cycle. 
Therefore, if the predictive task is classed as critical, non-critical modelling 
tasks can be done without them. 

A) Equivalence class partitioning (ECP) is generally applied with 
boundary value analysis (BVA). In this technique, we divide the records in 
the dataset for a lead variable into partitions of equivalent data (classes) 
that can be considered the same [220]. This technique tries to define test 
cases (test observation) that uncover partitions containing errors in other 
related variables. Suppose that 𝑃 is a dataset with 𝑁		number of variables 
𝑋(, where  1	 ≤ 	𝑖	 ≤ 	𝑁. for each observation value domain	𝐷( is partitioned 
into 𝑀( equivalence classes with extreme points as boundary values. The 
meaning of boundary value testing is to examine the related variables’ 
observations values when the lead variable’s observation values assume 
extreme values for each equivalence class (maximal, minimal), just above 
(for some small value 𝜀) or just below the extreme values; and when value is 
nominal – inside the equivalence class in the distance from extreme values 
that are considerably bigger than 𝜀 [220]. 

B) Boundary value analysis (BVA) reserves those input values at the 
extreme edges of the input domain that are subject to more errors in a 
system. More data errors are discoverable at the boundaries of the input 
domain. BVA tests the data observations to identify errors at border values 
(valid or invalid zones) rather than finding those that exist at the centre of 
partitions [220]. This way, we could discover values out of range as well as 
errors in data values propagation to other variables. Let a set of test records 
be 𝑋1, … , 𝑋2 and assume that there is an ordering relationship defined over 
them as ≤.	 Let 𝐶1 and 𝐶@to be two equivalent classes, assume 𝑋1 ∈ 𝐶1 
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and	𝑋@ ∈ 𝐶@. If 𝑋1 ≤ 𝑋@or 𝑋@ ≤ 𝑋1, then the classes 𝐶1and 𝐶@are in the same 
neighbourhood, and the values 𝑋1, 𝑋@are boundary values which means that 
values on the minimum and maximum edges of an equivalence partition are 
tested since these boundaries are common locations for errors that result in 
data propagation inconsistencies. Arnicane described the previous 
explanation graphically described [220] in Figure 2.9. 

 

 

 

For the corresponding domain 𝐷( of each variable’s	𝑋(, each equivalence class 
𝑑() of the ordered elements can be graphically represented, as shown in 

Figure 2.9. The minimal boundary value of the class is	𝑥()	:(2, the maximal 

boundary value is	𝑥()	:<=, where	1 ≤ 𝑗 ≤ 𝑀(. Nominal value of the class 

is	𝑥()	2B:. Values 𝑥()	:(2C, 𝑥()	:<=C are a little smaller than appropriate 

boundary values, but	𝑥()	:(2D , 𝑥()	:<=D are a little bit bigger. For 

simplification, we use 	𝑚𝑖𝑛 − ,			𝑚𝑖𝑛,			𝑚𝑖𝑛 + ,			𝑛𝑜𝑚,			𝑚𝑎𝑥 − ,			𝑚𝑎𝑥,			𝑚𝑎𝑥 +	 
instead of 	𝑥()	:(2C, 𝑥()	:(2, 	𝑥()	:(2D,			𝑥()	2B:, 𝑥()	:<=C,	𝑥()	:<=,	𝑥()	:<=D 

Boundary values 𝑥()	:(2 and 𝑥()	:<= may belong to an equivalence 

class, but they can also be tested from it. Nevertheless, they are boundary 
values for this class [220]. The following inequalities hold for each	𝑖,	𝑗 when 
1	 ≤ 	𝑖	 ≤ 	𝑁	and	1	 ≤ 	𝑗	 ≤ 	𝑀( . 

𝑥()	:(2 − 𝑥()	:(2C ≤ 𝜀() 	 

𝑥()	:(2D − 𝑥()	:(2 ≤ 𝜀() 

𝑥()	2B: − 𝑥()	:(2 ≥ 𝜀() 

Fig.2.9 Equivalence Class and Boundary Value Analysis 
 Equivalence class	𝑑!":	[𝑥!"	$!%, 	𝑥!"	$&'], its boundary values	𝑥!"	$!%,	𝑥!"	$&'	, inner OFF 
points 𝑥!"	$!%(			, 𝑥!"	$&'), outer OFF points 		𝑥!"	$!%), 𝑥!"	$&'( and nominal value 𝑥!"	%*$ 
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𝑥()	:<=D − 𝑥()	:<= ≤ 𝜀() 

𝑥()	:<= − 𝑥()	:<=C ≤ 𝜀() 

𝑥()	:<= − 𝑥()	2B: ≥ 𝜀() 

Values that are just above the minimal value and just below the maximal 
value are described as inner OFF points (they are inside the equivalence 
class), and values which are just below the minimal value and just above the 
maximal value can be called outer OFF points [220]. 

When performing these BVA, we form two assumptions [220]: 

i. For each variable	𝑋(, the conjunction of all equivalence classes is the 

main	𝐷(. 

𝐷( =�𝑑( 		∀	𝑖, 𝑗		𝑤ℎ𝑒𝑟𝑒	
F+

)61

1 ≤ 𝑖 ≤ 𝑁	𝑎𝑛𝑑	1 ≤ 𝑗 ≤ 𝑀( 

ii. There are no shared values between equivalence classes ∀	𝑖, 𝑗, 𝑘	where  

1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑀( , 1 ≤ 𝑘 ≤ 𝑀( 	𝑎𝑛𝑑	𝑗 ≠ 𝑘					𝑑()�𝑑(> = ∅ 

Under the data collection rules provided by the data source, we 
assume a valid propagation path of data values for groups of records to other 
related variables. Then we examine for any violations of data values, 
presence, or missingness for those particular records. This test justifies the 
systematic existence of values, but it also detects the presence of impossible 
combinations of values due to human manual input errors and data 
misalignment. Invalid data here does not necessarily mean that the data is 
incorrect; it means that it may have leaked outside a specific partition [220]. 

BVA and ECP assist in finding and correcting errors in the raw data before 
preprocessing; their assumptions help minimise missingness with 
information-based and logical rule imputations by substituting missing 
observations with true likeness. They also help discover qualitative and 
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quantitative errors in the raw data. The discovered errors may fall under 
two causes: Pattern Violations, which include value-type, encoding, data 
linking, conversion and data formatting errors, and Rule Violations, which 
are usually caused by the propagation of conflicting values among variables 
in the dataset. 

2.6.13 Data worthfulness 

The dimensionality of data could indicate the data's worthfulness for 
building a machine learning classification model. This section reviews 
important characteristics of data dimensionality and their perceived effect 
on classification modelling. There are four fundamental dimensionality 
measurements in a classification dataset: the number of overall records, the 
number of attributes, the count of labelled instances, and the count of 
labelled positive examples in a classification problem. 

In short, we are looking at how much data is enough for reliable 
modelling results. Our term modelling-worthfulness refers to having a 
dataset whose dimensions keep the risk of overfitting low. Researchers used 
these four dimensionality measurements to form data characteristics to help 
pre-assess modelling outputs' reliability. These characteristics include 
Events per Variable Ratio (EPV), Samples per Feature Ratio (SFR), 
sufficient events and other considerations. 

A) Events per variable (EPV) ratio. For many years, one common rule 
mentioned in the literature [221] is based on the Events per Variable (EVP) 
ratio. The rule of 1:10 has been a well-known rule of thumb for modelling 
with Logistic Regression. Depending on the count of the positive instances 
(positive class), the 1:10 rule states that for every ten instances in your 
positive class, one variable can be used for modelling [221]. Therefore, if a 
training set of 2000 patients are to be modelled and 200 patients in the 
positive class (so that 1800 patients are in the negative class), the one in ten 
rule implies that twenty pre-specified features can reliably be fitted to the 
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training data. There is also a mention in the literature for even stricter 
limits, including the 1:20 and 1:50 rules, while keeping in mind that the 1: 
10 rule is the minimum for reliable modelling. When the 1:10 rule is 
violated, the number of features is considered too large for the training data 
set and will result in overfitting [221]. In 2007, however, Vittinghoff and 
McCulloch relaxed the one-in-ten rule. They recommended that one feature 
per five to nine instances is sufficient [222]. Depending on the research 
question and their large simulation study, they found a range of other 
factors, such as variables type (binary vs continuous predictor), that were as 
influential as or more influential than EPV. Nevertheless, they concluded 
that larger training sets with more positive instances are almost always 
preferable, while keeping in mind that situations may arise where 
confounding cannot be persuasively addressed without violating the EPV 
rule of thumb. Thus, the results should be interpreted cautiously and 
compared with those from other models [222]. 

In 2016, a study published by Smeden et al. described the EPV rule 
for binary logistic regression as weak, given their simulations, especially 
where the outcome prediction was perfectly separable [223]. Again in 2019, 
Smeden et al. challenged the EPV in another study [224], describing how 
the total training set size (positives and negatives instances) and the 
positives proportion (positives to total dataset size ratio) can be used to 
calculate the expected prediction error on (a test set) of the model that is to 
be developed. Thus, an estimation can be made to the required dataset size 
to achieve an expected prediction performance with a lower error rate than 
a predetermined (estimated) prediction error [224]. Their simulations with 
multiple modelling approaches showed that the EPV 1:10 rule could be 
either too lenient or too strict, depending on the adhered modelling approach 
[224]. Their study also found that EPV had only a weak relationship with 
outcomes of prediction error and a mediocre relationship with the model’s 
capability of discrimination. However, despite their estimations, they also 
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advised that the performances of their modelling simulations were not 
externally validated. Hence, their approximations may not be efficient 
outside the scope of their simulations’ settings, especially in cases where the 
positive instances count is very low; their methods of estimations may yield 
very poor binary discrimination performances [224]. 

B) Samples per feature ratio (SFR). On the contrary to using the EPV 
ratio, Foley’s sample and feature size considerations [225] were generally 
accepted by the machine learning community. It recommended that a robust 
classifier requires a Sample per Feature Ratio (SFR) of at least 5 – 10. 

C) Data dimensionality practical considerations. Other data science 
practitioners relate the answer to how much data is needed for the type of 
machine learning problem at hand [226] based on the machine learning 
problem at hand. Nevertheless, they state there is no golden rule for every 
problem. Other unique cases were argued by Somorjai et al. in gene 
microarray classification studies [227]. In such studies, the EPV ratio is 
often violated. Still, promising model performances were reported in the 
literature, showing near-perfect classification accuracy on both training and 
independent validation (test) sets [227]. However, the number of modelled 
instances per class is ∼10 – 30, whereas the original count (M) of attributes 
is in the thousands. Even after deploying feature selection techniques, the 
number M of ‘optimal’ attributes found is ∼50–100 for microarray [227]. An 
argument often used is that if perfect or near-perfect classification 
performance is achievable on both the training data and an independent 
validation test set, then the results must be reliable, indicating a robust 
classifier [227]. This argument could be plausible, but in the context of 
typical microarray datasets, such an argument is generally unwarranted, 
and the reliability of the results may be considered an illusion. The culprits 
responsible for the reliability challenge in the context of microarray dataset 
modelling are based on Bellman’s curse of dimensionality (too many 
attributes) and the curse of dataset sparsity (too few instances) [227]. 
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Microarray datasets are a special case, typically, each instance is attributed 
to several thousand features, yet only a few instances are available for 
analysis [227]. Therefore, although good classification performances are still 
achievable, the large number of features leads to interpretability problems 
[227]. Somorjai et al. then refer to the choice of the number of features in a 
model to satisfy the two key objectives for creating a classifier in the first 
place, and these are high generalization power, where unknown data points 
are classified correctly and meeting the required medical/biological 
interpretability. Interpretability aids disease management and treatment 
and would benefit from having only a few biologically relevant (applicable) 
features. However, in most cases, producing robust classifiers comes at the 
cost of achieving this second goal [227], where the data sparsity is an issue, 
preventing isolating a test set for evaluation. Additionally, this issue may 
render out-of-sample testing such as 10-fold Cross Validation and a Leave-
One-Out (LOO) Cross-Validation unfeasible to conclude a reliable classifier, 
but rather a reasonable classifier performance estimate [227]. 

Finally, we believe that one should mention the empirical choice of 
the learning algorithm as an important ingredient to the mix in addition to 
the type of machine learning problem, sparsity, generalisation, and 
interpretability constraints in determining the number of features. 

  For example, a Naive Bayes classifier can have many more features 
than samples, yielding a reasonable performance [188]. Logistic Regression 
limitations could be mitigated by incorporating L-1 regularisation, such as 
Ridge Logistic Regression, with many more input features while avoiding 
overfitting. On the other hand, the choice of deep Neural Networks could 
easily overfit the data with fewer features and many more examples. SVM 
does not require feature space reduction, although feature selection for SVM 
is beneficial [227]. While capping the number of features plays a hero role in 
a model’s fitting and interpretability, the use of regularisation overcomes 
the fitting problem. It also shifts the focus to interpretability complexity in 
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the context of the number of parameters. In addition, when fitting an 
ensembled tree algorithm such as random forest, and due to their non-
parametric nature, the more relevant consideration to pay attention to is the 
tree size than the number of features. The complexity of interpretability of 
such models cannot solely be capped by the number of features but more on 
the number of parameters the model has, which grows with increased 
instances. 

D) Sample size and sufficient event labels is a new under-development 
area of research. Researchers utilised information theory and Cohen’s D size 
effect to predict the number of required positive labels (events) in a dataset 
to observe an effect size, give a statistical power, significance level and a 
fixed degree of freedom [228]. Thus, they created tables to guide 
practitioners to ensure that they mean the minimum count of positive labels 
within the data to observe desired mutual information, especially in cases 
where labelling the data is expensive. This also touches on semi-supervised 
learning, notably learning from Positive unlabelled data (PU) or the PU 
constraint [228]. With variable statistical significance (p-value), one can 
determine if there is an effect but cannot tell how large the effect is. Cohen’s 
D, or standardised mean difference, is one of the most common ways to 
measure effect size [228]. As a rule of thumb, if the analysis is statistically 
significant, then a Small Effect = 0.2, Medium Effect = 0.5 and a Large Effect 
= 0.8. In 2014, Sechidis et al. produced a framework to generate tables [228] 
to provide guidance to practitioners on the required sample size and positive 
label size to observe an effect size. In their conclusion, they state that the 
sample size is application dependent. Thus, their framework encourages 
practitioners to collect a larger number of examples as a common practice to 
increase the likelihood of capturing the prevalence of a disease. And only if 
the collection of instances/labels is a costly matter can one take a riskier 
approach, but with an informed decision, using fewer instances/labels [228].  
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The framework developed by Sechidis et al. could be helpful if applied during 
the data collection phase to ensure enough prevalence is captured, to define 
the cut-off point of data collection. However, this does not seem beneficial in 
cases where the data has already been collected for data mining analysis. 
Still, their study might infer further consideration to dealing with collected 
unlabelled data. 

2.7 Chapter summary 
This chapter introduced a variety of preparation methods and 
considerations that reside before data modelling. The chapter briefly 
describes the methods' working mechanisms. It presents in the available 
literature and practice the limitations and implications of each presented 
method in every section and subsection when applied. 

After presenting the general data-driven modelling workflow, the 
chapter starts with modelling conceptualisation. Without doing so, it would 
have been impractical to pool applicable methods for this review. The 
chapter then continued with reviewing and critiquing the essential areas 
that are required by most data-driven modelling projects, including Data 
Quality Assessment (DQA), Scales of Measurements, Data Visualisation, 
Data Preparation and Feature Engineering. 

The theoretical and practical recommendations, critique and 
limitations provided in each subsection highlight gaps in knowledge which 
the author will consider when building a methodology later on for predictive 
modelling in preventive medicine.  

When building and applying this thesis methodology in later 
chapters, we will weigh the recommendations made here. Also, we intend to 
pay extra attention to the methods that are often criticised in medical 
research, such as missing data mitigation, interpretability and sampling 
methods for imbalanced learning. 
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he development of Machine learning has accelerated over the past 
four years and is poised to keep growing. Although data-driven 
research, and more specifically with machine learning, already has 

a long history in biology and chemistry, it only rose to prominence recently 
in health and medical sciences. In this chapter, we review the literature for 
the machine learning modelling tasks, principles and common algorithms 
used in modelling. It identifies the impact of various parameter settings on 
the presented machine learning algorithms where required. The chapters 
will also present various recommendations or reservations made by 
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researchers to enhance modelling performances and identify any gaps in 
knowledge. 

Class-Imbalance is one of the challenges impacting machine learning 
classification algorithms' performances in data mining, where establishing 
a fit-for-purpose model assessment measure is almost the primary research 
issue [146]. Many studies demonstrated that skewed class distribution often 
leads to biased classification and evaluation misjudgement [147]. To address 
this critical matter, this chapter also describes a series of fundamental 
machine-learning classification-performance metrics, which are later 
ingested into combined and Graphical performance evaluation metrics. Also, 
we discuss the significance of the interpretations of the performance metrics’ 
calculated output. This chapter also sheds some light on the application of 
these performance measures and their limitations when evaluating the 
fulfilment of the classification success criteria. 

 

3.1 The scope of machine learning tasks 
In data science and machine learning, there are four types of learning, 
Supervised, Unsupervised, Semi-supervised and Reinforcement learning. 
The main difference between these types is the level of availability of ground 
truth data, which is prior knowledge of the model’s output for a given input. 
Given the characteristics of the given datasets in our research, in the 
previous chapter we conceptualised that patients’ susceptibility to adverse 
events falls under the supervised learning type in this thesis, namely 
classification. In classification, and depending on the class labels, there are 
four common problems: binary-class, multi-class, multi-label and 
imbalanced classification. Unlike binary and multi-class classification, 
where a single class label is predicted for each example, multi-label 
classification predicts one or more class labels for each example. From 
Chapter 2, and based on Parkin and Balbus [16], the scope of predicting 
patients’ susceptibility to adverse health events falls under two states, a 
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binary-class classification task with two labels, Resistant vs Susceptible or 
a multi-class classification task with three labels, Resistant, Susceptible and 
Hyper-susceptible [16]. 

Imbalanced classification, a common problem in classifying health-
related outcomes and specifically in our research, exists when the number 
of examples in each label is unevenly distributed [146][147]. Specialised 
techniques for imbalanced classification exist for different phases of the 
classification task [178], including specialist resampling techniques in the 
data preparation phase, described in the previous chapter. In addition, there 
are specialised algorithmic methods [178] and specialised evaluation 
metrics [178] that will be described and discussed in this chapter. 

3.2 Classification learning workflow 

The workflow for supervised ML is split into two main workflows: Training 
and Predicting (Testing). Both workflows are linked together and can also 
be very iterative in nature. Figure 3.1 shows an illustration of the workflow 
of supervised ML. From the workflow, it is apparent that an additional 
dataset (test set) is required to evaluate the classification models. In 
addition, not in Figure 3.1, there is also a recommended requirement of 
having a validation set also. The definition of validation and test always 
varies in scientific communities. There seems to be a common misuse of the 
terms “test set” and “validation set” in applied machine learning. In 2007, 
Ripley provided a specific definition of training, validation, and test sets 
[229] in the field of pattern recognition as follows:  
§ A training set is a set of examples (cases or instances) used for learning 

to fit the learnable parameters of the machine learning algorithm 
(Learner) to create a model (classifier) [229]. 

§ A validation set is a set of examples that tunes the parameters of a 
classifier, such as choosing the number of hidden layers and nodes in an 
artificial neural network (ANN) [229]. 
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§ A test set is a set of instances used only to assess the performance of a 
fully specified classifier [229]. 

Brownlee's definition [230] also agrees with Ripley’s. The validation set 
gives an unbiased evaluation of a classifier fit on the training set. But he 
adds that the evaluation becomes more biased as the classifier becomes 
skilled on the validation set incorporated into the model configuration [230]. 
The test set provides an unbiased performance evaluation of the final model 
fit on the training set. The final model can be fit on the aggregation of the 
training and validation sets. One should not dismiss that some other 
domain experts may refer to a validation set as a test set [230]. 

 

Fig. 3.1 Illustration of supervised learning workflow 

3.3 Training, validation and test sets split 

Following the illustration and the value of having these training, validation 
and test sets, it is common that these sets are resampled from one big 
dataset. In some cases, the entire big set is made available; in other cases, 
the evaluation test set is extracted, produced or collected at a later stage. 
There are a couple of machine learning approaches to building models. One 
uses training, validation and test sets, and the other uses a sharp training 
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and test split [230]. Either approach debates the ratio of split for such sets. 
There seem to be different recommended split ratios, but in each 
justification of these approaches, the relevance to the size of the dataset at 
hand remains. 

In 1997, Guyon addressed the problem away from the relevance of 
instances count in each class [231], relying on solid dependence on the 
complexity of the learning process. Guyon states that the fraction of 
patterns reserved for the validation set should be inversely proportional to 
the square root of the number of free adjustable parameters [231]. In other 
words, it depends on the capacity of a classification model, which is related 
to how complicated the model can be. Based on Guyon, for any dataset, if 
there are 32 adjustable parameters in the learning process, the inverted 
square root of 32, which is ~ 0.177 or 17.7%, is the fraction of data that 
should be reserved for validation and 82.3% for training [231]. In Guyon’s 
conclusion, it is stated that her framework is not perfect but simplifies the 
trade-off relationship between the training set and validation set [231].  

We interpret Guyon’s framework that different machine learners will 
require different training-validation sets ratios. Therefore, if we follow a 
comparative machine learning approach for the same dataset, the presence 
of the same external test set is imperative to compare multiple models' 
performance. The comparison may become more tedious if incorporated by 
resampling methods for imbalance learning. 

Some researchers [232] consider the Pareto principle [233], also 
known as the 80/20 rule or the principle of factor sparsity, a rule of thumb 
that states that for many outcomes, roughly 80% of consequences come from 
20% of causes. This principle was developed in 2008 by Joseph M. Juran in 
the context of quality control naming it after Italian economist Vilfredo 
Pareto, who noted the 80/20 connection while at the University of Lausanne 
in 1896 [232].  
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The popularity of the 80/20 rule comes from its description by a power law 
distribution (AKA Pareto distribution) for a particular set of parameters. 
Many natural phenomena exhibit such a distribution in physics, biology, 
earth and planetary sciences, economics and finance, computer science, 
demography and the social sciences [233]. 

Others claimed good model accuracy results by reserving a third of 
the dataset for test and two-thirds for training [234].  However, accuracy is 
not the best metric to evaluate the classification of imbalanced learning. 
Nevertheless, their results showed that the training sample size influences 
the accuracy of the classification [234]. On the importance of the Training–
Test split ratio, a study by Pawluszek-Filipiak and Borkowski in 2020 [235] 
empirically concluded that the accuracy measure alone should not be used 
to evaluate the classification results, especially while accounting for 
imbalanced learning with other metrics. Further, they recommended that 
the training–test ratio be around 1 (the training area should be as large as 
the testing area or very close) [235].  

Finally, when splitting the training and test data, there are two 
competing concerns; with fewer training examples, the parameter 
estimates may have greater variance, and with fewer test records, the 
model’s performance evaluations may have greater variance. From this 
point of view, we assume that attention should be paid when dividing the 
data so that neither variance is too high. Also, the split should account for 
the instances count in each class label rather than the split ratio only. The 
model variance-bias trade-off is explained later in this chapter. 

3.4 Out-of-sample testing 

This data resampling technique is used to validate a supervised machine 
learning model and estimate how well it will perform (generalise) on unseen 
data (test data). In addition, it may provide some assurances on how 
accurately a predictive model will perform in practice. Multiple strategies 
exist to do this, such as Cross-validation, a resampling strategy that uses 
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different dataset segments to train and test a model on different iterations. 
The simplest is two rounds of cross-validation involves partitioning a 
sample of data into subsets, performing the training on one subset, and 
validating the model on the other subset and vice versa. To reduce 
variability, multiple rounds of cross-validation are performed using 
different partitions, and the validation results are averaged over the rounds 
to estimate the model's predictive performance. There are two types of 
cross-validation, exhaustive and non-exhaustive cross-validation. 

A) K-fold cross-validation is a non-exhaustive cross-validation method. 
The original dataset is randomly segmented into k equal-sized subsamples 
(non-overlapping folds). Of the k subsamples, a single fold is reserved as a 
validation set for testing the model, while the remaining k − 1 folds are used 
in training the learner. The cross-validation process is then repeated k 
times, with each k subset used only once as a validation set. The k results 
are averaged to calculate a single estimation (See Figure. 3.2). In general, k 
remains an unfixed parameter. Typical values are k =3, k =5, and k =10; the 
most used value in applied machine learning is k =10. The popular choice of 
k =10 is due to various published studies that found it to provide a good 
trade-off of low computational cost and low bias in estimating a model’s 
performance [236 – 238]. In 2021, Marcot and Hanea [239] conducted 
experiments to obtain the optimal k with datasets of various counts of 
samples n = {50, 500, 5000}, then they assessed the classification success and 
with seven levels of folds k = {2, 5, 10, 20, (n – 5), (n – 2), (n − 1)}. Their work 
supported the commonly used k = 10 in the literature although, in some 
cases, k = 5 would suffice with large samples (n = 5000) [239]. The 
disadvantage of this method is that the training algorithm has to be rerun 
from scratch k times, which means it takes k times computation time to 
make an evaluation. 
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Fig. 3.2 Illustration of k-fold cross-validation 

B) Holdout random subsample is the simplest non-exhaustive type of 
cross-validation, where the dataset is separated into two sets: the training 
subset and the testing set. First, the learner is fitted using the training set 
only. Then the algorithm is asked to predict the output values for the data 
in the test set (isolated unseen data). And finally, the errors it makes are 
accumulated to give the mean absolute test set error, which is used to 
evaluate a supervised regression model (the class labels are a range of 
continuous values). The advantage of this method is that it is usually 
preferable to the residual method and takes no longer to compute. However, 
its evaluation can have a high variance. Furthermore, the evaluation may 
depend heavily on which data points end up in the training set and which 
end up in the test set. Thus, the evaluation may differ depending on how the 
division is made [240]. 

C) Repeated random sub-sampling validation is another non-
exhaustive variant of cross-validation that randomly divides the data into a 
test and training set k different times. The advantage of doing this is that 
you can independently choose how large each test set is and how many trials 
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you average over, and the proportion of the training-validation split does not 
depend on the number of iterations. The disadvantage of this technique is 
that validation subsets may overlap; some instances may never be selected 
in the validation subset, whereas others may be chosen multiple times [240]. 
As the number of random splits approaches infinity, the result of repeated 
random sub-sampling validation tends toward that of Leave-One-Out Cross-
Validation (LOOCV). A stratified variant of this method is beneficial in 
imbalanced learning. 

D) Leave-one-out cross validation (LOOCV) is a special case of k -fold 
cross-validation, with k equal to n, the number of data points in the set. 
LOOCV means that for n separate times, the learner is trained on all the 
data except for just one data point, and a prediction is made for that point. 
Although the evaluation given by leave-one-out cross-validation is good, 
LOOCV is an exhaustive method and very expensive to compute [240]. 

E) Nested cross-validation is known as double cross-validation, a non-
exhaustive technique used in the hyperparameter optimization procedure of 
a model on a dataset. When the same cross-validation procedure and dataset 
are used to both tune and select a model, it is likely to lead to an 
optimistically biased evaluation of the model performance [241].  

The challenge in estimating the machine learning algorithm’s 
parameters is that there is no good heuristic for configuring the model 
hyperparameters for a dataset. Instead, an optimization procedure is used 
to discover a set of hyperparameters that perform best on the dataset. Grid-

Search is an example of an optimisation procedure, and each distinct set of 
a model’s hyperparameters is usually evaluated using k-fold cross-validation 
[241].  

The k-fold cross-validation method effectively estimates a model's 
performance. However, using it multiple times with the same algorithm can 
lead to overfitting, as described earlier in the classification workflow. 
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Whenever a model with different model hyperparameters is evaluated on a 
dataset, it provides information about the dataset. This knowledge about the 
model on the dataset can be exploited in the model configuration procedure 
to find the best-performing configuration for the dataset; the result is an 
overly optimistic estimated model performance that does not generalize to 
new data. Although k -fold cross-validation reduces this effect, it cannot be 
eliminated completely. In 2010, the issue of knowledge leakage causing 
overfitting with k -fold cross validation was presented by Cawley and Talbot 
[242]. 

Thus, the k-fold cross-validation for model hyperparameter 
optimization is nested inside the k-fold cross-validation procedure for model 
selection (two cross-validation loops in Figure 3.3). Hence, the name “double 

cross-validation”. This way, the hyperparameter search does not have an 
opportunity to overfit the dataset as it is only exposed to a subset of the 
dataset provided by the outer cross-validation procedure. The whole process 
should reduce the risk of the search procedure overfitting the original 
dataset and give a less biased estimate of a tuned model’s performance on 
the dataset [243].  

The disadvantage of nested k-fold cross-validation is the increased 
number of model evaluations performed. If n ´ k models are built and 
evaluated as part of an outer cross-validation hyperparameter search for a 
given model, then with the inner loop, this is increased to k ´ n ´ k as the 
procedure is then performed k more times for each fold in the outer cycle of 
nested cross-validation. Therefore, it is common to use a larger k for the 
outer loop and a smaller value of k for the inner loop [243]. 

Along with the computational cost of the cross-validation procedure, 
here come some limitations; the validation and training sets must be drawn 
from the same population. In many predictive modelling applications, the 
structure of the system being studied evolves over time (non-stationarity). 
This limitation can introduce systematic differences between the training 



 - 99 - 

and validation sets. Furthermore, there is evidence in published studies that 
cross-validation alone is not very predictive of external validity [244]; 
therefore, another form of external validation may be required. 

 

Fig. 3.3 Illustration of nested k -fold cross-validation 

3.5 Machine learning algorithms selection 

Generally, machine-learning classification models can be either parametric 
or non-parametric. In a parametric model, the number of parameters is fixed 
with respect to the sample size. In a non-parametric model, the number of 
parameters can grow with the sample size. When modelling, researchers 
tend to take a comparative approach to evaluate the performance of each of 
these types [245]. The impact of using either type in data mining was 
investigated by Khire et al. in 2021 [246]. It was found that the performance 
of the algorithms measured in accuracy, recall, precision, and F1-score for 
non-parametric algorithms, like Random Forest and Decision Trees, 
outperformed the parametric algorithms, such as Logistic Regression and 
Naïve Bayes, more specifically under the circumstances of imbalanced 
classification [246]. 
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In 2019, Brownlee, a data scientist, a well-known writer and blogger in the 
data science community, categorised machine algorithms based on their 
learning style, supervised, unsupervised and semi-supervised, but preferred 
grouping them based on their functional similarity and purpose [247]. Based 
on Brownlee's categorisation, machine-learning algorithms (learners) can be 
grouped into Regression, Instance-based, Regularization, Decision Trees, 
Bayesian Algorithms, Clustering, Association-Rules, Artificial Neural 
Networks, Deep Learning, Dimensionality Reduction and Ensemble 
learners. Examples of such algorithms are grouped in Figure 3.4. 

Brownlee’s grouping is not exhaustive [247]. For example, other 
algorithms are used in speciality tasks in the machine learning process, such 
as data preparation and transformation. Also, the grouping does not contain 
speciality subfields of machine learning, i.e., Computer Vision, Natural 
Language Processing (NLP), Recommender Systems, etc. 

Modelling with all possible algorithms’ variations on a particular 
study's dataset is unpragmatic. Therefore, for our research purposes, we 
examined eight machine-learning algorithms. Some of which are parametric 
and others non-parametric. Our choice accounts for the variation of 
machine-learning algorithms based on their functional differences that are 
well established in the literature [248]. And according to the ‘no free lunch’ 
theorem [249], there is no optimal classifier that works perfectly for every 
group of problems, as the classifier's performance depends mainly on the 
domain problem and the data used. 
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Fig. 3.4 Brownlee’s machine-learning algorithms categorisation 

Therefore, we review a number of selected classification algorithms, Naïve 
Bayes (NB), Logistic Regression (LR) with Ridge Estimator, Support Vector 
Machine (SVM), K-Nearest Neighbour (KNN), Decision Tree (C4.5), Multi-
Layer Perceptron (MLP), Logistic Model Tree (LMT) and Random Forest 
(RF). We also present some specific cases of algorithmic modifications as 
published in the literature for handling ordinal-class classification and 
imbalanced learning. 

A) Naïve Bayes (NB) learner is a parametric and probabilistic modelling 
algorithm. It is popular in medical diagnosis research [250] [251]. Among all 
the different approaches used in medical diagnoses, Naïve Bayes is 
considered one of the most effective and efficient classification algorithms, 
successfully applied to many medical problems [252]. NB assumes that all 
predictor variables have an equal effect on the response outcome and that 
all predictors are independent and have no interactions.  

The foundation of the classifier is based on Bayes Theorem, where B 
is the evidence and A is the hypothesis, is given by:  
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𝑷(𝑨|𝑩) = 	
𝑷(𝑩|𝑨)𝑷(𝑨)

𝑷(𝑩)  

Or 	

𝑷(𝒚|𝑿) = 	
𝑷(𝑿|𝒚)𝑷(𝒚)

𝑷(𝑿)  

Where 𝒚	is the response variable (class variable), and 𝑿	is a set of features 
mapped to the labelled response. 𝑿 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑, ⋯ , 𝒙𝒏}, therefore, 

𝑷(𝒚|𝒙𝟏, 𝒙𝟐, 𝒙𝟑, ⋯ , 𝒙𝒏) =
𝑷(𝒙𝟏|𝒚)𝑷(𝒙𝟐|𝒚)𝑷(𝒙𝟑|𝒚)…𝑷(𝒙𝒏|𝒚)𝑷(𝒚)

𝑷(𝒙𝟏)𝑷(𝒙𝟐)𝑷(𝒙𝟑)… 	𝑷(𝒙𝒏)
 

𝑷(𝒚|𝒙𝟏, 𝒙𝟐, 𝒙𝟑, ⋯ , 𝒙𝒏) ∝ 𝑷(𝒚)2𝑷(𝒙𝒊|𝒚)
𝒏

𝒊&𝟏

 

𝑷(𝒚|𝒙𝟏, 𝒙𝟐, 𝒙𝟑, ⋯ , 𝒙𝒏) =
𝟏
𝒁𝑷

(𝒚)2𝑷(𝒙𝒊|𝒚)
𝒏

𝒊&𝟏

 

The above is an independent feature model where 𝒁	is the evidence 
representing the scaling factor dependent on	𝒙𝟏, 𝒙𝟐, 𝒙𝟑, ⋯ , 𝒙𝒏. The 
independent feature model is combined with a decision rule to construct a 
classifier. One of the commonly used rules is the most probability, the 
Maximum a Posteriori (MAP) decision rule. Therefore, the Bayes classifier 
is expressed as, 

𝒚5 = 𝒂𝒓𝒈	𝒎𝒂𝒙𝒚	𝑷(𝒚)2𝑷(𝒙𝒊|𝒚)
𝒏

𝒊&𝟏

 

Despite the demonstrated naïve assumptions of Naïve Bayes 
classifier in the previous equations, hence the name, these assumptions 
work quite well in many complex real-world situations. For example, when 
dealing with medical data, the Naïve Baye learner accounts for evidence 
from many attributes to make the final prediction and provides transparent 
explanations of its decisions. Thus, it is considered one of the most useful 
classifiers to support physicians' decisions [252]. There are multiple 
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implementations of the NB algorithm with embedded pre-processing 
techniques, thus, from our review of data preparation in the previous 
chapter, we established that NB could benefit from feature discretisation, 
i.e., MDL discretisation technique [145]. 

B) Logistic regression (LR) learner is another popular parametric 
deterministic algorithm used for prediction analysis in medical research 
[253]. LR produces a probability-based model that takes into account the 
probability of an event occurring (the class label) depending on the values 
within the predictors (categorical or numerical). LR estimates the 
probability of an event occurrence for a random observation compared to the 
probability of the non-occurrence of the same event. In other words, it 
predicts future observations for a categorical class variable. The goal of the 
logistic regression is to estimate the probability 𝑝	for a linear combination of 
independent variables denoted by	𝒑5 .  

Due to the categorical nature of the dependent variable (the class) in 
logistic regression, its distribution follows the Bernoulli distribution; 
therefore, logistic regression links the predictor variables to the Bernoulli 
distribution in a process called the Logit, and is given by:  

𝒍𝒐𝒈𝒊𝒕(𝒑) = 	 𝒍𝒏(𝒑) − 𝒍𝒏(𝟏 − 𝒑) 

The inverse logit function 𝒍𝒐𝒈𝒊𝒕(𝟏(𝜶) is also known as the Mean 
function 𝝁(𝒚|𝒙) returns the probability of an event occurring in the predictor 

variable. The mean function is given by: 

𝝁(𝒚|𝒙) = 𝒍𝒐𝒈𝒊𝒕(𝟏(𝜶) = 		
𝒆𝜶

𝟏 + 𝒆𝜶 

Where 𝜶 represents the linear combination of independent variables 
and their coefficients. The LR coefficients’ calculations are made using an 
algorithm called the Maximum likelihood Estimator (MLE) [101]. 
Thereafter: 
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𝒍𝒐𝒈𝒊𝒕(𝒑) = 𝒍𝒐𝒈𝒆 F
𝒑

𝟏 − 𝒑G = 	𝜷𝟎 + 𝜷𝟏𝝌𝟏 

𝒑
𝟏 − 𝒑 = 	𝒆

(𝜷𝟎1𝜷𝟏𝝌𝟏) 

	𝒑5 = 	
𝒆(𝜷𝟎1𝜷𝟏𝝌𝟏)

𝟏 + 𝒆(𝜷𝟎1𝜷𝟏𝝌𝟏)
 

Where 𝜷𝟎 is the bias and 𝜷𝟏, 𝜷𝟐, 𝜷𝟑, … , 𝜷𝒏 are the logistic regression 
coefficients associated with a set of predictors 𝑿 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑, ⋯ , 𝒙𝒏} 
expressing the expected change in the log odds of having the labelled 
outcome per unit change of 𝑿 

Therefore, for a subject 𝒊, if the estimated probability 	𝒑3J	exceeds 0.5, 
the subject is classified into the occurrence group; otherwise, it is classified 
into the non-occurrence group as follows: 

	𝒑3J =	
𝒆4𝜷𝟎1𝜷𝟏𝝌𝟏𝒊1𝜷𝟐𝝌𝟐𝒊1𝜷𝟑𝝌𝟑𝒊1⋯𝜷𝒏𝝌𝒏𝒊6

𝟏 + 𝒆(𝜷𝟎1𝜷𝟏𝝌𝟏)
 

Classical logistic regression estimates its parameters using the Least 
Square method. However, the Least Square Estimation has issues dealing 
with multicollinearity in data. Multicollinearity can affect a logistic 
regression model with more than one predictor and occurs when two or more 
predictor variables overlap so much (highly correlated) in what they 
measure that their effects become indistinguishable and potentially could 
lead to data overfitting. 

One way to avoid such a problem is to use Regularisation to avoid 
overfitting by penalising high-valued regression coefficients [254]. In reality, 
any data set can be fitted to a model, even if that model is ridiculously 
complex. Therefore, regularisation is used to reduce the parameters and to 
shrink (simplify) the model. It adds penalties to more complex models and 
then sorts potential models from least overfit to greatest; The model with 
the lowest “overfitting” score is usually the best choice for predictive power. 
Regularisation works by biasing the data towards particular values. The 
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bias is achieved by adding a tuning parameter l to encourage those values. 
There are L1 or L2 regularisations. L1 regularisation adds a penalty equal 
to the absolute value of the magnitude of coefficients (limiting the size of the 
regression coefficients). L2 regularisation, also known as Ridge Estimator 
[254], adds a penalty equal to the square of the magnitude of coefficients 
(shrinking the regression coefficients). The tuning parameter l controls the 

strength of the penalty term. When l = 0, ridge regression equals least 

squares regression. If l = ∞, all coefficients are shrunk to zero. The ideal 
penalty is, therefore, somewhere in between 0 and ∞. 

In 1992, Cessie and Van Houwelingen embedded the use L2 regularisation 
method in logistic regression, known as Logistic Regression with Ridge 

Estimator, to avoid overfitting and produce simpler models. This variation 
is adhered to reduce the potential effect of multicollinearity [254]. 

C) Artificial neural networks (ANN), a parametric learner, showed 
exceptional ability to fit observed data, especially with high dimensional 
datasets. Hence capable of modelling the extensive amounts of information 
currently available to clinicians, ranging from details of clinical symptoms 
to various biochemical data and outputs of imaging devices.  

ANNs are popular in medical research due to their adaptive learning 
approach and ability to handle diverse medical data and integrate them into 
categorised outputs [255]. In 1958, Frank Rosenblatt designed the 
fundamental element of a neural network, the perceptron, which simulates 
the human brain [256]. An ANN is made of elementary autonomous 
computational units. Each has inputs, a bias and an output known as 
neurons, illustrated in Figure 3.5. 

When values are processed as inputs to the neurons, each input is 
multiplied by a weight value which gets adjusted (optimised) all the time 
during the training phase via the Gradient Descent optimisation algorithm.  
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Fig. 3.5 Illustration of the perceptron with a sigmoid activation function 

The neurons are inter-connected via weighted connections given by: 	

𝒛 = 	L(𝒘𝒆𝒊𝒈𝒉𝒕	 ∗ 𝒊𝒏𝒑𝒖𝒕) + 𝒃𝒊𝒂𝒔 

ANNs are usually organized in layers forming various structures, known as 
architectures. Depending on the processed data type and the application, 
the number of layers, the direction of the flow of computation and the type 
of connections differ. Examples of ANN architectures range from the 
perceptron, the most basic element, and more advanced ones, such as the 
Multi-Layer Perceptron (MLP), Long-Short-Term Memory (LSTM) and 
Deep Convolutional Networks (DCNs). See Figure 3.6 for an illustration of 
the MLP network. In our research, the Multi-Layer Perceptron (MLP) ANN 
architecture is used for classification, being the most commonly used 
architecture for data-driven prediction in data mining. 
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Fig. 3.6 Illustration of the multi-layer perceptron (MLP) ANN 

From Figure 3.6, the ANN basic layout consists of an input layer which 
passes the input values to the next layer without any operations applied, 
hidden layers with neurons which transform the different input data, and 
finally, the output layer gives the desired number of values and in the 
desired range.  

The primary aim of training an ANN is to update this weights value 
to decrease the error. The neurons are interconnected from one layer to 
another via weighted-synoptic connections. The bias (offset) represents an 
input for each neuron with an always value of 1. In case of all inputs are 
missing (no inputs), this ensures that there will be an activation function to 
the neuron. The activation function, also known as the transfer function, 
introduces non-linearity to the neural network. The sigmoid activation 
function is used throughout our research and given by: 

𝒈 = 	
𝟏

𝟏 + 𝒆(𝒛 

𝒚5 = 𝒈(𝒛) = 𝒈SL𝝎𝒏𝒙𝒏 + 𝒃𝟎

𝑵

𝒏&𝟏

U 
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The activation function can be either linear or non-linear and control the 
outputs of neural networks across different problem domains from object 
recognition and classification. However, various activation functions may be 
preferred in the data science community, such as Reflected Linear Unit 
(ReLU), Scaled Exponential Linear Unit (SeLU) and Hyperbolic Tangent 
(TanH) [257]. 

A 2018 survey by Nwankpa et al. compared most of the activation 
functions used in Machine Learning and Deep Learning [257]. The survey 
outlined the current trends in the applications and usage of these functions 
in practical deployments against the state-of-the-art research results. Their 
comparison aimed to assist in making effective decisions when selecting the 
activation function for any given application. They established that the 
sigmoid function was recommended for predicting probability-based output 
since it has been applied successfully in binary classification problems, 
modelling logistic regression tasks, and other neural network domains. They 
also highlight the main advantages of the sigmoid functions as being easy to 
understand and used mostly in shallow networks [257]. Hence, our practical 
projects adopted the sigmoid function for our MLP classification networks. 

D) K-nearest neighbour (KNN), a non-parametric learner, was created in 
1967 by Marcello Pelillo and has been used in many data mining 
applications, including compensating for missing data, as mentioned briefly 
in the previous chapter. In this chapter, we review its workings.  

The NN algorithm is built upon considering examples as vectors in a 
high-dimensional space, allowing us to apply geometric concepts to machine 
learning. Therefore, distance computations are one of the most basic 
calculations that can be computed in a vector space. There are multiple 
techniques to measure such distances in D-dimensional space, Minkowski 
Distance, Manhattan Distance, Cosine Distance, Jaccard Distance, 
Hamming Distance and Euclidean distance [258] 
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In general, the Euclidean distance is the most widely used distance metric. 
It is the default metric in machine learning tools and libraries for K-Nearest 
Neighbour implementation [258]. It is a measure of the true straight-line 
distance between two points. 

In 2019, Alfeilat et al. produced a state-of-the-art review to determine 
the best distance metric that can be used for a KNN learner [258]. Their 
study attempted to answer this question by assessing the KNN models’ 
performances (measured by accuracy, precision, and recall) built with a 
large number of distance measures (more the ten different distance 
measures) and tested on several real-world data sets, with and without 
adding different levels of noise. Their empirical results showed that the 
performance of the KNN classifier strongly depends on the distance metric 
of choice, and the results showed varied performances among different 
distances. Their study artificially generated multiple noise levels reaching 
90% on 28 different datasets in a noisy data setting while controlling K 
values to {1, 3, √n}. One important limitation of their study is that the 
generated noise does not simulate the kind of noise occurring naturally in 
real-world data. In their conclusion, no optimal distance metric can be used 
for all types of data sets, and their results showed that each data set favours 
a specific distance metric, which complies with the no-free-lunch theorem 
[249].  

An ongoing research question has been there for many years 
regarding the best choice of K. Choosing a very small or very large K could 
result in an unstable model. For example, with 𝑲 = 𝟏 lies a risk of 
overfitting. In contrast, with a large K, for instance, 𝑲 = 𝑵, the KNN 
classifier could always predict the majority class label causing the issue of 
underfitting. The problems of overfitting and underfitting are introduced 
and discussed later in this chapter. Therefore, a good choice of the 
hyperparameter K in KNN allows for to trade-off between overfitting and 
underfitting.  
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In 2014, Hassanat et al. extensively reviewed various methods by 
researchers to obtain an optimal K parameter [259], comparing many 
attempts to solve the K parameter problem in the KNN classifier, which 
were proposed in different studies [260-264]. 

Their paper proposes an ensemble learning approach using the same 
Nearest Neighbour rule [259]. Basically, the traditional KNN learner is used 
each time with a different K, starting from k=1 to k equal to the square root 
of the training set, and each classifier votes for a specific class. Then a multi-
classifiers system uses the majority rule to identify the class, i.e., the class 
with the highest number of votes (by 1-NN, 3-NN, 5-NN… √n-NN) is chosen. 

Their approach [259] was applied to multiple datasets using the 
accuracy metric to compare their results with their predecessors’ attempts 
and, more specifically, with Jirina and Jirina’s approach [264], the inverted 
indexes of neighbours’ classifier (IINC). From Hassanat’s analyses, using k 
= √n did not yield excellent results compared to other methods, so using k = 
√n as a rule of thumb is not a good choice for the KNN classifier [259]. In 
addition, using a large number of neighbours, such as k= 30, 45 and 60, does 
not help increase the accuracy of the KNN classifier. Their experiments 
confirmed that choosing the optimal K is almost impossible for various 
reasons. The variation in KNN performance is due to the change in K and 
the distance metric used. Furthermore, determining K becomes more 
difficult when the examples are not uniformly distributed [259]. 

Nevertheless, from our point of view, we emphasise that the use of 
accuracy in their comparison could be misleading as there is no declaration 
of the state of class distribution imbalance within their used datasets. 
Usually, the K parameter in the KNN classifier is chosen empirically as an 
odd number to have a tiebreaker. Then, depending on each problem, 
different numbers of nearest neighbours are tried, and the K parameter with 
the best performance, as defined per the classification problem at hand, is 
chosen to define the classifier.  
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However, from our analysis of Hassanat’s et al. model’s accuracy tables [259] 
with 𝐾 =	 {1,3,5,7,9}, in comparison with the rest of the models with K 
determined by various methods in their paper [259], we note that a 
difference of a small maximum margin of ±2% in the accuracy metric 
between the best performing model (for 𝐾 = {1,3,5,7,9}) and all other models. 
From their study, it is also noticed that building KNN models with 𝐾 =

{1,3,5,7,9} conquered the best accuracy performance in 18 different datasets. 
In comparison, their ensemble approach redeemed the best accuracy score 
for only seven datasets, and the competing IINC harvested a higher 
accuracy performance on nine datasets. The √n -NN models dominated the 
best performance for six datasets while choosing a large K achieved the 
highest accuracy performance on just five different datasets. 

E) Support vector machines (SVM) were developed in the 1990s by 
Cortes and Vapnik [265]. It is challenging to explain SVM in an 
interdisciplinary context that suits various readers from multiple domains 
since most of the description of SVMs is either computer or data-sciences-
centric. However, we recommend a look at Daumé’s explanation which 
seems to be phased to readers from multiple disciplines [266].  

SVMs can be explained by a Maximal-Margin classifier that sets up 
an optimisation problem that attempts to find a separating hyperplane with 
as large a margin as possible between class labels. The distance between the 
hyperplane and the closest data points is called the margin. The optimal 
hyperplane that can separate the two classes has the largest margin. This 
is called the Maximal-Margin hyperplane. The margin is calculated as the 
perpendicular distance from the line to only the closest points. Only these 
points are relevant in defining the line and constructing the classifier. These 
points are called support vectors. They support or determine the placement 
of the hyperplane [266]. 

Therefore, the hyperplane is learned from training data using an 
optimisation procedure that maximises the margin. The best choice of 



 - 112 - 

hyperplane is most likely to be the furthest away from the closest training 
points (large margin). The desire for hyperplanes with large margins is 
another example of an inductive bias. Normally, there could be various 
numbers of hyperplanes, and the data does not indicate which hyperplane 
is best. Thus, the choice is made using some other source of information.  

Therefore, SVM sets up this problem as a constrained optimisation 
problem [266]: 

𝐦𝐢𝐧
𝝎,𝒃

𝟏
𝜸(𝝎, 𝒃) 

𝒔𝒖𝒃𝒋. 𝒕𝒐	𝒚𝒏(𝝎	. 𝒙𝒏 + 𝒃) ≥ 𝟏														(∀𝒏) 

 

To solve this optimisation problem that consists of weights (𝜔) and a bias 
(𝑏), SVMs seek the parameters that maximise the margin, denoted 𝜸, subject 
to the constraint that all the training data points are correctly classified 
[266]. The optimisation problem remains unchanged, even when replacing 
“1” with any positive constant value. “1” is interpreted to ensure a non-trivial 
margin between the class labels. The main issue here is that the data is not 
linearly separable. This issue yields having no set of parameters 𝜔, 𝑏 that 
can simultaneously satisfy all the constraints. In other words, there is not a 
set of any possible feasible solutions to this optimisation problem (empty 
feasible region). Here SVM is trying to enforce a hard constraint known as 
hard-margin SVM. In order to handle inseparable data, the optimisation 
problem needs further modification, which is done by introducing a slack 

parameter. In the case where a point is not placed correctly across the 
hyperplane (misclassified), a penalty is paid to move the point to the correct 
side with a considerable amount of movement denoted by 𝜉(𝑥<). By 
introducing one slack parameter per training example, and a penalty for 
having to use slack, the objective function represents a soft-margin SVM in 
the following [266], therefore: 
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𝐦𝐢𝐧
𝝎,𝒃

𝟏
𝜸(𝝎, 𝒃) + 𝑪L𝝃𝒏

𝒏

 

𝒔𝒖𝒃𝒋. 𝒕𝒐	𝒚𝒏(𝝎	. 𝒙𝒏 + 𝒃) ≥ 𝟏 − 𝝃𝒏														(∀𝒏)	 

𝝃𝒏 ≥ 𝟎																																											(∀𝒏) 

The above objective function aims to ensure that all points are correctly 
classified. But if a point 𝑛 cannot be correctly classified, then the slack 𝒙𝒏 
can be set to a value greater than zero to “move” it in the correct direction. 
However, for all non-zero slacks, a penalty is paid in the objective function 
proportional to the amount of slack. The hyperparameter 𝑪 > 𝟎 controls 
overfitting versus underfitting. The smaller the value of 𝐶, the more 
sensitive the algorithm is to the training data and vice-versa. 𝑪 = 𝟎 indicates 
no slack (violation of the hyperplane) using the inflexible Maximal-Margin 
Classifier described above. The larger the value of 𝑪, the more violations of 
the hyperplane are permitted. As 𝑪 affects the number of instances allowed 
to fall within the margin, 𝑪	influences the number of support vectors used 
by the model [266]. 

The advantage of the soft-margin SVM over the hard-margin SVM is 
evident, where the feasible region is never empty. Therefore, there will 
always be some solution, regardless of whether or not the training data is 
linearly separable. There are multiple methods to solve the optimisation 
problem published by Daumé in 2017 [266].  

The SVM model needs to be solved using an optimisation procedure. 
There are specialised optimisation procedures that re-formulate the 
optimisation problem to be a Quadratic Programming problem. The most 
popular method for fitting SVM is the Sequential Minimal Optimisation 
(SMO) method developed by Platt in 1998 [267] and is proven to be very 
efficient. Further modifications to the SMO algorithm were developed in 
2001 by Keerthi et al. to perform significantly faster than the original SMO 
on all benchmark data sets tried [268]. 
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The SVM algorithm is implemented in practice using a kernel. The kernel 
defines the similarity measure between new data and the support vectors. 
There are various kernel types, such as linear, polynomial and radial (radial 
basis function RBF) kernels [266]. The kernel selection is very important in 
the classification problem and depends on the data. The more complex the 
kernel, the better it is to separate the classes that are curved or even more 
complex, but the longer time it takes for training. RBF is a popular kernel 
in the machine learning community, while the Polynomial kernel is a non-
stationary (non-monotonic) kernel well suited for problems where all the 
training data is normalised. 

F) C4.5 decision tree (DT), a non-parametric learner developed by Ross 
Quinlan in 1993 [196]. The C4.5 algorithm is a Decision Tree Classifier. C4.5 
decision tree algorithm has been known as a strong competitor in 
comparative machine learning studies [269] [270].   

The two main aspects which distinguish tree models are the division 
criteria and the method used to reduce the dimensional growth of the tree, 
known as pruning. The algorithm J48 is an improved implementation of the 
C4.5 algorithm [271] and comes with automatic pruning via a Confidence 
Factor (CF) parameter to avoid overfitting. The confidence factor determines 
how aggressive the pruning process will be. On the one hand, the higher this 
value, the more ‘confident’ you are that the learnt data is a good 
representation of all possible events, and therefore less pruning will occur 
[271]. 

On the other hand, smaller CF values induce more pruning which 
noticeably affects classifier learning performance [272]. J48 trees will 
change in depth with increased CF. J48 performs better with noise-free data. 
But its learning strategy may overfit the training examples with noisy data 
[273]. J48 has been extensively experimented with in medical research. For 
example, in 2012, Stiglic et al. developed a different automatic technique for 
pruning J48 known as Visual Tuned J48 (VTJ48) [274] to reduce the 
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complexity of its tree model and enhance interpretability for medical 
experts’ use. VTJ48 is a one-button decision tree without the need to tune 
the parameters and build multiple decision trees [274]. However, their 
performance evaluation in accuracy and AUC over 40 medical datasets have 
proven the superiority of J48 in more datasets with automatic pruning via 
its confidence factor parameter [274]. For the datasets where VTJ48 
overtook J48 performance, it was confirmed that there is no statistically 
significant difference in the predictive performance between the decision 
trees built by J48 and VTJ48 [274]. 

G) Random forests (RF) is a generalisation of standard decision trees. In 
1990, Kwot and Carter proposed that the average multiple decision trees of 
varied structures based on randomisation give better classification results 
than a single tree [275]. In 1994, Breiman proposed another generalisation 
of standard decision trees [276] based on Bootstrap Aggregation (BAgging) 
from a single training set or random unpruned decision trees. Bootstrap is 
a statistical method for estimating a quantity from a data sample. BAgging 
is a simple ensemble method. Ensembles are methods which combine the 
predictions models from multiple machine learning algorithms together to 
make more accurate predictions compared to an individual model. As 
mentioned previously, decision trees have high variance and are sensitive to 
the specific training data; if the latter is altered, the model can be quite 
different. Hence BAgging is applied to such algorithms [266]. 

When BAgging decision trees, the attention is shifted away from the 
problem of overfitting; the individual trees are fully grown without pruning 
and have fewer observations classified at each leaf node of the tree. The trees 
are sub-models used to combine predictions. Increasing the number of trees 
increases the number of samples. Therefore, the number of trees is increased 
at each run until no improvement in classification accuracy is observed 
[266]. 



 - 116 - 

When looking back at the decision trees, decision trees choose a variable to 
split instances using entropy/purity algorithms such as information gain 
and gain ratio. Such algorithms are known as greedy algorithms. Although 
they make an optimal choice of variables for the splitting criteria, their 
choice does not necessarily result in an optimal solution (classification 
models). Theoretically, when BAgging decision trees, the decision trees can 
be of similar structure, resulting in highly correlated (parallel) predictions. 
However, in Random Forests, the models of the learnt subtrees vary, so the 
resulting predictions are less correlated. This process is controlled by 
choosing 𝒎 predictor variables from all input predictors 𝒑 for each split in a 
new bootstrapped sample. [266] 

Random Forests algorithm takes three arguments: the	𝒎 number of 
features competing in a node, a desired depth of the decision trees	𝒅, and a 
number 𝑲 of total decision trees to build. The algorithm generates each of 
the 𝑲 trees independently, which makes it very easy to generalise. For each 
tree, it constructs a full binary tree of depth 𝒅. The features used at the 
branches of this tree are selected randomly, typically with replacement, 
meaning that the same feature can appear multiple times, even in one 
branch. The leaves of this tree, where predictions are made, are filled in 
based on the training data. This last step is the only point at which the 
training data is used. The resulting classifier is then just a vote of the	𝑲 
many random trees [266]. Biau and Scornet’s survey in 2016 found that 
literature on tuning the Random Forest parameters seems rare and an 
ongoing research topic [277]. They highlighted that tuning the Random 
Forest parameters becomes a computational burden, particularly for large 
data sets with hundreds and thousands of samples and variables [277].  

To circumvent Random Forests’ computational intensity issue in 
larger datasets, Schwarz et al. implemented a fast version of the original 
random forest algorithm, Random Jungle [278]. In terms of impact on 
performance, Bierman argues that increasing the parameter K would 
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increase the Random Forests model’s prediction performance and won’t 
result in an overfitting scenario [276]. Therefore, the computational cost for 
inducing a forest increases with parameter K. Thus, a trade-off is required 
between the computational complexity and the model’s accuracy when 
selecting K.  

On the contrary, Díaz-Uriarte and De Andres in 2006 [279] argued 
that the value of K is irrelevant (large enough) through their experiments 
with a prediction problem involving microarray data sets to classify patients 
according to their genetic profiles [279]. Also, both investigated the effect of 
m thoroughly to show that this parameter has little impact on the 
performance, although larger values may be associated with a reduction in 
the predictive performance [279]. 

Genuer et al. recommend m to be as large as possible, limited by the 
available computing resources [280]. In terms of parameter d, Random 
Forests are fully grown in most applications; the impact of tree depth on the 
Random Forest model’s performance is still an open question [277]. 

Random forests can rank the importance of variables in a model. The 
ranking is produced via two measures. The first measure was introduced by 
Breiman in 2001 and called Mean Decrease Accuracy (MDA) [276]. It 
originates from the idea that if the variable is not important, then 
rearranging its values should not degrade prediction accuracy. Breiman also 
proposed the second measure in 2003, Mean Decrease Impurity (MDI), 
calculated based on the total decrease in node impurity from splitting on the 
variable, averaged over all trees [281]. However, various empirical studies 
point out that MDA and MDI behave poorly when correlation increases [282 
– 284]. For example, Genuer et al. observed that MDA can detect the most 
relevant variables less when the number of correlated features increases 
[280]. 
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Scientists hinted that Random Forests mimic the effect of Deep Artificial 

Neural Network architectures [285] [286]. However, the present empirical 
results remain insufficient to explain in full generality the behaviour of 
random forests. Scientists’ intuition leans toward the idea that tree 
aggregation models can estimate more complex patterns than classical ones. 
These complex patterns, which are beyond the reach of classical methods, 
are still to be discovered, quantified, and mathematically described [277]. 

H) Logistic model trees (LMT) is a model proposed by Landwehr et al. in 
2005 with a tree structure but with logistic regression (LR) functions at the 
leaves [287]. One of the Logistic Regression drawbacks is its limited ability 
to resolve non-linear problems. Thus, the prediction of non-linear 
relationships could be improved by incorporating a decision tree into a 
regression model [288]. LMT structure is made of a set of non-terminal nodes 
and a set of leaves (terminal nodes). In one implementation of LMT models 
by Szymanski [288], the output of the node's decision tree is transformed 
into a categorical variable and then deployed into a logistic regression by 
transforming each of the categories (nodes) into dummy variables. 

Additionally, LMT overcomes the problem of the model’s 
interpretability, multicollinearity [289] and Simpson’s Paradox [290] in 
classification tasks. Simpson's Paradox is a statistical phenomenon where 
an association between two variables in a population emerges, disappears 
or reverses when the population is divided into subpopulations [290]. As the 
sample size or the number of predictors increases, so does model complexity 
in prediction models. However, a more complex model is always harder to 
interpret, while an overly simple model may perform poorly. This is a known 
concern in collaborative data science and medical research. Therefore, LMT 
offers a way to simultaneously retain the visual interpretability of simple 
models and the predictive power of denser ones.  

The LMT model has two components, a binary tree structure showing 
the data partitions and a set of simple linear logistic models, each fitted to 
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each partition. Hence this division of model complexity makes the model 
easy to interpret [287]. 

In addition to the advantage of interpretability, combining a tree 
structure and logistic regression models in a single tree produces class 
probability estimates and classification labels. Landwehr’s team [287] 
compared the LMT classification accuracy performance against the 
performance of the decision tree learner C4.5 and the Logistic Regression on 
32 UCI datasets [291]. Their experiments showed that the LMT algorithm 
achieved higher average accuracy than the traditional C4.5 and Logistic 
Regression models. 

3.6 Processing ordinal class labels 

In Chapter 2, we presented Steven’s early topology to measurement scales. 
We also reviewed multiple methods used to classify scales of measurement. 
We stated some critical points: ordinal labels could be handled as nominal-
type measurements. And the classification of measurement scales relies on 
the used prediction modelling tool (the implementation of the algorithms) 
and the arithmetic significance of the attributes’ values. 

Standard classification algorithms implementations cannot use the 
ordering information in the class variable (ordinal class) because they treat 
each class label in the class attribute as a set of unordered values [292]; 
hence the choice of nominal type is preferred. An ordinal class variable’s 
value exists on an arbitrary scale where only the relative ordering between 
different values is significant. However, there may be a ranking among 
nominal-class labels driven only by the domain experts’ interest in nominal-
class labels. 

 When considering susceptibility to adverse health events labelling, 
in this thesis, we see how important it is to distinguish patients whose 
characteristics are deemed to put them at higher risk (hyper-susceptible) of 
developing a chronic disease. People at moderate risk (susceptible) come 
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second in their importance to be discovered. At the same time, healthy 
individuals (resistant) are of the slightest worry. 

Treating this problem as a classical classification problem loses the 
ordering preference of each class because a standard classifier treats each 
label as a set of unordered values. Current suggestions in the field are to 
treat such a problem as a regression problem [293], knowns as ordinal class 
regression. This basic approach assumes that the scale of intervals is known. 
Therefore, it replaces the ordinal labels with their original range as actual 
values and fits a regression algorithm.  

While the ordinal class regression approach seems intuitive, it does 
not assist in class labels that are not represented by any numeric interval 
or ratio. In 2001, a more sophisticated method was proposed by Frank and 
Hall [292]. Their approach relies on decomposing such an ordinal 
classification problem of k class labels into 𝒌 − 𝟏 binary classification 
problems, as long as the classifier can estimate output class probability, 
citing the C4.5-ORD algorithm as an example in their paper. However, in 
the same paper [292], the evaluation of their approach on multiple datasets 
was assessed on the accuracy metric. It is not apparent how to deal with the 
presence of a rare group of labels (minority class) in the original non-
binarised dataset, whose probability possibly diminished if classified in a 
binary model on its own against all other labels as one label [293]. Figure 
3.7 demonstrates Frank and Hall’s [292] handling of ordinal class labels. 
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Fig. 3.7 Illustration of Frank and Hall’s ordinal class classification approach 

In Figure 3.7, if there are class labels with ordinal value susceptibility from 
1 to 3. The ordinal target labels can be transformed into two binary 
classification problems, so after training the two binary classifiers, the 
probabilities of the ordinal values can be predicted [293],  

𝑷𝒓(𝒚 = 𝟏), 𝑷𝒓(𝒚 = 𝟐)	𝒂𝒏𝒅	𝑷𝒓(𝒚 = 𝟑). 

To predict the class value of an unseen data point, the probabilities of 
the k original ordinal classes are estimated using our k − 1 binary 
classification models. Estimating the probability for the first and last 
ordinal class value depends on a single classifier. The probability of the first 
ordinal value (Resistant) is given by [293]: 

𝑷𝒓(𝒚 = 𝟏) = 𝟏	 − 	𝑷𝒓(𝑻𝒂𝒓𝒈𝒆𝒕	 > 	𝑹𝒆𝒔𝒊𝒔𝒕𝒂𝒏𝒕) 

And the last ordinal value (Hyper-Susceptible) is computed from [293]: 

𝑷𝒓(𝒚 = 𝟑) = 𝑷𝒓(𝑻𝒂𝒓𝒈𝒆𝒕	 > 	𝑺𝒖𝒔𝒄𝒆𝒑𝒕𝒊𝒃𝒍𝒆). 
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For class values in the middle of the range, in our case, there is only one 
(Susceptible label); the probability depends on a pair of classifiers. In this 
example, it is given by [293]:  

𝑷𝒓(𝒚 = 𝟐) = 𝑷𝒓(𝑻𝒂𝒓𝒈𝒆𝒕	 > 	𝑹𝒆𝒔𝒊𝒔𝒕𝒂𝒏𝒕) 	− 	𝑷𝒓(𝑻𝒂𝒓𝒈𝒆𝒕	 > 	𝑺𝒖𝒔𝒄𝒆𝒑𝒕𝒊𝒃𝒍𝒆). 

When predicting an unknown class for a new instance, the prediction 
is given by each of the 𝒌 − 𝟏 classifiers, and the class with maximum 
probability is assigned to the new instance. Besides the previous problem of 
diminished minority label effect, this approach increases the computation 
time since building a single model means building 𝒌 − 𝟏 multiple models 
[293]. 

Another approach, known as cost-sensitive classification, can shift the 
classifier's attention to the class of interest by adjusting the 
misclassification penalties for these classes [294]. However, in some 
domains, including health research, where the cost is not monetary, it 
becomes harder to estimate the misclassification cost. 

3.7 Cost-sensitive learning 

A highly skewed class distribution often biases the machine learning model 
produced by training the algorithm to classify the majority class much more 
accurately than the minority class [146]. This is a consequence that most 
classifiers maximise accuracy by design [146]. However, in many domains, 
such as medical screening, the minority class is the class of primary 
interest. Hence, this classification modelling behaviour is unacceptable nor 
efficient for making predictions. Cost-sensitive learning is one of the 
approaches to tackle imbalanced learning in datasets alongside other data 
resampling approaches mentioned in the previous chapter, Chapter 2. 

Cost-Sensitive learning was proposed by Zadrozny and Elkan in 2001 
[294]. It is a type of learning in data mining that considers misclassification 
costs (and possibly other types of costs). The aim of this subtype of ML 
learning is to minimise the total cost. The key difference between cost-
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sensitive learning and conventional classification learning is that cost-
sensitive learning treats the different misclassifications differently. On the 
other hand, standard (cost-insensitive) learners do not account for the 
misclassification costs [294]. 

Class-imbalanced datasets occur in many real-world applications. 
Often the minority class is a very small portion of the dataset. Suppose 
traditional (cost-insensitive) classifiers are applied to most of these datasets. 
In that case, they are likely to predict most positive labels as negative (where 
positives are a minority), which is often regarded as a problem in learning 
[149]. In 2000, Provost listed two assumptions on which classifiers build as 
the root cause of this learning problem [295]. The first is that the goal of the 
classifiers is to maximise the accuracy (or minimise the error rate), and the 
second is that the class distribution of the training and test datasets is the 
same. 

Therefore, under these two assumptions, predicting everything as 
negative for a highly imbalanced dataset is often the right thing to do. Based 
on the previous assumption, the problem of class imbalance manifests in the 
classifier’s learning from imbalanced datasets if the cost of different types of 
error (misclassification, i.e., FP and FN) is not the same or if the class 
distribution in the test data is different from that of the training data. 
Therefore, cost-sensitive learning is often used to mitigate modelling 
performances for datasets with highly imbalanced class distribution [296]. 

For a binary classification (i.e., positive and negative class), in cost-
sensitive learning, the costs of false positive (actual negative but predicted 
as positive; denoted as FP), false negative (FN), true positive (TP) and true 
negative (TN) can be given in the following binary cost matrix [294] (Figure 
3.8), 
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Actual 

Negative (N or 0) Positive (P or 1) 

Pr
ed

ic
te

d Negative (N or 0) 𝐶(0,0), 𝑜𝑟	𝑇𝑁 𝐶(0,1), 𝑜𝑟	𝐹𝑁 

Positive (P or 1) 𝐶(1,0), 𝑜𝑟	𝐹𝑃 𝐶(1,1), 𝑜𝑟	𝑇𝑃 

 
Fig. 3.8 Elkan’s cost-sensitive matrix 

The notation 𝑪(𝒊, 𝒋) represents the misclassification cost of classifying an 
example from its actual class 𝒋 into the predicted class 𝒊. The negative and 
positive instances are encoded with 0 and 1, respectively [294]. Domain 
experts may be able to give these misclassification cost values. It is usually 
assumed that such a cost matrix is given and known in cost-sensitive 
learning. For multiple classes (i.e., a susceptibility matrix), the cost matrix 
can be easily extended by adding more rows and columns, as per Figure 3.9. 

 

 

Actual 

Resistant  
(R or 0) 

Susceptible  
(S or 1) 

Hyper Susceptible 
(H or 2) 

Pr
ed
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d 

Resistant  
(R or 0) 𝐶(0,0), 𝑜𝑟	𝑇𝑅 𝐶(0,1), 𝑜𝑟	𝐹𝑅 𝐶(0,2), 𝑜𝑟	𝐹𝑅 

Susceptible  
(S or 1) 𝐶(1,0), 𝑜𝑟	𝐹𝑆 𝐶(1,1), 𝑜𝑟	𝑇𝑆 𝐶(1,2), 𝑜𝑟	𝐹𝑆 

Hyper Susceptible  
(H or 2) 𝐶(2,0), 𝑜𝑟	𝐹𝐻 𝐶(2,1), 𝑜𝑟	𝐹𝐻 𝐶(2,2), 𝑜𝑟	𝑇𝐻 

 
Fig. 3.9 Extended multi-class cost-sensitive matrix 
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Note that 𝑪(𝒊, 𝒊) (TP and TN) or (TR, TS and TH) are usually regarded as 
the “benefit” (i.e., negated cost) representing a correctly classified instance. 
Usually, the minority class is viewed as the positive class, and it is often 
more expensive to misclassify an actual positive example into a negative 
than an actual negative example into a positive.  

In healthcare research, and depending on the classification problem, 
on one hand, classifying a person with a disease otherwise may result in 
treatment exclusion worsening the person’s health, a wider spread of 
infectious disease, and impact on quality of life (QoL) or death. On the other 
hand, classifying a Resistant (Healthy) person otherwise may result in 
unnecessary interventions taken or additional clinical screening tests. In 
some cases, interventions may be insignificant such as unnecessary 
adjustments made to lifestyle (i.e., diet and exercise). In other cases, they 
could become significantly expensive but unharmful such as vaccination, or 
catastrophic by receiving unsuitable or unnecessary treatment impacting 
their QoL. The effect of making a classifier cost-sensitive can be illustrated 
in Figure 3.10; the classification of minority red labels increased due to 
incorporating a cost matrix to make the algorithms cost-sensitive.  

 

Fig. 3.10 Illustration of cost-sensitive learning effect on classifier behaviour 

 

Given a binary cost matrix (Figure 3.8), an example should be classified into 
the class with the minimum expected cost. The expected cost 𝑹(𝒊|𝒙) of 
classifying an instance 𝑥	into class 𝑖 (by a classifier) can be given by [297]: 

J48-DT cost-sensitive 
learning

J48-DT cost-insensitive 
learning

𝐽48 − 𝐷𝑇 𝐽48 − 𝐷𝑇

0 1 10
1 0 1
1 1 0

Cost Matrix

Manually labeled data
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𝑹(𝒊|𝒙) =L𝑷(𝒋|𝒙)𝑪(𝒊, 𝒋)
𝒋

 

where	𝑷(𝒋|𝒙)	is the probability estimation of classifying an instance into 
class	𝒋. That is, the classifier will classify an instance 𝒙 into the positive class 
if and only if [297]: 

𝑷(𝟎|𝒙)𝑪(𝟏, 𝟎) 	+ 	𝑷(𝟏|𝒙)𝑪(𝟏, 𝟏) 	≤ 	𝑷(𝟎|𝒙)𝑪(𝟎, 𝟎) 	+ 	𝑷(𝟏|𝒙)𝑪(𝟎, 𝟏) 

This is equivalent to the following [297]:  

𝑷(𝟎|𝒙)(𝑪(𝟏, 𝟎)	– 	𝑪(𝟎, 𝟎)) 	≤ 	𝑷(𝟏|𝒙)(𝑪(𝟎, 𝟏)	– 	𝑪(𝟏, 𝟏))	 

The decision to classify an example as positive will not be changed if a 
constant is added to a column of the original cost matrix [297]. 

Therefore, the original cost matrix can always be converted to a 
simpler one [297] by replacing 𝑪(𝟎, 𝟎) from the first column and 𝑪(𝟏, 𝟏) from 
the second column with zero. After such conversion, a simplified cost matrix 
is shown in Figure 3.11. 

 

Actual 

Negative (N or 0) Positive (P or 1) 

Pr
ed
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te

d  Negative (N or 0) 0 𝐶(0,1) − 𝐶(1,1) 

Positive (P or 1) 𝐶(1,0) − 𝐶(0,0) 0 

 
Fig. 3.11 Simplified version of Elkan’s cost matrix 

 

Thus, any given cost-matrix can be converted to one with 𝐶(0,0) 	= 	𝐶(1,1) 	=

	0. Under the assumption that 𝐶(0,0) 	= 	𝐶(1,1) 	= 	0, the classifier will 

classify an instance	𝑥 into positive class if and only if: 

𝑷(𝟎|𝒙)𝑪(𝟏, 𝟎) 	≤ 	𝑷(𝟏|𝒙)𝑪(𝟎, 𝟏)	 
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As 𝑃(0|𝑥) = 1	– 	𝑃(1|𝑥), a threshold 𝑝∗ can be obtained for the classifier to 

classify an instance 𝑥 into positive if 𝑃(1|𝑥) 	≥ 	𝑝∗, where [297]: 

𝒑∗ =
𝑪(𝟏, 𝟎)

𝑪(𝟏, 𝟎) + 𝑪(𝟎, 𝟏) =
𝑭𝑷

𝑭𝑷 + 𝑭𝑵 

Traditional cost-insensitive classifiers are designed to predict the class with 
a default fixed threshold of 𝒑∗ = 𝟎. 𝟓. A classifier can become cost-sensitive 
by simply choosing the classification threshold 𝒑∗and classifying any 
example to be positive whenever 𝑷(𝟏|𝒙) 	≥ 	𝒑∗. This is what several cost-
sensitive meta-learning algorithms do in the form of Relabelling. Cost-
sensitive meta-learning transforms existing cost-insensitive classifiers into 
cost-sensitive ones without modifying the base learner. Thus, it can be 
regarded as a middleware component that pre-processes the training data 
or post-processes the output from the cost-insensitive learning algorithms 
[297]. 

In 2005, McCarthy et al. compared strategies for dealing with data of 
a skewed class distribution and non-uniform misclassification costs [298]. 
Their study compared cost-sensitive learning to oversampling and 
undersampling strategies by modelling 14 different datasets with a decision 
tree learner. The minority class ratio ranged from 4% to 50%. Model building 
was validated with testing on a holdout sample with a 75:25 training-test 
split. Models’ performances were compared based on the total cost metric 
given by [298], 

𝑻𝒐𝒕𝒂𝒍	𝑪𝒐𝒔𝒕	 = 	 (𝑭𝑵	 ×	𝑪𝑭𝑵) 	+	(𝑭𝑷	 ×	𝑪𝑭𝑷) 

In their conclusion, there was no clear winner for maximising 
classifier performance when cost information was known. However, on 
larger data sets with more than 10,000 total instances, the cost-sensitive 
learning often outperforms the sampling techniques, although it is still 
inconsistent for every case [298]. 

3.8 Model fitting, overfitting and underfitting 
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Earlier in this chapter, we described some machine learning models’ data 
fitting, such as Naïve Bayes and Logistic Regression. Machine learning 
algorithms are optimisation methods at their core. They all depend on 
determining a loss (cost) function to minimise. In essence, model fitting 
measures how well a model generalises to similar unknown data to that it 
was fitted (trained). The process of model-fitting data points is a trade-off 
between the classifier’s bias and variance.  

A well-fitted model produces more accurate responses. An overfitted 
model matches the actual training data too closely. In contrast, an under-
fitted one doesn’t match closely enough. Improper fitting of a model to the 
training sample results in outcomes that are not accurate enough to be 
useful for practical applications [299]. Therefore, here the two essential 
parts of model fitting are explained from the literature: 

A) Loss functions optimisation. Classification methods use the structure 
in the data to predict a label, and optimisation methods assist in using the 
best structure found (patterns) within the data [300].  

The data does not precisely fit a trend in any real-world process, 
whether natural or artificial. There is always noise or other variables in the 
relationship we cannot measure. Thus, the classifier uses the input features 
to build a mathematical function, mapping the input features vectors from 
a given sample, usually the training set to the response output labels. The 
classification process (label predictions) is the output of mathematical 
functions, 𝒇(𝑿), with 𝑿 are the input features set. 𝒇(𝑿) has internal 
parameters that help map 𝑿 to the predicted labels. Model fitting is an 
automatic process that ensures that machine learning models have the 
individual parameters best suited to solve your specific real-world business 
problem with high accuracy [300]. 

There are two types of parameters; learnable parameters, which the 
algorithms estimate (learn) on their own during the training phase for a 
given dataset, and hyper-parameters, whose specific values are assigned by 
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the data scientists to control the methodology the algorithms learn and also 
to tune the model’s performance. 

The optimisation processes engage with the parameters of 𝒇(𝑿) and 
try to minimise the difference between the function output, the predicted 
labels, and the original response labels, given by the simplified 
representation of loss [300]: 

(𝒀): ∑(𝒀 − 𝒇(𝑿))𝟐. 

The minimisation of loss to improve the model’s accuracy can be achieved by 
searching for the optimal parameter values an ideal value of the loss 
function is zero. While model fitting is automatic, more complicated 
techniques may be required to increase models’ accuracy, such as 
hyperparameter tuning, which needs additional time, knowledge and 
experience [300][301]. 

B) The variance–bias trade-off. Overfitting and underfitting are 
represented by how much trade-off (flexibility) the classifier has between 
bias and variance. The variance refers to the classifier’s attention to the data 
points and how much the model depends on the training data. The 
classifier’s bias relates to the assumptions it makes about the data. An 
underfit model has a low variance and a high bias. Therefore, an underfit 
model is of low flexibility and cannot account for the data. When the model 
makes predictions on unseen samples, the high bias leads it to make 
inaccurate estimates, attributed to its failure to learn the relationship 
between x and y [302]. 

Learning the training data by increasing the model's flexibility to 
capture every change in the data is also not the best practice. As mentioned 
earlier, real-world data contains noise; in this learning scenario, the model 
also ends up fitting the noise. Such a model is of high flexibility with high 
variance and low bias since it changes solely depending on the training data. 
The resulting predictions on the unseen test data are better than the under-
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fitted model. However, such a model does not learn the relationship; it 
essentially memorises the data points in the training sample and any 
embedded noise [302]. 

Both under-fitted and overfitted models cannot generalize well to 
testing data. The goal is to develop an optimal model, and there are multiple 
techniques for creating the optimal model: such as the cross-validation 
techniques mentioned earlier in this chapter. Overfitting and underfitting 
are fundamental problems in data-driven modelling. The model’s 
performance evaluation on unseen test samples, discussed in the follow up 
sections, gives the best indication of a model being fit for purpose in real-
world applications [302]. 

3.9 Fundamental classification evaluation metrics 

These represent the building block of all classification metrics. These 
metrics are purely based on the raw comparison of a classification model’s 
prediction (labels) for a given set of instances to their actual labels. Some 
fundamental metrics are compared in their raw formats, such as the 
common Confusion Matrix and the True and False Positives and Negatives. 
In contrast, others are interpreted arithmetically, like accuracy, or in pairs, 
i.e., Precision and Recall and False Omission and False Discovery Rates. 

A) The confusion matrix is the base evaluator of a machine-learning 
model [303]. It is a square 𝑛 × 𝑛 matrix consisting of 𝑛 groups of predicted 
class (𝐶) labels with corresponding 𝑛 groups of actual class labels. It is 
structured as per Figure 3.12. 

Depending on the domain problem, there might be two or more classes in 
the classification problem, and out of these, there may be one class of 
interest. This class of interest is usually labelled positive. Whilst and the 
label of the rest of class/es observations are labelled negative. Examples of 
positive classes in the medical have many examples depending on the 
medical intervention objectives. For example, in a multi-class classification 
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problem, a triple negative cancer tumour requires critical medical attention 
to be distinguished compared to the other types since it is more aggressive 
and lethal. Hence, called the positive class label (primary class of interest), 
while the rest of the classes are secondary (Negatives). But also, there are 
other cases in a multi-class classification with ordinal importance for each 
group. For example, in the case of a three-category susceptibility 
classification, those deemed hyper-susceptible to a disease, or a health 
condition, reserve the highest priority to be distinguished, followed by those 
who are susceptible, while predicting the resistant subjects might be the 
least critical task mortality-wise [304]. Some researchers may condense the 
multi-class classification labels into a binary classification task, a one-class 
learning or an ordinal class learning to focus on the class of particular 
interest (i.e., all types of cancer tumours as the negative class “non-triple 
negative” vs “triple negative” as the positive class) [305]. 
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𝑪𝟏 𝑇𝑟𝑢𝑒	𝐶! 𝐹𝑎𝑙𝑠𝑒	𝐶! 𝐹𝑎𝑙𝑠𝑒	𝐶! 𝐹𝑎𝑙𝑠𝑒	𝐶! 

𝑪𝟐 𝐹𝑎𝑙𝑠𝑒	𝐶" 𝑇𝑟𝑢𝑒	𝐶" 𝐹𝑎𝑙𝑠𝑒	𝐶" 𝐹𝑎𝑙𝑠𝑒	𝐶" 

𝑪⋮ 𝐹𝑎𝑙𝑠𝑒	𝐶⋯ 𝐹𝑎𝑙𝑠𝑒	𝐶⋯ 𝑇𝑟𝑢𝑒	𝐶⋯ 𝐹𝑎𝑙𝑠𝑒	𝐶⋯ 

𝑪𝒏 𝐹𝑎𝑙𝑠𝑒	𝐶$ 𝐹𝑎𝑙𝑠𝑒	𝐶$ 𝐹𝑎𝑙𝑠𝑒	𝐶$ 𝑇𝑟𝑢𝑒	𝐶$ 

Fig. 3.12 Multi-class confusion matrix structure 
 

Nevertheless, there are standalone binary classification problems, such as 
predicting patients’ reaction to treatment (Susceptibility to side effects) 
which could deteriorate the patient’s quality of life or even result in death 
[151]. The confusion matrix in Figure 3.13 illustrates the positives and 
negatives where the class label 𝐶A is deemed to be the label of interest. 
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Fig. 3.13 Multi-class confusion matrix with a single class of interest (C5) 
 

The classification confusion matrix analyses how well the model can 
distinguish various class labels. In addition, the confusion matrix elements 
TP, TN, FP and FN are used to derive other performance measurements.  

B) The classifier’s accuracy is the most common evaluation metric for a 

classification model. It assesses the overall effectiveness of the algorithm by 
estimating the probability of the true value of the class label [303]. The 
classifier’s accuracy in any confusion matrix is given by: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝒎𝒐𝒅𝒆𝒍 =
𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚	𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅	𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔

𝑨𝒍𝒍	𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔  

The Error Rate is an estimation of misclassification probability according to 
model prediction given by: 

𝑬𝒓𝒓𝒐𝒓	𝑹𝒂𝒕𝒆 = 𝟏 − 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 

C) Sensitivity (Recall), also known as True Positive Rate (TPR), describes 

the accuracy of the predictions for the positive class (class of interest) [303]. 
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It is considered a measure of the completeness of positive examples. 
Sensitivity can be calculated from a binary-class confusion matrix by: 

𝑹𝒆𝒄𝒂𝒍𝒍 = 𝑻𝑷𝑹 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵 

D) Precision, also known as the Positive Predictive Value (PPV), measures 
how powerful the model is in predicting positive labels correctly out of all 
positive predictions, including FP [303]. Precision is also considered a 
measure of the correctness of positive examples predictions. The precision 
evaluation metric is calculated by: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒐𝒊𝒏	(𝑷𝑷𝑽) =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷 

A perfect model should capture all positive instances making its 
Recall equal to 1, and these correct positive predictions are the only term 
that empowers the Precision value to become 1. This way, the model is 
known not to sacrifice accuracy. 

E) Specificity, also known as the True Negative Rate (TNR), indicates the 
prediction rate within the secondary class/es outside the positives [303]. 
Specificity approximates the probability of the negative label/s being true; 
in other words, both Sensitivity and Specificity assess the algorithm's 
effectiveness on a single class, positive and negative, respectively. 

F) False Discovery Rate (FDR) is the expected ratio of false positive 
classifications (false discoveries) to the total positive classifications [303]. 
Therefore, the addition of Precision and the FDR equals 1. Thus: 

𝑭𝑫𝑹	 = 	𝟏 − 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 𝑭𝑷	/	(𝑭𝑷	 + 	𝑻𝑷) 

G) False Omission Rate (FOR) is the expected ratio of the number of false 
negative classifications (False negation or omission) to the total count of 
negative classifications given by:  

𝑭𝑶𝑹 = 𝟏 − 𝑵𝑷𝑽 = 𝑭𝑵/(𝑭𝑵 + 𝑻𝑵) 
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H) Negative Predictive Value (NPV) measures how powerful the model 
is in predicting negative labels correctly out of all negative predictions, 
including FN. The sum of NPV and FOR equals 1 

Accuracy places more weight on the majority labels than on minority 
labels, which makes it challenging for a classifier to perform well on smaller 
classes. Hence Accuracy becomes a misleading metric. Thus, observing a 
variety of the class fundamental metrics becomes essential but tedious. 
Therefore, researchers developed additional metric by combining some of the 
fundamental metrics. 

3.10 Combined classification evaluation metrics 

Combined metrics try to compensate for the weighting placed by accuracy 
on the majority labels to obtain an appropriate assessment of the classifier’s 
performance on the minority labels too, especially in the case of imbalanced 
learning. Examples of combined metrics are: Balanced accuracy, F-measure, 
G-mean, Youden’s index and others. 

A) Balanced Accuracy averages the Sensitivity and Specificity, which can 
also be called the average accuracy obtained in either class [303]. Thus, it is 
given by: 

𝑩𝒂𝒍𝒂𝒏𝒄𝒆𝒅	𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝟏
𝟐 (𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 + 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚) 

If the classifier performs equally well on the minority class as well as the 
majority, this term implements a reduction to the typical accuracy measure. 
Thus, if the typical accuracy is high only because the classifier is taking 
advantage of the correct predictions of the majority labels, the balanced 
accuracy suffers a decayed performance [151]. 

C) The Geometric Mean (G-Mean) is another way to account for each 
class's accuracy within the classification model. Its origin is traced back to 
1997, by Kubat and Matwin, when addressing learning from imbalanced 
classes [305].  
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The G-mean is the product of the prediction accuracies, Sensitivity, the 
accuracy on the positive labels, and Specificity, the accuracy on the negative 
instances. This metric offers a balanced assessment of the model’s 
performances on both majority and minority groups. A poor performance in 
predicting either the positives or negatives results in a low G-mean value. 
The G-Mean is calculated from [303]: 

𝑮 −𝑴𝒆𝒂𝒏 = �𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 × 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 

The G-mean is popular, and researchers often use it for assessing 
classification tasks over imbalanced data [307] [308] [151]. 

D) The likelihood ratios are two types, the positive likelihood ratio and 
the negative likelihood ratio. The positive likelihood ratio 𝝆1 represents the 
ratio between the probability of correctly predicting an instance as positive 
(TPR) and the False Positive Rate (FPR), the probability of positive 
prediction incorrectly. Therefore, the positive likelihood ratio is given by: 

𝝆1 =
𝑻𝑷𝑹
𝑭𝑷𝑹 =

𝑻𝑷 ÷ (𝑻𝑷 + 𝑭𝑵)
𝑭𝑷 ÷ (𝑭𝑷 + 𝑻𝑵) =

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚
𝟏 − 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 

The negative likelihood ratio 𝝆( is the ratio between the probability 
of incorrectly predicting an example as negative (False Negative Rate or 
FNR) when it is actually, and the probability of making correct negative 
instances prediction (True Negative Rate or TNR). Thus, the negative 
likelihood ratio is given by: 

𝝆( =
𝑭𝑵𝑹
𝑻𝑵𝑹 =

𝑭𝑵 ÷ (𝑻𝑷 + 𝑭𝑵)
𝑻𝑵 ÷ (𝑭𝑷 + 𝑻𝑵) =

𝟏 − 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚
𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚  

The likelihood ratios are commonly used in medical diagnosis 
predictions learning from pharmaceutical datasets, as described by Bekkar 
et al. [303]. When interpreting both ratios, a greater positive likelihood ratio 
and a lower negative likelihood ratio indicate better performance on positive 
and negative classes, respectively. Also, there are thresholds for 𝝆1 to 
express how well the model is performing. A positive likelihood ratio of 1 
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indicates that the model contribution is negligible, but for 1< 𝝆1 < 𝟓, the 
model is considered a poor-performing model. The model is fair when the 
ratio increases to 5≤ 𝝆1 ≤ 𝟏𝟎. A model with a positive likelihood ratio 𝝆1 >
𝟏𝟎, is regarded as a good-performing model [303] [309]. When comparing a 
pair of classifiers, A and B, based on likelihood rations, they are interpreted 
as follows [303] [310]: 

𝝆𝑨1 > 𝝆𝑩1	𝒂𝒏𝒅	𝝆𝑨( < 𝝆𝑩( implies that model A is superior overall;  

𝝆𝑨1 < 𝝆𝑩1	𝒂𝒏𝒅	𝝆𝑨( < 𝝆𝑩( indicates that model A is superior at the confirmation 
of negatives;  

𝝆𝑨1 > 𝝆𝑩1	𝒂𝒏𝒅	𝝆𝑨( > 𝝆𝑩( regards model A as superior for confirming positive 
cases;  

𝝆𝑨1 < 𝝆𝑩1	𝒂𝒏𝒅	𝝆𝑨( > 𝝆𝑩( Concludes that classifier A is inferior overall. 

E) F-Measure is also known as the harmonic mean of Precision and Recall. 
A high F1 score indicates a similar precision and recall, and it is given by 
[310]: 

𝑭 =
𝟐

𝟏
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 +

𝟏
𝑹𝒆𝒄𝒂𝒍𝒍

=
𝟐 × 𝑹𝒆𝒄𝒂𝒍𝒍 × 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏
𝑹𝒆𝒄𝒂𝒍𝒍 + 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏  

 

Precision and Recall are not always similar, and in some applications, such 
as medical diagnoses, higher precision is preferred over recall. This 
preference empowers the model in detecting more infections as much as 
possible to minimise cases going unnoticed, hence untreated. On the 
contrary, in investment banking, analysts may prefer a model for lending 
eligibility to have a higher precision to maximise business opportunities 
[310].  

Unfortunately, a classifier can’t always be tuned to achieve almost 
equally high precision and recall rates in a test. Increasing precision reduces 
recall and vice versa; this is known as the precision/recall trade-off [311]. 
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The general F-measure provides insight into the inner functionality of a 
model than the accuracy measure. Various studies use it to evaluate 
classification models with imbalanced data in bioinformatics [312]. The F-
measure puts classifiers with higher sensitivity under the spotlight while 
challenging algorithms with higher specificity [303]. 

However, the relative importance of Precision or Recall can be 
adjusted and accounted for via the coefficient 𝜷 to produce a Varied F-
Measure given by:  

 

𝑭𝜷 =
𝟏 + 𝜷𝟐

𝟏
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 +

𝜷𝟐
𝑹𝒆𝒄𝒂𝒍𝒍

=
(𝟏 + 𝜷𝟐) × 𝑹𝒆𝒄𝒂𝒍𝒍 × 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏
(𝜷𝟐 × 𝑹𝒆𝒄𝒂𝒍𝒍) + 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏  

 

𝜷 is a coefficient to adjust the relative importance of precision versus recall. 
Decreasing 𝜷 leads to a reduction of Precision importance, while increasing 
𝜷 leads to increased importance of Recall. In the general case, 𝜷 equals 1, 
where Precision and Recall are equally important. In 2008, Chawla et al. 
suggested exploiting 𝜷 in the context of imbalanced learning [313] by 
adapting the classical F-measure to the cost-sensitive learning methods 
developed by Zadrozny and Elkan [294]. From Figure 3.14, in the binary 
classification cost matrix, 1 indicates a positive class of interest and 0 
otherwise. Thus, 𝜷 can be defined based on the binary cost matrix as follows 
[303]: 

 

 

 

 
 

Fig. 3.14 𝛽 evaluation in Elkan’s cost-sensitive binary-classification cost matrix 
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𝐶(0,1)
𝐶(1,0)
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+ve (P or 1) 𝐶(1,0), 𝑜𝑟	𝐹𝑃 𝐶(1,1), 𝑜𝑟	𝑇𝑃 
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Where 𝐶(1,0) is the cost associated with predicting a False Negative sample, 
𝐶(0,1) is the cost associated with predicting a False Positive instance. In the 
imbalanced-learning context, the rationale behind the 𝜷-varied F-measure 
is that the misclassification cost within minorities is often higher than that 
of majority instances. Consequently, improving the recall profoundly affects 
the F-measure more than the precision. Therefore, the 𝛽-varied F-Measure 
is more appropriate in the context of imbalanced learning, and more 
specifically, it is difficult to implement outside of cost-sensitive learning. 
Hence, the general version of F-measure (𝛽 = 1) is often used [303]. Another 
difficulty of using 𝛽-varied F-Measure emerges in cost-sensitive learning, 
where classifiers’ prediction performances of different algorithms tend to 
respond differently to the same cost matrix. This leads to the belief that the 
cost of misclassification cannot be a unique single value but may vary 
depending on the used algorithm. 
F) Discriminant Power (DP) is another metric used in the context of 
imbalanced learning proposed by Blakeley & Oddone in 1995. The DP 
measure summarises the True Positive and True Negative rates (TPR & 
TNR) given by: 

𝑫𝑷 =
√𝟑
𝝅
(𝒍𝒐𝒈𝑿 + 𝒍𝒐𝒈𝒀) =

√𝟑
𝝅
(𝒍𝒐𝒈𝑿𝒀) =

√𝟑
𝝅 𝒍𝒐𝒈F

𝑻𝑷𝑹 × 𝑻𝑵𝑹
𝑭𝑵𝑹 × 𝑭𝑷𝑹G 

𝑫𝑷 =
√𝟑
𝝅 (𝒍𝒐𝒈𝑻𝑷𝑹 + 𝒍𝒐𝒈𝑻𝑵𝑹 − 𝒍𝒐𝒈𝑭𝑵𝑹 − 𝒍𝒐𝒈𝑭𝑷𝑹) 

𝑿 = 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 (𝟏 − 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚)⁄ = 𝑻𝑷𝑹/𝑭𝑵𝑹 
𝒀 = 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 (𝟏 − 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚)⁄ = 𝑻𝑵𝑹/𝑭𝑷𝑹 

From the above expression, the DP measure through the positive correlation 
with the product of sensitivity (TPR) and specificity (TNR) reinforces 
correctly classified instances in both classes and imposes a loss of the overall 
model’s performance for the misclassifications in both groups. The DP metric 
does not have lower or upper limits. Nevertheless, it indicates how well a 
classifier distinguishes between positive and negative instances following a 
range of values. The performance of a classification model with a DP below 

Where 
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1 is considered “Poor”. The performance is considered “Limited” if the DP 
metric calculation is between 1 and 2. For a range of DP values between 2 
and 3, the model performance is regarded as “Fair”, and any DP value above 
3 indicates a good classification performance [303]. 

G) Youden Index was proposed by Youden in 1950. It is a measure to 
evaluate the classifier’s avoidance of failure by equally weighting the 
model’s performance on positive and negative examples [314]. It is derived 
from the fundamental two measures, sensitivity and specificity, but also 
linearly relates to the Balanced Accuracy matric [303]. Youden’s index 𝜸 is 
given by: 

𝜸 = 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 − (𝟏 − 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚) = (𝟐 × 𝑩𝒂𝒍𝒂𝒏𝒄𝒆𝒅	𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚) − 𝟏 
 

The higher the value of γ, the better the classifier’s ability to avoid 
failure. Youden’s index was used to evaluate diagnostic models [151] [309]. 
Youden Index can also be interpreted in relation to the likelihood ratio by: 

𝜸 =
(𝝆((𝟏 − 𝟏)(𝝆1 − 𝟏)
(𝝆1 × 𝝆((𝟏) − 𝟏

 

 The above expression shows that 𝜸 favours classifiers with higher 
𝝆1and lower 𝝆( which explains its power to account for the model’s 
performance in the context of diagnosing positive cases in health research. 
 

H) Matthew’s Correlation Coefficient (MCC), also knowns as Phi (F) 
coefficient, was invented by Karl Pearson in 1912 and introduced as a 
performance measure for binary classification in machine learning by Brian 
Matthews in 1975. The MCC is the one metric considered to offer a less 
biased performance and is not affected by the problem of imbalanced 
learning. The MCC considers accuracies and error rates on both classes 
mutually and involves all values in a confusion matrix [303]. MCC is given 
by: 
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𝑴𝑪𝑪 =
(𝑻𝑷 × 𝑻𝑵) − (𝑭𝑷 × 𝑭𝑵)

�(𝑻𝑷 + 𝑭𝑷)(𝑻𝑷 + 𝑭𝑵)(𝑻𝑵 + 𝑭𝑷)(𝑻𝑵 + 𝑭𝑵)
 

 
 The MCC values range from +1 for a perfect prediction to –1 for the 
worst possible prediction. An MCC value close to 0 indicates a model that 
performs its predictions randomly. Also, it can be simplified further, 
showing that it incorporates all the fundamental metrics. Therefore, the 
MCC can be denoted by: 

𝑴𝑪𝑪 = √𝑷𝑷𝑽 × 𝑻𝑷𝑹 × 𝑻𝑵𝑹 × 𝑵𝑷𝑽 − √𝑭𝑫𝑹 × 𝑭𝑵𝑹 × 𝑭𝑷𝑹 × 𝑭𝑶𝑹 

When we look at the above MCC previous formula, the acclaimed balanced 
nature of performance evaluation of the MCC may be allotted to combining 
symmetric fundamental evaluation metrics components and the difference 
between two entirely opposite terms. The first term combines all the 
measurements that express how powerful the model is in making positive 
and negative predictions. The second term resembles a loss or a penalty by 
combining the terms representing the model's power in making inverted 
predictions. Therefore, some researchers consider the MCC the best single-
balanced evaluation metric for classification [315]. 

3.11 Graphical classification evaluation metrics 

These metrics are useful in illustrating specific pairs of performance 
measures for classifiers. Multiple graphical metrics can be derived 
depending on pairs of performance metrics, such as the Receiver Operating 
Characteristic (ROC) Curve and the Precision-Recall Curve (PRC). A single 
computation for performance evaluation can then be extracted from the 
graphical representation of the classifier’s performance to summarise the 
modelling performance. 
A) Receiver Operating Characteristic (ROC) Curve is a plot that gives 
the True Positive Rate (TPR=Sensitivity) as a function of the False Positive 
Rate (FPR=1–Specificity) for the same group. Provost and Fawcett proposed 
the ROC curve in 1997 as an alternative performance metric to the accuracy 
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measure to combat misleading accuracy performance in imbalanced 
learning [316]. Since then, the ROC curves have become widely used in 
research. A ROC curve plots the classification results from the most positive 
to the most negative classification. The ROC approach involves representing 
the sensitivity value as a function of (1-specificity) for all possible threshold 
values and joining the points with a curve. The more inclined the curve is 
toward the upper left corner, the better the classifier can discriminate 
between positive and negative labels [303]. Multiple ROC curves can be 
represented in the same space to compare the results of different classifiers 
(Figure 3.15). 

Due to the complex intersected curves in Figure 3.15, it is sometimes 
difficult to identify the top model. To solve the ROC curves’ intersection 
situation, the optimal classifier among many is the one that attains the 
largest area under the ROC curve for its model. 

 
Fig. 3.15 Illustration of four classifiers’ intersecting ROC curves 

Despite the ROC curve's popularity in research to compare 
classification models, it was criticised by Drummond and Holte when 
evaluating models trained with imbalanced datasets and called for an 
alternative [317].  
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Furthermore, scientists like Muschelli explicitly stated that it could be 
potentially a misleading metric in binary classification [318]. Halligan et al. 
also explained concerns around the ROC metric for imbalanced learning 
[319] in the context of ROC curves for not considering the prior distribution 
of the classes and their cost. 

The Area Under ROC Curve (AUC) evaluates the ROC curve 
evaluation. It summarises the performance of a model into a single metric 
between 0.5 and 1. This metric resulted from the difficulties in comparing 
multiple ROC curves intersecting on the same plot. The AUC sorts all 
classifiers by their overall performances. Hence, the reporting of AUC 
outweighs the ROC when reporting models’ evaluation in research papers. 
The AUC is given by: 

𝑨𝑼𝑪 = � 𝑻𝑷𝑹�𝑭𝑷𝑹(𝟏(𝒙)� 𝒅𝒙
𝟏

𝒙&𝟎
 

In practice, various models’ performances are interpreted differently 
in relation to the AUC score, although there is no exact consensus across 
domains on the AUC value interpretations [303]. However, these ranges are 
often used as indicators of performance:  

𝟎. 𝟓 ≤ 𝐀𝐔𝐂 < 𝟎. 𝟔 implies a poor-performing classifier; 

𝟎. 𝟔 ≤ 𝐀𝐔𝐂 < 𝟎. 𝟕 indicates a fair classifier performance; 

𝟎. 𝟕 ≤ 𝐀𝐔𝐂 < 𝟎. 𝟖 shows a good classification evaluation; 

𝟎. 𝟖 ≤ 𝐀𝐔𝐂 < 𝟎. 𝟗 refers to a very good model’s performance; 

𝟎. 𝟗 ≤ 𝐀𝐔𝐂 ≤ 𝟏 demonstrates an excellent predictive model [308]. 

Variations of the AUC were developed to improve its suitability for 
imbalanced learning, one of which is Partial AUC (PAUC), proposed by 
McClich in 1989 [320]. PAUC estimates the AUC on a specific area of the 
decision threshold; thus, the PAUC can compare different models for the 
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same benchmark of the decision threshold. Figure 3.16 shows an illustration 
of the ROC curve decision thresholds. 

 
Fig. 3.16 Illustration of ROC curve decision thresholds 

Another variant is the Weighted AUC (WAUC) was introduced by 
Weng and Poon in 2008 [321]. WAUC addresses the evaluation of a classifier 
when learning from imbalanced datasets. From Figure 3.16, the classifier 
that performs well in the higher TP region is preferred over the ones that do 
not. So instead of summing up the area under the curve with equal weights, 
more importance is given to the area near the top of the graph by creating a 
skew weight vector which distributes more weights towards the top of the 
ROC curve. The conventional AUC is divided into N number of areas. Thus, 
the WAUC is given by [321]: 

𝑾𝑨𝑼𝑪 =L𝒂𝒓𝒆𝒂(𝒊) ×𝑾(𝒊)
𝑵

𝒊&𝟎

 

 𝑾(𝟎) is the weight for the bottom of the ROC curve. The new weight 
of an area is defined as a recursive formula using the weight of the previous 
area [321]. The new weights are given by [321]: 

𝜶																																																											𝒙 = 𝟎 
			𝑾(𝒙 − 𝟏) × 𝜶 + (𝟏 − 𝜶)							𝟎 < 𝒙 < 𝑵		 
𝑾(𝒙 − 𝟏) × 𝜶 + (𝟏 − 𝜶)		

𝟏 − 𝜶 												𝒙 = 𝑵 

Where 𝜶 is the percentage of weight to transfer to the next area 
towards the top. α ranges from 0, no weight transfer, to 1, a total weight 

W(x)= 
()

𝑾(𝒙) = 
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transfer. When 𝜶 is 0, the resulting weighted AUC is equal to the 
conventional AUC; when 𝜶 is 1, only the area at the top is considered. If the 
cost is known, we can use the cost ratio between the positive and negative 
classes to set the weight transfer rate [321], 𝜶 by:     

𝜶 = 𝟏 − 𝒄𝒐𝒔𝒕	𝒓𝒂𝒕𝒊𝒐 

Despite Weng and Poon’s modelling experiments on 20 different 
datasets with four different classifiers, their evaluation (score) of WAUC had 
so little difference compared to the conventional AUC.  

  Therefore, the WAUC still has the same problem as the traditional 
AUC when the learners have equal weighted AUC values but different ROC 
curves. Figure 3.17 illustrates the score (Area evaluation) similarity and 
shape difference of the ROC curve between WAUC and Conventional AUC 
for three models A, B and C. Model A and Model C have the same weighted 
AUC. Since the weighted AUC aims to achieve cost bias evaluation, 
classifiers A and B can be separated. And it is acceptable to have two 
different learners both perform equally well under the same cost constraint 
[321]. 

 
Fig. 3.17 Illustration of Weng and Poon’s weighted ROC curves 

Finally, when using the AUC score, one must realise that only balanced class 
distributions give a trustworthy ROC curve and AUC score interpretations. 
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However, when the effect of class imbalance is unknown whether or not to 
form a problem in modelling, the AUC evaluation integrity can be supported 
with another curve, the Precision-Recall Curve (PRC) [322]. 

B) Precision-Recall Curve metric comes in handy when suspecting that 
the AUC-ROC was inflated by too many correct predictions when 
summarising the model’s performance across all possible thresholds while 
achieving some sort of trade-off between sensitivity and specificity [322].  

The precision-recall (PRC) plot shows precision values for 
corresponding sensitivity (recall) values. Similar to the ROC plot, the PRC 
plot provides a model-wide evaluation. The area under the Precision-Recall 
curve (AUPRC) is a classifier performance metric considered appropriate for 
imbalanced learning and not dependent on model specificity. Researchers 
such as Saito and Rehmsmeier [322] acknowledged the AUPRC's usefulness 
in evaluating imbalanced class models and considered the AUPRC more 
informative than the ROC plot. They showed ROC plots to be misleading 
when applied in imbalanced classification scenarios [322]. A PRC plot can 
provide the viewer with an accurate classifier prediction performance since 
it evaluates the fraction of true positives (TPR) among all positive 
predictions (PPV or Precision). Their findings have potential implications 
for the interpretation of a large number of published studies. The impacted 
studies used ROC plots on imbalanced datasets for performance evaluation. 
Saito and Rehmsmeier [322] concluded that PRC plot is more suited for in 
high-throughput biological experiments that usually produce a number of 
large-sized datasets and the majority of such datasets are expected to be 
imbalanced. Saito and Rehmsmeier’s experiments also highlighted other 
performance metrics' inability to capture good or poor classifier performance 
for balanced and imbalanced data samples, except only three metrics, 
Precision, MCC, and the β-Varied F-Measure scores [322]. Their comparison 
of the PRC to other variations of ROC curve plots demonstrated that the 
ROC curve variations remained unchanged in contrast with the PRC plots 
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between the balanced and imbalanced datasets; accordingly, AUPRC scores 
also changed [322]. 

C) Crossover Error Rate (CER), also known as Equal Error Rate (EER), 
is one of three performance metrics that are used in the information security 
technology industry in assessing the performance (accuracy) of biometric 
devices [323]. The usability of a biometric device is measured by its False 
Acceptance Rate (FAR), which measures the Permeability of the algorithm 
to attacks, False Rejection Rate (FRR), which measures the resistance of the 
algorithm to accept a legitimate user and the CER, which is the point of 
interception of the FAR curve with the FRR curves. The CER indicates the 
usability level of the technology. See Figure 3.18 for an illustration of CER.  

Magalhães et al. state that as an algorithm gets more demanding, its 
FAR metric gets lower, and its FRR gets higher [323]. Usually, the system 
administrator can define a threshold and determine an acceptable average 
of FAR and FRR for the applied algorithm, according to the need for security. 
The process depends on the risk evaluation and the value of the protected 
asset. Also, in theory, the threshold can be defined by an Intrusion Detection 
System (IDS) [323]. 

 

Fig. 3.18 Illustration of Equal Error Rate (EER), FAR and FRR curves 

From a criticality point of view, we assume that misclassification in 
healthcare (misdiagnosis) is as substantial or even more than falsely 
granted access to a system. The effect of a confidentiality breach in an 
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information system cannot be undone since human memory cannot be reset. 
Similarly, the consequences of misdiagnosing a health condition could be 
fatal death or life-changing, and also cannot be undone. 

We proceed with this assumption in this thesis, which cannot be 
validated by literature or justified beyond the logical view of the author. This 
assumption is made due to the need for a new balanced evaluation metric 
for susceptibility prediction in healthcare. 

3.12 Chapter summary 

This chapter discussed a variety of machine learning modelling methods and 
listed considerations that reside in data modelling cycle. The chapter briefly 
describes the methods' learning mechanisms of eight algorithms of different 
learning schemes. It presents in the available literature and practice the 
limitations and implications of each presented method in every section and 
subsection when applied.  

After presenting the general scope of machine learning tasks, the 
chapter starts with the classification learning workflow, without doing so, it 
would have been impractical to pool applicable algorithms for this review. 
The chapter then continued with reviewing the essential algorithmic 
settings, including, parameterisation, meta-learning techniques, and model 
performance estimation methods and metrics which are required to assess 
the model’s generalization capabilities.  

The theoretical and practical recommendations, critique and 
limitations provided in each section highlights gaps in knowledge which the 
author will consider when building a methodology later on for predictive 
modelling in preventive medicine. When building and applying this thesis’ 
methodology in later chapters, we will weigh the recommendations made 
here. Also, we intend to pay extra attention to the methods that enhance 
model fitting, generalisation and provide most accurate description of 
performance, specifically those for imbalanced learning. 
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Chapter  
Methodology & Framework 

 

 

 

 

 

 

ormulating a suitable methodology to develop new tools to predict 
susceptibility to adverse events in healthcare is one of our primary 
contributions to the interdisciplinary scientific community. To 

signify this contribution, we go beyond the experimental research results 
spread in the literature to gather acceptance from domain experts, including 
life sciences, clinicians, medical practitioners and data scientists at every 
step through our approach.  

Data-driven modelling faces challenging issues in machine learning 
when predicting outputs for a given set of inputs, primarily if little or 
nothing is known about the dataset performance. 

The absence of prior knowledge increases the complexity of modelling 
since there are typically tens, if not hundreds, of data preparation 
techniques, machine learning algorithms to choose from and performance 
metrics. Furthermore, the problem elevates when various combinations of 
techniques produce varied prediction performances. Finally, the challenge 

F 

This chapter covers 

n Introducing Octopus methodology & framework 
n The rationale behind Octopus methodology  
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reaches its peak with all the different interpretations and evaluations of the 
prediction models.  

The prediction performance is often imperfect. Therefore, reaching a 
consensus on the best-performing model can also be challenging, requiring 
critical considerations and trade-offs. In addition, building predictive 
machine learning models may require using techniques of high 
computational costs, such as feature search, optimisation problems and 
imbalanced learning treatments to reach an acceptable bias-variance trade-
off. Finally, approving the models is highly iterative in all cases until 
matching an evaluation meets domain experts' success criteria. 

This chapter presents the basis of our new Octopus Methodology. It 
shows various considerations and recommendation behind the chosen data-
driven methods from those presented in the literature review, hoping to 
effectively tackle the predictive modelling for preventive medicine tasks in 
obesity [324] and treatment side effects [325]. 

4.1  Introducing Octopus methodology & framework 

In the previous two chapters, Chapter 2 and 3, we established that machine 
learning classification is the desired route to create new predictive entities 
(models). If approved, they can potentially be deployed or further validated 
as tools to screen patients' susceptibility to adverse health events. We also 
reviewed various methods that can be used in the process. An informed 
collection of such methods forms the fundamental block of building a robust 
and efficient methodology for predicting those at risk of adverse health 
events. This methodology is referred to as OCTOPUS based on its graphical 
representation. 

In the data science community, a common approach to deal with the 
overwhelm of a new classification project is to use a favourite technique or 
algorithm. Another approach is to scour the research literature for 
descriptions of vaguely similar domain problems and attempt to re-
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implement the described algorithms and configurations. Both strategies 
may be effective but are proven hit-or-miss and time-consuming.  

Unlike these common strategies, our Octopus methodology is not 
based on previous similar predictive modelling attempts to solve our new 
domain problems, but purely on our original research into the workings of 
many techniques, algorithms, and their limitations, evident by their 
effectiveness in various experiments where possible from multiple domains. 
The formulation of the Octopus methodology takes a heuristic-systematic 
strategy to scope a collection of techniques that could solve our new domain 
problems to guide future research. The Octopus methodology can be 
considered a new contribution to knowledge for both data science and health 
applications. 

It is common to inherit a choice of methods from similar domain 
problems. However, we do not have that option in this thesis. To our 
knowledge, modelling our datasets features was not attempted previously, 
and our results are leading. Therefore, our research, methodology and 
models are original, and cannot mimic previous strategies. 

Octopus is conceived from our research and reviews in the previous 
chapters. In our methodology, we consider the data dimensionality, 
acceptability of specific preparation techniques, the choice of modelling 
algorithms, the interpretability issues and the computational cost of 
execution within healthcare settings. 

Our methodology also imports other techniques from different 
domains. The review of methods which led to formulating Octopus also led 
to the development of a new technique to enhance imbalanced data 
resampling, AKA Minority Pattern Reconstruction (MPR), and our discovery 
of a potential new empirical performance ranking metric, XDistance, 
adapted from the field of cyber security. These will be presented later in this 
chapter. 
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4.2 The rationale behind Octopus methodology 

A heuristic-systematic rationale is a driver behind the building blocks of 
Octopus. This rationale proposes two distinct aspects, heuristic and 
systematic when scoping multiple methods to model our domain problems. 
They are seen in the detailed presentations, reviews, critiques, and 
discussions of techniques in the literature review chapters. In the previous 
chapters, we engaged the reader in the heuristic and systematic processing 
of available information on a wide variety of methods. And in this chapter, 
we cover and explain our decisions on using specific methods that govern 
our approach to model patients’ susceptibility to adverse events. The theory 
behind the heuristic and systematic judgements is described in social 
psychology [326]. 

We reviewed a wide range of applicable techniques; each is relevant 
and may be helpful to our intended modelling journey of patients’ 
susceptibility prediction. However, the process is complex due to so many 
factors that went under consideration. The construction of the building 
blocks of the Octopus methodology is illustrated in Figure 4.1. Our 
methodology, Octopus, has three major parts, Arms, Head and Mantle. 

4.2.1 Methods at Octopus arms 

The outer blocks represent the arms that cover all methods visited in the 
literature review. The systematic rationale involves attempts to thoroughly 
examine any available information on a range of investigated methods 
through careful attention to design and intensive reasoning. Whereas the 
heuristic aspect involves focusing on salient and easily comprehended clues 
that lead to well-learned shortcuts through published scientific experiments 
in the machine learning field. Both aspects formed the building blocks of 
Octopus.  
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Fig. 4.1 Building blocks behind the formulation of Octopus methodology 

From Figure 4.1, the Octopus blocks are formed using the heuristic-
systematic rationale. The arms contain a collection of applicable methods 
heuristically researched in the literature review. Following a heuristic 
aspect seems efficient in formulating the arms. It may confer less 
judgmental confidence but increases the feasibility of scoping from a range 
of methods in a domain where several hundreds of interweaving methods 
exist and compete with no specific winner. 

The systematic aspect confers more confidence but is relatively 
effortful and time-consuming; adhering to this aspect plays a major part in 
formulating the mantle, which contains the collection of methods to be 
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applied. The mantle’s scope of methods is driven by the joint acceptability of 
these methods by the healthcare and data science communities. They are 
also motivated by the precision of the medical and health tasks in this thesis 
to gain domain experts' confidence and approval. 

4.2.2 Methods at Octopus mantle  

The inner blocks in the Octopus methodology are scoped methods for 
practical applications. In other words, they form the mantle. The mantle has 
a scope of specific methods whose collection follows a systematic rationale.  

Adhering to the systematic aspect confers confidence but is relatively 
effortful and time-consuming. The collection of methods within the mantle 
is motivated by the precision of the medical and health tasks in this thesis 
to gain domain experts' confidence and approval. All scoped recommended 
methods are based on the previous literature review chapters. The 
recommended methods scoped in the mantle are: 

A) Problem conceptualisation methods: Earlier in this thesis, we 
defined data-driven susceptibility prediction as a machine learning 
classification problem.  

The proposed definition adopted by this thesis is: “Susceptibility is a 
capacity characterisable by intrinsic and extrinsic factors that modify the 
impact of a specific exposure upon risks/severity of outcomes in an 
individual or population.”  

We also adhere to three categoric statuses; resistant individuals are 
those at no risk; in some parts, we refer to them as healthy for having no 
relative propensity to develop disease; susceptible individuals are those who 
are a risk of developing a disease, their risk is maybe referred to as moderate 
in the presence of individuals who are at high risk in relation of their 
propensity to develop a disease or in another word hyper-susceptible.  
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The adopted definition lacks statistical concepts, which limits its 
direct applicability to technical methods. However, it is simple to deploy by 
an interdisciplinary group of experts in a project. The consensus among the 
collaborators in this thesis is to predict the susceptibility categories as labels 
to address the health risk. This agreement led all data-driven modelling in 
this thesis to follow the machine learning classification approach. 

Based on the adopted definition of susceptibility, this domain problem 
could have two labels; these are resistant and susceptible, or three by adding 
a hyper-susceptible label. Therefore, the mantle targets two different 
susceptibility problems in healthcare, these are located at head of the 
Octopus Framework.  

One problem is the prediction of breast cancer patients’ susceptibility 
to a radiation therapy side effect, moist desquamation (Desq). This is a 
binary classification problem with two labels, resistant and susceptible. The 
second is the prediction of patients’ susceptibility to visceral fat, also known 
as Visceral Adipose Tissue (VAT) associated diseases for both genders. 
Again, this is a multi-class classification problem with three groups of 
patients, those who are deemed healthy or have no risk of developing such 
diseases, also considered resistant to VAT-associated diseases; a group of 
moderate-risk patients with a higher likelihood of developing VAT-
associated diseases; which are deemed susceptible, the last group is those 
who are at the highest risk of developing VAT diseases who also can be 
considered hyper-susceptible. 

B) Data acquisition and quality methods: REQUITE provides breast 
cancer radiotherapy data. REQUITE is an international project that aims to 
predict which patients are more likely to develop side effects from 
radiotherapy. It is a multi-centre observational study and the largest study 
of its kind, collecting data from 5,300 cancer patients (~ 2000 breast cancer 
patients) and a credible data source to model patients’ risk of developing side 
effects following radiotherapy. 
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It is a unique resource for studying the relationships between side-effect 
endpoints and quality-of-life (QoL). This project received funding from the 
European Union’s Seventh Framework Programme for research, 
technological development and demonstration under grant agreement no 
601826 [327].  

The VAT dataset is a dataset provided by the UK-Biobank (UKB). The 
UK Biobank is a large-scale biomedical database and research resource 
containing in-depth health information from half a million UK participants. 
Their data repository is regularly augmented with additional observations 
and is globally accessible to approved researchers. The UKB data repository 
is the largest and richest dataset of its kind. It is anonymised and made 
widely accessible by UK Biobank to researchers worldwide to make new 
scientific discoveries about common and life-threatening diseases, such as 
cancer, heart disease, diabetes and stroke, to improve public health [328]. 

Both sources provide a large variety of data types, including clinical, 
imaging and genomics data. However, we would like the reader to think that 
our approach is unique as we strive to develop inexpensive, approved 
models. Our aim is achieved by processing variables associated with low-
cost collection methods.  

Therefore, the processed dataset's attributes are numeric or nominal, 
and the analysis is cross-sectional. The collected data are obtained from low-
cost measurement methods such as anthropometry, physical exercises, 
email surveys, questionnaires, clinical observations and historical familial 
and medical health records. Our approach is not formulated to process data 
associated with higher-cost collection methods, such as imaging and 
genomic sequencing data. 

From our literature review, it is acknowledged that there are many 
frameworks for Datasets Quality Assessment (DQA) [19], but they are 
objectives-centric and context-dependent. To address this problem in our 
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methodology, we propose new Data integrity checks using our new VISPAQ 
six-point quality check. VISPAQ is a non-metric operational approach to 
explore the data quality at the repository to raise our confidence when 
approaching such a data source to acquire data for a project (see Figure 4.2). 
We recommend following this approach before making financial or project 
commitments. 

VISPAQ six-point checks stand for Versatility, Informativity, 
Suitability, Presentation, Accuracy and Quality. The versatility of any 
dataset held by any source is a gate to various feature selection tasks and 
techniques, offering different ways to analyse the data for better insights. It 
is about checking the blend of comprehensive granular, detailed and 
summarised data levels. Such a variety makes deriving new features from 
the original data beyond limits. This check should be done within the type 
of data required for a study, i.e., transactional, imaging or sensor data types. 

 

Fig. 4.2 Data source six-point check  

Data informativity can take multiple shapes that vary from a broad 
material to a detailed, in-depth material. No matter how predictable data 
fields might be, resources, definitions, and examples must be comprehensive 
to tackle any unforeseen variability within the data. In addition, gathering 
information regarding how the data was collected and should be handled 
and any future changes is a big plus. 
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Data suitability is to do with declaring some recommendation of 
possible research domains for researchers, typically based on historical 
access applications made to the source and previous publications. Data 
sources should advertise key research areas where subsets of their data are 
applied. Adding a repository of related research publications forms a major 
advantage. 

Examining the presentation of the data characteristics in various 
graphical, tabular, or statistical formats is crucial. Although such an 
assessment mainly enhances the data scientists’ and analysts’ 
understanding of the domain problem, it can become project-critical if a 
unique cohort is required for analyses. 

It is challenging to judge data accuracy without access to real 
datasets. Nevertheless, some indications could reflect on the accuracy of the 
data, such as the planning efforts in organising the data collection, the tools 
and devices which were used for obtaining readings, the presence of 
validation via repetitive measurements, the existence of data collection 
protocols for recording the measurements and the ability to customise data 
before release. Integrating the data source with other credible systems like 
national health records is also a promising indicator. 

Everything we mentioned so far is related to the data quality itself. 
However, systems quality and maintenance at a data source usually show 
confidence. For example, seeing communications and announcements of new 
processes and system changes by the data source may indicate that the data 
quality does not degrade over time and is well maintained. In addition, a 
data source declaration of a system’s industry certification, i.e., ISO 
certifications, is a strong indicator of data excellence. 

VISPAQ checks are advisable but not comprehensive, and there are 
always other attributes by which data quality and source are attested. Also, 
we are not against the use of publicly-free available ML datasets [20]. 
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However, using such data comes with many challenges and unanswered 
questions, especially in results-critical domains like healthcare [21]. For 
instance, patients’ role is discarded in such data due to ethics. But what if 
follow-up information is required, like death or dropouts? Also, the lack of 
predictability and limits of measurements is another issue. The natural 
occurrence of a health issue takes time and cannot be projected; data needs 
to capture enough incidents, raising the issue of “how this wait is 
monitored?” Every measurement technique can be used arbitrarily 
frequently for technical, ethical or compliance reasons. To derive conclusions 
that matter for the healthcare community, like improved prognosis or 
improved quality of life (QoL), you need observation periods of ten or more 
years. At this time, the individuals’ characteristics will change and continue 
to be stored in a distributed public health system; this raises the question of 
how this data can be accumulated from the distributed systems into one 
place for analysis. [21].  

Nevertheless, there are wider challenges that face the analyses from 
all sources, such as data heterogeneity and concept drift is another issue 
that renders the independent testing and verification of published results 
and their translation into practice very difficult [21]. With all the above in 
mind, there are now enough considerations to sway this research away from 
publicly-free available datasets. As a result, and based on the collaborators’ 
recommendations, two health data providers met this thesis’s research 
domain: the UK Biobank [328] and the REQUITE Consortium [327]. 

The UK Biobank is a large-scale biomedical database and research 
resource containing in-depth genetic and health information from half a 
million UK participants. REQUITE is a European observational study, the 
largest of its kind. It is recognised as an exemplar of multi-disciplinary, 
multinational work that should be carried out in radiotherapy-related 
research. 
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Both REQUITE and The UK Biobank resources validate all VISPAQ 
checkpoints to a certain limit and overcome potential issues with publicly 
available datasets clarified by visiting their websites. Both sources are 
subject to legal restrictions such as complying with legislation including 
consent, confidentiality, licensing, ethics and intellectual property, which 
prolongs the timeframe for data release between six months to a year, and 
their data collection is subject to rigorous protocols. There are three 
extracted datasets from these resources which we utilised by our 
methodology for our practical modelling of susceptibility in this thesis: 

n The female cohort MRI visceral fat dataset is extracted from the UK 
Biobank resource (4327 subjects). 

n The male cohort MRI visceral fat dataset is extracted from the UK 
Biobank resource (4126 subjects). 

n The Breast Cancer Radiotherapy Toxicity prediction models’ dataset is 
extracted from the REQUITE Consortium (2069 subjects). 

To examine both data sources, we obtained a data sample from each source 
to determine the feasibility of completing a successful data analysis. Both 
data sources, the UK Biobank and REQUITE Consortium are not perfect; 
however, their protocols and controls provide confidence in their data 
collection. Both met most of the quality indicators regarding Versatility; they 
had a wide range of data for their cohorts covering various patient 
characteristics. This coverage is translated into thousands of variables 
offering different ways to analyse the data to enhance insights. Informativity 
is incredibly unique in the UK Biobank case, and resources are provided in 
detailed literature and statistical forms on each variable, including data 
stability status and dictionary. Unlike the UK Biobank, REQUITE 
Consortium does not offer similar detailed information and resources 
regarding its data. Nevertheless, their data collection and survey design are 
precise. Still, the absence of a clear data dictionary and literature resources 
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makes all analyses on their cohorts require significant consultations from 
physicians. 

Both data sources have a good list of publications to guide data 
suitability, indicating the historical analysis types. The REQUITE 
Consortium is relatively new compared to the UK Biobank. Thus, the latter 
holds a more extensive base of publications. The UK Biobank advertises the 
data scale measurement types per variable. In the REQUITE Consortium, 
the data measurement scale types can be partially determined from the data 
collection design but, in all cases, require clarifications from physicians and 
informed discussions. The UK Biobank advertises high standard 
presentation of data characteristics on their website in graphical, tabular, or 
statistical formats; however, REQUITE had their basic data stats published 
in a research article. 

We examined observations at random for their accuracy in the samples 
provided. Unfortunately, both sources had accuracy deficiencies. The 
REQUITE cohort was more severe than the UK Biobank. Both record 
samples had qualitative and quantitative issues, prompting the necessity of 
finding a suitable strategy, such as Boundary Value Analysis (BVA), to 
further investigate the entire extracted data. Qualitative defects include 
pattern violations, rule violations and duplications. Quantitative problems 
arise in the form of inconsistencies and outliers. Such a scenario, if found, 
could lead to excluding some variables and records from analyses. Finally, 
quality controls at both data sources are declared in their followed protocols 
and their industrial certifications for collecting and maintaining their data. 

Any accuracy defects found in the samples provided by the sources 
would influence our decision to apply the Equivalence Class Partitioning 
(ECP) and Boundary value analysis (BVA), described in the literature 
reviews. Both methods assist in validating observations around specific 
boundary values within each variable where recorded values outside these 
boundaries alter the recorded values in other variables. However, this 



 - 160 - 

process is highly iterative, time-consuming, requires information from the 
data source and domain knowledge, and is very lengthy to document.  

Often, in interdisciplinary case studies, the data scientist governs the 
execution of this strategy. Still, the decision on boundary values, errors, 
corrections and the best course of action lies in the hands of domain 
specialists. Table 4.1 shows a non-exhaustive list of frequently known 
defects that can cause concern for healthcare specialists if observed in a 
dataset. 

The discovery of such errors (defects) provides assurances of data 
correctness before feeding to transformation and modelling algorithms. The 
severity of errors varies depending on their propagation in the data 
transactions. Errors could propagate horizontally at a record level and 
vertically at a variable level.  

Table 4.1 A list of common defects found in datasets 
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ECP and BVA can use several tests to discover errors or suspicious values 
in a dataset. Such tests include Parameters’ Verifications against given 
specifications from the data source, Logical Comparisons that rely on the 
data collection rules and survey design, Value-Decompositions of aggregated 
values with known origins, Stability (behavioural) checks by using 
indicators confirming the reliability of a record or a variable declared by the 
data source. 

C) Measurements scales methods describe our strategy for handling data 
scales of measurements before transformation and modelling. We adopt 
scale types for our practical modelling in line with the capabilities of the 
modelling tool and algorithms.  

Some machine learning algorithms have built-in perspective 
strategies to handle specific data types. For example, the modelling 
algorithms used for this thesis, built in the Waikato Environment for 
Knowledge Analysis (WEKA), can handle categorical value type as 
“Nominal” and both continuous and discrete values as “Numeric”.  

Although our selected algorithms have variations that handle ordinal 
class labels based on class decomposition in Frank and Hall’s approach 
[292], we treated all ordinal class labels as nominals.  

As for predictors, we reviewed two approaches; the first passes the 
ordinal values as numeric type to the classification algorithm. However, we 
do not recommend such an approach; this may produce problematic results 
if the classification algorithm is led to consider non-existent orders in 
between the ordinal objects for decision making, in decision stumps, for 
example. The second approach encodes the categorical features into multiple 
binary features using one-hot encoding [329]. But we have reservations 
when transforming a small number of ordinal categories into new variables 
as the information levels within the original variable vanish. 
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In practice, addressing data measurement types in data-driven modelling 
depends on the capabilities of the tool of choice. Various modelling tools have 
built-in perspective strategies to handle specific data measurement types 
before consuming a variable by the modelling algorithm. In our 
methodology, we classify all ordinal and binary attributes as nominals. 
Thus, the predictors in our practical modelling will only be processed by the 
modelling algorithm as numeric or nominal types. The class labels are 
classified as nominals. 

Figure 4.3 shows the classification of measurement scales followed in 
this thesis to assign to different variables. By accounting for the element of 
arithmetic significance (applicable arithmetic operations), we simplify 
giving the attributes to a higher-level scale of measurements consisting of 
three ubiquitous data types: nominal, numeric, and binary. Variables of 
categorical values without a known magnitude are nominal. Ratio, counts, 
and interval type values are considered numeric type. Ordinal attributes 
with known magnitude can take either form of numeric or nominal data 
types. Likewise, binary variables can be assigned binary or nominal types. 
However, there is a limitation. Our topology assumes all numeric features 
to be continuous and does not account for discrete numeric values such as 
counts. This assumption may change the natural distribution of parent 
variables when applying data preparation and pre-processing techniques 
such as data imputation and augmentations.  
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Fig. 4.3 Classification of data measurement scales 

D) Transforming large categorical features’ methods: For a nominal 
input features with a large number of categories, one may convert its 
categorical values into multiple attributes. This transformation is done by 
applying the One-Hot encoding binarisation technique on each category, 
transforming it into a new feature. 

E) Features summary declaration. Our review in chapter two, regarding 
variables measurement scales, impacts variables’ summary presentation. 
When comparing variables within a dataset, a standard recommendation is 
to present descriptive statistics of features as per Table 2.1 in Chapter 2. We 
also recommend the classical approach of reporting basic statistics of 
variables and the Information Gain evaluation to indicate the association of 
various features to the class attribute. 



 - 164 - 

However, when comparing multiple datasets in classification, including 
training and test sets, we recommend reporting Information Gain per 
variable as a measure of association with the class variable. Machine 
learning algorithms tend to be biased towards variables with higher purity. 
It is interesting to evaluate whether the test data is easier to predict than 
the training data. The measure of information gain should be used in cases 
where both datasets are equal in their count of instances. Purity in the data 
may change due to applying various data pre-processing techniques, 
including imputation, certain types of scaling, resampling and others. 

F) Data visualisation methods: The literature review chapter 
investigated various methods to explore and visualise datasets for 
modelling. Regarding high-dimensional data visualisation, we prefer 
Targeted Projection Pursuit (TPP). Unlike Principal Components Analysis, 
our choice is based on preserving the view of original variables. TPP offers 
advantages over other methods, including the automatic blind projection of 
interestingness. In addition, TPP allows the users to explore these 
projections by manipulating individual data points or groups of points 
directly in a multidimensional scatter plot.  

G) Precision of measurements (features rounding): Multiple types of 
feature rounding are presented in chapter three. One, in particular, is 
rounding up, centred on the tie-break value of 0.5 [135].  

Through we acknowledge that the precision of an observation value 
is related to the significance and interpretation of that value within the 
health domain. Some value precision might be critical in the case of 
radiation doses, while others are less important, for example, in the case of 
Body Mass Index (BMI) values. Therefore, using random rounding is not 
advised here. 

As per feedback from the collaborating physicians seem to accept the 
use of rounding up for some variables whose precision is not vital, 
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disregarding any bias this may cause towards the higher values. However, 
this bias may skew the patient’s characteristics towards the better or worst 
outcome, painting a pessimistic or optimistic prediction picture. Therefore, 
features rounding should be performed under domain experts' supervision 
and remains optional in our framework as long as it does not introduce 
unrealistic or conflicting values. 

H) Missing observations mitigation methods: Chapter two presented 
and discussed multiple methods to address missing data by seeking its 
cause, description and resolution. We combined what we learnt from the 
literature into a new Multi-Method Imputation (MMI) framework to handle 
missingness. And we recognise that our recommendation to use MMI for 
handling missingness is a guide similar to Equivalent Class Partitioning 

(ECP) and Boundary Value Analysis (BVA) for handling errors.  

Practitioners are advised to document key outputs of the overall MMI 
process flow due to the highly iterative nature of the process. Furthermore, 
MMI decision flow is a lengthy process; therefore, one may not want to 
document the output of every single decision path when practically applied. 
Our new framework, MMI, accounts for the cause, pattern and proportion of 
missingness. In addition, it pays attention to the domain of the problem at 
hand and the acceptability of specific missingness treatments in that 
domain (healthcare in our case). MMI then suggests the best course of action 
to solve missing observations in a particular dataset.  

MMI has five stages, Prerequisite, Avoid, Ignore, Top-up and Treat. 
The MMI process flow in Figure 4.4 ensures that any artificial observations 
inference via simple or model imputation is a last resource after exploring 
all other non-statistical options to compensate for missing observations with 
actual, valid, logical or informed values.  
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Fig. 4.4 Multi-Methods Imputation (MMI) framework 

We acknowledge that finding the actual values for missing observations has 
no perfect answer since true missing data is unknown forever. Thus, there 
is no way to validate the replacement values. 

We can only put so much effort into following reasonable steps to 
reduce any potential impact on the analyses. We prefer following MMI to 
increase our possibility of compensating missing observations with values 
that are true or of true-like. Thus, MMI ensures that any exploitation of 
statistical characteristics comes last, hoping to reduce the potential use of 
unreal data in classifiers’ decisions. 
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We note that the absence of consensus on many of the discussed concepts, 
the limitations of the current methods, the differences in data 
characteristics and the varied domain priorities make it almost impossible 
to draft a unified approach that fits all cases of handling missing data. The 
Multi-method imputation (MMI) is a new heuristic map that tries to provide 
a logical flow to handling missing data under certain conditions. MMI’s 
priority is achieving the acceptability of the collaborating healthcare 
professionals and physicians in this interdisciplinary thesis.  

These processes in Figure 4.4 ensure that any artificial observations 
inference via simple or model imputation is made as a last resource after 
exploring all other non-statistical options to compensate for the missing 
observations with real, logical or informed values. We try to minimise the 
exploitation of statistical data characteristics as the last resource due to the 
potential impact of their disruption on classification learning [116]. 

The mapped conditions aim to assist researchers in substituting 
missing values based on linking various recommendations from the data 
science community and healthcare research. We try not to distort the 
variable’s distribution to prevent building overly optimistic or overfitted 
models which fail to generalise on external test datasets. 

In MMI, The Prerequisite stage assembles all the elementary 
requirements to start an informed discovery of missing data. This stage 
includes accessing the data, scoping the relevant (applicable) variables (from 
literature and domain experts’ knowledge), ensuring present values are 
consistent, and resolving any measurement or formatting errors. In essence, 
a technically correct dataset is produced and deemed suitable for 
missingness analysis and treatment. The Avoid stage has a conditional gate 
that ensures real/realistic data values are found first to narrow down the 
proportion of missing observations. This stage establishes if the missingness 
can be substituted with logical values extracted from the survey design and 
information within other variables. The Ignore stage identifies the portion 
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of the missingness that is ignorable if gone untreated by recommending a 
threshold of 5%. Depending on the type of missingness spread (non-
response), a suitable path is recommended to discard, top-up, or treat the 
data. Whichever method is used at this stage ensures that no bias is 
introduced in the analysis (based on literature) for the available records and 
variables. A ceiling of 40% missingness proportion within a variable was also 
chosen to decide whether a variable is retained for the analysis to conceive 
confirmatory results in health studies.  

  The fourth Top-up stage suggests a feasible route to consider when 
dealing with missingness that is not ignorable. It considers various 
elements, such as the availability of additional data and whether to add 
instances or suspected relevant (applicable) predictors capable of 
minimising the portion of missingness. The final Treat stage recommends 
suitable approaches to imputing missing data while considering the portion 
and the type of missing observations. Logically, we acknowledge that using 
variable dropping in the process could potentially create more latent 
variables, hence recommending using EMI to handle potential latent 
numeric variables caused by variable dropping. If nominal values also 
existed in the data, the DMI with embedded EMI takes care of imputation 
within such datasets. Finally, through our MMI approach, the MMI 
approach conditionally groups various the use of imputation techniques with 
practical consideration and decisions driven by referenced our previous 
research in literature, which is supported by mathematical proof. The aim 
is to produce datasets suitable for cross-sectional confirmatory studies 
analysis as far away from biased analysis as possible in the eyes of domain 
experts. 

There is no right or wrong way to go around this problem. Any chosen 
method will eventually get the data to the intended analysis pipeline. 
However, the end purpose of the analyses and their acceptance in the 
domain’s community are the jury who gives the verdict. 
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I) Data scaling and irregularities mitigations methods:  Previously, 
we reviewed the advantages and limitations of multiple scaling techniques 
in many key areas, including robustness and sensitivity to outliers and 
extreme values, the change of the underlying distribution of the data leading 
to changes in associations and improvement and deterioration of the 
modelling performance. It was also mentioned that in research, choosing the 
right scaler is often a trial-and-error process, and no single best scaler works 
every time. One may try all possible combinations of scaling methods on any 
dataset to develop a deeper understanding of the effect of normalisation on 
the modelling performance for that particular data. However, despite that 
being a time-consuming approach, any observations of improvement or 
deterioration won’t be sufficient to generalise across all datasets. 

Furthermore, there is no unified approach to data scaling for all 
applications. Thus, no single scaling approach can be ranked as the best 
among all the techniques. We acknowledge that Feature scaling is an 
essential step in data pre-processing. And thus, it is imperative to decide 
which feature scaling to use. Our research believes that in the healthcare 
domain, the machine learning model’s interpretability, in some cases, is 
important. Therefore, the interpretability of the scaled features in a model 
should be mitigated. In the literature review, we emphasised focusing on 
feature scaling if seeking an enhanced output when considering specific 
algorithms for model-based imputation or predictive modelling, such as the 
KNN algorithm.  

Considering all the above, we recommend using monotonic scaling 
that converts the features from having a variety of different dimensional 
units and magnitudes of measurement into unified dimensionless features.  

Not only is our recommendation widely acceptable in the healthcare 
community, but it also scopes standardisation and minimum-maximum 
normalisation. We do not have a preference for which technique to use. We 
emphasise utilising either method with at least certain types of learners, 
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such as curve fitting, hyperplane and distance-based learners, in cases 
where features’ magnitudes largely vary. In addition, using either of the 
scaling techniques with other learners, such as C 4.5 decision trees, imposes 
no issues on performance beyond interpretability. Both methods preserve 
the information association among variables and the class. 

Nevertheless, we accept these scaling techniques' susceptibility to 
outliers and extreme values. When it comes to outliers, we addressed that 
there is no standard statistical definition of outliers and extreme values. 
Therefore, we recommend using only magnitude-independent detection 
methods, such as the Inter Quartile Range (IQR) test. We look for values 
with an Extreme Value Factor (EVF) of 6 times the IQR and an Outlier 
Factor (OF) of 3 times the IQR. However, these factors are only application 
defaults and not standard, and we could not scope any experiments from the 
literature to suggest otherwise. 

Once irregular data points are identified, they are carefully examined 
by domain experts for their validity. On the one hand, if found valid, they 
should be retained. On the other hand, if such abnormal observations are 
suspected errors and not a phenomenon, deleting the outliers is the most 
straightforward approach. In case of deletion, this thesis recommends 
following the 5% missingness threshold to avoid statistical bias. However, 
suppose they are of a higher ratio and cannot be validated. In that case, their 
retention is advised, and avoid using scaling methods that suppress them or 
distort the original statistical association between their features and the 
outcome. 

J) Scaling and training-test splits sequence: Data scientists and 
domain debate the sequence of applying feature scaling (normalisation or 
standardisation) before or after sampling the training and test sets. 

It is a two-way street! Unfortunately, there is no agreement in the 
data science community on such a debate. Some prefer scaling the training 
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set and then inheriting the scaling parameters from that training set to scale 
the test set. Others state there is no problem scaling the whole data before 
the split. Machine learning developers argued that in both cases, scaling 
parameters are leaked from training into the test [330]. In general, other 
than solving the problem of magnitudes, the leakage of scaling parameters 
also serves to have consistency between training and test feature sets. This 
consistency is achieved because the new scaled values in the training and 
test subsets behave within unified boundaries estimating the scaled values 
(i.e., The mean and standard deviation for standardisation and the 
minimum and maximum values in normalisation).  

Feature scaling before splitting ensures no issues in the evaluation 
step, which could affect the model’s performance. However, some data 
scientists may say this raises concerns about knowing some test data 
behaviour in training. The question of consistency arises if the test data is 
scaled separately without dependence on the training data scaling 
parameters. In such as case, we cannot guarantee that the scaled values 
remain within the exact boundaries of the training data. A test dataset in a 
different range or distribution could reasonably make a model perform 
worse. One common recommendation is to split the data to obtain the test 
set, so it is not scaled with training examples. Instead, scale the training 
subset alone, and save the training set scaling parameters. Then scale the 
test set inputs using the parameters obtained during training, then de-
normalizing the predictions with these same parameters to return the user 
output in the original scale [330]. Others stated, based on their practical 
experience, that if scaling is required, then it should be done on both the 
train and test data sets [331]. Also, the approach taken may depend on the 
data and the type of scaling.  

For standardisation, obtaining the Standard Deviation (SD) and the 
mean of the whole data (train and test together) will allow the scaling 
transformation before or after the train-test split. However, if minimum-



 - 172 - 

maximum normalisation is used, it is crucial to know the minimum and 
maximum values of the dataset. In such as case, a problem emerges if the 
normalisation is done on the train and test sets separately, then we may end 
up with possible different min-max ranges, and the models may not perform 
as expected. In production, if new min-max values are constantly observed, 
this would indicate the need to retrain the model with the new rescaled data. 
The key is ensuring matched scaling transformations in modelling and 
production workflow [331]. 

Based on the above debates, we assess both cases on the grounds that 
they are forcing the original data values to be a fraction of a unified unit. 
There are three elements to achieve the unified measurements’ unitlessness. 
The first element is parameters with the minimum-maximum combination 
(in normalisation) or the mean-SD combination (in standardisation), the 
second part is the originally recorded observation itself, and the third is the 
nature of the scaling being unsupervised (label-independent). For 
consistency, we could state that using the first element assures that the 
transformed values within a feature in both training and test remain of 
comparable magnitudes. This is because the actual observation value, before 
transformation, governs the new transformed value's magnitude within the 
feature space's constant boundaries. Therefore, as long as the original 
observation value of the test record does not expose its displacement in the 
feature space during the training phase, both suggestions are correct. 
Therefore, reusing scaling parameters only unifies measurements 
unitlessnessly within a feature.  

By considering our same principle, we emphasise that scaling 
parameters reuse could be beneficial from a consistency point of view of 
present observations. 

K) Discretisation methods: In the literature review, we examined 
multiple studies that reported an improvement via discretisation to Naïve 
Bayes (NB) and Bayesian Network models’ performance [136][137]. 
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Although we consider the discretisation step optional, we use multi-interval 
discretisation of continuous-valued attributes for classification learning 
(MDL) [145] when combined with NB modelling. MDL, a supervised method, 
overcomes the challenge of selecting the number of bins using the 
information theory to minimise the entropy within a variable based on the 
class label.  

The recommendation of using MDL is driven by its intuitiveness. It 
finds the best split, so the bins are as pure as possible. Thus, most values in 
a bin have the same class label, leading to finding the best degree to 
influence the separability of the class labels. An efficient discretisation is 
characterised by finding the split with the maximal information gain, which 
entails maximising the entropy function over all possible class boundaries. 

L) Imbalanced learning methods: Multiple state-of-the-art techniques 
were systematically reviewed to enhance imbalanced learning modelling. 
Unfortunately, the literature showed no consensus on a single method when 
dealing with a class imbalance problem.  We highlighted various studies 
that reported the superiority of Random Under-Sampling (RUS) over other 
techniques [174]. Others found that Random Over Sampling (ROS) 
outperformed RUS, although the behaviour differs widely for each data set 
[177]. Additionally, a recent empirical study concluded that using 
oversampling techniques, including SMOTE (and its variations), ADASYN, 
CBO and others provide overly optimistic predictions when tested on unseen 
data due to class label leakage [181].  

Therefore, in this thesis, we acknowledge the concerns surrounding 
the removal of data points, in particular, those from the positive class. These 
samples could be, in some cases, partially representative of a phenomenon 
mainly in medical sciences, such as susceptibility to an infection or a rare 
response to a treatment associated with influencing factors that cannot be 
exhaustively gathered. We also act on information that the medical domain 
seems to accept synthetic data generation as a tool for scientific discovery 
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but not for the adoption of diagnostics [180]. Also, from our review of Cost-
Sensitive (CS) learning, CS competed with other resampling approaches, 
and in some cases, it outperformed them on larger datasets. 

To mitigate the imbalanced learning problem, we recommend starting 
with Random Under-Sampling (RUS), Random Over Sampling (ROS) 
(although reported many cases of overfitting), SMOTE and Cost-Sensitive 
learning. The positive class (class of interest) examples remain without 
elimination in all these techniques. 

Furthermore, we recommend applying the CS learning method only 
to binary classification problems because estimating misclassification costs 
for new classification problems is tedious. Thus, the number of experiments 
accounting for all cost matrix variations grows exponentially with the count 
of class labels. It is also expected that various machine learning algorithms 
to produce varied performances and behave differently for the same explicit 
cost matrices. 

Finally, we recommend experimenting (where possible) with a novel 
approach of data resampling, Minority Pattern Reconstruction (MPR) and 
observing any enhancement it provides to the traditional methods. 

The new MPR approach hypothesises that various data points exist 
in space and contain different patterns based on the weights of their 
variables, as described earlier in targeted projection pursuit. The weights’ 
modifications allow analysts to see these patterns in different projections. A 
perfect or near-perfect classification can be achieved if the data points follow 
a single pattern within a set that makes the classes entirely separable; 
however, this is uncommon in real-world data. The data likely contains 
multiple patterns in space; each pattern contains highly separable class 
labels. In our hypothesis, we believe that extracting each pattern set and 
using each to train any classifier achieves a perfect or near-perfect 
classification. 
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Therefore, we run multiple cycles of the supervised K-Means 
clustering algorithm to extract such classification patterns from the data. 
Each run favours the minority class whose label reserves the highest 
importance in an imbalanced multi-class classification problem. Two 
datasets emerge from each cycle, a pure pattern set and a set of residuals. 
We use the blind Targeted Projection Pursuit to project automatic 
interestingness on the whole data before the first cycle. And then, it is 
applied to the residual subsets before every consequent clustering cycle. We 
also hypothesise that each extracted pattern holds an information profile 
that can be measured by summing the information gain evaluation of its 
features in bits. These information profiles are also analysed and compared 
to the original data profile for the whole dataset. 

  In the end, all extracted pattern sets are appended, forming a new 
imbalanced dataset to build classifiers or to undergo other sampling 
techniques such as RUS and SMOTE, illustrated in Figure 4.5. 
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Fig. 4.5 The workflow of Minority Pattern Reconstruction (MPR) 

In Figure 4.5, we apply simple K-means (k = output class labels) to cluster 
the blind TPP view, assuming k=3, the output of k-means will be class A, B 
and C. In each round, the instances within the clusters (A, B and C) are 
given their original labelled. For example, assume that class 1 represents 
the minority class of highest importance, the class of interest (i.e., Hyper-
susceptible subjects), followed by class 2 (i.e., Susceptible subjects). Class 3 
of the least of importance (i.e., Resistant subjects), each cluster is examined 
to find the highest count of Class 1 labels within; once such a cluster is found, 
Class 1 labels are extracted, the extraction process is cluster-label exclusive, 
where once a cluster was found to be the domain of label extraction, such a 
cluster is excluded from further examination for the extraction of the second 
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label of importance and so on until a sample of data is retained. This 
retained sample is likely to show perfect classification across all classifiers.  

Once all labelled patterns are exclusively extracted, the labels from 
the remaining points (residuals) are separated. Then the residual records 
are clustered in a new cycle of clustering-based pattern extraction, and the 
whole process is repeated until a threshold is met. Finally, all the instances 
in the retained sets are appended into one training set to undergo Random 
Under-Sampling (RUS). We hypnotise that the bias towards extracting the 
class of importance first with the largest count of instances in that class in 
a specific pattern would force a priority of learning on the classifier when 
fitting the training data. 

M) Data dimensionality decisions: We presented an overview of feature 
selection methods and the practical debates in the literature with some pros 
and cons. In our view, whichever feature selection method is used to 
formulate Octopus Mantle will likely induce a possible limitation in the 
modelling process.  

In addition, we acknowledge the challenge where the structure of the 
modelling problem at hand could evolve with time or may differ by 
population, causing "non-stationary" or “heterogenous” data. However, 
dealing with such a challenge is considered a future work opportunity that 
may form an extension of our approach.  

We explained earlier that this challenge could introduce systematic 
differences between the training and test sets rendering some predictive 
models useless. Nevertheless, feature selection could also be a double-edged 
sword. Models also may be incorrectly specified and vary by modeller biases 
or arbitrary choices of features. In this instance, an illusion may occur, 
thinking that the changes in the external samples negatively impact the 
predictions made. Or, perhaps, the actual reason could be that the model 
missed a critical predictor and/or included a confounded predictor. 
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Therefore, to combat both of the above scenarios and while being guided by 
domain experts' advice, we choose to include all logically applicable useable 
features (i.e., those with tolerable missingness) in the model, regardless of 
their definition of relevance by the modellers. This decision may be 
computationally expensive, but we believe that including all variables could 
reduce the chances of excluding a current variable that may turn into a 
confounding predictor due to one of the above scenarios. Thus, this approach 
may help narrow down the cause of future prediction performance issues 
during monitoring. Model monitoring is not covered in this thesis.  

We provided multiple reviews of the desired sample size and the 
required overall data dimensionality for modelling. We presented research 
that supported the Events Per Variable (EPV) and the Samples per Feature 

Ratios (SFR). In addition, other literature is found to oppose these ratios, 
stating that there is no golden rule to follow for every problem.  

We also presented the researchers’ concerns regarding unique studies 
where the EPV ratio is constantly violated. Also, we highlighted the debate 
of the model’s reliability; where a perfect or near-perfect classification 
performance is achieved on both the training data and an independent 
validation test set, the results could be reliable, indicating a robust 
classifier. And based on these scientific debates, our choice is to include all 
features and available instances on their availability in modelling, 
regardless of any statistical association between the counts of features and 
examples.  

Following from our previous recommendation, the reliability of a 
practical project output in the eyes of the domain experts is subject to 
mitigating a trade-off between two key considerations. These are high 
generalisation power, where unknown data points are classified correctly 
and meeting the required medical/biological interpretability. 
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We tackle the trade-off challenge by achieving some mutual trust between 
humans and machine learning. One approach that could influence such a 
trust is the informed involvement of clinicians and physicians in collecting, 
cleaning, declaring, formatting, preparing, engineering and modelling the 
data, followed by their evaluation of the models. A skilled data scientist 
should explore an important concept in human psychology: trying something 
new requires courage, vanishes fears and expands the human mind to learn 
more in a new area. 

Although this approach may seem to have full domain experts’ 
involvement, the entire data mining activity processes are always governed 
by the data scientist from the point of data understanding. The primary task 
for the data scientist here is not limited only to modelling but, more 
importantly, bridging the knowledge gap between the domain experts and 
data science. In turn, this may enhance the domain experts’ confidence in 
the built models shifting their evaluation focus away from the model’s 
complexity and more in favour of generalisation performance. Producing any 
additional indicators of the features’ behaviour in the model will become 
satisfactory. Thus, priority of building classifiers with high generalisation 
power becomes dominant over the cost of achieving medical/biological 
interpretability. And the data mining tasks become manageable. 

Including all applicable usable predictors may require scoping specific 
implementations of modelling algorithms known to provide robust 
behaviour against issues arising under these relaxed trade-off conditions, 
such as multicollinearity and overfitting. Thus, full features’ inclusion has 
limitations. Therefore, we do not rule out the potential need for feature 
selection and data resampling methods. In addition, we do not have answers 
for the feature selection-resampling paradox. “Should the features be 
selected before or after the resampling techniques?” The answer to that 
question is empirically addressed by Ramos-Pérez et al. earlier this year 
[332]. 
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N) Training-test split and validation considerations. In Chapter 3, we 
reviewed common approaches to performing training-test split for training 
and evaluation (testing). Here, this chapter acknowledges two scenarios of 
how these sets originate. In one scenario, the training and test sets are 
resampled from one big dataset, where the complete set is made available. 
In the other scenario, in some cases, the evaluation test set is extracted and 
made available later. 

In the data science community, there are different recommendations 
for approaching training-test splits. Some suggestions are based on ratios 
relevant to the size of the dataset at hand. Others addressed the problem 
away from the relevance of records count in each class, relying on a solid 
dependence on the complexity of the learning process.  

An article was presented in our literature review on this topic 
determined that 32 different adjustable parameters from the learning 
process play a role in determining the split ratio. In other words, the 
splitting depends on the capacity of a classification model, which is related 
to how complicated the model can be. Therefore, different machine learners 
require different training-test set splits ratios [231].  

When considering the appropriate split ratio for our Octopus 
methodology, we see two issues of performing varied split ratios. First, while 
it is not a problem in particular that machine learning algorithms are 
trained with different subsets of the whole data, one issue is that the 
training performance is not an ultimate evaluator of models’ generalisation 
performance, even if accompanied by cross-validation. Another problem is 
that the training performance of multiple classifiers built on different data 
subsets, i.e., resampled sets, cannot be fairly compared since different 
instances have a distinct influence on tuning the classifier's learning 
parameters. Thus, the classifiers would not have been equally challenged 
with the same instance hardness thresholds. This also could mean that 
cross-studies out there trying to solve the same domain problem cannot be 
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relied upon for benchmarking, and oddly enough, every data mining problem 
may seem new. 

We believe only a single constant test dataset can achieve a fair 
comparison. Therefore, a comparative evaluation of multiple classifiers is 
the key issue; thus, a fair comparison requires the same test instances across 
all trained models. We also acknowledge that when splitting the training 
and test data, there are two competing concerns, with fewer training 
samples, the parameter estimates may have greater variance. And with 
fewer test instances, the classifiers’ performance evaluation may have 
greater variance.  

To balance doubts in bias-variance trade-offs, we suggest proceeding 
with an equal training-test split ratio of ~1.0 when the whole data is 
available at once. And strive towards the same training-test balance where 
the test data is made available later, although this is not guaranteed. Our 
decision follows a similar recommendation by Pawluszek-Filipiak and 
Borkowski of having the training–test ratio around 1 (with the training 
portion should be as large as the testing data or very close) [235]. 

In addition, to provide further assurances on the quality of the 
classifier’s learning, we recommend using a resampling approach to validate 
(tune) the classifier; the out-of-sample testing approach is reported to 
estimate how well the classifier generalises on test data. Based on the 
literature overview in the previous, we recommend using the K-Fold Cross-
Validation resampling technique in training, with the most popular k value 
used in applied machine learning equal to 10. This recommendation follows 
findings from multiple studies reviewed in Chapter 3. k =10 was suggested 
to provide a good trade-off of low computational cost and low bias in 
estimating model performance [239]. 

O) Machine learning algorithms selection. Selecting a good-performing 
machine algorithm is challenging, primarily if the dataset was not modelled 
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in the past and no performance evaluations are available as indicators. 
Having tens, if not hundreds, of machine learning algorithms to choose from 
intensifies the problem. But unfortunately, when approached with a new 
classification problem, there is a tendency in the data science community to 
use the so-called favourite algorithm such as Random Forest, Xtreme 
Gradient Boosted Trees (XGB), etc.  

Another strategy is scouring the research literature for descriptions 
of similar problems and attempting to reimplement the algorithms with 
their configurations without guaranteeing that the domain experts would 
approve the reported performance metrics for evaluating the new 
classification problem. 

In Octopus, we target the lack of effectiveness in either strategy since 
they can be hit-or-miss or time-consuming. Furthermore, we recommend 
that literature on the domain problem be only used to identify techniques 
and ideas to try, not for reimplementation or comparison purposes. 

On a high level, to handle the variety of available techniques 
effectively, we suggest taking a shortcut by identifying an acceptable model 
by domain experts on new non-attempted classification problems. Therefore, 
we recommend systematically evaluating a suite of standard machine 
learning algorithms of different learning mechanisms to establish which 
performs well across multiple data preparation strategies. Once the data is 
prepared, we obtain a baseline performance on the original data samples 
across the suite of algorithms. By doing so, any specific learning issues will 
surface from the first modelling run. 

The next modelling cycle is then tailored with candidates of 
strategies, such as data sampling, cost-sensitive learning (as suggested 
earlier), hyper-parameter tuning, etc., hoping to produce specialised models 
outperforming the baseline. These models can be presented to domain 
experts to choose from based on their satisfaction with the empirical results. 
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One should also ensure that the selected evaluation metrics used in the 
comparisons translate the success criteria. 

As for the algorithms’ suite, there is no agreement in the machine 
learning community on classifying the types of learning. However, in our 
methodology, we suggest the suite should consist of a mixture of parametric 
and non-parametric classifiers. Thus, we suggest a probabilistic learner 
(Naïve Bayes), an instance-based algorithm (K-Nearest Neighbour), a 
hyper-plane classifier (SVM with SMO implementation), a linear curve 
fitting algorithm (logistic regression with ridge estimator), a non-linear 
curve fitting algorithm (Multi-Layer Perceptron), the non-linearity for MLP 
is driven by the use of multiple layers despite having the sigmoid function 
is used for neuron activation, a decision tree classifier (C4.5), and ensemble 
learners (Logistic Model Tree and Random Forest). Our recommendation is 
to model as many of these algorithms as possible on the same prepared 
datasets. It is also important to perform the training in the same machine-
learning environment. This is because different environments may have 
different implementations of the same algorithms and randomisation 
settings, producing varied results. 

P) Success criteria and evaluation metrics. Selecting an evaluation 
metric is the most critical step in a classification problem. The selection of 
adequate metrics is the foundation for comparing the built models and 
establishing their abilities and limitations to full fill the predefined success 
criteria by the domain experts.  

The metric must capture the details about a model that are most 
important to the domain experts. Choosing the unsuitable metric can alter 
the choice of models, leading to selecting unfit models to full fill the success 
criteria of the problem at hand. However, they may be suitable for solving 
different problems.  Scoping suitable evaluation measures is challenging due 
to the variety of performance metrics; as seen in our literature review, each 
has its own interpretation of the model’s performance. This variety of 
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metrics often leads to domain experts’ uncertainty about which metric to 
choose. Therefore, in our Octopus methodology, we do not recommend 
selecting metrics before forming competitive success criteria as a heuristic 
for all models to work towards. 

Sometimes, the interpretation of such criteria can be covered by one 
or more metrics. Thus, due to the variation in success criteria among 
domains, it is difficult to scope metrics that suit every classification problem. 
Therefore, once the criteria are formed, the data scientist should assist the 
experts in finding the metrics that best interpret their desired output of 
interest. 

The success criteria could be precise, like observing a specific 
predictive performance of a particular group; hence the confusion matrix 
comes in handy or can be more general and interpretable with fundamental 
or combined metrics. 

Heuristically speaking, as discussed and presented in the literature 
review in Chapter 3, some metrics are proven effective interpreters of a 
model’s success in specific circumstances, such as imbalanced learning, i.e., 
Balanced Accuracy, Youden’s Index, and the G-mean. Some graphical 
metrics are also popular in the medical domain but may be misleading in 
certain conditions, such as AUC. Some are voted to be balanced metrics, 
such as the MCC. Some domain experts may seek the best balance between 
TRP and TNR.  Hence, the term ‘best model’ is subjective and could have 
many interpretations. Therefore, in our Octopus methodology, we consider 
the confusion matrix, including its fundamental metrics as the go-to metric, 
and from there, we proceed systematically with scoping various combined 
and graphical metrics to interpret models’ performances based on defined 
success criteria by real-world life sciences and healthcare experts.  
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In addition, we will also perform a proof-of-concept ranking of multiple 
binary classification models using our newly adapted graphical evaluation 
metric, XDistance. 

XDistance is a new proposed graphical performance metric that ranks 
different models in terms of inaccuracy and balance. It allows for a fast 
comparison of multiple models. In Figure 4.6, we replace the FAR with FPR 
and the FRR with FNR curves. The cross point between the FPR and the 
FNR is the new CER. The x-axis is the threshold of the conventional ROC 
curve, and the y-axis is the error rate. 

 

Fig. 4.6 Illustration of the newly adapted Cross Error Rate (CER) 

Unlike the usability decision being made on the CER based on the y-axis 
direction (the lower the CER, the better), we test in imbalanced data 
classification, the cross-point (X) shift into both directions, threshold and 
error rates.  
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Therefore, for a classifier shifting in the direction of the error rate, 
the closer X from the threshold line, the more accurate classifier. However, 
the shift of the crossover point (X) in the direction of the threshold line 
indicates the state of error balance that influenced the classifier’s accuracy. 

Each model typically produces a Crossover point. By observing the 
placement of the models’ Crossover point in each model’s CER plot (from 
testing), we hypothesise that X for the minority-biased resampled models 
would reside at the right side of the plot (𝑋𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 > 0.5). On the contrary, 
the behaviour of the crossover curves for the majority-biased models would 
highly drift to the left of the CER graph (𝑋𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < 0.5). The CER curves 
behaviour corresponds to true-positive instances counts of 73 and 1 out of 96 
total positives, respectively. Thus, a model would show less imbalance 
between TP and TN if X resides at 𝑋𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≈ 0.5. 

Furthermore, to overcome the potentially deceiving high accuracy in 
imbalanced learning. The new Crossover Error Curves allow for a simplified 
geometric graphical comparison by replacing FPR-FNR curves with their 
crossover X points. The plot comparison forms a potential opportunity to 
consider a new criterion for empirical performance evaluation. It can be 
called a graphical X-Matrix (see Figure 4.7). 

 

Fig. 4.7 Graphical illustration of X-Matrix for balanced and imbalanced tested models 
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From Figure 4.7, we assume that based on the Euclidean Distance for each 
model 𝛿, the shorter the XDistance, the more balanced the model is. Hence 
the XDistance may indicate a balanced performance ranking metric. The 
model of balanced performance TP-TN can be extracted from the X-Matrix 
by calculating the model’s geometric XDistance of a model (𝛿) to the 

XThreshold reference point 𝛼(0.5,0). 

For a model’s XThreshold 𝒙𝒊 and CER 𝒚𝒊, the geometric X-Distance 

can be calculated using the Euclidean Distance 𝛿(𝑥" , 𝑦") by: 

𝑑#$%&(𝛿, 𝛼) = =>(𝑥" − 𝑦")'
(

"

= @(𝑥" − 0.5)' + (𝑦" − 0)' 

𝑋𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = @(𝑋𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑" − 0.5)' + (𝐶𝐸𝑅")' 

An indicative qualitative sign (±) could be attached to the XDistance to 
indicate the models’ class bias based on the XThreshold value 𝑥" of 0.5: 

 

 

4.2.3 Structured applications at Octopus head 

This part of the Octopus methodology is the part which validates the 
effectiveness of the researched methods at the arms and scopes at the 
mantle, forming the framework for practical applications in data-driven 
preventive healthcare. When applied, it usually contains a structured 
approach to applying such methods to healthcare and life sciences case 
studies.  

 These methods should collaborate to perform predictions of adverse 
health events to benefit preventive medicine. In one case study, the 
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predictions of adverse events of having excess amounts of Visceral Fat could 
be vital in our lifestyle adjustments and treatments to detect and prevent 
potential health complications. Although lifestyle modifications should be a 
collaborative effort between physicians, health professionals and the patient 
and sound natural and medically independent for many, the reality is that 
some medical or surgical interventions might be required to support, speed 
up or sustain these changes.  

In relation to obesity, treatment-independent lifestyle modifications 
are numerous, including diet, physical activity, weight reduction, smoking, 
and stress. Nevertheless, lifestyle modifications may include medical 
interventions, such as prescribed weight loss drugs, or even surgical 
procedures, such as weight loss surgeries (i.e., gastric banding). In many 
cases, weight loss surgery isn't for everyone who is overweight or even obese. 
Surprisingly, to qualify for such surgical intervention, the patient must have 
already developed and diagnosed chronic health complications related to 
obesity, such as heart disease, diabetes, or high blood pressure [324].  

Octopus methodology governs building new tools for the early 
detection of susceptible individuals to such diseases who are in most need of 
proactive lifestyle modifications before developing such chronic diseases. 
This early detection should help individuals to follow self-induced lifestyle 
changes. In addition, it indeed triggers different considerations for 
physicians when offering preventative medical and surgical treatment. It 
provides both primary and secondary prevention improving large-scale 
interventions for the population's overall health and provides an 
inexpensive routine screening at the patient level. This is a case where our 
new machine learning models step in to take action to assist in growing a 
healthier community. 

In the second case study, Octopus goes beyond proactive lifestyle 
adjustments with a similar collection of methods to govern building new 
clinically valid models. These models are approved by a collaboration of 
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national and international scientists. These new models can potentially then 
be used as new screening tools to predict those who may develop severe side 
effects to certain types of treatment, namely advanced cancer radiotherapy 
in breast cancer patients. The new models aim to help flag potential 
impairment to patients' Quality of Life (QoL).  

In the radiation therapy case, some cancer patients will likely 
experience various side effects on the severity scale during radiotherapy. A 
more specific scenario is observed in some treated breast cancer patients as 
they develop severe skin toxicity leaving them with a lifelong lasting impact 
on their lives. The current protocols in advanced radiotherapy include 
positioning, imaging, radiation doses and fractions so that the treatment is 
effective and safe. Still, they do not account for specific acute side effects 
such as severe pain, ulcers, scars, liquid build-up under the skin, or other 
potentially life-threatening conditions.  

Sometimes, the protocols leave radiotherapy physicists considering 
two options: either continuing the treatment while their patient endures 
such acute side effects or interrupting the therapy. However, if interrupted, 
the cancer cells, after a halt, may become agitated, increasing the risk of 
cancer recurrence or even with a faster spread, reducing survival rates [325]. 
Our models give radiotherapy clinicians the capability of early patient 
screening. They are a new line of help to initiate discussions with the 
susceptible patients to such an adverse event about other options available 
to them. 

  

 

 

 

 



 
 
* Disclaimer: The author and collaborators assume no responsibility or liability for any errors or omissions in the data provided by the 

UK-Biobank. The data is provided from their repositories on an "as is" basis with no guarantees of completeness, accuracy, usefulness 
or timeliness. The authors assume no liability for the reliability of the results obtained from the use of this data. All data in these studies 
were engineered and modelled from the provided "as is" data at best with collaborators’ review. This practical work was accomplished 
by the author and collaborators in their personal academic and professional capacities. The opinions expressed in this study are their 
own and do not reflect the view of the UK Biobank or the University of Westminster in the United Kingdom. 

 
** Disclaimer: This chapter reuses the published content of the following articles: 
r Aldraimli, M., Soria, D., Parkinson, J. et al. Machine learning prediction of susceptibility to visceral fat associated diseases. Health 

Technol. 10, 925–944 (2020). https://doi.org/10.1007/s12553-020-00446-1 
r Aldraimli, M., Soria, D., Parkinson, J., Thomas, E.L., Bell, J.D., Dwek, M.V. and Chaussalet, T.J., 2020. Machine learning prediction 

of susceptibility to visceral fat associated diseases. Health and Technology, 10(4), pp.925-944. 
 

– 190 – 
 
 

Chapter 
Octopus Framework Application for 
Visceral Fat Associated Diseases Prediction  
 
 
 

 

 

 

 

his chapter applies our OCTOPUS data-driven framework 
concluded from our research in the previous chapters to develop 
new predictive models as new tools to help detect patients' 
susceptibility to adverse events in healthcare, Visceral Adipose 
Tissue (VAT) associated diseases. We use the methods in the 

novel framework with trivial differences due to the nature of the data in this 
case study, the domain success criteria, and the execution timeline. These 
new tools are built using new real-world datasets. Our models are new in 
the field. At the time of execution, the modelling of the endpoints was not 

attempted by other case studies in the field using our data or predictors. 

T 

This chapter covers 

n Case Study 1: Predicting patients’ susceptibility 

to visceral fat-Associated Diseases. 
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Our focus in this chapter is to use the methods in our OCTOPUS framework, 
formulated by our heuristic-systematic research and critique, to 
demonstrate its ability to create new inexpensive screening methods with 
Machine Learning approved by the life sciences and healthcare domain 
experts. 

This case study models individuals' susceptibility to visceral-fat-
associated diseases, with two distinct cases, on females and males. Both 
studies are a tri-class nominal classification problem. Thus, the models are 
developed to predict three susceptibility class labels: Healthy subjects, those 
who can be described as resistant to developing such diseases; individuals 
with moderate risk (susceptible subjects) with a medium likelihood to 
develop Visceral Adipose Tissue (VAT) associated diseases; and finally, the 
high-risk group who can be considered hyper-susceptible (highly-likely) to 
developing chronic health conditions related to high amounts of VAT.  

Females and Males cohorts are modelled separately due to the 
differences in the labels' endpoint definitions. This labelling difference ought 
to show the physiological composition differences for each gender. Visceral 
fat or visceral adipose tissue (VAT) is 'hidden' fat stored deep inside the 
belly, wrapped around the organs, including the liver and intestines. Figure 
5.1 illustrates the different types of adipose tissue (AT) in the human body 

and the increased susceptibility to adverse diseases associated with 
increased amounts of visceral fat in the human body. 

 
Fig. 5.1 Illustration of visceral fat levels and associated susceptibility to diseases 
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The problem of VAT in the body cannot always be visible to the naked eye. 
Individuals can be slim on the outside and thick on the inside, with 
dangerous visceral fat deposits (see Figure 5.2). This phenomenon is known 
as Thin on the Inside and Fat on the Outside (TOFI). Doctors can examine 
the body's composition thanks to Magnetic Resonance Imaging (MRI). MRI 
images reveal how much 'internal fat' even slim people carry and raise 
questions about how healthy people are. Doctors recently are increasingly 
concerned that people can look slim on the outside but still have a problem 
with fat [333]. Performing an MRI does not come cheap. Therefore, this 
method is not pragmatic to screen a whole population. Thus, we apply our 
new data-driven framework, OCTOPUS, to create new data-driven tools to 
offer an affordable pragmatic and potential substitute to MRI scanning for 
this specific problem.   
 

 
Fig. 5.2 Coronal plane illustration of Thin on the Outside Fat of the Inside (TOFI) 

 
5.1 Introduction 

The deployment of machine learning modelling in this case study aims at 
tackling a long-term real-world disease burden; Obesity affects an 
increasing number of adults in the UK [334], with obesity-associated 
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changes in adipose tissue (AT) predisposing to metabolic dysregulation [335] 
and other disorders. Distribution of AT, in particular the accumulation of 
visceral adipose tissue (VAT) and liver fat, is a critical factor in determining 
susceptibility to diseases [336] [337]. Excess VAT and liver fat play a 
significant role in the pathogenesis of type 2 diabetes, dyslipidaemia, 
hypertension and cardiovascular disease [338]. Current strategies for 
treating obesity and its associated co-morbidities have focused on lifestyle 
improvements [339] [340]. Such a focus aims to reduce VAT and liver fat via 
calorie restriction with or without exercise. The impact of this is associated 
with improved insulin sensitivity, decreased blood pressure and lower 
circulating lipid levels [335] [341] [342]. However, large-scale analysis of the 
compartmental distribution of AT is often limited due to the expense and 
time required to employ the requisite imaging techniques.  

The UK Biobank (UKBB) provides comprehensive means of assessing 
the relationship between body composition and lifestyle in a large 
population-based cohort of adults. Having such a large dataset could 
increase the presence of a pattern in the data. Without it, machine learning 
algorithms can’t sufficiently learn to produce effective results. The primary 
goal of these two case studies is to identify the best classification models as 
new tools that can be linked to applications for inexpensive early screening 
of three VAT levels. This way, a subject’s susceptibility to developing 
potential chronic adverse health conditions such as non-communicable 
diseases is detected. The prediction is performed on females and males. A 
positive detection prompts the need for lifestyle modifications. 

This case study is a cross-sectional assessment of individuals from the 
UKBB multi-modal imaging cohort [343], aged 40-70 years and scanned 
chronologically between August 2014 and September 2016. 

Here we apply our formulated data-driven framework. Then we 
assess the classification performance of six machine learning algorithms 
(Naïve Bayes, Logistic Regression, Artificial Neural Network, Decision Tree, 
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Logistic Model Tree and Random Forest) in predicting discretised visceral 
fat ranges associated with the susceptibility of developing long-term 
diseases. The dataset is class imbalanced, which may cause classifier 
learning issues. 

The new models are built using the Imbalanced Dataset. In addition, 
we apply two sampling techniques, Random Under-Sampling (RUS) and 
Synthetic Minority Over Sampling Technique (SMOTE). Both methods are 
used to resample the highly imbalanced training data (in the female cohort 
case) and the less severe class imbalance (in the male cohort case) to achieve 
a state of class balance.  

Each case suggests the most suitable models meeting the domain 
experts’ success criteria. The data imbalance characteristic causing the 
transition in classifier training performance was captured visually by 
Adaptive Projection Analysis (APA) in the Targeted Projection Pursuit 
(TPP) and numerically via Information Gain (IG) attribute evaluation. 

5.2 Predicting females’ susceptibility to visceral fat-
associated diseases workflow 

Three-class nominal classification models were applied for VAT prediction 
to predict susceptibility (risk) to adverse diseases based on the discretised 
amount of VAT. A group of 2292 female subjects was used to train eight ML 
algorithms using 10-fold cross-validation in three different scenarios. In 
relation to their cohort, the trained models were tested on a new group of 
external data of 2035 female cases. With training – test ratio ~1 (57:50), 
Figure 5.3 shows the study workflow: multiple imbalanced datasets with the 
same predictor variables were modified with sampling techniques and used 
for modelling using the six ML algorithms. Selected performance metrics of 
the models were compared after training in the evaluation phase. IG was 
monitored for all predictor variables at every stage. 



 - 195 - 

 

Fig. 5.3 The females' VAT case study methods and workflow, showing the used 
techniques Where TD = Targeted dataset, RUS = Random Under Sampling, SMOTE = 

Synthetic Minority Oversampling Technique, ML = Machine Learning, NB = Naïve Bayes, 
LR = Logistic Regression, ANN = Artificial Neural Network, C4.5, LMT = Logistic Model 
Tree, RF = Random Forest, TPR = true-positive rate, FPR = false-positive rate, AUC = 

Area under receiver operator characteristic curve 

5.2.1 Data collection protocol 

This cross-sectional study includes data from 4327 females in the UKBB 
multimodal imaging cohort. The UKBB had approval from the North West 
Multi-Centre Research Ethics Committee (MREC), and written consent was 
obtained from all participants before their involvement. The data was 
acquired through the UK Biobank Access Application number 23889. The 
age range for inclusion was 40-70 years, with exclusion criteria being: metal 
or electric implants, medical conditions that prohibited MRI scanning or 
planned surgery within six weeks before the scanning date. The subjects 
were scanned chronologically between August 2014 and September 2016. 
The visceral adipose tissue (VAT) volumes were acquired as part of the 
UKBB dataset. 

 Anthropometry measurements were collected at UKBB assessment 
centres; height was measured using the Seca 202 height measure (Seca, 
Hamburg, Germany). The average of two blood pressure measurements, 
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taken moments apart, was obtained using an automated device (Omron, 
UK). Images were acquired at the UK biobank imaging Centre at Cheadle 
(UK) using a Siemens 1.5T Magnetom Aera. The participants' height and 
weight were recorded before imaging screening which later was utilised to 
calculate the Body Mass Index (BMI).  

 For physical activity assessment data, a touch screen questionnaire 
was used to collect information on sociodemographic characteristics and 
lifestyle exposures (http://www.ukbiobank.ac.uk /resources/). Specific 
questions on the frequency and duration of walking (UK biobank field ID: 
864, 874), moderate physical activity (884, 894) and vigorous physical 
activity (904, 914) events allowed the calculations of metabolic equivalent-
minutes per week (MET-min/week) for each individual. Participants were 
excluded from the calculations and analysis if they selected ‘prefer not to 
answer’ or ‘do not know’ to any of the possible six questions on physical 
activity used to calculate the MET score. 

5.2.2 Experimental design 

VAT-related disease susceptibility is based on the following MRI response 
labels: Healthy (Resistant), Moderate (Susceptible) and Risk (Hyper-
Susceptible) defined according to VAT volume. In females, a VAT volume of 
≤2 litres was deemed ‘Healthy’ (H); VAT volume >2 litres but ≤5 litres was 
classed as ‘Moderate’ (M); VAT volume >5 litres was classified as ‘Risk’ (R) 
[344]. The training datasets contained ten data variables reported in Table 
5.1, with the VAT in litres being the class determination response variable. 
All nine predictor variables in Table 5.1 were selected as input features by 
domain experts based on their low cost to obtain and associations with VAT 
prediction in previous studies.  

 The choice of a limited number of anthropometry and physical 
activity variables is also driven by the desire to produce a model with 
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inexpensive reading collected from the subjects. The new model can be 
integrated into a new application for screening. 

Table 5.1. Descriptive statistics of variables in the Targeted Dataset (TD) 

Female Cohort (n=2292) 

Numeric selected dataset variables Median Mean (Min, Max) 

Response variable    

Visceral adipose tissue volume (VAT in litres) 2.2 2.5 (0.1, 9.7) 

Predictor variables    

Waist Circumference (WC in cm) 80.0 81.6 (55.0, 126.0) 

Pre-imaging Weight (W in Kg) 66.0 68.3 (42.0, 128.0) 

BMI (in kg/m2) 24.8 25.7 (15.5, 48.0) 

Hip circumference (HC in cm) 100.0 100.9 (77.0, 147.0) 

Standing height (H in cm) 163.0 163.0 (141.0, 194.0) 

Systolic blood pressure (SBP in mmHG) 133.0 134.5 (87.0, 225.0) 

Diastolic blood pressure (DBP in mmHG) 77.0 77.8 (45.0, 120.0) 

Physical Activity Index (PAI) 0.5    0.6 (-12.0, 15.5) 

Age at recruitment (AGE in years) 55.0   54.6 (40.0, 70.0) 

 
5.2.3 Physical activity index (PIA) feature construction 

The UK Biobank Physical Activity Index (UKBB PAI or PAI) was created by 
domain experts [345] using data collected during physical activity 
assessment; comprising a total of 27 outcomes, 23 outcomes reflecting 
activity and four reflecting inactivity (see Table 5.2). An individual’s 
response to questions was scored with values between -1 and +1 and 
combined cumulatively to give a final score with an increasingly negative 
score implying a progressively unhealthier phenotype. For binary variables, 
0 indicates the absence of the parameter, 1 the presence. 
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Table 5.2. UK Biobank outcomes used in creating the physical activity index 

UKB ID Outcome Units 

816 Job involves heavy lifting Categorical 

864 Days/week walked 10+ minutes Days/Week 

874 Duration of Walks Minute/Day 

884 Days/week moderate physical activity 10+ minutes Days/Week 

894 Duration of moderate activity min Min/Day 

904 Days/week vigorous physical activity 10+ minutes Days/Week 

914 Duration of vigorous activity Minute/Day 

924 Usual walking pace Categorical 

943 Frequency of stair climbing in last 4 weeks Categorical 

971 Frequency of walking for pleasure in last 4 weeks Categorical 

981 Duration of walking for pleasure Categorical 

991 Frequency of strenuous sports in last 4 weeks Categorical 

1001 Duration of strenuous sports Categorical 

1011 Frequency of light DIY in last 4 weeks Categorical 

1021 Duration of light DIY Categorical 

2624 Frequency of heavy DIY in last 4 weeks Categorical 

2634 Duration of heavy DIY Categorical 

3637 Frequency of other exercises in last 4 weeks Categorical 

3647 Duration of other exercises Categorical 

6164 Types of physical activity in past 4 weeks Categorical 

104900 Time spent doing vigorous physical activity Categorical 

104910 Time spent doing moderate physical activity Categorical 

104920 Time spent doing light physical activity Hours 

806 Job involves mainly standing or walking Categorical 

1070 Time spent watching television Hour/Day 

1080 Time spent using computer Hour/Day 

1090 Time spent driving Hour/Day 

 

5.2.4 Inspecting irregular training examples 

Inter Quartile Range (IQR) test is used to discover abnormal values with an 
Extreme Value Factor (EVF) of 6 times the IQR and an Outlier Factor (OF) 
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of 3 times the IQR. A total of 10 abnormal values are verified and retained. 
All abnormal values were outliers; no extreme values were found within the 
definition. 

 These abnormal observations may be part of a phenomenon. Figure 
5.4 shows the outliers and extreme values per variable in the imbalanced 
targeted dataset TD. Nine outliers are found in the moderate and risk 
groups, while one outlier in the height variable belongs to a healthy subject. 

Fig. 5.4 Abnormal values detected in the imbalanced Targeted Dataset (TD) 

5.2.5 Training instances resampling 

The targeted dataset (TD) was the first dataset modelled. The TD contained 
2292 female records from the UKBB cohort. Table 5.1 shows the summary 
statistics of all TD’s variables. The TD was highly imbalanced in the female 
cohort in relation to records numbers per class: In the females’ TD, class H 
had 1002 subjects, class M had 1128 subjects, and class R contained only 
162 subjects. Random under-sampled (RUS) dataset is a reduced subset of 
TD. A subset of each majority class was randomly removed to balance the 
data. As a result of applying RUS to the females’ TD, each of the H, M and 
R classes ended up with 162 subjects. Synthetic Minority Over-Sampled 
(SMOTE) dataset was obtained as a result of applying SMOTE to the 
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numeric data variables of TD. By doing so, the three VAT classes became 
more closely balanced. In the female cohort, class H had 1002 subjects, class 
M had 1128 subjects, and class R contained 1296 subjects. The class 
imbalance of TD and the effect of RUS and SMOTE on TD can be observed 
in the TPP adaptive projection analysis (APA) visualisation in Figure 5.5. 

 

Fig. 5.5 Adaptive projection visualisation of Targeted Dataset (TD), Random Under 
Sampled (RUS) dataset and SMOTE dataset variables 
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5.2.6 Test data characteristics 
The ML models were tested on a new group of 2035 females from the 
UKBB female cohort from the UKBB male cohort. Table 5.3 shows 
their summary statistics. Like the TD, the female Test Dataset was 
also highly imbalanced: class H had 823 subjects, class M had 1039, 
and class R contained only 173 subjects. 

Table 5.3 Descriptive statistics of variables in the females’ test set 

Female Cohort (n=2035) 

Numeric test dataset variables Median Mean (Min, Max) 

Response variable    

Visceral adipose tissue volume (VAT in litres) 2.4 2.7 (0.2, 10.0) 

Predictors variables    

Waist Circumference (WC in cm) 80.0 81.6 (55.0, 142.0) 

Pre-imaging Weight (W in Kg) 67.0 68.7 (39.0, 136.0) 

BMI (in kg/m2) 25.2 25.9 (14.4, 54.5) 

Hip circumference (HC in cm) 100.0 101.3 (73.0, 156.0) 

Standing height (H in cm) 163.0 162.7 (145.0, 195.0) 

Systolic blood pressure (SBP in mmHG) 129.0 130.4 (87.0, 196.0) 

Diastolic blood pressure (DBP in mmHG) 76.0 76.6 (45.0, 115.0) 

Physical Activity Index (PAI) 0.0 0.1 (-12.5, 18.0) 

Age at recruitment (AGE in years) 55.0 54.6 (40.0, 70.0) 

 

5.2.7 Inspecting irregular test records 
In a similar approach to outliers’ detection in TD, the Inter Quartile Range 
(IQR) test was used per test data attribute to look for defined values with 
an Extreme Value Factor (EVF) of 6 times the IQR and Outlier Factor (OF) 
of 3 times the IQR.  

 A total of 14 abnormal data values are identified, verified and 
retained, and no extreme values are found. However, these abnormal 
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observations may be part of a phenomenon. Figure 5.6 shows the outliers 
and extreme values detection in the test dataset. Thirteen outlier data 
points are found in the risk examples, while one was in the height variable 
for a healthy subject. 

Fig. 5.6 Abnormal data values detection in the test set 

5.2.8 Modelling females’ susceptibility to VAT diseases. 
The classification modelling females’ susceptibility to adverse health 
conditions associated with visceral fat uses six algorithms. The modelling 
algorithms are described in Chapter 4. And these are Naïve Bays (NB), 
Logistic Regression (LR) with Ridge Regularization, Artificial Neural 
Networks (ANN) with Multi-Layer Perceptron (MLP) architecture and built-
in feature scaling (Range Normalisation), C4.5 Decision Tree algorithm, and 
ensemble learners Logistic Model Tree (LMT) and Random Forest (RF).  

5.2.9 Models training results 

From the confusion matrices in Table 5.4, the model training accuracies for 
the female cohort, presented as Correctly Classified Instances ratio (CCI) or 
True Positive Rate (TPR), of all methods, were computed, they showed that 
resampling methods resulted in an improvement in CCI compared to the 
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original TD. When the performance of the LR, ANN, C4.5 and RF models for 
the female cohort was evaluated, it was apparent that the RUS dataset was 
poorer than when the TD data set was used, see Figure 5.7.  

The AUC for each of the trained models were in the range of 0.783 (for RF 
on SMOTE) to 0.96 (for C4.5 on TD). These values indicate that the trained 
models did not sacrifice much precision to achieve a good recall value on the 
observed data points. The RF model achieved the highest TPR (0.850) when 
trained on the SMOTE dataset, while the C4.5 model achieved the lowest 
TPR (0.714) when trained on the RUS dataset. 

Table 5.4. Female cohorts VAT prediction models training and test confusion matrices 
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Fig. 5.7 Comparison of training performance metrics across trained models in the female 
cohort 

The AUC for each of the trained models were in the range of 0.783 (for 
RF on SMOTE) to 0.96 (for C4.5 on TD). These values indicate that the 
trained models did not sacrifice much precision to achieve a good recall value 
on the observed data points. The RF model achieved the highest TPR (0.850) 
when trained on the SMOTE dataset, while the C4.5 model achieved the 
lowest TPR (0.714) when trained on the RUS dataset. 

By observing the confusion matrices for all models after training on 
all the TD and RUS datasets, it is clear that the number of incorrectly 
classified instances for class R highly decreased for the models trained on 
the RUS dataset compared to those trained on the TD. However, when 
evaluating the minority class accuracy performance in Figure 5.8, it is 
notable that all trained models benefitted from the sampling methods, 
exhibiting consistent TPR improvement for class R in each model. 

5.2.10 Models test results 

The models derived above were tested on a further dataset (female, n = 
2035). When the CCI values for all models were compared using the female 
cohort, the CCI decreased to a maximum degradation of 6.2% when testing 
the C4.5 model trained on the RUS dataset against the same algorithm 
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trained on the original TD. The LMT model built with SMOTE dataset 
achieved an overall test accuracy improvement of 6.83% when compared to 
TD.  

In the female cohort (see Figure 5.9), RF models achieved the best 
TPR of 0.770 when trained on the TD dataset. The LMT model achieved the 
least TPR of 0.681 when trained on the TD dataset. The ROC area across all 
tested models ranged between 0.786 (for C4.5 on SMOTE dataset) and 0.889 
(for LR on TD).  

These values indicate hardly any loss of precision whilst achieving a 
good recall value on the observed data points. For evaluating risk class, R, 
the TPR performance (Figure 5.8) classified the risk group with the highest 
level of 0.798 was achieved by RF on RUS. RF also achieved the greatest 
TPR improvement in test with a difference of 0.463 between RUS and TD. 
NB ranked last, with just 0.121 in minority class TPR improvement between 
NB on SMOTE and TD. These results can be visualised in the confusion 
matrixes in Table 5.4. The RF model trained on SMOTE correctly classified 
the highest number of instances (138 of the original 173) in class R. The 
model which performed the worst in TPR performance for the class R was 
C4.5 trained on TD, which only correctly classified 43 instances. 

The effect of using a variety of machine learning algorithms with 
different learning schemes is examined. At a model level, Figure 5.9 shows 
a small difference between the minimum and the maximum TPR test 
performances per dataset. In the females, tested TD, RUS and SMOTE 
models showed only differences of 0.1, 0.06 and 0.05, respectively, between 
the highest and the lowest-performing algorithms. 

At a class level, taking the risk group into account for this comparison, 
Figure 5.8 demonstrates relatively large differences between the minimum 
and the maximum TPR test performances for the R class in each cohort. In 
the females, tested TD, RUS and SMOTE models showed high R class 
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accuracy differences of 0.34, 0.13 and 0.25, respectively, between the highest 
and the lowest-performing algorithms. 

 

Fig. 5.8 Risk class TPR performance for trained and tested models – Female Cohort 

 
 

Fig. 5.9 Comparison of performance metrics across all tested models 
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5.2.11 Attributes information gain analysis 

In the female cohort training datasets, when considering the information 
gain (IG) for each variable across all datasets (Figure 5.10), the IG increased 
in each attribute for RUS and SMOTE datasets compared to the TD. By 
comparing the IG ranking of variables in each dataset, it is apparent that 
WC achieved the highest IG value in all three datasets. The dominance in 
WC ranking was also accompanied by an increase in its values (from TD to 
RUS and SMOTE). Such an increase correlates directly with the increase in 
class R TPR performance in all trained models except for NB where RUS 
model overtook SMOTE by a small TPR positive margin of 0.092. From 
Figure 5.10, SMOTE boosted the information within each variable (Table 
5.5). This boost, in turn, increased the ability to differentiate class R from 
other classes in the TD, which in turn increases the class R TPR (see Figure 
5.8). The APA multi-dimensional visualisation (Figure 5.11) shows the 
improved class R discrimination per dataset. 

 

Fig. 5.10 Information Gain evaluation comparison of all variables per female cohort 
datasets 
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Table 5.5. The Information Gain evaluation of all features per dataset 

 

Fig. 5.11 Adaptive projection visualisation of all classes and the effect of sampling methods 

5.2.12 Models evaluation and selection 

The misclassification of healthy subjects by a predictive model could result 
in costly and unnecessary follow-up examinations, whilst false-negative 
misclassifications might result in an individual not receiving an important 
intervention. In this application, apart from potential cost, there would be 
few adverse effects associated with misclassified healthy/moderate risk 
subjects, as such subjects would be encouraged to undertake lifestyle-based 
interventions to improve their health. Therefore, in this scenario, the best 
models to adopt would be those which minimise the number of subjects 
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misclassified at ‘risk’, so they may initiate interventions at an appropriate 
time. 

Confusion matrices are the suitable choice of metric and play an 
essential role in helping researchers define the best-suited model for use in 
future trials in this particular case. When analysing the confusion matrices 
(Table 5.4) from the female cohort, three models were identified as satisfying 
the domain experts’ criteria. These models are reported in Table 5.6. 
However, they may not necessarily occupy the highest ranks when their 
other performance metrics are compared to the others. 

Table 5.6. Domain-compliant prediction models for females. n (LMT RUS Trained) = 486; 
n (LR SMOTE Trained) = 3426; n (RF RUS Trained) = 486. n (all Tested) = 2035.
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5.2.13 Modelling minority pattern reconstructed data 

From the previous analysis, fortunately, we observed the class imbalance 
learning problem when modelling the female cohort. Therefore, here we 
examine the effect of using our new cyclic idea of data resampling to 
reconstruct the imbalanced training dataset (TD) in favour of the minority 
Hyper-susceptible (Risk group), the class of interest. Also, we examine the 
effect of modelling the imbalanced MPR reconstructed dataset in 
combination with RUS and SMOTE.  

We reconstruct the training dataset with MPR to favour the minority 
class of interest. Each cycle has two parts, obtaining a blind (automatic) TPP 
projection on the sets and then applying k-means supervised clustering with 
(k=3) to cluster the automatic TPP.  

The output of k-means will be class A, B and C. In each round, the 
instances within the clusters (A, B and C) are given their original labelled 
(R, M and H). Class R represents the minority class of highest interest 
(Hyper-susceptible subjects), followed by class M (Susceptible subjects), then 
class H (Resistant subjects). Each formed cluster is examined for the highest 
count of Class R instances, and once such a cluster is identified, then class 
R instances are extracted. The extraction subprocess is cluster-label 
exclusive; this exclusion means that once a cluster is identified as the 
domain of the label extraction subprocess, the same cluster is excluded from 
further examination to extract different labels, i.e., the second label of 
interest class M and so on until a subsample of data is retained.  

Unlike the established practice that each feature in a dataset has an 
Information Gain evaluation of a value greater or equal to zero bits 
(Kullback–Leibler divergence bits), we take a different thought and assume 
that an isolated subsample with perfect separable classes can have an 
information gain profile (information profile) equivalent to the sum of 
Information Gain for all features n in the isolated subsample S; hence the 
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conditional entropy of all predictors is given by: 

𝑯𝒏(𝒀|𝑯) = 	−)))𝒑𝒏(𝒙, 𝒚) 𝐥𝐨𝐠1𝒑𝒏(𝒚|𝒙)2
𝒚𝒙𝒏

 

Therefore, the Information Gain Evaluation for a pure subsample S 
with n features is given by: 

𝑰𝑺(𝒀, 𝑿) =)𝑯𝒏(𝒀) − 𝑯𝒏(𝒀|𝑿)
𝒏

 

Each extracted (isolated) and retained subsample for reconstruction 
has a perfect purity per the subsample information profile. Classifiers are 
known to be impacted by higher Information Gain. Therefore, these isolated 
subsamples produce very high variance models (almost perfect classifiers) 
in training with almost perfect class separation across all classifiers. 

Let's look at the isolated subsample with its own context. The high 
variance classification from training on the isolated subsample may indicate 
that any considerations for potential interactions among the predictor are 
ignorable, hence, eliminating the potential of absent confound predictors 
that might add any further improvement to the classifier training 
performance on such S. 

However, the above assumption is only theoretical and lacks 
mathematical proof. Producing mathematical proof is not in the scope of this 
thesis. Nevertheless, this is a future research opportunity to explore the 
validity of this assumption mathematically and on different datasets. Figure 
5.12 shows the sequence and the visual impact of applying Minority Pattern 
Reconstruction on the imbalanced training female cohort TD n(2292) to 
produce a final resampled set SMPR n(1190). The resampling clustering cut-
off threshold was set in relation to the instant drop of total information gain 
in the residuals subsample below the sum of information gain for the 
original imbalanced training set 𝐼%(𝑌, 𝑋) < 𝐼&'(𝑌, 𝑋). 
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Fig. 5.12 Resampling TD with Minority Pattern Reconstruction (MPR) 

The effect of the imbalanced MPR subsample, SMPR n(1190), on classification 
modelling can be compared to the imbalanced classifiers’ learning on TD 
n(2292) when all produced models are tested on the same test set n(Test) = 

2035. Table 5.7 shows the test confusion matrices for modelling on TD and 
SMPR. 

Table 5.7. TD vs MPR models confusion matrices. n(Test) = 2035 

 

From Table 5.7, the ratio of R events in TD is 7.1% and 7.7% in the MPR 
subset. However, when comparing the tested imbalanced models for each 
classifier, we observe a large increase in the number of correctly classified 
instances in the Hyper-susceptible (R) in all the imbalanced MPR models 
reaching a maximum improvement of 66% in MLP, see Figure 5.13.  
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These results show that the MPR models outperform the TD models on the 
R class true positives (TP).  

Fig. 5.13 Test class accuracy comparison MPR vs Imbalanced-TD models 

From Table 5.7, in MPR models, a slight loss is observed in the correct 
classifications in the susceptible M classes for all models. The lost portion in 
class M class TP is heavily classified as false R, except for the NB model, 
which witnessed a slight improvement for class M.  

Similarly, in MPR models, the resistant subjects (H) had a slight drop 
in the TP cases across NB, LR and RF models but a noticeable improvement 
in MLP, C4.5 And LMT. The test results on both sets, TD and MPR, show 
that our resampling tactic to reconstruct the training data with MPR 
enhances the hyper-susceptible R group predictions and adds value to the 
Moderate (susceptible) M group when compared to TD models.  

We believe that Hyper-susceptible subjects require urgent intervention. 
Therefore, an increase in TP performance in R is needed. Also, susceptible 



 - 214 - 

group M subjects require lifestyle modifications; the filtered reduction in 
their TP into more False R predictions and fewer H predictions only 
contributes to identifying more Moderate subjects that require 
interventions.  

In terms of the TP transition in MPR models for the H class, we 
observe improved TP predictions in the MLP, C4.5 and LMT cases. And a 
slight deterioration of TP classifications in NB, LR and RF. This reduction 
in TP only indicates that new MPR models are of similar cost to the 
imbalanced TD model. 

However, when explicitly observing the MPR performance over the 
given success criteria by the domain experts, The MPR seem to meet the 
requirements closer than TD. We follow an enhanced identification of R 
subjects in the MPR models. And we observe a similar model behaviour 
between MPR and TD in minimising the misclassification of R subjects into 
the H group and vice versa. These observations lead us to believe that MPR 
subsample models, despite their imbalance, overtake TD models. 

Furthermore, MPR can be combined with Random Under-Sampling 
(RUS), forming a Hybrid MPR-RUS resampled dataset SMPR-RUS (n=462). See 
Figure 5.14.  

Fig. 5.14 Resampling TD with Hybrid MPR-RUS 
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Table 5.8 compares the test confusion matrixes for RUS and hybrid MPR-
RUS models on the same test set (n=2035). The matrixes show a noticeable 
improvement in the MPR-RUS classifiers R class TP in all models compared 
to RUS. 

Table 5.8. RUS vs Hybrid MPR-RUS models confusion matrices. n(Test) = 2035 

When comparing the models in Figure 5.15, we observe a considerable uplift 
in the TPR in the Hyper-susceptible (R) in all MPR-RUS models. Additional 
improvement is shown in the susceptible (M) classes for all models but LR 
and MLP. 

  

Fig. 5.15 Test class accuracy comparison MPR-RUS vs RUS models 
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Figure 5.15 shows that our hybrid MPR-RUS has reconstructed the training 
data in such a way as to prioritise classifier learning the data regions 
representing those who require lifestyle intervention. However, the 
resistant subjects (H) had a drop in their TP cases across all models. 
However, despite the MPR-RUS models better meeting the success criteria 
with the C4.5 decision tree model with no false misclassifications in class H, 
it seems that it is a more expensive model. However, in some medical 
screening cases, healthcare professionals tend to favour models of higher 
sensitivity. 

MPR is not just limited to combining with RUS; it can also be combined with 
SMOTE. See Figure 5.16. Forming MPR-SMOTE hybrid resampled set 
n(2760).  

Fig. 5.16 Resampling TD with Hybrid MPR-SMOTE 

Table 5.9 shows the test confusion matrixes of the MPR-SMOTE vs SMOTE 
models. When comparing MPR-SMOTE models to SMOTE only, we still 
notice improvements in the TP predictions for class R, and a slight loss of 
TP cases in the M class predicted as the false R. We also see a deterioration 
of the TP examples in the H group in all models except LMT and RF. 
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Table 5.9. SMOTE vs Hybrid MPR-SMOTE models confusion matrices. n(Test) = 2035 

From Figure 5.17, when comparing the models, we observe an uplift in the 
TRP in the Hyper-susceptible (R) in all MPR-SMOTE models. 

 

Fig. 5.17 Test class accuracy comparison MPR-SMOTE vs SMOTE models 

Also, from Figure 5.17, a slight TPR drop is observed in the susceptible (M) 
classes for all models but not severe. Similarly, the resistant group (H) had 
a reduced TPR performance across all models except LMT and RF witnessed 
a slight TPR increase. These MPR-SMOTE models still outperform the 
direct SMOTE model in predicting R subjects. However, when the MPR, 
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MPR-RUS and MPR-SMOTE models compete to meet the success criteria, 
The MPR-RUS C4.5 model retains its superiority in predicting susceptible 
patients fully, followed by the MPR-RUS MLP model. 

5.2.14 Minority pattern reconstructed data information analysis.  

The previous section demonstrated how the minority pattern reconstruction 
(MPR) improved susceptibility prediction in the imbalanced and balanced 
(hybrid) sampling settings. Also, we previously mentioned that the total 
Information Gain governs MPR in extracting the isolated subsamples. 
Figure 5.18 shows the information gain profile per subsample in the MPR 
resampling cycles.  

We see from Figure 5.18 that the total information gain for TD is 1.89. 
The total information gain (IG) is expected to increase for the extracted 
subsample S1 in MPR first clustering cycle, which provides a perfect 
classification training pattern. S1 IG is 3.46 bits. The residual R1 subsample 
still shows a greater total IG than the original training set TD; thus, it 
proceeds to a second clustering cycle where S2 is isolated. S2 IG is still high 
at 2.83 bits but less than S1. R2 IG is now 0.46 bits less than TD IG, hence 
discarded, and the MPR clustering cycles are terminated. S1 and S2 
subsamples are combined to form the imbalanced MPR subset with an IG of 
2.18 bits greater than TD IG by 0.29 bits. 

Figure 5.19 gives an idea of the impact of sampling on the features. 
In the exact figure, the IG per feature is normalised and stacked within its 
subset profile. Their comparison shows any feature IG proportion leakage or 
shrinkage within a sampled subset compared to unsampled data. 
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Fig. 5.18 Features and total subsample IG profiles in MPR 

 

Fig. 5.19 Features’ ratio-normalised IG leakage and shrinkage per set 
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MPR preserved the features information gain proportions close to those in 
TD. Both TD and the Test sets look homogenous; the comparable sample 
size (𝑇𝐷 ∶ 	𝑇𝑒𝑠𝑡	 = 	57 ∶ 	50), predictors distribution of both sets and their 
extraction from the same population could be the driver of this homogeneity, 
resulting in a close proportional purity on both sets. There seems to be 
minimal leakage or shrinkage of features information gain when comparing 
ITD, MPR and RUS sets. Unlike the latter three, SMOTE subset shows 
severe IG leakage and shrinkage in every feature, while MPR-SMOTE 
shows less leakage and shrinkage behaviour of features IG compared to 
SMOTE. However, MPR-RUS demonstrated the least leakage and 
shrinkage severity. The observed behaviour of features IG preservation 
could be the driver of the better-fitted classifiers with improved performance 
when applying MPR. 
 

5.3 Predicting males’ susceptibility to visceral fat-associated 
diseases workflow 

Three-class multi-nominal machine learning classification models were 
applied for VAT prediction to predict susceptibility (risk) to disease based on 
the discretised amount of VAT. A group of 2191 male subjects were used to 
train eight ML algorithms using 10-fold cross-validation in three different 
scenarios. The trained models were tested on a new group of external data 
of 1935 male cases in relation to their cohort. With training to test ratio ~1 
(57:50). Figure 5.20 shows the methodology: multiple imbalanced datasets 
with the same predictor variables were modified with sampling techniques 
and used for modelling using the eight ML algorithms. Selected performance 
metrics of the models were compared after training in the evaluation phase. 
IG was monitored for all predictor variables at every stage. 
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Fig. 5.20 The males' VAT case study methods and workflow. Where TD = Targeted 
dataset, RUS = Random Under Sampling, SMOTE = Synthetic Minority Oversampling 

Technique, ML = Machine Learning, NB = Naïve Bayes, LR = Logistic Regression, ANN = 
Artificial Neural Network, C4.5, LMT = Logistic Model Tree, RF = Random Forest, TPR = 

true-positive rate, FPR = false-positive rate, AUC = Area under receiver operator 
characteristic curve 

5.3.1 Data collection protocol 

This cross-sectional study includes data from 4126 males included in the 
UKBB multimodal imaging cohort. The UKBB had approval from the North 
West Multi-Centre Research Ethics Committee (MREC), and written 
consent was obtained from all participants before their involvement. The 
data was acquired through the UK Biobank Access Application number 
23889. The age range for inclusion was 40-70 years, with exclusion criteria 
being: metal or electric implants, medical conditions that prohibited MRI 
scanning or planned surgery within six weeks before the scanning date. The 
subjects were scanned chronologically between August 2014 and September 
2016. The visceral adipose tissue (VAT) volumes were acquired as part of 
the UKBB dataset.  

Anthropometry measurements were collected at UKBB assessment centres; 
height was measured using the Seca 202 height measure (Seca, Hamburg, 
Germany). The average of two blood pressure measurements, taken 
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moments apart, was obtained using an automated device (Omron, UK). 
Images were acquired at the UK biobank imaging Centre at Cheadle (UK) 
using a Siemens 1.5T Magnetom Aera. The participants' height and weight 
were recorded before imaging screening which later was utilised to calculate 
the Body Mass Index (BMI).  For physical activity assessment data, a touch 
screen questionnaire was used to collect information on sociodemographic 
characteristics and lifestyle exposures (http://www.ukbiobank.ac.uk/ 
resources/). Specific questions on the frequency and duration of walking (UK 
biobank field ID: 864, 874), moderate physical activity (884, 894) and 
vigorous physical activity (904, 914) events allowed the calculations of 
metabolic equivalent-minutes per week (MET-min/week) for each 
individual. Participants were excluded from the calculations and analysis if 
they selected ‘prefer not to answer’ or ‘do not know’ to any of the possible six 
questions on physical activity used to calculate the MET score.  

5.3.2 Experimental design 

VAT-related disease susceptibility was based on the following MRI response 
labels: Healthy (Resistant), Moderate (Susceptible) and Risk (Hyper-
Susceptible) defined according to VAT volume. In males, VAT volume of ≤3 
litres was deemed ‘Healthy’ (H); VAT volume >3 litres but ≤6 litres was 
classed as ‘Moderate’ (M); VAT volume >6 litres was classified as ‘Risk’ (R) 
[344]. The training datasets contained ten data variables reported in Table 
5.10, with the VAT in litres being the class determination response variable. 
All nine predictor variables in Table 5.10 were selected as input features by 
domain experts based on their low cost to obtain and associations with VAT 
prediction in previous studies.  

The choice of the limited number of anthropometry and physical 
activity variables is also driven by the desire to produce a tool using the least 
expensive variable to collect by the subjects themselves. Thus, the new tool 
can be integrated into a new web application for professional and domestic 
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use. Therefore, it is unlikely that additional raw variables are required to be 
collected within the domain of this study. 

Table 5.10. Descriptive statistics of variables in the males’ Targeted Dataset (TD) 

Male Cohort (n=2191) 

Response variable Median Mean (Min, Max) 

Visceral adipose tissue volume (VAT in litres) 5.6 4.7 (0.35, 9.63) 

Predictor variables    

Waist Circumference (WC in cm) 102.0 92.5 (66.0, 138.0) 

Pre-imaging Weight (W in Kg) 104.0 82.5 (53.0, 155.0) 

BMI (in kg/m2) 33.0 26.6 (18.0, 48.0) 

Hip circumference (HC in cm) 116.5 101.1 (83.0, 150.0) 

Standing height (H in cm) 176.0 176.1 (152.0, 200.0) 

Systolic blood pressure (SBP in mmHG) 159.0 141.9 (99.0, 219.0) 

Diastolic blood pressure (DBP in mmHG) 84.5 80.8 (51.0, 118.0) 

Physical Activity Index (PAI) 3.0 0.5 (-12.0, 18.0) 

Age at recruitment (AGE in years) 55.0 56.4 (40.0, 70.0) 

 

5.3.3 Physical activity index (PIA) feature construction 

The UK Biobank Physical Activity Index (UKBB PAI or PAI) was created by 
domain experts [345] using data collected during physical activity 
assessment; comprising a total of 27 outcomes, 23 outcomes reflecting 
activity and four reflecting inactivity (see Table 5.11). An individual’s 
response to questions was scored with values between -1 and +1 and 
combined cumulatively to give a final score with an increasingly negative 
score implying a progressively unhealthier phenotype. For binary variables, 
0 indicated the absence of the parameter, 1 the presence. 
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Table 5.11. UK Biobank outcomes used in creating the physical activity index 

UK BB ID Outcome Units 

816 Job involves heavy lifting Categorical 

864 Days/week walked 10+ minutes Days/Week 

874 Duration of Walks Minute/Day 

884 Days/week moderate physical activity 10+ minutes Days/Week 

894 Duration of moderate activity min Min/Day 

904 Days/week vigorous physical activity 10+ minutes Days/Week 

914 Duration of vigorous activity Minute/Day 

924 Usual walking pace Categorical 

943 Frequency of stair climbing in last 4 weeks Categorical 

971 Frequency of walking for pleasure in last 4 weeks Categorical 

981 Duration of walking for pleasure Categorical 

991 Frequency of strenuous sports in last 4 weeks Categorical 

1001 Duration of strenuous sports Categorical 

1011 Frequency of light DIY in last 4 weeks Categorical 

1021 Duration of light DIY Categorical 

2624 Frequency of heavy DIY in last 4 weeks Categorical 

2634 Duration of heavy DIY Categorical 

3637 Frequency of other exercises in last 4 weeks Categorical 

3647 Duration of other exercises Categorical 

6164 Types of physical activity in past 4 weeks Categorical 

104900 Time spent doing vigorous physical activity Categorical 

104910 Time spent doing moderate physical activity Categorical 

104920 Time spent doing light physical activity Hours 

806 Job involves mainly standing or walking Categorical 

1070 Time spent watching television Hour/Day 

1080 Time spent using computer Hour/Day 

1090 Time spent driving Hour/Day 

 
5.3.4 Inspecting irregular training examples 

Inter Quartile Range (IQR) test was used per attribute to look for defined 
values within an Extreme Value Factor (EVF) of 6 times the IQR and an 
Outlier Factor (OF) of 3 times the IQR. A total of 15 abnormal observations 
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were found, all of which were outliers and had no extreme values. These 
data values were verified and retained. These abnormal observations might 
be part of a phenomenon. Figure 5.21 shows the outliers and extreme values 
detection per variable in the imbalanced targeted dataset TD. 

 

Fig. 5.21 Outliers and extreme values detection per attribute in the training dataset TD 

5.3.5 Training instances resampling 

Targeted dataset (TD). The TD was the first dataset modelled. The TD 
contained 2191 male records from the UKBB cohort. Table 5.10 shows the 
summary statistics of all TD’s variables. Unlike the previous case study on 
females, the TD was less severely imbalanced in the male cohort in relation 
to records numbers per class: In the males’ TD, class H had 489 subjects, 
class M had 1125 subjects, and class R contained 577 subjects. The class 
imbalance of TD can be observed via APA visualisation in Figure 5.22. 

Random under-sampled (RUS) dataset: this dataset was a reduced 
subset of TD. A subset of each majority class was randomly removed to 
balance the data. As a result of applying RUS to the males’ TD, each of the 
H, M and R classes ended up with 489 subjects. The effect of RUS can be 
observed in APA visualisation in Figure 5.22. 
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Fig. 5.22 Adaptive projection visualisation of Targeted Dataset, Random Under Sampled 
dataset and SMOTE dataset variables – Male Cohort 

Synthetic Minority Over-Sampled (SMOTE) dataset: This dataset was 
obtained as a result of applying SMOTE to the numeric data variables of 
TD. By doing so, the three VAT classes became more closely balanced. In the 
male cohort, class H had 1125 subjects, class M had 1125 subjects, and class 
R contained 1125 subjects. The effect of SMOTE can be observed via APA 
visualisation in Figure 5.22. 

Similar to the previous case study for females, IG Evaluation 
Algorithm was used to measure the information levels for independent 
variables in relation to the class variable. The measurement and ranking of 
IG in each independent variable in TD, RUS and SMOTE training sets are 
presented in the discussion. 
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5.3.6 Test Data Characteristics 

The ML models were tested on a new group of 1935 males from the UKBB 
male cohort. Table 5.12 shows the test set variables summary statistics. Like 
the TD, the class imbalance in the males' test dataset was less severe: class 
H had 468 subjects, class M had 906, and class R contained 561 subjects. 

Table 5.12. Descriptive statistics of variables in the males’ test set 

Male Cohort (n=1935) 

Numeric test dataset variables Median Mean (Min, Max) 

Response variable    

Visceral adipose tissue volume (VAT in litres) 7.2 4.9 (0.3, 14.1) 

Predictors variables    

Waist Circumference (WC in cm) 101.0 93.3 (63.0, 139.0) 

Pre-imaging Weight (W in Kg) 100.0 83.4 (50.0, 150.0) 

BMI (in kg/m2) 32.5 26.9 (17.0, 48.0) 

Hip circumference (HC in cm) 109.5 101.4 (78.0, 141.0) 

Standing height (H in cm) 178.5 175.8 (156.0, 201.0) 

Systolic blood pressure (SBP in mmHG) 142.0 137.1 (75.0, 209.0) 

Diastolic blood pressure (DBP in mmHG) 83.5 79.9 (47.0, 120.0) 

Physical Activity Index (PAI) 2.8 0.5 (-12.0, 17.5) 

Age at recruitment (AGE in years) 55.0 56.0 (40.0, 70.0) 

 

5.3.7 Inspecting irregular test records 

In a similar approach to outliers’ detection in TD, the Inter Quartile Range 
(IQR) test was used per test data attribute to look for defined values with 
an Extreme Value Factor (EVF) of 6 times the IQR and Outlier Factor (OF) 
of 3 times the IQR. A total of 13 abnormal observations were identified, all 
of which were outliers and had no extreme values. All points were verified 
and retained. The abnormal observations may be part of a phenomenon. 
Figure 5.23 shows the test dataset's outliers and extreme values per 
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variable. All thirteen outlier data points are found in the risk groups. 

Fig. 5.23 Outliers and extreme values detection per attribute in the males’ test dataset 

5.3.8 Modelling males’ susceptibility to VAT diseases 

The classification modelling males’ susceptibility to adverse health 
conditions associated with visceral fat uses six algorithms. The modelling 
algorithms are described in Chapter 3. And these are Naïve Bays (NB), 
Logistic Regression (LR) with Ridge Regularization, Artificial Neural 
Networks (ANN) with Multi-Layer Perceptron (MLP) architecture and built-
in feature scaling (Range Normalisation), C4.5 Decision Tree algorithm, and 
ensemble learners Logistic Model Tree (LMT) and Random Forest (RF).  

5.3.9 Models training results 

The accuracies (CCI) of the models for the male cohort were calculated from 
Table 5.13. SMOTE resampling resulted in a consistent improvement in CCI 
compared to the original TD. SMOTE resampling resulted in a consistent 
improvement in CCI compared to the original TD. The training performance 
of all models for the male cohort using the RUS dataset was reduced 
compared to the same algorithms trained on the TD. 
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Table 5.13. Male cohort VAT Prediction Models Confusion Matrices 

 

The AUC for each of the trained models were in the range of 0.729 (for C4.5 
on TD) to 0.923 (for RF on SMOTE). These values indicate that the trained 
models did not sacrifice a lot of precision to obtain a good recall value on the 
observed data points. The RF model trained on the SMOTE dataset achieved 
the highest TPR (0.793), while the C4.5 model trained on the RUS dataset 
achieved the lowest TPR (0.631). 

Examination of the confusion matrices for all models (Figure 5.24) 
trained on the TD vs the RUS datasets demonstrated that the number of 
subjects incorrectly classified as class H instead of class R increased for 
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models trained on the RUS dataset compared with those trained on the 
original TD despite the removal of 88 subjects from the original R group as 
a result of RUS.  

 

Fig. 5.24 Comparison of performance metrics across trained models in the male cohort 

The number of correctly classified instances for class H increased. However, 
when evaluating class R accuracy performance (see Figure 5.25), it is notable 
that all trained models benefitted from the sampling methods, exhibiting 
consistent TPR improvement for class R in each model. 

5.3.10  Models test results 

The models derived above were tested on a further dataset (male n=1935). 
In male cohort subjects, when comparing the CCI for all models, CCI 
decreased with a maximum degradation of 11.9% when testing the RF model 
trained on the SMOTE dataset compared to the same model built on the TD. 
All models built on the TD showed an overall model accuracy improvement 
on test datasets, the highest model accuracy improvement of 4.0% was 
achieved with the C4.5 model trained on the TD dataset compared to all 
other models. The models’ overall accuracy improvements in test were also 
observed for NB, LR and MLP models trained on the RUS dataset, with the 
greatest improvement of 1.2% on NB compared to all models built with the 
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RUS dataset. All models built with SMOTE dataset suffered an overall 
model accuracy degradation in test except for NB overall accuracy, which 
remained unchanged. 

Fig.5.25 Risk class TPR performance for trained and tested models – male cohort 

In the male cohort, it was observed that in test, LR models achieved the best 
TPR of 0.733 when trained on the TD dataset (see Figure 5.26). The LMT 
model achieved the least TPR of 0.730 when trained on the TD dataset. The 
ROC area across all tested models ranged between 0.753 (for C4.5 on 
SMOTE) and 0.864 (for LR on both TD and SMOTE, and LMT on TD). These 
values indicate that also, the tested models do not sacrifice much precision 
to obtain a good recall value on the observed data points. 

When observing class R, the TPR performance results in Figure 5.25 
show that consistent improvements were made in classifying the risk group, 
with the highest level of 0.836 achieved by LMT on RUS. 
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Fig. 5.26 Comparison of performance metrics across all tested models 

LMT also achieved the greatest TPR improvement in test with a difference 
of 0.164 between LMT on RUS and LMT on TD, while MLP ranked last, with 
just 0.05 in class R TPR improvement between MLP on RUS and TD. This 
comparison is demonstrated in the confusion matrixes in Table 5.13. The 
LMT model trained on RUS correctly classified the highest number of 
instances (469 of the original 561) in class R. The model which performed 
the worst in TPR performance for class R was NB trained on TD, which only 
correctly classified 361 instances. 

The effect of using a variety of ML algorithms with different learning 
schemes is examined. At a model level, figure 5.26 shows a small difference 
between the minimum and the maximum TPR test performances per 
dataset in each cohort. In the males, tested TD, RUS and SMOTE models 
showed differences of 0.06, 0.07 and 0.07, respectively, between the highest 
and the lowest-performing algorithms. C4.5 showed consistency in achieving 
the least TPR among all tested models. 

At a class level, taking the risk group into account for this comparison, 
Figure 5.25 demonstrates some differences between the minimum and the 
maximum TPR test performances for the R class in the male cohort. TPR 
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differences were found in the males’ TD, RUS and SMOTE models of 0.08, 
0.13 and 0.12, respectively, between the highest and the lowest-performing 
algorithms. NB showed consistency in scoring the lowest TPR among all 
tested models. 

5.3.11 Attributes’ information gain analysis 

The Information Gain evaluations are found in Table 5.14. In the male 
cohort training datasets, when considering the measured IG for each 
variable across all datasets (Figure 5.27), it is observed that the IG increased 
in each attribute for SMOTE dataset and some of the attributes for the RUS 
dataset compared to the TD. By comparing the IG ranking of variables in 
each dataset, it was apparent that waist circumference (WC) achieved the 
highest IG value in all the TD and RUS datasets, while BMI achieved the 
highest IG value in the SMOTE dataset. 

Table 5.14. The Information Gain evaluation of all features per dataset 

 

The advancement in BMI ranking in SMOTE dataset correlates directly 
with the increase in class R TPR performance in all trained models. SMOTE 
resampling technique amplified the information within each variable 
(Figure 5.27). This amplification, in turn, increased the class R border 
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density with other classes in the training dataset, which in turn increased 
class R TPR in training (see Figure 5.25). The APA visualisation showing 
the enhancement in class R borders density per dataset is shown in Figure 
5.28. 

 

Fig. 5.27 IG evaluation comparison of all variables per dataset 

Fig. 5.28 Adaptive projection of all classes and the effect of sampling methods 

5.3.12 Models’ evaluation and selection. 

In a similar approach to evaluating the models in the females’ case study, 
the misclassification of healthy subjects by a predictive model could result 
in follow-up examinations, whilst false-negative misclassifications might 
result in an individual not receiving an important intervention. In this 
application, apart from potential cost, there would be few adverse effects 
associated with misclassified healthy/moderate risk subjects, as such 
subjects would be encouraged to undertake lifestyle-based interventions to 
improve their health. Therefore, in this scenario, the best models to adopt 
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would be those which minimise the number of subjects misclassified as at 
‘risk’, so they may initiate interventions at an appropriate time. Confusion 
matrices play an essential role in helping researchers define the best-suited 
model for use in future trials. Three models were identified as satisfying the 
domain experts' criteria when analysing the confusion matrices (Table 5.13) 
from the male cohort. These models are reported in Table 5.15. However, 
they may not necessarily occupy the highest ranks when their performance 
metrics are compared to the others. 

Table 5.15. Domain-compliant prediction models for males. n (LMT RUS Trained) = 1467; 
n (LMT SMOTE Trained) = 3375; n (RF RUS Trained) = 1467. n (all Tested) = 1935. For 

the F-m metric, m=1
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5.4 VAT-associated diseases prediction case study discussion 

The overall goal of this case study was to predict visceral adipose tissue 
(VAT) content in UKBB participants and apply machine learning methods 
to classify these subjects into risk categories. VAT has consistently been 
shown to be associated with the development of metabolic conditions such 
as coronary heart disease and type-2 diabetes. The ability to predict and 
classify this variable using simple anthropometry without the need for costly 
MRI scanning, will have a significant impact on the identification of subjects 
likely to benefit most from lifestyle-based interventions [346]. The models 
tested here input features that include age, waist and hip circumferences, 
weight, height, BMI, blood pressure and level of physical activity; all 
variables previously demonstrated to significantly correlate with VAT [347].  

Previous UKBB studies [344][345] have demonstrated significant 
correlations of anthropometry measurement and physical activities with 
VAT, with significant gender differences in the distribution of VAT, as well 
as by age; Hence separate case studies were completed for female and male 
participants. In this case study, an index of physical activity, the UKBB-
PAI, was proposed, which correlated more strongly with VAT outcomes than 
established questionnaires, such as the International physical activity 
questionnaire (IPAQ) and Lifestyle Index. Additionally, its findings 
challenged previous studies [347][348][349], and described only a weak 
correlation between age with VAT, even after adjusting for BMI and UKBB-
PAI. It was also noted that the influence of UKBB-PAI parameters was 
comparable to that of age, and that it provided more effective means 
representing the physical activity measures to discriminate between Health, 
Moderate and Risk classes. 

With domain experts' advice, the current case study selected the 
variables (age, blood pressure, body mass index, height, hip circumference, 
physical activity index, waist circumference and weight) as input features 
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on which to base the machine learning VAT prediction models. However, to 
understand the influence of each feature on VAT and their reliability in 
predicting three distinct ranges associated with various long-term 
conditions, information theory was used to evaluate each feature in relation 
to the 3 different classes, Healthy, Moderate and at Risk. The IG evaluation 
algorithm was utilised to evaluate the worth of each input feature 
independently [194] against the class, unlike correlation analysis carried out 
in previous studies [344]. One way to interpret the calculated IG values is 
the possible presence of associations between each feature and the class 
labels in each cohort. In the female cohort, the strength of the association in 
the IG varies (see Tables 5.5), with HC, WC, BMI and W providing the 
greatest contribution, whilst the physical activity, age, H, SBP and DBP 
showed the least in both TD and RUS training datasets. A similar 
dominance in IG ranking is observed in the SMOTE dataset, with HC, WC, 
BMI and W showing the strongest associations with VAT. An analogous 
pattern was found in male subjects (Tables 5.14). This information theory 
approach into the models' features adds an additional layer of details to 
observed correlations reported in previous studies by describing the strength 
of each feature to discriminate between the Health, Moderate and at-Risk 
classes. 

When considering the TD and RUS datasets which contain 
observations from the participants rather than generated artificial synthetic 
data, there was no association between age and VAT (given zero IG) in the 
males and only a weak association in the female cohort, with the discretised 
VAT ranges similar to the weak correlation described in previous studies. 
Though this may challenge previous studies that have reported a linear 
relationship between age and VAT [347] [348] [349], our results may reflect 
the somewhat smaller age range included in the UKBB (40-70yrs), compared 
with previous studies (17-70yrs) [347]. However, this may also relate to a 
data problem in the machine learning community known as data 
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heterogeneity [350]. 

The lack of association of UKBB-PAI with discretised VAT classes 
reflects the previously reported [351] [352] low correlation between physical 
activity and these fat deposits and may, in part, arise from the poor 
reliability of the recorded frequencies and durations of physical activities. 
The level of granularity in the input data variables always determines the 
level of detail in the prediction model's possible outputs. Depending on the 
assessment design, detailed observations may be grouped during or after 
data collection into frequencies, categories and scores. This grouping is 
considered a variable transformation. Variable transformation aims to 
create better features at exposing patterns in the data. However, the 
transformation process could also lead to engineering a new feature that is 
less powerful, suppressing important trends offered by its detailed (raw) 
components. 

It could also be argued that the implementation of such low-cost 
measures may lack the susceptibility to errors if studied within large 
populations [353]. However, there are many newly developed physical 
activities questionnaires (PAQs) which do not appear to perform 
substantially better than existing tests with regards to reliability and 
validity [354][355][356]. The variability of these PAQs and their 
ineffectiveness leads to a cause known in the data science community as 
detail aggregation. Variables in datasets often fall within two types; either 
detailed (Granular) or aggregated (Summaries). ML modelling prefers 
detailed variables over summary variables. Detailed data often represent 
summary variables and are better at showing patterns. Take daily walking 
which forms part of PAI calculations, as an example, previous studies [357] 
[358] showed that daily walking is linked to reductions in VAT. However, its 
significance is curbed when combined with other variables in PAI 
calculations. Data granularity is a macro structural feature. Granularity 
refers to the amount of detail captured in any measurement, such as time to 
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the nearest minute, the nearest hour, or simply differentiating morning, 
afternoon, and night, for instance. Decisions about macro structure have an 
essential impact on the amount of information that a data set carries, which, 
in turn, significantly affects the resolution of any model built using that data 
set [53]. Therefore, we must acknowledge that physical activity is a complex 
behaviour that is hard to measure accurately, even at a low degree, in the 
case of memory recollection, or a high degree, by using electronic monitoring 
devices. However, it is a real challenge to record the interactions among 
physical activity's various elements (variables). The PAI structure that 
combines sets of variables with transformed scores could introduce bias, 
which stresses the natural structure of the original variables’ states in a 
dataset so that the data is distorted. Hence, the PAI may be less 
representative of the real world than the original, unbiased variables form. 

The understanding of the effect of data aggregation by domain experts 
enhances feature selection strategies of how variables are used in predictive 
modelling. Some derived (aggregated) variables may increase the 
representation of trends within a dataset which, in turn, show higher IG 
evaluation and pose as a stronger predictor in modelling. For example, BMI 
is directly obtained from height and weight (calculated as weight in 
kilograms (W) divided by height (H) in meters squared). From our analysis, 
H maintained its IG evaluation to zero in both RUS and TD datasets, by 
dividing body mass over two exponents of the base H, this seems to reveal 
better trends. Aggregated variables may require checking for calculation 
integrity from detailed variables. For numeric features, aggregated 
variables come in many forms, such as averages, sums, multiplication and 
ratios. Categorical features can be combined into a single feature containing 
combinations of different categories. Variable aggregation must not be 
overdone as not to overfit models due to misleading combined features. 
Wrongly derived variables may show false significance or insignificance in 
the analysis [53]. 
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For machine learning modelling, tackling the imbalanced class problem has 
an important impact on the learning performance of standard machine 
learning algorithms. Classification performance in the training phase is 
severely impacted by class separability. Training standard ML algorithms 
with highly imbalanced overlapping classes without any adjustment to the 
training set results in an accuracy bias towards the majority class. In this 
case study, we observed that applying the two methods (RUS and SMOTE) 
was used to adjust the class imbalance in the classification training phase 
at the dataset level, which in turn, amplified the IG in many input features. 
It remains unclear as to whether other remedies for imbalanced data 
classifications, such as Cost-Sensitive and Ensembles Learning (which is 
implemented at an algorithmic level) or deep learning, could result in better 
performances [359] [360]. The advantages of sampling techniques evaluated 
here however include simplicity and transportability. Nevertheless, they are 
limited by the amount of IG manipulation due to their application resulting 
in biased predictions toward the minority class. Furthermore, the excessive 
use of such techniques could result in overfitting the models. 

In this case study, for the female cohort case, the original dataset was 
highly imbalanced. Traditional ML algorithms were sensitive to higher 
information gains. As a result, they tended to produce superb performance 
results in training, but when testing the models, the overall model accuracy 
often dropped below the training phase performance.  

However, for the male cohort, the class imbalance in the original 
dataset was less severe; therefore, traditional ML algorithms were less 
sensitive to higher information gains and tended to produce close 
performance results in training and test. The overall model accuracy often 
dropped below the training phase performance, which was the case for all 
models trained with the SMOTE dataset. On the contrary, the models’ test 
accuracy outperformed the training accuracy when each algorithm was 
trained on TD; this situation also occurred in NB, LR and MLP trained with 
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the RUS dataset. The cause of such competitive accuracy test results may 
be attributed to the increase in IG per feature in the test dataset compared 
to the TD (Figures 5.24 and 5.27). A higher IG in a variable indicates higher 
observations’ purity per class. Having higher IG in multiple features 
enhances class separability and leads to improvement in classification 
accuracy. In other words, the higher the IG in a dataset, the easier the 
dataset to be learned and predicted. 

In both cohorts, the UKBB datasets utilised in this case study showed 
that applying some level of sampling with slight disruption to the original 
data distribution, together with the desired choice of performance metrics 
and slight manipulation of IG levels, produced a good prediction solution 
which may be enhanced further with algorithmic modifications. Among all 
eighteen models for each cohort presented in this case study, six models 
satisfied the domain experts’ success criteria for this specific domain 
problem. For the female cohort, these were LMT and RF built with RUS 
sampled dataset, and LR built with SMOTE sampled dataset. For the male 
cohort, they were LMT and RF built with RUS sampled dataset, and LMT 
built with SMOTE sampled dataset. 

The difference in algorithms’ learning schemes proved to have a 
minimal impact on the models’ overall accuracy. This is because machine 
learning algorithms are biased towards achieving the highest model’s 
accuracy. But the effect of the learning mechanism becomes primarily 
noticeable in imbalanced datasets when the minority classes' accuracies are 
compared (for example, Figure 5.8). In the testing results analysis, the 
learning schemes impact was seen to increase with the class imbalance 
severity in datasets compared to balanced datasets. But this difference in 
classifiers’ performance may be driven by some underlying assumptions per 
algorithm learning mechanism design. 

Observing the assumptions about the impact of IG manipulation has 
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led us to make further investigations on the algorithms learning behaviour 
from datasets with features offering maximum class purity. Our analysis 
resulted in developing a new sampling approach, Minority Pattern 
Reconstruction (MPR). MPR improved the modelling accuracy of the Risk 
groups across all models by extracting multiple subsamples from the 
original training data TD. Each subsample would provide a perfect 
classification learning pattern with its own context in space. The isolation 
of the subsamples was followed by appending them into one new training 
set and discarding the residuals whose features’ sum of IG is below the 
original IG sum in TD. 

MPR was only applied to the females’ case study since its 
fundamental assumption is limited to a multi-class problem, with some 
gradual attention to their classes, where the risk group (hyper-susceptible), 
the class of interest, is a minority governing the extraction of patterns 
leading the moderate risk subjects then the healthy. Part of the MPR 
assumption cannot be met in the males’ case since the males' risk group are 
not a minority, hence not applicable, and it may not reach its potential. 
Perhaps with further research and experiments, MPR could reach new 
limits. 

The modelling of the MPR set and its hybrid variants massively 
improved the classification TPR of the risk and moderate groups. MPR 
efficiency might be driven by its maintained proportion levels of information 
gain per feature compared to the TD. 

The MPR resampled models reached a highly competitive 
performance level that also fits the success criteria. This competitiveness 
made it harder for domain experts to reselect/reassess the best-performing 
models within the given success criteria. While data scientists can observe 
MPR’s massive improvement in the females’ models, the domain experts 
may need to refine their success criteria further; perhaps by making them 
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more restrictive. One way to restrict the selection criteria further is by 
obtaining the actual monetary costs of the additional tests required for H 
and M subjects upon misclassification. The availability of cost information 
may influence a data scientist to rethink new performance metrics alongside 
the fundamental measures (i.e., the confusion matrix), which could interpret 
future refined success criteria. 

Moreover, estimating such costs lies outside this case study 
collaborating experts’ knowledge and capacity and requires clinical 
expertise. Therefore, if a new collaboration is formed with clinicians in the 
field, it could become a natural extension to restart a new data mining cycle 
in this case study.  

At the time of this study, this domain problem is the first to use the 
discretised MRI VAT variable ranges to describe participants' health status 
and label instances. Therefore, at the time, it would have been impractical 
to compare the results of this study to any other research from the same 
domain. However, this work will be followed by further analyses where 
additional methods to improve the outcomes will be investigated. 

5.5 VAT-associated diseases prediction case study conclusion 

Our study shows that applying our new OCTOPUS framework to model 
datasets of phenotype variables offers a fast and inexpensive solution to 
predict dangerous visceral fat levels as an adverse event in healthcare. This 
is achieved by aligning the classification task to predict specific VAT ranges. 
The selection of a multi-class prediction task in this study is strategic. It 
identifies individuals at higher risk of developing metabolic conditions and 
is more likely to benefit from focused lifestyle intervention to reduce visceral 
fat. The design of the case study of a multi-class prediction, by separating 
the risk group from a moderate group, helped select models that minimise 
incorrect classification of those at high risk as healthy. Achieving a zero 
False Negative Rate (FNR) when classifying risk patients as healthy 
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guarantees that any individual to miss treatment intervention belongs to 
the moderate group rather than the risk group. Training various machine 
learning algorithms with 10-Fold Cross-Validation and testing the models 
with external class-stratified groups of females and males makes this study 
suitable for follow-up research in medical screening to identify subjects that 
may require treatment intervention. 

Finally, the promising results of the selected models make them 
suitable for deployment as tools in real-life web applications. However, due 
to data limitations, we still think they should be preceded by further 
validation (testing) on an external cohort outside the UK Biobank 
population. In addition, the models’ misclassifications may not immediately 
impact the subjects (modifications to lifestyle take time) but prompt them to 
make drug-free lifestyle adjustments. Nevertheless, should these 
applications ever be used for medical screening to prescribe medications for 
drug-induced lifestyle modifications, further external testing before 
deployment on external cohorts becomes mandatory, and performance 
monitoring becomes vital.
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Octopus Framework Application for 
Radiotherapy Side Effects Prediction  
 

 

 

 

his chapter applies our Octopus data-driven framework from 
our research to develop new predictive models as new tools to 
help detect patients' susceptibility to adverse events in 
healthcare, Advanced Radiation Therapy Acute Skin Toxicity 
Side Effect. We use the methods in the novel framework with 

trivial differences due to the nature of the data in this study, the domain 
success criteria, and the execution timeline. These new tools are built using 
new real-world datasets. Our models are new; at the time of execution, the 
modelling of the endpoints was not attempted by other case studies in the 

field using our data or predictors. Our focus in this chapter is to use the 

methods in our OCTOPUS framework, formulated by our heuristic-

T 

This chapter covers 

n Case Study 2: Predicting Breast Cancer Patients’ 

Susceptibility to Radiotherapy Toxicity. 
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systematic research and critique, to demonstrate its ability to create new 
inexpensive screening methods with Machine Learning approved by 
healthcare professionals and domain experts. 

This is the second case study in this thesis to predict adverse events 
in healthcare. Here, we predict breast cancer patients' susceptibility to 
radiotherapy's acute toxicity side effects. We use our formulated data-driven 
approach to develop new machine learning models as new inexpensive 
screening tools to assist clinicians and physicians in triggering 
conversations during treatment planning about the potential occurrence of 
early side effects. The new machine learning models predict the occurrence 
of acute moist desquamation. This case study is a binary classification 
problem. 

The newly developed models are designed to predict two susceptibility 
class labels, resistant or desquamation negative label for those who were 
observed not to develop this side effect and susceptible or desquamation 
positive label for those who were observed to develop acute moist 
desquamation during their radiotherapy. Radiotherapy has multiple side 
effects that depend on their severity and time of occurrence during 
treatment.  

6.1  Introduction  

Our focus aims to identify patients’ susceptibility to severe complications 
that can interrupt RT or even a total dose reduction. Such an interruption 
or reduction can potentially increase the risk of local cancer recurrence. 
However, the risk of cancer recurrence could be reduced if a patient’s 
susceptibility to radiation toxicity was better known to allow treatment 
plans to be personalised.  

The latest strategies currently embedded within the treatment 
planning systems to determine the patient’s risk of radiation toxicity use 
mechanistic models [361]. Such models are based on a simplified 
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characterisation of the interaction between radiation and biological tissues 
to explain the underlying mechanisms with explicit algorithms. 
Unfortunately, these algorithms are based on handcrafted rules with 
complex exceptions that often fail to predict the actual complications 
induced by RT.  

The investigation of using ML in this field is still new. Recent studies 
used complex models to predict RT toxicities. One approach used radiomics 
data (thermal imaging data) on a small sample of patients [362]. This 
approach limits the large-scale analysis of RT toxicities due to the expense 
and time required to employ the requisite imaging techniques and the 
considerable variation between individual patients’ normal tissue reaction 
to RT and resultant toxicities [363]. A different approach utilised hundreds 
of clinical variables as model inputs raising an issue in interpretability [364] 
[365].  

The REQUITE study provides a comprehensive means of assessing 
the relationship between the patient's baseline characteristics, medical 
history, clinical, genomic, dosimetric and radiomic variables and RT range 
of toxicity outcomes in a large population-based cohort of breast cancer 
patients [18]. Having such a large dataset could increase the presence of a 
pattern in the data; without it, machine learning algorithms can’t 
sufficiently learn to produce effective results.  

The primary goal of this case study is to identify an inexpensive and 
clinically valid ML prediction model to predict the occurrence of acute 
desquamation in the REQUITE breast cancer cohort.  

In this case study, we apply the methods scoped in our developed 
OCTOPUS framework and assess the classification performance of eight 
machine learning algorithms (Naïve Bayes, Logistic Regression, Artificial 
Neural Network, Decision Tree, Logistic Model Tree, K-Nearest Neighbour, 
Support Vector Machine and Random Forest) in predicting the susceptibility 
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to the occurrence of acute desquamation. The Radiation Therapy clinicians 
from the national collaboration of Radiation Therapy Machine Learning 
Network manually labelled all records for acute toxicity outcomes based on 
a CTCAE v4.0 endpoint definition. The endpoint definition is associated 
with the susceptibility of developing an early RT skin side effect known as 
acute moist desquamation. 

The dataset exhibits class imbalance which could result in the 
problem of imbalanced learning bias. Therefore, the new models were first 
built using the Imbalanced Dataset, followed by applying three sampling 
techniques, Random Under-Sampling (RUS) and Synthetic Minority Over 
Sampling Technique (SMOTE). In addition, Cost-Sensitive (CS) learning 
was also applied in our modelling approach. 

This study suggests the most suitable models meeting the domain 
experts’ success criteria. The data imbalance characteristic causing the 
transition in classifier training performance was captured visually by 
Adaptive Projection Analysis (APA) in the Targeted Projection Pursuit 
(TPP) [48] and numerically via Information Gain (IG) attribute evaluation 
and Mean Decrease Impurity (MDI). The development of our new 
framework, its results from this study and selected models by domain 
experts in the RTML collaboration at the University of Manchester were 
first published in 2021 in the Journal of Computers in Biology and Medicine 
[151]. 

6.2 Predicting susceptibility to acute desquamation workflow 

The deployment of machine learning modelling in this study aims to apply 
our new data-driven framework to model acute moist desquamation as an 
adverse event, compare a large number of prediction models’ performances 
and select the best-suited models when applying multiple imbalanced 
modelling remedies in a clinical setting. The newly developed models 
effectively tackle a real-world treatment management challenge by 
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predicting acute desquamation, an early-stage RT toxicity.  

Early-stage radiation toxicities occur during treatment or within ninety 
days of exposure to RT. The patient may have skin changes ranging from 
desquamation (peeling skin) to skin necrosis (death of skin cells) and 
ulceration. These changes imply that the skin integrity has been broken over 
the breast or in the inframammary fold. Patients with such toxicities 
experience irritation, pain and serious fluid build-up under the skin, 
impacting their Quality of Life (QoL) [366]. Therefore, RT-treated patients’ 
QoL has become an increasingly important research priority [366]. RT 
reduces the rates of cancer recurrence and increases long-term survival. 
Hence over 70% of breast cancer patients receive RT during treatment [367]. 
Typically, the incidence rate of acute desquamation range between 11% to 
71% in breast cancer RT patients [366]. The original REQUITE dataset 
underwent rigorous data preparation and pre-processing by the RTML 
network specialists, followed by the modelling, evaluation and simplification 
phases (Figure 6.1).  

The imbalanced training dataset (ITD, n=1029, m=123) was used to 
train eight algorithms to establish the extent of the class imbalance 
modelling problem. Once verified, two different strategies were used to 
mitigate the issue. In one strategy, ITD (n=1029, m=123) was modified with 
sampling techniques, SMOTE (n=1866, m=123), ROS (n=1866, m=123) and 
RUS (n=192, m=123), and used for training eight ML algorithms (Naïve 
Bayes, Support Vector Machine, Logistic Regression, Artificial Neural 
Network, C4.5 Decision Tree, Logistic Model Tree, Random Forest and K-
Nearest Neighbour). 

At a later strategy, ITD (n=1029, m=123) was used to train three 
systematically nominated ML algorithms with a cost-sensitive approach 
inducing multiple misclassification penalty matrices. All models were tested 
with the same isolated validation data (VD, n=1029, m=123). The models' 
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selected performance metrics were compared after test to identify the model 
of interest to clinicians and oncologists.  

The chosen hero model interpretability was simplified and concluded 
as a final preclinical-valid model. IG was monitored for all predictor 
variables at every stage.  

Clinical machine learning studies are often criticised for the lack of 
transparency regarding the methods used to prepare and pre-process their 
data before modelling. Therefore, to uphold the clinical validity of our final 
model and the confirmatory nature of this study, the description of the data 
preparation and pre-processing procedures followed is presented with 
reasonable details [368]. 

 
Fig. 6.1 Workflow followed to predict susceptibility to acute RT desquamation. 
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6.3 Data collection protocol 

REQUITE is an international prospective cohort study that recruited cancer 
patients in 26 hospitals in eight countries. This study uses collected data 
from patients who underwent breast RT. The multicentre breast cancer 
patients cohort was recruited prospectively in seven European countries and 
the US. All patients gave written informed consent [369]. The study was 
approved by local ethics committees in participating countries and 
registered at the ISRCTN registry [370] (ISRCTN98496463). The study is a 
cross-sectional assessment of 2069 patients from the REQUITE 
international multicentre cohort, aged 23-80 and treated with breast RT 
between April 2014 and March 2017. 

 

6.4 Experimental design 

For the perdition of RT susceptibility to acute early side effects, binary-class 
ML classification models were applied to predict susceptibility to acute 
desquamation based on the outcome collected at the end of radiation 
treatment for REQUITE breast cancer patients. The raw REQUITE dataset 
(n = 2069) contained (m > 300) variables. The RTML clinicians manually 
labelled all records for acute desquamation outcome based on the CTCAE 
v4.0 endpoint definition: grade 1 ≥ ulceration or grade ≥ 3 erythema. All 
variables were nominated manually in modelling acute desquamation by 
clinicians and RT physicists. Only an initial set of m = 136 applicable 
variables and n = 2058 (Susceptible patients or 𝐷esq+ = 192, Resistant 
Patients or 𝐷esq− = 1866) records remained (Case-wise deletion (n=11 with 
missing class label). Finally, after the initial analysis, a highly imbalanced 
dataset (n=2058, m=123) was deemed viable for modelling and evaluation. 
The descriptive statistics of the REQUITE dataset variables are reported in 
a previous study [18]. The input variables used in this study are easily 
obtainable during the treatment planning phase. They consist of baseline 
characteristics, familial history, breast cancer staging information, 
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chemotherapy regimens, lifestyle attributes, medical conditions, 
sociodemographic factors, medical operations, treatment history, female-
specific factors, psychological health attributes, medications, breast RT 
dosimetry measurements such as normo-fractionation procedure, and 
quality of life output. Radiomic data (imaging data) and genomics were not 
used in this study. 
 

6.5 Pre-processing the training features 
Initial exploration of the dataset showed that a number of numerical type 
variables exhibited a multimodal distribution, such as comb, edge peak and 
plateau-like distributions. Such distributions can indicate the presence of 
several patterns of response in the sample. The effect of such distributions 
and multi-pattern presence in the sample may lead to many outliers or 
extreme values. Therefore, in the data preparation, a rigorous cycle of 
Boundary Value Analysis (BVA) and Equivalence Class Partitioning (EPC) 
techniques [219] [220] were used by domain experts for detecting and 
correcting or removing corrupt or inaccurate records from the dataset. Also, 
missingness analysis was performed using our new Multi-Method 
Imputation (MMI) approach by cross-checking the data with the REQUITE 
study questionnaire design to ascertain the causes of incomplete records and 
deduce patterns.  

With MMI, a combination of non-statistical and statistical imputation 
techniques was used, and non-statistical methods were used to reduce 
uncertainty via logical rule imputation and variable dropping (see Table 
6.1). The investigation of missing data patterns [371] assisted in the non-
statistical imputation of missing data with logical rule imputation, variable 
dropping (m=13 with > 37% missing values at random compared to observed 
values in the remaining variables to avoid introducing correlation bias when 
statistical imputation techniques are used). Although in MMI, the threshold 
of missing values to drop a variable is set at 40% for confirmatory analysis, 
clinicians felt this is still too high to incorporate imputed values at that level 
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in the analysis. The retained dataset for feature engineering and modelling 
finally had m=123 variables and n=2058 records. 

 
Table 6.1. Percentage of imputed missing data in breast RT cohort variables 

 

The retained records n=2058 were shuffled with a randomisation algorithm. 
Following randomisation, a 50:50 training: test split ratio with class 
stratification was performed. The split formed the raw Imbalanced Training 
Dataset (raw ITD, n=1029) and the raw test Dataset (raw VD, n=1029). The 
process was followed by applying a state-of-the-art hybrid Expectation-
Maximization (EM)-Decision Tree imputation for each set independently 
with a Decision-Tree based Missing-Value Imputation (DMI) Algorithm 
[108] to enhance the best expectations of missing values. Datasets’ 
information levels were monitored in each set pre-imputation (raw(ITD), 
raw(VD)) and post-imputation (DMI(ITD) and DMI(VD)) with Information 
Gain Attribute Evaluation [194]. The evaluation of information worth is 
affected by the number of records; hence, the 50:50 training-test split allows 
for a fair information bias comparison.  

The retained 123 variables for modelling consisted of 106 raw features 
and sixteen additional engineered features. Breast size measurements are 
calculated as a single continuous variable by adding bra cup and band sizes 
to represent ‘sister’ sizes equal to the same breast volume [372]. For 
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instance, a UK-size 34B bra holds an approximate breast volume equal to 
32C, approximately 390 cc.  

With feature engineering, sixteen features were constructed. In many 
patients, the chemotherapy regimens consisted of a combination of cytotoxic 
agents. In order to account for the vast number of possible chemotherapeutic 
combinations that patients could be prescribed, the prescriptions were 
binarised [61] based on their generic chemical names (see Table 6.2).  

In addition, the chemotherapy drugs' categorical values were 
binarised, a format that could be provided to machine learning algorithms 
to improve prediction performance [373]. The categorical values represent 
the administered chemo-drug combinations in a chemotherapy regime. 
 

Table 6.2. Illustration examples of binarised chemotherapy regimens

 
 

Chemotherapy can be neoadjuvant and adjuvant. Neoadjuvant therapy is 
performed before the primary treatment to help reduce the size of a tumour 
or kill cancer cells that have spread, generally given before the surgical 
procedure. Adjuvant therapy is administered after the primary treatment to 
destroy the remaining cancer cells to prevent a possible cancer recurrence. 
In many cases, chemotherapy drugs (agents) are administered in 
combinations, which means the patient receives two or three different 
medicines simultaneously.  
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These combinations are known as chemotherapy regimens. Every cancer 
responds differently to chemotherapy. Standard breast cancer 
chemotherapy regimens include AT, AC, AC+T, CMF, CEF, CAF, TAC and 
others [374]. NHS UK published a wide range of chemotherapy side effects 
that may occur in breast cancer patients, some of whom may have plans to 
undergo breast RT [375]. Therefore, including chemotherapy attributes in 
this study was recommended. 

To adjust for different RT regimens, the dose was calculated as the 
biologically effective dose (BED). BED is the product of the number of 
fractions (n), dose per fraction (d), and a factor determined by the dose and 
α/β ratio for acute effects (10 Gy), which is used in radiobiology to describe 
𝑑𝑑the slope of the cell survival curve for different irradiated tissues [376]. 
Three features were constructed by calculating the BED. 

𝑩𝑬𝑫 = 𝒏	𝒅	 Q𝟏 +
𝒅
𝜶/𝜷W 

Out of all 123 variables, all numeric features (m=62) were normalised 
with 𝓩-score standardisation to eliminate the impact of larger magnitudes 
variables when modelling with a scale-sensitive algorithm [377]. 
 

6.6 Inspecting irregular training records 

Inter Quartile Range (IQR) test was applied per attribute to look for defined 
values with an Extreme Value Factor (EVF) of 6 times the IQR and an 
Outlier Factor (OF) of 3 times the IQR.  

A large number of outliers and fewer extreme values were detected 
(see Figures 6.2A and 6.2B). Nevertheless, experts proceeded with caution; 
thus, these data points were carefully verified, and a decision was made to 
retain them. These outliers may be attributed to the multimodal distribution 
in some variables, especially those from device readings. 

In normal circumstances, outliers and extreme values are rare. If they 
are not rare in a dataset, such as this case, they may not be abnormal 
observations or the data collection methods may have had some integrity 
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issues. The RTML team reviewed the documented data collection design 
protocols, and no problems were spotted. The abnormal data points 
verification was based on RT clinicians' empirical review of the REQUITE 
survey design. No additional dataset was available to contribute to the 
verification of such points. Another assumption was made that these outliers 
could benefit the model. If modelling proceeded with removing such a large 
number of outliers, modelling with the remaining data may underestimate 
the variance and overpower the bias in the model resulting in potentially 
under-fitted models. 

Moreover, since there are no known external reasons (measurement 
error or incorrect recording) to influence the elimination of the large count 
of outliers and extreme values, these points should instead be used to 
provoke the model. If the model is evaluated as appropriate, then the 
retention of such outliers would have prevented us from underestimating 
the variance (in our case). In other cases, if they are rare, a choice may 
consider them negligible to retain or remove [378]. 

 

6.7 Training instances resampling 
The REQUITE dataset shows that in a breast radiation treatment, only a 
small portion of patients suffered from acute desquamation [379], raising a 
potential class imbalance problem. Class imbalance poses an additional 
barrier to using ML algorithms. These algorithms usually are optimised 
using loss functions that attribute the same importance to all samples in the 
training dataset regardless of its endpoint. Therefore, the trained ML model 
will include a strong bias towards the majority class. As per our formulated 
approach, one strategy to tackle class imbalance in the training data is to 
apply data resampling techniques to ITD ≡ DMI(ITD), by which the endpoint 
response classes of records become equal (see Figure 6.3); Random Under 
Sampling (RUS) (n=192, 𝐷esq+ = 96, 𝐷esq− = 96), Random Over Sampling 
(ROS) (n = 1866, 𝐷esq+ = 933, 𝐷esq− = 933) and Synthetic Minority 
Oversampling Technique (SMOTE) (n = 1866, 𝐷esq+ = 933, 𝐷esq− = 933).  
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Fig. 6.2A Outliers and extreme values detection in the imbalanced targeted dataset 
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Fig. 6.2B Outliers and extreme values detection in the imbalanced targeted dataset 
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The effect of such resampling techniques on the training dataset was 
visualised with a multi-dimensional Adaptive Projection Algorithm (APA) 
into a 3D point cloud (see Figure 6.4). 

 

Fig. 6.3 Sample size for ITD, RUS, ROS, SMOTE and VD sets 

 

 
Fig. 6.4 TPP visualisation of ITD, RUS, ROS, SMOTE and VD sets 
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6.8 Test data characteristics 
The ML models were tested on a new group of 1029 records from the 
REQUITE cohort (based on the original 50:50 class-stratified split without 
replacement). Like the ITD, the Test (Validation by domain definition) 
Dataset (VD) was severely imbalanced: the resistant group (𝐷esq−) had 933 
subjects, and the susceptible class (𝐷esq+) had 96 patients (see Figure 6.3). 

The TPP (APA) visualisation in Figure 6.4 indicates the classes that 
can be separated, the attribute combinations primarily associated with each 
group, the outliers, the sources of error in the classification algorithms, and 
the existence of clusters in the data. In this case, the APA shows a high 
degree of overlap of the variable’s values between patients with and without 
desquamation, suggesting that it could be difficult to differentiate these two 
classes using these variables. Additionally, the visualisation of the ITD 
highlights the imbalance in the data (Figure 6.4 A) and how resampling 
techniques achieve the class balance (see Figure 6.4 B, C and D). 

The ROS training dataset shows somewhat widely scattered positive 
class records since the ROS resampling technique randomly duplicated 
records from the positive class. SMOTE resampling technique has 
intensified the existing positive class records by generating synthetic 
prototype records analogous to the positive class records, and these records 
seem to cluster near the original positive examples.  

The RUS visualisation depicts how a balanced dataset may expose 
divisions within the data more clearly, e.g., desquamation samples on top of 
the RUS visualisation seem to be easily separable. At the same time, in the 
ITD, ROS and SMOTE, it is difficult to observe a clear division between 
classes.  

Moreover, the APA analysis shows that the ITD and VD are 
somewhat similar (consistent in the visual pattern), especially in the 
majority pattern. This similarity suggests that the randomised data split 
did not introduce any major bias into either split (training and test sets) and 
that the training dataset is visually closely representative of the whole data. 
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6.9 Inspecting irregular test records  
Similar to the training ITD data, Inter Quartile Range (IQR) test was 
calculated for VD’s attribute to look for defined values with an Extreme 
Value Factor (EVF) of 6 times the IQR and an Outlier Factor (OF) of 3 times 
the IQR. Although, a large number of outliers and fewer extreme values 
were detected (see Figures 7.5-A and 7.5-B). Despite the original data points 
being carefully examined by the domain experts to establish their validity, 
we proceeded with caution; thus, these data points were carefully verified, 
and a decision was made to retain them. 

Again, these outliers may be attributed to the multimodal 
distribution in some variables, especially those from device readings. 

And to reiterate, in normal circumstances, outliers and extreme 
values are rare in datasets in general. If they are not rare in a dataset, such 
as this case, they may not be abnormal observations, or the data collection 
methods may have had some issues.  

The RTML team reviewed the documented data collection design 
protocols, and no problems were spotted. The abnormal data points 
verification in the test set is based on RT clinicians' empirical review of the 
REQUITE survey design. No additional dataset was available to contribute 
to the verification of such points. Another assumption was made that these 
outliers could test the robustness of the model. Suppose testing proceeded 
with removing such a large number of outliers. In that case, the remaining 
data might overestimate the model’s performance overlooking an important 
pattern, making the testing inefficient in evaluating all patterns captured 
by the model. 

Moreover, since no known external reasons (measurement error or 
incorrect recording) influence the elimination of the outliers and extreme 
values, these points should be used to test the classifier. If the model is 
evaluated as appropriate, then the retention of such outliers would have 
prevented an overestimation of performance. In other cases, if they are rare, 
a choice may be made to consider them negligible to retain or remove [378]. 
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Fig. 6.5A Outliers and extreme values count per variable in the test set (VD) 
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Fig. 6.5B Outliers and extreme values detection in the test set (VD) 
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6.10 Modelling susceptibility to acute desquamation 
In this phase, we model the engineered REQUITE data in three different 
modes, the imbalanced, the balanced and the Cost-Sensitive modes. The 
data is modelled with eight different machine learning algorithms, Naïve 
Bays (NB), Logistic Regression (LR), Artificial Neural Networks (ANN) with 
Multi-layer Perceptron (MLP) architecture, K Nearest Neighbor (KNN), 
Support Vector Machine (SVM), Decision Trees (C4.5), Random Forest (RF) 
and Logistic Model Tree (LMT).  
 

6.10.1 Imbalanced data modelling results 

A single model was built with ITD and tested with VD for each of the eight 
ML algorithms. The KNN was an exception, for which five models were 
constructed with ITD and tested with VD to account for the different values 
of the K parameter, where K={1,3,5,7,9} from our methodology in the 
previous chapter. Table 6.3 shows the models’ Accuracy, Balanced Accuracy, 
Youden’s Index, AUC score, TPR and TNR performances for all twelve 
models in training and validation. 

The training and validation performance results (Table 6.3) confirm 
the problem of the class imbalance issue with a severe high accuracy bias 
towards the desquamation-negative group (majority class) by sacrificing the 
desquamation-positive records (minority class) as type II errors (FN). In 
terms of training accuracy, (K=9) NN ranked first, scoring 0.909, while NB, 
a popular algorithm in medical research, came last with 0.776. Similar 
behaviour of accuracy performance ranking was observed after the test. 

The balanced accuracy metric exposes classifiers that take advantage 

of the majority class to boost their overall accuracy. Conversely, the lower 
the balanced accuracy, the least a classifier takes advantage of the 
distribution of the majority class. Youden’s index (𝛾) evaluates the 
ability of a classifier to avoid misclassifications in both classes. A 
higher value of 𝛾 indicates a good-performing classifier. 
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When analysing the training performances in Table 6.3, NB scored the 
highest in balanced accuracy and Youden’s index (γ) to be considered the 
least susceptible classifier to accuracy bias towards the majority class and 
the best in avoiding misclassification. On the other hand, despite the high 
accuracy of the LMT model of 0.904, both balanced accuracy and Youden’s 
index (γ) metrics agreed to rank it last. The low ranking indicates that the 
LMT model mainly took advantage of the majority class distribution to boost 
its accuracy score with a TNR of 0.996. The worst model in misclassification 
avoidance in both classes proved with the lowest TPR of 0.01. RF, a popular 
ensemble algorithm in the data science community for its accomplishments, 
missed the lowest performance on both the balanced accuracy metric and 
Youden’s index (γ) and ranked just before LMT with 0.10 and 0.019, 
respectively, showing its severe bias towards the majority class. 

By analysing the training performances of the classifiers with 
ITD in Table 6.3, the question of class importance in this particular 
domain problem arises when selecting algorithms for further 
improvement with a CS strategy. The higher the balanced accuracy 
and Youden’s index (γ), the higher degree of discrimination between 
both classes in the imbalanced setting. In contrast, the lowest 
measurements on the same two metrics indicate the lowest degree of 
discrimination of the minority group. 

In severe binary imbalanced learning, typically, a cost matrix in a CS 
approach penalises misclassifications of the minority group members to seek 
an improved TPR. Selecting the NB algorithm for CS modelling based on its 
balanced accuracy training performance with ITD may favour the minority 
group over the majority class. On the one hand, it allows its TNR 
performance to worsen from the lowest level of 0.810 among all classifiers to 
produce a higher TPR. On the other hand, selecting the worst-performing 
algorithm on both balanced accuracy and Youden’s index (γ) in training, i.e., 
LMT or RF, for CS modelling, may indicate caring about both classes 



 266 

equally. Any improvement to their TPR may decrease the highest level of 
TNR from 0.995 and 1.000, respectively. The previous assumption can be 
valid if all learners in this study are to show the same depth of improvement 
to (TPR) and deterioration of (TNR) when presented with the exact cost 
(penalty) combinations in an explicit cost matrix penalising 
misclassification in the desquamation-positive minority group. 
 

Table 6.3. Imbalanced ML models’ training and test performances 

 

The RT potential benefits must be weighed against the possibility of causing 
damage to healthy tissue. The final aim is to maximise curative response 
while minimising the probability of complications [8]. Hence, the RTML 
domain experts noted that favouring the minority group over the majority 
class could prevent patients from benefiting from the treatment and being 
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shifted to other alternatives. However, caring about both groups equally 
may lead to increased false negatives (FN) as more patients are likely to 
develop acute desquamation due to undergoing radiotherapy, which in turn 
compromises patients' QoL and runs the risk of local cancer recurrence in 
the event of RT interruption. 

Experts confirmed that the sensitivity achieved was insufficient for 
all ITD models in training and test without mitigating the class imbalance 
problem, ranging from 0.01 to 0.44 in training and from 0.04 to 0.5 in test 
for LMT and NB, respectively. Hence all ITD models are considered not 
effective at predicting acute desquamation.  

Therefore, we decided to examine both scenarios by seeking an 
improvement with CS classification for the top two performing classifiers, 
NB and ANN, and the bottom two, RF and LMT, in terms of their balanced 
accuracy and Youden’s index (γ) scores in training. Finally, the TPR-TNR 
trade-off evaluation occurs when comparing all tested models having applied 
both strategies, CS classification and resampling, to mitigate the 
imbalanced learning issue. The confusion matrices for the four selected 
models in Table 6.4 describe the numeric count of correctly classified 
patients, FP (type I) and FN (type II) errors misclassifications. 

 
Table 6.4. Training and test confusion matrices of the imbalanced models 
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6.10.2 Cost-sensitive modelling results  

The expected improvement to the four selected algorithms NB, ANN, RF and 
LMT with CS classification is achieved with an incremental inverse-class 
distribution cost matrix to penalise the classifier for the misclassification of 
FN records.  

The incremental penalty is expected to skew the correct classification 
toward the positive group, as no further improvements are required for the 
negative class. Forty models were built with ITD accompanied by a defined 
cost matrix and then tested with VD. To evaluate such an improvement, four 
metrics measurements in test were reported: the AUC-ROC, G-mean, TPR 
and TNR (See Table 6.5). It is sufficient to report and analyse only the test 
results with VD than the training with ITD for all CS models to allow for a 
fair comparison later with other models built with resampling techniques. 
Resample models used training datasets of different sizes (samples of ITD). 

 
Table 6.5. Cost-Sensitive test performance on the selected ITD algorithms

 

From Table 6.5, the CS classification showed a consistent deterioration of 
TNR for all models across all four algorithms. ANN was impacted by the 
highest level of TNR deterioration (∆TNR = – 0.953) when compared to its 
original ITD test result at an FN penalty of 10, CS-ANN TNR deterioration 
was preceded by the LMT model at an FN cost of 100 with a ∆TNR of – 0.466. 
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For NB, the maximum TNR loss was – 0.274, and for RF was – 0.393. 

A consistent TPR improvement is also observed when examining the 
TPR for LMT, RF and NB CS models. Initially, ANN showed a slight loss 
until an FN cost of 60, where gains started to show. Then, ANN achieved 
the most TPR improvement with ∆TPR = 0.823 at FN penalties of 70, 80, 90 
and 100. ANN’s massive improvement resulted in a total misclassification 
of all the desquamation-negative patients (majority class). The TPR gains 
as a result of CS classifications were in the range of 0.343 to 0.604 in LMT 
models, 0.004 to 0.692 in RF models, and NB models showed gains between 
0.063 and 0.271. The impact of incremental FN penalty in the cost matrix 
on each of the four selected classifiers can be observed in Figure 6.6. The 
shift in classifier attention is quantified by computing the absolute change 
in TNR and TPR for each model after applying a specific FN penalty. 

Figure 6.6 – A shows that the change rate for TPR was greater in 
LMT and RF models at every FN penalty. However, NB models showed 
almost a similar rate of change in classifier TNR and TPR. ANN maintained 
a similar behaviour to NB for the initial six steps of incremental FN cost, 
and then a constant massive change rate for both TNR and TPR occurred.  

Figure 6.6 – B shows that the shift of CS classification with 
incremental FN costs is linear on both TNR and TPR. However, the impact 
varied among different classifiers for the same FN penalty values. 

For FN penalties (Figure 6.6 – B) from 10 to 60, the change in TPR 
performance for LMT was 0.521 for FN cost of 60, followed by RF with a 
change rate of 0.473 and 0.198 in the NB case. Nevertheless, the ANN 
classifier ranked last, showing strong resistance to budge with FN penalties; 
its change fluctuated lightly between 0.021 and 0.042.  

For the same range of FN penalties, 10 to 60, the TNR change also 
showed a direct linear rise. LMT had a steep |∆TNR| elevating higher than 
all other classifiers ranging from 0.0340 to 0.188. NB presented a less 
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elevated absolute TNR change and very close to the absolute change in its 
TPR with FN penalties {10,20,30, 40,50,60}, with RF not far behind at the 
FN penalty of 60. ANN maintained its resistance to change, with FN 
penalties showing a slight change compared to its ITD model with an FN 
cost of 1. 

Fig. 6.6 Absolute change in TNR and TPR test performance per FN penalty in LMT, RF, 
NB and ANN models 

For FN penalties from 70 to 100 (Figure 6.6 – B), a sudden step-change in 
ANN classifier TNR and TPR occurred with |∆TNR| = 0.953 and |∆TPR| 
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= 0.823 across all FN penalties {70, 80, 90, 100}. This sharp constant rise in 
ANN’s |∆TNR| and |∆TPR| compared to its TNR and TPR at each penalty 
indicates a catastrophic impact of completely overfitting the negative class 
with a TPR of 1.000 and fully underfitting the majority group with a TNR of 
0.000. At the FN penalty of 80, the absolute TPR change in the RF classifier 
overtook its opponent in the prior LMT models, and both maintained a 
larger change above NB but below ANN models. 

The average CS impact on the absolute change in TPR and TNR for 
both NB and ANN models was very close at all FN penalties. The average 
|∆TPR| was 0.191 and 0.346 compared to the |∆TNR| average of 0.197 and 
0.390, respectively. LMT and RF average |∆TPR| was 0.527 and 0.400 
compared to an average |∆TNR| of 0.341 and 0.190, respectively. 

Figure 6.7 shows the AUC, G-Mean, TPR and TNR performance 
combinations for LMT, RF, NB and ANN for all incremental FN penalties. 
Figures 6.7 – A, 6.7 – B, 6.7 – C and 6.7 – D demonstrate the AUC-ROC 
vulnerability to the class imbalance problem by achieving a reasonably good 
score > 0.70 despite the models’ poor power of discrimination towards the 
minority positive class [380], in the case of LMT, RF and ANN at an FN cost 
equal to an FP of 1 in the ITD models. When applying incremental penalties 
to FN misclassifications, the AUC-ROC performance continues to retain its 
score for all CS models within a margin of 8% in the case of LMT, 3% for RF 
and 2% for NB. ANN initially tries to retain its AUC performance within a 
margin of 3% until its sudden drop to its minimum of 0.50 for all FN costs 
above 60, at which the ANN classifier loses its ability to classify all patients 
in the majority group. 

The G-Mean score is proven to be more robust than the AUC – ROC 
when assessing the ability of classifiers to avoid overfitting and underfitting 
the classes; the greater the G-Mean, the better. When examining the G-
Mean evaluations for LMT, RF and ANN ITD Models (FN penalty = 1), the 
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G-Mean evaluations were small, 0.204, 0.100 and 0.411, respectively, 
indicating poor classification performance. 

 

Fig. 6.7 TNR, TPR, G-Mean and AUC computations per FN penalty in LMT, RF, NB and 
ANN models 

In Figure 6.7 – D, the ANN’s G-Mean values dropped to zero when the model 
completely overfitted the positive class and misclassified all the negative 
class labels. NB (Figure 6.7 – C) presented a greater G-Mean for its ITD 
model of 0.645, indicating better discrimination between both classes at an 
FN cost of 1. NB maintained a consistent G-Mean with a minimal change 
margin of 2% across all CS models ranging between 0.663 and 0.669. 

Examining the G-Mean for all CS models in Figure 6.7 and Table 6.5 
shows that CS-RF and CS-NB models reserved the top ten ranks in the G-
Mean evaluation. The top five places were for RF CS models at FN costs {50, 



 273 

60, 70, 80, 90, 100}, the bottom five ranks were occupied by NB CS models 
at FN costs {20, 30, 40, 60, 70}. 

6.10.3 Resampled data modelling results 

Table 6.6 shows the TNR, TPR, TN change rate (∆TNR), TP change rate 
(∆TPR), G-Mean and AUC test performances of resampling techniques RUS, 
ROS and SMOTE for RF, LMT, NB, C4.5, ANN, KNN, SVM and LR 
classifiers. Furthermore, by analysing the effect of resampling techniques 
on both TNR and TPR in Figure 6.8, it is clear that the resampling 
techniques improved the TPR across all classifiers while the TNR 
deteriorated across all classifiers for all resampling techniques from the 
original ITD-based state. 

Table 6.6. Models test performances with data resampling strategy 

 

Figure 6.9 shows the depth of impact (absolute change in TPR and TNR) of 
the resampling techniques. In RUS-based models, the TPR change was 
greater than TNR across almost all classifiers except for NB. The largest 
(TPR, TNR) change is observed in the RF model (0.730, 0.348). In the ROS-
based models, the impact of resampling was greater on TNR for all models 
but LR and NB models; however, the depth of effect (TPR, TNR) is small 
(0.105, 0.144) and (0.021, 0.068), respectively. SMOTE-based models also 
show that TPR was impacted higher than TNR except in ANN, C4.5 and NB. 
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Fig. 6.8 TN and TP change rates in test per classifier in RUS, ROS and SMOTE models 

 

 

Fig. 6.9 Absolute TN and TP change rates in test per classifier in resampled data models 

Figure 6.10 shows the evaluation of the G-Mean and AUC-ROC in 
relation to the balance between TPR and TNR. In RUS-based models, it is 
observed that the TPR is overtaking the TNR in all models. Larger G-Mean 
values indicate that the classifier is not overfitting or underfitting any of the 
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classes. The evaluation of the G-Mean and AUC-ROC are harmonised across 
all RUS-based models (Figure 6.10 – A). The lowest G-Mean and AUC-ROC 
measurements are observed for the C4.5 model at 0.555 and 0.576, 
respectively. The highest G-mean evaluation was 0.695, achieved by the RF 
model, with the highest AUC of 0.742. 

Unlike the RUS-based models, the ROS models (Figure 6.10 – B) 
experienced a frequent disagreement between the AUC-ROC and the G-
mean scores. While the G-mean score was small, indicating there is a large 
bias of accuracy towards one of the classes in the case of (K=1)NN, ANN, 
LMT, LR, NB and RF, the AUC-ROC seems to have shown a deceiving high 
evaluation for such models, for instance, 0.746 for RF and 0.722 for NB. 

Fig. 6.10 TNR, TPR, G-Mean and AUC test performances for the resampled data models 

In SMOTE-based (Figure 6.10 – C) models, the AUC-ROC again can 
show misleading high evaluations for models with inflated class accuracy in 
either class, specifically in the cases of ANN, LMT, LR, NB and RF. For 
example, RF achieved a good AUC-ROC score of 0.746 with a poor TPR of 
0.198 and an excessive TNR of 0.937. However, examining the G-Mean for 
all SMOTE models cuts through the deception of the inflated AUC-ROC 
scores; therefore, the RF G-Mean score is 0.441, which is relatively low. A 
similar case is observed in the ANN SMOTE-based model; the AUC-ROC is 
0.699, while the G-Mean is 0.428. 
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6.11 Attributes information gain analysis 
The information Gain (IG) of each variable was also computed. The IG is the 
expected reduction of entropy when partitioning the data for a given 
variable. Entropy is related to how likely we are to predict the class labels 
of samples, i.e., when data has high entropy, it is difficult to predict the class 
label of an example, and when the entropy is low, the opposite is verified. 
So, IG provides a measure of how much the prediction of the class labels of 
samples would improve if the dataset was split using just one feature. IG 
was used to monitor any bias that occurs in either training or test datasets. 
Entropy and purity could vary due to data pre-processing techniques such 
as imputation and resampling with different numbers of records. The more 
plausible the conclusive pattern of IG among datasets, the less bias is 
introduced in modelling. By looking at both ITD and VD datasets in Figure 
6.11, it is notable that most of their features preserved close purity and 
entropy levels before and after imputation.  

Fig. 6.11 IG evaluations of ITD, RUS, ROS, SMOTE training and test datasets (VD) 
features   

Features that showed dominance in IG evaluation before the DMI 
imputation have also maintained power after the DMI imputation. Note that 
the imputation of ITD and VD separately removes the opportunity for both 
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datasets to share the same statistical parameter setting used by the 
imputation algorithm. This execution makes the training and test datasets 
independent from each other. 

6.12 Models’ evaluation and selection 
In clinical trials, the AUC-ROC metric is known to preserve the discriminant 
validity in treatment comparisons in balanced data [381] or where a suitable 
compensating method is applied to overcome the class imbalance. Hence 
clinicians rely on such a measure as a critical evaluator in judging the 
performance of a prediction model. However, in our previous results, we 
demonstrated that a model’s AUC-ROC score, in some instances, could be 
deceiving. Therefore, additional metrics such as the G-Mean was nominated 
to reveal such cases and provide a less biased assessment. In other cases, 
choosing a single model as a Hero model becomes challenging when different 
models are deemed suitable. Hence, domain experts should set an additional 
success criterion to define an acceptable level of TPR-TNR trade-off. 

To select the best-performing models out of 76 models built with 
either of the used imbalanced learning in this paper to predict the 
occurrence of acute desquamation, clinicians called for filtering out all 
models with an AUC-ROC score below 0.700. Models with good 
discriminatory powers between the positive and the negative groups must 
have a minimum AUC-ROC of 0.700. Twenty-seven prediction models with 
AUC-ROC ≥ 0.700 remained (Figure 6.12). Seven models with a high AUC-
ROC associated with a low G-Mean indicated overfitting the majority 
negative class, and underfitting the minority positive class were also 
dropped out. 

Based on all models’ validation TPR and TNR evaluations and the 
clinicians’ trade-off between TPR and TNR in Figure 6.13, RTML experts 
agreed on two trade-off conditions that all models compete towards, based 
on lower and upper threshold values of 0.630 and 0.700, respectively. These 
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conditions are (TPR ≥ 0.630 & TNR ≥ 0.700) and (TNR ≥ 0.630 & TPR ≥ 
0.700). Three models met both conditions. They are CS-RF(FN:FP=90:1, 
TNR=0.645, TPR=0.771, AUC=0.762, G-Mean=0.705), RUS-RF(TNR=0.652, 
TPR=0.740, AUC=0.742, G-Mean=0.695), CS-RF(FN:FP=80:1, and 
TNR=0.702, TPR=0.646, AUC=0.751, G-Mean=0.673).  

 

Fig. 6.12 Filtered models and their associated TNR, TPR, G-Mean and AUC-ROC test performances 

The confusion matrices for the compliant three tested models are found in 
Table 6.7. Maximising TPs is essential; therefore, specialists’ consensus 
concluded that the best-performing model (Hero Model) was CS-RF(FN:FP 
= 90:1) for exceeding all other models’ sensitivity, AUC and G-Mean 
performances while maintaining a competitive specificity. The calculated 
balanced accuracy and Youden’s index for the hero model were 0.249 and 
0.416, respectively. It is found that these values were also the highest among 
all models in this case study. 
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Fig. 6.13 True Positive Rate (TPR) and True Negative Rate (TNR) trade-off threshold 
lines for all tested models with VD. FN prediction costs refer to Penalty values in the 

explicit cost-sensitive models. While FP predictions costs are kept at a value of 1, both TP 
and TN prediction costs always remain at the value of zero 

In OCTOPUS Framework, from our observations, clinicians tend to sacrifice 
deep interpretability for a reliable model that passes their evaluation. 
Therefore, following the selection of the hero model, under the clinicians’ 
request, we removed unimportant features (features that the model did not 
use), seeking further performance improvement compared to modelling all 
available features, which partially may simplify the model. Such a request 
is not in line with recommendations in the OCTOPUS framework. In our 
literature reviews, we presented the key debates for including all applicable 
available features and the benefits of allowing better monitoring of future 
changes within the variables, not just the instances if a model is deployed in 
production. 
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Table 6.7. Performance ranking of the compliant three models on VD

 
 

Upon domain experts' request, Feature importance in RF was calculated 
with Mean Decrease Impurity [382]. Only eight features were estimated to 
have zero importance in the cost-sensitive RF model CS-RF(FN:FP = 90:1). 
These features were removed, and the model was rebuilt and tested. As a 
result, the new model performance slightly improved its specificity (The 
resistant group “Desq–”) to 0.658. The AUC and the G-Mean improved by 
less than 1% to 0.771 and 0.712, respectively, while its sensitivity (the 
susceptible group “class of interest”) had no improvement and remained 
unchanged. Feature importance is described in supplementary material 
tables B and C. The final model’s performance is described in Table 6.8. 

Table 6.8. Simplified hero model’s performances on VD
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Two additional metrics were also calculated for the simplified model, 
Matthew Correlation Coefficient (MCC) and the Area Under the Precision-
Recall Curve (AU-PRC) score; their values are 0.251 and 0.902, respectively. 
MCC describes the correlation coefficient between the observed and 
predicted classifications. An MCC of 0.251 shows that the model’s 
predictions are not random and lean towards strong predictions. The AU-
PRC of the final model was 0.902, which indicates a good detection of 
positive outcomes and a strong prediction performance overall for the model. 
These two metrics could not have interpreted the domain success any better 
than it was done already. 

6.13 Feature importance analysis 
The hero CS-RF (90:1) model had m = 122 features. Eight features were 
estimated to have zero importance, including features about the 
presence/absence of systemic lupus erythematosus and other collagen 
vascular diseases and the use of pertuzumab, eribulin, and amiodarone 
therapy. In the final step, these features were removed, and the model was 
rebuilt and revalidated in the VD. Table 6.9 lists the features included in 
the final simplified CS-RF classifier by order of importance. In descending 
order, the top 10 features were duration of other lipid-lowering drug use, 
type of surgery (wide local excision vs quadrantectomy), use of radiation 
therapy bolus, use of chemotherapy, use of boost, radiation therapy photon 
dose (MV), use of epirubicin therapy, hypertension, bra band size, and side 
of radiation therapy. 

Given that our hero model has somewhat fewer features and had a 
multicentre patient sample with diverse radiation treatment regimens, it is 
promising that its AUC-ROC of 0.77 in the VD is similar to the range of 
AUC-ROCs reported in the abstract by Reddy et al. [364] our initial models 
for acute desquamation included 122 features.  
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Table 6.9. Ranked features' importance in the simplified CS-RF model 
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Information gain (IG) represents the amount of information gained about a 
random variable or signal from observing another random variable. After 
the randomised and stratified training/validation data split, a few variables 
in the VD had a different IG to discriminate between the positive and 
negative cases compared with the ITD.  

However, Zero IG does not negate the feature’s worth, as this depends 
on the machine learning algorithm used. Any given feature could climb up 
the ranking in terms of IG if additional observations were added to the same 
data set. Hence, we included all 122 features in the modelling process.  

The ten most important features in the final hero model included 
some that might be expected to predict breast radiation toxicity, such as the 
use of radiation therapy bolus, chemotherapy, boost, radiation therapy dose, 
and bra size. Interestingly, the most important feature (use of lipid-lowering 
drugs) is not usually included in parametric statistical models for radiation 
toxicity, although HMG-CoA reductase inhibitors (statins) have previously 
been proposed as radioprotective agents [383]. Yet, unlike traditional 
statistical probability modelling, feature importance should only be 
interpreted within the context of the ML prediction model but not outside. 

6.14 X-Distance for performance ranking 
Table 6.10 ranks the final twenty models, which previously competed to 
meet two threshold lines’ values set by the domain experts in Figure 6.13. 
the two threshold lines were set since the G-Mean had very light variations 
that could no longer discriminate with high precision the winning models.  

Table 6.10 shows the sensitivity threshold for the crossover error rate 
(CER) for all the twenty models in Figure 6.13. The XDistance measure is 
calculated using the Euclidean distance from the no-bias point (0.5,0). The 
models with a sensitivity threshold greater than 0.5 are denoted as positive-
biased models (TPR>TNR), those whose sensitivity thresholds are less than 
0.5 are denoted as negative-biased models (TNR>TPR), the model’s 
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threshold of 0.5 is a balanced-model (±) (TPR=TNR). For comparison, the G-
Mean was also ranked for the same models. The models are ranked based 
on their XDistance measurements and their G-Mean evaluations.  

Table 6.10. XDistance and G-Mean evaluations for the top twenty models

 

We observe that the shorter the XDistance, the better the model, and 
the higher the G-Mean, the better the performance. To make both the 
XDistance and G-Mean comparable, we adjust the ranking scale by 
calculating 1–𝑋𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒, which means the higher 1–𝑋𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 the better 
the model (where 0 and1 are not the maximum and minimum XDistance, 
respectively).  

From the ranking in Table 6.10, we observed that the top-performing 
models selected by the domain experts occupy the top three XDistance 
ranks, and so are the lowest three CER rates. At the same time, the G-Mean 
evaluation only agrees with the top two ranked models. The G-Mean ranked 
the RF CS80 third selected model in the sixth place. The CER maintained 
an ascending ranking order of the models in parallel to the XDistance 
ranking for the top 10 models. This plausible ranking could be ought to the 
dependence between both measures (The CER is a component in measuring 
the XDistance). 

The behaviour of XDistance and the G-Mean can be observed in 
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Figure 6.14. In Figure 6.14-A, we observe a minor slip in the G-Mean 
performance for the models with higher sensitivity thresholds. This shows 
that the G-Mean is very lightly sensitive toward the model’s accuracy bias 
between TPR and TNR. On the other hand, unlike the G-Mean, the new 
XDistance evolution metric is very sensitive towards increased threshold 
values (Figure 6.14-B); the XDistance evaluation drops for models with a 
higher imbalance between TPR and TNR. This explains the agreement 
between the nominated top three models by the domain experts and those 
ranked the highest by the XDistance measure. From Figure 6.14-B, we can 
see that the top model (RF-FN Cost =90) shows less imbalance between TNR 
and TPR, and it was ranked 1st by the G-Mean; the same model shifted with 
the least XDistance evaluation. 

 

Fig. 6.14 Comparing (1 – XDistance) and G-Mean models performances 

The XDistance via the threshold indicates the models’ imbalance 
between TPR and TNR. Therefore, the RF CS90 model with XDistance of 
+0.272 indicates a better performing positive-biased model with higher 
sensitivity towards the positive class (class of interest) when compared to 
the RF CS80 negative-biased model with XDistance of –0.300 that is more 
specific. Based on the models’ validation TP-TN bias, the models in Table 
6.10 can be presented in Figures 6.15 and 6.16, where the indicative sign is 
used to express the direction of the models’ TP-TN bias. 
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Fig. 6.15 XDistance indicative sign of models’ TP-TN imbalance 

 

Fig. 6.16 Graphical XMatrix with CER coordinates for the filtered Twenty models 
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6.15 RT acute desquamation prediction case study discussion 
The overall goal of this case study was to build new machine learning models 
to predict radiation therapy acute toxicity desquamation in breast cancer 
patients from the REQUITE cohort. The built models are to classify these 
subjects into two categories, susceptible to occurrence or non-occurrence 
(resistant).  

The ability to predict and classify this variable using simple clinical 
routinely collected data will significantly impact the identification of 
subjects likely to avoid QoL deterioration during radiation therapy. The 
models tested here input features that include baseline characteristics, 
familial data, breast cancer staging records, chemotherapy-regimen drugs, 
lifestyle observations, medical conditions, sociodemographic factors, medical 
operations, treatment history, female-specific factors, mental and 
behavioural disorders, medications, quality of life and breast RT procedure 
measurements such as normo-fractionation procedure. The features also 
included reported RT toxicities risk factors which were previously 
demonstrated to correlate with acute desquamation significantly. Imaging 
and genomic risk factors were excluded [384]. 

Our models initially used 122 input features (attributes) to predict a 
binary acute desquamation endpoint. The models were built with eight ML 
algorithms, NB, LR, ANN, SVM, KNN, C4.5, LMT and RF; each has a 
different learning scheme. In addition, a purity-based ranking technique, 
IG, was calculated to evaluate the information worth of each input feature 
independently in relation to the class attribute. 

When observing IG evaluation after the randomised and stratified 
training/test data split, it was noted that a few variables in the test dataset 
(VD) contained a different worth of information as compared to the training 
set (ITD). Therefore, a way to interpret the calculated IG values is the 
possible presence of associations between each feature and the class labels 
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in each training dataset.  

This purity measure differs from correlation association and is not 
utilised as a feature selection in this study. Observed IG evaluation also 
showed that some variables in the VD set contained more information than 
the ITD. In ITD, it was observed that “radio_skin_max_dose_Gy”, 
“BED_Breast_Gy”, “radio_breast_fractions_dose_per_fraction_Gy”, “ra- 
dio_breast_ct_volume_cm3” and “radio_photon_2nd_fractions” dominated 
the top five ranks in purity values in relation to the class variable (acute 
desquamation endpoint). After balancing the two classes with RUS 
resampling technique, "radio_skin_max_dose_Gy" still reserved the highest 
IG evaluation, and "radio_breast_fractions_dose_per_fraction_Gy" slipped 
to sixth place while "BED_Breast_Gy" remained in the top five; other new 
predictors soared to the top five IG ranks: those are "radio_type_imrt", 
"radio_boost_type" and "radio_photon_energy_MV or kV". In the 
oversampled dataset (ROS), similar to ITD, “radio_breast_ct_volume_cm3” 
and “radio_skin_max_dose_Gy” were in the top five places, while three new 
predictors joined the top five ranks - “BED_Total_Gy”, 
“weight_at_cancer_diagnosis_kg” and “radio_photon_boost_volume_cm3”. 
Unlike all training sets, in SMOTE synthetic oversampled dataset, five new 
predictors occupied the top five ranks, those being "breast_separation_cm", 
"band_size_UK_inch", "bra_cup_size", "household_members" and 
"height_cm".  

This information theory investigation into the models' features based 
on domain experts' advice adds a layer of details to the observed correlations 
in previous studies by describing the strength of each feature to discriminate 
between the positive and negative classes [385 – 391]. 

Furthermore, when considering the ITD, RUS, ROS and SMOTE 
datasets, some variables showed no purity towards the class: ITD had 42 
predictors with zero IG, RUS had 59 predictor variables (the highest), and 
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ROS and SMOTE had the least predictors with zero IG of 11 and 12 
respectively. Zero IG does not negate the potential relevance of these 
predictors in the predictive models, as they may climb up the ranking if 
additional records are added to the same dataset. They simply mean that 
based on purity and entropy in these training datasets, they do not help 
distinguish between both class labels at the endpoint. Some ML models may 
still calculate otherwise and utilise them in building predictive models 
depending on the learning mechanism. Thus, all 122 predictors were 
included in the modelling process. 

Again, as the previous case studies witnessed in machine learning 
modelling, tackling the imbalanced class learning problem noticeably 
impacts the performance of standard parametric and non-parametric ML 
algorithms. Also, the classification modelling performance in the training 
phase is severely affected by class separability. Thus, training the standard 
ML algorithms with highly imbalanced classes without adjusting the 
training instances results in an accuracy bias towards the majority class.  

In this case study, we tackled that bias by applying two approaches. 
In one tactic, resampling techniques (RUS, ROS and SMOTE) were used to 
adjust the class imbalance in the classification training phase at the dataset 
level, which amplified the IG in many input features. The other approach (a 
cost-sensitive tactic) awarded incremental higher weights to the records in 
the minority class while maintaining unchanged levels of information in the 
input features. 

It was observed that the cost-sensitive approach achieved the highest 
ranks in the models' evaluation. It remains unclear whether other remedies 
for imbalanced data classifications, such as Ensembles Learning 
(implemented at the algorithmic level), could result in better performances 
[392]. However, the advantages of resampling techniques evaluated here 
include simplicity and transportability. Nevertheless, they are limited by 
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the amount of IG manipulation since their application results in biased 
predictions toward the minority class.  

The excessive use of such techniques could result in overfitting, as 
seen in the ROS and SMOTE models. In this study, the original REQUITE 
cohort dataset was highly imbalanced. Traditional ML algorithms were 
sensitive to higher information gains. They tended to produce superb 
performance results in training for ROS and SMOTE datasets, but when 
testing the models, the overall model performance often dropped below the 
training phase performance. Unlike resampling techniques, cost-sensitive 
classification is proven complex to determine the exact penalty for minority 
records misclassification. Also, as observed in the results, the complexity 
dramatically increases since the attention (depth of impact) to the minority 
records of different ML classifiers of various learning schemes is shifted 
differently for the same misclassification penalty when building predictive 
models. Adding to the mixture of complexity, a good choice of evaluation 
metrics becomes crucial.  

As previously described in the literature review chapter, Chapter 3, 
some metrics, despite how popular they are in a research area, i.e., Accuracy 
and AUC-ROC, produced deceiving good measurement evaluations. 
Therefore, more imbalanced modelling-focussed metrics were chosen, such 
as Balanced Accuracy, Youden’s Index, the G-Mean and AU-PRC. 

This study showed that applying the correct level of resampling 
without overly disrupting the original data information in the RUS-based 
method with the slight manipulation of IG levels, together with the desired 
choice of performance metrics, produced a good prediction solution [303]. 
Furthermore, the RF-RUS model competed with further developed models 
with cost modifications in the case of cost-sensitive classification. Three of 
the 89 models reported in this study satisfied the trade-off threshold 
conditions (Tables 6.6 and 6.7). 
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However, one "hero" model gathered experts’ interest in this specific 
domain problem: a cost-sensitive RF model with an FN:FP misclassification 
penalty ratio of 90:1. Nevertheless, the effect of the classifier's learning 
scheme becomes highly noticeable in imbalanced datasets when the 
minority classes prediction accuracies (TPR) are compared. The results also 
showed that improving the ITD models TPR with CS-classification does not 
massively impact the positive group by putting the majority group at a 
higher disadvantage of deteriorating its TNR, i.e., the NB case. It is observed 
that some algorithms are highly resistant to higher misclassification costs 
to improve their original TPR in the imbalanced learning setting, i.e., in the 
case of ANN. 

In the resampled models' results analysis, the learning scheme's 
impact decreased with the class imbalance severity in the datasets 
compared to balanced datasets. In addition, classifiers behaved differently 
for the same cost matrix in cost-sensitive classification when trained on the 
same dataset.  

Our "hero" model was further simplified by discarding eight features. 
According to RF model-based feature selection method Mean Decrease 
Impurity (MDI), these features were deemed unimportant of zero value. The 
"hero" classifier is rebuilt with the remaining 114 features. The performance 
of the "hero" model continued to show a slight improvement in TNR. The 
MDI feature selection is biased towards preferring variables with more 
categories [393]. This bias is not a problem in our study since MDI was only 
used to optimise (simplify) a model with known performance. However, 
suppose the dataset contains two (or more) correlated features from the 
model's point of view. In that case, any of these correlated features can be 
used as a top predictor without preferring one over the others. Once one of 
them is used, the importance of the others is significantly reduced since the 
impurity they can eliminate is already removed by the first selected feature. 
Therefore, they will have lower reported importance. This reduction of 
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importance is not an issue when we want to use this feature selection 
technique to simplify the model since it is desired to remove mostly 
unimportant features. 

Nevertheless, it can provide a misleading perception that one of the 
variables is a strong predictor when interpreting the model. In contrast, the 
others in the same group are unimportant, while in fact, they are very 
closely associated with the response endpoint (Figure 6.11 and Table 6.9). 
The misinterpretation of unimportant features’ removals is somewhat 
reduced thanks to random feature selection at each node in Random Forests. 
However, the generalised effect within the averaged model is not entirely 
eliminated. The difficulty of interpreting the ranking of associated variables 
is not Random Forest specific; it applies to most model-based feature 
selection methods. 

Like most biomedical case studies, when biochemical tests are 
performance assessed, the data obtained is heavily skewed (imbalanced) in 
our study. Typical disease prevalence is in the range of ~10% for those with 
the disease, and ~90% do not have that disease. It is common to use the 
AUC-ROC curve to evaluate the clinical performance validity of a 
biochemical test. The AUC-ROC curve is a graphical representation of the 
trade-off between TPR and FPR for every possible cut-off for a test or a 
combination of tests. The AUC- ROC gives an idea about the benefit of using 
the test in question.  

However, the highly imbalanced datasets tend to provide a much 
better ROC curve; therefore, visual interpretation and comparisons of AUC-
ROC for ML models trained with imbalanced datasets can be misleading 
[322], as observed in all ITD-based models in Table 6.5. Therefore, 
additional performance metrics are required to provide a more accurate 
representation of the model's validity. The TPR and TNR are used less 
frequently than ROC curves, but as we examined the models, assessing 



 293 

additional performance metrics is proven to be a better choice for 
imbalanced datasets.  

Setting a graphical TPR-TNR trade-off threshold that maximises 
correct classifications gains and minimises misclassification losses indicates 
the class importance in the domain experts' view. It allows for a more 
pragmatic final model selection. 

Currently, mechanistic models are embedded within the treatment 
planning systems to predict RT complications; these are Lyman–Kutcher–
Burman models [394][395]. These models allow for effective biological 
optimisation of the delivered radiation dose among competing treatment 
strategies; however, the handmade exceptions in their algorithms mean that 
they often fail to predict the actual side effects induced by RT.  

In PubMed/Medline database, the current available studies indicate 
only two are viable [8][362][364] that produced clinically valid ML models 
for detecting acute side effects of breast RT. In one study [362], models were 
built based on detecting the body-surface temperature increase. Thermal 
images of the irradiated breast were taken from a small population of 90 
patients at four consecutive time points. The caveat for this approach 
remains to be the large-scale analysis of RT toxicities at the expense of time 
required to obtain the imaging data and accounting for the considerable 
variation between individual patients’ normal tissue reaction to RT and the 
resultant toxicities. The other is a comparative study [364] that trained a 
group of ML algorithms on a large population of 2277 patients from 5 clinical 
centres. And it achieved a good AUC-ROC performance. However, the 
prediction models are complex, using more than 300 input variables. Using 
such a large number of variables makes it hard to follow and interpret the 
model’s output. The final and recent study by Rattay et al. [396] attempted 
to create simpler toxicity prediction models that excluded dosimetry and 
radiomic data. Unfortunately, the model did not clinically validate in the 
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REQUITE cohort.  

Unlike the previous studies, our study accounts for fewer and easy-
to-obtain variables during the RT treatment planning phase, incorporating 
the largest cohort among other studies. As a result, our models are 
considered encouraging. In addition, data-driven studies often lack 
reporting on the data pre-processing techniques involved in building their 
ML models. By reporting the full methodology designed and delivered by an 
interdisciplinary team of experts, we provide further clarity and contribute 
further to the research society.  

Thus, our formulated approach equips researchers with a new 
pragmatic domain-driven approach highlighting concerns when applying 
data imbalance strategies and assessing multiple models for similar real-
world clinical problems. 

6.16 RT acute desquamation prediction case study conclusion 
Our study shows that applying our new OCTOPUS framework to model 
phenotype and clinical variables datasets has the potential to offer a fast 
and inexpensive solution to predict acute toxicities for breast cancer RT 
patients as an adverse event in healthcare.  

This potential was examined by aligning the classification task to 
predict specific adverse skin effects based on Common Terminology Criteria 
for Adverse Events. This study's selection of a binary-class prediction task 
is strategic to include patients classed within severe, life-threatening and 
death criteria. It identifies patients at higher risk of developing acute 
desquamation conditions and are more likely to benefit from treatment 
plans to be personalised and trigger discussions about treatment risks and 
benefits with patients. The process of training various ML algorithms with 
10-Fold Cross-Validation and validating the models with a class-stratified 
isolated group of patients of the same size as the training data makes this 
study encouraging for follow-up research and validation on external cohorts. 
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If validated, then there is potential to proceed with medical screening 
research.  

Our final model has the potential to aid researchers in further 
understanding the relationships between the used features and moist 
desquamation side effects.  

Before being embedded into applications, the model requires further 
improvements in line with the optimised radiation dose output obtained 
from the current mechanistic models. The final model may also be improved 
by utilising the treatment dosimetry measurements obtained from the 
current treatment planning system to predict acute desquamation 
accurately. In addition, decisions obtained from the legacy systems and the 
new models are recorded and compared.  

This domain problem is the first to use only clinical features at a 
CTCAE >3 setting to predict acute toxicities with ML. This study has the 
largest number of patients in modelling and validation, among other known 
studies. This study could be used as a benchmark for future studies to 
compare its results to other research from the same domain. Nevertheless, 
further analyses will be followed where additional methods to improve the 
outcomes will be investigated.  

Limitations of this and many other ML papers used in radiation 
oncology are the number of variables used compared to routine practice, the 
different toxicity scales and the grades for an acute skin reaction and 
ulceration that define the class endpoint. 

Real-world applicability is also reduced due to unrealistic datasets. 
However, the volume and variety of data routinely collected on patients will 
only increase over time. Indeed, many of the variables currently collected in 
routine practice are not fully utilised. For example, past medical history, 
drug history and family history form a large number of binary variables in 
the REQUITE dataset but, at present, are often recorded as free text on the 
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first encounter between patient and oncologist. Regardless, similar models 
using more limited datasets should be developed and tested before an ML 
approach to predict RT toxicities can move beyond the research setting into 
clinical practice. Despite a good amount of research in ML methods for 
toxicity assessment, this is the first effort to summarize the field's current 
state and produce competing prediction models to the best of our knowledge. 

Further limitations arise; despite the rigorous error detection in the 
data preprocessing phase, we cannot exclude errors from manual recording 
during data collection. According to the REQUITE study protocol, patients 
were assessed at the start and end of treatment and annually thereafter. 
This may have missed cases of acute desquamation as acute radiation 
toxicity is known to peak up to 2 weeks after the end of treatment. Although 
we incorporated differences in radiation therapy techniques by including all 
available recorded treatment parameters in the analysis, this may not fully 
account for variability in treatment plans between participating centres or 
treating physicians. Similarly, variable transformation or feature 
engineering (e.g., calculating the BED and binarisation of chemotherapy 
drugs) could have led to the creation of a new feature that is less powerful 
and suppresses important information inferred by its raw components.  

In modelling the radiation therapy dose variable, alternatives such as 
a categorical variable divided by type of radiation therapy regimen could 
have been used (e.g., hypo- vs standard fractionation). Variable aggregation 
could have led to model overfitting due to misleading combined features and 
may show false significance or insignificance in the analysis. 

Although the resampling techniques used in this study have 
advantages in their simplicity and transportability, other remedies to 
address imbalanced data, such as ensemble learning (which is implemented 
at the algorithmic level), could be used to improve model performance. 

Cost-sensitive learning was selected to penalise false negatives. 
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However, its application depends on the clinical situation. For example, 
suppose a model was designed to allocate patients to a toxicity-lowering 
radiation therapy regimen that might affect tumour control. In that case, 
FPs may need a higher cost than FNs. This study used the impurity-based 
ranking mean decrease impurity filter to simplify the final model with a 
known performance, but it is important to keep in mind that feature 
selection based on impurity reduction is generally biased toward preferring 
variables with more categories. 

The top-performing model could classify patients with acceptable 
performance in the validation cohort (AUC-ROC = 0.77). However, before 
they can be used in clinical practice, further optimisation of ML prediction 
models, including genomic markers, is required, and the models should be 
validated in external cohorts. 

Using the Crossover Error Rate (CER) and the new XDistance measure 
demonstrates an example of the true original interdisciplinary nature of our 
research. Both metrics have achieved the level of discrimination among 
models using the success criteria. Both nominated the exact top three 
performing models selected by the experts, while the G-Mean managed to 
rank the top two. The CER shows that there is still room for exploring 
performance metrics for machine learning in different domains. Our 
research venture with XDistance showed a possible graphical metric that 
offers somewhat a TP-TN-balanced model assessment. Like all other 
performance metrics, the CER and XDistance have their limitations. First, 
we only applied these two metrics to twenty classifiers from a few varieties 
of learners. Therefore, further research is required to establish whether 
other classifiers’ crossover error curves share similar behaviour.  

We only applied XDistance to a binary classification problem, and it 
is still unknown if the new metrics can offer a reliable assessment in multi-
class classifications. In addition, currently, we have no automatic way to 
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determine the actual crossover between the FN and FP curves other than 
visually. Perhaps different image processing techniques could extract the 
crossover coordinates from many graphs. We also acknowledge that the 
XDistance and the CER may not be better than other metrics at a larger 
scale of models at interpreting different success criteria.  

Finally, we assume that the XDistance has no defined maximum and 
minimum range. It follows our empirical assumption that real-world 
classification performance can rarely offer a perfect classification of all 
classes. Thus, there should always be a crossover point to measure the 
XDistance, but it becomes hard to generalise our assumption without 
knowing the behaviour of all algorithms’ curves. 

In the unlikely perfect classification scenario that occurred, the 
crossover points would not be formed due to FPR and FNR equal to zero, 
and the XDistance becomes undefined. Some may argue that the CER in 
that scenario is zero; others may say the crossing happens at ∞; hence, the 
XDistance is also zero indicating perfect classification or 1 or ∞, which seems 
to be a new paradox since 0 ≠ 1 ≠ ∞. Similarly, another hypothetical 
scenario creates an inverted classifier where FPR and FNR are equal to 1. 
Therefore, here we open the door for enthusiastic new researchers to 
research in this area further. 
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Chapter 
Discussion and Conclusion 

 
 
 
 
 
 
 
 
 
 

 

 

he overall aim of our research is to create a data-driven framework, 
OCTOPUS, to develop predictive new models that can be used as 
new potential tools for identifying individuals’ susceptibility to 

adverse events and complications in healthcare applications. Predicting the 
occurrences of adverse events is the first step of preventive healthcare 
measures. Therefore, in this thesis, we defined susceptibility to adverse 
events and complications into two classification problems, a binary-class 
problem that includes resistant and susceptible subjects and a three-class 
problem which includes resistant, susceptible, and hyper-susceptible 
individuals. The latter can also be mapped to a qualitative low, moderate, 
and high-risk scale. 

This thesis established that the definition of susceptibility to adverse 
events differs among various domains. In each domain, the susceptibility 
boundaries can also be hard and soft depending on the domain experts’ 
definition of the endpoint of the predictive task. However, an efficient 
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prediction of patients within the given definitions is needed for making 
effective recommendations of interventions, i.e., lifestyle modifications and 
treatment planning.  

The correct classification of subjects for the right interventions to 
avoid disease and illness is a type of preventive healthcare. The result 
improves individuals’ quality of life (QoL), and also prevents the potential 
occurrence of future deterioration of their health and QoL following a 
particular course of intervention.  

In this thesis, we researched and discussed three impact scenarios in 
the case of the misidentification of individuals’ susceptibility status. Two 
could result in an increased cost due to unnecessary interventions (i.e., 
misclassification of a healthy subject in the visceral fat-associated case 
study) or potentially an unnecessary change in treatment course or planning 
(misclassification of a resistant patient in the radiotherapy project). 
However, these scenarios may be managed at a further cost with additional 
clinical tests to make informed decisions. 

The third scenario, from the advanced radiotherapy toxicity case 
study, could result in a significant negative impact on the patient impairing 
their QoL in the short term, long term, permanently or even increasing the 
patient mortality risk. Although experts’ budgets may manage additional 
costs, there is no acceptable compensation for a permeant impairment to 
QoL or loss of life. From that point of view, the correct classification of 
susceptible patients outweighs the correct identification of resistant 
individuals. Both case studies justify the need for our research. 

The scale of susceptibility status (endpoint definition) in both case 
studies was set with hard boundaries. These boundaries were set by life 
scientists based on documented observations in health sciences research in 
the case of susceptibility to VAT-associated diseases. Also, they are based on 
clinically observed outcomes by physicians in hospitals in the case of 
susceptibility to radiotherapy early toxicities. 
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Both case studies are life-critical in principle and practice. For the 
dangerous visceral fat levels study, the current traditional methods used to 
screen VAT amounts, such as MRI scans, are proven very costly. The high 
cost may deter patients from screening due to a lack of affordability. Thus, 
individuals progress silently to develop a chronic disease in the short or long 
term.  

In that instance, such cost savings highly outweigh the instant benefit 
of the early identification of susceptible individuals. Nevertheless, that 
expense falls behind on the long-term scale compared to the cost of 
managing the positive diagnoses of chronic visceral fat-associated diseases, 
including diabetes, cardiovascular diseases and cancers. 
 
The breast cancer radiation therapy (RT) case carries out a much higher 
urgency to identify susceptible patients. The Current methods used in 
advanced radiation therapy planning to predict side effects, such as 
mechanistic models embedded within the treatment planning systems, only 
allow for effective biological optimisation of the delivered radiation dose 
among competing treatment strategies. The exceptions in these models are 
handmade, which often fail to predict the side effects induced by RT. 
Therefore, the benefit of instant correct prediction of susceptibility to RT 
toxicity, in this case, outweighs the cost. 

Therefore, the cost-benefit win in the RT case is due to the nature of 
acute toxicities, whose effects and outcomes are often observed within a 
short window. This window usually runs from a few days up to nine weeks 
but with a likely lasting impact of a lifetime.  
 

7.1 Contributions to knowledge 
Our new octopus framework yielded new original models for preventive 
healthcare. It was formulated by examining various concepts and techniques 
from multiple fields, including machine learning, life sciences, clinical 
sciences, psychology, cyber security, test engineering and nuclear physics. 
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As presented in Chapter 1, the contribution of knowledge in this thesis was 
achieved in two parts; the primary objectives include developing the Octopus 
framework and utilising the new framework to develop new predictive 
models for preventive healthcare, assessed by domain experts. And the 
secondary objective includes proposing potential new solutions or mitigation 
methods to achieve an acceptable modelling performance. 
 

7.1.1 Octopus data-driven framework 

We met the primary objectives A and B, in Chapter 1 of this thesis, by 
introducing Octopus, our newly formulated data-driven framework, in 
Chapter 4 to predict susceptibility to adverse events in preventive 
healthcare is promising. It was applied in Chapters 5 and 6 to confirm its 
reliability. With carefully scoped methods and considerations while allowing 
for trivial enhancements, it has the potential to provide faster means of early 
screening and reduce the cost of the lack of intervention. 

To formulate the Octopus framework, we investigated the potential 
impact of various methods, techniques, tactics, and strategies before 
integrating any of them into modelling patients’ susceptibility to adverse 
events. The new framework is a modest contribution to data science and 
healthcare communities. It includes heuristic-systematic recommendations 
and the scope of methods for successful modelling meeting specific areas of 
concern in health care. These methods and recommendations proposed 
mitigations in data quality assessment, cleaning, preprocessing, 
engineering, modelling and performance evaluation.  

Examples of such recommendations can be seen early in Chapter 4, 
starting with conceptualising the susceptibility problem in healthcare and 
the VISPAQ quality assessment of data sources. To enhance data quality, 
we adopted complex techniques for the first time from other domains, such 
as Boundary Value Analysis (BVA), from test engineering to find common 
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statistically hidden irregular values. We also shared our considerations for 
machine learning-driven measurement scale topology.  

In addition, we designed our new Multi-Method Imputation process 
(MMI) to assist healthcare data analysts in minimising the spread and 
impact of missing data on their analysis. Based on learning schemes, the 
Octopus framework scoped only a range of data preprocessing techniques 
and eight machine-learning classification algorithms out of hundreds of 
available methods in the field. It recommended further suitable adjustments 
that could benefit ordinal class and cost-sensitive classifications. 

The logic behind selecting the framework’s methods is made clear. All 
the scoped methods emerged from following a heuristic-systematic research 
narrative to filter accumulated research presented in the literature. 

Finally, OCTOPUS was evaluated by its application to develop 
predictive models for preventive healthcare in two case studies. In each case 
study, the methodology demonstrated the structural flow of using a specific 
collection of methods to model the defined healthcare endpoints. 

7.1.2 New predictive models for preventive healthcare 

In Chapters 5 and 6, we modelled real-world preventive healthcare 
problems. The new models were approved by data scientists, life scientists, 
healthcare professionals, clinicians, surgeons and physicians from the UK 
National Health Service (NHS).  Therefore, our primary research objectives 
C and D in Chapter 1 were also met. 

Using the OCTOPUS framework, new machine-learning models were 
built to predict susceptibility to adverse events that met the domain experts' 
desired success criteria. The new successful models are regarded as new 
potential inexpensive predictive tools by the domain experts that will 
require further validation. The models also helped further understand the 
potential predictive role of newly engineered features in both studies, the 
Physical Activity Index (PAI) in visceral fat-associated diseases case, and 
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the chemotherapy agents and the RT Biological Effective Dose (BED) in the 
advanced RT toxicity prediction case study. 

7.1.3 New modelling enhancement methods 

In the Octopus framework, Chapter 4, we combined state-of-the-art data 
visualisation techniques with traditional unsupervised machine learning 
and information theory to formulate a new sampling strategy to tackle 
imbalanced learning from imbalanced datasets. We introduced a Minority 
Pattern Reconstruction (MPR) resampling method favouring hyper-
susceptible subjects (the minority group at the highest risk). Additionally, 
we proposed using its hybrid with two other sampling techniques, SMOTE 
NC and the conventional Random Under-Sampling (RUS), seeking possible 
performance improvements. 

Octopus framework provided a detailed description and critique of 
various classification evaluation metrics. It closely examined their 
effectiveness and interpretations, specifically in imbalanced learning. 
Therefore, within the Octopus framework, we developed a new potentially 
balanced metric, XDistance, influenced by the ultimate fact that bringing 
someone from the dead is the same as erasing someone’s memory. Both 
scenarios are impossible, at least for normal organic beings. Therefore, we 
considered a breach of confidentiality in cybersecurity equivalent to a 
patient’s death in healthcare. The impact of both scenarios represents a 
point of no return. Thus, we derived XDistance from the Cross Error Rate 
(CER). The CER is a performance metric designed to evaluate biometric 
systems in Cybersecurity. XDistance successfully ranked performances of 
susceptibility classifiers. Hence, XDistance, a new empirical graphical 
performance metric, is introduced for imbalanced learning. 

Therefore, the secondary research objectives are met by developing a 
new sampling strategy and a performance ranking metric. 
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7.2 Limitations 

When creating a new framework, there is a large number of methods and 
considerations to take into account. Most of the recommendations and 
considerations are based on empirical results published in research, and no 
one approach can fit all problems. This is seen in the literature review 
chapters. 

Therefore, the traditional belief that a single algorithm cannot fit all 
is correct in line with the No Free Lunch Theorem. However, our research 
shows that a careful choice of a pool of methods and algorithms in an end-
to-end modelling workflow potentially yields a robust framework that can 
be suitable to solve multiple problems in a single area—susceptibility to 
adverse events in preventive healthcare in our case. But that does not rule 
out potential limitations, including the curse of iterations driven by the wide 
variety of parameters and strategies governed by the various possibilities of 
problem definitions. Some limitations identified in our work are: 

A) Susceptibility is one problem; however, it has multiple interpretations 
in each domain. Different interpretations of the term susceptibility still 
exist, even in a single discipline such as healthcare. This variety limits 
the type of analysis. And the varied success criteria definitions vary the 
evaluation metrics and adjustments to the chosen methods used for each 
problem’s output. 

B) We are in a new era when clinicians have heard about the great potential 
of machine learning in clinical decision support systems. Trust can be 
further established with domain experts' full participation in all data 
mining project phases. This leads to interpretability limitations, the 
creation of opaque models, by including a large number of features while 
handling the consequences of such modelling. Despite their opaque 
nature, they are accepted by domain experts. Despite domain experts’ 
acceptability, using many features questions the generalisation-
interpretability trade-off. The domain experts in our case studies 
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seemed to favour finding a reliable model to the interpretability of the 
model itself. This may have been driven by the significant involvement 
of domain experts in all phases of the projects, including setting the data 
collection protocols, examining the quality, data cleaning, data 
engineering, formulation of a methodology, model selection and 
evaluation. 

C) There is no definitive mitigation to deal with missing data in data 
preparation. Still, depending on the problem at hand, with a satisfactory 
amount of literature reviews, researchers could form their own process 
to deal with missing data. We formulated a new multi-method 
imputation (MMI) process for handling missing data in confirmatory 
health analysis. However, recording each step in the flow is time-
consuming.  

D) One must take care when deciding on the topology used to define the 
features measurement scales, which is also governed by the type of 
machine learning tool used for modelling. The measurement scales are 
still an open field of research, and we formulated our own topology of 
measurement scales to suit our analysis and limited by the modelling 
tool. Initially, our choice was driven by avoiding creating rules outside 
the boundaries of normal values. In our framework, the formulation of 
such rules was not examined in the context of rule-based models. The 
lack of such an examination is driven by favouring prediction 
generalisation to interpretability.  

E) In imbalanced learning, one must be careful when applying data 
resampling techniques. The effect of their application can increase the 
data purity resulting in higher information gain evaluations in the unit 
of divergence bits. Our experiments showed that our selected machine 
learning algorithms are susceptible to overfitting with the artificial 
increase in Information Gain (IG) evaluation. Increased IG could 
sacrifice the classifier bias for more variance, producing overly 
optimistic models. This was specifically seen in oversampling methods, 
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ROS and some cases of SMOTE. Our framework is limited by not 
specifying a definitive recommendation for over-sampling thresholds to 
prevent overfitting.  

F) In modelling, we observed that Random Under-Sampling (RUS) 
outperformed other Over-Sampling Techniques, such as Random Over 
Sampling (ROS) and Synthetic Minority Over Sampling Technique 
(SMOTE). These methods change the features’ IG levels when examined 
in units of divergence bits. However, when developing the new MPR 
resampling technique, we presented the information leakage by 
calculating each resampled set's normalised features’ information gain 
(IG). RUS showed minimal features’ IG leakage and shrinkage, 
preserving similar normalised IG levels compared to the original 
imbalanced dataset. Perhaps its superior performance may be 
attributed to safeguarding the natural noise-to-signal ratio within the 
classes. This preservation of information may shape the classifiers to 
achieve better bias-variance trade-offs, benefitting the minority region 
of the instance space.  

The reconstruction of a data set with the new MPR resampling 
technique and its hybrids favouring the minority class maintained 
similar normalised IG levels to the original imbalanced set’s features. 
Thus, it highly improved imbalanced learning. MPR hybrid sampling 
outperforms direct RUS application in modelling the VAT prediction in 
females. However, the MPR technique was only applied to a three-class 
problem, and the opportunity did not arise for its application to problems 
with different counts of class labels. 

G) Noisy data can be data that is corrupted by errors due to improper data 
collection procedures. This is different to genuine class overlapping. 
Although our research showed that reputable data sources would likely 
have better data collection protocols than others, we provided a VISPAQ 
six-point process to check the data source before committing to a case 
study. Data errors may not appear abnormal when measured with the 
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traditional statistical outliers’ detection methods like IQR, hence the use 
of BVA and ECP. However, using both techniques can be time-
consuming. 

H) A collection of standard data preprocessing techniques may be sufficient 
to engineer a dataset enough to produce promising results. Octopus 
framework gives recommendations to the sequences of applying some 
methods. However, some of these recommendations are always limited 
by the characteristics of the data and the learning algorithm. 

I) Unlike multinominal classification, cost-sensitive modelling is easy to 
implement in binary classification. However, each machine learning 
scheme is affected differently for the same cost matrix. This observed 
behaviour was mitigated using an incremental inverse class distribution 
approach in steps equal to multiples of the minority-to-majority class 
ratio in the Radiotherapy Toxicity prediction project. This means that if 
a single derived cost for misclassification has ever been calculated, it 
may not be sufficient to improve classifier performance. Instead, this 
cost might be more suitable for selecting the model that best fits the 
success criteria. When cost-sensitive classification was applied from 
Octopus framework, it was implemented with an incremented inverse 
class distribution cost matrix. One limitation to mention, in the 
matrices, the false negative penalty has a lower limit but no stopping 
unified upper limit. Our observations were made over 8 algorithms; the 
upper limit penalty per algorithm in our framework is defined by 
reaching the performance of the inverted base learner. This upper limit 
could be different among algorithms. 

J) The XDistance and the CER metrics are limited to the model selection 
criteria provided by the experts in the radiotherapy study. We are not 
sure how the FN-FP curves will behave for different algorithms. We do 
not know if the XDistance could be used to interpret other success 
criteria in other models. Also, it is unknown how other distance 
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calculations rank the models’ balance estimates compared to the 
Euclidean distance. 

K) We had the opportunity to analyse the use of newly engineered variables 
in our case studies, such as the Physical Activity Index (PAI) and 
Biological Effective Dose (BED). However, the PAI was analysed 
independently outside the models' context. BED was only analysed in 
the context of the chosen hero model. Different machine learning models 
utilise features differently; thus, it is not possible to draw a solid unified 
conclusion about their influence on the predictions in their fields. 
 

7.3 Implications for practice 

Our research mainly focussed on designing and developing a data-driven 
framework to predict patients’ susceptibility to adverse health events using 
the UK Biobank and the European study REQUITE. We showed original 
research contributions in multiple areas. For the interdisciplinary 
community, our framework and models may seem a giant leap forward from 
an application point of view in susceptibility modelling. Still, the same 
contributions may seem a small step to others from the computing society 
scratching the surface of deeper computational issues. Some of the 
implications in practice can be:  
A) Our data-driven framework developed new promising models. Selected 

models fulfilled the domain expert’s success criteria with the potential 
of being used as new tools for screening only if they pass external 
validation. 

B) The developed models require input values from a large number of 
features. These features are collected routinely and stored electronically. 
Therefore, due to the large number of features, it is impractical to feed 
their values manually. The inputs to the models must be automated 
from electronic health records repositories if such models are considered 
for subjects’ screening. 
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C) The unknown performance of our framework and models if applied to 
other susceptibility endpoints and different adverse effects. Moreover, 
further restrictions are linked to the new models themselves; even if the 
models were validated on external cohorts, the models might become 
unstable due to concept drift after some time or population change. 

D) Applying BVA and ECP requires inspecting all features while 
accounting for their logical relationships. Therefore, it is only advised 
for critical data cleaning tasks, especially if the data was manually 
collected. Also, the larger number of features, the higher the complexity 
of applying both methods. 

E) Despite the rigorous error and irregularities detection in the data 
preparation phase, we cannot exclude errors due to manual data 
collection recording.  

F) We used datasets from the UK Biobank and REQUITE consortium; the 
sample count was in the thousands, and the characteristics of our 
framework are not known for samples of larger dimensions (i.e., 
hundreds of thousands or in millions) should these become available. 
Perhaps, active learning could handle classification tasks better on 
larger datasets. 

G) Our new MPR sampling strategy was applied to a multiclass imbalance 
problem in one case study, where the hyper-susceptible subjects were 
the minority and the group of main interest, followed by the susceptible 
individuals (moderates), also had a certain imbalance ratio. Whether our 
sampling strategy would work in other multiclass imbalanced learning 
problems is unknown. 

H) The scope of evaluation metrics is highly dependent on the 
interpretation of the defined success criteria. In some cases, a selection 
of multiple performance metrics may be required to interpret a given 
success criterion. In addition, performance metrics from other domains, 
such as the Crossover Error Rate (CER), could also be applicable. 
Therefore, the developed XDistance metric seems promising in ranking 
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the models' performances based on their FN-FP balance. However, a 
computational error could occur in severely imbalanced models. Severe 
imbalance prevents the formation of crossover error curves, leading to 
calculation errors of CER and XDistance metric. Still, this error can be 
used to indicate severely imbalanced models.  

I) In the new framework, we always examined information gain differences 
between the training and test sets. Thus, we made their size 
proportionally almost equal. Nevertheless, how our models will perform 
on different training-test split ratios is unknown. 

J) The susceptibility to visceral fat diseases prediction models used the 
summary form of physical activity features, the Physical Activity Index 
(PAI). We do not know the impact of modelling the susceptibility to 
visceral fat endpoints using the raw PAI components (granular 
features). 
 

7.4 Future Work 

The limitations listed above represent the best starting point for further 
research. Applying our framework to other datasets with different 
susceptibility endpoint definitions tests further its effectiveness and 
applicability. The models require additional validations on external cohorts 
before being considered for medical screening research. The following 
additional future work emerges:  
A) Further research can also be carried out on the current case studies in 

this thesis by predicting susceptibility to other radiotherapy side effects 
by varying endpoint definitions in the REQUITE data on the scale of 
CTCAE v4.0.  

B) Also, on the visceral fat case study, further work can be carried out by 
altering the scale of the MRI visceral fat amounts to predict 
susceptibility to a specific associate disease. Also, future work could 
explore the effect of diet-related features in the visceral fat prediction 
case study.  
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C) Our framework conceptualises susceptibility labels’ definitions into 
three categories, resistant, susceptible and Hyper-susceptible. However, 
the CTCAE v4.0 and MRI-VAT scales offer an opportunity to model the 
suitability to adverse events aligned to the risk scale from the British 
Standard Guide for Occupational Health and Safety Management 
System (BS8800) [397]. The standard specifies five risk levels driven by 
the likelihood of occurrence. These levels are Trivial, Tolerable, 

Moderate, Substantial and Intolerable (see Table 7.1). 

Table 7.1. BS8800 standard guide for occupational health and safety risk matrix 
 Severity 

Slightly 
Harmful 

Harmful 
Extremely 
Harmful 

Li
ke

lih
oo

d 

Highly Unlikely Trivial Risk Tolerable Risk Moderate Risk 

Unlikely Tolerable Risk Moderate Risk Substantial Risk 

Likely Moderate Risk Substantial Risk Intolerable Risk 

 
Table 7.1 is a risk matrix from the BS8800 [397]. It shows a more 
informed classification of risk based on statistical likelihood. The 
likelihood ratios were not given for our projects, and the prediction 
requirement was label focused. If these figures are made available to 
define new susceptibility endpoints, further modelling tasks can be 
carried out to predict multiple adverse events in healthcare. 

D) Our framework is designed to predict patients’ susceptibility endpoints 
with hard-set boundaries. This setup is per design requirements. 
Although our models met the success criteria, we are unsure if soft 
boundaries, such as predicting the degree of susceptibility (possible 
fuzziness of membership), could offer a better solution. 
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