119 research outputs found

    A Review of Indocyanine Green Fluorescent Imaging in Surgery

    Get PDF
    The purpose of this paper is to give an overview of the recent surgical intraoperational applications of indocyanine green fluorescence imaging methods, the basics of the technology, and instrumentation used. Well over 200 papers describing this technique in clinical setting are reviewed. In addition to the surgical applications, other recent medical applications of ICG are briefly examined

    Innovative Device for Indocianyne Green Navigational Surgery

    Get PDF
    Dynamic reality has been integrated into developing surgical techniques, with the goals of providing increased intraoperative accuracy, easier detection of critical anatomical landmarks, and better general results for the patient. Enhancement of the reality in surgical theaters using single or multi sensorial augmenters (haptic, thermic and visual) has been reported with various degrees of success. This paper presents a novel device for navigational surgery and ancillary clinical applications based on the fluorescent properties of Indocyanine Green (ICG), a safe, FDA-approved dye that emits fluorescence at higher wavelengths than endogenous proteins. The latest technological developments and the aforementioned convenient quantum behavior of ICG allow for its effective identification in tissues by means of a complementary metal-oxide semiconductor (CMOS) infrared camera. Following fundamental research on the fluorophor in different biological suspensions and at various concentrations, our team has built a device that casts a beam of excitation light at 780nm and collects emission light at 810-830nm, filtering ambient light and endogenous autofluorescence. The emission light is fluorescent and infrared, unlike visible light. It can penetrate tissues up to 1.6cm in depth, providing after digitization into conventional imaging anatomical and functional data of immense intra-operative value

    Multimodality endoscopic imaging technology for visualization of layered architecture and vasculature

    Get PDF
    Endoscopic imaging technologies, such as endoscopic optical coherence tomography (OCT), near infrared (NIR) fluorescence, photoacoustic (PA), and ultrasound (US) have been used to investigate vascular and morphological changes as hallmarks of early cancer in the gastrointestinal (GI) tract. Here, we developed two multimodality imaging systems which are integrated PA/US and integrated OCT/NIR fluorescence which can obtain layered architecture and vasculature simultaneously. In vivo imaging of rectum wall from Sprague Dawley (SD) rats with these two imaging systems were demonstrated. Both imaging systems enable the use of one imaging probe for performing two different imaging, thereby improving prognosis by early detection and reducing costs. For integrated PA/US, the architectural morphology and vasculature of the rectum wall were visualized without the usage of contrast agent, but slow imaging speed and usage of match medium are the main limitations for clinical translation. With regard to the integrated OCT/NIR fluorescence, it is able to perform high speed imaging, however the addition of contrast agent and limited imaging depth are the main concern for clinical application

    The use of indocyanine green in bariatric surgery: A systematic review

    Get PDF
    Fluorescence-guided surgery is a recently developed technique in minimally invasive surgery in which a fluorescent dye is used to complement the surgeon’s judgment in making real-time intraoperative assessment of organ vascularization and proper tissue perfusion. This technique has been adopted in several different surgical subspecialties with positive results, particularly in hepatobiliary and colorectal surgery. More recently, it has also been applied in bariatric surgery, with the aim of reducing the incidence of leaks. This paper reviews the relevant literature on the topic

    The use of near-infrared imaging with indocyanine green in the ovarian tissue transplantation: a case report

    Get PDF
    The request for fertility preservation has consistently increased in recent years. To our knowledge this case report is the first to describe the application of near-infrared intraoperative imaging using indocyanine green (NIR-ICG) during ovarian tissue transplantation (OTT), to assist surgeon choosing the site of implantation of ovarian fragments. OTT was performed in a 42-year-old woman using NIR-ICG to evaluate the vascularisation of peritoneal area as the site of implantation for the ovarian graft. we believe this new approach could be useful in identifying the best reimplantation site

    Aqueous Angiography with Fluorescein and Indocyanine Green in Bovine Eyes.

    Get PDF
    PurposeWe characterize aqueous angiography as a real-time aqueous humor outflow imaging (AHO) modality in cow eyes with two tracers of different molecular characteristics.MethodsCow enucleated eyes (n = 31) were obtained and perfused with balanced salt solution via a Lewicky AC maintainer through a 1-mm side-port. Fluorescein (2.5%) or indocyanine green (ICG; 0.4%) were introduced intracamerally at 10 mm Hg individually or sequentially. With an angiographer, infrared and fluorescent images were acquired. Concurrent anterior segment optical coherence tomography (OCT) was performed, and fixable fluorescent dextrans were introduced into the eye for histologic analysis of angiographically positive and negative areas.ResultsAqueous angiography in cow eyes with fluorescein and ICG yielded high-quality images with segmental patterns. Over time, ICG maintained a better intraluminal presence. Angiographically positive, but not negative, areas demonstrated intrascleral lumens with anterior segment OCT. Aqueous angiography with fluorescent dextrans led to their trapping in AHO pathways. Sequential aqueous angiography with ICG followed by fluorescein in cow eyes demonstrated similar patterns.ConclusionsAqueous angiography in model cow eyes demonstrated segmental angiographic outflow patterns with either fluorescein or ICG as a tracer.Translational relevanceFurther characterization of segmental AHO with aqueous angiography may allow for intelligent placement of trabecular bypass minimally invasive glaucoma surgeries for improved surgical results

    COMPARATIVE ANALYZES OF ICG-VA, DIVA, FLOW 800 IMAGING IN CEREBROVASCULAR SURGERY

    Get PDF
    It is the most important to visualize cerebral vessels along with its surrounding structures during cerebrovascular surgery and it can be easier with real-time angiographic imaging. There are different kinds of indocyanine green dye based videoangiography are commonly used in cerebrovascular surgery. The objective. Comparative analyzing of ICG-AG, DIVA and Flow 800 color mapping in cerebrovascular surgery. Materials and methods. Real time surgery assessment of vascular and surrounding structures in 29 cerebral aneurysms clipping, one STA-MCA bypass and 2 carotid artery endarterectomy had been performed using ICG-VA, DIVA, flow 800 color mapping from August to October 2019. Result. In 23 cases in cerebral aneurysms clipping ICG-VA could not clearly visualize perforators compared to its’ better visualization by DIVA. In 3 cases, occlusion of perforators were assessed by DIVA after clip application which was solved by reapplication of surgical clips. In one STA-MCA bypass surgery, patency and sequences of blood inflow to cortical branches of MCA (M4) from recently anastomosed STA branches were assessed with ICG-VA, DIVA and Flow 800 color mapping. Visualization of the lack of blood flow and fluttering atherosclerotic plaques in carotid endarterectomy was observed by ICG-VA, DIVA, flow 800 mapping. Conclusion. In real time cerebrovascular surgery, ICG-VA, DIVA, and Flow 800 color mapping can be effective tool to better visualization of vascular and surrounding structures. Benefits of flow 800 color mapping outweighs the advantages of both ICG-VA and DIVA. However, DIVA is also better than ICG-VA to visualize

    Innovative Device for Indocianyne Green Navigational Surgery

    Get PDF
    Dynamic reality has been integrated into developing surgical techniques, with the goals of providing increased intraoperative accuracy, easier detection of critical anatomical landmarks, and better general results for the patient. Enhancement of the reality in surgical theaters using single or multi sensorial augmenters (haptic, thermic and visual) has been reported with various degrees of success. This paper presents a novel device for navigational surgery and ancillary clinical applications based on the fluorescent properties of Indocyanine Green (ICG), a safe, FDA-approved dye that emits fluorescence at higher wavelengths than endogenous proteins. The latest technological developments and the aforementioned convenient quantum behavior of ICG allow for its effective identification in tissues by means of a complementary metal-oxide semiconductor (CMOS) infrared camera. Following fundamental research on the fluorophor in different biological suspensions and at various concentrations, our team has built a device that casts a beam of excitation light at 780nm and collects emission light at 810-830nm, filtering ambient light and endogenous autofluorescence. The emission light is fluorescent and infrared, unlike visible light. It can penetrate tissues up to 1.6cm in depth, providing after digitization into conventional imaging anatomical and functional data of immense intra-operative value

    Clinical application and technical standardization of indocyanine green (ICG) fluorescence imaging in pediatric minimally invasive surgery

    Get PDF
    Purpose We reported our preliminary experience using ICG fluorescence in pediatric minimally invasive surgery (MIS) with the aim to standardize indications, dose, timing, and modality of administration of ICG according to different organs. Methods ICG technology was adopted in 46 MIS procedures performed in our unit over the last 18 months: 30 left varicocele repairs; 5 cholecystectomies in obese adolescents; 3 tumor excisions; 3 nephrectomies; 2 partial nephrectomies; 3 lymphoma excisions. ICG solution was injected intravenously in all cases except for varicocelectomy in which it was injected into the testis. The ICG injection was performed intra-operatively in all cases except for cholecystectomy in which it was injected 18 h prior to the procedure. Results All procedures were completed laparoscopically without conversions or intra-operative complications. No adverse or allergic reactions to ICG were reported. Conclusion Our preliminary experience showed that ICG fluorescence is a safe, useful, and versatile technique to adopt in pediatric MIS to achieve a better identification of anatomy and an easier surgical dissection or resection in challenging cases. Currently, the main indications are varicocelectomy, difficult cholecystectomy, tumor excision, nephrectomy, and partial nephrectomy. The main limitation is the needing of a special equipment to use ICG technology
    corecore