100 research outputs found

    Measurement Platform for Latency Characterization of Wide Area Monitoring, Protection and Control Systems

    Get PDF
    Wide area monitoring, protection and control (WAMPAC) systems have emerged as a critical technology to improve the reliability, resilience, and stability of modern power grids. They are based on phasor measurement unit (PMU) technology and synchronized monitoring on a wide area. Since these systems are required to make rapid decisions and control actions on the grid, they are characterized by stringent time constraints. For this reason, the latency of WAMPAC systems needs to be appropriately assessed. Following this necessity, this article presents the design and implementation of a measurement platform that allows latency characterization of different types of WAMPAC systems in several operating conditions. The proposed WAMPAC Characterizer has been metrologically characterized through a WAMPAC Emulator and then used to measure the latency of a WAMPAC system based on an open-source platform frequently used by transmission system operators (TSOs) for the implementation of their PMU-based wide area systems

    Integration of IEEE C37.118 and publish/subscribe communication

    Get PDF
    IEEE C37.118 is the current standard for synchrophasor measurements in power systems. It defines the measurement method and communication protocols for the entities in a synchrophasor network. The standard offers two different modes for client-server communication, but cannot be used unchanged over publish/subscribe communication architectures, whose major advantage is simplified and incremental integration of new applications. This work reviews the communication part of IEEE C37.118, and provides an adapter-based solution to easily connect and integrate entities in a synchrophasor network over a publish/subscribe communication architecture. The proposed adapters offer standard-compliant communication between the synchrophasor measurement network entities to facilitate the exchange of measurement data

    Cyber Physical System Security — DoS Attacks on Synchrophasor Networks in the Smart Grid

    Get PDF
    With the rapid increase of network-enabled sensors, switches, and relays, cyber-physical system security in the smart grid has become important. The smart grid operation demands reliable communication. Existing encryption technologies ensures the authenticity of delivered messages. However, commonly applied technologies are not able to prevent the delay or drop of smart grid communication messages. In this dissertation, the author focuses on the network security vulnerabilities in synchrophasor network and their mitigation methods. Side-channel vulnerabilities of the synchrophasor network are identified. Synchrophasor network is one of the most important technologies in the smart grid transmission system. Experiments presented in this dissertation shows that a DoS attack that exploits the side-channel vulnerability against the synchrophasor network can lead to the power system in stability. Side-channel analysis extracts information by observing implementation artifacts without knowing the actual meaning of the information. Synchrophasor network consist of Phasor Measurement Units (PMUs) use synchrophasor protocol to transmit measurement data. Two side-channels are discovered in the synchrophasor protocol. Side-channel analysis based Denial of Service (DoS) attacks differentiate the source of multiple PMU data streams within an encrypted tunnel and only drop selected PMU data streams. Simulations on a power system shows that, without any countermeasure, a power system can be subverted after an attack. Then, mitigation methods from both the network and power grid perspectives are carried out. From the perspective of network security study, side-channel analysis, and protocol transformation has the potential to assist the PMU communication to evade attacks lead with protocol identifications. From the perspective of power grid control study, to mitigate PMU DoS attacks, Cellular Computational Network (CCN) prediction of PMU data is studied and used to implement a Virtual Synchrophasor Network (VSN), which learns and mimics the behaviors of an objective power grid. The data from VSN is used by the Automatic Generation Controllers (AGCs) when the PMU packets are disrupted by DoS attacks. Real-time experimental results show the CCN based VSN effectively inferred the missing data and mitigated the negative impacts of DoS attacks. In this study, industry-standard hardware PMUs and Real-Time Digital Power System Simulator (RTDS) are used to build experimental environments that are as close to actual production as possible for this research. The above-mentioned attack and mitigation methods are also tested on the Internet. Man-In-The-Middle (MITM) attack of PMU traffic is performed with Border Gateway Protocol (BGP) hijacking. A side-channel analysis based MITM attack detection method is also investigated. A game theory analysis is performed to give a broade

    An Information-Centric Communication Infrastructure for Real-Time State Estimation of Active Distribution Networks

    Get PDF
    © 2010-2012 IEEE.The evolution toward emerging active distribution networks (ADNs) can be realized via a real-time state estimation (RTSE) application facilitated by the use of phasor measurement units (PMUs). A critical challenge in deploying PMU-based RTSE applications at large scale is the lack of a scalable and flexible communication infrastructure for the timely (i.e., sub-second) delivery of the high volume of synchronized and continuous synchrophasor measurements. We address this challenge by introducing a communication platform called C-DAX based on the information-centric networking (ICN) concept. With a topic-based publish-subscribe engine that decouples data producers and consumers in time and space, C-DAX enables efficient synchrophasor measurement delivery, as well as flexible and scalable (re)configuration of PMU data communication for seamless full observability of power conditions in complex and dynamic scenarios. Based on the derived set of requirements for supporting PMU-based RTSE in ADNs, we design the ICN-based C-DAX communication platform, together with a joint optimized physical network resource provisioning strategy, in order to enable the agile PMU data communications in near real-time. In this paper, C-DAX is validated via a field trial implementation deployed over a sample feeder in a real-distribution network; it is also evaluated through simulation-based experiments using a large set of real medium voltage grid topologies currently operating live in The Netherlands. This is the first work that applies emerging communication paradigms, such as ICN, to smart grids while maintaining the required hard real-time data delivery as demonstrated through field trials at national scale. As such, it aims to become a blueprint for the application of ICN-based general purpose communication platforms to ADNs

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    Security analytics of large scale streaming data

    Get PDF

    Synchrophasors: Multilevel Assessment and Data Quality Improvement for Enhanced System Reliability

    Get PDF
    . This study presents a comprehensive framework for testing and evaluation of Phasor Measurement Units (PMUs) and synchrophasor systems under normal power system operating conditions, as well as during disturbances such as faults and transients. The proposed framework suggests a performance assessment to be conducted in three steps: (a) type testing: conducted in the synchrophasor calibration laboratory according to accepted industrial standards; (b) application testing: conducted to evaluate the performance of the PMUs under faults, transients, and other disturbances in power systems; (c) end-to-end system testing: conducted to assess the risk and quantify the impact of measurement errors on the applications of interest. The suggested calibration toolset (type testing) enables performance characterization of different design alternatives in a standalone PMU (e.g., length of phasor estimation windows, filtering windows, reporting rates, etc.). In conjunction with the standard performance requirements, this work defines new metrics for PMU performance evaluations under any static and dynamic conditions that may unfold in the grid. The new metrics offer a more realistic understanding of the overall PMU performance and help users choose the appropriate device/settings for the target applications. Furthermore, the proposed probabilistic techniques quantify the PMU accuracy to various test performance thresholds specified by corresponding IEEE standards, rather than having only the pass/fail test outcome, as well as the probability of specific failures to meet the standard requirements defined in terms of the phasor, frequency, and rate of change of frequency accuracy. Application testing analysis encompasses PMU performance evaluation under faults and other prevailing conditions, and offers a realistic assessment of the PMU measurement errors in real-world field scenarios and reveals additional performance characteristics that are crucial for the overall application evaluation. End-to-end system tests quantify the impact of synchrophasor estimation errors and their propagation from the PMU towards the end-use applications and evaluate the associated risk. In this work, extensive experimental results demonstrate the advantages of the proposed framework and its applicability is verified through two synchrophasor applications, namely: Fault Location and Modal Analysis. Finally, a data-driven technique (Principal Component Pursuit) is proposed for the correction and completion of the synchrophasor data blocks, and its application and effectiveness is validated in modal analyzes
    • …
    corecore