3,147 research outputs found

    A Maximum Power Point Tracking Control Algorithms for a PMSG‐based WECS for Isolated Applications: Critical Review

    Get PDF
    This chapter deals with a comprehensive overview study of the direct‐driven (DD) permanent magnet synchronous generator (PMSG) for wind‐energy generation system for stand‐alone applications. The dynamic model of PMSG is presented, and different maximum power point tracking (MPPT) algorithms have been realized in the aim to compare their performance. A comparison of performances of the conventional P&O MPPT and the fuzzy logic P&O (FLC P&O) MPPT is presented. Control technique for the presented system is presented and analyzed for the generator side converter. The simulation results carried out using Matlab/Simulink software show the effectiveness of the wind turbine control system

    Complementary Power Control for Doubly Fed Induction Generator-Based Tidal Stream Turbine Generation Plants

    Get PDF
    The latest forecasts on the upcoming effects of climate change are leading to a change in the worldwide power production model, with governments promoting clean and renewable energies, as is the case of tidal energy. Nevertheless, it is still necessary to improve the efficiency and lower the costs of the involved processes in order to achieve a Levelized Cost of Energy (LCoE) that allows these devices to be commercially competitive. In this context, this paper presents a novel complementary control strategy aimed to maximize the output power of a Tidal Stream Turbine (TST) composed of a hydrodynamic turbine, a Doubly-Fed Induction Generator (DFIG) and a back-to-back power converter. In particular, a global control scheme that supervises the switching between the two operation modes is developed and implemented. When the tidal speed is low enough, the plant operates in variable speed mode, where the system is regulated so that the turbo-generator module works in maximum power extraction mode for each given tidal velocity. For this purpose, the proposed back-to-back converter makes use of the field-oriented control in both the rotor side and grid side converters, so that a maximum power point tracking-based rotational speed control is applied in the Rotor Side Converter (RSC) to obtain the maximum power output. Analogously, when the system operates in power limitation mode, a pitch angle control is used to limit the power captured in the case of high tidal speeds. Both control schemes are then coordinated within a novel complementary control strategy. The results show an excellent performance of the system, affording maximum power extraction regardless of the tidal stream input.This work was supported in part by the University of the Basque Country (Universidad del Pais Vasco UPV/ Euskal Herriko Unibertsitatea EHU) through Project PPG17/33 and by the MINECO through the Research Project DPI2015-70075-R (MINECO/FEDER, EU). (Ministerio de Economa, Industria y Competitividad/Fondo Europeo de Desarrollo Regional, European Union). The authors would like also to thank the anonymous reviewers for the useful comments that have helped to improve the initial version of this manuscript

    Characterisation of a horizontal axis wind turbine’s tip and root vortices

    Get PDF
    The vortical near wake of a model horizontal axis wind turbine has been investigated experimentally in a water channel. The objective of this work is to study vortex interaction and stability of the helical vortex filaments within a horizontal axis wind turbine wake. The experimental model is a geometrically scaled version of the Tjæreborg wind turbine, which existed in western Denmark in the late 1980s. Here, the turbine was tested in both the upwind and downwind configurations. Qualitative flow visualisations using hydrogen bubble, particle streakline and planar laser-induced fluorescence techniques were combined with quantitative data measurements taken using planar particle image velocimetry. Vortices were identified using velocity gradient tensor invariants. Parameters that describe the helical vortex wake, such as the helicoidal pitch, and vortex circulation, were determined for three tip speed ratios. Particular attention is given here to the root vortex, which has been investigated minimally to date. Signatures of the coherent tip vortices are seen throughout the measurement domain; however, the signature of the root vortex is only evident much closer to the rotor plane, irrespective of the turbine configuration. It is postulated that the root vortex diffuses rapidly due to the effects of the turbine support geometries

    Fast Assessment of Dynamic Behavior Analysis with Evaluation of Minimum Synchronous Inertia to Improve Dynamic Security in Islanded Power Systems

    Get PDF
    Over the last decades, renewable energy sources (RES) participation into the electricity supply mix has been constantly increasing not only in interconnected power systems but also in isolated power systems. This power supply transition seeks to accomplish renewable-based electricity generation targets and policies as well as the de-carbonisation of societies for a more sustainable energy future. Such transition should be achieved through investments and consequent substantial installation of wind and solar farms in power systems, not only because of their obvious environmental benefits but also because of their technological maturity and consequent steady cost declining.Despite renewable energy penetration growth in several power grids, there are some technical challenges to deal with when we are in presence of isolated power systems with variable renewable energy sources. Those technical issues are identical to the ones faced by larger and interconnected systems but they could intensify in these less robust type of systems. Therefore, issues like frequency control and spinning reserve management become even more important to guarantee acceptable levels of stability and security of the system. Moreover, the increasing participation of wind and photovoltaics in the generation mix, unlike conventional generators, leads to a significant reduction in the amount of synchronous inertia present in the system, which is essential to avoid a rapid rate of change of frequency (RoCoF) and large frequency deviations after a contingency. Thus, higher RoCoF and frequency deviations will be observed, which might trigger the protection devices resulting in a cascading outage and a blackout.This thesis presents a preventive control tool capable of evaluate power system stability and identify the minimum synchronous inertia required to maintain system stable for a certain operation scenario (characterized by its dispatch and demand) and, if necessary, to support the decision maker to perform a new power dispatch or consider the activation of synchronous condensers.For that purpose, a small and isolated power system with a significant participation of RES in the generation mix was considered. By performing a power dispatch, several operation scenarios were created and used as input in a MATLAB/SIMULINK model, which was used to study the dynamic response of the system when a disturbance occur. In this work two different disturbances were considered: active power output loss by the biggest thermal unit in the system and the loss of 50\% in both wind and PV active power output. Therefore, a dataset was created to train two different neural networks (one for each contingency) so that they could emulate the dynamic response of the system. By applying a sensitivity analysis by the neural networks it is possible to identify the minimum synchronous inertia required by the system to keep it secure and stable

    Intelligent Robotic Systems Study (IRSS), phase 3

    Get PDF
    This phase of the Intelligent Robotic Systems Study (IRSS) examines some basic dynamics and control issues for a space manipulator attached to its worksite through a compliant base. One example of this scenario is depicted, which is a simplified, planar representation of the Flight Telerobotic Servicer (FTS) Development Test Flight 2 (DTF-2) experiment. The system consists of 4 major components: (1) dual FTS arms to perform dextrous tasks; (2) the main body to house power and electronics; (3) an Attachment Stabilization and Positioning Subsystem (ASPS) to provide coarse positioning and stabilization of the arms, and (4) the Worksite Attachment Mechanism (WAM) which anchors the system to its worksite, such as a Space Station truss node or Shuttle bay platform. The analysis is limited to the DTF-2 scenario. The goal is to understand the basic interaction dynamics between the arm, the positioner and/or stabilizer, and the worksite. The dynamics and controls simulation model are described. Analysis and simulation results are presented

    Robust Speech Features based on synchrony spectrum determination using PLLs

    Get PDF
    In this work we propose to include synchrony effects, known to exist in the auditory system, to represent speech signal information in a robust way. The system decomposes the signal in a number of simpler signals, and utilizes a bank of Phase Locked Loops (PLLs) to obtain information of the frequencies present at each time. This information is interpolated in order to obtain a spectral-like representation based in synchrony effects, measured by the PLLs. Noisy speech recognition experiments are performed using this synchrony-based spectrum, which is transformed into a small set of coefficients by using a similar transformation as the one utilized for the Mel cepstrum features. We show their recognition performance compared to Mel cepstrum features obtained from the standard power spectrum. Some recognition improvements are obtained for the case of vocalic sounds for this approach, especially in the case of severe noise conditions.Sociedad Argentina de Informática e Investigación Operativ

    Modeling and control strategies of fuzzy logic controlled inverter system for grid interconnected variable speed wind generator

    Get PDF
    Today, variable speed operation of a permanent magnet synchronous generator (PMSG) is becoming popular in the wind power industry (PI). A variable speed wind turbine (VSWT)-driven PMSG, in general, is connected to the grid using a fully controlled frequency converter (FC). Along with the generator side converter, the FC necessitates the grid side inverter system that has a great impact on the stability issue of the VSWT-PMSG, especially in the case of network disturbance. The well-known cascaded-controlled inverter system has widely been reported in much of the literature, where multiple PI controllers are used in inner and outer loops. However, a fuzzy logic controller deals well with the nonlinearity of the power system, compared to a PI controller. This paper presents a simple fuzzy logic controlled inverter system for the control of a grid side inverter system, which suits well for VSWT-PMSG operation in a wide operating range. This is one of the salient features of this paper. Detailed modeling and control strategies of the overall system are demonstrated. Both dynamic and transient performances of VSWT-driven PMSG are analyzed to show the effectiveness of the control strategy, where simulation has been done using PSCAD/EMTDC

    Flux Based Sensorless Speed Sensing and Real and Reactive Power Flow Control with Look-up Table based Maximum Power Point Tracking Technique for Grid Connected Doubly Fed Induction Generator

    Get PDF
    This aim of this paper is to design controller for Doubly Fed Induction Generator (DFIG) converters and MPPT for turbine and a sensor-less rotor speed estimation to maintain equilibrium in rotor speed, generator torque, and stator and rotor voltages. It is also aimed to meet desired reference real and reactive power during the turbulences like sudden change in reactive power or voltage with concurrently changing wind speed. The turbine blade angle changes with variations in wind speed and direction of wind flow and improves the coefficient of power extracted from turbine using MPPT. Rotor side converter (RSC) helps to achieve optimal real and reactive power from generator, which keeps rotor to rotate at optimal speed and to vary current flow from rotor and stator terminals. Rotor speed is estimated using stator and rotor flux estimation algorithm. Parameters like tip speed ratio; coefficient of power, stator and rotor voltage, current, real, reactive power; rotor speed and electromagnetic torque are studied using MATLAB simulation. The performance of DFIG is compared when there is in wind speed change only; alter in reactive power and variation in grid voltage individually along with variation in wind speed
    corecore