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Abstract: To address the need for timely information on newly deforested areas at medium 

resolution scale, we introduce a Bayesian approach to combine SAR and optical time series 

for near real-time deforestation detection. Once a new image of either of the input time series 

is available, the conditional probability of deforestation is computed using Bayesian 

updating, and deforestation events are indicated. Future observations are used to update the 

conditional probability of deforestation and, thus, to confirm or reject an indicated 

deforestation event. A proof of concept was demonstrated using Landsat NDVI and ALOS 

PALSAR time series acquired at an evergreen forest plantation in Fiji. We emulated a near 

real-time scenario and assessed the deforestation detection accuracies using three-monthly 

reference data covering the entire study site. Spatial and temporal accuracies for the fused 

Landsat-PALSAR case (overall accuracy = 87.4%; mean time lag of detected deforestation 

= 1.3 months) were consistently higher than those of the Landsat- and PALSAR-only cases. 

The improvement maintained even for increasing missing data in the Landsat time series.  
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1. Introduction 

Timely information on deforestation is crucial to effectively manage and protect forest resources in the 

tropics [1,2]. Poorly managed and illegal activities in natural and plantation forest cause a wide range of 

negative environmental effects, significant financial losses and depression of the world timber price [3]. 

Illegally deforested timber, for example, represents 5%–10% of the commercial value of all wood products 

traded on the global market [4]. To fully understand illegal forest activities, such as laundering, for 

example, deforestation information from both natural forest and plantation forest are essential [3]. In this 

context, the importance of forest plantations is often undervalued [5]. Forest plantations currently account 

for 6%–7% of the global forest area [6] and help to decrease the pressure on natural forest [5]. To support 

governments, communities and forestry stakeholders in improving forest management and enacting timely 

actions against illegal deforestation, near real-time (NRT) deforestation monitoring can provide a powerful 

tool [1,2,7,8]. 

Time series satellite imagery is the only data stream capable of providing repetitive observations of 

global tropical forest areas [2,9]. Therefore, it is considered the primary data source to detect forest 

change in NRT [2]. Here, NRT deforestation detection refers to the capacity to detect change in a satellite 

image once it is available. Current remote sensing-based NRT monitoring systems, such as the Brazilian 

DETER (Sistema de Detecção do Desmatamento em Tempo Real na Amazônia) system, rely on coarse 

resolution MODIS (Moderate Resolution Imaging Spectroradiometer) time series imagery in order to 

provide fortnightly information on newly deforested areas [8,10,11]. Due to the low spatial resolution of 

500 m, however, small-scale changes are missed [7,12]. Therefore, this approach prevents a rapid 

response to many human interventions in tropical forest, which tend to be small scale [13].  

Although, optical time series approaches at a medium-resolution scale (Landsat data) have been 

proven capable of operationally detecting smaller scale deforestation [9,14–22], most approaches are 

designed to detect historical deforestation only and are not suitable for NRT application in the tropics. 

The main limiting factor for optical-based approaches in tropical regions is missing data due to frequent 

cloud cover [19,23–25]. Often, annual composites are generated to decrease data gaps in medium-

resolution optical imagery [9,18,26]. Providing annual deforestation information only, however, does 

not allow for the rapid detection of deforestation [2].  

Several time series approaches with NRT change detection capabilities have been developed to 

exploit the full temporal detail of optical time series [7,21,27,28]. The introduced methods, however, 

were demonstrated in areas only with a large number of optical time series observations available. How 

these methods deal with increasing cloud cover was not assessed. Previous results of Reiche et al. [29] 

showed strongly decreasing spatial and temporal deforestation detection accuracies as a result of 

increasing missing data in optical time series. The latter findings highlight the vulnerability of tropical 

forest monitoring systems that rely on optical data only. Neither of the introduced NRT change detection 

approaches considered SAR time series or the combination of SAR and optical time series.  

Synthetic Aperture Radar (SAR) penetrates through clouds and can operate day and night, both major 

advantages over optical satellite data when monitoring tropical forest. Therefore, SAR data are an ideal 

complement to optical-based forest monitoring systems [30–32]. In particular, multi-temporal L-band 

SAR data from ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band 

Synthetic Aperture Radar) have been proven to be capable of detecting tropical deforestation [33–39]. 
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Because of its long wavelength, L-band SAR deeply penetrates the forest canopy. This leads to a distinct 

forest/non-forest backscatter contrast, which is much stronger when compared to C-band SAR [40,41]. 

The main limitation for most tropical countries is the low density of medium resolution C- and L-band 

SAR observations [42]. A small number of images available per year, however, often hampers the rapid 

detection of deforestation.  

Fusing SAR and Landsat imagery has been shown to increase deforestation detection  

accuracy [29,43–45]. Increasing the observation density can help to decrease the delay in detecting 

deforestation [29] and, thus, to mitigate the effect of missing data in time series [46,47]. When 

developing an approach to fuse optical and SAR time series, however, various challenges need to be 

addressed. It requires accurate geocoding [48], co-registration and dealing with spectral/backscatter 

variations [31]. The direct correlation and/or fusion of optical and SAR time series is impeded due to 

their specific characteristics, including non-identical observation times and scales that are not directly 

compatible [29]. Reiche et al. [29] proposed a pixel-based multi-sensor time series correlation and fusion 

approach (MulTiFuse) to fuse Landsat NDVI and ALOS PALSAR backscatter time series. The fused 

time series were used in a change detection framework to detect historical deforestation. Spatial and 

temporal accuracies for the fused Landsat-PALSAR case were consistently higher than those of the 

Landsat- and PALSAR-only cases for increasing percentages of missing data in the Landsat time series. 

MulTiFuse is not applicable for NRT detection/application, however.  

Bayesian classification frameworks [49] have been shown to be widely applicable to the analysis of 

single-sensor time series and the fusion of optical and SAR time series. Single-sensor applications 

include monitoring of annual land cover changes [50–53], soil moisture [54–56] and lake dynamics [57]. 

Fusing multi-temporal Landsat and SAR data for land cover classification was demonstrated by [58,59]. 

Solberg and Huseby [60] used a Bayesian framework for fusing Landsat and SAR time series to monitor 

snow cover states. The authors proposed a hidden Markov model, where the probability of a SAR or 

Landsat observation being in a certain snow state was calculated by the observation itself and external 

transition probabilities. Lehmann et al. [43,44] expanded an existing Bayesian multi-temporal 

processing framework [51,52] that is operationally used for mapping annual land cover changes [53] to 

fuse annual Landsat with ALOS PALSAR mosaics. Converting the optical and SAR information into 

forest probabilities allows analyzing a single signal [43,44] instead of separate optical and SAR signals 

that are otherwise difficult to compare [29]; a major advantage of such a probabilistic approach. 

Lehmann et al. [43,44] classified annual forest transitions after ALOS PALSAR mosaics were used to 

replace Landsat mosaics within the annual Landsat time series. The full interoperability with the 

combined use of Landsat and ALOS PALSAR mosaics of the same year, however, has not been 

demonstrated [43,44].  

In summary, efforts that combine the advantages of medium-resolution optical and SAR time series 

and that utilize the entire temporal detail for NRT deforestation detection in a fully-interoperable 

approach are lacking [2,28].  

We propose a Bayesian approach to combine multi-sensor optical and SAR time series for NRT 

deforestation detection that makes use of all available optical and SAR observations. After computing 

the non-forest probability of a newly acquired SAR or optical observations, the probability of 

deforestation is computed and is iteratively updated with future observations. We demonstrate a proof 

of concept using Landsat NDVI and ALOS PALSAR L-band backscatter time series of an evergreen 
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forest plantation (Pinus caribaea) located in Fiji. We emulate an NRT scenario and evaluate how 

combined Landsat-PALSAR NRT detection improves the spatial and temporal deforestation detection 

accuracy, when compared to Landsat- and PALSAR-only. To understand the performance of the 

approach when applied under persistent cloud cover, we assess how increasing missing data in the 

Landsat time series affects the results. 

2. Materials and Methods 

2.1. Bayesian Multi-Sensor Time Series Combination for NRT Deforestation Detection 

2.1.1. General Description 

We present a Bayesian approach to combine multi-sensor optical and SAR time series for NRT 

deforestation detection. Figure 1 illustrates the main steps for applying the approach to multi-sensor time 

series, whereby we considered an NRT environment with past, current and future observations  

(Section 2.1.2). First (Step 1, Section 2.1.3), the conditional probabilities for non-forest are estimated 

for each individual time series observation, using the corresponding sensor specific probability density 

functions (pdfs) for forest (F) and non-forest (NF).  

Secondly (Step 2, Section 2.1.4), observations at time t are flagged to be potentially deforested in the 

case that the conditional NF probability is larger than 0.5. For a flagged observation, the conditional 

probability of deforestation is computed by iterative Bayesian updating, using the previous observation 

(t − 1), the current observation (t), as well as i upcoming observations (t + i) to confirm or reject a 

deforestation event at t. 

 

Figure 1. Schematic overview of the proposed Bayesian approach to fuse two multi-sensor 

time series and detect deforestation in near real-time. s1 and s2 refer to past, current and future 

time series observations from Sensor 1 (e.g., optical) and Sensor 2 (e.g., SAR), respectively. 
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2.1.2. Multi-Sensor Time Series Observations (Input) 

Let s1, ..., sn be discrete pixel time series derived from sensor 1, ..., sensor-n, where observations are 

non-equally spaced in time and observation times are non-identical between sensors. We can express the 

observation times of s1, ..., sn in the form Ts1 = {ts1
1, ts1

2, ..., ts1
ks1} and Tsn = {tsn

1, tsn
2, ..., tsn

ksn} with ks1 

and ksn being the number of s1 and sn observations, respectively. Similarly, time series observations are 

denoted s1t, ..., snt at t∊Ts1, ..., Tsn. Newly acquired observations are immediately processed and appended 

to the respective time series for NRT detection. 

2.1.3. Deriving and Combining Time Series of Conditional NF Probabilities (Step 1) 

Sensor-specific F and NF pdfs are fitted to F and NF training data using a maximum likelihood 

procedure. Next, the conditional probabilities of the time series observations, s1, given the presence of 

F and NF, p(s1|F) and p(s1|NF) are computed. According to the Bayes theorem and assuming equal 

priors for F and NF, the conditional NF probabilities P(NF|s1), are computed as follows:  

1
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Since P(NF|s1) is later employed as new evidence for Bayesian updating, we want to avoid extreme 

probabilities, which would imply absolute certainty about either state F or NF. Therefore, we introduce 

a block weighting function that modifies the P(NF|s1) at 0.1 and 0.9. Defining P(NF|snt) analogously to 

P(NF|s1t), the combined time series composed of conditional NF probabilities, sNF is computed as: 
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From here on, sNF is considered to be the time series signal that is obtained from the sensors.  

2.1.4. Iterative Bayesian Updating (Step 2) 

Each new observation at time t is checked for potential deforestation and is assigned a flag  

λ = 1 if sNF
t > 0.5 (potentially deforested) and a flag λ = 0 (not deforested) otherwise.  

If λt = 1 at t = current, then the conditional probability of deforestation (D) at t is calculated using 

Bayesian probability updating [49] by taking the previous (t − 1) and the upcoming (t + i) signals, 

sNF, into account:  
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with P(Dt|sNF
t+i) being the posterior denoting the conditional probability of deforestation at t (Dt) given 

sNF
t+i as new evidence and P(sNF

t+i) being the total probability of the signal sNF
t+i. i refers to the i-th 

future signal that can take values between i = 0,...,n.  
For the initial step at (i = 0), the posterior P(Dt|sNF

t) is calculated with the sNF
 signal at the current step 

(sNF
t) being the new evidence and the sNF signal at the previous time step (sNF

t-1) being the prior 

probability. In the subsequent steps (i > 0), the posterior P(Dt|sNF
t+i) is repeatedly updated using 
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upcoming sNF signals (sNF

t+i) as new evidence along with the posterior of the previous iteration as 

prior P(Dt|sNF
t+i-1).  

The iterative Bayesian updating is stopped and deforestation is detected in case P(Dt|sNF
t+i) ≥ χ, with 

χ being a defined threshold. In case P(Dt|sNF
t+i) decreases below 0.5 for a future signal (i > 0), we assume 

a false detection and set λt = 0. The next observation is then checked for potential deforestation.  

2.2. Validation 

2.2.1. Study Area 

We use an evergreen forest plantation in subtropical Fiji as our study area. The Lololo Fiji Pine Ldt. 

lease has been selected, because detailed spatial inventory data of 623 forest stands (Pinus caribaea) 

covering 9570 ha are available (Figure 2; latitude 17.32°S, longitude 177.37°E). The stand data comprises 

three-monthly (quarterly) harvesting information for 2000–2013 and replanting information for  

1975–2013. The quarterly periods are denoted as 2008.1 and 2008.2 for the periods January 2008–March 

2008 (day of year (DOY): 2008.1–2008.90) and April 2008–June 2008 (DOY: 2008.91–2008.181), 

respectively. The forest practice includes logging cycles of 15–20 years. Individual stands are deforested 

within a short period, and stems are removed quickly. Forest stands that remain unlogged for a period 

greater than 10 years after they have been replanted are covered with full-grown pine. For this study, we 

define a training period (January 2005–December 2007) and a validation period (January 2008–September 

2010). During the training period, sensor-specific F and NF pdfs are derived to parameterize the proposed 

Bayesian approach to subsequently detect deforestation in the validation period. For both periods, separate 

forest masks were derived from the inventory data. The forest mask for the training period (Figure 2A) 

accounts for 3020 ha and includes forest stands planted before January 1995 and not logged before January 

2005. Of those forest stands, 1464 ha were logged during the training period (January 2005–December 

2007). The forest mask for the validation period (Figure 2B, January 2008–September 2010) accounts for 

2859 ha and includes all forest stands planted before January 2000 and not logged before January 2008. 

Of those forest stands, 1395 ha were logged during the validation period, and 464 remained forest. Stable 

forest areas for the validation period do not overlap with the stable forest areas of the training period, 

ensuring an independent validation of the deforestation results (Figure 2A). In Figure 2A, stable forest 

areas of the validation period are overlaid with the training period dataset. 

2.2.2. Landsat NDVI Data 

All available 82 Level 1 Terrain (corrected) (L1T) Landsat 7 ETM+ images (quality: 9) for the 

Worldwide Reference System (WRS) Path 75 and Row 72 and acquired between January 2005 and 

September 2010 were used (Table 1). Landsat time series processing was performed as described in 

Reiche et al. [29]: Landsat images were processed individually using a standard processing chain 

consisting of Fmask (function of mask) [61] and LEDAPS (Landsat Ecosystem Disturbance Adaptive 

Processing System) [62–64]. Based on the uncorrected Landsat data in digital numbers, Fmask was used 

for masking clouds, cloud shadows and Landsat-7 SCL-off gaps as missing data. Using LEDAPS, 

atmospheric correction was performed to convert digital numbers to surface reflectance. Images were 

processed at 30-m spatial resolution and re-projected to WGS 84/UTM 60S.  
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Figure 2. The Lololo forest plantation, Fiji. Stable forest and logged forest stands with 

logging information at quarterly intervals are depicted for the training period ((A)  

January 2005–December 2007) and the validation period ((B) January 2008–September 

2010). The stable forest areas of the validation area are also outlined for the training period. 

2005.1 refers to the quarterly period January 2005–March 2005.  

Table 1. Frequency by year of the Landsat 7 ETM+ (WRS Path 75, Row 72) and  

ALOS PALSAR Fine Beam Dual (FBD) (Track 310, Frame 6830) observations for  

2005–September 2010. 

 Training Period Validation Period 

Year 2005 2006 2007 2008 2009 September 2010 

No. of Landsat images 12 14 13 16 14 13 

No. of ALOS PALSAR FBD images - - 3 3 1 2 

As described in Reiche et al. [29], per-pixel missing data (MD) was calculated based on the processed 

NDVI stack. MD varies from 35% to 69% and averages 53% for the validation area. We increased the 

per-pixel percentage of MD from an average of 53% for the original (org) Landsat time series stack to 

70%, 80%, 90% and 95% by randomly excluding observations on a pixel basis. The approximate number 

of per-pixel Landsat observations per year ranges from 6.5 to 0.6 observations/year for 53% (org) and 

95% MD, respectively (Table 2).  
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Table 2. Approximate number of per-pixel observations per year for the original (org, mean 

53%) Landsat NDVI time series and for Landsat NDVI time series with 70%, 80%, 90% and 

95% missing data (MD). 

Per-Pixel MD Approximate Number of Per-Pixel Observations Per Year 

No MD (0%) 12.3 

org (35%–69%) (mean 53%)  3.8–9.25 (mean 6.5) 

70% 3.8 

80% 2.5 

90% 1.2 

95% 0.6 

2.2.3. ALOS PALSAR Data 

All ALOS PALSAR images (Track 310; Frame 6830) in Fine Beam Dual (FBD) mode [65] 

were acquired for the period between 2007 and 2010 (Table 1). The time series consists of 9 Level 

1.1 dual-polarized FBD images (HH and HV polarization) in ascending mode with an incidence angle of 

34.3°. Time series pre-processing was done as described in Reiche et al. [29]: Using the Gamma software 

package [66], pre-processing was performed independently for each image, including multi-looking, 

radiometric calibration using standard calibration coefficients [67], topographic normalization as described 

by [68] and geocoding to 25-m pixel resolution (WGS84, UTM 60S) using a local 30-m DEM. 

Geocoding includes an automated cross-correlation between the SAR image and a simulated SAR image 

that was derived from the DEM in a first step. The cross-correlation results in the range and azimuth 

offset-polynomial sub-pixel accuracy that is used for geocoding the SAR image in the last step [66]. The 

geocoding accuracy was found to be below 0.5 pixels for all images. 

The individual HH and HV images were stacked and subsequently resampled to the 30-m Landsat 

pixel cells using nearest-neighbor interpolation. Overlapping pixels with the same spatial resolution are 

required to fuse at the pixel level. By subtracting the HV and HH backscatter time series, an HVHH 

backscatter ratio time series was derived (HVHH). In addition to the general SAR pre-processing steps, 

adaptive multi-temporal SAR filtering [69] was applied to the time series stacks. The multi-temporal 

filtered backscatter time series are hereafter referred to as HHmt, HVmt and HVHHmt. A more detailed 

description of the pre-processing can be found in [29]. 

For the remaining analysis, we only considered HVHHmt, as previous results have shown that the 

HVHH polarization ratio is more sensitive to deforestation than HH or HV [29,70]. This may be 

explained by the fact that the ratio of HV and HH partially compensates for environmental effects, such 

as changing moisture conditions [29]. Increasing moisture over forest and open areas after a rainfall 

event, for example, leads to an increase in the backscatter for both HV and HH [71]. 

2.2.4. Deriving F and NF pdfs 

F and NF distributions were derived separately for Landsat NDVIMD (MD = org, 70%, 80%, 90% and 

95%) and ALOS PALSAR HVHHmt using stable forest and change areas in the training period. To derive 

F distributions, all time series observations covered by stable forest were considered. To derive the NF 

distribution, only time series observations acquired at NF conditions immediately after deforestation 

events were used. To account for the precision of the reference data (0.25 years), only observations 
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acquired from 0.25 to 0.75 years after logging were considered. During this period, NF conditions can 

be expected, even in the case of immediate replanting. We considered observations acquired during the 

entire year to derive F and NF distributions. Because of the low observation frequency of medium 

resolution Landsat (~6.5 observations/year) and PALSAR (~2 observations/year), a situation commonly 

encountered in most tropical regions, only marginal seasonality of evergreen forest is visible. Therefore, 

we assumed non-seasonality over stable forest, which is justified by other studies [21,72] and previous 

work using the same dataset [29].  

Images affected by remaining clouds over F and NF training areas as a result of an imperfect cloud 

mask [22,28,61] that would bias the distributions were removed manually. Twelve of the 39 images 

available for the training period were removed. We evaluated the separability of the F and NF 

distributions for NDVIMD and HVHHmt using the normalized Jeffries-Matusita distance (JM) [73]. JM 

has a finite dynamic range from 0 (inseparable) to 2 (separable).  

A model was fitted separately to each of the derived univariate F and NF distributions by maximum-

likelihood fitting using an iterative optimization method [74]. Gaussian, Gamma and Weibull models 

were tested and the Kolmogorov–Smirnov (K-S) test was used for assessing goodness of fit [75]. The 

K-S test D-statistics indicate the maximum distance between the cumulative pdfs to the modelled 

distribution and the sample distribution. The model resulting in the lowest D-statistic was selected. 

The K-S test is available in the stats package for R. 

2.2.5. Detecting Deforestation in an NRT Scenario 

To validate the method for NRT deforestation detection, we emulated a NRT scenario for the validation 

period. From the start of the validation period (January 2008) onwards, individual NDVIMD and HVHHmt 

observations were added chronologically to the time series until the end of the validation period 

(September 2010). For detecting deforestation, the approach was applied to each newly-added observation. 

Subsequent observations were handled as future observations. The output for each time step is a 

deforestation map showing the conditional probability of deforestation for unconfirmed changes (soft 

information) and the time of change for confirmed changes (hard information).  

First, we analyzed the single-sensor results for increasing χ from χ = 0 to χ = 1 in steps of 0.025 and 

compared them for HVHHmt and NDVIorg. In addition, we analyzed ത݊ , the mean number of future 

observations used to confirm the change (n). Based on these results, simple rules were defined for the 

fused NDVIMD-HVHHmt case with which we aimed for a high overall accuracy (OA) and rapid detection 

of change. We applied the same rules to NDVIMD-only and HVHHmt-only and fused NDVIMD-HVHHmt 

cases and compared them for increasing MD. 

We assessed both the spatial and temporal accuracy of the detected deforestation by following  

Reiche et al. [29]. Spatial accuracy was defined as the overall accuracy, which is inversely related to 

omission and commission errors of detected changes. The temporal accuracy refers to the extent to which 

timing of the detected changes are correct. Available reference data that covers the entire study area 

allowed a map comparison. A major advantage of map comparison compared to common probabilistic 

sampling methods is that no sampling errors are introduced [76], since the number of pixels in the 

deforestation map represents the sample unit. To account for mixed pixels on the edges of the reference 

polygons, we only included a pixel if at least two-thirds of the pixel covers the reference polygon. To 
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assess the spatial accuracy, a confusion matrix was derived [77–79] from the deforestation and  

no-change class. We calculated the OA, the omission error (OE) and commission error (CE) of the 

deforestation class following [79].  

Temporal accuracy was assessed by calculating the mean time-lag between the time at which correctly 

detected changes were initially flagged (MTLF) and the time at which the change was confirmed (MTL). 

For each correctly detected change pixel, the time at which the change was first flagged (TF) and the 

time at which it was confirmed (T) were converted to quarterly periods, after which the time differences 

with the validation data were calculated. The MTLF and MTL were calculated as the mean of the time 

differences of all correctly detected change pixels and was given in months. The MTLF provides the time 

lag until change events are indicated and allows identification of early detections. It is important to 

analyze the MTLF and MTL jointly with the OE, because MTLF and MTL are calculated based on 

correctly detected changes only.  

3. Results 

3.1. Deriving F and NF pdfs 

Figure 3 depicts the F and NF distributions for HVHHmt, NDVIorg and NDVIMD95 overlaid with fitted 

pdfs. HVHHmt was found to have the highest F-NF class separability (JM = 1.39) when compared to 

NDVIorg (JM = 1.17) and NDVIMD95 (JM = 1.13). The K-S test D-statistics (DS) indicated a Gaussian 

model as the best fit for the HVHHmt F and NF distributions, as well as for the NDVIorg and NDVIMD95 

NF distributions.  

 

Figure 3. HVHHmt, NDVIorg and NDVIMD95 distributions for F (dark grey) and NF  

(light grey) overlaid with the modelled pdfs. The Kolmogorov-Smirnov (K-S) test  

D-statistics (DS) of the fitted distribution models are given. The mean and standard deviation 

(sd) of the Gaussian fit and shape and scale parameter of the Weibull fit are given. 

For NDVIorg and NDVIMD95 F distributions, a Weibull model resulted in the best fit for distributions 

with DS slightly below the DS for a Gaussian model (DS = 0.62 for the Weibull model vs. DS = 0.65 

for the Gaussian model). Figure 3 also provides the mean and standard deviation (sd) describing the 

Gaussian pdfs and the shape and scale parameter describing the Weibull pdfs. The derived parameter for 
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NDVIorg and NDVIMD95 were found to be consistent for increasing MD. Thus, we used the parameters 

found for NDVIorg for all MD. 

3.2. Detecting Deforestation in an NRT Scenario  

3.2.1. Single-Sensor Results for Increasing the χ Threshold 

Figure 4 shows the spatial accuracy (OA, OE, CE) and the temporal accuracy (MTLF, MTL), as well 

as ത݊ as a function of χ, separately for HVHHmt and NDVIorg. The results can be summarized as follows. 

For both HVHHmt and NDVIorg, an increasing χ was observed to result in a decreasing CE and an 

increasing OE, MTLF, MTL and ത݊. 

 

Figure 4. Spatial accuracy (OA, overall accuracy; OE, omission error; CE, commission 

error), temporal accuracy (MTLF, mean time lag of flagged changes; MTL, mean time lag 

of confirmed changes) and the mean number of future observations used to confirm a 

deforestation event ( ത݊) as a function of χ, separately for HVHHmt (A) and NDVIorg (B). 

For HVHHmt (Figure 4A), the OA was found to slightly increase with increasing χ from χ = 0 

and was highest for χ = 0.5 (OA = 87.3%, OE = 14.5%, CE = 12.2%). For χ = 0.5, an MTLF and 

an MTL of 2.2 and 3.2 months were observed, respectively, and ത݊ was found to be 0.12. For increasing 

χ > 0.5, the OA decreases consistently.  

For NDVIorg (Figure 4B), the OA was observed to consistently increase with increasing χ and was 

highest for χ = 0.975 (OA = 86.7, OE = 7.8%, CE = 17.8%). For χ > 0.975, the OA dropped due to a 

strongly increasing OE. At χ = 0.975, an MTLF and an MTL of −1.2 and 2.8 months, respectively, were 

observed, and ത݊ was found to be 1.75. The MTLF was observed to increase from −4.6 to −1.2 months 
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with increasing values of χ from zero to 0.975, respectively. While an MTLF of −1.2 months is within 

the precision of the reference data (±1.5 months), lower values clearly reflect an early detection, which 

is confirmed by a high CE. Early detections can be explained by spectral variations in the NDVI time 

series and remaining clouds resulting in low NDVI values. The results show that using a fixed value for 

χ does not lead to consistent results for HVHHmt and NDVIorg when aiming for the highest OA. 

The highest OAs were found for a χ for which the OE and CE are approximately equal, meaning that 

on the whole, the map is unbiased. The changes in spatial and temporal accuracies for increasing χ 

strongly depend on the time series metrics and their observation density and stability over time. Based 

on the findings described above and aiming for the highest OA, the following simple rules were defined 

for the fused NDVIMD-HVHHmt case. We used χ = 0.5 for new HVHHmt observations and χ = 0.975 for 

new NDVIMD observations. In addition, a deforestation label was only assigned if sNF > 0.5 was 

found given the new observation. We applied the same rules to NDVIMD and HVHHmt and fused 

NDVIMD-HVHHmt cases and compared them for increasing MD. The results are presented in the 

following section. 

3.2.2. Multi-Sensor Results 

Figure 5 shows the spatial accuracy (OA, OE, CE) and the temporal accuracy (MTLF, MTL) as a 

function of MD for the NDVIMD-only, HVHHmt-only and fused NDVIMD-HVHHmt cases. The accuracy 

assessment results can be summarized as follows:  
1. For HVHHmt-only, the results are identical to the results observed for χ = 0.5 and outlined in the 

previous section (OA = 87.3%, OE = 14.5%, CE = 12.2%, MTLF = 2.2 months, MTL = 3.2 months).  

2. For NDVIMD-only, a strong decrease in the spatial and temporal accuracy was observed with 

increasing MD. Compared to HVHHmt-only, a slightly lower spatial accuracy (OA = 86.7%,  

OE = 7.8%, CE = 17.8%) was observed for MD = org. The OA dropped from 86.7% for  

MD = org to 55.2% for MD = 95, mainly due to increasing omitted changes. For MD = 95, the 

OE reached 92.2%, and the CE slightly decreased to 6.3%. The strong reduction of the observation 

density with increasing MD led to a strong decrease in temporal accuracy. The MTLF dropped 

from −1.2 (MD = org) to 3.2 months (MD = 95), and the MTL decreased from 2.8 (MD = org) to 

10.6 months (MD = 95).  

3. For fused NDVIMD-HVHHmt, an improved spatial and temporal accuracy was found compared to 

NDVIMD- and HVHHmt-only. The MTLF and MTL decreased from −0.7 and 1.3 months  

(MD = org) to 1.8 and 2.9 months (MD = 95). The OA was found to increase for increasing MD 

from 87.4% (MD = org) to 90.4% (MD = 95) due to a decreased CE, as a result of the decreasing 

influence of the NDVIMD on the results. Though the CE is lower when compared to  

NDVIMD-only and decreased from 20.4% (MD = org) to 13.2% (MD = 95), it was higher when 

compared to HVHH-only (CE = 12.2%). The OE improved compared to both single-sensor 

results due to an increased observation density and was found to be only 1.7% for MD = org 

and slightly increased to 5.3% for MD = 95%.  
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Figure 5. Spatial accuracy and temporal accuracy for NDVIMD-only, HVHHmt-only and 

fused NDVIMD-HVHHmt as a function of NDVI per-pixel MD. 

Figure 6 illustrates the map results for the HVHHmt-only, NVDIorg-only and NDVIMD95-only cases 

compared to the fused NDVIorg-HVHHmt case and fused NDVIMD95-HVHHmt case, respectively. Due to 

the strong contribution of both NDVIorg and HVHHmt time series used for the fused NDVIorg-HVHHmt case, 

the map results appear to be a combination of both, showing areas where deforestation is detected earlier 

when compared to HVHHmt-only (red circles) and NDVIorg-only (blue circles), respectively. Yellow 

circles in Figure 6 indicate areas of unconfirmed deforestation for the HVHHmt-only case that are 

confirmed in the fused NDVIorg-HVHHmt case due to an increased number of observations. This explains 

the decreased OE for the fused case when compared to the single-sensor results. The NDVIMD95-HVHHmt 

case appears almost identical to the HVHHmt-only case due to the sparse contribution of NDVIMD95. 

To better illustrate how the single-sensor time series are used complimentarily to improve monitoring 

of deforestation in NRT when using the proposed approach, Figure 7 shows a sequence of quarterly 

deforestation maps over a subset of the study area for the year 2008 separately for NDVIorg-only (A), 

HVHHmt-only (B) and fused NDVIorg-HVHHmt (C). For each time step, the MTL and the conditional 

probability of deforestation for unconfirmed changes are given. Comparing the quarterly map results for 

NDVIorg-only (Figure 7A–D) and HVHHmt-only revealed that changes are flagged much earlier due to the 

dense observation density of NDVIorg, but often are confirmed later. 
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Figure 6. (A) Reference data. Map results showing detected deforestation from January 2008 to 

September 2010 for HVHHmt-only (B), NDVIorg-only (C) compared to fused NDVIorg-HVHHmt (D), 

and NDVIMD95-only (E) compared to fused NDVIMD95-HVHHmt (F). Encircled areas indicate where 

deforestation was detected earlier for the fused NDVIorg-HVHHmt when compared to HVHHmt-only 

(red circles) and NDVIorg-only (black circles), respectively. Yellow circles: detected deforestation 

for the fused NDVIorg-HVHHmt, but not confirmed for HVHHmt-only.  
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Figure 7. Time sequence showing quarterly deforestation maps for 2008 for NDVIorg-only 

((A) A1–A4), HVHHmt-only ((B) B1–B4) and fused NDVIorg-HVHHmt ((C) C1–C4). The 

reference map is given in (D4) (D). For each time step, the detected deforestation (MTL) and 

the conditional probability of deforestation (deforestation probability) for unconfirmed 

changes is given. 

Although deforestation was already flagged at 2008.1 (A1), it was not confirmed until 2008.3 (A3). 

For HVHHmt, in contrast, deforestation was not flagged in 2008.1 (B1), but already confirmed in 2008.2 

(B2). The fused results combine the advantages of both NDVIorg and HVHHmt with deforestation events 

being flagged early and also confirmed early. As a result, deforestation is flagged in 2008.1 (C1) and 

confirmed in 2008.2 (C2). 

Figures 8 and 9 illustrate two single-pixel examples showing the original NDVIorg and HVHHmt time 

series (top) and the combined time series of conditional NF probabilities, sNF (bottom). Figure 8 shows 

a time series where deforestation was detected, with the deforestation confirmed (T = 2008.266 (DOY)) 

shortly after it has been flagged (TF = 2008.219 (DOY)). A remaining cloud at the beginning of 2008 

was flagged as possible deforestation, but not confirmed. Figure 9 shows a committed change. Since the 

forest seems to be disturbed and not stable at a high NDVI level as seen for the previous pixel example 

(Figure 8) and typical for evergreen tropical forest, sNF varies strongly, which causes a committed 

change. It should be noted that HVHHmt does not show these fluctuations, and in the HVHHmt-only 

results, no change was detected. This explains the higher CE found for the fused results when compared 

to HVHHmt-only. 
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Figure 8. Pixel example showing correctly detected deforestation for the fused  

NDVIorg-HVHHmt case. The NDVIorg and HVHHmt time series (top) and the conditional NF 

probabilities, sNF (bottom), are shown. The time at which the change was first flagged (TF) 

and the time at which it was confirmed (T) are given. 

 

Figure 9. Pixel example showing commission error in change detection for the fused 

NDVIorg-HVHHmt case. The NDVIorg and HVHHmt time series (top) and the conditional NF 

probabilities, sNF (bottom), are shown. The time at which the change was first flagged (TF) 

and the time at which it was confirmed (T) are given. 

4. Conclusions 

Providing deforestation information in NRT and at medium-resolution scale can provide a powerful 

tool for governments and forestry stakeholders to improve the management and conservation of forest 

resources. We presented a Bayesian approach to combine optical and SAR time series for NRT 

deforestation detection. We applied the approach to univariate Landsat NDVI and ALOS PALSAR 
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HVHHmt backscatter time series imagery and detected deforestation from January 2008–September 2010 

in an NRT scenario in an evergreen plantation forest in the tropics. Once a new image of either of the 

input time series was available, it was immediately used as new evidence to update the probability for 

deforestation and to confirm or reject a possible deforestation event. To the best knowledge of the author 

of this article, for the first time, an optical-SAR time series fusion approach designed for NRT 

deforestation detection that exploits the entire temporal detail has been introduced.  

Evaluating the results with three-monthly reference data revealed that fusing NDVIMD and HVHHmt 

always improved the spatial and temporal accuracy of single-sensor systems, even for increasing Landsat 

MD. For the NDVI-only case, instead, a very strong decrease in spatial and temporal accuracy was observed 

for increasing MD percentage. The results confirm the trends observed by Reiche et al. [29] and emphasizes 

once more the weakness of tropical forest monitoring efforts relying on optical data only. Combining time 

series observations from Landsat and PALSAR increased the observation density and helped to mitigate the 

problem of missing data in optical (frequent cloud cover) and SAR time series (limited observation 

frequency). Due to the consistent PALSAR time series of ~2 observations/year, fusing even improved the 

results in the case of very few available Landsat observations (MD = 95%; 0.5 observations/year). 

Reiche et al. [29] presented results for the same dataset and validation period (January 2008–September 

2010), using MulTiFuse (see Section 1) to fuse NDVIMD and HVHHmt time series. A non-parametric time 

series analysis method was used (BFAST-monitor, [27]) for detecting historical deforestation. In contrast to 

the current study, where an NRT scenario was emulated, the entire time series was available from the 

beginning (historical scenario). Although the methods are not entirely comparable, the following differences 

are evident when comparing the results obtained for MulTiFuse [29] and the Bayesian approach (this study). 

A higher OA was obtained for MulTiFuse when compared to the Bayesian approach. The higher OA as a 

result of less committed changes observed for MulTiFuse can be explained by the fact that the entire time 

series was available from the beginning. This allowed considering the entire time series variability when 

applying BFAST-monitor to detect deforestation. For the Bayesian approach, however, less omitted changes 

and an improved temporal accuracy were found. Since MulTiFuse requires observations from both before 

and after the change events in both time series for fusion, deforestation will be detected with a larger delay. 

In fact, a much weaker MTL is expected when applying MulTiFuse in NRT. These results indicate that 

satellite-based monitoring systems are limited to satisfying the requirements for both the reliable assessment 

of historical changes and NRT monitoring. While MulTiFuse was shown to be more suitable for monitoring 

historical deforestation, the Bayesian approach highlighted its capabilities for NRT deforestation detection. 

Initial results from the HVHHmt- and NDVIMD-only time series for increasing χ confirmed the results 

of previous studies [39], which showed that the CE is always a compromise with the OE. In the same 

manner, an increasing MTL results in a decreased CE and increased OE as a result of more observations 

used to confirm a deforestation event. Using a sensor-specific χ for the fused case enabled us to account 

for the characteristics of the different time series observations of NDVIMD and HVHHmt. A χ = 0.975 

resulted in the highest OA for NDVIorg, showing that a high confidence linked to a high number of future 

observations ( ത݊  = 1.75) is needed to confirm a possible deforestation event using NDVIorg-only. 

Remaining clouds and a rather strong varying spectral signal over time does result in false detection 

when using a lower χ. In contrast, χ = 0.5 was found to result in the highest OA for HVHHmt-only  

(OA = 87.3%), exceeding the OA for NDVIorg-only. Only a very small number of observations are 

required to confirm a deforestation event ( ത݊ = 0.12), showing the stability of the HVHHmt time series 
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signal over evergreen tropical forest. These findings confirm the results of many studies showing the 

capabilities of L-band backscatter for detecting tropical deforestation [29,34,38].  

In this study, we deal with a forest practice in which stands are being harvested within a short period 

and stems are removed immediately after logging. The existence of such regimented harvesting 

practices, in combination with the availability of three-monthly reference data covering the entire study 

area, greatly reduced the number of unknowns, providing an ideal situation for assessing the performance 

of the introduced approach. For operational use, however, the approach needs to be applied and tested 

for varying harvesting practices and more complex forest dynamics. In the present case and common to 

deforestation in tropical evergreen forest, the removal of forest causes a large drop in the HVHHmt signal. 

This is confirmed by two clearly separated distributions found for F and NF. In the case of other forest 

practices, for example when fallen logs are left after logging [33,39], causing an initial increase of the 

signal, a second NF distribution should be added.  

We demonstrated the derivation of F and NF distributions from univariate time series. In order to 

make use of the available reflectance and backscatter spectra of optical and SAR, class distributions 

should be derived from multivariate time series. Using all available Landsat bands and other metrics 

(e.g., Landsat Band 5 or band 7, normalized burn ratio, tasseled cap wetness, texture), for example, 

showed improved F and NF class distinction [21,44,80,81].  

Providing a combination of spatially-explicit hard and soft information, namely the time of change of 

confirmed changes and the conditional probability of deforestation for indicated changes, is considered one 

of the major advantages of a probabilistic framework [50,51,82]. A disadvantage of probabilistic approaches 

when compared to non-parametric approaches is the need for training data to derive class-specific 

distributions [68], such as in our case for F and NF. However, satellite-based medium-resolution optical 

(Landsat), as well as C- (ERS-1, ENVISAT ASAR) and L-band SAR imagery (JERS-1, ALOS PALSAR) 

is available for most areas of the world. While Broich et al. [83] demonstrated the derivation of time series 

of forest probabilities from Landsat time series for Sumatra and Kalimantan, Shimada et al. [37] successfully 

demonstrated the extraction of F and NF distributions for PALSAR across global biomes using  

globally-distributed F and NF reference areas. An approach to automatically extract the required F and NF 

reference areas on the basis of Landsat imagery has been introduced by Huang et al. [84].  

The proposed probabilistic approach is designed to combine time series observations from multiple 

SAR and optical sensors. Because conditional NF probabilities are used to calculate and update the 

conditional probability of deforestation, the approach directly accounts for the different sensor-specific 

class separability. This is of particular interest when making use of C-band SAR time series from ESA’s 

Sentinel-1 in combination with L-band and Landsat. The lower sensitivity of C-band to deforestation 

when compared to L-band [85] is expected to result in more overlapping class F and NF distributions 

used to compute conditional NF probabilities (Equation (1)) and, thus, less extreme class NF 

probabilities. A reduced impact of single C-band observations on the conditional probability of 

deforestation will be the result; however, this may partly be compensated by an increased observation 

frequency expected for Sentinel-1 [86]. Combining the impending streams of medium-resolution optical 

(Landsat and Sentinel-2), C-band SAR (Sentinel-1) and L-band SAR data (SAOCOM and ALOS-2 

PALSAR-2) has the potential to further advance NRT deforestation monitoring efforts. Even challenges, 

such as irregular seasonal cloud cover, sudden discontinuity from a satellite due to sensor failure or 

unexpected changes in data policy, may be compensated.  
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