103 research outputs found

    Empirical fitting of forward backscattering models for multitemporal retrieval of soil moisture from radar data at L-band

    Get PDF
    A multitemporal algorithm, originally conceived for the C-band radar aboard the Sentinel-1 satellite, has been updated to retrieve soil moisture from L-band radar data, such as those provided by the National Aeronautics and Space Administration Soil Moisture Active/Passive (SMAP) mission. This type of algorithm may deliver more accurate soil moisture maps that mitigate the effect of roughness and vegetation changes. Within the multitemporal inversion scheme based on the Bayesian maximum a posteriori probability (MAP) criterion, a dense time series of radar measurements is integrated to invert a forward backscattering model. The model calibration and validation tasks have been accomplished using the data collected during the SMAP validation experiment 12 spanning several soil conditions (pasture, wheat, corn, and soybean). The data have been used to update the forward model for bare soil scattering at L-band and to tune a simple vegetation scattering model considering two different classes of vegetation: those producing mainly single scattering effects and those characterized by a significant multiple scattering involving terrain surface and vegetation elements interaction. The algorithm retrievals showed a root mean square difference (RMSD) around 5% over bare soil, soybean, and cornfields. As for wheat, a bias was observed; when removed, the RMSD went down from 7.7% to 5%

    On the use of temporal series of L-and X-band SAR data for soil moisture retrieval. Capitanata plain case study

    Get PDF
    This paper investigates the use of time series of ALOS/PALSAR-1 and COSMO-SkyMed data for the soil moisture retrieval (mv) by means of the SMOSAR algorithm. The application context is the exploitation of mv maps at a moderate spatial and temporal resolution for improving flood/drought monitoring at regional scale. The SAR data were acquired over the Capitanata plain in Southern Italy, over which ground campaigns were carried out in 2007, 2010 and 2011. The analysis shows that the mv retrieval accuracy is 5%-7% m^3/m^3 at L- and X band, although the latter is restricted to a use over nearly bare soil only

    Neural Networks Applications for the Remote Sensing of Hydrological Parameters

    Get PDF
    The main artificial neural networks (ANN)‐based retrieval algorithms developed at the Institute of Applied Physics (IFAC) are reviewed here. These algorithms aim at retrieving the main hydrological parameters, namely the soil moisture content (SMC), the plant water content (PWC) of agricultural vegetation, the woody volume of forests (WV) and the snow depth (SD) or snow water equivalent (SWE), from data collected by active (SAR/scatterometers) and passive (radiometers) microwave sensors operating from space. Taking advantage of the fast computation, ANN are able to generate output maps of the target parameter at both local and global scales, with a resolution varying from hundreds of meters to tens of kilometres, depending on the considered sensor. A peculiar strategy adopted for the training, which has been obtained by combining satellite measurements with data simulated by electromagnetic models (based on the radiative transfer theory, RTT), made these algorithms robust and site independent. The obtained results demonstrated that ANN are a powerful tool for estimating the hydrological parameters at different spatial scales, provided that they have been trained with consistent datasets, made up by both experimental and theoretical data

    analysis of two years of ascat and smos derived soil moisture estimates over europe and north africa

    Get PDF
    More than two years of soil moisture data derived from the Advanced SCATterometer (ASCAT) and from the Soil Moisture and Ocean Salinity (SMOS) radiometer are analysed and compared. The comparison has been performed within the framework of an activity aiming at validating the EUMETSAT Hydrology Satellite Application Facility (H-SAF) soil moisture product derived from ASCAT. The available database covers a large part of the SMOS mission lifetime (2010, 2011 and partially 2012) and both Europe and North Africa are considered. A specific strategy has been set up in order to enable the comparison between products representing a volumetric soil moisture content, as those derived from SMOS, and a relative saturation index, as those derived from ASCAT. Results demonstrate that the two products show a fairly good degree of correlation. Their consistency has some dependence on season, geographical zone and surface land cover. Additional factors, such as spatial property features, are also preliminary investigated

    A Bayesian approach to combine Landsat and ALOS PALSAR time series for near real-time deforestation detection

    Get PDF
    To address the need for timely information on newly deforested areas at medium resolution scale, we introduce a Bayesian approach to combine SAR and optical time series for near real-time deforestation detection. Once a new image of either of the input time series is available, the conditional probability of deforestation is computed using Bayesian updating, and deforestation events are indicated. Future observations are used to update the conditional probability of deforestation and, thus, to confirm or reject an indicated deforestation event. A proof of concept was demonstrated using Landsat NDVI and ALOS PALSAR time series acquired at an evergreen forest plantation in Fiji. We emulated a near real-time scenario and assessed the deforestation detection accuracies using three-monthly reference data covering the entire study site. Spatial and temporal accuracies for the fused Landsat-PALSAR case (overall accuracy = 87.4%; mean time lag of detected deforestation = 1.3 months) were consistently higher than those of the Landsat- and PALSAR-only cases. The improvement maintained even for increasing missing data in the Landsat time series

    Determinación de la humedad de suelo mediante regresión lineal múltiple con datos TerraSAR-X

    Get PDF
    Revista oficial de la Asociación Española de Teledetección[EN] The first five centimeters of soil form an interface where the main heat fluxes exchanges between the land surface and the atmosphere occur. Besides ground measurements, remote sensing has proven to be an excellent tool for the monitoring of spatial and temporal distributed data of the most relevant Earth surface parameters including soil’s parameters. Indeed, active microwave sensors (Synthetic Aperture Radar - SAR) offer the opportunity to monitor soil moisture (HS) at global, regional and local scales by monitoring involved processes. Several inversion algorithms, that derive geophysical information as HS from SAR data, were developed. Many of them use electromagnetic models for simulating the backscattering coefficient and are based on statistical techniques, such as neural networks, inversion methods and regression models. Recent studies have shown that simple multiple regression techniques yield satisfactory results. The involved geophysical variables in these methodologies are descriptive of the soil structure, microwave characteristics and land use. Therefore, in this paper we aim at developing a multiple linear regression model to estimate HS on flat agricultural regions using TerraSAR-X satellite data and data from a ground weather station. The results show that the backscatter, the precipitation and the relative humidity are the explanatory variables of HS. The results obtained presented a RMSE of 5.4 and a R2 of about 0.6[ES] Los primeros cinco centímetros del suelo forman una interfaz donde se producen los principales intercam-bios de flujos de calor entre la superficie terrestre y la atmósfera. La teledetección ha demostrado ser una excelente herramienta para el seguimiento de datos espacial y temporalmente distribuidos de las características sobresalientes de la superficie terrestre, incluidos los parámetros del suelo. Los sensores de microondas activos (Synthetic Aperture Radar- SAR) ofrecen la posibilidad de monitorizar la humedad de suelo (HS) a escala global, regional y local, mediante la modelación de los procesos involucrados. Diversos algoritmos de inversión han sido desarrollados para derivar información geofísica, como HS, a partir de información SAR. Muchos de ellos utilizan modelos electromagnéticos para simular el coeficiente de retrodispersión y se basan en técnicas estadísticas tales como redes neuronales, mé-todos de inversión y modelos de regresión. Estudios recientes han demostrado que las técnicas simples de regresión múltiple arrojan resultados aceptables. Las variables geofísicas implicadas en estas metodologías son descriptivas de la estructura del suelo, las características de las microondas y la cobertura del suelo. Por esto, en este trabajo se propone desarrollar un modelo de regresión lineal múltiple para estimar HS en zonas de llanura combinando datos de la misión satelital TerraSAR-X y datos de una estación meteorológica. La modelación propuesta involucra las variables hidrológicas que caracterizan las zonas de llanura, donde los movimientos verticales de agua en el suelo predominan sobre el escurrimiento horizontal. Los resultados obtenidos muestran que la retrodispersión, la precipitación y la hu-medad relativa del aire son las variables explicativas de HS. El modelo obtenido arrojó un RMSE de 5,4 y un R2 de 0,6.García, G.; Brogioni, M.; Venturini, V.; Rodriguez, L.; Fontanelli, G.; Walker, E.; Graciani, S.... (2016). Soil moisture estimation using multi linear regression with terraSAR-X data. Revista de Teledetección. (46):73-81. doi:10.4995/raet.2016.4024.SWORD73814

    Machine-Learning Applications for the Retrieval of Forest Biomass from Airborne P-Band SAR Data

    Get PDF
    This study aimed at evaluating the potential of machine learning (ML) for estimating forest biomass from polarimetric Synthetic Aperture Radar (SAR) data. Retrieval algorithms based on two different machine-learning methods, namely Artificial Neural Networks (ANNs) and Supported Vector Regressions (SVRs), were implemented and validated using the airborne polarimetric SAR data derived from the AfriSAR, BioSAR, and TropiSAR campaigns. These datasets, composed of polarimetric airborne SAR data at P-band and corresponding biomass values from in situ and LiDAR measurements, were made available by the European Space Agency (ESA) in the framework of the Biomass Retrieval Algorithm Inter-Comparison Exercise (BRIX). The sensitivity of the SAR measurements at all polarizations to the target biomass was evaluated on the entire set of data from all the campaigns, and separately on the dataset of each campaign. Based on the results of the sensitivity analysis, the retrieval was attempted by implementing general algorithms, using the entire dataset, and specific algorithms, using data of each campaign. Algorithm inputs are the SAR data and the corresponding local incidence angles, and output is the estimated biomass. To allow the comparison, both ANN and SVR were trained using the same subset of data, composed of 50% of the available dataset, and validated on the remaining part of the dataset. The validation of the algorithms demonstrated that both machine-learning methods were able to estimate the forest biomass with comparable accuracies. In detail, the validation of the general ANN algorithm resulted in a correlation coefficient R = 0.88, RMSE = 60 t/ha, and negligible BIAS, while the specific ANN for data obtained R from 0.78 to 0.94 and RMSE between 15 and 50 t/ha, depending on the dataset. Similarly, the general SVR was able to estimate the target parameter with R = 0.84, RMSE = 69 t/ha, and BIAS negligible, while the specific algorithms obtained 0.22 ≤ R ≤ 0.92 and 19 ≤ RMSE ≤ 70 (t/ha). The study also pointed out that the computational cost is similar for both methods. In this respect, the training is the only time-demanding part, while applying the trained algorithm to the validation set or to any other dataset occurs in near real time. As a final step of the study, the ANN and SVR algorithms were applied to the available SAR images for obtaining biomass maps from the available SAR images

    Innovative Techniques for the Retrieval of Earth’s Surface and Atmosphere Geophysical Parameters: Spaceborne Infrared/Microwave Combined Analyses

    Get PDF
    With the advent of the first satellites for Earth Observation: Landsat-1 in July 1972 and ERS-1 in May 1991, the discipline of environmental remote sensing has become, over time, increasingly fundamental for the study of phenomena characterizing the planet Earth. The goal of environmental remote sensing is to perform detailed analyses and to monitor the temporal evolution of different physical phenomena, exploiting the mechanisms of interaction between the objects that are present in an observed scene and the electromagnetic radiation detected by sensors, placed at a distance from the scene, operating at different frequencies. The analyzed physical phenomena are those related to climate change, weather forecasts, global ocean circulation, greenhouse gas profiling, earthquakes, volcanic eruptions, soil subsidence, and the effects of rapid urbanization processes. Generally, remote sensing sensors are of two primary types: active and passive. Active sensors use their own source of electromagnetic radiation to illuminate and analyze an area of interest. An active sensor emits radiation in the direction of the area to be investigated and then detects and measures the radiation that is backscattered from the objects contained in that area. Passive sensors, on the other hand, detect natural electromagnetic radiation (e.g., from the Sun in the visible band and the Earth in the infrared and microwave bands) emitted or reflected by the object contained in the observed scene. The scientific community has dedicated many resources to developing techniques to estimate, study and analyze Earth’s geophysical parameters. These techniques differ for active and passive sensors because they depend strictly on the type of the measured physical quantity. In my P.h.D. work, inversion techniques for estimating Earth’s surface and atmosphere geophysical parameters will be addressed, emphasizing methods based on machine learning (ML). In particular, the study of cloud microphysics and the characterization of Earth’s surface changes phenomenon are the critical points of this work

    Assessment of Cropland Changes Due to New Canals in Vientiane Prefecture of Laos using Earth Observation Data

    Get PDF
    The lower catchment area of a Mak Hiao river system is vulnerable to flash floods and water stress. So it is important to construct irrigation structures in this area to minimize floods during the rainy season and store water for the winter season. The Asian Development Bank (ADB) has been supporting the Government of Laos in constructing such small reservoirs like Donkhuay schemes 1 & 2, Mak Hiao, Nalong 3 and Sang Houabor projects in lower catchment areas. Our study evaluated the impacts of small irrigation schemes in terms of land-use/landcover (LULC), crop intensity, and productivity changes, using high resolution satellite imagery, socioeconomic, and ground data. We analyzed the temporal cropping pattern in the Vientiane prefecture of Laos using Planet and Sentinel-2 data. On the other hand, crop intensity and cropland changes were mapped using Sentinel-2 data and spectral matching techniques (SMTs). The crop classification accuracy based on field-plot data was 88.6%. Our results show that irrigation projects in the lower catchment areas brought about significant on-site changes in terms of cropland expansion and increased crop intensity. Remarkable changes in LULC were observed especially in the command areas owing to an increase of about 300% in crop area with access to irrigation and increase of water bodies by 31%. Our study found that interventions at the level of the command area do improved on-site soil, water and environmental services. They study emphasized underline the role of land-use regulations in reducing pressure on natural land-use systems and thereby serving the major goal of up-scaling sustainable natural resource management. The study documented the vital role of small/medium irrigation projects in restoring ecosystem services such as cropping patterns and LULC conversio
    corecore