218 research outputs found

    Behavioral Mimicry Covert Communication

    Get PDF
    Covert communication refers to the process of communicating data through a channel that is neither designed, nor intended to transfer information. Traditionally, covert channels are considered as security threats in computer systems and a great deal of attention has been given to countermeasures for covert communication schemes. The evolution of computer networks led the communication community to revisit the concept of covert communication not only as a security threat but also as an alternative way of providing security and privacy to communication networks. In fact, the heterogeneous structure of computer networks and the diversity of communication protocols provide an appealing setting for covert channels. This dissertation is an exploration on a novel design methodology for undetectable and robust covert channels in communication networks. Our new design methodology is based on the concept of behavioral mimicry in computer systems. The objective is to design a covert transmitter that has enough degrees of freedom to behave like an ordinary transmitter and react normally to unpredictable network events, yet it has the ability to modulate a covert message over its behavioral fingerprints in the network. To this end, we argue that the inherent randomness in communication protocols and network environments is the key in finding the proper medium for network covert channels. We present a few examples on how random behaviors in communication protocols lead to discovery of suitable shared resources for covert channels. The proposed design methodology is tested on two new covert communication schemes, one is designed for wireless networks and the other one is optimized for public communication networks (e.g., Internet). Each design is accompanied by a comprehensive analysis from undetectability, achievable covert rate and reliability perspectives. In particular, we introduced turbo covert channels, a family of extremely robust model-based timing covert channels that achieve provable polynomial undetectability in public communication networks. This means that the covert channel is undetectable against any polynomial-time statistical test that analyzes samples of the covert traffic and the legitimate traffic of the network. Target applications for the proposed covert communication schemes are discussed including detailed practical scenarios in which the proposed channels can be implemented

    A critical review of cyber-physical security for building automation systems

    Full text link
    Modern Building Automation Systems (BASs), as the brain that enables the smartness of a smart building, often require increased connectivity both among system components as well as with outside entities, such as optimized automation via outsourced cloud analytics and increased building-grid integrations. However, increased connectivity and accessibility come with increased cyber security threats. BASs were historically developed as closed environments with limited cyber-security considerations. As a result, BASs in many buildings are vulnerable to cyber-attacks that may cause adverse consequences, such as occupant discomfort, excessive energy usage, and unexpected equipment downtime. Therefore, there is a strong need to advance the state-of-the-art in cyber-physical security for BASs and provide practical solutions for attack mitigation in buildings. However, an inclusive and systematic review of BAS vulnerabilities, potential cyber-attacks with impact assessment, detection & defense approaches, and cyber-secure resilient control strategies is currently lacking in the literature. This review paper fills the gap by providing a comprehensive up-to-date review of cyber-physical security for BASs at three levels in commercial buildings: management level, automation level, and field level. The general BASs vulnerabilities and protocol-specific vulnerabilities for the four dominant BAS protocols are reviewed, followed by a discussion on four attack targets and seven potential attack scenarios. The impact of cyber-attacks on BASs is summarized as signal corruption, signal delaying, and signal blocking. The typical cyber-attack detection and defense approaches are identified at the three levels. Cyber-secure resilient control strategies for BASs under attack are categorized into passive and active resilient control schemes. Open challenges and future opportunities are finally discussed.Comment: 38 pages, 7 figures, 6 tables, submitted to Annual Reviews in Contro

    Digital provenance - models, systems, and applications

    Get PDF
    Data provenance refers to the history of creation and manipulation of a data object and is being widely used in various application domains including scientific experiments, grid computing, file and storage system, streaming data etc. However, existing provenance systems operate at a single layer of abstraction (workflow/process/OS) at which they record and store provenance whereas the provenance captured from different layers provide the highest benefit when integrated through a unified provenance framework. To build such a framework, a comprehensive provenance model able to represent the provenance of data objects with various semantics and granularity is the first step. In this thesis, we propose a such a comprehensive provenance model and present an abstract schema of the model. ^ We further explore the secure provenance solutions for distributed systems, namely streaming data, wireless sensor networks (WSNs) and virtualized environments. We design a customizable file provenance system with an application to the provenance infrastructure for virtualized environments. The system supports automatic collection and management of file provenance metadata, characterized by our provenance model. Based on the proposed provenance framework, we devise a mechanism for detecting data exfiltration attack in a file system. We then move to the direction of secure provenance communication in streaming environment and propose two secure provenance schemes focusing on WSNs. The basic provenance scheme is extended in order to detect packet dropping adversaries on the data flow path over a period of time. We also consider the issue of attack recovery and present an extensive incident response and prevention system specifically designed for WSNs

    Digital provenance - models, systems, and applications

    Get PDF
    Data provenance refers to the history of creation and manipulation of a data object and is being widely used in various application domains including scientific experiments, grid computing, file and storage system, streaming data etc. However, existing provenance systems operate at a single layer of abstraction (workflow/process/OS) at which they record and store provenance whereas the provenance captured from different layers provide the highest benefit when integrated through a unified provenance framework. To build such a framework, a comprehensive provenance model able to represent the provenance of data objects with various semantics and granularity is the first step. In this thesis, we propose a such a comprehensive provenance model and present an abstract schema of the model. ^ We further explore the secure provenance solutions for distributed systems, namely streaming data, wireless sensor networks (WSNs) and virtualized environments. We design a customizable file provenance system with an application to the provenance infrastructure for virtualized environments. The system supports automatic collection and management of file provenance metadata, characterized by our provenance model. Based on the proposed provenance framework, we devise a mechanism for detecting data exfiltration attack in a file system. We then move to the direction of secure provenance communication in streaming environment and propose two secure provenance schemes focusing on WSNs. The basic provenance scheme is extended in order to detect packet dropping adversaries on the data flow path over a period of time. We also consider the issue of attack recovery and present an extensive incident response and prevention system specifically designed for WSNs

    State of the art of cyber-physical systems security: An automatic control perspective

    Get PDF
    Cyber-physical systems are integrations of computation, networking, and physical processes. Due to the tight cyber-physical coupling and to the potentially disrupting consequences of failures, security here is one of the primary concerns. Our systematic mapping study sheds light on how security is actually addressed when dealing with cyber-physical systems from an automatic control perspective. The provided map of 138 selected studies is defined empirically and is based on, for instance, application fields, various system components, related algorithms and models, attacks characteristics and defense strategies. It presents a powerful comparison framework for existing and future research on this hot topic, important for both industry and academia

    Architecting a One-to-many Traffic-Aware and Secure Millimeter-Wave Wireless Network-in-Package Interconnect for Multichip Systems

    Get PDF
    With the aggressive scaling of device geometries, the yield of complex Multi Core Single Chip(MCSC) systems with many cores will decrease due to the higher probability of manufacturing defects especially, in dies with a large area. Disintegration of large System-on-Chips(SoCs) into smaller chips called chiplets has shown to improve the yield and cost of complex systems. Therefore, platform-based computing modules such as embedded systems and micro-servers have already adopted Multi Core Multi Chip (MCMC) architectures overMCSC architectures. Due to the scaling of memory intensive parallel applications in such systems, data is more likely to be shared among various cores residing in different chips resulting in a significant increase in chip-to-chip traffic, especially one-to-many traffic. This one-to-many traffic is originated mainly to maintain cache-coherence between many cores residing in multiple chips. Besides, one-to-many traffics are also exploited by many parallel programming models, system-level synchronization mechanisms, and control signals. How-ever, state-of-the-art Network-on-Chip (NoC)-based wired interconnection architectures do not provide enough support as they handle such one-to-many traffic as multiple unicast trafficusing a multi-hop MCMC communication fabric. As a result, even a small portion of such one-to-many traffic can significantly reduce system performance as traditional NoC-basedinterconnect cannot mask the high latency and energy consumption caused by chip-to-chipwired I/Os. Moreover, with the increase in memory intensive applications and scaling of MCMC systems, traditional NoC-based wired interconnects fail to provide a scalable inter-connection solution required to support the increased cache-coherence and synchronization generated one-to-many traffic in future MCMC-based High-Performance Computing (HPC) nodes. Therefore, these computation and memory intensive MCMC systems need an energy-efficient, low latency, and scalable one-to-many (broadcast/multicast) traffic-aware interconnection infrastructure to ensure high-performance. Research in recent years has shown that Wireless Network-in-Package (WiNiP) architectures with CMOS compatible Millimeter-Wave (mm-wave) transceivers can provide a scalable, low latency, and energy-efficient interconnect solution for on and off-chip communication. In this dissertation, a one-to-many traffic-aware WiNiP interconnection architecture with a starvation-free hybrid Medium Access Control (MAC), an asymmetric topology, and a novel flow control has been proposed. The different components of the proposed architecture are individually one-to-many traffic-aware and as a system, they collaborate with each other to provide required support for one-to-many traffic communication in a MCMC environment. It has been shown that such interconnection architecture can reduce energy consumption and average packet latency by 46.96% and 47.08% respectively for MCMC systems. Despite providing performance enhancements, wireless channel, being an unguided medium, is vulnerable to various security attacks such as jamming induced Denial-of-Service (DoS), eavesdropping, and spoofing. Further, to minimize the time-to-market and design costs, modern SoCs often use Third Party IPs (3PIPs) from untrusted organizations. An adversary either at the foundry or at the 3PIP design house can introduce a malicious circuitry, to jeopardize an SoC. Such malicious circuitry is known as a Hardware Trojan (HT). An HTplanted in the WiNiP from a vulnerable design or manufacturing process can compromise a Wireless Interface (WI) to enable illegitimate transmission through the infected WI resulting in a potential DoS attack for other WIs in the MCMC system. Moreover, HTs can be used for various other malicious purposes, including battery exhaustion, functionality subversion, and information leakage. This information when leaked to a malicious external attackercan reveals important information regarding the application suites running on the system, thereby compromising the user profile. To address persistent jamming-based DoS attack in WiNiP, in this dissertation, a secure WiNiP interconnection architecture for MCMC systems has been proposed that re-uses the one-to-many traffic-aware MAC and existing Design for Testability (DFT) hardware along with Machine Learning (ML) approach. Furthermore, a novel Simulated Annealing (SA)-based routing obfuscation mechanism was also proposed toprotect against an HT-assisted novel traffic analysis attack. Simulation results show that,the ML classifiers can achieve an accuracy of 99.87% for DoS attack detection while SA-basedrouting obfuscation could reduce application detection accuracy to only 15% for HT-assistedtraffic analysis attack and hence, secure the WiNiP fabric from age-old and emerging attacks

    Acoustic-channel attack and defence methods for personal voice assistants

    Get PDF
    Personal Voice Assistants (PVAs) are increasingly used as interface to digital environments. Voice commands are used to interact with phones, smart homes or cars. In the US alone the number of smart speakers such as Amazon’s Echo and Google Home has grown by 78% to 118.5 million and 21% of the US population own at least one device. Given the increasing dependency of society on PVAs, security and privacy of these has become a major concern of users, manufacturers and policy makers. Consequently, a steep increase in research efforts addressing security and privacy of PVAs can be observed in recent years. While some security and privacy research applicable to the PVA domain predates their recent increase in popularity and many new research strands have emerged, there lacks research dedicated to PVA security and privacy. The most important interaction interface between users and a PVA is the acoustic channel and acoustic channel related security and privacy studies are desirable and required. The aim of the work presented in this thesis is to enhance the cognition of security and privacy issues of PVA usage related to the acoustic channel, to propose principles and solutions to key usage scenarios to mitigate potential security threats, and to present a novel type of dangerous attack which can be launched only by using a PVA alone. The five core contributions of this thesis are: (i) a taxonomy is built for the research domain of PVA security and privacy issues related to acoustic channel. An extensive research overview on the state of the art is provided, describing a comprehensive research map for PVA security and privacy. It is also shown in this taxonomy where the contributions of this thesis lie; (ii) Work has emerged aiming to generate adversarial audio inputs which sound harmless to humans but can trick a PVA to recognise harmful commands. The majority of work has been focused on the attack side, but there rarely exists work on how to defend against this type of attack. A defence method against white-box adversarial commands is proposed and implemented as a prototype. It is shown that a defence Automatic Speech Recognition (ASR) can work in parallel with the PVA’s main one, and adversarial audio input is detected if the difference in the speech decoding results between both ASR surpasses a threshold. It is demonstrated that an ASR that differs in architecture and/or training data from the the PVA’s main ASR is usable as protection ASR; (iii) PVAs continuously monitor conversations which may be transported to a cloud back end where they are stored, processed and maybe even passed on to other service providers. A user has limited control over this process when a PVA is triggered without user’s intent or a PVA belongs to others. A user is unable to control the recording behaviour of surrounding PVAs, unable to signal privacy requirements and unable to track conversation recordings. An acoustic tagging solution is proposed aiming to embed additional information into acoustic signals processed by PVAs. A user employs a tagging device which emits an acoustic signal when PVA activity is assumed. Any active PVA will embed this tag into their recorded audio stream. The tag may signal a cooperating PVA or back-end system that a user has not given a recording consent. The tag may also be used to trace when and where a recording was taken if necessary. A prototype tagging device based on PocketSphinx is implemented. Using Google Home Mini as the PVA, it is demonstrated that the device can tag conversations and the tagging signal can be retrieved from conversations stored in the Google back-end system; (iv) Acoustic tagging provides users the capability to signal their permission to the back-end PVA service, and another solution inspired by Denial of Service (DoS) is proposed as well for protecting user privacy. Although PVAs are very helpful, they are also continuously monitoring conversations. When a PVA detects a wake word, the immediately following conversation is recorded and transported to a cloud system for further analysis. An active protection mechanism is proposed: reactive jamming. A Protection Jamming Device (PJD) is employed to observe conversations. Upon detection of a PVA wake word the PJD emits an acoustic jamming signal. The PJD must detect the wake word faster than the PVA such that the jamming signal still prevents wake word detection by the PVA. An evaluation of the effectiveness of different jamming signals and overlap between wake words and the jamming signals is carried out. 100% jamming success can be achieved with an overlap of at least 60% with a negligible false positive rate; (v) Acoustic components (speakers and microphones) on a PVA can potentially be re-purposed to achieve acoustic sensing. This has great security and privacy implication due to the key role of PVAs in digital environments. The first active acoustic side-channel attack is proposed. Speakers are used to emit human inaudible acoustic signals and the echo is recorded via microphones, turning the acoustic system of a smartphone into a sonar system. The echo signal can be used to profile user interaction with the device. For example, a victim’s finger movement can be monitored to steal Android unlock patterns. The number of candidate unlock patterns that an attacker must try to authenticate herself to a Samsung S4 phone can be reduced by up to 70% using this novel unnoticeable acoustic side-channel

    An Empirical Analysis of Security and Privacy in Health and Medical Systems

    Get PDF
    Healthcare reform, regulation, and adoption of technology such as wearables are substantially changing both the quality of care and how we receive it. For example, health and fitness devices contain sensors that collect data, wireless interfaces to transmit data, and cloud infrastructures to aggregate, analyze, and share data. FDA-defined class III devices such as pacemakers will soon share these capabilities. While technological growth in health care is clearly beneficial, it also brings new security and privacy challenges for systems, users, and regulators. We group these concepts under health and medical systems to connect and emphasize their importance to healthcare. Challenges include how to keep user health data private, how to limit and protect access to data, and how to securely store and transmit data while maintaining interoperability with other systems. The most critical challenge unique to healthcare is how to balance security and privacy with safety and utility concerns. Specifically, a life-critical medical device must fail-open (i.e., work regardless) in the event of an active threat or attack. This dissertation examines some of these challenges and introduces new systems that not only improve security and privacy but also enhance workflow and usability. Usability is important in this context because a secure system that inhibits workflow is often improperly used or circumvented. We present this concern and our solution in its respective chapter. Each chapter of this dissertation presents a unique challenge, or unanswered question, and solution based on empirical analysis. We present a survey of related work in embedded health and medical systems. The academic and regulatory communities greatly scrutinize the security and privacy of these devices because of their primary function of providing critical care. What we find is that securing embedded health and medical systems is hard, done incorrectly, and is analogous to non-embedded health and medical systems such as hospital servers, terminals, and personally owned mobile devices. A policy called bring your own device (BYOD) allows the use and integration of mobile devices in the workplace. We perform an analysis of Apple iMessage which both implicates BYOD in healthcare and secure messaging protocols used by health and medical systems. We analyze direct memory access engines, a special-purpose piece of hardware to transfer data into and out of main memory, and show that we can chain together memory transfers to perform arbitrary computation. This result potentially affects all computing systems used for healthcare. We also examine HTML5 web workers as they provide stealthy computation and covert communication. This finding is relevant to web applications such as personal and electronic health record portals. We design and implement two novel and secure health and medical systems. One is a wearable device that addresses the problem of authenticating a user (e.g., physician) to a terminal in a usable way. The other is a light-weight and low-cost wireless device we call Beacon+. This device extends the design of Apple's iBeacon specification with unspoofable, temporal, and authenticated advertisements; of which, enables secure location sensing applications that could improve numerous healthcare processes

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp
    • …
    corecore