12 research outputs found

    Cortical resting state circuits: connectivity and oscillations

    Get PDF
    Ongoing spontaneous brain activity patterns raise ever-growing interest in the neuroscience community. Complex spatiotemporal patterns that emerge from a structural core and interactions of functional dynamics have been found to be far from arbitrary in empirical studies. They are thought to compose the network structure underlying human cognitive architecture. In this thesis, we use a biophysically realistic computer model to study key factors in producing complex spatiotemporal activation patterns. For the first time, we present a model of decreased physiological signal complexity in aging and demonstrate that delays shape functional connectivity in an oscillatory spiking-neuron network model for MEG resting-state data. Our results show that the inclusion of realistic delays maximizes model performance. Furthermore, we propose embracing a datadriven, comparative stance on decomposing the system into subnetworks.Últimamente, el interés de la comunidad científica sobre los patrones de la continua actividad espontanea del cerebro ha ido en aumento. Complejos patrones espacio-temporales emergen a partir de interacciones de un núcleo estructural con dinámicas funcionales. Se ha encontrado que estos patrones no son aleatorios y que componen la red estructural en la que la arquitectura cognitiva humana se basa. En esta tesis usamos un modelo computacional detallado para estudiar los factores clave en producir los patrones emergentes. Por primera vez, presentamos un modelo simplificado de la actividad cerebral en envejecimiento. También demostramos que la inclusión del desfase de transmisión en un modelo para grabaciones magnetoencefalográficas del estado en reposo maximiza el rendimiento del modelo. Para ello, aplicamos un modelo con una red de neuronas pulsantes (’spiking-neurons’) y con dinámicas oscilatorias. Además, proponemos adoptar una posición comparativa basada en los datos para descomponer el sistema en subredes

    A latent variable modeling framework for analyzing neural population activity

    Get PDF
    Neuroscience is entering the age of big data, due to technological advances in electrical and optical recording techniques. Where historically neuroscientists have only been able to record activity from single neurons at a time, recent advances allow the measurement of activity from multiple neurons simultaneously. In fact, this advancement follows a Moore’s Law-style trend, where the number of simultaneously recorded neurons more than doubles every seven years, and it is now common to see simultaneous recordings from hundreds and even thousands of neurons. The consequences of this data revolution for our understanding of brain struc- ture and function cannot be understated. Not only is there opportunity to address old questions in new ways, but more importantly these experimental techniques will allow neuroscientists to address new questions entirely. However, addressing these questions successfully requires the development of a wide range of new data anal- ysis tools. Many of these tools will draw on recent advances in machine learning and statistics, and in particular there has been a push to develop methods that can accurately model the statistical structure of high-dimensional neural activity. In this dissertation I develop a latent variable modeling framework for analyz- ing such high-dimensional neural data. First, I demonstrate how this framework can be used in an unsupervised fashion as an exploratory tool for large datasets. Next, I extend this framework to incorporate nonlinearities in two distinct ways, and show that the resulting models far outperform standard linear models at capturing the structure of neural activity. Finally, I use this framework to develop a new algorithm for decoding neural activity, and use this as a tool to address questions about how information is represented in populations of neurons

    Brain Computations and Connectivity [2nd edition]

    Get PDF
    This is an open access title available under the terms of a CC BY-NC-ND 4.0 International licence. It is free to read on the Oxford Academic platform and offered as a free PDF download from OUP and selected open access locations. Brain Computations and Connectivity is about how the brain works. In order to understand this, it is essential to know what is computed by different brain systems; and how the computations are performed. The aim of this book is to elucidate what is computed in different brain systems; and to describe current biologically plausible computational approaches and models of how each of these brain systems computes. Understanding the brain in this way has enormous potential for understanding ourselves better in health and in disease. Potential applications of this understanding are to the treatment of the brain in disease; and to artificial intelligence which will benefit from knowledge of how the brain performs many of its extraordinarily impressive functions. This book is pioneering in taking this approach to brain function: to consider what is computed by many of our brain systems; and how it is computed, and updates by much new evidence including the connectivity of the human brain the earlier book: Rolls (2021) Brain Computations: What and How, Oxford University Press. Brain Computations and Connectivity will be of interest to all scientists interested in brain function and how the brain works, whether they are from neuroscience, or from medical sciences including neurology and psychiatry, or from the area of computational science including machine learning and artificial intelligence, or from areas such as theoretical physics

    Hippocampal regulation of encoding and exploration under the influence of contextual reward and anxiety

    Get PDF
    Hippocampal researchers have recently turned their attention to the computations that may be implemented by the hippocampal circuit (e.g. pattern separation and pattern completion). This focus on the representational and information-processing capabilities of the hippocampus is likely to be important in resolving on-going debates regarding the nature of hippocampal contributions to perception, anxiety and exploration. A first aim of my research was to examine how context representations interact with reward to influence memory for embedded events. In my first experiment, I show that recollection for neutral objects is improved by sharing a context with other rewarding events. To further examine contextual influences on memory, I conducted a second experiment that examined the effect of contextual reward itself on object memory. Additionally, I manipulated the extent to which disambiguation should rely on hippocampal computations, by varying the perceptual similarity between the rewarding and neutral contexts. Improved object memory was only observed when the rewarding and neutral contexts were perceptually similar, and this contextual memory effect was further linked to co-activation of the hippocampal CA3/dentate gyrus and substantia nigra/ventral tegmental area. A second major aim of my work was to characterize hippocampal contributions to anxiety. In my third experiment, I combine a novel experiment with fMRI to show that hippocampal activation is associated with behavioural inhibition rather than exploratory risk assessment. This insight is important because a major theoretical perspective in the literature conflates these two psychological processes. In my final experiment, I employ this novel experimental paradigm to examine the effect of exploration on memory, and find that the propensity to explore (rather than the act of exploring per se) leads to better memory at subsequent recall

    Proceedings of the 19th Sound and Music Computing Conference

    Get PDF
    Proceedings of the 19th Sound and Music Computing Conference - June 5-12, 2022 - Saint-Étienne (France). https://smc22.grame.f

    Talking About Uncertainty

    Get PDF
    In the first article we review existing theories of uncertainty. We devote particular attention to the relation between metacognition, uncertainty and probabilistic expectations. We also analyse the role of natural language and communication for the emergence and resolution of states of uncertainty. We hypothesize that agents feel uncertainty in relation to their levels of expected surprise, which depends on probabilistic expectations-gaps elicited during communication processes. Under this framework above tolerance levels of expected surprise can be considered informative signals. These signals can be used to coordinate, at the group and social level, processes of revision of probabilistic expectations. When above tolerance levels of uncertainty are explicated by agents through natural language, in communication networks and public information arenas, uncertainty acquires a systemic role of coordinating device for the revision of probabilistic expectations. The second article of this research seeks to empirically demonstrate that we can crowd source and aggregate decentralized signals of uncertainty, i.e. expected surprise, coming from market agents and civil society by using the web and more specifically Twitter as an information source that contains the wisdom of the crowds concerning the degree of uncertainty of targeted communities/groups of agents at a given moment in time. We extract and aggregate these signals to construct a set of civil society uncertainty proxies by country. We model the dependence among our civil society uncertainty indexes and existing policy and market uncertainty proxies, highlighting contagion channels and differences in their reactiveness to real-world events that occurred in the year 2016, like the EU-referendum vote and the US presidential elections. In the third article, we propose a new instrument, called Worldwide Uncertainty Network, to analyse the uncertainty contagion dynamics across time and areas of the world. Such an instrument can be used to identify the systemic importance of countries in terms of their civil society uncertainty social percolation role. Our results show that civil society uncertainty signals coming from the web may be fruitfully used to improve our understanding of uncertainty contagion and amplification mechanisms among countries and between markets, civil society and political systems
    corecore