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Introduction 
With the advent of the first satellites for Earth Observation: Landsat-1 in July 1972 

and ERS-1 in May 1991, the discipline of environmental remote sensing [1] has 

become, over time, increasingly fundamental for the study of phenomena 

characterizing the planet Earth. The goal of environmental remote sensing is to perform 

detailed analyses and to monitor the temporal evolution of different physical 

phenomena, exploiting the mechanisms of interaction between the objects that are 

present in an observed scene and the electromagnetic radiation detected by sensors, 

placed at a distance from the scene, operating at different frequencies. The analyzed 

physical phenomena are those related to climate change, weather forecasts, global 

ocean circulation, greenhouse gas profiling [2], [3], earthquakes, volcanic eruptions, 

soil subsidence, and the effects of rapid urbanization processes [4], [5], [6]. Generally, 

remote sensing sensors are of two primary types: active and passive [7]. Active sensors 

use their source of electromagnetic radiation to illuminate and analyze an area of 

interest. An active sensor emits radiation in the direction of the area to be investigated 

and then detects and measures the radiation that is backscattered from the objects 

contained in that area. Passive sensors, on the other hand, detect natural 

electromagnetic radiation (e.g., from the Sun in the visible band and the Earth in the 

infrared and microwave bands) emitted or reflected by the object contained in the 

observed scene. The scientific community has dedicated many resources to the 

development of techniques to estimate, study and analyze Earth’s geophysical 

parameters. These techniques differ for active and passive sensors because they depend 

strictly on the type of the measured physical quantity. In my Ph.D. work, inversion 

techniques for the estimation of Earth’s surface and atmosphere geophysical 

parameters will be addressed, with emphasis on methods based on machine learning 

(ML). In particular, the study of cloud microphysics and the characterization of Earth’s 

surface changes phenomenon are the key points of this work, which is organized as 

follows:  



 

• Chapter I: After a brief characterization of ice and liquid water clouds in 

terms of their microphysics, the state-of-the-art algorithms for the retrieval 

of key cloud parameters from observations of the Earth's atmosphere in IR 

and MW bands will be presented and discussed. 

• Chapter II: The topics of this chapter are: i) the description of the radiative 

transfer equation (RTE) solved within radiative transfer model (RTM) 

codes for calculating radiances in the IR and MW part of the spectrum and 

ii) the presentation of the rationale of machine learning (ML)-based 

inversion algorithms, with emphasis on neural networks (NN) and random 

forest (RF). 

• Chapter III will present an inversion framework for the regression of cloud 

microphysics parameters from IR and MW observations, developed during 

the Ph.D. period of activity [1]–[3]. I will refer in particular to IR and MW 

synergy using simulated satellite observations of the first- and second-

generation MetOp platforms (e.g., IASI, IASI-NG, MWS, MHS, and 

AMSU). Accordingly, to demonstrate the value of MW and IR synergy, a 

comparison is shown considering architectures based only on MW and IR 

observations, respectively. Equally important is the description of data 

processing, with a special emphasis on data dimensionality reduction for 

the optimization of the regression architectures. Finally, the results 

obtained using a set of real observations are discussed thus also evaluating 

the performance against standard numerical weather prediction 

requirements. 

• Chapter IV: Within the context of greenhouse gas analysis this chapter 

aims to present two studies:  

i) The former that investigates the capability of a machine learning 

based cloud detection scheme, implemented through the use of a 

feed-forward NN and principal component analysis (PCA). A 



 

discussion concerning the achieved results and the future 

improvement of the presented techniques will also finally be 

considered.  

ii) The latter concerns the extension of the ML inversion 

methodologies to the analysis and study of the dynamics of 

atmospheric CH4 at a global scale, using predictive features 

provided by IASI L1C simulated observations. A regression 

structure based on deep learning is discussed [4]. The regression 

performance is evaluated by exploiting a whole set of real IASI sea 

surface clear sky soundings collocated with representative CH4 

profiles collected from the NDACC (Network for the Detection of 

Atmospheric Composition Change) FTIR (Fourier-Transform 

Infrared Spectrometers) network. As such, this approach requires 

the use of complex pre-processing chains based on dimensionality 

reduction of input and output features. Therefore, a comprehensive 

overview of data pre-processing is proposed, emphasizing the role 

played by PCA. 

• Chapter V: A short introduction concerning the basic principles of the 

synthetic aperture radar (SAR) interferometry for the estimation of the 

scene topography and surface displacement is first presented. Then, the 

multiple aperture synthetic aperture radar interferometric (MAI) technique, 

which is primarily used to measure the along-track components of the 

Earth’s surface deformation is discussed by investigating its capabilities 

and potential applications. Such a method is widely used to monitor the 

time evolution of ground surface changes in areas with large deformations 

(e.g., due to glaciers movements or seismic episodes), permitting one to 

discriminate the three-dimensional (up–down, east-west, north-south) 

components of the Earth’s surface displacements. Ph.D. activities have 

also concerned the study of MAI and its specific application for the 

retrieval of 3-D ground displacement maps from sets of multi-orbit/multi-



 

track satellite observations [5]. The MAI technique relies on the spectral 

diversity (SD) method, which consists of splitting the azimuth (range) SAR 

signal spectrum into separate sub-bands to get an estimate of the surface 

displacement along the azimuth (sensor line-of-sight (LOS)) direction. The 

underlying rationale and effectiveness of the MAI and SD techniques, as 

well as their application, will finally be presented. 

• Chapter VI aims to clarify the potential of incoherent and coherent change 

detection (CD) approaches for detecting and monitoring ground surface 

changes using sequences of synthetic aperture radar (SAR) images. The 

Chapter also presents the results of an investigation [6] regarding mainly 

the mutual interaction of different SAR based coherent/incoherent change 

detection indices (CDIs) for the rapid mapping of “changed” areas. 

Specifically, an analysis of the CDIs that synthetically describe ground 

surface changes associated with a disaster event (i.e., the pre-, cross-, and 

post-disaster phases), based on the generation of sigma nought and InSAR 

coherence maps is presented. In this context, artificial intelligence (AI) 

algorithms have been demonstrated to be beneficial for handling the 

different information coming from coherent/incoherent CDIs in a unique 

corpus. For this reason, a publication based on the use of a random forest 

(RF) classifier is introduced to readers. The classifier is trained to produce 

CD maps and study the impact on the final binary decision 

(changed/unchanged) of the different layers representing the available 

synthetic CDIs. Conclusions concerning the achieved results and future 

perspectives are eventually considered. 

• Chapter VII shortly presents and discusses additional research works 

related to SAR remote sensing applications performed during the three-

year Ph.D. period. Specifically, an innovative space-time adaptive multi-

looking technique that operates on a sequence of multitemporal, 

differential synthetic aperture radar interferograms is presented [7]. 

Innovative methodologies for studying multi-scale earth surface 



 

deformation phenomena and the correction of TOPS SAR data co-

registration errors for non-stationary scenes are also presented [8], [9]. 

Finally, the analysis of groundwater depletion/inflation and freeze-thaw 

cycles of ground in the Urumqi region, China [10], and a discussion 

regarding recent advancements of multi-temporal methods applied to new 

generation SAR systems and applications are presented [11].  

The main achievements of my works have been addressed in the following 

publications, see [1], [5]–[7], [10]–[14], [14].  
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Chapter 1Equation Chapter (Next) Section 1 

CLOUD MICROPHYSICAL PARAMETERS 

Seen from space, Earth looks dominated by clouds. Generally, clouds regularly 
occupy more than 50% of the planet. The existence of clouds on Earth is mainly 
driven by the physical phenomenon of condensation of atmospheric water vapor 
particles. Condensation occurs in the troposphere and stratosphere in response to 
dynamic processes, such as i) widespread vertical air motion, ii) convection, and 
iii) mixing. These dynamics are not the only reason for cloud existence; radiation 
transfer through the atmosphere and the interaction with condensed water vapor 
layers also play a central role. Such interaction depends mainly on particle 
concentration, size distribution, shape, thickness, and geometry. In this way, clouds 
directly force radiation balance and energetics of the earth-atmosphere system. 
Therefore, an understanding of their composition and structure is of vital 
importance. In this Chapter, the characterization of ice and liquid water clouds in 
terms of their microphysics will briefly be presented. This is of fundamental 
importance to understand the developments made in this Ph.D. thesis. A discussion 
regarding the state of the art of cloud microphysics parameters retrieval algorithms 
will also be presented and discussed. 

1.1 LIQUID CLOUDSEQUATION CHAPTER (NEXT) SECTION 1 

Liquid water particles are spherical and scatter an amount of radiation 
proportional to their cross-sectional area [15]. Starting from these two assumptions, 
it is possible to determine the effective radius of liquid water particles such as: 
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where G and r are the geometric cross-sectional area per unit volume and the radius 

of a water particle; ( )n r  is the distribution of water particles size of limits [ ]min max,r r . 

Considering Equation (1.1), the expression of cloud liquid water content can be defined 

as: 
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where waterρ  indicates the density of water. Finally, being z∆  the size of a liquid 

water cloud, it is possible to determine the cloud liquid water path (CLWP) as follows: 

 LWP LWC z= ⋅∆  (1.3) 

1.2 ICE CLOUDS  

The definition of ice clouds' microphysical state is much more complicated 

because of the non-spherical nature of ice particles. The ice particle shapes depend 

mainly on the variation of atmospheric temperature and humidity [16], [17]. From 

aircraft observations at midlatitudes, hollow columns and hexagonal plates are the most 

abundant types of shapes near the cloud top for most ice clouds. Bullet rosettes are 

predominant shapes above about -40°C, while hollow or solid columns prevail below 

temperatures of about -50°C. Across these temperatures, collision, and coalescence 

phenomena aggregate ice particles into spatial crystalline forms (e.g., hollow columns) 

that become the predominant shape within the cloud. Ice particle size varies greatly in 

time and space and the correct definition of its size distribution is an open problem in 
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the literature. In this way, a general definition of ice cloud effective radii could be 

written in terms of volume V1 of an ice particle and the geometric area projected on a 

surface perpendicular to incident radiation A: 
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where L is the size of ice particles and ( )n L  is the distribution of ice particles 

size limited in [ ]min max,L L . Thus, the definition of the cloud ice water content 

(CIWC) is: 
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ice
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CIWC V n L dLρ= ∫  (1.5) 

where  is the ice density. Finally, considering an ice cloud of layer size z∆  
the cloud ice water path (CIWP) is determined as follows: 

 CIWP CIWC z= ⋅∆  (1.6) 

1.3 RETRIEVAL ALGORITHMS FOR CLOUD PRODUCTS 

Observations from space offer a powerful tool for the study of the cloud-
radiation interaction and the retrieval of cloud properties. The parameters 
introduced in Sections 1.1 and 1.2 are essential to investigate the way clouds affect 
the hydrological cycle and radiative components of the climate system. 

In the last four decades, the continuous improvements in spatial and spectral 
resolutions of satellite-borne sensors have promoted more sophisticated retrieval 
procedures to estimate new cloud products with enhanced accuracy. In this 
framework, several methodologies have been developed to retrieve cloud properties 

 

1 For a hexagonal ice crystal 
23 3

8
LDV = with D the ice crystal width. 
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from satellite observations. Hereinafter, there is a literature review of the methods 
using microwave (MW) and/or infrared (IR) atmosphere measurements acquired by 
passive satellite sensors. 

1.3.1 MICROWAVE OBSERVATION 

Passive MW observations are sensitive to atmospheric temperature, humidity, 
and liquid water/ice within the observed volume. Liquid water and ice particles 
affect the observed brightness temperature (BT) in diverse ways due to the different 
spectral properties of the refractive index of water/ice. For example, the BT at 23.8 
and 89 GHz is more strongly influenced by liquid clouds than cirrus for equivalent 
water paths. In contrast, channels near 157 and 183 GHz are more strongly 
influenced by ice clouds. Since the 1980s, MW radiometric applications for 
estimating cloud microphysical parameters are based on both physical and 
empirical approaches, becoming well consolidated. Atmospheric water vapor and 
cloud liquid water information can generally be obtained from channels at 23.8, 
31.4, 90, and 183 GHz. Information on ice clouds and precipitation can be obtained 
from millimeter-wave measurements at 90 and 150 GHz and possibly from higher 
frequency window channels. Most of the early developments to retrieve 
geophysical variables from MW radiances exploited the Special Sensor 
Microwave/Imager (SSM/I) including, total precipitable water (TPW) [18], CLWP, 
CIWP, and precipitation [19], CLWP and cloud frequency [20]. 

With the launch of the Advanced Microwave Sounding Unit (AMSU) Grody et 
al. 2001, present a regression algorithm for retrieving TPW and CLWP over oceans 
using AMSU channels at 23.8 and 31.4 GHz. The theoretical background of the 
TPW and CLWP algorithm is the same as for the SSM/I, but it accounts for the 
geometrical and spectral differences between SSM/I and AMSU. Extensive 
comparisons have been made between the TPW and CLWP retrievals from AMSU 
and other satellite instruments (e.g., SSM/I), ground-based radiometers [21], and 
radiosonde data. It was shown that the CLWP time series of the AMSU and ground-
based sensors follow each other within the 0-0.5 kg/m2 dynamic range. Radiosonde 
comparison showed differences less than 3 kg/m2 in terms of Root Mean Squared 
(RMS) difference and biases less than 1 kg/m2 over the range between 5 and 60 
kg/m2. 

The authors of [22] report an algorithm to derive CIWP and ice particle 
effective radii ed from AMSU measurements. The algorithm relates both CIWP and 
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ed to the ice particle scattering parameters, which are determined from AMSU 

measurements at 89 and 150 GHz. The algorithm was found to miss the detection 
of thin cirrus surrounding the precipitating areas, suggesting that synergic use of 
higher frequencies in Infrared (IR) or Visible (VIS) measurements would be helpful 
to detect these thin clouds. The major error sources affecting the retrievals are 
identified in terms of cloud-base BT estimation, retrieved particle ed  , and volume 
density. It is shown that ed  possibly contains an error of 5%–20%. A 30% error in 
bulk volume would alone result in a 25% error in retrieved CIWP.  

In [23], the authors describe the operational hydrological products from 
AMSU, named Microwave Surface and Precipitation Products System (MSPPS), 
and present some inter-comparisons with other satellite products and ground-based 
observations. TPW and CLWP are estimated using 31 and 23 GHz channels, mainly 
based on the algorithms reported by [24], while CIWP and ice particle effective 
diameters ed  are simultaneously derived from 89 and 150 GHz using the algorithm 
in [22]. TPW and CLWP are retrieved only over the ocean, while CIWP is 
computed over both land and ocean, but only if there is no ice/snow on the 
background surface, as inferred from AMSU lower frequency channels. Validation 
is reported for radiosonde TPW at nine stations, and ground-based radiometric 
CLWP estimates at the ARM sites in Manus Island and Nauru, which are 
representative of open ocean conditions, for 6 months. Note that since CLWP is not 
nearly as spatially homogeneous as TPW, special treatment of the ground-based 
reference data is applied to better utilize them for the AMSU validation, as 
described by Grody et al., 2001. This resulted in approximately 190 CLWP match-
up points for NOAA-15 and 160 for NOAA-16, showing ~0.6 correlation, ~0.05 
kg/m2 RMS difference, and a small bias (<0.01 kg/m2). A binned analysis is also 
reported, to reduce the nonuniform data distribution across the available range. This 
is obtained by binning CLWP retrievals into 0.01 kg/m2 bins based on the ground-
based reference measurements in the 0-0.10 kg/m2 range. The main conclusions 
drawn from the binned analysis are: (i) there is little bias in the AMSU-derived 
CLWP for values < 0.3 kg/m2, which indicates that the algorithm is adequate under 
non-raining conditions; (ii) there is some angular dependency on the retrievals, 
most likely attributed to the larger FOV of the AMSU-A sensor as the view angle 
increases. 

The work [25] presents the retrieval of CLWC profiles. This CLWC profiling 
algorithm is based on a model for moisture condensation in which the relative 
humidity for the onset of clouds is a retrieved parameter, which makes the retrieval 
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more robust to errors in the retrieved temperature profile and horizontal 
inhomogeneities of the moisture field within an instrument footprint. This work 
represents the first phase of developing algorithms for retrieving geophysical 
parameters from observations from AMSU and other sensors (e.g., the Atmospheric 
Infrared Sounder (AIRS)). The vertical distribution (cloud mean pressure) is 
compared to relative humidity profiles from dedicated radiosondes launched during 
the Aqua satellite overpass, while the CLWP obtained from the retrieved CLWC is 
compared with ground-based radiometric measurements. Results for CLWP over 
ocean show 0.35 correlation and 0.05 kg/m2 RMS difference, while over land 0.51 
correlation and 0.12 kg/m2 RMS. The main conclusions are that the developed 
algorithms have some abilities in estimating the vertical distribution of cloud liquid 
water, as well as the integrated amount over a water surface. Retrievals over a land 
surface are also demonstrated, although only in a fraction of cases. Also here, the 
author suggests that the incorporation of infrared measurements will improve cloud 
detection and the overall performance of the algorithm. 

In [26] the authors present a one-dimensional variation method (1D-Var) to 
retrieve the profiles of atmospheric temperature, water vapor, and cloud water from 
simultaneous satellite MW imaging and sounding channels. At first, the profiles of 
temperature, water vapor, and cloud liquid water are derived using only the AMSU-
A measurements at frequencies less than 60 GHz. The second step is to retrieve rain 
and ice water using the AMSU-B measurements at 89 and 150 GHz. Finally, all 
AMSU-A/B sounding channels at 50–60 and 183 GHz are utilized to further refine 
the profiles of temperature and water vapor while the profiles of cloud, rain, and ice 
water contents are constrained to those previously derived. The 1D-var retrieval 
algorithm is validated in terms of TPW against radiosonde data and collocated 
satellite measurements. TPW biases are relatively small (<0.3 kg/m2) and RMS 
difference is 2.7, 2.3, and 2.5 kg/m2, depending on platform (NOAA-15, -16, -17, 
respectively). The performance of the 1D-var algorithm is also tested using the 
global AMSU data over land and oceans (but excluding the data over high latitudes 
beyond 60° north and south) against GDAS global reanalysis. The TPW bias and 
RMS difference of the zonal means are 0.15 and 0.75 kg/m2, respectively. 

The works [27], [28], and [29] present the design of a constellation of mini-
satellite, deploying millimeter-wave (MMW) scanning radiometers. The proposed 
mission aims at the retrieval of thermal and hydrological properties of the 
troposphere, specifically temperature and water-vapor profiles, CLWC and CIWC 
profiles, and rainfall and snowfall rates. The channels are selected following the 
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ranking based on a reduced-entropy method between 90 and 230 GHz. Only 
simulated data are available since the mission was limited to the feasibility study. 
In particular, in [27] the authors evaluate quantitatively the benefit of a 1D-Var 
scheme to derive hydrometeor profiles from the proposed set of MMW 
observations. Results are shown for the channel combination that provided the best 
performances in the reduced-entropy ranking (10 channels from 89 to 229 GHz). 
The retrieval performance is quantified in terms of statistics of the residual error 
between the true profiles and the profiles retrieved from the simulated observations 
using 1D-Var. The accuracy of the retrieved hydrometeor profiles over land and sea 
for a winter and summer season at several latitudes shows the beneficial 
performance. The error std statistics demonstrate that the contribution to the 
forecast is rather small but consistently positive for both CLWC and CIWC, and it 
is more significant over the ocean than over land. In [28] the exploitation of two 
statistical inversion schemes (the multiple regression and the maximum likelihood) 
to quantify the overall accuracy of four selected MMW radiometer configurations 
is investigated. The performances of two inversion schemes are shown to be 
comparable, indicating a retrieval uncertainty only slightly algorithm-dependent. 
Specifically, considering multiple regression with their best channel configuration 
(10 channels from 89 to 229 GHz), the authors report the following expected 
correlation (R) and RMS uncertainty (σ): 

- CLWP (0-1.4 kg/m2): R=0.70; σ=0.08 kg/m2 over land; R=0.87; σ=0.04 
kg/m2 over ocean. 

- CIWP (0-0.25 kg/m2): R=0.58; σ=0.01 kg/m2 over land; R=0.64; 
σ=0.03 kg/m2 over ocean. 

Note that the correlation increased significantly for precipitation-sized ice 
particles (i.e., graupel), R=0.86 over land and 0.97 over the ocean. 

Finally, the expected RMS uncertainty for CLWC profiles is also provided, 
within 0.1 g/m3 over land and 0.04 g/m3 over the ocean, though the authors warn 
that these results should be considered valid for the available dataset only. 

[30] presents a Neural Network (NN) algorithm, applicable for high latitude 
open water areas, to retrieve TPW and CLWP from SSM/I and Advance Microwave 
Sounding Radiometer for EOS (AMSR-E) observations. Products are validated 
against radiosonde data from a polar station. They show that NN performs better 
than the conventional regression techniques. The resulting SSM/I and AMSR-E 
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retrieval errors are 1.09 kg/m2 and 0.90 kg/m2 respectively. For SSM/I, the TPW 
algorithm is compared with the global operational algorithm in Wentz and Spencer 
1998. The retrieval errors are 1.34 kg/m2 and 1.90 kg/m2 (~40% worse) for the two 
algorithms, respectively, demonstrating the advantages of NN.  

In [31], the Microwave Integrated Retrieval System (MIRS) algorithm, a 1D-
Var scheme developed at NOAA in 2007, is applied to data from the ATMS 
onboard SNPP. The products are inverted simultaneously in a land-ocean-
atmosphere-cryosphere coupled inversion approach, ensuring that all radiances are 
fitted simultaneously and ensuring that the geophysical consistency is also satisfied. 
The assessment of the MIRS performances used a mixture of in situ measurements 
(radiosondes, radar, gauges, and ground-based surface sensors) as well as ECMWF-
generated analyses and heritage algorithms (e.g., MSPPS). Indeed, MIRS is 
supposed to replace the MSPPS as the NOAA operational product, through a multi-
phase smooth transition2. The authors provide an example of TPW validation 
against the European Centre for Medium-Range Weather Forecasts (ECMWF) 
predictions for one day, showing a 0.99 correlation and 3.1 kg/m2 RMS difference. 
Such a daily validation is now produced operationally at: 
https://www.star.nesdis.noaa.gov/mirs/geonwp.php. However, the authors note that 
hydrometeor parameters cannot be validated directly because of the absence of 
reliable ground truth, and thus, given the mechanism employed by MIRS by which 
the hydrometeor profiles are used to generate a surface rainfall rate, assume the 
validation of the surface rainfall rate as a proxy for the validation of all MIRS-based 
hydrometeors. Using this approach, the MIRS ATDB (v1.03) reports the expected 
bias and RMS uncertainty for TPW over land (1.5 and 2.5 kg/m2, respectively) and 
ocean (1.7 and 2.2 kg/m2), and for CLWP over ocean (0.03 and 0.10 kg/m2). 

Two algorithms were proposed in [32] to estimate TPW and CLWP from FY-
3D sensor observations over the ocean, by combining two oxygen band channels 
(52.80 and 118.75 ± 2.5 GHz), instead of relying on the classical low-frequency 
window channels (23.8 and 31.4 GHz), which are missing in FY-3 sensor. Four 
groups of experiments and verifications were conducted to evaluate the 
performance of the algorithms. The estimations from FY-3C double oxygen-
absorption band observations were compared with retrievals from the traditional 
[33] scheme applied to MetOp-B AMSU measurements at 23.8 and 31.4 GHz. It is 

 
2https://www.star.nesdis.noaa.gov/mirs/documents/documentation/doc_v11r3/NOAA_Products_MSPPS

2MIRS_Transition.pdf 
3https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_MIRS_v1.0.pdf  

https://www.star.nesdis.noaa.gov/mirs/geonwp.php
https://www.star.nesdis.noaa.gov/mirs/documents/documentation/doc_v11r3/NOAA_Products_MSPPS2MIRS_Transition.pdf
https://www.star.nesdis.noaa.gov/mirs/documents/documentation/doc_v11r3/NOAA_Products_MSPPS2MIRS_Transition.pdf
https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_MIRS_v1.0.pdf
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shown that the CLWP retrievals from the double oxygen absorption band have close 
correlation coefficients, biases, and RMS values with the results of the AMSU 
traditional scheme. Conversely, the performances of TPW retrievals from double 
oxygen-absorption band observations are significantly worse than those obtained 
with AMSU traditional scheme. More recently, [34] reports a machine learning 
technique used to generate BT at the two missing low-frequency channels from 
observations at a higher frequency, with a mean absolute error between 3 and 4 K. 
A statistical inversion method is adopted to retrieve TPW and CLW over oceans, 
which compares well in magnitude and distribution with estimates from Suomi NPP 
ATMS. 

[35] presents an assessment of CLWP retrievals from MIRS. The CLWP 
product is assessed by using both ground-based radiometric observations (ARM 
site in Azores, Portugal) and a satellite-based reference dataset (NASA GPROF). 
For the ground-based comparison, the collocation method considers FOV that falls 
within a 3-km radius centered at the site and observations that fall within 30 minutes 
from the satellite overpass. A 3-year dataset is collected (1535 match-ups), with 
overall all-season correlation coefficient, bias, and standard deviation of 0.59, -
0.065 kg/m2, 0.2 kg/m2, respectively. The seasonal analysis shows correlation 
coefficients for all four seasons higher than 0.5 with fall having the highest value 
of 0.66. Fall also has the smallest bias (-0.052 kg/m2) and standard deviation (0.16). 
In contrast, summer has the lowest correlation coefficient (0.51) and highest bias (-
0.076 kg/m2). The comparison with GPROF shows correlation coefficient, bias, and 
standard deviation of 0.71, 0.005 kg/m2, and 0.07 kg/m2, respectively. 

Finally, in recent days, the advancement of MMW radiometry and miniaturized 
components has enabled the exploitation of cm-sized mini-satellites (CubeSat) for 
Earth observation. At least two NASA-funded missions are currently exploiting 
MW radiometers aboard CubeSat modules, TROPICS, and TEMPEST-D. 
TROPICS [36] aims at providing the temperature and water vapor profiles, and 
liquid and ice precipitation, exploiting seven channels near the 118.75 GHz oxygen 
absorption line, three channels near the 183 GHz water vapor absorption line, and 
single channels near 90 and 205 GHz. TEMPEST-D [37] exploits frequencies 
between 89-183 GHz to provide measurements of water vapor profiles, and CLWP 
and CIWP with an accuracy of 0.1 kg/m2. Note that some of these channels have 
never been tested in space (e.g., the 118-GHz band and the 205 GHz channel), and 
could serve as a proxy for channels foreseen for MWI (118.75 GHz) and MWS (229 
GHz). 
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1.3.2 INFRARED OBSERVATION 

Also, passive IR observations are sensitive to atmospheric temperature, 
humidity, and liquid/ice clouds as well as some trace gases within the observed 
volume. Since the early years of satellite meteorology, methods for deriving cloud 
properties from IR observations have been developed [38]–[40], followed by the 
development of methods for inferring cloud microphysics, such as cloud particle 
size and optical thickness [41]–[43]. 

The authors of [44] developed a statistical technique for inferring optimum 
values of the optical thickness and effective radius of clouds. The procedure 
incorporates a new discrete ordinates radiative transfer method as well as some 
asymptotic expressions for the reflection function of thick layers. In this 
investigation, the authors use for the optical thickness and effective radius of 
stratiform cloud retrievals a single non-absorbing visible wavelength (0.75 µm) and 
two absorbing near-infrared wavelengths (2.16 and 3.7 µm). The two absorbing 
near-infrared wavelengths are used to reduce the ambiguity in deriving the effective 
radius for optically thin clouds. For optically thin clouds the retrievals become 
ambiguous. Following [45], they examine the optical thickness and the effective 
radius uncertainty (5%) as a function of errors in the measured reflection function 
as well as in the surface albedo, phase function, and similarity parameter. [46] 
studied the performance of their method using data measured by the Advanced Very 
High-Resolution Radiometer (AVHRR) over the ocean (channels 1-3-4 at 0.64, 
3.75 11.0 µm). They found a good agreement between satellite-derived and in situ 
microphysical quantities. 

The work made by Han et al. [47] reports a method based on a radiative transfer 
model to retrieve er  in liquid water clouds from AVHRR data. Results of sensitivity 
tests and validation studies have provided error estimates. The work [48] reports a 
method based on AVHRR reflectivity measurements at 0.63 and 1.6 µm to estimate 
CLWP. The cloud analysis involves cloud particle phase classification and 
estimation of the spatial distribution of the optical thickness and droplet effective 
radius. The retrieved CLWP is validated against ground-based measurements 
retrieved from microwave radiometers during the intensive measurement 
campaigns of the Cloud Liquid Water Network project (CLIWA-NET). The 
relationship between the satellite and ground-based measurements depends on 
many aspects of the atmospheric conditions, such as the structure of the cloud field 
and the wind speed at cloud height, causing a temporal and spatial mismatch 
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between the two observing strategies. On average, CLWP derived from ground and 
satellite measurements correlates with a 0.88 correlation coefficient. In general, the 
slope of the linear regression is close to 1, and the intercept is smaller than 10 g/m2. 
No systematic bias was found, but CLWP from the satellite is usually higher than 
that from ground-based. The authors relate this to the effective radius retrieved from 
the satellite, used to link optical thickness to CLWP, which is representative of 
larger particles at the cloud top. This may lead to an overestimation of the particle 
size and thus of the CLWP (Dong et al., 2002). This problem may be partly solved 
using more realistic parameterization of the vertical droplet size distribution in 
radiative transfer calculations [49], [50]. 

Using airborne multispectral MAS [51] data over the arctic, King et al., 2004 
showed that the 1.62 µm and 2.13 µm algorithm is more robust at determining the 

cloud optical thickness and effective radius er for water clouds over snow and sea 
ice surfaces, due primarily to the fact that both snow and sea ice have very low 
surface reflectance at these wavelengths. Therefore, liquid water clouds provide a 
relatively strong reflectance contrast to the dark underlying surface. However, this 
algorithm is less reliable for ice clouds due to the strong absorption by ice particles 
in both bands.  

The work [52] presents a comparison of Meteosat Second Generation Spanning 
Enhanced Visible Infrared Imager (MSG-SEVIRI) and AVHRR retrievals of cloud 
optical thickness (COT) and CLWP from the Cloud Physical Properties (CPP) 
scheme, developed in the framework of the EUMETSAT Climate Monitoring (CM) 
Satellite Applications Facility (SAF). The principle of methods to retrieve cloud 
physical properties is that the reflectance of clouds at a non-absorbing wavelength 
in the visible region (0.6 or 0.8 µm) is strongly related to the optical thickness and 
has very little dependence on particle size, whereas the reflectance of clouds at an 
absorbing wavelength in the near-infrared region (1.6 or 3.8 μm) is primarily related 
to particle size. In this framework, the retrieval of particle size from near-infrared 
reflectances is weighted toward the upper part of the cloud [53].  

The authors of [54] presented a NN method to retrieve cloud properties like 
effective radius, optical thickness, and cloud temperature from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) infrared observations. The 
different sources of uncertainties have been analyzed to evaluate the robustness of 
the method. These uncertainties are mainly related to measured radiances, cloud 
temperature specification, and lower boundary conditions (i.e., surface 



Cloud microphysical parameters 12 

 
temperature). The total error when simultaneous uncertainties are considered is 
between 0.25-0.45 μm for the effective radius and between 0.05-0.88 for the COT. 
The authors conclude that these uncertainties dominate the uncertainty budget over 
the errors introduced by the NN inversion, estimated within 1%.  

Besides, in [55] an optimal estimation-based cloud retrieval algorithm (ICAS) 
developed for MODIS observations using ten thermal infrared (TIR) bands, was 
presented. They utilize four TIR bands sensitive to cloud properties, centered at 8.6, 
10.4, 11.2, and 12.4 μm. These four bands are sensitive to cloud properties such as 
cloud top height (CTH), COT, and effective radius (re). Performance tests by 
retrieval simulations show that ice cloud properties are retrieved with high accuracy 
when COT is between 0.1 and 10. Cloud-top pressure is inferred with an uncertainty 
lower than 10% when COT is larger than 0.3. ICAS has been used also for the 
Himawari-8 instrument (Iwabuchi et al. 2018). A sensitivity study demonstrates 
that the addition of the single CO2 band of Himawari-8 is effective for the 
estimation of CTH. For validation, retrieved cloud properties are compared 
systematically with collocated active remote sensing counterparts with small time 
lags. While retrievals agree reasonably for single-layer clouds, multilayer cloud 
systems with optically thin upper clouds overlying lower clouds are the major 
source of error. The measurement noise is estimated from the variance of 
measurement model differences within a (10 km)2 area. For validation, ICAS 
retrieval is compared with the RADAR/LiDAR (DARDAR) cloud product. 
DARDAR provides vertical profiles of cloud mask and ice cloud properties 
including the ice water content, re, and extinction coefficient, inferred from 
combined observations from MODIS, CloudSat radar, and CALIPSO lidar and TIR 
measurements. DARDAR has a horizontal spatial resolution of 1.1 km and a 
vertical resolution of 60 m.  

High-spectral-resolution IR sounder data can provide consistent cloud 
microphysical properties during both daytime and night-time. The use of advanced 
sounder data has been demonstrated since the 1970s [56], and later for cloud 
properties, from aircraft [57], [58] as well as satellites [59], [60]. 

The work made by Smith et al. [58] presents a technique for inferring water and 
cirrus cloud radiative and microphysical properties. The technique was tested using 
theoretical calculations and applied to observations made from ground-based 
observations and the NASA aircraft-based High-resolution Interferometer Sounder 
(HIS) instrument, made in conjunction with lidar cloud backscatter and situ 
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atmospheric temperature and moisture measurements. The study depicts the 
spectral variability of cloud optical properties within the window region.  

The work [60] proposes an approach to infer the optical thickness of 
semitransparent ice clouds (COT<5) from AIRS. The authors investigate the 
sensitivity of the Atmospheric Infrared Sounder (AIRS) spectral BTs and brightness 
temperature difference (BTD) values between pairs of wavenumbers to COT. The 
spectral BTs for the atmospheric window channels within the region 1070–1135 
cm-1 are sensitive to the ice COT, as is the BTD between 900.562 cm-1 (atmospheric 
window) and 1558.692 cm-1 (in a strong water vapor absorption band). Similarly, 
the BTD between a moderate absorption channel (1587.495 cm-1) and the strong 
water absorption channel (1558.692 cm-1) is sensitive to ice COT. The ice COT 
derived from the AIRS measurements is compared with those retrieved from 
MODIS 1.38- and 0.645-μm bands. The COT inferred from MODIS measurements 
is collocated and degraded to the AIRS spatial resolution. The AIRS-retrieved COT 
agrees with that from MODIS for thin to moderately thick cirrus clouds (COT<5). 
AIRS-retrieved COT tends to be smaller compared to MODIS as COT increases. 
This is attributed to the BTD signal saturation for large COT values. 

In [59], a review of the theoretical basis for inferring the microphysical 
properties of ice clouds from high spectral resolution IR observations was proposed. 
The simulations shown in that paper evidence that the slope of the IR BT spectrum 
between 790–960 cm-1 is sensitive to the effective particle size. Strong sensitivity 
of the IR BT to cloud optical thickness is noted within the 1050–1250 cm-1 region. 
Based on these spectral features, the authors present a technique for the 
simultaneous retrieval of the visible optical thickness and effective particle size of 
ice clouds from high spectral resolution IR data. The uncertainty analysis shows 
that the uncertainties of the retrieved COT and effective particle size have a small 
range of variation. The uncertainty for particle size corresponding to an uncertainty 
of 5 K in cloud temperature, or a surface temperature uncertainty of 2.5 K, is less 
than 15%. The corresponding uncertainty for optical thickness is 5% to 20%, 
depending on the COT value.  

In [61], the authors describe two approaches for synergistic use of the MODIS 
mask products (cloud mask, cloud-phase mask, and cloud classification mask), the 
operational MODIS cloud microphysical cloud products, and the AIRS radiance 
measurements for retrieving the COT and cloud particle size. The MODIS cloud 
mask with the 1-km spatial resolution is used to characterize the AIRS subpixel 
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cloud condition (clear/cloudy, ice/water, single/multilayer) during both daytime 
and nighttime. The MODIS + AIRS 1D-VAR [62], [63] algorithm is used for cloud 
microphysical property retrieval during the daytime, with the operational MODIS 
COT and cloud particle size as the background information, while minimum-
residual (MR) is used during both daytime and nighttime. In both 1DVAR and MR 
procedures, the CTP is derived from the AIRS radiances at CO2 channels while the 
cloud-phase is derived from the collocated MODIS 1-km phase mask. Results from 
1D-VAR are compared with the operational MODIS products and MR cloud 
microphysical property retrieval during one case study, showing that 1D-VAR 
retrievals have a high correlation with either the operational MODIS cloud products 
or MR cloud property retrievals.  

In [64], a physical inversion scheme dealing with cloudy and cloud-free 
radiances observed with ultra-spectral infrared sounders to simultaneously retrieve 
surface, atmospheric thermodynamic, and cloud microphysical parameters is 
proposed. Also, in this work, a 1D-VAR approach is used to improve an iterative 
background state defined by an eigenvector-regression retrieval. For both optically 
thin and thick clouds, the cloud-top height can be retrieved with relatively high 
accuracy (i.e., error <1 km). The authors point out that the idealized assumption on 
cloud habits introduces errors and indicates more realistic cloud habit assumptions 
as a way to improve retrieval performances.  

The work [65] describes a method for simultaneously retrieving atmospheric 
temperature, moisture, and cloud properties using all available IASI channels 
without sacrificing computational speed. The essence of the method is to convert 
the IASI channel radiance spectra into super-channels by an Empirical Orthogonal 
Function (EOF) transformation. Studies show that about 100 super-channels are 
adequate to capture the information content of the radiance spectra. A Principal 
Component-based Radiative Transfer Model (PCRTM) is used to calculate both the 
super-channel magnitudes and derivatives for atmospheric profiles and other 
properties. They have applied the super channel retrieval algorithm to IASI spectra 
taken during the JAIVEx field campaign4.  

The work [66] presents the structure of the operational IASI L2 processing 
chain (version 5), including the individual retrieval modules, their algorithms and 
configuration, and a summary of the performance assessment through various 
internal and external validation studies. The validation of the retrieved geophysical 

 
4 http://cimss.ssec.wisc.edu/jaivex/about/ 
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parameters has been conducted with a wide range of satellite products (including 
CALIOP, AATSR, MODIS, AVHRR, SEVIRI), with numerical weather 
predictions and chemistry models and with in-situ measurements (including 
radiosondes and buoys). L2 products include cloud detection, fractional coverage, 
height, and phase. Cloud detection is assessed through multiple tests (based on 
NWP, AVHRR, and NN). Significant improvements are obtained in cloud products 
with respect to previous processing chains. The authors demonstrated also that the 
introduction of an artificial NN (ANN) for cloud detection has increased the global 
ability to detect clouds by approximately 25% with respect to the NWP test only, 
with an overall success rate exceeding 90%. This outcome improved the cloud 
phase retrieval, whose methodology is based on the different spectral emissivity of 
water and ice clouds in the spectral region between 8 and 12 μm. An additional test 
is applied in version 5, identifying ice clouds based on the fact that super-cooled 
water cannot exist at temperatures below -40 °C. For the validation of cloud-phase 
determination, a set of globally distributed co-located IASI and AVHRR data has 
been compiled. The final version of the tuned algorithm detects 84.5% of the cloud 
phases correctly. Among the ice samples, 97.3% are correctly determined, while of 
the liquid samples 84.6% are determined correctly. However, the algorithm does 
not show any skill in detecting mixed-phase clouds, only 5.5% are correctly 
identified, and the majority of mixed-phase clouds are reproduced as ice clouds 

The feasibility of adding CLWC and CIWC profiles of a 1D-Var assimilation 
system was investigated by [67]. The proposed approach avoids the conventional 
use of cloud parameters (CTP and effective cloud fraction) deduced from a CO2 
slicing algorithm and the modeling of clouds by single-layer clouds [39]. They use 
RTTOV [68] radiative transfer code (version 10.1), which features an interface to 
include CLWC and CIWC and cloud-fraction profiles, called RTTOVCLD. 
RTTOVCLD enables multilayer mixed-phase clouds (two cloud types per layer). 
The validation is performed through observing-system simulation experiments 
(OSSE), showing that the 1D-Var is working reasonably, adding ice or liquid-water 
cloud in the correct region of the atmosphere. For high opaque clouds, an 
encouraging result is obtained for the extraction of information about CIWC, while 
little information is extracted for CLWC. However, this study is limited to 
homogeneous cloudy scenes with small background departures. A consecutive 
work [69] using the same 1D-Var framework, investigated a reduced set of IASI 
channels that could be exploited for data assimilation in cloudy conditions. The 
channel selection aims to minimize the total loss of information, following the 
approach discussed in [70]. The study demonstrated that the channel selections are 
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quite independent of the air-mass type and are capable of improving the retrieval of 
cloud variables by ~8% RMS to the operational set exploited at NWP centers. 
Following this research, consequently, in [71] the authors demonstrated the 
persistence of cloud information produced by 1D-Var assimilation of cloud-
affected IASI radiances in a convective scale NWP.  In this framework, a significant 
reduction of the forecast error of CLWC and particularly CIWC is observed. The 
average error reduction reaches 15–20% for the CIWC of semi-transparent clouds 
and 9% for opaque clouds, while 10% for the CLWC of semi-transparent clouds, 
and 3% for opaque clouds, confirming that CLWC is not well analyzed by the 1D-
Var, which can be explained by a relatively small sensitivity of the IR data to the 
liquid cloud. Finally, to better constrain the analysis of CLWC as well as improve 
the sensitivity of 1D-Var to the liquid cloud, the authors suggest the use of MW 
radiances. 

A physical inversion methodology based on PCRTM has been used in [72] to 
simultaneously retrieve cloud radiative and microphysical properties. In their work, 
the authors applied the methodology using single FOV spectral radiances measured 
by IASI under all-sky conditions. The retrieval uncertainty has shown great 
sensitivity to ultra-thin clouds demonstrating in the simulation study the success of 
using the PCRTM retrieval method to detect thin clouds with a COT as low as 0.04. 
As COT increases from 0.5 to 4, the retrieval uncertainty increases only moderately. 
For COT>4, the retrieval performance degrades significantly. 

 

1.3.3 COMBINED INFRARED AND MICROWAVE OBSERVATIONS 

Since the hydrometeors forming clouds strongly absorb IR wavelengths, the IR 
radiation reaching a spaceborne radiometer is mostly generated close to the cloud 
top. On the other hand, MW radiation emitted from the Earth's surface is only 
slightly affected when passing through nonprecipitating clouds. MW is also 
complementary to IR because MW radiation is sensitive to larger ice crystals and 
thicker cirrus layers whereas IR radiation is more sensitive to smaller particles and 
cirrus clouds having lower CIWP. Therefore, it appears that a proper combination 
of IR and MW multispectral measurements could help in determining the cloud's 
vertical structure and composition, particularly in the case of overlapping cloud 
layers.  
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The synergy between MW and IR observations of Earth’s atmosphere has been 

explored since the late 1990s. In fact, [73] proposed a method for deriving CLWP 
and cloud water temperature (Tw) from MW observations, and validated results 
with radio soundings and retrieval from a combined VIS and IR retrieval method. 
The two retrieval methods are combined into a single technique, called MVI 
(microwave, visible, and infrared), to estimate the frequency of multilayered clouds 
and the effective droplet radius in water clouds. MVI was applied to Meteosat and 
SSM/I data taken during the Atlantic Stratocumulus Transition Experiment 
(ASTEX, June 1992) [74]. Matched satellite and ground-based radar data show that 
the MVI technique can separate cloud layers when high ice clouds overlap lower 
liquid water clouds. A comparison of CLWP from the method and ground-based 
observation has been reported. The mean difference between the ground-based and 
the SSM/I CLWP estimates is 0.034 kg/m2 or about 30% of the mean value, while 
the correlation coefficient is 0.54. The largest differences occur when the ground 
instrument locally observes relatively high (> 0.2 kg/m2) CLWP values.  

The work [75] examines the cloud base signal in a combination of MW 
observations from a theoretical point of view. The authors showed that the signal is 
strong enough for a useful retrieval only over the ocean. Using MW and IR data 
acquired from the same platform (AMSU and AVHRR on NOAA-K) they showed 
that the cloud top temperature constraint provided by IR observations improves the 
retrieval skills over a relevant range of CLWP values. 

The work [76] presents a 1D-Var approach to analyze cloud-affected 
observations including both IR and MW sensors (HIRS/3 and AMSU-A aboard 
NOAA-15). The linearized versions (tangent-linear and adjoint) of the fast radiation 
model RTTOV were used for the computation of cloud-affected BT. In the IR, 
cloudiness is treated as a single semi-transparent layer, defined by only two 
parameters: the cloud-top pressure and its effective amount (i.e., the cloud-layer 
emissivity times the cloud fraction). In the MW, cloud absorption is computed from 
the profiles of cloud cover, liquid water, and ice water given on any vertical pressure 
grid. The 1D-Var scheme is tested on individual profiles with synthetic 
observations and it is applied for cloud retrieval with real observations (on 15 
March 2001). Rain-affected MW observations are detected following [77] and 
removed consistently. The application shows that 1D-Var can extract some 
information about liquid and ice water contained in the radiances. Although they 
do not report retrieval uncertainty, a closure comparison with CERES OLR 
observations shows the improvement of the model ice-cloud representation by the 
1D-Var retrieval. A small positive impact is found for low clouds that are controlled 
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in the 1D-Var mostly by the broad MW information. The validation of the 1D-Var 
puts into evidence the limits of the sensitivity of passive IR and MW radiation to 
cloud vertical distribution. The authors also acknowledge that the specification of 
the background-error covariance matrix is made particularly difficult by the 
nonlinearity of the cloud variables, due to their on/off nature.  

In [78] Shao et al. developed a method to detect drizzle in marine warm clouds 
by combining VIS, near-IR, and MW measurements from the TRMM satellite. A 
VIS/near-IR algorithm is used to simultaneously retrieve COT and effective radius, 
while an MW algorithm is developed to retrieve CLWP. The relationship among 
CLWP, optical depth, and effective radius is investigated by using radiative transfer 
model simulations and by analyzing satellite observations. Coincident airborne 
cloud radar measurements were used to verify the capability for drizzle detection.  

The work made by Huang et al. [79] presents a method to estimate CLWP and 
CIWP of double-layer clouds using combined MODIS and AMSR‐E 
measurements. In this method, the CLWP of the lower layer water cloud is 
estimated from AMSR-E measurements. With the lower layer LWP known, the 
properties of the upper-level ice clouds are then derived from MODIS 
measurements by matching simulated radiances from a two-cloud layer radiative 
transfer model. Comparisons with single-layer cirrus systems and surface-based 
radar retrievals show that the approach can significantly improve the accuracy and 
reduce the overestimation of COT and CIWP retrievals for ice-over-water cloud 
systems.  

In the work of Romano et al. [80], a technique based on multispectral satellite 
observations (AIRS and AMSU) to improve the retrieval of cloud parameters also 
in presence of scenes with overlapping cloud layers is presented. The authors assert 
that IR-only observations have little chance to retrieve cloud properties below the 
upper-most cloud top unless the clouds are thin and/or not completely overlapping. 
This approach exploits both MW and IR observations to penetrate the cloud top, 
showing better agreement with ground-based observations. Satellite retrievals are 
validated against ground-based observations collected at the Chilbolton 
Observatory Facilities (UK) during spacecraft overpasses and compared with 
retrievals using the CO2 slicing technique (CTH only), often used for cloud top 
retrieval, which gives accurate results for a single cloud layer. For the data set 
considered in this study (40 cases), RMS agreement with ground-based 
observations is within 295, 905, 1094, and 1862 m for the first two CTH and CBH, 
respectively, and 0.62, 0.08, and 0.02 kg/m2 for TPW, CLWP, and CIWP, 
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respectively. Finally, the authors conclude that HIRS has better capability in 
discriminating ice/no-ice clouds than AMSU-A or MHS. 

Holl et al. 2010, in their paper [81] present a method for collocating satellite 
radar and radiometric measurements. In this framework, the authors use 
collocations to validate an operational CIWP product from MHS measurements, the 
NOAA MSPPS, against CIWP values from CloudSat. The authors report that the 
MSPPS CIWP is systematically smaller than the CPR CIWP, by approximately 70–
90%. For many nonzero CloudSat measurements, the MSPPS CIWP is zero, likely 
because thin clouds are relatively transparent at MHS frequencies. To overcome 
this low sensitivity, the authors also tested the added value of adding two HIRS 
channels (8 and 11) to the MHS CIWP retrieval. From a subsequent analysis, the 
authors found only a small retrieval improvement for small values of CIWP and 
attributed the modest improvements to the footprint difference between HIRS and 
MHS and beam-filling problems. 

Islam et al. present an algorithm [82] for detecting ice clouds by using a support 
vector machine (AID-SVM). The AID-SVM algorithm is applied and tested for the 
AMSU-A, MHS, and HIRS instruments aboard the NOAA-19 satellite. The 
algorithm is based on satellite BT measurements and developed as well as validated 
by using collocated ice/no-ice cloud information acquired from the CloudSat cloud-
profiling radar. Over the ocean, they report a 0.37 probability of detection for 
AMSU/A, 0.51 for MHS, 0.83 for HIRS, and 0.83 for the combined AMSU/A, 
MHS, and HIRS. Over land, 0.42 for AMSU/A, 0.50 for MHS, 0.76 for HIRS and 
0.80 for AMSU/A+MHS+HIRS. 

In [83] Holl et al. present a CIWP product based entirely on passive operational 
sensors (SPARE-ICE). By collocating NOAA-18 with the CloudSat 2C-ICE CIWP 
product, the authors obtained an observation-based training dataset of AVHRR and 
MHS measurements on the one hand and joint radar-lidar CIWP on the other. With 
this dataset, they trained a set of NN for the detection of atmospheric ice and the 
retrieval of CIWP, using 2C-ICE CIWP as a reference. The algorithm exploits three 
AVHRR channels, three MHS channels, and auxiliary information (satellite angles, 
surface temperature, and surface elevation). The correlation between 2C-ICE and 
SPARE-ICE is very good for IWP > 10 g/m2. For smaller values of CIWP, SPARE-
ICE tends to be larger than 2C-ICE, and levels off at a median of around 1–2 g/m2 
for 2C-ICE CIWP < 1 g/m2. They found that SPARE-ICE is not sensitive to such 
small values of CIWP. For uncertainty quantification, they use the validation data 
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set, i.e., not used in the training, to define a fractional error5 and get an estimate of 
the retrieval fractional error as a function of CIWP. They report a median fractional 
error of about 2 % between SPARE-ICE and CloudSat 2C-ICE, similar to the 
random error between 2C-ICE and in situ CIWP measurements. 

Cloud properties retrieval is also addressed by Susskind et al in [84]. 
Specifically, in this paper the author reports the AIRS Science Team version-6 
level-2 retrieval algorithm and the products generated near real-time at the NASA 
Goddard Data and Information Services Center. The algorithm takes advantage of 
the AIRS/AMSU colocation on the same satellite platform, Aqua, to perform an 
AIRS/AMSU combined retrieval. AMSU observations are used together with AIRS 
ones in the start-up procedure to generate the initial state, including cloud properties 
(radiatively effective cloud fraction and cloud top pressure), as well as in the 
subsequent physical retrieval procedure. The AIRS science team version-6 retrieval 
algorithm contains many significant improvements compared to the previously 
operational version, including the methodology used to determine cloud 
parameters. Cloud properties are given for each of up to two layers of clouds in a 
given scene. A basic simplifying assumption of the cloud retrieval methodology 
used in version 6 is that the clouds are gray, that is, the radiatively effective cloud 
fraction is independent of frequency. Version-6 also has an additional AIRS-only 
(AO) processing capability, which utilizes only AIRS observations. No AMSU 
observations are used in any way in the generation of the version-6 AO initial state, 
which uses coefficients that are trained separately from those of version-6 and are 
generated without the benefit of any AMSU observations. The version-6 AO 
processing mode is an important backup to version-6 in case AMSU noise 
performance degrades below a practical level. Globally, version-6 AO retrievals are 
slightly less accurate than those of full (utilizing both AIRS and AMSU) version-6 
near the surface. This difference between the results of version-6 and version-6 AO 
occurs primarily over the ocean and is a result of the benefit over the ocean of the 
22- and 31-GHz channels of AMSU-A, which are not included in the AIRS-only 
retrieval procedure. 

In 2016 Marke et al. present a method [85] to infer liquid water cloud 
microphysical properties from a combination of MW and high-resolution IR 
ground-based observations. They focus on single-layer thin liquid water clouds 
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(CLWP < 0.1 kg/m2), for which MW and IR observations show relative lower and 
higher sensitivity, respectively. A synergistic retrieval based on NN is built to 
estimate both CLWP and cloud effective radius er . For their analysis, they used a 
synthetic data set of MW observations and additional spectrally highly resolved and 
broadband IR observations. The NN retrievals are shown to be able to infer CLWP 
and er  for thin clouds with a mean relative error of 9% and 17%, respectively. In 
contrast, an MW-only retrieval provides high relative error for thin clouds, but 
reasonable low errors beyond the point of saturation for the infrared retrievals 
(CLWP~40–60 g/m2). The addition of broadband IR observations is shown to 
improve CLWP retrievals with respect to the MWR-only retrieval. Adding the high-
resolution IR spectrometer instead of the broad-band IR radiometer decreases the 
relative error by 5%, for CLWP and 7% for er . The NOAA Unique Combined 
Atmospheric Processing System (NUCAPS) is a heritage algorithm based upon the 
AIRS Science Team algorithm [84]. The NUCAPS algorithm holds a modular 
architecture that was specifically designed at NOAA/STAR to be compatible with 
"AIRS-like" sounding systems. The same retrieval algorithm and the same 
underlying spectroscopy are currently used to process the AIRS/AMSU suite, the 
IASI/AMSU/MHS suite (operational since 2008), and more recently the 
CrIS/ATMS suite operational since April 8, 2014. The NUCAPS algorithm consists 
of six modules: (1) a preliminary input quality control, look-up tables, and ancillary 
product acquisition; (2) an MW retrieval module that derives cloud liquid water 
flags and MW surface emissivity uncertainty; (3) a fast eigenvector regression 
retrieval for temperature and moisture; (4) a cloud clearing module that combines 
a set of MW and IR channels; (5) a second fast eigenvector regression retrieval for 
temperature and moisture for cloud cleared radiances; (6) a final IR physical 
retrieval, which employs the previous regression retrieval as a first guess. NUCAPS 
has been extensively validated [86] and transitioned to operations in April 2018.  
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Chapter 2 

FORWARD AND INVERSE MODELS

In this Chapter, radiative transfer models (RTM) used to compute radiances in 
the infrared (IR) and microwave (MW) bands and the machine learning (ML) 
inversion solutions will be described in terms of their rationale. 

2.1 RADIATIVE TRANSFER IN EARTH’S ATMOSPHERE 

Radiative transfer models have become an indispensable tool for a variety of 
applications, including data assimilation in NWP, producing simulated satellite 
imagery in several bands of the light spectrum (e.g., MW, IR, and VIS), and 
assessing the performance of future instruments. In addition, the development of an 
accurate set of observational data to study the global change of Earth’s atmosphere 
was one of the major challenges of the last four decades and it remains an ongoing 
open problem. Most of the radiative transfer codes were developed for a particular 
sensor or remote sensing technique, so there are dedicated codes for active or 
passive sensors, operating in MW, IR, and VIS frequencies with up-looking, down-
looking, and limb-looking geometry. Here, I want to clarify to the reader that the 
subsequent discussion of the radiative transfer equation is contextualized within the 
applications of the broad field of remote sensing from space with satellite infrared 
sensors operating in the so-called nadir looking mode. 

Generally, assuming the Earth’s atmosphere is non-scattering, plane-parallel, 
and in local thermodynamic equilibrium, these codes rely on the solution of a 
radiative transfer equation (RTE) which expresses the monochromatic upward 
vertical radiance 2 1 1( ) [ ]R W m sr cmσ − − −⋅ ⋅ ⋅  of wavenumber -1 [cm ]σ that is altitude 
z dependent and satisfies the following Equation (2.1):  

[ ]( , ) ( , ) ( , ) ( , ( ))dR z K z R z B T z
dz
σ σ σ σ= − − (2.1) 
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where ( , )K zσ  is the absorption coefficient and ( , ( ))B T zσ  the Planck function 

at temperature ( )T z  whose general expression is: 

 
( )

3
1

2

( , )
exp 1

cB T
c T

σσ
σ

=
−

 (2.2) 

where ( )-48 2 1
1

11.1911 10  c W m sr cm− − − − × ⋅= ⋅ ⋅  
 and 

( ) 11
2  1.4388 Kc cm

−− =   
 in Equation (2.2) are the radiation constants. 

 

Figure 1 Sun and sensor radiation traveling slant path s and l forming angles θ and sθ  with the vertical 

height z. In a practical case θ  is the satellite viewing angle. 

By integrating the Equation (2.1) in the height coordinates from surface to TOA 
the upwelling radiance in directionθ −  along a path s (see Figure 1) can be written 
as: 

 0
0

( ) ( ) ( )g gR B T B T dz
z
τσ ε τ

+∞

↑

∂
= +

∂∫  (2.3) 

where gT  is the surface temperature, gε  is the ground emissivity, 0τ  and τ

indicate the total and the upwelling transmittances from 0 to ∞  and from the level 
z to ∞ , respectively.  
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In the same way as Equation (2.3) we can compute the atmospheric 
downwelling radiance, that is the radiance emitted from the atmosphere and 
reaching the surface along the path s defined by the directionθ −  as follows: 

0 *

( ) ( )R B T dz
z

τσ↓
+∞

∂
=

∂∫ (2.4) 

In Equation, (2.4) the term *τ expresses the downwelling transmittance from 
level z to the surface. Holding the relation *

0τ τ τ⋅ =  , ( )R σ↓ can be expressed in 

terms of τ  as follows: 

* 0
0

1( ) ( )R B T dz
z

σ τ
τ

+∞

↑

∂  = −  ∂  ∫ (2.5) 

The downwelling radiance is emitted to all directions, it is back-reflected to 
space and may reach a satellite (see Figure 1) and may be rewritten as follows: 

*
2 2

0 0
0 0

1 1( ) ( ) ( 1) ( )gR r B T dz B T dz
z z

σ τ ε τ
τ τ

+∞ +∞

↑

∂ ∂   = − = −   ∂ ∂   ∫ ∫ (2.6) 

Finally, by combining Equations (2.3) and (2.6), and considering additional terms 
from the contribution from the solar irradiance6 Equation (2.1) can be expressed as 
follows: 

( )

0
0

2
0

0

( )  ( ) ( )

111 ( ) ' ( )

g g

g
g s s

R B T B T dz
z

B T dz I
z

τσ ε τ

ε
ε τ τ µ σ

τ π

+∞

+∞

∂
= + +

∂

−∂  − + ∂  

∫

∫
(2.7) 

where 
1

( ) ' ( )g
s s sR I

ε
σ τ µ σ

π
−

=  is the solar radiance with ( )sI σ

2 1[ ]W m cm− −⋅ ⋅  incident extra-terrestrial solar spectral irradiance on a normal 

6 Solar radiation is transmitted through the atmosphere to the surface, from where it can be 
partially reflected to outer space. 
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surface, ( )coss sµ θ= sun cosine director, and 0 0'  ( ) ( )sτ τ µ τ µ= the two path 

transmittance which accounts for the interaction of sun radiance in the Earth’s 
atmosphere toward the downwelling s directionθ −  and the upwelling directionθ −

along the slant paths l and s ; ( )cosµ θ= is the satellite cosine director. In Equation 

(2.7), we are considering specular reflection for Earth’s radiation and Lambertian 
diffusion for solar one7. Note that the expression of solar contribution in Equation 
(2.7)8 holds only in the infrared region; it is no longer correct in the visible spectrum 
since it neglects scattering. 

The model in the Equation (2.7) refers to clear-sky conditions but as discussed 
in Chapter 1, clouds are an important regulator of the Earth's radiative budget. 
Therefore, they need to be incorporated as part of the radiative transfer calculation. 
In the assumption of a single cloud layer, the radiative transfer of a cloudy 
atmosphere can be modelled [87]–[89] as follows:  

 0( ) (1 ) ( ) ( )cldR R Rσ α σ α σ= − ⋅ + ⋅  (2.8) 

where α is the fractional amount of cloud to be considered throughout the slant 
path s, 0 ( )R σ is the clear-sky radiance as expressed in the Equation (2.7), and

( )cldR σ  is the cloudy-sky radiance and can be expressed as follows: 

 
0

0

( ) (1 ) ( ) (1 ) ( )

( ) ( )

c

c

L

cld g c g c

c c c
L

R B T B T dz
z

B T B T dz
z

τσ ε ε τ ε

τε τ
+∞

∂
= − + −

∂

∂
+ +

∂

∫

∫
 (2.9) 

where cL and cT  are the cloud top height and temperature, cτ is the cloud 

transmittance from cL to the space; cε is the cloud top emissivity. 

 
7 The Lambertian assumption transform the highly directional solar radiation field in a 

uniformly diffuse one which is more consistent with the Earth’s emission radiation. In this form the 
radiative transfer calculus is suitable for infrared band.   

8 This solar term has units of spectral irradiance 2 1[ ]W m cm− −⋅ ⋅ and becomes a spectral radiance 
after dividing it by the solid angle π . 
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Finally, as mentioned at the beginning of this section, the Equation (2.8) is 

solved using RTM codes. Over the past three decades, several RTM codes have 
been developed that are quite broad in scope and used for a wide range of 
applications. Notable examples are the σ-IASI [87], the family of models developed 
by the Atmospheric and Environmental Research (AER) [90], libRadtran (Emde et 
al., 2016), the Atmospheric Radiative Transfer Simulator (ARTS) [91], the 
Community Radiative Transfer Model (CRTM) [92], and the Radiative Transfer 
for Television Infrared Observation Satellites Operational Vertical Sounder 
(RTTOV) [68]. σ-IASI and RTTOV are the RTM codes selected in this work for 
the simulation of IR and MW observations from optical satellites of the MetOP 
platform. To this end, further details will be presented in the next subsections. 

2.1.1 IR FORWARD MODEL 

All the radiative transfer codes introduced above could fit the purpose of 
simulating upwelling TOA radiances measured by satellite-based IR spectrometers. 
In this work, the state-of-the-art radiative transfer code framework σ-IASI is 
selected. σ-IASI is a forward model (FM) The forward model (FM) σ-IASI consists 
of a monochromatic radiative transfer module, which has been designed for the fast 
computation of spectral radiance and its derivatives (Jacobian) to a given set of 
geophysical parameters. The forward model σ-IASI has been initially developed in 
the framework of a long collaboration between SI (formerly DIFA (Department of 
Environmental Engineering and Physics of the University of Basilicata) and 
EUMETSAT to assist the various developing phases of the Infrared Atmosphere 
Sounding Interferometer (IASI) instrument.  

The code can generate radiances in both up-welling and down-welling modes 
and can perform the computation of the derivatives to spectroscopic parameters, 
such as the water vapor continuum (self and broadened components) and CO2 
continuum absorption coefficients. Although initially developed for IASI, σ-IASI 
is presently a generic radiative transfer model, which is well suited for nadir 
viewing satellite and airplane infrared sensors with a sampling rate in the range of 
0.1–2 cm-1. The software has been developed in Fortran and has been tested to run 
on Linux platforms and MS Windows. In its latest version [93], which we call σ-
IASI_as, the model can deal with clouds and aerosol.  

The code computes transmittances on an equally spaced wavenumber grid. For 
each layer, species, and wavenumbers, optical depths are pre-computed and stored 
in a look-up table. The temperature dependence is parameterized by a second-order 
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polynomial. Infinite-resolution optical depths are generated with the generic line-
By-Line Radiative Transfer Model (LBLRTM). The newest σ-IASI_as uses 
Atmospheric Environmental Research (AER) line parameter database (v_3.2) and 
water vapor continuum model MT-CKD (v_2.5.2). 

Clouds and aerosols are specified with their profile and transmittance 
calculations are performed at the level of the single layers, the same as for gas 
species. Embedded Mie routines calculate extinction due to the clouds and aerosols 
[93] as a function of their a) concentration; b) radii; and c) size distribution. 
Multiple scattering is dealt with by the scaling scheme of [94]. With this scaling 
scheme, the radiative transfer equation for a cloudy atmosphere is identical to that 
for a clear atmosphere, and the difficulties in applying a multiple-scattering 
algorithm to a partly cloudy atmosphere (assuming homogeneous clouds) are 
avoided. The computational efficiency is practically the same as that for a clear 
atmosphere. Chou’s scaling approximation is now the basis of operational radiative 
transfer for the retrieval of cloud parameters from satellite data [95]. Based on this 
scaling, it is possible to compute an equivalent cloud optical depth at each layer, 
which can be added to that of molecular absorption to compute the layer and total 
transmittances. In this way, the water/ice/aerosol particles are dealt with as they 
were absorbing/emitting atmospheric gases. This scaling approximation has been 
also embedded in σ-IASI_as. Using Chou’s scaling approximation, the optical 
depth, ( )χ σ  at wave number σ, throughout the slant path s of the cloud or aerosol 
layer is given by: 

 ( ) ( )cldk sχ σ σ= ⋅  (2.10) 

where ( )cldk σ  is the equivalent absorption coefficient of the cloud particles and 
it is expressed as follows: 

 [ ]( ) ( ) (1 ( )) ( ) ( )cld extk bσ β σ ω σ σ ω σ= − +  (2.11) 

In Equation (2.11) -1( ) [m ]extβ σ  indicate the Mie extinction coefficient, ( )ω σ
is the single scattering albedo and ( )b σ refers to the mean fraction of the radiation 
scattered in the upward direction for isotropic radiation incident from above 
according to Chou et al. 1999[94] can be computed using a polynomial fitting as 
follows: 
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4

1

1
 1 i

i
i

b a g −

=

= − ∑  (2.12) 

where g is the asymmetry factor. Finally, 1= 0.5a , 2 = 0.3738a , 3 = 0.0076a , and 

4 = 0.1186a  are the coefficients. 

2.1.2 MW FORWARD MODEL 

Concerning the radiative transfer calculus in the MW band, in this work, the 
RTTOV code has been selected. RTTOV is a fast radiative transfer model for 
simulating top-of-atmosphere radiances from passive visible, infrared, and 
microwave downward-viewing satellite radiometers. RTTOV was developed in the 
1990s to enable the direct assimilation of radiances at ECMWF. The development 
of RTTOV was subsequently taken on within the EUMETSAT-funded Numerical 
Weather Prediction Satellite Application Facility (NWP SAF) in 1998. Nowadays, 
there are over 1000 users worldwide, and it is widely used in satellite retrieval and 
data assimilation communities. The current RTTOV version (v13) is described in 
[68] and referenced therein. The full documentation is also available from the NWP 
SAF website9. RTTOV can now simulate around 90 different satellite sensors 
measuring radiances at MW, IR, and VIS channels. Many of these instruments are 
now retired, but their data is still required in support of the ongoing global 
atmospheric reanalysis efforts. Temperature and water vapor profiles are the default 
input to RTTOV. For the surface variables, skin temperature, 2m temperature and 
water vapor concentration, wind speed (over ocean only), surface type, and 
elevation all have to be defined. The satellite zenith, and optionally azimuth angle 
at the surface, are also required. 

The radiative transfer calculation in RTTOV is performed on the user-defined 
pressure levels input to RTTOV. This allows more accurate calculations for cloud-
affected radiances as the cloud top can be defined by the user at the required level. 
The profiles can be input on any user-defined pressure level, and these input profiles 
are then interpolated to the levels on which the RTTOV coefficients are supplied to 
compute the gaseous transmittance. The vertical layering for the coefficients has 
been optimized to 53 layers from 1050 to 0.005 hPa. Once the gas optical depth 

 
9 https://nwp-saf.eumetsat.int/site/software/rttov/documentation/ 
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profiles have been computed, they are interpolated back to the user levels for the 
radiative transfer computation. 

Currently, 83 atmospheric profiles on 101 levels are used to compute the layer-
to-space transmittances, which are computed through AMSUTRAN [96] an MW 
line-by-line model specifically developed to produce channel-averaged profiles of 
layer-to-space transmittances for calculating RTTOV satellite coefficients. The 
MW line-by-line calculation includes only N2, O2, and O3 as fixed gases from a 
standard atmosphere. RTTOV coefficients are updated regularly to account for 
improved transmittances computed from the latest line-by-line models for the IR 
and MW wavelength regions. The so-called linear in τ  assumption is used to 
compute the radiance across each layer. This assumes the source function 
throughout the layer is a linear function of the optical depth and allows for more 
accurate radiative transfer calculation, especially in presence of relatively more 
opaque layers. 

RTTOV offers the option to accept user-input surface emissivity/reflectance for 
each channel, or it can calculate it, using physical models such as FASTEM or 
TESSEM2 at MW frequencies. MW radiometers measure polarized radiances in a 
polarization plane that can be either (or both) vertical and horizontal polarization or 
a mixture of the two. For simulation over sea background, the emissivity is modified 
according to windspeed to account for ocean roughness on all scales, from small 
ripples to large-scale swell, and also foam arising from breaking waves. MW 
reflectance/emissivity atlases, e.g. TELSEM [97] and the CNRM atlas [98], are 
provided over the land as part of the RTTOV package. RTTOV is regularly 
validated against line-by-line computations as well as real observations. RTTOV 
computations at AMSU channels using a 52-profile independent set agree with 
AMSUTRAN line-by-line computations within 0.1 K, an order of magnitude below 
the instrument noise. 

Concerning real observations, measurements from a variety of satellite sensors 
and for 1 month have been compared with RTTOV calculations from the global 
ECMWF NWP model, to provide the atmospheric state coincident with the 
observation locations. AMSU temperature sounding channels show mean biases 
and standard deviations of differences all within 0.5 K. Water vapor channels show 
larger standard deviations (1–3 K), mainly due to the water vapor fields from the 
NWP model not being so accurate. Overall, the bias for all AMSU channels is 
within +/- 0.5 K, while std range from 0.3 up to 3 K. These statistics are 
considerably larger than the comparisons of RTTOV with the line-by-line model 
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but include instrumental calibration biases and also biases in the NWP model 
temperature and humidity fields.  

Cloud liquid/ice water profiles and aerosol profiles can also optionally be 
provided to enable absorption/scattering calculations. The cloud fraction profile can 
also be provided to enable simulations for atmospheres partially covered by clouds. 
In such a case the radiative transfer is solved by using the maximum random overlap 
method. In the MW region, clouds can be treated as simple absorbers; such 
approaches are fast, but their validity is limited mainly to water clouds. To 
accurately simulate the effect of liquid and frozen precipitation in the MW region, 
it is necessary to represent the effects of multiple scattering. Hence, several more 
sophisticated models are also available. 

However, scattering by hydrometeors (e.g., rain and snow) at MW frequencies 
are not included in the core RTTOV package but a wrapper program [99], named 
RTTOV-SCATT provides this capability outside RTTOV. RTTOV-SCATT is a 
multiple-scattering radiative transfer model which enables all-sky MW radiance. 
The scattering calculation in the cloudy column is based on the Delta-Eddington 
approximation so only the observation angle is needed. The hydrometeor types 
assumed in RTTOV-SCATT are rain, snow, cloud liquid water, and cloud ice. 
Tables of hydrometeor optical properties are pre-calculated for the required 
frequencies, temperatures, and hydrometeor classes. As a function of hydrometeor 
water content, these give the bulk (i.e., integrated over an assumed particle size 
spectra) extinction coefficient, single-scattering albedo, and asymmetry parameter 
as required to perform the radiative transfer calculations. The optical properties are 
stored in sensor-specific coefficient files.  

Cloud ice, cloud water, and rain hydrometeors are represented by spheres, with 
their optical properties computed from Mie theory. Snow hydrometeors are treated 
as non-spherical particles through discrete dipole simulations. This more realistic 
representation of the complex 3-D shapes of frozen particles has led to improved 
simulations of deep convective clouds. Compared to reference doubling-adding 
simulations, this produces mean errors of less than 0.5 K at the targeted MW 
frequencies between 10 and 200 GHz, based on a dataset of 8290 model profiles 
located in tropical areas to ensure the presence of deep clouds and intense 
precipitation so that multiple scattering is maximized. The all-sky brightness 
temperature is calculated, as the combination of independent clear and cloudy 
columns weighted by an effective cloud fraction. The effective cloud fraction is 
computed through a hydrometeor-weighted average across the vertical profile of 
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the input cloud fraction [100]. Although the treatment of microwave scattering is 
highly simplified, this model gives errors much smaller than the many other 
uncertainties involved, and, critically, it is fast enough for operational use [101], 
[102]. 

2.2 ML-BASED INVERSION TECHNIQUES 

ML methods, like artificial neural networks (NN) and random forests (RF), are 
increasingly applied to data inversion because of their ability to find non‐linear 
statistical relationships between target variables and input variables, such as those 
arising in satellite remote sensing of geophysical parameters through spectral 
radiances [103]–[105]. This Section reports the NN and RF architectures intended 
for use in this work. The former consists of feedforward NN normally referred to 
as multilayer perceptron (MLP) systems. This kind of NN has been demonstrated 
to be a “universal approximator” [106]. The latter consists of an RF regressor, 
normally referred to as an ensemble learning method [107], because they operate 
by constructing a structure composed of several decision trees. Within this work, 
NN algorithms were developed for the retrieval of CLWC, CIWC, CLWP, and 
CIWP, while an RF algorithm was developed for the retrieval of effective radii of 
liquid and ice water clouds (e.g., er , ed ). 

2.2.1 NN-BASED INVERSION RATIONALE 

In recent years, NN learning has risen to the top in numerous areas, namely 
computer vision, speech recognition, natural language processing, and remote 
sensing. This Section briefly reports and introduces the basis of NN algorithms 
applied to regression problems. For a broad review of NN applied to remote sensing 
we refer to [108]. This document is not intended to cover the very broad field of 
NN applications. Here we limit to retrieval or non-linear regression problems and 
will focus on multilayer backpropagation feedforward NNs, which are normally 
referred to as MLP systems.  

A NN is a highly connected system (e.g., Chicocki and Unbehauen, 1993 
[109]), whose elementary unit is the artificial neuron that reproduces in some way 
the nonlinear function of a biological neuron of the brain. Neuron has many input 
lines (dendrites) and only one output line (axon), which, through a connection 
(synapses), goes to another neuron or is taken as one output of the system.  
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MLP [108], [110] is nowadays the leading architecture used for implementing 

NN-supervised regressors. From a set of samples ( , )S X y , where X  represents the 
set of inputs and y the corresponding outputs, MLP emulates a neural structure, 
linking many parallel processors called “perceptrons” to map X y→ . These 
processors are organized in distinct layers: 1) the first layer represents the set of 
network inputs X , 2) the last layer represents the output of the mapping X y→ , 
and 3) some intermediate layers, also called “hidden layers”. The entire neuronal 
structure is connected via perceptons links associated with network weights θ . The 
ensemble of perceptons, links, and weights, enables the NN architecture to learn 
from examples and make predictions. 

To streamline the discussion, let us refer to the artificial neuron represented in 
Figure 2, which exemplifies the processing at a single given node of the net. 

 

Figure 2. Schematic representation of an artificial neuron. 

Each artificial neuron thus consists of inputs x, a set of parameters or weights 
θ , and a single output ( )h xθ corresponding to a function called activation function 
such as the sigmoidal one:  

 
1( )

1
 T x

h x
eθ θ−

=
+

 (2.13) 

where T indicates the transpose operation; 0x is called the bias unit, generally, 
it always has value 1, it is not connected with previous layers and helps fit the 
prediction better to the data [110], [111].  
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Figure 3. Schematic representation of a feed-forward neural network structure. The red arrow indicates 
the forward propagation process. 

Considering a neural network structure composed of n different layers (see 
Figure 3) ( )l

ia denotes the i th− neuron of the l th−  layer and ( )lθ the matrix of 
weights controlling function mapping from layer l to layer l + 1. Thus, if a network 
has ls units in layer l, 1ls +  units in layer l+1, then ( )lθ has ( )1 1l ls s+ × +  where +1 

recalls the bias term. Specifically, each layer of the network performs a 
computational step equivalent to linear regression, allowing complex nonlinear 
functions to be computed on the input/activation values that go to every node in the 
following layers. This transition process is indicated in the literature as forward 
propagation. Each layer transition uses the matrix of parameters ( )l

jiθ where j ranges 

from 1 to the number of units in layer l+1, i ranges from 0 to the number of units 
in layer l, that is the layer where the transition starts. 
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Figure 4. Example of a NN structure composed of one single hidden layer. (1)θ and 2θ indicate the NN 
weights in between layers 1- 2 and 23. 

At this point, assuming the structure of a NN with one single hidden layer 
composed of three units (see Figure 4), the activations (see Equations (2.13)) will 
have the following expressions: 

 

( )
( )
( )

(2) (1) (1) (1) (1)
1 10 0 11 1 12 2 13 3

(2) (1) (1) (1) (1)
2 20 0 21 1 22 2 23 3

(2) (1) (1) (1) (1)
3 30 0 31 1 32 2 33 3

a g x x x x

a g x x x x

a g x x x x

θ θ θ θ

θ θ θ θ

θ θ θ θ

= + + +

= + + +

= + + +

 (2.14) 

where g indicates the activation function. Accordingly, the NN output is 
determined as follows: 

 ( )(3) (2) (2) (2) (3)
1 10 0 11 1 12 2 13 3( )h x a g a a a aθ θ θ θ θ= = + + +  (2.15) 

Finally, I want to remark that neural networks can have different architectures, 
i.e., different numbers of layers, different numbers of neurons for each layer, and 
different types of activation functions the only constraints being the number of 
nodes in the input layer and the one node in the output layer. 
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In NN inversion MLP structure is trained by minimizing a cost function L; 

which in classical regression task is chosen to be the squared distance between the 
desired y  and predicted ŷ output at multiple training steps. Suppose to have 
several n training examples to use for training, the NN cost function can be 
computed as follows: 

 2

1

1 ˆ( ) 
n

i i
i

L y y
n =

= −∑  (2.16) 

Minimizing the Equation (2.16) would mean designing an MLP structure 
whose prediction ŷ y= or more straightforwardly minimizing the Euclidean 
distance between the predicted and the reference values: 

 2

2

1 ˆ L y y
n

= −  (2.17) 

In this way, taking into account the forward-propagation scheme where 
ˆ ( )y h xθ= we will tune the NN weights θ  accordingly to minimize the distance 

expressed in the Equation (2.17). By using simple algebra, we will solve the 
Equation (2.17) where it gradient is 0. In NN theory, the algorithm designed to 
compute this gradient is known as backpropagation. The backpropagation 
algorithm was originally introduced in the 1970s, but its importance was not fully 
appreciated until the famous paper by [112]. That paper describes several NN where 
backpropagation works far faster than earlier approaches to learning, making it 
possible to use NN to solve problems that had previously been insoluble.  

Given one training example ( , )x y , and an MLP structure composed of 
1, 2,...,l L=  layers the backpropagation algorithm starts differentiating Equation 

(2.17) from the output layer L in this way: 

 ( ) ˆL y yδ = −  (2.18) 

That represents the error the NN made in predicting the true value y . The 
Equation (2.18) means that we know how a change in the total input determined by 
the forward propagation, will affect the error for the state of the lower levels units 
and the weights θ  of the connections from the lower layer to the output one.  
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Figure 5. Simple representation of the NN backpropagation algorithm.  

After that let l L≠ a layer of the MLP structure, the error is backpropagated as 
follows: 

 ( ) ( )( ) 1 ( )'
Tl l l lg zδ θ δ += ⋅  (2.19) 

where ( )( ) ( ) ( )' (1 )l l lg z a a= ⋅ − that is the derivative of the activation of layer l 

(see Figure 5). Note that, (1)δ  is not determined since it would not make sense to 
calculate the error of the inputs. Finally, it is demonstrated that the derivative of the 
cost function expressed in the Equation (2.17): 

 ( ) ( 1)
( ) ( ) l l

j il
ij

L aθ δ
θ

+∂
=

∂
 (2.20) 

which assesses that by doing backpropagation and computing the terms of the 
partial derivatives δ , it is possible to minimize the cost function L.  

These operations are repeated in training for each training sample and different 
epochs [110]. For each training sample in the first stage, the derivatives of the cost 
function w.r.t. the weights θ  are evaluated (see Equations(2.20)). then in the second 
stage, these derivatives are used to compute the adjustments to be made to the 
weights θ , using gradient descent, or more sophisticated and efficient techniques 
[113] to improve the NN regression performance.  
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Figure 6. Example plot of the error on training and validation set. 

However, one possible disadvantage of the backpropagation algorithm is that it 
can take a large number of iteration steps to converge to the desired solution. It is 
not possible to know a priori when to stop iterations. Normally, the procedure is 
stopped when a given threshold on the error, i.e., the cost function, L has been 
reached. However, also in this case there is the possibility that the NN has been 
overfitted [110]. One approach to avoid overfitting is to use different and 
independent training and validation data sets and cross-validating among those the 
cost functions (see Figure 6) in learning and training [111], [114]. 

Finally, the learning phase of a neural network requires the use of several 
auxiliary methodologies such as i) regularization, ii) weight initialization, iii) cross-
validation, and iv) hyperparameter tuning [115] to achieve optimal training. A more 
complete explanation is beyond the scope of this work. An interested reader can 
find more information in [110]–[112]. 

2.2.2 RF-BASED INVERSION RATIONALE 

RF is an ML technique based on an ensemble of multiple decision trees (see Figure 
7). These types of structures can solve both classification and regression problems 
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and are found to be particularly convenient when dealing with high-dimensional 
feature spaces, due to their intrinsic ability to select and rank the predictor variables 
that perform best in discriminating between target values. 

 

Figure 7. Random forest regressor architecture. 

These ensemble algorithms often address non-linear inversion and dimensional 
problems and were introduced for classification tasks. Here I introduce the rationale 
for random forests in terms of classification tasks. However, I want to point out that 
regardless of the task for which they are used (e.g., regression or classification), 
random forests' rationale remains the same. 

Specifically, differently to Maximum Likelihood Classification (MLC) 
classifiers that assume a normal data distribution, the RF method is based on the 
Classification and Regression Tree (CART) algorithm [104], [107] that, does not 
make any assumptions regarding the frequency distribution of data. To this aim, the 
RF method is very suitable for inferring information of input data from remotely 
sensed acquisitions, which have multi-modal distribution and very rarely the normal 
one. In Breiman’s RF, the tandem use of randomness in CART and bagging 
techniques is the key that allows this model to perform better than many other 
classifiers [116]. 
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Figure 8. Simple sketch of a decision tree for binary classification. Split nodes are depicted as circles 
with  features. Leaf nodes are represented as triangles, colored orange and green for and 

classes, respectively. 

Given a training dataset ( , )S X y  representing the set of inputs and my R∈  the 
corresponding outputs where m  is the size of training data and d  the number of 
features, the RF learning is pursued by applying the CART algorithm on several L
training subsets ( , ),  1,...,k k kS X y k L= , produced by random sampling ( , )S X y , 
either with or without replacement. 

 

Figure 9. Example of Breiman’s random forest classifier. For a regression task, the "Decision" blocks are 
replaced with the values predicted by each tree and the "Majority vote" block with the "Averaging" block (see 
Fig. 7). 
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In this framework, each decision tree is grown by the CART algorithm that 

works by recursively splitting the subsets of ( , )k k kS X y , randomly sampling input 
features d  and choosing from among those as split nodes the ones that better 
optimize a specific error function (e.g., Gini or Entropy for classification, and MSE 
for regression tasks). The recursive subdivision process stops once the maximum 
depth is reached, or no further subdivisions can be performed. Within the decision 
tree structure, subsets that are not split are called leaf nodes. In classification tasks, 
a class label designates each leaf node while in regression the prediction of a target 
variable. Figure 8 shows a decision tree structure for a binary classification 
problem. 

This process allows the construction of L decision tree classifiers ( )k kc S  by 
maximizing their strength and jointly minimizing their correlation [107], [117], 
forming a bagged predictor able to map X y→ . Finally, RF prediction is computed 
as the majority votes overall trees predictions (see Figure 9). 

RF models further produce additional information about the analyzed data: i) 
the feature importance [118] used to perform the classification or regression task 
and ii) the internal structure of the data in terms of the similarity of different data 
samples to one another. The RF model determines the former during its training 
(tree by tree as the RF structure is formed), estimating each feature's error rate 
variability when permuted while all others remain unchanged. The latter is 
determined in terms of proximity matrix ( , ) m mP i j R ×∈  where the element ( , )i j  
represent the fraction of trees in which the samples i , j  fall in the same leaf node. 
The higher the proximity measure, the more similar the pair of samples. 

As with many other ML methods also, RF uses different hyperparameters. 
Nowadays, hyperparameter optimization is one of the most important tasks to 
perform. In recent literature [115], [119]–[122] hyperparameter optimizations have 
been extensively addressed, demonstrating that the correct tuning of an ML model 
hyperparameter is mandatory to obtain high generalization performance. 
Specifically, RF models depend mainly on three hyperparameters: i) the number of 
decision trees ( treen ) that compose the model, ii) the number of features ( trym ) that 

will be considered in the CART splitting procedure, and iii) the tree depth nk . Only 
the first hyperparameter has a robust analytical demonstration [121] of its impact 
on forest generalization performance. For the other two, there is no theory to guide 
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the best choice; they are strictly dependent on the problem to solve, and the related 
dataset of measurements [121], and this aim has to be tuned appropriately. 
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Chapter 3 

CLOUD MICROPHYSICS PARAMETERS 

REGRESSION FROM IR AND MW SPECTRA 
EQUATION SECTION (NEXT) 

In December 2019 the study Combined MWS and IASI-NG Sounding for 
Cloud Properties (ComboCloud) was selected by the EUMETSAT to prototype and 
validate algorithms for the retrieval of cloud microphysical properties from the 
synergy of passive MW and hyperspectral IR observation. Specifically, the main 
objectives of this project were: 

1. Exploit IASI-NG/MWS synergy for the retrieval of cloud products currently 
not available from EPS sensors: 

o Cloud Liquid Water Content (CLWC) 

o Cloud Ice Water Content (CIWC) 

o Cloud Liquid Water Path (CLWP) 

o Cloud Ice Water Path (CIWP) 

2. Investigate the benefits of future IASI-NG for current IASI for the retrieval 
of: 

o Cloud effective radius (Re) 

o Thin cirrus detection 

3. Adapt the algorithms to work with current EPS sensors, i.e., AMSU/MHS 
and IASI. 

4. Validate the retrievals against existing products from other space-borne 
sensors. 
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In this context, my Ph.D. studies and analysis have been involved in all four 

points mentioned above. The main focus was the development of an AI-based 
framework for the regression of cloud microphysical parameters, which details will 
be provided in the following chapter. The dataset of measurements used includes 
real and simulated observations in the IR and MW bands from first- and second-
generation METOP platforms. To this end, details regarding their processing will 
be provided. After that, we will concentrate on the presentation of the inversion 
framework, realized within the framework of the doctoral studies, for the regression 
of cloud microphysics parameters. 

3.1 IR SATELLITE INSTRUMENTS  

In this work, the dataset of measurements in the IR band is referred to as the 
sensor of the first and second generation of MetOp platforms. The former is the 
Infrared Atmospheric Sounding Interferometer (IASI) [123] which is currently a 
key payload element of the EUMETSAT (MetOp-FG) series, and its main purpose 
is to provide temperature and humidity profiles, to deeply understand and make 
numerical forecast weather studies and predictions. IASI measures in the thermal 
infrared (TIR) part of the emitted/reflected Earth’s electromagnetic spectrum with 
coverage extending from 645 to 2760 1cm− , with a resolution of Δσ=0.25 1cm− , 
providing radiances of 8461 spectral samples (channels), along 14 orbits in a sun-
synchronous observation mode. Data samples are taken at intervals of 25 km along 
and across the track, each sample having a maximum diameter of about 12 km. 
Table 1 presents a summary of the IASI principal characteristics. 

Table 1. IASI-NG technical characteristics. 

Characteristic IASI 

Spectral Coverage continuous in 645 𝑐𝑐𝑚𝑚−1 − 2760 𝑐𝑐𝑚𝑚−1range 

Spectral Sensing 0.25 𝑐𝑐𝑚𝑚−1, 8461 channels 

Acquisition angles ±48.3° 

Sounding Point Density 50 × 50  𝑘𝑘𝑚𝑚2 (2 × 2 IFOV matrix) 

Nadir Instantaneous Field of View (IFOV) 12 km diameter 
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Nadir IFOV shape Circular 

Altitude 819 km 

 

Designed and built on the heritage of the IASI the latter sensor is the Infrared 
Atmospheric Sounding Interferometer New Generation (IASI-NG) that will be a 
key payload sensor of the second generation of European meteorological polar-orbit 
satellites (MetOp-SG) dedicated to operational meteorology, oceanography, 
atmospheric chemistry, and climate monitoring; the launch is scheduled for 2022 
(read Table 2 for more information). 

 

Table 2. IASI-NG technical characteristics. 

Characteristic IASI-NG 

Spectral Coverage 
continuous in 645 𝑐𝑐𝑚𝑚−1 −

2760 𝑐𝑐𝑚𝑚−1range 

Spectral Sensing 0.125 𝑐𝑐𝑚𝑚−1, 16921 channels 

Acquisition angles ±46.5° 

Sounding Point Density 25 km × 25 km 

Nadir Instantaneous Field of View 
(IFOV) 12 km diameter 

Nadir IFOV shape Circular 

 

Also, IASI-NG is a Fourier transform spectrometer, but with 16921 spectral 
samples in the same range (645 and 2760 1cm− ). The spectral resolution and the 
spectral sampling of IASI-NG are improved by doubling their respect to the IASI, 
respectively, at 0.25 1cm− and 0.125 1cm− . 
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Figure 10. Equivalent brightness temperature 𝑵𝑵𝑵𝑵∆𝑻𝑻 at 280K for IASI (blue curve) and IASI-NG 
(orange curve). 

The increase in spectral resolution of IASI-NG will result in a better vertical 
resolution and a reduction in noise expected to be at least a factor of 2, compared 
to IASI [124] (see Figure 10), resulting in an improvement in the accuracy of the 
IASI-NG products.  

3.2 MW SATELLITE INSTRUMENTS 

MW passive-sounding systems have a long heritage in operational 

meteorology. Also, for the MW, the dataset of measurements is referred to MW 

passive sensor mounted onboard the MetOp platforms of first- and second-

generations. Concerning the MetOp-FG instruments, the Advanced Microwave 

Sounding Unit-A (AMSU-A) and the complementary Microwave Humidity 

Sounder (MHS) have been considered. These sensors are currently the leading 

sensors in providing operational sounding observations. The primary role of the 

sounder is to provide temperature and humidity sounding under completely 

overcast conditions and to aid in cloud detection. AMSU-A is a multi-channel 

microwave radiometer that measure scene radiances in 15 different frequency 
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channels (23-90GHz). At each channel frequency, the antenna beamwidth is a 

constant 3.3 degrees (at the half power point). The AMSU-A instrument collects 30 

consecutive Earth view scenes in 15 individual channels in a stop and stare mode. 

The scanned swath is ± 48.33 degrees, which translates into ± 1037 km at a satellite 

altitude of 820 km (see Table 3). 

Table 3. AMSU-A technical characteristic 

Characteristic AMSU-A 

Spectral Coverage 
not-continuous in 23.0 –90.0 GHz 

range 

Spectral Sensing 15 Channels 

Acquisition angles 48.33± °  

Polarisation QH and QV 

Nadir Instantaneous Field of View 
(IFOV) 49 km diameter  

Swath width ca. 2074 km 

Nadir IFOV shape Circular 

The 12 oxygen-band channels (channels 3–14) will provide microwave 

temperature sounding for regions from the Earth’s near-surface up to about 42 

kilometers (from 1000 hPa to 2hPa). The extreme spectral windows (channels 1, 2, 

and 15) allow correction of the other measurements for surface emissivity, 

atmospheric liquid water, and total precipitable water. These channels also provide 

information concerning precipitation, sea ice, and snow coverage. 
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MHS is a five-channel across-track scanning radiometer of the millimetre-wave 

band (89-190 GHz) with 90 fields of view (FOV). It has a scan range of ±49.44° to 

the nadir direction leading to a swath of 2310 km, while the FOV size is about 16 

km at the nadir. Each scan consists of four views of the onboard calibration target 

(OBCT), followed by the 90 Earth views and the four views of deep space (see 

Table 4).  

Table 4. MWS technical charaeristic 

Characteristic MHS 

Spectral Coverage not continuous in the 89.0 – 190.3 GHz 
range 

Spectral Sensing 5 Channels 

Acquisition angles 49.44± °  

Polarisation QH and QV 

Nadir Instantaneous Field of View 
(IFOV) 16 km diameter (at nadir) 

Swath width ca. 2310 km 

Nadir IFOV shape Circular 

There are three water vapor-sensitive channels around the 183 GHz absorption 

line with frequencies 183.31±1.0 GHz, 183.31±3.0 GHz, and 190.31 GHz (Table 

6). The first two channels are double-sideband symmetric about the water vapor 

line, while the 190.31 GHz has a single bandpass. 

MWS inherits many features from these sensors by enhancing them by adding 

two temperature and two humidity-sounding channels, plus one high-frequency 
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window channel sensitive to ice clouds. MWS is a 24-channel microwave 

radiometer covering the frequency range from 23.8 to 230 GHz. Using a single 

rotating antenna MWS scan the Earth's surface and atmosphere in footprints ranging 

from 40 to 17 km at the lowest and high frequencies, respectively. Calibrated using 

an internal hot target and a cold sky, MWS provides a scan angle range of  

±49° to nadir (see Table 5).  

Table 5. MWS technical characteristic 

Characteristic MWS 

Spectral Coverage not continuous in the 23.8 – 230.0 GHz range 

Spectral Sensing 24 Channels 

Acquisition angles 49± °  

Polarisation QH and QV 

Nadir Instantaneous Field of View (IFOV) 17-40 km diameter 

Swath width ca. 2200 km 

Nadir IFOV shape Circular 

The smallest footprints provide contiguous sampling, which defines the scan 

cycle of the instrument. Larger footprints will then provide an overlapping spatial 

sampling. MWS is calibrated using an internal hot target and a cold sky. Table 6 

reports the channel comparison between MWS and AMSU/MHS. 

Table 6. Channel comparison between MWS and AMSU/MHS. Channels 5, 7, 20, 22, and 24 
are new to AMSU/MHS. Channels 18, 19, 21, and 23 have either central frequency, polarization, or 
passband differences to the closest AMSU/MHS channels. 

AMSU/MHS MWS 
Ch. GHz Pol. Ch. GHz Pol. 
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1 23.8 QV 1 23.8 QV 
2 31.4 QV 2 31.4 QV 
3 50.3 QV 3 50.3 QV 
4 52.8 QV 4 52.8 QV 
   5 53.246±0.08 QH 
5 53.595±0.115 QH 6 53.596±0.115 QH 
   7 53.948±0.081 QH 
6 54.4 QH 8 54.4 QH 
7 54.94 QV 9 54.94 QV 
8 55.50 QH 10 55.50 QH 
9 57.290344 QH 11 57.290344 QH 

10 57.290344±0.217 QH 12 57.290344±0.217 QH 
11 57.290344±0.3222±0.048 QH 13 57.290344±0.3222±0.048 QH 
12 57.290344±0.3222±0.022 QH 14 57.290344±0.3222±0.022 QH 
13 57.290344±0.3222±0.010 QH 15 57.290344±0.3222±0.010 QH 
14 57.290344±0.3222±0.0045 QH 16 57.290344±0.3222±0.0045 QH 
15 89.0 QV    

16 89.0 QV 17 89.0 QV 
17 157.0 QV 18 165.5±0.725 QV 
18 183.311±1.0 QH 23 183.311±1.0 QV 
   22 183.311±1.8 QV 

19 183.311±3.0 QH 21 183.311±3.0 QV 
   20 183.311±4.5 QV 

20 191.31 QV 19 183.311±7.0 QV 
   24 229.0 QV 

The primary purposes of MWS are atmospheric temperature and water vapor 

sounding, as well as CIWP estimates. 

3.3 REGRESSION FRAMEWORK DESCRIPTION 

This Section reports the NN and RF architectures that compose the inversion 
framework developed in this work. The framework is an ensemble of NN 
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algorithms that were developed for the retrieval of CLWC, CIWC, CLWP, and 
CIWP, while an RF algorithm was developed for the retrieval of Re. 

Specifically, the developed framework is composed of three processors that for 
sake of simplicity we will refer to as: 

• SW1: That is composed of two NN algorithms to retrieve CLWC and 
CIWC profiles; 

• SW2: That is composed of a NN algorithm to retrieve both the vertically 
integrated paths of liquid water and ice clouds, namely CLWP and 
CIWP; 

• SW3: That is composed of two RF algorithms to retrieve the cloud 
effective radius of liquid water and ice clouds, er and ed . 

For all three SWs, a dataset containing the cloud properties and simulated 
measurements is generated and divided into three subsets for training, validation, 
and testing. Then, the feed-forward NN and RF regressor are developed, based on 
the training and test datasets, and finally evaluated with the validation dataset. 

 

Figure 11. Schematic representation of the NN training and test. 

The processing scheme for SW1 and SW2 is pictured in Figure 11, which shows 
the main steps involved in the designing and development of the statistical retrieval 
algorithms. For SW1 and SW2, the core framework for the NN designing and 
testing is Keras [125], which is a powerful Python-based library that contains 
numerous implementations of commonly used NN building blocks such as layers, 
objectives/activation functions, and optimizers. Keras [126] also presents an 
additional framework, useful to tune NN hyperparameters to optimize the training 
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of a specific dataset. Two different NN architectures are designed and tested: one 
with IASI-NG/MWS inputs and the other with IASI/AMSU/MHS inputs.  

 

Figure 12. Schematic representation of the RF training and test 

The processing scheme for SW3 is shown in Figure 12, consisting of a 
multitude of decision trees with different depths. The core software framework for 
the RF design is scikit-learn [127], a very powerful Python-based library that 
includes ensemble methods for classification and regression. The Python-based 
automatic hyperparameter optimization framework Optuna [120] is used to tune the 
RF architecture and optimize the training on a specific dataset. Finally, in terms of 
algorithm settings, four different architectures are designed and tested: The former 
two with IASI-NG/MWS inputs and IASI/AMSU/MHS inputs for the effective 
radius of liquid water clouds. The latter two with IASI-NG and IASI inputs the 
effective radius of ice water clouds. 

3.3.1 DATASET SIMULATION 

All the developed SWs10 have been trained, tested, and validated using a dataset 
of simulated geophysical data collected selecting from the fifth generation ECMWF 
global reanalysis ERA5 [128] archive the 2-D and the 3-D surface and atmospheric 
fields, consisting of temperature, water vapor, ozone (namely: T, Q, and O) and 
profiles of cloud liquid and ice water contents (CLWC/CIWC) for the computation 
of simulated MW and IR observation of AMSU/MHS/MWS and IASI/IASI-NG 
sensors. ERA5 is developed through the Copernicus Climate Change Service (C3S) 
and produced using 4D-Var data assimilation in CY41R2 of ECMWF’s Integrated 

 
10 Both algorithm settings #1/#2 indicated in section 3.3 are included. 
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Forecast System (IFS). ERA5 hourly data on pressure levels and single levels have 
been used to build the dataset of atmospheric profiles on 37 pressure levels and 
surface parameters, respectively. Global data for four representative days (1st of 
Jan, Apr, Jul, Oct 2019), each at four synoptic hours (00, 06, 12, 18), have been 
selected to capture both seasonal and diurnal cycles. Data are available on regular 
latitude-longitude grids at 0.125° x 0.125° resolution. The file dimension for each 
variable is 2880 1441 16× ×  ( logitude_dim × latitude_dim × time ).  

 

Figure 13. Simulated brightness temperature at MHS channel 2 (157 GHz) 2019/01/01 00:00 UTC. 

The reason behind the use of simulated observations is driven mainly to provide 
machine learning algorithms, in the training phase measurements of earth radiation 
and investigated cloud microphysical parameters that are perfectly collocated 
(temporally and spatially) with each other. The validity of the simulated 
measurements is certified by the use of state-of-the-art radiative transfer codes used 
for the simulation of measurements in the infrared (σ-IASI_as [93]) and microwave 
bands (RTTOV-SCATT [68]). 
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Figure 13 shows the simulated brightness temperature at MHS channel 2 (157 

GHz) for 1st Jan 2019 at 00 UTC. Real MHS observations for the same day (though 
covering 24h) are shown in Figure 14. 

 

Figure 14. Observed brightness temperature at MHS channel 2 (157 GHz) 2019/01/01 (from NOAA 
MIRS). 

The qualitative comparison of two BT maps suggests the simulations show 
realistic features and capture the variability of the observations. Figure 15 reports 
the quantitative comparison for selected AMSU/MHS channels through scatter 
plots of spatially and temporally nearly collocated simulations and observations. 
This confirms that simulations capture the variability of the corresponding observed 
brightness temperature field. 
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Figure 15. Simulated vs observed brightness temperatures at selected AMSU and MHS channels, after 
temporal and spatial colocation (2019/01/01 00:00 UTC). 

In the same way, simulated infrared measurements were validated. 

 

Figure 16. (A) Observed and (B) simulated brightness temperature at IASI channel 867.75 cm-1 
2019/01/01. 
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Also, in this case, the qualitative comparison of two BT maps in Figure 16 

suggests the 𝜎𝜎-IASI-as simulations show realistic features and capture the 
variability of the observations. 

 

Figure 17. Histogram of residuals between real and simulated IASI BTs at different sensing channels 
(A) 660 cm-1, (B) 791.75 cm-1, (C) 867.75 cm-1, (D) 1052 cm-1, (E) 1499.25 cm-1 and (F) 1576 cm-1 

Figure 17 reports the quantitative comparison for selected IASI channels 
through the histograms of the residuals. For each selected sensing channel, the mean 
value is a fraction of Kelvin. 

However, I would like to stress to the reader that the validity of the 
measurements simulated by the radiative transfer codes used in this work has been 
extensively demonstrated in the literature [87], [93], [129]–[133]. See Figures 1 and 
2 in [93] for  𝜎𝜎-IASI-as validation.  
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To reduce the computational burden in simulation, data were decimated by 

resampling with a latitude/longitude sampling step of 2.5°, resulting in 53 latitudes 
and 26 longitudes (see Figure 18) from -86.875° to 85° and from 0° to 357.5°, 
respectively. All atmospheric profiles were recomputed on a pressure grid of 60 
levels with the 𝜎𝜎-IASI-as algorithm and spanning the range 10 -1000 hPa. 
Simulated MW and IR satellite observations at IASI, IASI-NG, AMSU, MHS, and 
MWS channels at 3 scan angles (0°, 20° e 44°) have been computed for each of the 
16 (4 synoptic hours for 4 days) ERA5 global datasets. Recommended RTTOV-
SCATT optical properties have been used [134], including Mie spheres for rain and 
non-precipitating hydrometeors and sector snowflakes for solid precipitation. 

 

Figure 18. Map of geographical coordinates of simulated measurements. 

Realistic assumptions on cloud effective radius and size distributions are made 
to produce IR radiative transfer calculations with 𝜎𝜎-IASI_as, ice cloud ed  from 
[135] in which the shape distribution ( )n L (see Equation (1.4)) is determined by 
the use of a mixed distribution, Γ distribution [136] for small particles ( 20 L mµ≤

) and power-law distribution [17] for the larger one ( 20 L mµ> ). Both these 
distributions are parametrized with respect to the B parameter: 
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 (3.1) 

Where T  is the atmospheric layer temperature expressed in Kelvin, CIWC  the 
corresponding ice water content in 3g m−⋅ , and 3

0 50 CIWC g m−= ⋅ . Thus, ed is 
obtained with B using a third-order polynomial approximation: 

 2 3377.4 203.3 37.91 2.3696ed B B B= + + +  (3.2) 

Accordingly to [135], the range of values is limited in [10 100 ]mµ− . 

The liquid water cloud droplet effective radius is calculated by the use of [137] 
parametrization: 
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3997 [ ]  kg mωρ −= ⋅  is the density of water, dN  is the number of cloud 

condensation nuclei, assumed 3300 cm−  over land and 3100 cm−  over sea 
accordingly to [138] analysis; CLWC is given in 3[ ]kg m−⋅ . k is a constant 
formulated in terms of the relative dispersion D  ( 0.33 D = over the land and 

0.43 D =  sea) of the particle size distribution: 
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er  is limited in [4 16 ]mµ−  range [138]. 

For the optical properties of ice and liquid water particles, the LBLDIS [139] 
library and the Chou scaling [94] approximation were used.  

Auxiliary input data are collected to account for surface emissivity at MW and 
IR frequencies while computing simulated MW and IR radiances. The TELSEM2 
MW atlas is available through EUMETSAT NWP SAF as part of the RTTOV 
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auxiliary data. TELSEM2 is provided as ASCII files and includes a Fortran module 
to handle them. IR surface emissivity is computed based on the Masuda model 
[140]for sea surface (available for the 15 IASI Field of Regard angles). These are 
provided as ASCII files (actually providing the percentage reflectance). The IR 
emissivity for the land surface is derived from the University of Wisconsin Global 
Infrared land Surface Emissivity (UWIREMIS, also known as UW/BFEMIS, 
Baseline Fit Emissivity Database) and it was implemented in 𝜎𝜎-IASI cod in [141]. 
The database is freely available from the website 
(http://cimss.ssec.wisc.edu/iremis/) [142]. The database provides emissivity at ten 
hinge points (3.6, 4.3, 5.0, 5.8, 7.6, 8.3, 9.3, 10.8, 12.1, and 14.3 microns), with 
0.05° angular resolution. 

 

Figure 19. Processing scheme of the dataset of simulated IR (IASI-NG/IASI) and MW 
(MWS/AMSU/MHS) measurements. 

Simulated observations do include the radiometric noise accordingly to the 
noise figure of each sensor. For IASI and IASI-NG measurements, the radiometric 
noise was characterized following the [14] theory. Both sensors have spectral 
radiance correlated along the wavenumber because of Gaussian apodization. After 
this operation, the noise for level 1C (L1C) measurements is obtained accordingly. 
In this framework, being Sε the L1C covariance matrix of IASI/IASI-NG, then the 
observations are simulated based on the signal-noise additive model as follows: 

 
1
2R r Sε η

−
= + ⋅  (3.5) 
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where, R  is the vector (size N = 16921 for IASI-NG and N = 8961 for IASI) 

of simulated spectral radiances; 𝑟𝑟 (same size as 𝑅𝑅) is the signal computed according 
to the forward model and 𝜂𝜂 is vector-valued (same size as 𝑅𝑅) of Gaussian noise 
sample with zero mean and unit variance; finally, we note the size of Sε  is 𝑁𝑁 × 𝑁𝑁. 
Basically the same approach has been followed for AMSU, MHS, and MWS 
sensors using the radiometric noise available through the WMO Observing Systems 
Capability Analysis and Review (Oscar) tool 
(https://space.oscar.wmo.int/instruments), although for these sensors channels the 
covariance matrix Sε  is assumed to be diagonal. 

The total number of simulated soundings is 22048 samples per scanning angle. 
Only sea surface samples were selected. Finally, the dataset was split into three 
subsets for training, testing, and validation of the three SWs (see Figure 19). 

3.3.2 DATA DIMENSIONALITY REDUCTION 

The quality of data used in predictive methodologies directly affects their 
ability to learn and obtain valuable generalization performances. In the context of 
high spectral resolution observations, such as those measured by IASI, IASI-NG, 
MWS, and AMSU sensors, it is extremely important to pre-process the data to filter 
redundant information and infer only those that best expose the unknown 
underlying structure of the prediction problem to the inversion algorithms. With 
these statements, the curse of dimensionality problem [143], [144] is addressed. To 
overcome this problem, we adopted the principal component analysis (PCA) 
method for the simulated observation.  

For sake of presentation, here we show the dimensionality reduction of IASI 
measurements. The basis we use to pursue the projection is that of the PCA from 
the definition of the covariance matrix S  of IASI observations. Specifically, 
considering m sR × , the matrix of simulated 𝑚𝑚 spectral radiances (see Section 3.3.1 
for more details), the covariance matrix is determined starting from the following 
standardization: 

 ( )
1
2ˆ

clrR S R Rε

−
= −  (3.6) 
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Where clrR  is the computed mean value of IASI-NG clear-sky spectra that is 

used as a proxy of cloud emissivity parameter cε  [145] and 
1
2Sε

−
 the level 1C IASI 

noise covariance matrix. In this way, using Singular Valued Decomposition (SVD): 

 
1 ˆ ˆTS RR
m

=  (3.7) 

 TS V VΣ=  (3.8) 

The computed projection base V  of eigenvectors retains a memory of 
differentiation against the clear sky, Σ  is the eigenvalue matrix. Both are 
orthogonal and have s s×  dimensions, respectively; T is the transpose operator. In 
this way, the projection of IASI radiances in a low dimensional subspace 
considering only the first d s<  columns of V : 

 ˆT
dC V R=  (3.9) 

yields a d-dimensional vector C  of principal components that contain 
information about cloud emissivity and best expose information about cloud 
microphysics parameters. 

With this in mind, we would like to anticipate to the reader that the 
dimensionality preprocessing step is heterogeneous among the various software 
that makes up the inversion framework developed. In some of them (see Sections 
3.4-3.6), dimensionality reduction is applied only to the input quantities, as in the 
case of the regression of CLWP, CIWP, and effective radii (SW1 and SW3). 
Whereas, in the case of the CLWC and CIWC profiles regression (SW2), as we will 
illustrate (see Section 3.5), dimensionality reduction will also be applied to the 
output quantities. 

3.4 CLWP AND CIWP REGRESSION (SW1) 

In the context of the SW1 task, two NN algorithms were developed for the 
retrieval of CLWP and CIWP from different combinations of IR and MW satellite 
observations. Specifically, the simulated radiances (IASI or IASI-NG) and the 
brightness temperatures (AMSU/MHS or MWS), and the satellite vertical zenith 
angle (VZA) are the inputs for the development of two NN algorithms. 
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Table 7. Summary of NN parameters for the IR-MW (IASI-NG & MWS and IASI & AMSU/MHS) 

configurations 

 MWS & IASI-NG IASI & AMSU/MHS 
N. layers 5 5 
N. hidden layers 3 3 

N. input units 55 (30 IASI-NG PCs + 24 
MWS Channels + VZA) 

51 (30 IASI-NG PCs + 
15 AMSU + 5 MHS 
Channels + VZA) 

N. hidden units of the hidden 
layer 1 1024 32 

N. hidden units of the hidden 
layer 2 1024 256 

N. hidden units of the hidden 
layer 3 64 32 

N. output units 2 (CLWP and CIWP) 2 (CLWP and CIWP) 
Units activation function ReLU ReLU 
Optimization algorithm Adam [113] Adam  
Implicit regularization Early stopping [110]  Early stopping  
Explicit regularization Weight decay [146] Weight decay  
NN architecture finder Bayesian tuner [147], [148] Bayesian tuner  
Loss function MSE MSE 

The former takes into input the synergy of IASI-NG and MWS, while the latter 
takes IASI and AMSU/MHS. As introduced in Section 3.3.2 data preprocessing is 
mandatory to determine a regression framework less complex and more feasible for 
the regression of the CLWP/CIWP parameters. A criterium for selecting IASI PCs 
is suggested in [149], where they demonstrate that the number of PCs that would 
separate the signal from noise ranges between 10–100. In this way, to be 
conservative we select 30 IASI and IASI-NG PCs for the retrieval process, which 
span 99.96% of the total variance. The dataset was preliminarily filtered to avoid 
extremely large CLWP/CIWP values (i.e., CLWP and CIWP larger than 0.6 kg/m2 
and 0.5 kg/m2, respectively) that may harm the NN training, screening out less than 
0.3% of the initial dataset. In addition, to avoid uncertainty due to surface emissivity 
in the MW spectral region, only simulations over the ocean are considered in this 
analysis. These two screenings leave 31593 samples in total, which are then divided 
into three sets used to train (70% = 22746 samples), validate (20% = 5687 
samples) and test (10% = 3160 samples) the NN model. The partitioning of the 
samples into training, validation, and test datasets was such to keep the same 
variability to the VZA parameter. Because the dynamic range of IASI/IASI-NG 
PCs and AMSU/MHS/MWS brightness temperatures (BT) may greatly differ, it is 
good practice to normalize the two data spaces. This is achieved using standard 
normalization (i.e., inputs are normalized to the training set by removing the mean 
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and scaling to unit variance), applying both IR and MW inputs. Thus, in SW1 the 
first 30 PCs (see Section 3.3.2 for further information) of the IASI and IASI-NG 
radiances are determined and used together with the MW brightness temperatures 
and the VZA to constitute the NN input layer that is of 55 nodes for IASI-NG and 
MWS and 51 nodes for IASI and AMSU/MHS configurations, respectively. The 
target outputs are the CLWP and CIWP vertical integrated contents. 

The learning is pursued by the adoption of forward- and backward-propagation 
algorithms whose objective is to minimize the error between NN predictions and 
training outputs. Keras-python framework [150] has been used to build and 
implement the NN structures. To this end, Keras offers a built-in tuner [151] to 
optimize the search for the best NN structure to the input/output units and a set of 
“hyperparameters” (e.g., the number of hidden layers, hidden units, activation 
function, optimizer, and so on). In this work, the Bayesian tuner [147], [152] has 
been used. Based on random selection, the Bayesian tuner addresses the problem of 
finding the best NN architecture for a given learning task and dataset. The search 
for the best hyperparameters is based on network morphism in NN architecture 
search (NAS) [152] and a tree-structure search space [148]. Two NN structures 
composed each of three hidden layers, respectively of 1024, 1024, and 64 hidden 
units for the IASI-NG & MWS configuration, and 32, 256, and 32 hidden units for 
the IASI & AMSU/MHS configuration were chosen by the tuner. The ReLU [153] 
function is used to activate the network units, and the MSE is used as the loss 
function. Adam algorithm [113], regularized according to the weight decay 
algorithm [146] has been used as a backpropagation algorithm to optimize the 
learning of the two selected NN structures. Adam is a mini-batch optimization 
algorithm, representing nowadays the de facto standard to train deep learning NN 
models [110], due to its high versatility in adapting to complex architectures with 
high capacity cost functions [154]. Read Table 7 for more information. With limited 
training data, however, this complex architecture could lead to overfitting; for this 
reason, we adopted regularization, aiming at making the model generalize better, 
i.e., produce better results on the test set [155]. The use of regularization to avoid 
overfitting has been proved empirically [110]. There are many worked examples in 
the open literature showing how high-capacity architectures, i.e., NN with more 
parameters than training data couples, can improve the generalization performance. 
In other words, contrarily to overfitted architectures, the validation error remains 
close to the training one. This empirical evidence has been rigorously proved in 
mathematical form by [154]. In effect, [154] demonstrates that the deep learning 
architecture is the condition needed to move beyond the classical under-
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parameterized regime to the modern interpolation where the predictors have 
negligible training risk. Since we move to the interpolating regime, in this retrieval 
we dedicate particular care to the training, validation, and test steps of the NN. For 
sake of simplicity, we will call the two configurations C1 (IASI-NG & MWS) and 
C2 (IASI & AMSU/MHS). C1 and C2 have been trained and tested for 100 epochs 
on training and validation sets.  

 

Figure 20. Neural network training and validation loss function history for configuration C1 (A) IASI-
NG & MWS and C2 (B) IASI & AMSU/MHS configurations. 

Figure 20 reports the NN's learning performances in the training and validation 
steps, showing that the validation error is stable and follows the training error for 
both architectures. 



Cloud microphysics parameters regression from ir and mw spectra 64 

 

 

Figure 21. Scatterplot of the NNs prediction for CLWP and CIWP. (A)-(B) These results 
correspond to the C1 configuration, taking into input the combination of IASI-NG & MWS 
observations. (C)-(D) is referred to the C2 configuration that takes into input the combination of 
IASI & AMSU/MHS observation. µ and σ indicate the mean and std of the reference true values. 
Except for correlation and determination coefficients (R and R2), units are in kg/m2. 

As anticipated in Section 3.3.1, after the NNs learning process the regression 
performances are tested on a set of unseen simulated measurements. The results are 
shown in Figure 21, indicating a good capability to infer both CLWP and CIWP 
from the combination of the MW and IR observations. For configuration C1 the 
overall rmse for CLWP is 1.85×10-2 kg/m2, while 1.18×10-2 kg/m2 for CIWP. The 
rmse for CLWP results in about 30% of the mean value and 22% of the variability 
(1-sigma). Similarly, the rmse for CIWP results in about 41% of the mean value 
and 22% of the variability (see Figure 21 (A) and (B)). Also, configuration C2 show 
high performance the overall rmse for CLWP is 2.18×10-2 kg/m2, while 1.65×10-2 
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kg/m2 for CIWP (see Figure 21 (C) and (D)). These results are comparable with, 
though better than, previously reported, e.g., [27] using 3rd order multiple regression 
and maximum likelihood algorithms to retrieve CLWP and CIWP from a simulated 
dataset of MW observations at a subset of MWS channels. To further assess the 
performance of the C1 and C2 configurations, we performed a binning analysis of 
the scatter plots. For this aim, the x-axis is divided into ten bins; for each bin, the 
average and standard deviation of true and the corresponding predicted values are 
computed. These are displayed in Figure 22, for both C1 and C2 configurations, 
providing information on the systematic and random error as a function of the 
absolute values. 

 

Figure 22. Error analysis comparison of the NN C1 and C2 configurations to estimate CLWP (A) and 
CIWP (B). The figure shows the mean of predicted values as a function of true ones. The errorbars indicate the 
uncertainty corresponding to each binned estimate. 

By analysing Figure 22 A and B it is straightforward to note the goodness of 
the implemented C1 and C2 configurations in reproducing mean predicted 
CLWP/CIWP. For almost the entire range of measurements ( 20.4CLWP kg m<  

and 20.4CIWP kg m< ) the predictions have an almost negligible bias.  

Figure 22 also helps highlight the sensing potential of the new incoming 
generation of high-spectral sensors (IASI-NG and MWS) with respect to the current 
one (IASI, AMSU, and MHS). As expected, configuration C1 is less affected by 
bias due to the enhanced sensing capabilities of the new IASI-NG and MWS 
sensors. This result is strongly shown in the binned analysis for CIWP (see Figure 
22 B). In the case of the C1 configuration, the binned analysis is almost a straight 



Cloud microphysics parameters regression from ir and mw spectra 66 

 
line, consistent with the bisector one. Conversely, the C2 configuration shows some 
variations. 

To demonstrate the value of MW and IR synergy, we also developed two 
reference NN architectures, based respectively on IASI-NG only and MWS only. 
By comparing the performances of the three different configurations, the advantage 
of combining IR and MW with respect to either one can be quantified. For MW-
only, the NN configuration takes in input the VZA and the 24 MWS channels. For 
IR-only, the configuration takes in input the VZA and the first 30 IASI-NG PCs. 
Similarly, to the IR-MW combined architecture, the MW-only and IR-only NN 
configurations are optimized by the Bayesian tuner, as reported in Tables Table 8 
and Table 9. The three architectures are hereafter indicated as M1 (combined IASI-
NG & MWS), M2 (MWS), and M3 (IASI-NG). 

Table 8. Summary of NN parameters for the MW-only configuration. 

N. layers 5 
N. hidden layers 3 
N. input units 25 (24 MWS Channels + VZA) 
N. hidden units of the hidden layer 1 64 
N. hidden units of the hidden layer 2 32 
N. hidden units of the hidden layer 3 64 
N. output units 2 (CLWP and CIWP) 
Units activation function ReLU 
Optimization algorithm Adam 
Implicit regularization Early stopping  
Explicit regularization Weight decay 
NN architecture finder Bayesian tuner 
Loss function MSE 

 

Table 9. Summary of NN parameters for the IR-only configuration. 

N. layers 5 
N. hidden layers 3 
N. input units 31 (30 IASI-NG PCs + VZA) 
N. hidden units of the hidden layer 1 1024 
N. hidden units of the hidden layer 2 256 
N. hidden units of the hidden layer 3 32 
N. output units 2 (CLWP and CIWP) 
Units activation function ReLU 
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Optimization algorithm Adam 
Implicit regularization Early stopping  
Explicit regularization Weight decay 
NN architecture finder Bayesian tuner 
Loss function MSE 

In this case, also a binned analysis comparison has been performed. These are 
displayed in Figure 23, for both CLWP and CIWP and all three configurations, 
picturing the contribution of the IR and MW observations to the combined 
approach. 

 

Figure 23. Error analysis of the NN to estimate CLWP (A) and CIWP (B). The figure shows the mean of 
predicted values as a function of true ones. Same as the one shown in Figure 22 but for the comparison of M1, 
M2, and M3. 

For CLWP it is seen that M3 (IASI-NG) yields unbiased values only for small 
values (<0.1 kg/m2). The reason is that IASI-NG radiances soon saturate in 
presence of thicker water clouds. In contrast, MWS predictions are fairly unbiased 
up to the value of ≅ 0.30 kg/m2. As expected, the MW-IR combination provides 
more information and thus predictions are closer to the 1:1 line. Similar comments 
apply to CIWP. The same binned analysis is used to estimate the root mean square 
error (rmse) as a function of the predicted values, as shown in Figure 24. The binned 
analysis shows that the rmse tends to increase with the estimated value, staying 
between 5-25% for both CLWP and CIWP, except for values lower than 0.1 kg/m2. 
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Figure 24. Root mean square error of the estimate of CLWP and CIWP obtained from the NN approach. 
The three dotted lines correspond to 5% (lower), 15% (middle), and 25% (higher) error. Results for the M1 
configuration (MWS+IASI-NG combination) are shown. 

To illustrate the value of IR+MW combination with respect to the individual 
systems (IR- and MW-only), in Figure 25 a comparison using the Taylor diagram 
[156] is shown. The Taylor diagram provides a graphical and intuitive method to 
compare the performances of the three NN configurations to retrieve CLWP and 
CIWP. The performances are quantified in terms of three statistics: i) the Pearson 
correlation coefficient, ii) the root mean squared error (RMSE), and iii) the standard 
deviation. From Figure 25, the relative merit of the different NN configurations is 
evident. Concerning CLWP predictions (Figure 25 A), it is straightforward that M1 
shows the best retrieval performances. M2 also shows good performances, 
confirming the ability of the MW sensor to infer CLWP, while M3 performances 
are worst. A similar consideration applies to the CIWP retrieval (Figure 25 B), 
where the configuration performances are considerably better for M1 than for M2 
and M3. Quantitatively, the IR and MW combination (M1) provides CLWP with a 
2% higher correlation and a 1.4 factor lower rmse to MW only (M2), and a 14% 
higher correlation and a 2.4 factor lower rmse to IR only (M3). Concerning CIWP, 
the IR and MW combination provides a 4% higher correlation and a 1.7 factor lower 
rmse to MW only, and an 8% higher correlation and a 2.1 factor lower rmse to IR 
only. 
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Figure 25. Taylor diagram analysis for CLWP (A) and CIWP (B). The analysis refers to the three NN 
architectures, M1, M2, and M3 developed in this study. 

Finally, to further demonstrate that the implemented approach, which operates 
in the interpolating regime, does not lose in terms of generalization, Table 10 shows 
the RMSE computed for the training, validation, and test datasets for both CLWP 
and CIWP and the three configurations. Note that the performances for the 
validation and test datasets are nearly the same, indicating that a fair generalization 
has been achieved. 

Table 10. M1, M2, and M3 performances in terms of RMSE of the CLWP and CIWP regression for the 
training, validation, and test datasets. Units are in 10-2 kg/m2. 

 CLWP CIWP 
 Train Valid Test Train Valid Test 

M1 0.65 1.85 1.85 0.52 1.34 1.18 
M2 2.09 2.59 2.52 1.94 2.09 2.04 
M3 1.94 4.65 4.50 1.50 2.42 2.51 

To conclude, the synergy of IR and MW has been proved, paving the road to 
more complete exploitation of next generation satellite platforms for weather and 
climate. IR and MW combination provides CLWP with higher correlation (2-14%) 
and lower rmse (factor of 1.4-2.4) than single MW and IR only, respectively. 
Similarly, for CIWP, with 4-8% higher correlation and 1.7-2.1 factor lower rmse, 
respectively. 

3.5 CLWC AND CIWC REGRESSION (SW2) 

SW2 focuses on the regression of CLWC and CIWC profiles. The simulated 
radiances (IASI or IASI-NG) and brightness temperatures (AMSU/MHS or MWS) 
and the satellite VZA are the input for the development of four NN algorithms. The 
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first two take in input IASI-NG and MWS, while the other two take IASI and 
AMSU/MHS. 

 

Figure 26. SW2 baseline regression architecture. 

As discussed in Section 3.3.1, the physical data and parameters we are dealing 
with are the spectral radiation and brightness temperature at the top of the 
atmosphere and the liquid and ice water content profiles of the atmosphere. These 
quantities are observed through a high number of spectral infrared and microwave 
channels and over different homogeneous atmospheric layers. In practice, 
considering the k = 16921 IASI-NG, d = 24 MWS sensing channels, and the 
definition of the CLWC and CIWC profiles over m = 60 homogeneous atmospheric 
layers several ( )k d m+ ×  regression problems have to be considered (see Figure 
26). It is quite obvious that the solution of a regression problem defined by the 
above quantities is made difficult, if not unpractical, also by NN inversion 
approaches. In such context, to overcome this high dimensionality problem, we 
considered the use of different functional basis, one for each physical data and 
parameter, that allows us to project them from a high dimensional to low 
dimensional space, making the regression problem more suitable and easier to solve 
by a NN model. For NNs inputs, the functional basis and the PCA analysis are the 
same as SW1. For what concern the NN outputs, the projection was made by using 
a functional base of eigenvectors, corresponding to the first ten and five eigenvalues 
of the corresponding CLWC and CIWC covariance matrices. Both profiles are 
normal standardized before the application of the PCA to improve the fit of the data 
by avoiding giving too much weight to variance caused by noise. Figure 27 shows 
a sketch of the implemented regression architecture. 
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Figure 27. Sketch of NN regression architecture of CLWC and CIWC profiles. 

Similarly, to SW1 Bayesian tuner was used to select the best NN 
configurations. In SW2 the hyperparameters search space comprises the number of 
hidden layers (value in [1, 2, 3]), the number of hidden units for each hidden layer 
(value in [16, 32, 64, 128, 256, 512, 1024]), the dropout rate for each hidden layer 
(value in [0.0, 0.25, 0.5]), the optimizer (Adam, SGD [157] and Adam weight decay 
[146]), and the optimizer learning rate (value in [1e-1, 1e-2, 1e-3, 1e-4, 1e-5]). 
ReLU and linear activation functions have been used for the hidden and the output 
units, respectively. The maximum number of different models to try in the search 
space is set by default to 100, though the tuner may interrupt the search before 
reaching the maximum number of trials if the search space has been covered. 
Finally, the tuner selects the best performing NN architecture, which minimizes the 
test MSE loss. Adam optimizer is used to train the NN models. The final 
configuration details are reported in Table 11. 

Table 11. Parameters of the implemented NN structure in SW2.

 

The NNs in Table 11 are trained on a global dataset (66144 match-ups), 
representative of both the diurnal and seasonal cycles. After filtering, the dataset is 
divided into 70% of the samples for training (32002), 20% (8001) for testing, and 
10% (4445) for validation. Also, in this case, the dataset was preliminarily filtered 



Cloud microphysics parameters regression from ir and mw spectra 72 

 
considering only sea surface acquisitions. After the NN learning process, which 
uses the training and test datasets, the NN performances are tested on the previously 
unseen validation dataset. Naturally, the PCA operated on either the input or the 
output vector can lead to an optimized definition of the inversion problem for the 
NN implemented architectures. However, each of those NN models does not 
perform by themself the inversion from the measured output data to the desired 
parameters. Consequently, the predictions of the CLWC and CIWC PCs are used 
to reconstruct the cloud liquid/ice water profiles defined on the 60-level pressure 
grid used by σ-IASI. 

The results for the four NN configurations, of Table 11 are shown in Figure 28 
for CLWC and CIWC profiles, in terms of rms (Figure 28 A and B) and fractional 
error decrease (Figure 28 C and D). We will refer to C1(IASI-NG & MWS) and 
C2(IASI & AMSU/MHS) as the configurations for the CLWC retrieval. C3(IASI-
NG & MWS) and C4 (IASI & AMSU/MHS) are the configurations for the CIWC 
retrieval. The fractional error decrease is defined as follows (Equation (3.10)), and 
thus indicates the percentage retrieval error decrease to a simple mean value 
estimate: 

 , ,

,

100 true x predicted x
rmse

true x

rmse rmse
f

rmse
−

= ⋅  (3.10) 

Where or   x CLWC x CIWC= = . 
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Figure 28. (A) and (B) profiles of CLWC and CIWC retrieval error (in terms of rms difference to 
reference truth) of the four NN configurations using IASI-NG and MWS (C1 and C3 configurations) and 

IASI, AMSU, and MHS (C2 and C4 configuration) combinations, respectively. (C) and (D) corresponding 
profiles of retrieval error decrease to a simple mean estimate for the same NN configurations.  

From Figure 28 we can quantify that the IR & MW synergy allows an error 
reduction for CLWC within 20-40% for pressures lower than 500 hPa. Similar 
results are obtained also for CIWC retrieval. As expected, for CIWC retrieval the 
error reduction is larger in the upper troposphere (where most ice clouds occur) 
reaching 45-65% in the 500-100 hPa. Comparing C1 and C2 in Figure 28 A and C 
and C3 and C4 in Figure 28 B and D, it is straightforward to deduce that the error 
reduction for CLWC and CIWC profiles using new generation sensors (IASI-NG 
& MWS) is better (of about 5-10%) than using the current generation one (IAI & 
AMSU/MHS). A humble result which, however, echoes what we observed in the 
performance analysis of SW1 that is, the improved atmospheric sensing capability 
of the new generation sensors. 
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To demonstrate the consistency of the NNs configuration, we integrated the 

CLWC and CIWC predictions and compared them with the reference ERA5 ones. 

 

Figure 29. Scatter plots of CIWP (B and D) and CLWP (A and C) integrated reference vs predicted 
values. (A) and (C) regard configurations C1 and C3, (B) and (D) regard C2 and C4. 

Figure 29 presents the scatter plots between CIWP and CLWP integrated from 
the retrieved CLWC and CIWC profiles vs those obtained integrating over the 
reference (ERA5) profiles. Configurations C1 and C2 that uses inputs from new 
generation sensors (IASI-NG & MWS) show very high 2R  values of about 0.90 for 
CLWP and 0.93 for CIWP. Configurations C3 and C4 (IASI & AMSU/MHS 
inputs) also show good retrieval performance with high 2 0.92R = for CIWP and 
moderate 2 0.79R =  for CLWP; all the rms differences are well below 10%. The 
results obtained allow us to attest that the obtained predictions of integrated content 
paths are consistent with those of profiles. In addition, another important result is 
possible to observe by comparing the CLWP regression performance of C1 and C3 
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configurations. The spectral contributions from the new generation sensors allow 
us to obtain predictions with smaller variance and bias. In terms of 2R we have an 
improvement of about 13%. The same conclusions appear from the binned analysis 
shown in Figure 30 A and B. 

 

Figure 30. Error analysis comparison of (A) CLWP between C1 and C3 configurations and (B) CIWP 
between C2 and C4. 

3.6 CLOUD EFFECTIVE RADII REGRESSION (SW3) 

The simulated radiances (IASI or IASI-NG) and brightness temperatures 
(MWS or AMSU/MHS) are the inputs for the development of four RF regressors 
of cloud drop liquid water er and ice ed -effective radii. The first 100 PCs of the 
IASI and the IASI-NG observations are computed and retained, following the 
analysis made in [149]. The computed IASI-NG PCs, tighter with the 24 MWS, and 
the VZA constitute the input for the C1 configuration. IASI PCs with the 15 AMSU-
A and 5 MHS constitute the input for the C2 configuration. In both cases the target 
output is er . While, IASI-NG and IASI PCs and VZA constitute the input features 

of the C3 and C4 configurations, whose target output is ed . In this last case this 
case MW measurements did not provide any help or useful information in 
predicting ed . See Figure 31 for a schematic representation of the implemented 
configurations. 
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Figure 31. Schematic representation of the RF architectures used in this work in terms of inputs, namely 

(A) the first 100 IASI-NG PCs, the 24 MWS channels, and the VZA. (B) the first 100 IASI, the 15 AMSU-A, 
and 5 MHS channels, and the VZA, (C) the first 100 IASI-NG PCs and VZA and (D) the first 100 IASI PCs 
and VZA. The outputs, namely "Final Result," are the predicted values of liquid and ice cloud drop effective 
radii. 

The training step involved the use of the K-fold strategy[158] with ten splits to 
cross-validate the RF models. Specifically, this validation technique divides all the 
samples in the training dataset into 𝑘𝑘 groups of samples, called folds. The random 
forest models are trained using 𝑘𝑘 − 1 folds, and the fold left out is used for the test 
(see Figure 32). 
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Figure 32. Representation of ten split K-fold cross-validation strategies used in this work. 

The MSE is used as a splitting rule by each tree within the RF. To search for 
the best RFs architectures, the Optuna [120] optimization framework was used. 
Specifically, starting from the set of RF hyperparameters. Optuna formulates the 
hyperparameter optimization as a process of minimizing the MSE loss objective 
function that dynamically constructs the search space of the RF architecture taking 
a set of hyperparameters as input and returning its validation score. Optuna makes 
this dynamic search of hyperparameters by the combined use of relational and 
independent sampling hyperparameters methods and an efficient pruning algorithm 
that monitors the intermediate objective values and terminates the training if no 
improvement, in terms of R2 in this case, is observed.  

The training and fine-tuning of RF models are more expensive and time 
consuming compared to NN models. In Optuna, the maximum number of different 
models to try in the search space is set by default to 100. Finally, the RF models 
with the best set of hyperparameters (see Section 2.2.2 for more details), the ones 
that maximize the R2 are returned. However, to explore and test more 
hyperparameter combinations, we augmented the maximum number of trials within 
the Optuna hyperparameters search space to 150. To reduce the training time, 
several RF models were trained together using all processors of our workstation 
that comprises a CPU (AMD Ryzen Threadripper 2990WX) of 32 cores (64 virtual) 
with 64Gb of DDR4 (3000 MHz) memory. The total tuning time is of about 6 hours 
each, for ice and liquid configurations. Figure 33 shows the Optuna parallel tuning 
process of hyperparameters for the ice cloud drop radii RF model. 
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Figure 33. A plot of hyperparameters tuning for RF algorithm exploiting MWS and IASI-NG for ice 

cloud drop effective radii (150 trials). The darker blue line, corresponding to the highest 2R , indicates the 
selected best combination of hyperparameters. 

Finally, four RF architectures with the best set of hyperparameters, the one that 
maximizes the 𝑅𝑅2 returned. Table 12 reports hyperparameters of the selected RF 
architectures. 

Table 12. Hyperparameters of the optimized RF architectures for liquid and ice cloud drop radii retrievals. 

 

As for SW1 and SW2, the complete dataset was divided in liquid and ice clouds 
(only over sea and non-zero values) and then further divided into two subsets: 90% 
(Liquid = 19110, Ice = 28760) for the training/test and 10% (Liquid = 2124, Ice = 
3196) for the validation. The validation dataset consists of unseen data produced 
with the same method as the training and test data.  
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Figure 34. Scatter plots of effective radii retrieval for (A)/(C) liquid and (B)/(D) ice clouds. Marginal 
histograms on the side of the scatter plots show the distribution of reference true and predicted ice and liquid 
cloud drop radii. C1 and C2 configurations' performance are those shown in (A) and (C), C3 and C4 
configurations refer to (B) and (D). 

Scatter plots showing retrieval performance for both liquid (C1 and C2 
configurations) and ice (C3 and C4 configurations) clouds are shown in Figure 34. 

In terms of correlation, all configurations show strong values. C1 and C2 show 
0.79 and 0.77 for liquid clouds, whereas C3 and C4 reach 0.86 and 0.84 for ice 
clouds, respectively. Such results demonstrate the goodness of the generalization 
performances of the four implemented RF configurations. This is also highlighted 
by comparing the marginal histograms of reference and predicted values which 
have very similar skewness and median values. Comparing Figure 34 (A) and (C) 
and (B) and (D), it is possible to deduce that future IASI-NG and MWS sensors 
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would increase the effective radius retrieval performance with respect to current 
sensors (IASI, AMSU, and MHS) by a fraction of microns in rmse (0.17 for liquid 
and 0.05 for ice) and 2-3% in correlation. 

3.7 REGRESSION UNCERTAINTY ESTIMATION 

A single-pixel uncertainty estimate for each cloud product has been 
implemented within the three SWs. The single-pixel uncertainty is estimated 
through the validation process, computing a binning analysis of the residuals 
between the output product and the corresponding target. A polynomial curve is 
fitted through the error model resulting from the binned analysis ( Mε ), and the 
single-pixel uncertainty estimate is generated evaluating the fit of the error model 
as a function of the retrieved product: 

 ( ) fit( , ) i M iu P Pε=  (3.11) 

Where iP  indicates the i-th prediction. Specifically, a linear spline interpolation 
has been implemented. 

3.7.1 CLWP AND CIWP (SW1 UNCERTAINTY) 

The uncertainty for CLWP and CIWP retrievals (SW1) is estimated as a curve 
fit through the binned analysis resulting from the validation dataset. Figure 35 
shows the results from the binned analysis, i.e., mean and std of the residuals (true 
minus predicted) values evaluated on the validation dataset. 
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Figure 35. Mean and std of binned (true-predicted) residuals for CLWP (left) and CIWP (right) retrievals 
from combined (A-B) IASI-NG and MWS and (C-D) IASI and AMSU/MHS. 

3.8.2 CLWC AND CIWC (SW2 UNCERTAINTY) 

The uncertainty for CLWC and CIWC profile retrievals (SW2) is pursued 
following the same uncertainty estimation process of SW1. Figure 36 shows the 
results from the binned analysis, i.e. mean and std of the residuals (true minus 
predicted) values evaluated on the validation dataset. The mean, std, and rms of the 
residuals are assumed as representative of systematic, random, and total 
uncertainty. For any values of CLWC and CIWC, SW2 provides an estimate of the 
total uncertainty corresponding to the spline fit of the residuals rms evaluated at the 
CLWC and CIWC values, respectively. 
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Figure 36. Mean and std of binned (true-predicted) residuals for CLWC (left) and CIWC (right) retrievals 
from combined (A-B) IASI-NG and MWS and (C-D) IASI and AMSU/MHS. 

3.8.3 CLOUD EFFECTIVE RADII (SW3 UNCERTAINTY) 

Figure 37 shows the uncertainty results for SW3 retrievals, estimated as a curve 
fit through the binned analysis resulting from the validation dataset. Also in this last 
case, for any values of cloud effective radius, SW3 provides an estimate of the total 
uncertainty corresponding to the spline fit of the rms of the residuals evaluated at 
the predicted value. 



Cloud microphysics parameters regression from ir and mw spectra 83 

 

 

Figure 37. Mean and std of binned (true-predicted) residuals for liquid water (left) and ice (right) cloud 
effective radii retrievals from combined (A) IASI-NG /MWS and (C) IASI/AMSU/MHS and (B) IASI-NG and 
(D) IASI measurements. 

3.8.4 TRACEABILITY TO REQUIREMENTS 

A diagnostic analysis has been performed to validate the SWs product against 
an independent reference database for Numerical Weather Prediction (NWP) 
requirements. Specifically, the Observing Systems Capability Analysis and Review 
Tool (OSCAR) database of the World Meteorological Organization (WMO) was 
used for the evaluation. This database specifies four levels of performance: 

T: Threshold level below which the product becomes ineffectual and is of no 
use for the targeted application; 
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B: Breakthrough level beyond which a significant improvement in the target 

application is achieved; 

O: Objective level beyond which the observation gives no significant 
improvement for the targeted application; 

G: Goal level considered achievable with the proposed 
approach/algorithm/instrument. 

Table 13. Traceability of settings #1 and settings #2 configurations to WMO OSCAR NWP requirements. 

 
Product T B O G Settings 

#1 
Settings 

#2 

SW1 
CLWP 50 g/m

2
 20 g/m

2
 10 g/m

2
 50 g/m

2
 18.5 g/m

2
 22 g/m

2
 

CIWP 20 g/m
2
 10 g/m

2
 5g/m

2
 20 g/m

2
 11.8 g/m

2
 17 g/m

2
 

SW2 

CLWP 
from 

(CLWC) 
50 g/m

2
 20 g/m

2
 10 g/m

2
 50 g/m

2
 27.1 g/m

2
 38 g/m

2
 

CIWP from 
(CIWC) 20 g/m

2
 10 g/m

2
 5 g/m

2
 20 g/m

2
 19.8 g/m

2
 20 g/m

2
 

SW3 Re 5 𝜇𝜇m 2 𝜇𝜇m 1 𝜇𝜇m 4 𝜇𝜇m 

0.68 𝜇𝜇m  
(liq) 

11.7 𝜇𝜇m  
(ice) 

0.7 𝜇𝜇m 
(liq) 

12.2 𝜇𝜇m 
(ice) 

 

From the comparison shown in Table 13 the performances for CLWP and 
CIWP both for SW1 and SW2 are between threshold and breakthrough levels, more 
in agreement for SW1 but SW2 demonstrates the consistency of CLWC and CIWC 
profiles predictions. For the retrieval of effective radii, the achieved performances 
meet the objective level when limited to liquid clouds. For ice clouds, currently, no 
information is available within the WMO database to track the requirements of the 
effective radius of ice clouds. In this sense, therefore, these measurements could be 
considered a new result. 

3.8 VALIDATION WITH EXTERNAL OBSERVATIONS 

To assess the generalization performance of the implemented regression 
framework all SWs were validated by the use of an external validation dataset of 
real observation. Only setting #2 configurations (see Section 3.3) using 
observations from current generation sensors (e.g., IASI, AMSU, and MHS) as 
inputs are going to be used in this validation. Specifically, we collected recent 
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measurements from MetOp-B and MetOp-C with colocated ECMWF analysis 
covering a larger range of latitudes. In more detail, we selected MetOp 
measurements from 23:30 UTC on 8 September 2021 to 00:30 UTC on 10 
September 2021, corresponding to MetOp-B orbits 46574-46589 and MetOp-C 
orbits 14732-14746). Among these, we selected the measurements within +/- 30 
minutes from the ECMWF analysis base time. Figure 38 shows the 16 MetOp orbits 
selected with this criterion: 8 for MetOp-B (46574, 46575, 46578, 46581,46582, 
46585, 46588, 46589) and 8 for MetOp-C (14732, 14733, 14735, 14736, 14739, 
14742, 14743, 14746). The final dataset consists of 538880 IASI spectra collocated 
with MHS and AMSU collocated spectra. Among these, 387472 spectra are 
recorded over the sea. Note that in Figure 38 the colors indicate the measurement 
time.  

 

Figure 38. MetOp footprints in the selected. The color indicates the spectrum measurement time. 

Dark blue, light blue, green, orange, and dark red indicate respectively the 
spectra collocated with 00, 06, 12, 18, and 24 ECMWF base time hours. The 
distribution with the latitude of the collocated spectra is shown in Figure 39.

 

Figure 39. Latitude distribution of the dataset. 
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Each bin spans 5° latitude. Each IASI/AMSU/MHS combined spectrum is 

associated with the geophysical state vector from ERA5 reanalysis, providing 
CLWC and CIWC profiles over 137 pressure levels from surface to 0.01 hPa.  

 

Figure 40. The figure illustrates the colocation of the MetOp spectrum with ECMWF analysis. 
(A) shows the temperature from ECMWF analysis at 00 on 9 September. (B) shows the surface 
temperature associated with MetOp footprints between 23:30 of 8 September and 00:30 of 9 
September. 

One example of colocated ECMWF and MetOp-B/C observations is shown in 
Figure 40, showing ECMWF skin temperature at 00:00 UTC of 9 September 2021 
and the field retrieved by MetOp footprints between 23:30 of 8 September and 
00:30 of 9 September 2021. 
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Figure 41. Spatial distribution of selected colocations between MetOp-B/C IASI/AMSU/MHS 
observations and ECMWF analysis. 

Finally, Figure 41 shows the spatial distribution of the match-ups between 
ECMWF analysis and MetOp-B/C observations for the period from 23:30 UTC on 
8 September 2021 to 00:30 UTC on 10 September 2021. Specifically, 57097 match-
ups have been selected according to the filtering criteria indicated in the SW1 NNs 
training step (i.e., only acquisitions over sea and overcast cloudy with CLWP and 
CLWP less than 0.5 and 0.6 2kg m , respectively). 

3.8.1 SW1 VALIDATION 

The C2 implemented NN configuration of the SW1 package has been validated 
on the selected 57097 matchups between MetOp-/B/C and ECMWF analysis. 
Figure 42 shows the histograms of the CLWP and CIWP ECMWF analysis 
predicted by the C2 NN configuration developed for SW1. 
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Figure 42. Comparison of histograms of CLWP (A) and CIWP (B) values from ECMWF analysis (blue) 
and implemented SW1 NN C2 configuration (orange). 

It is clear from Figure 42 that C2 follows the ECMWF CLWP and CIWP 
distribution very well. At the same time, however, it is also evident that C2's 
predictions seem to slightly overestimate larger values. 

 

Figure 43. Binned analysis of collocated CLWP (A) and CIWP (B) from ECMWF analysis and the C2 
implemented configuration in SW1. The red dots indicate the mean value, while the error bars are one standard 
deviation. 
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In addition, the binned analysis in Figure 43 shows also a saturation tendency 

of C2 toward higher CLWP and CIWP values. Finally, Figure 44 and a selected 
zoomed area in Figure 45 shows a qualitative comparison from ECMWF analysis 
and C2 SW1 CLWP and CIWP retrieval. From his analysis, it is clear how the 
predictions obtained from SW1 are very close to the reference ECMWF spatial 
patterns. In particular, it remarkable from Figure 45 how well the areas of major 
concentration of CLWP and CIWP are identified. 

 

Figure 44. Maps of collocated CLWP (right) and CIWP (left) from ECMWF analysis (A) and (B) and 
C2 SW1 (C) and (D). 
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Figure 45. Same as Figure 44 but with a selected zoom area. 

3.9.2 SW2 VALIDATION 

Retrieval of CLWC and CIWC profiles from real observations have been 
validated against the ECMWF analysis profile. The dataset is the same as in Section 
3.9, 57097 matchups between MetOp-B/C IASI/MASU/MHS and ECMWF 
analysis grid points. The histograms in Figure 46 show that the distribution of C3 
and C4 (see Section 3.5 for more details of the implemented configurations) NN 
predictions agree fairly well with the distribution of CLWC and CIWC values given 
by ECMWF. 
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Figure 46. Histograms of CLWC (A) and CIWC (A) values from ECMWF analysis (blue) and the C3, 

C4 NN SW2 implementations (orange). 

Although the NN tends to underestimate larger values of CLWC and overestimate 
larger values of CIWC.  

Profile statistics are presented in Figure 47 for CLWC and in Figure 48 for CIWC. 
For CLWC, ECMWF and C3 SW2 report similar values for the main profile and 
the variability, with a bias up to -5 10-5 kg/kg. The rmse of residual is up to 6 10-5 
kg/kg, about 2-time larger than in the validation with simulated data (see Figure 
28). 

 
Figure 47. (A) Mean and std profiles of CLWC from C3 SW2 and ECMWF. (B) Statistics of CLWC 

residuals (ECMWF minus C3 SW2): mean difference, std, and rms. 

For CIWC, the C4 SW2 configuration confirms an overestimate at higher levels, 
with bias up to -1.0 10-5 kg/kg. Also, in this case, the rmse of residual is up to 3 
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10-5 kg/kg, about 3-time larger than in the validation with simulated data (see 
Figure 28). 

 

Figure 48. (A) Mean and std profiles of CIWC from C4 SW2 and ECMWF. (B) Statistics of CIWC 
residuals (ECMWF minus C4 SW2): mean difference, std, and rms. 

Finally, to further demonstrate the consistency of the SW2 retrievals a spatial 
comparison (see Figure 50 and Figure 51) of the vertical integrated CLWC and 
CIWC contents between ECMWF and the C3 and C4 configurations has been 
determined. 
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Figure 49. Maps of CLWP (right) and CIWP (left) from ECMWF analysis CLWC (A) and CIWC (B) 
contents. (C) and (D) same as (A) and (B) but from C3 and C4 predictions. 
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Figure 50. Same as Figure 49 but with a selected zoom area. 

3.9.3 SW3 VALIDATION 

Also, SW3 has been validated against the ECMWF analysis dataset. Drop 
effective radius for liquid and ice clouds from ECMWF data have been determined 
with the parameterized methods as in the SW3 training step of C2 and C4 [135], 
[137]. The histograms in Figure 51 show a comparable distribution for the effective 
radius of liquid and ice clouds, although the RF tends to underestimate both low 
and high values at the extremes. 
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Figure 51. Histograms of liquid water (A) and ice (A) cloud drop effective radii values from ECMWF 
analysis (blue) and the C2, C4 NN SW3 implementations (orange). 

Finally, the spatial comparison of the drop effective radius maps of liquid water 
and ice clouds are shown in Figure 52 and Figure 53 between the C2/C4 
configurations and the ECMWF analysis indicates a fair agreement of spatial 
patterns and dynamics. 



Cloud microphysics parameters regression from ir and mw spectra 96 

 

 

Figure 52. Maps of collocated liquid water (right) and ice (left) cloud drop effective radii values from 
ECMWF analysis (A) and (B) and C2/C4 SW3 implemented configurations (C) and (D). 
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Figure 53. Same as Figure 52 but with a selected zoom area. 
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Chapter 4Eq uatio n Sectio n (Nex t)  

CLOUD DETECTION IN GREENHOUSE 

GAS ANALYSIS 

As illustrated in previous chapters, the identification of clouds and the study 
and analysis of their microphysics are fundamental to understanding Earth's energy 
balance, climate, and weather. In addition to cloud characterization, of paramount 
importance is profiling the Earth's greenhouse gases. Their quantitative presence in 
the Earth's atmosphere and their dynamics in terms of absorption of solar radiation 
are equally important for understanding the effects of global warming. Greenhouse 
gases are critical to maintaining our planet at a temperature suitable for life. Without 
the natural greenhouse effect, the heat emitted by the Earth would simply pass from 
the Earth's surface outward into space, and the Earth would have an average 
temperature of about -20°C.  

Remote sensed IR and MW observations, as expected, are frequently affected 
by clouds. Therefore, observations must be processed for operational data 
assimilation and inversion for geophysical parameters, which may be related to 
cloud microphysics (as shown in the previous chapters) or not. In this last case, the 
presence of cloud signals causes the data to be unreliable for a wide range of remote 
sensing analyses (e.g., greenhouse gas profiling). As a result, cloud detection from 
remotely sensed observation is a very open and important task in literature.  

These kinds of analyses were a fundamental part of the research activities 
carried out in my doctoral program. This chapter aims to present two studies made 
by me in this framework during my Ph.D. period. The former, investigates the 
capability of a machine learning based cloud detection (MLCD) scheme, 
implemented through the use of a feed-forward NN and PCA. The latter addresses 
the potential of a nonlinear statistical regressor method based on deep learning feed-
forward neural network (NN) for the retrieval of atmospheric CH4. The regression 
framework is based on the PCA of the IASI L1 radiances and of the CH4 profiles. 
The choice of the number of principal components has been addressed by the study 
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of their eigenvalues, to filter redundant information from IASI channels and extract 
the most significant information from the CH4 profiles.  

The analyses performed in this studies and the results obtained were published 
in the following papers [4], [5].  

4.1 MLCD USING HYPERSPECTRAL DATA 

As shown in previous Chapters 3, clouds strongly interact with the radiative 
properties of Earth’s system [159], influencing the retrieval of geophysical 
parameters such as greenhouse gasses, aerosol, and surface temperature. Estimating 
their microphysical parameters is critically important for assessing the Earth's 
radiation budget and addressing climate warming. In the wide range of remote 
sensing applications, such as those for the recovery of thermodynamic parameters 
of the atmosphere, such as temperature and water vapor, or the profiling of 
greenhouse gases such as CO2 and CH4, cloud detection is a mandatory 
requirement for obtaining optimal analyses.  

Many cloud detection algorithms have been developed in literature and most of 
them use multispectral approaches [160]–[165], to infer clouds' behavior and its 
detection through some decision rules. Moreover, in the last decades, the 
introduction of new advanced hyperspectral sensors, such as the IASI [166], [167] 
and the Advanced Infrared Radiometer Sounder (AIRS) [168], has allowed sensing 
information (up to 8K bands) [166] from surface and atmosphere with 
unprecedented accuracy and resolution. Anyway, despite the consolidated 
literature, conventional cloud detection algorithms applied to these sensors are not 
yet very effective, because the physical and theoretical implications of 
hyperspectrality are required [167], besides an ad-hoc manual selection of more 
informative spectral bands. Therefore, innovative methods for cloud detection from 
hyperspectral data are required, which can handle the full set of spectral radiances, 
rather than a few channels. From the heritage of existing cloud detection algorithms, 
MLCD algorithms are developed. 
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Figure 54. IASI-A L1C blue footprints related to the dataset used in this study. 

The data we use in this analysis have been obtained with IASI operated in the so-
called external calibration mode or ExtCal. In this mode, each scanning line, which 
in normal operation mode spans an angle range of ± 48.33° on either side of the 
nadir, is squeezed into the nadir view. In other words, at the same time as that taken 
for a complete ± 48.33° scan, IASI is operated to look exactly at the nadir (for more 
details about this mode we refer the interested reader to [149]). Specifically, IASI 
L1C spectral radiances acquired from Jan. 2016 to Nov. 2016 and related to Eastern 
Europe and tropical areas have been used. In ExtCal mode, data are available one 
day per month alone. Therefore, we have one daily orbit for each month (see Figure 
54). 

Table 14. Datasets of IASI-A L1C spectra were used in this analysis. 

Dataset Number Month Number of spectra 

0 January 65340 

1 February 65124 

2 March 65340 
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3 April 65340 

4 May 65232 

5 June 65340 

6 July 65340 

7 August 65232 

8 September 65340 

9 October 65232 

10 November 65340 

In this way, we are sure to have the right time-space variability to represent cloud 
diversity and surface conditions. The total number of observations is 652968 (see 
Table 14 for the detail of the number of IASI spectra for each month). We also 
stress that in the ExtCal mode the horizontal spatial resolution along the satellite 
track is increased at the expense of that along the cross-track direction. It is expected 
that the set of data acquired in the ExtCal mode will show a better coverage of cloud 
fields, with an increased probability to observe clear-sky conditions. In effect, one 
of the main issues in designing effective cloud detection schemes is the lack of data 
sets with enough clear-sky radiances. Any given classification analysis could be 
misleading in the case of the training data set not being balanced between the two 
classes, cloudy- and clear-sky (e.g., see [161]). Then, since the cost function 
minimizes the overall error, the threshold naturally outweighs the most populated 
class that will be better classified at the possible detriment of the smaller class. If 
the actual scene to be classified is poorly balanced in favor of the other one (less 
populated in the training data set), then the overall misclassifications will increase. 
The data set of IASI spectra acquired in ExtCal tends to limit this issue because of 
the better horizontal spatial sampling which can increase the number of clear-sky 
IFOVs (see e.g., [169]). 
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4.2 MLCD ALGORITHM DESCRIPTION 

The MLCD is an algorithm based on PCA. The PCA involved in this study follows 
what was introduced in Chapter 3 (see Section 3.3.2) to extract more significative 
information about clear- and cloudy-sky acquisition from the set of IASI-A 
radiances.  

Specifically, starting from a set of an observed k-dimensional vector of IASI 
radiances iR , with 1,2,...,  and i N N k= > , a subset of clear-sky condition spectra 
was selected, using the AVHRR cloud and land masks, as follows: 

 
{ }
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_ . _ .{ ( ) 5 ( ) 0}

N

clear i i
i

i cloud frac land frac

R R Q

Q AVHRR i AVHRR i
=

= ∈

= ≤ ∧ =

  (4.1) 

where iQ is the ith element of the intersection of the elements related to the AVHRR 
elements of cloud and land masks, respectively. Next, following what we have 
shown in Section 3.2 a clear-sky V orthogonal projection basis is determined, and 
each IASI-A L1C spectra is projected in a low dimensional subspace considering 
only the first columns of V , resulting in a set of 100 regressors capable of 
discriminating between clear/cloudy radiances (see Figure 55). 

 

Figure 55. Scheme of PC regressors determination for the cloud detection algorithm. 

Starting from the definition of the set of PC regressors, a statistical cloud detector 
was implemented in this study by the use of a multilayer feed-forward NN. Also in 
this case the Keras-python framework [150] has been used to build and deploy the 
NN structure. For the learning step, in this study, we partitioned the IASI-A L1C 
total dataset using an 80/20% ratio, 80% of the entire dataset for training, 20% of 
the entire dataset for validation, and testing (10% validation and 10% test), 
respectively. Finally, truth data to predict (cloud- or clear-sky condition) have been 
classified from a cloud mask product of the AVHRR sensor. 
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Using the Hyperband tuner [170], in this work a neural network structure composed 
of 5 layers was designed: i) one input layer composed of 100 input units, related to 
the first 100 principal components of the IASI-A L1C measurements, ii) 3 hidden 
layers each one composed of 256, 236, and 114 hidden units, iii) one output layer 
composed by 2 outputs units because the softmax [171] activation function is used 
to turn the neural network outputs into probability-like values and allow one class 
of the 2 (cloudy or clear) to be selected as the model’s output prediction, see Table 
15 for a summary of the neural network structure. 

The Exponential Linear Unit (ELU) [172] activation function is used on the hidden 
layers, whereas the Logarithmic Categorical Cross entropy function[171] is used as 
a loss function: 

 ( )( )
1

log
N

i i
i

L y p y
=

= ⋅∑  (4.2) 

where, N indicates the number of classes to predict, two in our case (cloudy or 
clear), iy and ( )ip y are the true value of the ith class and the probability to predict 

it, respectively. Finally, the efficient Nesterov ADAM gradient-based optimization 
algorithm [173], [174] is used to minimize the neural network cost function in 
training and validation steps. 

Table 15. MLCD model summary. 

N. of neural network layers 5 

N. of hidden layers 3 

N. of input units 100 

N. of hidden units of the hidden layer 1 256 

N. of hidden units of the hidden layer 2 236 

N. of hidden units of the hidden layer 3 114 

N. of output units 2 
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Loss Function Categorical Cross-Entropy 

Hidden units activation function Elu 

Output units activation function Softmax 

Optimization algorithm Nesterov-ADAM 

Finally, the network has been trained and validated on 30 epochs on the total IASI-
A L1C dataset as explained in Section 4.1. Also, to prevent overfitting, 
regularization techniques such as early stopping [175] and class balancing [176] 
approaches have been used. 

4.2.1 CLASSIFICATION RESULTS 

After the tuning and the learning, the neural network classification performances 
have been tested on a set of unseen IASI-A L1C data. The confusion matrix [171] 
and Receiver Operating Characteristic (ROC) curve [177] have been used to assess 
the neural network performances (see Figure 56 A and B). 

 

Figure 56. (A) Confusion matrix and, (B) ROC curve related to the classification performances. 

From the confusion matrix depicted in Figure 56 A and the ROC curve in Figure 
56 B, is easy to see the goodness of the neural network performances in the 
classification of clear, cloudy sky IASI spectra radiances. Particularly informative, 
are the results shown by the ROC curve, whose True-/False- positive rate 
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comparison, shows a desirable curve shape, with an Area Under the Curve (AUC) 
of about 92%. In addition, using the information given by the confusion matrix, i) 
accuracy, ii) precision, iii) recall, and iv) F1 scores [177] have been calculated. The 
results are shown in Table 16. 

Table 16. NN classification scores report. 

 Precision Recall F1 N. test dataset 
samples 

Clear-Sky 87% 89% 88% 18756 

Cloudy-Sky 96% 95% 96% 53067 

     

Clear-Sky accuracy 86%   18706 

Cloudy-Sky accuracy 96%   53117 

Total accuracy 93%   71823 

Analyzing the results shown in Table 16, from the precision and recall scores, 
related to the classification of clear-/cloudy- spectral radiances, is evident to see 
that our neural network model expresses a good generalization capacity. F1 scores 
that are both high for clear- and cloudy-sky classification, are also confirming this 
trend, stating that the developed neural network can classify with high precision 
and accuracy new unseen IASI-A L1C spectral radiances.  

The MLCD achieves the accuracy to classify clear- and cloud-sky spectra of about 
86% and 96% (totally 93%). It has to be stressed that this performance is, to my 
knowledge, unprecedented. In effect, especially for tropical settings, the 
performance for IASI standalone algorithm is of the order of 80% (see e.g., Ref. 
[161]), because of the difficulty to deal with the dense distribution of cirrus clouds, 
which cover permanently the tropical belt.  

Finally, from this study, some advantages arise. The former is that the MLCD is 
based only on the spectral radiance signal and does not rely on any ancillary 



Cloud detection in Greenhouse Gas Analysis 106 

 
information or model output. Therefore, it can potentially be applied to any spectral 
sensor in the infrared on ground-based, airborne, or satellite platforms, and it can 
work, with the same performances, in the daytime or nighttime. The latter is that 
the NN is extremely fast and computationally efficient in classifying the spectra. It 
runs on a Graphical Processing Unit (GPU) and takes only three seconds in 
classifying hundred thousand spectra, making it particularly suitable for real-time 
classification scenarios. 

4.3 ATMOSPHERIC METHANE PROFILING 

Among the greenhouse gases in the Earth's atmosphere, methane (CH4) is the 
third most important after water vapor (H2O) and carbon dioxide (CO2) [178]. In 
the context of global warming, while CO2 is more abundant and longer-lived, CH4 

is far more effective at trapping heat [179]. Over the first two decades after its 
release, CH4 is more than 80 times more powerful than CO2 in terms of boosting 
the warming of the climate system. Unlike CO2, the bulk of methane emissions (ca. 
60 %) are anthropogenic[180]; these include (i) agricultural sources (such as 
livestock, manure, and rice paddies) [181], (ii) waste disposal, (iii) fossil fuel 
extraction, and (iv) deforestation.  

This anthropogenic pollution worsens the already complicated situation of 
thawing Antarctic permafrost [182] it is estimated that amount of methane 
deposited beneath is about 540 Gt and its release would lead to unpredictable global 
warming consequences. In the last decades, the global atmospheric growth rate of 
CH4 is in the range of about 10 ppb/year, setting in 2021 an increase of 17 ppb, the 
largest annual increase ever.  

Thus, the global monitoring of CH4 emissions is mandatory to study and 
analyze the global warming phenomenon. In the last decades, atmospheric CH4 has 
been extensively measured from space [178] using measurements acquired by 
sensors working in the shortwave infrared (SWIR) and thermal infrared (TIR) bands 
and in this way, many inversion methodologies have been developed to retrieve 
CH4 [183]–[186] signature. In the TIR band, the Infrared Atmospheric Sound 
Interferometer (IASI) mounted onboard the MetOp platform is the leading sensor 
for the retrieval of Atmospheric CH4 because of its ability to sense the atmosphere 
with unprecedented resolution and accuracy [166]. CH4 is also indicated in the 
literature as a “long-lived tracer” because of its long lifetimes in the troposphere 
and lower stratosphere. The CH4 concentration varies significantly in height (from 
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the upper troposphere to the lower stratosphere) and with latitudes and seasons 
[187]–[189]  

The combination of these sources of variability constitutes the main weakness 
of traditional inversion algorithms in correctly estimating the vertical distribution 
of CH4. Therefore, the development of new advanced retrieval methodologies, such 
as those based on Machine Learning (ML), which can extrapolate with high 
accuracy the dynamic of greenhouse gasses and information about their vertical 
profiles [2] and total contents[1], is mandatory. Toward this objective, the primary 
aim of this exercise is the application of a nonlinear statistical regressor method 
based on deep learning feed-forward NN for the retrieval of atmospheric CH4 at a 
global scale using predictive features provided by IASI L1C simulated 
observations.  

4.4 DATA AND METHOD 

In this Section, some details about the dataset of IASI simulated observation 
used in our analysis will be presented. Finally, the architecture of the methodology 
developed to perform the CH4 inversion exercise will be also discussed. 

4.4.1 DATASET OF SIMULATED MEASUREMENTS 

The IASI measurements we use in this work have been simulated with the latest 
version of 𝜎𝜎-IASI-as [87], [89], [93], [133], [161], [186], [190], [191] (RTM). The 
atmospheric state vector used for the simulation of IASI spectra is the Monitoring 
Atmospheric Composition and Climate (MACC) Reanalysis dataset [192], [193] of 
the European Centre for Medium-Range Weather Forecasts (ECMWF). This 
dataset is a global model of atmosphere chemical species that provides 
measurements with a spatial resolution of 80 km on a latitude/longitude grid of 
1.125° × 1.125° and 60 vertical levels from the surface up to the mesosphere 
(~1000 to 0.1 hPa); it covers the period 2003 to 2012. 
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Figure 57. Map of selected geographical coordinates from MACC Reanalysis dataset. 

A subsampling of the grid of points by a factor of four and a random selection 
of about 10.000 samples per month (see Figure 57) to reduce the simulation load 
has been performed. The data were selected for one day of the 12 months of 2012 
at four synoptic hours (00-06-12-18 UTC) to capture typical seasonal and diurnal 
cycles. Furthermore, starting from the original state vector we generated three 
additional ones with increments of 5%, 10%, and 15% of the CH4 total column to 
have a representation of its annual growth behavior within the data. For the sea 
surface, the emissivity was derived according to Masuda’s emissivity model [194], 
while for the land surface, the Combined ASTER MODIS Emissivity over Land 
(CAMEL) was used [195], [196]. Finally, each sample was simulated in a cloud-
free situation and with a uniformly randomly selected scan angle in the range 

48.3°± . Finally, a total number of 168.000 IASI-L1 spectral radiances are 
simulated. 

4.4.2 NN REGRESSION ARCHITECTURE 

The regression architecture, which performs the inversion of CH4 profiles from 
IASI observations, is implemented by a combination of a neural network algorithm 
and principal component analysis (PCA). We use the PCA to decompose both the 
data and parameters space, a methodology that has been already explored and tested 
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by the authors within the framework of physical inversion of IASI radiances, see 
[87], [89], [93], [133], [161], [186], [190], [191] 

Similarly to what is presented in Chapter 3, the motivation behind the adoption 
of PCA to define the NN regression framework is to reduce the impact of the curse 
of dimensionality in NN learning, since it has been shown in the literature [197] 
that NNs suffer in performing inversion when using large layers of input and output 
measurements. Specifically, the data we use for NN learning is observed using a 
large number of spectral measurements (the IASI 8461 spectral samples) and 
defined over tens of atmospheric layers (the 60 pressure levels over which the CH4 
contents are profiled). In this way, it is pretty clear that the PCA of NN inputs and 
outputs allows the definition of a regression framework that is less complex to solve 
(see Figure 58). 

 

 

Figure 58. Simple sketch of the regression framework used in this work. 

PCA of the IASI spectrum was performed using different functional bases, one 
for each of the IASI spectral bands. The EUMETSAT IASI Level 1 Principal 
Component Compression (PCC) [198], [199] product was used to project the IASI 
spectra into a lower dimensional space. In particular, the projection involved only 
bands 𝜐𝜐1 and 𝜐𝜐2 of the IASI spectra. The low dimensional space related to the two 
selected bands is spanned by a truncated set of the eigenvectors of the IASI L1 data 
covariance matrix, according to EUMETSAT PCC analysis, resulting in 90 
principal components for 𝜐𝜐1 and 120 for 𝜐𝜐2, respectively.  

To attain the PCA of CH4 profiles, the projection was made by using a 
functional base of eigenvectors, corresponding to the first ten eigenvalues of the 
CH4 covariance matrix, expressing about 99% of the total variance (see Figure 59). 
CH4 profiles are standardized before the application of the PCA technique. This 
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additional pre-processing step was performed to improve the fit of the data by 
avoiding giving too much weight to variance caused by noise and decoupling 
profile predictions from the annual mean value. 

 

Figure 59. Pareto chart of the first ten CH4 principal components 

Finally, a feed-forward NN model was implemented by the use of the Keras-
python [125] framework. In particular, starting from the input/output data and a set 
of NN hyperparameters[110], [200] (e.g., the number of hidden layers, hidden units, 
the batch size, the activation function, the loss function, etc…), different models 
were tested and optimized. Among those, we selected the model that best performs 
in terms of Root Mean Squared Error (RMSE). The selected NN architecture is 
composed of three hidden layers, the Mean Squared Error (MSE) is used as 
objective function, and the Stochastic Gradient Descend (SGD) [110], [201] for its 
minimization. Table 17 summarizes the hyperparameters of the selected NN model. 

Table 17. Hyperparameters of the optimized NN model. 

Hyperparameter NN 
Inputs 90 𝜐𝜐1  + 120 𝜐𝜐2  𝑃𝑃𝑃𝑃𝑃𝑃 + Surf. Pressure + VZA 
Outputs  10 CH4 PCS 
N. hidden layers 3 
Optimizer  Stochastic Gradient Descent (SGD) 
Loss Function Mean Squared Error (MSE) 
Evaluation Function Root Mean Squared Error (RMSE) 
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4.5 RESULTS 

This section regards the evaluation of the selected NN model generalization 
performance. The evaluation will be performed by the use of two test datasets: i) 
the former using a set of simulated observations, and ii) the latter by the use of real 
IASI observation collocated with in situ measurements of the Hawaii Mauna Loa 
(MLO) observatory. A comparative analysis in terms of CH4 total content, in terms 
of global spatial dynamic, will be also shown. 

4.5.1 VALIDATION ON THE SIMULATED TEST DATASET 

Considering the regression framework (see Section 4.4.2), the first ten principal 
components of CH4 predicted from the NN on the test dataset of simulated 
observations are used to reconstruct the corresponding profiles. 

 

Figure 60. Profiles of CH4 retrieval error (in terms of rms difference to reference truth) for (A) sea and 
(B) land areas. 

 

From Figure 60 we quantified the CH4 retrieval error in terms of RMSE, 
bringing an error reduction for sea profiles (Figure 60 A) within 40-60% and land 
within 15-70% throughout the lower 900 hPa for land (Figure 60 B). The error 
reduction is larger for both the troposphere and the stratosphere. 
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Figure 61. Scatter plots of NN predicted vs ECMWF reference values of CH4 total content for (A) sea 
and (B) land areas. 

From the predicted profiles, in terms of total content scatter plots of Figure 61 
show very good agreement between predicted and reference ECMWF values. 
Specifically, high values of R2 are obtained for sea (0.97) and land (0.92) areas; 
within the predicted value there is no significant bias. The latter result is strongly 
emphasized by performing a binned analysis (see Figure 62 for more details), which 
provides more evidence of the goodness of NN predictions in obtaining unbiased 
CH4 measurements. 

 

Figure 62. Binned analysis of ECMW reference vs predicted CH4 total contents. Red dots indicate the 
mean value, the error bar is the standard deviation. 
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Finally, to further demonstrate the goodness of the NN prediction, an additional 

comparison in terms of global spatial dynamics of total CH4 content was carried 
out. 

 

Figure 63. Maps of ECMWF reference (A) vs NN predicted (B) CH4 total content.  

Figure 63, shows this comparison, indicating an excellent agreement of the 
spatial patterns.  

4.5.2 VALIDATION ON THE DATASET OF REAL OBSERVATIONS 

Validation of the NN retrieval scheme was based on a series of real IASI sea 
surface clear sky soundings collocated with representative CH4 profiles collected 
from the NDACC (Network for the Detection of Atmospheric Composition 
Change) FTIR (Fourier-Transform Infrared Spectrometers) network. These are 
derived from solar absorption spectra with a spectral coverage in the MID infrared, 
∼2400-3300 cm-1. The in-situ observations are taken at the NDACC station of 
Mauna Loa (MLO, 19.5362 N, 155.5763 W, 3397 m asl.) for the period from 
January 2014 to December 2014 (see Figure 64). 
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Figure 64. (A) Hawaii study area of IASI clear sky soundings (blue dots). The Mauna Loa validation 
station whose data are used for comparison is also shown on the map. (B)Comparison of reference MLO CH4 
soundings (in red) to NN predictions (in blue). The comparison shows the mean values over the 2014 year. 

The analysis of Figure 64 summarizes the generalization performance of this 
exercise. Specifically, from Figure 64 a comparison of the average of 2014 CH4 
profiles was performed. It is straightforward to note that the NN predictions are 
feasible and can correctly reproduce the CH4 profile variability throughout the 
entire atmospheric column. 

Finally, this exercise revealed that the NN recovery analysis shows agreement 
with the CH4 content of the reference MACC, allowing for unbiased profile 
estimates. In particular, validation with in situ measurements at MLO station 
Hawaii has shown that the NN model is capable of correctly recovering the shape 
of CH4 profiles. 

  



Remote sensing of surface: Detection of Large Ground 
Displacements Phenomena 

115 

 

Chapter 5Eq uatio n Sectio n (Nex t) 

REMOTE SENSING OF SURFACE: 

DETECTION OF LARGE GROUND 

DISPLACEMENTS PHENOMENA 

Beneath the clouds and atmosphere is the Earth's surface. Studying its 
geophysical dynamics is essential to understanding the environment in which we 
live and helping to protect it for the future. Earth surface change monitoring has 
evolved significantly over the past five decades since civilian Earth observation 
(EO) satellites were launched into orbit. Ongoing technological advances and 
access to free satellite imagery have increased our ability to map and monitor 
Earth's surface changes, both abrupt and subtle, on large collections of images. In 
this framework, Synthetic Aperture Radar (SAR) sensors cover an important role.  

SAR sensors are coherent active microwave remote sensing systems, whose 
capability to effectively map the scattering properties of the Earth’s surface has 
been already intensively investigated [202]. Since the 1950’s SAR systems are used 
to extensively analyze and study geophysical processes characterizing the Earth’s 
surface. These systems can be mounted on-board heterogeneous platforms (e.g., 
aircraft, satellite, ground carrier), have a side-looking illumination direction and can 
perform accurate distance measurements between the moving platform and the 
observed surface. Given a scene on the ground a SAR sensor radiates it with a 
packet of electromagnetic waves and then measures the electromagnetic signals 
received on board, which is due to the backscattering of the waves by the objects 
that compose the observed scene. Both the acquisition geometry and the physical 
characteristics of the scene contribute to the formation of the received backscattered 
SAR signal. The signals used by SAR systems typically lie in the microwave band 
(in the range of the wavelength λ  1cm and 1m) and being active imaging sensors, 
they do not need an external energy source to work and can be effectively used to 
detect areas affected by a significant clouds’ cover. As a consequence of its 
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flexibility, SAR technology mostly improved during the last years and further 
techniques have been also developed, thus helping the scientific community with 
the interpretation of several geophysical phenomena. In this field, techniques based 
on the analysis of SAR data, such as SAR interferometry (InSAR) [203]–[205], are 
of fundamental importance. They relate the phase difference (interferogram) 
between two (or more) SAR acquisitions of the same scene taken at different times 
to measurements of topography or deformation of the Earth's surface.  

This chapter will briefly introduce the basic concepts of SAR interferometry, 
particularly the first part of generating an InSAR interferogram. Subsequently, I 
will discuss the differential interferometry technique DInSAR, which allows us to 
determine the displacement of the Earth's surface that occurs between two 
temporally different observations of the same ground scene observed by a SAR 
system. Next, I will focus on the presentation of the multiple aperture synthetic 
aperture radar interferometric (MAI) technique which is primarily used to measure 
the along-track components of the Earth’s surface deformation, by investigating its 
capabilities and potential applications. This method has been extensively 
investigated during the period of my doctoral studies, and has been used to monitor 
the temporal evolution of ground surface changes in areas subject to large 
deformations (e.g., due to glaciers movements or seismic episodes), enabling the 
discrimination of the three-dimensional (up-down, east-west, north-south) 
components of the Earth’s surface displacements. 

5.1 SAR INTERFEROMETRY 

The SAR interferometry technique exploits the difference of viewing angles in 
two (or more) acquisitions (e.g., across-track configuration) to estimate the 
topography of an observed scene (e.g. [205]). Considering repeat-pass across-track 
configuration, two interfering SAR images can be expressed in complex notation 
as: 
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where 1,2 ( , )x rγ  represents the complex-valued reflectivity function related to 

the target of azimuth and range coordinates (𝑥𝑥, 𝑟𝑟) and 𝑗𝑗 = √−1 is the imaginary 
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unit. Note that R and R + 𝛿𝛿𝑅𝑅 are the range distances between the sensor and the 
target in the two images, with 𝛿𝛿𝑅𝑅 being the additive range distance term due to 
slightly different viewing geometries. The phase difference between the two SAR 
images is obtained by extracting the phase of the complex interferogram [205], 
which is given by the complex conjugate product operation between the two SAR 
images, as follows: 

 
4

* *
1 2 1 2( , ) ( , ) ( , ) ( , ) ( , ) Rj

I x y I x r I x r I x r I x r e
π δ
λ= ⋅ = ⋅  (5.2) 

By taking into account the acquisition geometry shown in Figure 65 and 
applying the law of cosines, after trivial mathematical manipulations [206], it is 
straightforward to demonstrate that: 

 
4 4 sin( )R bπ π

φ δ ϑ α
λ λ

∆ = ≅ −  (5.3) 

where Δ𝜙𝜙 is the extracted interferometric phase. Note that 𝜆𝜆  is the operational 
wavelength, b is the interferometric baseline (i.e., the distance between orbital 
positions from which the two SAR images are taken), 𝜗𝜗 is the sensor side-looking 
angle and 𝛼𝛼 is the angle the baseline makes to a horizontal reference plane. The 
Equation (5.3) contains useful information on the target height ℎ.  
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Figure 65. InSAR geometry acquisition. M and S represent the positions of master and slave acquisitions, 
respectively, and P is the generic point target on the ground 

Indeed, by expanding Equation (5.3) around the angular position 𝜗𝜗 = 𝜗𝜗0, 
representing the illumination angle for flat terrain (i.e., h=0), we have: 
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where Δ𝜙𝜙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the so-called flat-Earth phase contribution, and 𝑏𝑏⊥ is the 
component of the baseline that is perpendicular to the radar-to-sensor line-of-sight 
direction. The first term on the right-hand side of Equation (5.4), representing the 
flat-Earth phase term, can be derived (e.g., [207]) by computing the local phase 
frequency in the range direction as: 
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Where Ω is the local slope of the terrain and 𝜌𝜌 = 𝑟𝑟 is the pixel range coordinate 
of the imaged target. Conversely, the second phase term is the topographic phase 
signature Δ𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. More general relations arise if the curvature of the Earth is also 
taken into account (e.g., [205], [208]). If the range-dependent phase term is 
compensated for in Equation (5.4), the topography of the imaged scene h is finally 
computed as: 
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From Equation (5.6), the height ℎ can be estimated with an accuracy that is 
baseline-dependent; this means that the larger the perpendicular baseline, the more 
accurate the estimation of topography will be [208]. However, very large baseline 
values are responsible for severe decorrelation noise artifacts [209]. They corrupt 
the measured interferometric phase Δ𝜙𝜙 and, subsequently, lead to incorrect height 
profile estimations. It is also worth highlighting that the interferometric phase is 
restricted to the [-π, π[ interval. The phase unwrapping (PhU) operation is a crucial 
step in any InSAR processing tool, and several approaches have been developed 
[210]–[213]. PhU involves the searching of (unknown) 2π-integer multiples that 
must be added to wrapped phases to compute unwrapped (full) phases. 

5.2 DIFFERENTIAL SAR INTERFEROMETRY 

As an evolution of the InSAR approach, a processing methodology known as 
the differential synthetic aperture interferometric (DInSAR) technique [202], [214] 
has been developed. It represents a common practice nowadays in the remote 
sensing scientific community for the detection and monitoring of the Earth’s surface 
displacement phenomena. The key factor of the DInSAR technique with respect to 
other conventional approaches (e.g., GPS and leveling measurement campaigns) is 
that it allows the continuous monitoring of displacement phenomena with a dense 
grid of measurement points. To convey the Earth’s surface displacements, the 
DInSAR technique relies on the generation of a so-called differential SAR 
interferogram [202]. Considering the acquisition geometry depicted in Figure 66, it 
is assumed that two complex-valued SAR images of the imaged scene were 
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acquired at different times and in different orbital positions. In a case where the 
ground surface is displaced by the 3-D vector d between the two flight passages of 
the sensor along the scene, the computed interferometric phase difference between 
the two SAR images—namely, ∆𝜙𝜙—is made up of two main phase components: 

 
4' 'defo LOSdπ

φ φ φ φ
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where Δ𝜙𝜙′ is the phase contribution in the absence of deformation, as expressed 
in Equation (5.4), and Δ𝜙𝜙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is the additional phase contribution related to the 
ground displacement. Therefore, the phase signal associated with the deformation 
can be recovered by synthetically reconstructing the phase component contribution 
Δ𝜙𝜙′ and subtracting it, modulo 2𝜋𝜋, to the measured phase difference. In particular, 
𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿 is the projection of the displacement vector d along the sensor-to-target LOS 
direction. The synthetic phase term Δ𝜙𝜙′ is simulated from the knowledge of 
external information on the acquisition geometry such as a digital elevation model 
(DEM) of the observed area, the orbit state vectors, and the operational parameters 
of the radar instrument [208]. In a more general case, the differential interferometric 
phase is expressed as: 

 defo topo orb atmo noiseφ φ φ φ φ φ∆ ∆ ∆ ∆ ∆ ∆= + + + +  (5.8) 

where Δ𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  4𝜋𝜋
𝜆𝜆
∙ 𝑏𝑏⊥
𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Δ𝑧𝑧 represents the residual topography phase 
component induced by the DEM errors Δ𝑧𝑧; Δ𝜙𝜙𝑜𝑜𝑜𝑜𝑜𝑜 represents the residual phase 
term related to inaccurate orbital parameter information, which is used to estimate 
the aforementioned synthetic phase term; Δ𝜙𝜙𝑎𝑎𝑎𝑎𝑚𝑚𝑜𝑜 denotes the phase components 
relative to the propagation variation of the RADAR signal caused by the absorption 
effects of Earth’s atmosphere; and, finally, Δ𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  is representative of additive 
noise contributions (i.e., spatial and temporal decorrelation, incorrect focusing of 
SAR raw data, etc.), that corrupt the interferometric phase [209], [215]. In 
particular, the spatial decorrelation is less pronounced for short perpendicular 
baseline configurations. 
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Figure 66. DInSAR geometry acquisition. Same as Figure 65 but considering the displacement d of the 
imaged point P on the ground. Note that P1 and P2 represent the point target positions of the master and slave 
acquisitions, respectively. 

 

From Equation (5.7), the accuracy of the displacement measurements depends 
on the operational wavelength 𝜆𝜆. In this case, the maximum detectable 
unambiguous displacement that corresponds to a full phase cycle of 2𝜋𝜋 is equal to 
𝜆𝜆
2
 , denoting measurement accuracy of a fraction of the employed wavelength that 

is dependent on the amount of noise present in the measured phase. Interested 
readers can find an overview of DInSAR and its main applications in [207], [216]. 

5.3 DETECTION OF LARGE GROUND DISPLACEMENT 
SIGNALS 

The study and the characterization of Earth’s surface displacements by the use 
of DInSAR techniques is a hot topic in the literature. More recently, these 
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approaches have been used in [12] which address the use of the multiple aperture 
interferometric (MAI) technique [217] for the detection of large ground 
displacement dynamics. The proposed study addresses different issues: 

1) To illustrate the underlying rationale and effectiveness of the MAI 
technique; 

2) To present an innovative method to combine complementary 
information of the ground deformation collected from multi-
orbit/multi-track satellite observations. 

In particular, the presented technique complements the recently developed 
Minimum Acceleration combination (MinA) method with MAI-driven azimuthal 
ground deformation measurements to obtain the time series of the 3-D components 
of the deformation in areas affected by large deformation episodes. Experimental 
results encompass several case studies. The validity and relevance of the presented 
approaches are demonstrated in the context of geospatial analyses. 

5.4 MULTIPLE APERTURE INTERFEROMETRY PRINCIPLE 

As said in Sections 5.1 and 5.2, InSAR techniques have successfully been used 
to study and analyze many different phenomena that characterize the Earth’s 
surface. However, these techniques are limited to measuring only the 1-D 
components of ground deformation along the RADAR LOS direction. Conversely, 
enabling 3-D displacement measurements is crucial for better analyses and to study 
of the deformation phenomena that characterize areas of interest. In the last two 
decades, many studies have been carried out enabling the measurement of the 3-D 
(up-down (U-D), east-west (E-W), and north-south (N-S)) ground displacement 
[218]–[220]. Multi-platform, multi-track InSAR techniques have been developed 
to discriminate the U-D and E-W components of surface displacement, but the 
estimation of N-S ground displacement data has been more challenging. In this 
respect, SAR amplitude tracking methods—namely, pixel offset (PO) [221]–[226] 
and multiple aperture interferometry (MAI) [227]–[230]—have been applied. 

It has been demonstrated that the measurement accuracy of N-S displacement 
that is attainable with PO methods is low. In particular, it reaches only a fraction of 
pixel spacing (1/30th), as the azimuthal pixel spacing of first-generation and 
present-day SAR instruments is in the order of 3–5 cm [221], [223], [231]–[233]. 
For example, taking into account that the azimuth pixel spacing of the TerraSAR-
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X sensor is about 3 m, the expected accuracy of PO measurements is about 10 cm. 
Of course, fine and ultra-fine SAR data with enhanced spatial resolutions are 
envisaged to apply the PO method. It is worth noting that a substantial improvement 
in the discrimination of the N-S ground displacement component from InSAR data 
is a key factor in performing extended geophysical investigations. 

5.4.1 MULTIPLE APERTURE INTERFEROMETRY FOR THE ALONG-
TRACK MEASUREMENTS 

Monitoring the Earth’s surface phenomena requires more comprehensive 
analyses, such as estimating the 3-D field of ground surface displacement that 
affects a specific area. Since SAR satellite platforms travel in almost near-polar 
orbits, the main problem in the discrimination of the north-south component of 
deformation (approximately along-track displacement) is that the projection of the 
ground displacement along the north-south direction is not accurate enough [227]. 

 

Figure 67. Multiple aperture interferometry geometry acquisition. The target on the ground is observed 
in the master and slave acquisitions by the SAR sensor with slightly different viewing geometries. Forward- 
and backward-looking apertures are produced by the split beam process. 

In recent years, a big improvement in the discrimination of along-track 
displacement has been through the development of the MAI technique. This 
technique uses a split beam process called “spectral diversity” (see Appendix A) to 
determine backward- and forward-looking interferograms [234] from a SAR data 
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pair that is related to the same scene but were acquired at different times (see Figure 
67).  

 

Figure 68. (A) Doppler frequency spectra of a pair of Envisat/ASAR complex images related to the Afar 
depression acquired on 19 December 2005 (blue spectra) and on 25 August 2008 (red spectra). (B) Doppler 
frequency spectra were filtered using two Hamming windows (red-colored spectra). 
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The backward- and forward-looking interferograms can be expressed as 

follows (see Equation (A.10) in APPENDIX A: Spectral DiversityEquation Section 1 for more 
details): 

 
2

fw DCf x
v
πφ += ⋅  (5.9) 

 
2

bw DCf x
v
πφ −= ⋅  (5.10) 

Specifically, 
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∆ =  are the average Doppler centroid 

(DC) frequencies of the two full-bandwidth SAR images, with ,DC mf and ,DC sf  

being the DCs of the master and slave SAR images, respectively. Note that  ∆𝑓𝑓𝐷𝐷  is 
the effective Doppler bandwidth, 𝑙𝑙 indicates the azimuthal antenna length (see 
Figure 68) and 𝑛𝑛 is the fraction of the azimuth bandwidth (e.g., Df∆ ; see Figure 68) 
used in the split-beam process, also indicated as the normalized squint angle of the 
sub-aperture process. Consequently, starting from the measured phase difference 
between the forward- and backward-looking interferometric phases, the MAI phase 
is determined as follows: 

 ( ) 2 2 2 4
MAI fw bw D

vWr n f x n x n x
v v l l
π π πφ φ φ η = − = ⋅∆ ⋅∆ = ⋅∆ = ⋅∆ + 

 
 (5.13) 

In Equation (5.13), it is clear that the MAI phase is proportional to the along-
track deformation x∆ , where, for the sake of simplicity, we have imposed , 0DC cf =

, and η  is the interferometric noise. Naturally, Equation (5.13) represents the 
simplest case. In particular, during the MAI interferogram determination, the SD 
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process generates the forward- and backward-looking interferometric phases, 
respectively, splitting the full azimuthal spectral bandwidth of the master and slave 
images (see Figure 68 B). 

If the master and slave acquisition orbits are not perfectly parallel when 
considering the backward- and forward-looking imaging geometries (see Figure 68 
A), different flat-Earth and topographic phase contributions arise in the forward- 
and backward-looking interferograms. Considering Equations (5.4) and (5.5), Jung 
et al. [235] addressed this problem by considering the expression of the additional 
spurious phase terms related to the flat-Earth and the topographic contributions, 
which are related to the baseline difference between the forward- and backward-
looking imaging geometries, namely, B⊥∆ : 

 
4

tan( )flat
B

R
πφ ρ

λ θ
⊥∆

=  (5.14) 

 4
sin( )topo

B h
R
πφ

λ θ
⊥∆

=  (5.15) 

where 𝜌𝜌 and ℎ are the slant range and topographic height, respectively. The 
atmospheric phase screen (APS) may be considered negligible in the final MAI 
phase, as APS is influential in the same way both the backward- and forward-
looking interferograms are.  



Remote sensing of surface: Detection of Large Ground 
Displacements Phenomena 

127 

 

 

Figure 69. Geographical maps of the case study areas. (A) Afar depression, Ethiopia, and (B) Ridgecrest, 
California, USA. Red rectangles in (A) and (B) represent the footprints of the used ASAR/Envisat and Sentinel-
1 datasets, respectively. 

In this context, Jung et al. [235] presented an MAI improvement process on 
which they estimated and corrected for the mentioned flat-Earth and topographic 
spurious phase terms. Afterward, we will present two case studies related to the 
application of the MAI technique to the investigation of a single deformation 
episode. The first case study concerns Afar depression. Afar is a region situated in 
Ethiopia, Africa, that was affected in 2005 by a big earthquake associated with the 
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Ethiopian Great Rift fault mechanism [236], [237]. Specifically, from September to 
October 2005, a seismic sequence consisting of 131 events affected the Afar region 
as a result of the Dabbahu volcano eruption (see Figure 69 A). Since the initial main 
events of the drifting episode, a further sequence of 13 discrete dyke events was 
detected from 2005 to 2010 along the entire Dabbahu rift segment [236]. 

 

Figure 70. Afar depression region. Amplitude SAR images of the ASAR master (A) and slave (B) 
acquisitions, were collected on 19 December 2005 and 25 August 2008, respectively. 
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We performed an experiment by considering one pair of Envisat/ASAR data 

that captured the effects of the Dabbahu rifting episode. SAR data were acquired 
along ascending orbits (Track 200) on 19 December 2005 (master) and 25 August 
2008 (slave), as shown in Figure 70 (A) and (B). Starting from this pair of SAR 
data, an MAI interferogram was generated (see Figure 71 A).  

 

Figure 71. (A) Multiple aperture SAR interferometry (MAI) and (B, C) forward- and backward-looking 
interferograms of the Afar depression zone, were generated from a pair of the ASAR acquisitions that were 
collected on 19 December 2005 and 25 August 2008, respectively. The red circle identifies the main fault trace. 

The forward- and backward-looking interferograms of the Dabbahu region area 
are shown in Figure 71 (B) and (C). In particular, we have highlighted an area in 
the MAI interferogram with a red circle that showed sensitive ground displacement 
and was in correspondence with a trace of the 2005 activated rift segment. 



Remote sensing of surface: Detection of Large Ground 
Displacements Phenomena 

130 

 

 

Figure 72. Area of Ridgecrest, California, USA. Amplitude SAR images of the COSMO-SkyMed 
master (A) and slave (B) acquisitions, acquired on 4 July 2019 and 20 July 2019, respectively. 

The second case study was performed by processing a couple of SAR data 
acquired over the north-east Ridgecrest town area, situated in California, USA, (see 
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Figure 64 B), which was struck by a big (Mw) 7.1 earthquake on 6 July 2019, the 
strongest in the region in at least two decades. The phenomena included other 
previous main shock events, and in the days and weeks that followed, thousands of 
aftershocks rumbled beneath Southern California [238]. 

 

Figure 73. (A) MAI and (B, C) forward- and backward-looking interferograms of the area of 
Ridgecrest, California, USA, generated from a pair of COSMO-SkyMed acquisitions collected on 4 July 2019 

and 20 July 2019, respectively. The red circles identify the fault line zone. 

In particular, starting from a single pair of COSMO-SkyMed acquisitions—the 
master collected on 4 July 2019, and the slave on 20 July 2019 (see Figure 72 A, 
and B) a MAI interferogram (Figure 73 A) was generated from a pair of forward- 
and backward-looking interferograms (Figure 73 B, and C). Specifically, in the 
interferogram depicted in false colors, we can clearly see the big fault related to the 
main seismic event circled in red (despite the presence of the interferometric noise) 
at the center.  

Considering the parameters of the X-band COSMO-SkyMed RADAR 
instrument of the Italian Space Agency (ASI) and the Envisat/ASAR of the 
European Space Agency (ESA)—with azimuthal antenna lengths of 5.7 and 11.1 
m, respectively—we evaluated the along-track measurement enabled by the MAI 
technique. In particular, taking into account Equation (5.13) and neglecting the 
noise term (for the sake of simplicity), we observe that an ambiguous maximum 
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along-track deformation ∆𝑥𝑥 of about 5.7 and 11.1 m for every in 2𝜋𝜋 phase cycle 
can be measured. This result implicitly confirms the useful utility of the MAI 
technique for estimating and analyzing large displacements of the Earth’s surface. 
A sounder analysis of MAI measurement performance is presented in Appendix B. 

 

Figure 74. MAI processing flowchart. The symbol * denotes a complex conjugate multiplication 

The processing scheme of MAI operations is shown in Figure 74. 
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5.4.2 MULTIPLE APERTURE INTERFEROMETRY FOR THE GENERATION 

OF ALONG-TRACK GROUND DEFORMATION TIME-SERIES 

SAR interferometric techniques (such as DInSAR and MAI) allow many 
geophysical events that characterize Earth’s surface to be studied in depth through 
the generation of single deformation maps. However, ground displacement 
phenomena are processes characterized by gradual or sudden changes in the Earth’s 
surface elevation over time. In this context, to better characterize the displacement 
phenomena in an area of interest, an analysis of temporal modifications to ground 
displacement is necessary. Over the years, several methodologies have been 
developed that are useful for extending the use of differential interferometric SAR 
techniques to time-monitor displacement phenomena [239]–[248]. These methods 
are based on the inversion of properly selected sequences of DInSAR 
interferograms, allowing the computation of LOS-projected deformation time 
series. Two main categories of these techniques are present in the literature. The 
class of the persistent scatterer (PS) methods [239], [241] is based on the 
identification of coherent point-wise targets exhibiting high phase stability over a 
sequence of DInSAR interferograms that have been generated from a set of SAR 
data related to the same scene but acquired at different times. Conversely, the class 
of small baseline (SB) techniques [242], [243], [247], [249] is devoted to the 
analysis of distributed targets on the ground by processing sequences of small 
baseline interferograms. More recently, a new advanced method for the 
characterization of DS targets, called SqueeSAR [248], has also been developed. 
SqueeSAR uses a statistical approach that exploits phase and amplitude information 
of a sequence’s SAR data to identify very highly coherent DS targets by the use of 
a maximum-likelihood optimization. 

Very recently, temporal analysis methods have been used to extend the MAI 
technique and retrieve the temporal evolution of the along-track ground 
displacement. Specifically, a first attempt was made to estimate mean deformation 
along-track velocity by stacking a sequence of M MAI interferograms 

0 1 1, ,..., M
MAI MAI MAIφ φ φ φ − =    generated from a stack of N SAR images. This was done 

by writing out the following system of equations: 
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where i
MAIφ  and it∆  are the ith MAI interferogram of the sequence and its 

temporal baseline, respectively, and v  is the unknown deformation velocity to 
estimate. Finally, by resolving the system of Equation (5.16) in the least-squares 
(LS) sense, the deformation velocity is retrieved. A novel processing chain to stack 
a sequence of MAI interferograms was presented in Jo et al. [250] and used to 
measure the slow-moving azimuthal displacements of the Kilauea volcano on the 
Big Island, Hawaii. Taking into account that forward- and backward-looking 
interferograms are affected by noise, they suggested that—instead of estimating the 
MAI phase from the interferograms and applying the stacking procedure—the 
multi-temporal forward- and backward-looking residual interferograms could be 
individually stacked, in order to generate a MAI velocity map as: 
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where ,
i
fw resϕ  and ,

i
bw resϕ  are the interferometric phases of ith residual forward- 

and backward-looking interferograms, respectively, which are generated by 
removing a full aperture multi-look differential interferogram from the forward- 
and backward-looking one; it∆  is the ith time duration, and N is the total number 
of forward- and backward-looking interferograms. 

In particular, the theoretical variance of the estimated deformation velocity map 
measurements for the MAI stacking was evaluated to be: 

 ,
, _ 4

MAI
v MAI stacking

l
n M t

φσ
σ

π
= ⋅

⋅∆
 (5.18) 

where t∆  is the average temporal baseline of the whole InSAR distribution. 
The three-dimensional (3-D) displacement velocity map of the Kilauea Volcano, 
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obtained by combining multi-stacked DInSAR and MAI ground displacement rate 
maps, is shown in Figure 12 of [250].  

Another important temporal study of the Earth’s surface displacement via the 
MAI technique was carried out by Gourmelen et al. [251]. In their work, the authors 
combined displacement velocity maps that were obtained by applying the DInSAR 
and MAI techniques to map the ice surface velocity of the Langjokull and 
Hofsjokull ice caps in Iceland in 1994. In particular, their approach improved the 
accuracy of the ice flow measurement by a factor of two for E-W and U-D 
measurements, and up to a factor of 10 for N-S measurements, as compared with a 
velocity solution based on InSAR and pixel offset (PO). 

Another class of studies based on the use of MAI interferograms is the multi-
temporal extension of the MAI approach, which is used to generate along-track 
ground deformation time series [252]. In this instance, a network of M InSAR data 
pairs is identified from a set of N SAR images. If Mt  and St  represent the acquisition 
times of the master and slave images of a given interferogram, respectively, then 
the MAI phase is expressed via Equation (5.19) as: 

 [ ]4 ( ) ( )
lMAI S Mn x t x tπφ = ∆ − ∆  (5.19) 

where ( )Sx t∆  and ( )Mx t∆  are the unknown along-track deformations at the 
master and slave image acquisition times, respectively. This leads to the solution of 
a system of linear equations that can be expressed, using matrix formalism, as: 

 MAIA x φ⋅ =  (5.20) 

where x  represents the vector of the unknown time-series deformation, MAIφ  is 
the vector of the phase components relative to the MAI interferogram, and A  is the 
incidence-like matrix of the InSAR network graph, whose jth row is defined as 
follows: 
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where in MI  and SI  are the M-length vectors of the indices of the master and 
the slave time acquisitions, respectively. The solution of the system of Equations 
(5.20) can be obtained in the LS sense as: 

  ( )( )1T T
MAI MAIx A A A Aφ φ

−+= ⋅ = ⋅ ⋅ ⋅  (5.22) 

where A+  indicates the left pseudo-inverse of the matrix A . Note that A  is a 
full-rank matrix if all the SAR acquisitions form one single connected set of data. 
In a more general case where several different subsets of data are present, however, 
this can lead to a rank-deficient matrix A . In this situation, the same strategy 
adopted in the small baseline subset (SBAS) technique can be applied, which 
consists of proper manipulation of the system of Equation (5.20) and the application 
of the singular value decomposition (SVD) method (see [244] for additional 
details). We note that, for typical values of the expected along-track displacement, 
the unwrapping operation is not required in our case. Furthermore, the phase 
residuals: 

 

MAIe A x φ= ⋅ −  (5.23) 

can be used to identify sets of well-processed SAR pixels. In particular, in this 
paper we propose exploiting the following temporal coherence factor to evaluate 
the quality performance of the inversion strategy: 
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where ie  is the ith phase residual value and Υ has the same mathematical 
expression of the temporal coherence factor initially proposed in [253]. However, 
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in this case, the phase residuals are not a result of time-inconsistent phase 
unwrapping mistakes, but rather phase noise of the MAI interferograms. 

Table 18. Envisat/ASAR acquisition data of the Afar depression zone. Date format is day/month/year. 

Acquisition n. Date 

1 19/12/2005 
2 27/02/2006 
3 04/12/2006 
4 10/09/2007 
5 28/01/2008 
6 25/08/2008 
7 10/08/2009 

The deformation time series have been obtained by processing a sequence of 
14 MAI interferograms generated from a sequence of seven Envisat/ASAR 
acquisitions of the Afar depression spanning the period between 9 December 2005 
and 10 August 2009. The used data are listed in Table 18, and the distribution of 
the 14 MAI interferograms in the time/perpendicular baseline plane (indicating a 
Delaunay graph network [254]), is depicted in Figure 75.  

 

Figure 75. Interferometric SAR data pair distribution of the used ASAR/Envisat acquisitions related to 
the Afar depression area. Red points and black lines indicate the SAR data and the interferograms, respectively. 
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Figure 76. (A) Coherence map of MAI interferograms. (B) Mean deformation velocity map of the Afar 
area superimposed on a SAR amplitude image of the area. (C) Displacement time series related to the major 

fault area, (D, E) related to the medium-magnitude fault area, and (F) related to the low-magnitude 
deformation area. 
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Figure 76 shows the mean deformation velocity of the Afar area (see Figure 76 

B) superimposed on a SAR amplitude image of the investigated area, and the 
relevant time series of deformation (see Figure 76 C–F). Only the deformation 
values of the coherent, well-processed SAR pixels are shown in the velocity map. 
They are identified by computing the map of the temporal coherence through 
Equation (5.24), as shown in Figure 76 A. 

The area in Figure 76 B with a sensitive deformation (blue color) is located 
across the fault, and we highlighted four zones of interest that concerned the time-
series analysis (points (B), (C), (D), and (E)). These major fault areas correspond 
to (i) a major fault zone whose deformation time series (Figure 76 C) showed an 
almost constant along-track deformation rate annually, with a leap of about 50 cm 
in the deformation during the 2005–2006 time period, when the main seismic event 
occurred; (ii) a zone of medium-magnitude deformation (Figure 76 D–E), where 
we can perceive opposite behaviors as if the deformations that characterize the 
AFAR depression should balance out somehow; and (iii) a zone of low-magnitude 
deformation (Figure 76 F) where the deformation time-series remained constant. 

A more quantitative estimate of the accuracy of the achieved along-track 
deformation time series can be obtained by applying the basic principles of error 
noise propagation [255]. In particular, given a full covariance matrix for the vector 
of MAI phases 2

MAI MAI M MC Iσ ×= , the covariance matrix of the along-track 

deformation time series is given by 1 1( )T
X MAIC A C A− −= ⋅ ⋅ , where we have assumed 

the simplified hypothesis that the MAI phases are independent and uncorrelated and 
that the standard deviation of the MAI phase is given by Equation (B.5) in Appendix 
B. More extensive treatment is required in the case that the matrix A  is rank 
deficient, and a given correlation is assumed between the MAI interferograms. This 
is a matter for further investigation, which would require a deep understanding of 
the statistical relationships among the interferograms, as well as a characterization 
of the studied PS and DS targets on the ground. 

More recently, other advanced multi-temporal deformation investigations have 
been carried out using the MAI technique. Specifically, He et al. [252] performed 
a temporal analysis of big landslides that had occurred in the Fushun west open-pit 
mine (FWOPM), China. They mapped the two-dimensional deformation field time 
series of landslide phenomena that occurred between 2007 and 2011 by coupling 
DInSAR-SBAS with MAI-SBAS. They validated the generated time series (across-
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track and along-track directions) with GPS displacement measurements over the 
Fushun mine. The time series obtained by He et al. are presented in Figure 10 of 
their article [252]. In particular, the results in the two graphics demonstrate that the 
time-monitoring analysis of the DInSAR and MAI techniques returned information 
that was highly consistent with the landslide kinematic pattern measured by the 
GPS sensor in that area. 

All of the analyses presented for the generation of along-track ground 
deformation time series demonstrate that the key factor is the reduction of 
decorrelation noise errors. In Liu et al. [256], a very accurate investigation of the 
effects of these spurious phase components is presented that perturbs the final 
measurements. Specifically, Liu et al. classified these errors into three categories: 
(i) random error, (ii) systematic error, and (iii) gross error. These categories provide 
a more comprehensive understanding of the errors in inverting interferometric 
DInSAR and MAI phases when computing time series and 3-D maps of the 
deformation of an observed scene.  

5.5 GENERATION OF MULTI-TRACK 3-D GROUND 
DISPLACEMENT TIME-SERIES 

In this Section, we summarize recent developments in the generation of 3-D 
ground displacement velocity maps, as well as in the retrieval of 3-D ground 
deformation time series. Interested readers can find a more comprehensive 
overview of this topic in [257]. In our work, the focus is principally on the 
generation of combined MAI/DInSAR-driven 3-D maps. Moreover, we propose a 
new algorithm for the generation of 3-D ground displacement time-series, 
complementing the recently developed minimum acceleration combination (MinA) 
method [258] (applied for the generation of up–down and east–west deformation 
components) with the north-south ground displacement time-series estimated by 
applying the methods shown in Section 5.4.1. 

5.5.1 OVERVIEW OF THE TECHNIQUES FOR THE GENERATION OF 3-D 

GROUND DISPLACEMENT TIME-SERIES 

One of the limits of the conventional DInSAR methods is that only the 
projection of the deformation along the LOS direction can be estimated. 
Nevertheless, the availability of DInSAR data products (i.e., mean deformation rate 
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and corresponding displacement time-series) computed from SAR data collected 
from ascending and descending data tracks allows a simple combination of the 
mean displacement velocity measurements as estimated from (at least) two 
complementary viewing orbital geometries. By considering the geometry portrayed 
in Figure 77, it can be demonstrated that the east–west and up–down deformation 
rate components can be obtained as [225], [257] 
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Equations (5.25) and (5.26) are obtained by applying simple geometrical 
relations and assuming that ascending/descending measurements are taken by the 
same sensor, illuminating the imaged scene with approximately the same (absolute) 
side-looking angle. Clearly, the sum of the ascending/ descending LOS-projected 
displacement measurements is related to the vertical components of the ground 
deformation, whereas the difference of the ascending/descending components gives 
an estimate of the E-W components of the deformation. A more general relation 
arises when DInSAR measurements are obtained from complementary viewing 
angles but from different radar platforms, observing the scene with distinctive side-
looking angles, namely, ascθ  and ascθ  (see Figure 16 in [257]): 
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Nonetheless, in the derivation of Equation (5.27), there is no valuable 
information related to the Earth’s ground deformation along the north–south 
direction. Indeed, because modern spaceborne radar systems are mounted on 
satellites that fly nearly polar orbits [227], the north–south (N-S) components of the 
deformation cannot be reliably measured using conventional DInSAR methods.  
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Figure 77. Imaging geometries of SAR observations over ascending (blue) and descending (red) orbits in 
the (A) east-vertical and (B) east-north planes, respectively. 

Several algorithms have been developed to generate 3-D average displacement 
maps as well as 3-D displacement time series by combining multi-satellite/multi-
orbit data tracks [219], [224], [225], [259], [260]. In this work, I mainly concentrate 
on the MinA technique [258], whose basic rationale is exploited to extend its 
applicability to the generation of north–south displacement time series, as presented 
in Section 5.4.2. The MinA technique assumes the availability of K independent 
SAR datasets collected by multiple SAR platforms at the ordered acquisition times 
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 =   , where 1jQ −  is the number of SAR images of the jth SAR 

dataset. Every single data track is separately processed, and the LOS-projected 
displacement time series are evaluated in correspondence with the location of 
coherent targets, which are well detected during each data processing step. After 
geocoding, the DInSAR products are efficiently combined over the common 
coherent points of the geocoded grid. The combination relies on the application of 
the mathematical relationships existing between the measured LOS-projection 
deformations and their corresponding 3-D components (see Figure 77): 
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where ϕ  is the radar heading angle (see Figure 77 B). In the simplified case, 

the dependence of the LOS-projected displacement from the north–south 
components can be neglected. Accordingly, Equation (5.28) simplifies as follows: 

 sin( ) cos( )LOS East West Up Downd d dϑ ϑ− −= −  (5.29) 

where we have assumed that 0ϕ ≅ . The MinA technique relies on the 
application of Equations (5.28) and (5.29) for the generation of 2-D (and 3-D) 
ground displacement time-series. To this aim, the whole set of chronologically 

ordered acquisition times—namely, ( )
1

K j
j

T T
=

=


 is considered, and, for every 

coherent point, the vectors of the velocities among consecutive time acquisitions 
(see [242]) for the east–west and up–down components namely, East WestV −  and 

Up DownV −  are considered as the unknowns of the problem at hand. Accordingly, the 

following system of linear equations is built (see [258] for the details): 

 

(1)

(2)

( )

LOS
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Up Down
K
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d
V d

B
V

d

−

−

 
    ⋅ =      
  



 (5.30) 

where East WestV −  and Up DownV −  are the vectors of the LOS-projected deformation 

time-series from the K different, complementary viewing geometries. The matrix 
B , which takes into account the temporal relationships of combined displacement 
time-series, is expressed as: 

 

(1) (1) (1) (1) (1)

(1) ( ) ( ) ( ) ( )

sin( ) cos( ) cos( )

sin( ) cos( ) cos( )K K K K

B B
B

B B

ϑ ϕ ϑ

ϑ ϕ ϑ

 −
 =  
 − 

 

 (5.31) 

where ( )  j=1, 2, ,jB K  is the jth incidence-like matrix (see [242] for further 
details) of the linear transformation relating the LOS displacement time-series with 
velocity deformation rates EV , UV . 
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To solve the problem, Equation (5.30) is regularized by imposing the condition 

that the (unknown) 2-D (E-W, U-D) deformation time-series at a given SAR pixel 
location has a minimum acceleration [258]. This condition is obtained by adding 
the following equations to the Equation (5.30): 

 1

1

( ) 0 1,..., 2

( ) 0 1,..., 2
i i

i i

E E

U U

v v i Q
C

v v i Q

δ

δ
+

+

− = = −=  − = = −
 (5.32) 

where δ is a regularization factor. The regularized system of linear equations 
can be rewritten as: 

 

(1)

(2)
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  



 (5.33) 

This system of linear equations is solved in the least-squares (LS) sense as: 

 V D= ϒ ⋅  (5.34) 

where V  is the (unknown) vector of the LOS-projected E-W and U-P 

deformation time-series, ϒ  is the generalized inverse of the matrix 
B
C

 
 
 

 and D  is 

the vector of geocoded LOS-displacement time-series relative to the K datasets. 

Finally, the east–west and up–down deformation time-series are computed by 
time integration (pixel by pixel) of the obtained 2-D deformation velocity 
components. An error budget analysis of the MinA technique has previously been 
discussed in [261].  

A regularized problem that is similar to MinA was proposed within the 
Multidimensional- SBAS (MSBAS) algorithm [262]. Differently from [258], the 
combination problem discussed in MSBAS was directly applied to the sequences 
of unwrapped multiple-track differential SAR interferograms. As opposed to MinA, 
the MSBAS method relies on searching for a minimum-velocity-norm (MN) 
solution. Therefore, MSBAS requires the simultaneous inversion of several (a few 
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hundred or more) unwrapped interferograms for the retrieval of 3-D components of 
deformation. 

5.6 EXPERIMENTAL RESULTS 

Here, we present some results achieved by combining the LOS-projected 
ground displacement signals collected after applying the multi-temporal SBAS 
technique to two sets of ascending/descending SAR data. The data were collected 
by Sentinel-1 radar instruments of the EU Copernicus Sentinels constellation based 
on the case study of the area of Ridgecrest in California. The lists of available SAR 
data are indicated in Table 19 and Table 20 for the ascending and descending data 
tracks, respectively.  

Table 19. Sentinel-1 ascending SAR dataset. Date format is day/month/year. 

Acquisition n. Date 

1 11/05/2019 
2 23/05/2019 
3 16/06/2019 
4 28/06/2019 
5 10/07/2019 
6 22/07/2019 
7 03/08/2019 
8 15/08/2019 
9 27/08/2019 
10 08/09/2019 
11 02/10/2019 
12 14/10/2019 
13 26/10/2019 

 

Table 20. Sentinel-1 descending SAR dataset. Date format is day/month/year. 

Acquisition n. Date 

1 05/05/2019 
2 17/05/2019 
3 29/05/2019 
4 10/06/2019 
5 22/06/2019 
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6 04/07/2019 
7 16/07/2019 
8 28/07/2019 
9 09/08/2019 
10 21/08/2019 
11 02/09/2019 
12 14/09/2019 
13 08/10/2019 
14 20/10/2019 

 

Figure 78 A and B portray geocoded LOS-projected mean displacement maps 
of the area, superimposed on an amplitude image of the investigated area. The 
geocoding operations have been performed using precise orbital information and a 
3-arc-second Shuttle RADAR Topography Mission (SRTM) [263] digital elevation 
model (DEM).  
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Figure 78. Geocoded LOS-projected mean displacement maps of the Ridgecrest area, superimposed on 
an amplitude image for ascending (A) and descending (B) orbits, respectively. All the displacement 
measurements are evaluated with respect to a pixel, identified in (A) and (B) by a white star 

Subsequently, the MinA combination technique was applied to the two sets of 
geocoded data, to decompose the LOS-projected deformation measurements along 
the east–west and up–down directions, as shown in Figure 79 A, and B, respectively 
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Figure 79. Geocoded mean displacement maps along the east–west and the up–down directions of the 
Ridgecrest area, superimposed on an amplitude image. The labels (I) and (II) in white indicate two points across 
the fault where the east–west and the up–down displacement time-series have been estimated, respectively. All 
displacement measurements are evaluated with respect to a pixel, identified in (A) and (B) by a white star. 

5.6.1 GENERATION OF NORTH–SOUTH GROUND DISPLACEMENT 

MAPS WITH MAI 

In this subsection, we finally propose an adaptation of the MinA multi-temporal 
technique [258] for the generation of north–south displacement time-series using a 
combination of K independent sets of multiple-satellite/multiple-viewing angles 
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from along-track displacement time-series obtained by using MAI approaches. 
Similar to previous subsections above, we assume here that SAR data were acquired 

at ordered times 
1

( ) ( ) ( ) ( )
0 1, , ,

j

j j j j
QT t t t

−
 =   , where jQ  is the number of the available 

SAR scene in the given data track. ( )
1

K j
j

T T
=

=


is the whole set of ordered 

acquisition times. Let us also assume that the K sets of data are geocoded over a 
common grid of points, and { }(1) (1) ( ), ,..., K

az az azd d d  are the K vectors of the azimuthal 

displacement time-series obtained by applying the MAI approaches described in 
the previous sections. 

By applying simple geometric considerations (see Figure 77 B), we can 
straightforwardly derive that: 

 cos( ) sin( )azaz N S E Wd d i d dχ χ− −= ⋅ = ⋅ − ⋅  (5.35) 

where 𝜒𝜒 is the inclination angle of the orbit with respect to the N-S direction, 
which is approximately equal to 6° for the Sentinel-1 case. For each coherent point 
that is well processed in all of the K independent processing stages, a system of 
linear equations can be built. In particular, if we consider the velocity deformations 
as unknowns across contiguous time acquisitions for the east–west and north–south 
directions, the following system of equations can be written: 

 

(1)

(2)
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North South az
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d
V d
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d

−

−

 
    ⋅ =      
  



 (5.36) 

Where North SouthV −  and East WestV −  are the vectors of the azimuthal projected 
deformation time-series from the K different, complementary viewing geometries. 
The matrix B , similar to the case accounted for in Section 5.5.1, takes into account 
the temporal relationships of combined displacement time-series and, in this case 
(see the imaging geometry of Figure 77 B), is expressed as follows: 
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 (5.37) 

Similar to what has already been discussed for the combination of LOS 
measurements [258], the system of Equation (5.36) is regularized as 
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The estimated velocity vector for the north–south components are time-
integrated and the N-S ground displacement is computed. Because the projection 
along the azimuth direction has a very limited accuracy with respect to w.r.t. to the 
E-W direction, the computed E-W ground displacement time-series (which may be 
obtained by combining the MAI measurements) definitely has a worse accuracy 
with respect to w.r.t. obtained using the LOS-projected displacement 
measurements. The error budget of the N-S displacement time-series can be derived 
by extending the analysis provided in [261]. The comprehensive theoretical and 
quantitative analysis of the error budget for the retrieved 3-D ground displacement 
time-series would require the processing of several independent SAR datasets, as 
well as a comparison with external ground deformation measurements. This is 
clearly outside the scope of the current investigation but remains a matter for future 
analysis. Figure 80 shows the results of this novel combination method applied to 
the sets of ascending/descending SAR data relevant to the area of the Ridgecrest 
earthquake in California. As a result, we have obtained a map of the north–south 
mean deformation rate of the area. Finally, we selected two points across the fault, 
labeled (I) and (II) in Figure 79 A, B, Figure 80, and Figure 81 shows the plots of 
the up–down, east–west and north–south displacement time-series. 
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Figure 80. Geocoded mean displacement maps along the north–south direction of the Ridgecrest area, 
superimposed on an amplitude image. The labels (I) and (II) in white indicate two points across the fault where 
the north–south displacement time-series is estimated. All displacement measurements are evaluated with 
respect to a pixel, which is identified by a white star. 

 

Figure 81. North–south, east–west and up–down displacement time-series related to cross-fault points 
(I) and (II) indicated in Figures Figure 79 and Figure 81. 

Additional remarks on the achieved results are now in order. Concerning the 
Ridgecrest case-study area, the fringe rate in the near proximity of the fault line that 
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was activated by the July 2019 Mw 7.1 earthquake was very high, as is evident from 
Figure 73 A. This led to loss of coherence and unavoidable phase unwrapping 
errors. The application of conventional InSAR methods, properly complemented 
with processing strategies to combine multiple-orbit information, was effective for 
retrieving the up–down and the east–west ground deformation components. The 
results shown in Figure 79 prove that most of the deformations were horizontal, 
with a maximum rate of about 250 cm/year corresponding to an abrupt lateral 
terrain displacement of about 1 meter. The application of the MAI approach to both 
ascending and descending Sentinel-1 data tracks also allowed us to obtain an 
estimate of the north–south displacements according to the generation of relevant 
deformation time-series (see Figure 80). As shown in Figure 72, we also used one 
single pair of COSMO-SkyMed SAR images to produce a map of the north–south 
displacement across the fault line. It should be noted that the magnitude of the 
retrieved relative N-S deformation across the main seismic event of July 2019 was 
in general agreement with the deformation time-series of N-S components shown 
in Figure 80 (with northward and southward deformations of up to 1 meter across 
the fault). Of course, the accuracy of COSMO-SkyMed and Sentinel-1 MAI-driven 
measurements were not comparable (see plots shown in Figure 84 in APPENDIX 
B: Multiple Aperture Interferometry Accuracy and Noise Propagation B), as the 
expected accuracy of MAI measurements with Sentinel-1 data is in the order of 2 
cm, with an average coherence value of 0.8. Finally, we would like to remark that 
most of the experiments were carried out using Sentinel-1 data. The aim was to 
enhance the strength of spectral diversity approaches for the TOPS mode Sentinel-
1 data co-registration, as well as to investigate the potential of the MAI technique 
applied to TOPS mode SAR data. 

5.7 CONCLUSIONS 

In this Chapter a review of the existing methods used to study large deformation 
episodes was carried out based on the application of spectral diversity methods for 
the generation of combined 3-D ground displacement time-series and mean 
deformation velocity maps. Specifically, I have focused on the description of 
spectral diversity/multiple aperture interferometry methods, and provided a general 
overview of the theoretical basis of these techniques, addressing their limits and 
applications, with a particular eye to the use of these technologies for the processing 
of data coming from new-generation SAR satellites. Furthermore, a novel method 
combining MAI- and DInSAR-driven data of large deformations was presented, 
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and the relevant results discussed. A quantitative assessment of the presented 3-D 
methods requires the processing of several datasets. This is a matter for future 
investigations. 

APPENDIX A: SPECTRAL DIVERSITYEQUATION SECTION 1 

Spectral diversity (SD) techniques [234], [264] represent a class of methods 
based on the calculations of the spectral properties of pairs of complex-valued SAR 
images. The basic method consists of calculating the spectral separation of sub-
bands of SAR images obtained by cutting two different frequency slices along the 
azimuth (Doppler band) of range directions, or by splitting the azimuth (range) 
spectrum of a full-band SAR image using a proper band-pass filter. Let me describe 
the SD process by initially referring to the azimuth case, where I assume the 
availability of two full-band Single Look Complex (SLC) images, referred to as the 
master and slave images ( , )MI x r  and ( , )SI x r , respectively. If the two SLC images 
are focused (squinted geometry) with the same Doppler centroid (DC) frequency—
namely, 𝑓𝑓𝐷𝐷𝐷𝐷—the two SAR images can be expressed after the co-registration step 
[265] as: 

  
4 2

( , ) ( , )
DC

c c
fj f r j f x

c v
M MI x r x r e e

π π
γ= ⋅  (A.1) 

 
4 ( ) 2 ( )

( , ) ( , )
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c c
fj f r r j f x x

c v
S SI x r x r e e

π δ π δ
γ

+ +
= ⋅  (A.2) 

where cf  is the radar carrier frequency, v  is the platform velocity and xδ  
represents the azimuthal misregistration of the slave image with respect to the 
reference master image. Accordingly, an additional interferometric phase term is 
present. Indeed,  

 
4 2 DC

LOS
fd x
v

πφ π δ
λ

∆ = +  (A.3) 

Consequently, if two azimuth sub-bands are centered on low and high DC 
frequencies DCf −  and DCf + , respectively (see Figure 82), four SAR images can be 
formed: 
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This means that, for each image of the SAR data pair, two images are 
determined that are related to the low and high components of SAR data pair 
spectra. Subsequently, from these two data pairs, two interferograms are generated. 
After the split-spectrum operation, the interferometric phase terms related to the 
lower and higher azimuthal sub-bands are expressed as follows:  

 4 2 DC
LOS

fd x
v

πφ π δ
λ

−
−∆ = +  (A.8) 

 4 2 DC
LOS

fd x
v

πφ π δ
λ

+
+∆ = +  (A.9) 

Therefore, the wrapped phase difference between the lower and higher spectral 
bands is 

  ( ) 2 DC DCf fWr x
v

φ φ φ π δ
− +

− + −
∆ = ∆ − ∆ =  (A.10) 

where ( )Wr ⋅  is the wrapping operator that wraps out the phase in the [ , [π π−  
interval. As a consequence, the azimuth misalignment xδ  can be computed from 
Equation (A.10). Assuming that such a misalignment is small enough to avoid the 
measured phase becoming ambiguous, the term xδ  can easily be derived as: 
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−
 (A.11) 

From Equation (A.11), it is evident that the larger the spectral separation 
between the central frequencies of the two sub-bands, the more accurate the 
estimation of xδ  is. I would like to stress that in non-stationary scenarios, the 
imaged target at azimuth location x is subject to displacement, namely, dispxδ  and, 

in this case, the measured xδ  term contains both a contribution due to the 
azimuthal misregistration misrxδ  and the azimuthal dispxδ  displacement. Of course, 

misalignments of SAR data pairs can be thoroughly controlled in the imaging 
process to mitigate phase decorrelation effects. Perfectly aligned SAR data are then 
used to infer geophysical displacement measurements, as they have been via the 
multiple aperture SAR interferometry (MAI) technique in cases of large ruptures in 
the ground [227], [235].  

 

 

Figure 82. Sketch of the amplitude azimuth spectrum ( ( )AzH f ) of a full-band SAR image, where DCf −  

and DCf +  indicate the low and the high Doppler centroid (DC) frequencies, respectively, and PRF indicates the 
sensor’s pulse repetition frequency. 
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I would like to remark that SD and splitting-band methods can also be applied 

along the range direction by extracting the two sub-bands in the range. In particular, 
we begin with two range sub-bands centered on the two frequencies cf

−  and cf
+  

(see Figure 83), which can be expressed, similarly to Equations (A.4)-(A.7), as: 

 
4 2

( , ) ( , )
DC

c
fj f r j x

c v
M MI x r x r e e

π π
γ

−
− = ⋅  (A.12) 

 
4 ( ) 2 ( )

( , ) ( , )
DC

c
fj f r r j x x

c v
S SI x r x r e e

π δ π δ
γ

− + +− = ⋅  (A.13) 

 
4 2

( , ) ( , )
DC

c
fj f r j x

c v
M MI x r x r e e

π π
γ

+
+ = ⋅  (A.14) 

 
4 ( ) 2 ( )

( , ) ( , )
DC

c
fj f r r j x x

c v
S SI x r x r e e

π δ π δ
γ

+ + ++ = ⋅  (A.15) 

In this case, 

 . 4 2 DC
c LOS n

ff d x
c v
πφ π δ φ− − −∆ = ⋅ + + ∆  (A.16) 

 . 4 2 DC
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where nφ −∆  and nφ +∆  are the negative and positive sub-band phase noise 
contributions, respectively. Accordingly, the wrapped phase difference of the 
higher- and lower-band phase terms gets an alternative estimate of the LOS 
displacement as: 

 


4 ( )LOS
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f f

φ
π − +

∆
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−
 (A.18) 

where, similarly to Equation (A.11), φ∆  represents the wrapped phase 

difference ( )Wr φ φ− +∆ − ∆  between the two phase looks (see Equations (A.16) and 
(A.17)). Note that LOSd  is assumed to be small enough to avoid phase measurement 
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ambiguities. In this framework, a procedure that is known as spectral shift filtering 
[266] implements proper filters that are tuned on specifically chosen different 
central frequencies to compensate for the geometrical decorrelation effects that 
corrupt the interferometric phase. This strategy has been applied correctly to 
process coupled SAR images collected by the ERS and the Envisat systems, which 
were characterized by a spectral shift of 31 MHz [267], [268]. 

 

 

Figure 83. Sketch of the amplitude range spectrum ( ( )cH f ) of a full-band SAR image, where cf
−  and 

cf
+  indicate the low and the high range frequencies, respectively, and sampf  is the sampling frequency. 

As final remark, I would like to stress that only a fraction 𝛽𝛽 of the total 
bandwidth of the two images is used after the application of the split-spectrum 
operation. Accordingly, being the spatial resolution inversely proportional to the 
band of the signal [202], the spatial resolution of the two sub-band interferograms 
is reduced by the same fraction. 
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APPENDIX B: MULTIPLE APERTURE INTERFEROMETRY ACCURACY 

AND NOISE PROPAGATIONEQUATION SECTION (NEXT) 

Based on Equation (5.13), the accuracy of the MAI technique can be 
theoretically estimated by the following Equation (B.1) that relates the standard 
deviation of the MAI phase measurement 

MAIϕσ , with the standard deviation of the 

along-track deformation measurements xσ  [235]: 

 
4 MAIx

l
n ϕσ σ

π
=

⋅
 (B.1) 

From Equation (B.1), it is clear that the MAI measurement accuracy strictly 
depends on the standard deviation of the interferometric phase noise [264], which 
is given by 

 2 2 2
,2

MAI fw bw fw bwϕσ σ σ σ= + −  (B.2) 

where 2
fwσ , 2

bwσ , and 2
,2 fw bwσ  are the variances of forward- and backward-

looking interferograms and their co-variance, respectively. Thus, based on the 
assumption that the probability density function (pdf) of the single/multi-look 
interferometric phases can be expressed as a function of the correlation coefficient 
𝛾𝛾 [269], and assuming the forward- and backward-looking interferograms are two 
statistically independent random variables (e.g., ,fw bwσ  is zero) in the limit of 

Cramér–Rao [264] (which is valid for high values of 𝛾𝛾), fwσ  and bwσ can be inferred 

as follows: 
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σ σ
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where NL is the effective number of looks. Finally, using Equations (B.2) and 
(B.3), the standard deviation of the interferometric MAI phase is reduced to 
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where I assume that the forward- and backward-looking interferograms are 

uncorrelated. From Equations (B.1) and (B.4), it is obvious that improving the 
coherence of the MAI interferogram and having a larger spectral separation 
between the sub-band both lead to better accuracy in the estimation of along-track 
deformation measurements. In the Cramér–Rao bound, it was demonstrated in 
[264] and [270] that the optimal separation between the sub-bands is equal to two-
thirds of the full bandwidth, and that: 

 
,

213
MAI CR NLϕ

γ
σ

γ
−

≈ ⋅  (B.5) 

By considering Equation (B.5), we can plot the standard deviation of the 
azimuthal displacement vs the spatial coherence of the MAI interferogram (see 
Figure 84 A, and B) for different values of the effective look numbers (NL), which 
comprise the operational parameters of the Envisat/ASAR, COSMO-SkyMed and 
Sentinel-1 platforms listed in Tables Table 21–Table 23, respectively. In particular, 
as outlined in Section 5.4.2, the Doppler bandwidth of the TOPS-mode SAR data 
is reduced for a single point target with respect to the conventional stripmap case 
by a factor of about three (see Equation (5.13)). 

Table 21. Envisat/ASAR stripmap mode acquisition platform parameters. 

PARAMETER VALUE UNIT 

Wavelength (Centre 
Frequency) 0,05624624 m 

Band type C  

Pulse repetition frequency 1.652,4157 Hz 

Polarisation options Single VV, HH or Dual  VV+HH, VV+VH, 
HH+HV  
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Azimuth antenna size 11.1 m 

Incidence angle range 15° - 45° deg. 

Swath width 100 km 

Resolution 6(az)x9(rg) m 

Azimuth pixel spacing 4,31 m 

Range pixel spacing 7,8 m 

 

Table 22. COSMO-SkyMed stripmap (ping-pong) mode acquisition platform parameters. 

PARAMETER VALUE UNI
T 

Wavelength (Centre 
Frequency) 0,031228381 m 

Band type X  

Pulse repetition frequency 3.554,5024 Hz 

Polarisation options Single VV, HH or Dual VV+HH, VV+VH, 
HH+HV  

Azimuth antenna size 5,6 m 

Incidence angle range 25° - 50° deg. 
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Swath width 30km km 

Resolution 15(az)x15(rg) m 

Azimuth pixel spacing 2,53 m 

Range pixel spacing 1,56 m 

 

Table 23. Sentinel-1 operational parameters in interferometric wide (IW) acquisition mode. 

PARAMETER VALUE UNIT 

Wavelength (Centre Frequency) 0,055465763 m 

Band type C  

Pulse repetition frequency 486,4863 Hz 

Polarisation options Dual HH+VV, VV+HH or Single HH,VV  

Azimuth antenna size 12.3 m 

Incidence angle range 29.1° - 46.0° deg. 

Azimuth steering angle ±0.6° deg. 

Swath width 250 km 

Number of sub-swaths 3  

Resolution 5(rg)x20(az) m 

Azimuth pixel spacing 14,1 m 

Range pixel spacing 2,3 m 
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Figure 84. Plot of the along-track displacement accuracies vs coherence for the Envisat/ASAR (A), 
COSMO-SkyMed (B) and Sentinel-1 case using the MAI technique for different NLs (effective look 

numbers). 

Interested readers can find a more comprehensive analysis by Jung et al. in 
[271].  



Change Detection of Earth’s surface 163 

 

Chapter 6Eq uatio n Sectio n 6 

CHANGE DETECTION OF EARTH’S 

SURFACE 

Nowadays, the growing availability of remotely sensed data collected by 
several constellations of SAR sensors (e.g., the twin Sentinel-1A/B sensors of the 
European (EU) Copernicus) permits fast mapping of damages. As introduced in 
Chapter 5 SAR instruments guarantee effective RS applications (e.g., analysis of 
displacement of earth surface) because they operate day/night and in any weather 
condition, thus complementing optical data (e.g., Sentinel-2).  

In this chapter, I will refer to a case study [6] that investigates the capability of 
different coherent/incoherent change detection indices (CDIs) and their mutual 
interactions for the rapid mapping of “changed” areas is presented. In this context, 
I will address the role of SAR (amplitude) backscattered signal variations for 
change detection (CD) analyses when a natural (e.g., a fire, a flash flood, etc.) or a 
human-induced (disastrous) event occurred.  

Then, I also consider the additional pieces of information that can be recovered 
by comparing interferometric coherence maps related to couples of SAR images 
over a principal disastrous event date. In this context, a CD algorithm based on AI 
that handles the different information coming from coherent/incoherent CDIs in a 
unique corpus is presented and discussed. Experiments have principally been 
conducted to monitor wildfire's effects in the 2021 summer season in Italy, 
considering two case studies in Sardinia and Sicily. Another experiment was also 
performed in the coastal city of Houston, Texas, U.S., which was affected by a large 
flood in 2017, thus demonstrating the validity of the proposed integrated method 
for the fast-mapping flooded areas with SAR data. 
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6.1 COHERENT AND INCOHERENT CHANGE DETECTION 
METHODS FUNDAMENTALS 

This Section introduces the fundamentals of SAR change detection (CD), 
distinguishing between incoherent and coherent approaches. Let us consider two 
co-registered complex-valued SAR images 1X  and 2X  acquired at times 1t  and 2t , 

respectively, and    1 2,
T

kX X P X P     let be the pixel pair data vector made by the 

extracted SAR data values that correspond to a generic k-th pixel P of the imaged 
scene. The CD problem may be generally modeled as a binary classification 
problem [272] where each pixel is mapped into the set of possible labels 

 ,u c  related to the unchanged and changed classes, respectively. Such a 

problem can be effectively formulated in a hypothesis-testing framework. In this 
context, the problem is to determine whether the pixel pair is a realization of a null 
hypothesis 0H (unchanged scene) or an alternative hypothesis 1H (changed scene). 
Under these two hypotheses, we can write that [272]: 
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and: 
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where the term 0kC is the complex reflectivity at the given pixel P that is 

common to both SAR images under the 0H  hypothesis and 1kC is the complex 
reflectivity of the second image under the assumption that a change happened. Note 
that the phase term k  accounts for a possible displacement of the second flight 
track with respect to the first image related to height topography changes. Finally, 
the terms 1kn  and 2kn  account for noise decorrelation sources affecting the two 
available SAR images. For homogeneous natural distributed target environments, 
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the observed SAR scenes can be modeled as consisting of a large number of discrete 
scatterers that have a uniform random phase and identically distributed random 
amplitudes [273]. The observed complex radar backscattered signal can then be 
modeled as a zero-mean complex circular Gaussian process with a probability 
density function [274]: 
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 1
22

1 exp
det

H
k k kp X X XQ
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   (6.3) 

where Q  is the covariance matrix of kX that, under the two hypotheses, is 
given by:  

 
 

 

0 2 2 2
1

2 2 2
2

exp
exp

c cn k

c c nk

j
j

Q
   

   

 
 
 
 
  




 

 (6.4) 

 1 2 2
1

2 2
2

0
0

c n

c n

Q
 

 

 
 
 
 
  






 (6.5) 

where    2 22
1c ok kE C E C   ,  22

1 1n kE n   and 
22

2 2n kE n
       

 . 

Note that  E   stands for the statistical expectation extraction operation that, under 

the hypothesis that the signals are ergodic, can effectively be implemented with the 
spatial averaging procedure 

N
  performed over a set of neighbour SAR pixels (i.e., 

with a multi-looking process [275]). The term c can also be expressed as a 
function of the complex correlation coefficient   between the two interfering SAR 
images [276], as follows: 
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 (6.6) 
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The amplitude of the complex correlation coefficient is commonly referred to 

as coherence, and it assumes values from 0 and 1. Coherence is usually factorized 
into the products of several different contributions [209], [257], [276]: 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆgeo Dopp mis reg vol temp thermal             (6.7) 

A few additional observations on the decorrelation sources are now in order. 

(i) The spatial coherence decorrelation ˆgeo  originates from the fact the 

scatterers in the single resolution element on the ground are seen from the 
two orbital positions relevant to the two interfering SAR images with 
slightly different illumination angles. It has been proved that such 
decorrelation component depends on the interferometric perpendicular 
baseline b and the operational wavelength  , as follows: 
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 (6.8) 

where r  and r  are the sensor-to-target slant-range distance and the image 
range resolution, respectively, whereas  and  are the local incidence and local 
terrain slope angles. 

(ii) The decorrelation term due to Doppler frequency variation ˆDopp  considers 

the non-perfect overlap between the master and slave Doppler azimuth 
spectra and can be expressed as: 

 ˆ 1
4Dopp

f L
v





    (6.9) 

where f is the azimuth spectra misalignment [Hz], is the azimuth antenna 

length L  and is the sensor velocity v . 

(iii) Mis-registration decorrelation ˆmis reg   arises when a non-perfect co-

registration of the two SAR images is carried out. 
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(iv) Volumetric decorrelation ˆv  arises from the scattering of the radar 

microwaves within a volume as it happens, for instance, for forest canopies. 
In the random-volume-over ground RVoG model [92], the volumetric 
decorrelation is correlated to the forest height, the extinction coefficient, the 
ground-to-volume ratio, and the vertical wavenumber, which is a function 
of the scatterers’ density in a volume. 

(v) The temporal decorrelation ˆtemp  is associated with changes in dielectric and 

structural properties of the scatterers over time. is related to the alteration of 
the position and dielectric changes of the scatterers, typically caused by 
wind, rain, snow, or other natural events. This contribution is significant 
when interferometric analyses with long-temporal baseline interferograms 
are carried out. In Section 6.2, a temporal decorrelation model derived from 
the literature [278] is described to discuss the benefits and cons of some 
synthetic coherent change detection indices that are subsequently used to 
achieve the experimental results shown in Section 6.6. 

(vi) Finally, the thermal noise decorrelation due to the radar instruments noise 
is given by: 

 1

1ˆ
1thermal SNR

 


 (6.10) 

where SNR  is the signal-to-noise ratio (SNR) of the scatterers illuminated by 
the radar sensor. Assuming perfect knowledge of the unknown parameters that are 
present in the covariance matrices in Equations (6.4) and (6.5), a formalized way to 
solve a CD problem is to compute the log-likelihood ratio: 
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considering a population made by N SAR pixels located in the neighbouring of 
the selected SAR pixel. After some mathematical manipulations and considering 
the pdf of Equation (6.3), the decision variable Z can then be re-written as: 
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which is referred to in the literature as the clairvoyant detector. Note that the 

operator  Tr  is the trace of a matrix. This detector gives the optimal detection 

performance given the perfect knowledge of the unknown parameters in the 
covariance matrices 0Q and 1Q . The expressions for the probability of detection 
and false alarm for the log-likelihood clairvoyant detector as a function of a decision 
threshold have been derived in [276]. Nonetheless, the covariance values are 
generally unknown, and thus, in practice, sub-optimal tests are implemented where 
the unknown parameters are measured directly through the data with their 
maximum likelihood estimates (MLEs) to form a generalized likelihood test (e.g., 
see [279]). Due to the complexity of these optimal tests and the need to estimate the 
mentioned model parameters, several approximate unsupervised/supervised CD 
approaches have been proposed in the literature (among others, see [280]–[287]). 
Overall, they can be distinguished in the two general categories of the methods 
based exclusively on the analysis of the amplitude of SAR backscattered returns 
(incoherent approaches) and those that also consider the phase of the radar 
backscattered signals (coherent strategies). Finally, the next subsections provide 
additional details on these two categories of CD methods. 

6.1.1 INCOHERENT CD APPROACHES 

Despite their intrinsic differences, the incoherent methods can be seen as made 
by three main steps: 1) pre-processing of the SAR images; 2) comparison of the 
pair of SAR images; 3) automatic extraction of the changed areas by proper 
thresholding algorithms. The first step consists of the radiometric calibration of the 
available SAR images [273], [288] and the subsequent application of adaptive 
filters that reduce the impact of speckle noise in the SAR images. Among others, 
the most used denoised filters are Lee [289], Kuan [290], and Frost [291]. Jointly, 
a spatial multi-look operation [292] is typically applied to enhance the signal-to-
ratio (SNR) further to reduce the spatial resolution. The effects of local topography 
can also be corrected [293], and the SAR images could then potentially be 
georeferenced for subsequent analyses. The second step consists in comparing the 
two pre-processed SAR images. To this aim, we observe that signature variations 
in SAR images are due to texture and speckle, where texture is a measure of the 
intrinsic spatial variability of the backscattered coefficient (in the absence of noise), 
and the speckle is a multiplicative term. Mathematically, the received power can be 
written as [273], [294]: 
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 P T I n s     (6.13) 

where I is the backscattered power, T  and s  are the texture and speckle noise 
random terms, respectively. As anticipated, when dealing with SAR images, the 

ratio operator 2

1

X
r

X
 is preferred with respect to the image difference. Indeed, 

the pdf of the ratio image has the following expression [295]: 
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where r  is the true (unknown) value of the ratio. Accordingly, the first-order 
statistics depend only on the relative change and not on the single average values 
separately. Moreover, the mean amplitude values ratio is more robust to calibration 
errors, typically represented by multiplicative terms that moderately vary from one 
image to another and then almost cancel out in the ratio. Furthermore, the ratio is 
reported on a log scale to represent significantly high and shallow intensity values. 
Accordingly, the detection image is obtained as: 
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The third step consists of analysing the log-ratio image and identifying a proper 
threshold that allows us to discriminate between the two changed and unchanged 
classes. This problem can be solved in the context of Bayesian decisions. A general 
algorithm for the threshold decision was proposed by Kittler and Illingworth (KI), 
which derives the best threshold from being used through a parametric estimation 
based on the assumption that the two classes are Gaussian distributed [296]. Some 
extensions of the KI method that assume a more reliable distribution of the two 
classes (e.g., a generalized Gaussian distribution) have been proposed [297].  

6.1.2 COHERENT CD APPROACHES 

Coherent change detection methods rely on the interferometric cross-
correlation factor (see Equation (6.6)). The statistics of the sample coherence have 
extensively been addressed in the literature [209], [298]. In particular, the density 
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function of the sample coherence ̂ , given the true coherence value ˆ '  , is given 
by: 
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where N is the effective number of looks (ENL) and  2 1F   is the Gauss 

hypergeometric function. It is worth underlying that the coherence is a biased 
estimator: this means the measured sample coherence ̂  obtained by computing the 
expectation values in Equation (6.6) using spatial averaging operations has an 
average value different from the actual coherence value ˆ ' . In particular, the first 
moment of the spatial coherence is given by: 
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and, consequently, the coherence bias is  ˆ ˆ ' 0E    . An approximate 

expression for the coherence bias, which could be considered to calibrate the 
coherence estimates or CD purposes properly, can more straightforwardly be 
obtained in the complex domain by observing that the interferometric phase can be 
encoded in this domain as a point in a unitary circle. The mean resultant length ̂  
of the circular data representing the interferometric phases into the N-points 
averaging multi-look window is obtained as: 
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As demonstrated in [299], [300], the computed mean resultant length ̂ is an 
alternative measure of the coherence with ˆ ˆ  , and the two coherence factors, 
both biased, are related to one another as: 
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The mean value of the mean resultant length of a circular data vector, under the 

suitable assumption that it is distributed assumed with a Von-Mises probability 
density function [300] of concentration parameter  , can be calculated as follows 
[301]: 
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 and  O   on the right-hand side of 

Equation (6.20) is the big-O Landau symbol. Taking into account these 
mathematical relations, an approximate estimate of the bias for the mean resultant 
length is: 
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Equation (6.21) can straightforwardly be interpreted and shows that, as 
expected, the coherence bias reduces as the number of looks increases, and the bias 
is more significant in low-coherence regions. Accordingly, to estimate the unbiased 
value of the coherence, the correction factor in the Equation (6.21) might eventually 
be applied. Using interferometric coherence values, changed and unchanged 
regions can be discriminated against one another by thresholding them. 
Specifically, for a given detection threshold, the probabilities of correct detection 
of a changing pixel and the probability of false alarms are given by [302]  
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where   is the applied coherence threshold. To improve the detection 

performance, the sample coherence ̂ can also be further averaged over a window 
and/or other alternative adaptations of the detector can be used, such as the ordered 
statistic coherence detector and the censored mean level detector [303]. It is worth 
noting that the coherence detector is sensitive not only to abrupt changes due to a 
disaster event (such as a fire, a flood, the effects of extreme weather conditions or 
man-made disturbances), which are the goals of change detection techniques, but 
also to other decorrelation effects that determine temporal decorrelation and that 
are not directly related to the main event under investigation. Thus, ambiguities in 
change detection remain where the temporal decorrelation caused by the 
background environment is dominant to those components strictly related to the 
natural/human-induced event under investigation. For instance, this happens over 
vegetated areas, likely affected by wind or seasonal changes. When decorrelation 
caused by a specific event is coupled with temporal decorrelation from wind or rain, 
isolating the two different decorrelation sources becomes challenging. Tracking 
coherence differences between couples of SAR images has been exploited to study 
various phenomena [108–111]. Some research investigations address the problem 
of developing proper temporal decorrelation models that can then be adapted to 
discriminate the background changes due to temporal decorrelation from those 
ascribed to the main disastrous event that is the subject of the CD investigation. To 
overcome some limitations in low coherence regions, [308] proposed an alternative 
maximum likelihood coherence change detector that lowers the false alarm 
probability in low coherent areas considering the clutter-to-noise power ratio of the 
SAR images. Specifically, the new estimator is expressed as follows: 
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where 2
1n  and 2

2n  are the mean noise power values of the two interfering SAR 
images. Over recent years, new methods are also emerging that consider both 
amplitude and phase information for the unsupervised extraction of surface changes 
from a sequence of co-registered SAR images by extending the analyses from two 
single SAR images to a set of multi-temporal SAR images, e.g., see [284], [309], 
[310] Specifically, the abrupt changes in the radar returns in a time series of SAR 
data can be detected using a maximum-likelihood approach by assuming that the 
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transition times (TTs) are single or multiple. TTs can vary from one region to 
another, especially if the time-series of data is long and jointly estimated in an 
unsupervised way. In this context, as a further extension of GRLT to multi-pass 
SAR images, the work [284] proposed a method to detect changes in sequences of 
dual-pol Sentinel-1 multi-pass SAR data by considering both point targets and 
distributed targets on the terrain. The intrinsic limitation of such methods is that 
they are somewhat unstable unless a long sequence of data is processed. The 
automatic identification of the transition times is still a problematic task to achieve. 
Nowadays, the level of maturity of such methodologies is high by their use in a 
context of rapid mapping just after and/or between a disastrous event is challenging 
and poses the base for subsequent developments, where the help of artificial 
intelligence (AI) frameworks results beneficial for the identification and 
quantification of damaged regions.  

6.1.3 INTRODUCTION TO AI-AIDED CHANGE DETECTION METHODS 

Another emerging class of CD methods can overcome these limitations while 
working with a short-term sequence of multi-pass SAR data; it is represented by the 
methods based on artificial intelligence frameworks for CD analyses. Machine 
Learning (ML) methods are increasingly applied to study and analyze data because 
of their ability to find relationships between target and input variables, such as those 
arising in satellite remote sensing of geophysical parameters. Over the last twenty 
years, the launch of a new constellation of RS satellites enabled the observation of 
the Earth system with an improved time-space granularity. Thus, unprecedented 
large amounts of data have been produced [311], [312]. In this context, the RS 
community started the development of new advanced methodologies through the 
adoption of ML-based frameworks. Two factors drove the adoption of those 
frameworks: 

1) The possibility of combining information from multiple RS domains for the 
solution of a specific task and overcoming the limitations of traditional 
methodologies that, on the contrary, only allow the use of information from a 
particular domain [313]–[315]. 

 
2) The development of methodologies capable of ingesting and analyzing a large 

amount of data automated and extrapolating useful new information [312]. 

Different unsupervised and supervised [316] ML methodologies have been 
explored in the RS CD task context. Among supervised methodologies of relevant 
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importance is the application of Support Vector Machine (SVM) [317]–[320], 
models based on Neural-Network (NN) [321]–[323], ensemble models such as 
Breiman RF [104], [107], [324] and derivatives (e.g., XGBoost [325] and AdaBoost 
[326]). 

For unsupervised methodologies, kernel and fuzzy clustering-based strategies 
are the most commonly used [327]–[329]. Finally, in recent years, the combinations 
of unsupervised and supervised ML methodologies, namely called semi-supervised, 
have been proposed [328], [330]–[333]. The scope is to integrate the merit of both 
unsupervised and supervised methods to extrapolate information from RS data and 
construct new helpful knowledge. Semi-supervised methodologies are particularly 
useful in CD scenarios in which it is very difficult, or even worse, impossible to 
collect information for labelling the class to be predicted.  

A complete explanation of new advanced ML-based RS methodologies and 
future trends is outside the scope of this work. Interested readers are referred to 
[315], [334], [335] for a detailed digression on such technologies.  

6.2 PROPOSED MULTI-TEMPORAL SAR CHANGE 
DETECTION STRATEGY  

Rapid damage assessment mapping and analysis after a disastrous event 
exploiting SAR data stacks can efficiently be carried out using CD methods, 
profiting from the availability of short sequences of SAR images, encompassing the 
selected primary disastrous event under investigation, and regularly collected 
before, between, and after the event itself. SAR technology's current and future 
trend is to operate in a synergic way with data collected by constellations of SAR 
sensors that are jointly in orbit and capable of collecting data in different portions 
of the electromagnetic spectrum and with short revisiting times (weekly basis or 
less). A significant step forward in this direction has been represented by the put in 
orbit, starting from April 3, 2014, of the twin sensors Sentinel-1A/B of the ESA 
Copernicus Constellation [336], which have long been mapping Earth’s surface 
regularly every six days (in the most favourable case), permitting extensive 
analyses on the state of Earth’ surface and the environment. Collected data are 
freely available and have been fostering the development of new studies and 
processing methods for rapidly estimating changed areas. This section proposes and 
describes a joint multi-pass coherent/incoherent CD strategy that allows analyzing 
a short-term sequence of calibrated SLC images and fast computing damaged areas 
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using incoherent/coherent change detection indices (CDIs). These indices are then 
cooperatively used to automatically extract changed areas using a Random Forest 
(RF) classifier. Finally, Section 6.2.5 details the steps of the proposed multi-pass 
CD strategy. 

6.2.1 COHERENT CHANGE DETECTION INDICES 

When dealing with SAR multi-pass change detection in the occurrence of a 

disastrous event that occurred at a known time, namely evt , the easiest way to obtain 

a reliable change map is to use one single pair of SAR images collected at times pret

and postt in such a way to encompass the principal disastrous event, i.e., 

pre ev postt t t  , with one single image before the event and one single image after 

the event. Incoherent CD methods estimate and subsequently threshold the log-ratio 
image map (see Equation (6.15)). 

 

 

Figure 85. Coherence change tracking scheme using two SAR images acquired 

before the event ( 1t = 08/18/2021 and 2t = 08/24/2021) and one after the event (

3t = 08/30/2022). The area shown in the coherence maps is the Montiferru region in 
Sardinia, Italy. 
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However, the information on the occurred changes ascribed to the disastrous 

event (e.g., a fire, an inundation, etc.) is also enclosed in all SAR data pairs that 
encompass the main event, i.e., more than one pre/post-SAR image can be jointly 
used to circumvent better the effects of noise and other disturbances in SAR images 
that could lead to inaccurate decisions while using one single SAR data pair. This 
is especially true when coherent CD methods are exploited. Indeed, the coherence 
(see Equation (6.6)) measures the similarity between two SAR images. Thus, 
necessarily tracking of coherence changes requires the availability of at least three 

SAR images: two images are collected before the event at times 1t and 2t  used to 

estimate the (background) coherence of the scene pre  just before the event 

occurred, and one SAR image is collected just after the occurrence of the event at 

the time 3t , to compute the coherence across the event, namely ev , see Figure 85. 
In this way, common coherence variations due to other causes unrelated to the main 
natural or man-made disastrous event can be isolated and considered by calculating 
the coherence ratio (CR) or the normalized coherence difference ratio (ND) of the 
pre- and post- coherence images. The coherence ratio has long been explored for 
building damage assessment [337]–[339]; it is defined as follows: 
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Considering the three-pass configuration of Figure 85, the pre- and co-event 
coherence maps are 1,2ˆ ˆpre  and 2,3ˆ ˆev  , respectively. Inherited from studies 

of the building damage assessment, it is also the normalized coherence ratio, which 
is defined as follows: 
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Note that both the used change detection indices of Equations (6.25) and (6.26) 
depend exclusively on three SAR images; however, one image is common for the 
coherence estimation. If the values of the selected CDIs are associated with the 
common reference image, a time-series of these indices could also be generated and 
employed for unsupervised CD analyses, automatically tracking, for instance, the 
correct transition times where significant changes occurred on the imaged scene. 
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6.2.2 TEMPORAL DECORRELATION MODELS: IMPLICATIONS FOR 

CHANGE DETECTION 

In the previous sub-section 6.2.1, I have presented two simple, coherent change 
indices based on the ratio and the normalized difference of a pair of coherence maps 
formed from a triplet of SAR images collected before and between a disastrous 
event. In this sub-section, I want to discuss the benefits of these two CDIs, 
considering the interferometric coherence properties and especially the 
contributions due to volumetric and temporal changes. The Equation (6.7) shows 
that coherence depends on several factors. The constellation of Sentinel-1A/B 
Copernicus radar sensors is characterized by a narrow orbital tube. Thus, the spatial 
decorrelation is limited and can be estimated and compensated using Equation (6.8). 
For our analyses, the most important contributions of coherence are the temporal 
and volumetric components. To address these signals, I exploit in this work the 
temporal coherence model proposed in [340] that incorporates the effects of 
temporally correlated changes and those that randomly occur (i.e., temporally 
uncorrelated) in the case of disastrous events due to differences in the arrangement 
and dielectric properties of the scatterers. The work [340] shows that temporal 
decorrelation for zero-spatial baseline and long-temporal baseline can be expressed 
as follows: 
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where T is the interferometric temporal baseline, g  and v  are the unique 

characteristic time constants for the ground and volume contributions, _
v
t rand  and 

_
g
t rand  are the temporally uncorrelated (random) complex cross-correlation 

changes for volume and ground layers ground-to-volume scattering ratio and   
represents the polarimetric scattering mechanism. Using the Equation (6.27), we 
can express the ratio coherence of the Equation (6.25) as: 
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Because the orbital tube is narrow, the variation of the spatial decorrelation 

effects are reduced by the ratio, which is only sensitive to perpendicular baseline 
double difference (i.e., the difference between the perpendicular baseline of the 
considered InSAR data pair), the thermal noise components almost cancel out, and 
with limited misregistration errors and almost aligned Doppler spectra between the 
SAR images, the most prominent contribution that persists in the coherence ratio 
operator are the volumetric and the temporal decorrelation effects. Considering 
Equation (6.28), the most relevant contributions are: 
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where   is the residual terms accounting for the other decorrelation artifacts 
that do not perfectly cancel out in the ratio. When the ground contributions are 
prevalent, and we assume the availability of a group of SAR data acquired regularly, 
we can generate the pre- and co-event interferometric data pairs with the same 
temporal baseline, i.e., pre evT T  . In this case, Equation (6.29) particularizes 

as: 
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Similarly, if the prevalent contribution to the coherence is the volumetric 
component, we have: 
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Accordingly, the coherence ratio results are more sensitive than the single 

coherence measurement for coherent change detection purposes. want to evidence 
and discriminate from other coherence contributions. The Equation (6.27) shows 
that the coherence model's ground and volumetric components are two additive 
terms. Accordingly, the coherence difference in a somewhat homogenous region 
can better discriminate the two separate ground and volumetric contributions 
separately. For small values of the topographic phase 0k  , and considering that 
the prevalent contributions to the coherence are the volumetric and temporal 
decorrelation terms, we respectively have: 
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Equations (6.30)-(6.33) clarify that, depending on the physical phenomena 
under investigation, the volumetric or the ground decorrelation terms can become 
prevalent and be emphasized by the coherence ratio and normalize coherence 
difference. For example, if a fire happens in a forest, we can assume that most of 
the changes are associated with the canopy volume consumed by the fire. In 
contrast, the ground is less disturbed, especially for low to mid-fire severities. The 
analysis proposed in this sub-section demonstrates that the coherence ratio is 
preferable to the single co-event coherence map because it is more sensitive to the 
random time-uncorrelated changes. Moreover, in somewhat homogenous regions, 
when the primary event under investigation does not drastically change the 
structural properties of the imaged scene, the normalized difference can be superior 
because it allows isolating the predominant time-uncorrelated coherence changes. 
In-depth analyses are still required to calculate the pdfs of these two operators to 
statistically figure out the probability of false alarms and the detection probability 
of such two synthetic coherence detection indices. 

6.3 EXTENSION TO THE MULTI-PASS CASE 

Let us now extend our analysis to the case when preM  different SLC SAR 

images are available before the primary event, collected at times 1 2, ,...,
preMt t t 

   , and 
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additional SLC SAR images are available after the primary event, collected at times 

1 2, ,...,
pre pre pre postM M M Mt t t  

 
    , with 1pre preM ev Mt t t   .  

 

 

Figure 86. Coherence change tracking scheme in multi-pass case. 

Information on occurred changes related to the main event that happened at the 
time evt  can be extracted by singularly analyzing all SAR image pairs across the 

primary event, see Figure 86. In particular, given the SAR data pair  ,h kt t  with 

h ev kt t t  , the log-ratio image ( ) ( ), ln ln lnk
h k k h

h

X
LR X X

X
 

= = −  
 

 can be 

computed. In general, with pre postM M SAR images, different  ,h kt t SAR data 

pairs satisfy the condition h ev kt t t  . As imaged by the satellite sensors, the 
effects on the ground related to the main event can be detected and extracted from 

every single log-ratio image  1lLR 
. Accordingly, we could generally have   

different looks for the same scene. The time average of these different looks allows 
one to obtain a temporal multi-look log-ratio image which is expected to be less 
affected by noise. Mathematically, multi-look log-ratio image map is obtained as 
follows: 
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 where the summation is performed pixel-by-pixel. Note that random changes 

and systematic subtle multiple changes can happen in the whole 1, pre postM Mt t 
 
   time 

interval; accordingly, the temporal multi-look log-ratio image will tend to filter out 
the small random amplitude fluctuations that are present in the single maps and 
emphasizes the major systematic contributions due to the primary event. On the 
other hand, if the selected time window is too large and the scene rapidly comes 
back to original pre-event conditions (and/or in a new state after evt  that has a 
reduced memory of the disastrous event), the temporal multi-look LR image will 
be sensitive to changes different from those we want to extract. For this reason, the 
proposed methodology is adequate for short-term time-series of data, with a 
maximum time span (temporal baseline) of one/two months (or less) across the 
main event, and it looks desirable for fast damage assessment.  

If dual-pol SAR data are available, the incoherent temporal multi-looking of 
Equation (6.34) can be computed for the two polarizations separately. In addition, 
with dual-pol VV/VH Sentinel-1 SAR data, the sum and difference of incoherent 
temporal multi-looking log-ratio images can be computed and used as two separate, 
dependent synthetic incoherent CDIs; see the experimental results presented in 
Section 6.6.  

The joint exploitation of coherent and incoherent information in a unique 
framework is attractive. In a multi-pass scenario with pre postM M SAR images, 

some interferometric data pairs with the same temporal baseline before the event 
and co-event can be selected. The relevant coherence ratio and normalized 
difference ratio images can be computed. Using interferometric SAR data pairs with 
the same temporal baseline partially compensates for the effects of temporal 
decorrelation not related to the primary event. Indeed, coherence decorrelation is at 
the first order the same in pre- and in-between-event coherence maps. 

Nonetheless, as the temporal baseline increases, the single coherence maps will 
be more decorrelated, and the performance of the coherence detector diminishes. 
For this reason, the coherence analyses should be retained to shorter time windows. 
This statement is supported by the experimental results shown in Section 6.6, 
demonstrating that the relative weight/importance of longer baseline coherence in 
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the binary decision between changed/unchanged regions drastically reduces as the 
interferometric SAR temporal baseline increases. The developed method relies on 
the computation and subsequent utilization of the following two sets of coherence 
ratios and normalized coherence differences:  

 { } 1l l
ρ Θ

=
 (6.35) 

 { } 1l l
ND Θ

=
 (6.36) 

Note that the families of used CDIs are composed of elements, representing 
the number of pairs of InSAR data pairs between the primary event that can be 
formed from the available SAR scenes. The following Sections will introduce how 
Breiman’s random forest (RF) [107] (see Section 2.2.2 for more details about RF), 
and the change detection indices presented above can jointly derive surface change 
maps. 

6.4 PROPOSED RF-AIDED CD METHODS 

In this section, I describe the proposed RF CD framework. As illustrated in 
Figure 87, the proposed framework consists of three modules. 
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Figure 87. Sketch of modules of proposed CD framework. 

Starting from a sequence of calibrated, co-registered and geocoded Sentinel-1 
SAR acquisitions, the first module consists of pre-processing data and calculating 
the incoherent and coherent change detection indices. In this work, I treated change 
detection as a pixel-based binary classification task that uses 1 and 0 to indicate 
changed and unchanged pixels. Therefore, I used an RF model combining CDIs and 
a reference change mask in the second module to perform supervised learning. The 
final module applies a spatial average with a moving window to the RF predicted 
binary change mask. Eventually, the binary change mask is retrieved. 

6.5 CASE-STUDY AREAS AND SAR DATA 

Three SAR datasets consisting of 15, 13, and 12 SAR images collected in the 
Single-Look-Complex (SLC) format and Terrain Observation with Progressive 
Scans SAR (TOPSAR), Interferometric Wide (IW) mode by the Sentinel-1A/B 
sensors over the central-western sector of Sardinia Island, the central-western area 
of Sicilia Island regions in Italy, as well as the Southern coastal area of Texas in the 
U.S.  



Change Detection of Earth’s surface 184 

 

 

Figure 88. (A) Geographical map of Sardinia, (B) Sicily and (C) South-east Texas coastal area, 
respectively. The green boxes indicate the Motiferru, Madonie, and Galveston AOIs. The AOIs are zoomed 

within the minimaps where the wildfires and flooding perimeter are highlighted in red. 

Table 24. List of S-1 acquisitions for the Sardinia, Sicily and Texas coastal areas.  

Acquisition dates 
SARDINIA SICILY TEXAS 

2021-06-12 2021-06-27 2021-07-13 
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2021-06-18 2021-07-03 2021-07-19 
2021-06-24 2021-07-06 2021-07-25 
2021-07-06 2021-07-09 2021-07-31 
2021-07-12 2021-07-21 2021-08-06 
2021-07-18 2021-07-27 2021-08-12 
2021-07-24 2021-08-02 2021-08-18 
2021-07-30 2021-08-08 2021-08-24 
2021-08-05 2021-08-14 2021-08-30 
2021-08-11 2021-08-20 2021-09-05 
2021-08-17 2021-08-26 2021-09-11 
2021-08-23 2021-09-07 2021-09-17 
2021-08-29 2021-09-13 2021-09-23 
2021-09-04 2021-09-19 2021-09-29 

Table 24 shows the list of used SAR data. The areas of interest (AOIs) include: 

i. The Montiferru region in Sardinia (see Figure 88 A). The territory is 
mainly characterized by a mountain chain and some valleys located in 
its inner parts, particularly in the municipalities of Santu Lussurgiu, 
Cuglieri and Scano Montiferro. The terrain elevation of the investigated 
area ranges from the sea level to the highest point of Monte Urtigu, about 
1,050 m a.s.l., located in the municipality of Santu Lussurgiu. The site 
is historically characterized by the Mediterranean climate, presenting 
dry summers, cold and wet winters, and intermediate conditions in 
spring and autumn. In the last decades, due to global warming, the region 
is also facing alterations drastically in precipitation regimes, with the 
most considerable precipitation runoff decrease [341]. 

ii. The Sicilian Apennines, specifically the area of the “Madonie” (see 
Figure 88 B). Within this area is situated the Parco delle Madonie, which 
is the second nature reserve in Sicily. Its 35,000 hectares are home to 
towering mountains (at 1,979m, the highest peak is Pizzo Carbonara), 
large expanses of woodland, and a flourishing variety of flora and fauna. 
In terms of flora, there are over 2,600 different species of plants, many 
of which are endemic to the area. Specifically, at an altitude of 1,500 m, 
the land is entirely covered by the Madonie Forest. Below, on the 
hillsides, the area is mainly characterized by crops, including the 
cultivation of wheat, olives and fruits. The area incorporates several 
historic towns and villages such as Polizzi Generosa, Petralia Soprana 
and Sottana, Gangi and Castelbuono. 
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iii. The Houston metropolitan area (see Figure 88 C) is the fifth-most 

populous urban area in the USA. The region contains the city of Houston 
(the most significant economic and cultural centre of the South). Its port 
(the second largest port in the United States and the sixteenth largest 
globally) leads the U.S. international trade. The metropolitan area is in 
the Mexico Gulf Coastal Plains. Much of the urbanized area was built 
on forested land, marshes, and prairie. 

Concerning the Italian sites, the characterizing phenomena are wildfires. 
Wildfires have interested the Italian areas between July and August of 2021. In the 
Sardinia area, on July 23, 2021, at around 5.30 pm CET, a wildfire started in the 
Montiferru region, specifically on the road that connects Bonarcado and Santu 
Lussurgiu. In the first phase of its propagation, the wildfire affected an area mainly 
covered by herbaceous vegetation and wooded pastures. Then, on July 24, the fire 
quickly got out of control due to the region's complex topography, extreme weather 
conditions (temperature close to 40° C), low relative humidity, and strong winds 
from S-SE. The wildfire spread towards N-NW, favoured by the increasing slopes 
and higher amounts of fuel load, and started burning the forest areas of Santu 
Lussurgiu. The wildfire spreading caused huge damage, devastating an area of 
about 20,000 ha. In Sicily, the wildfire started simultaneously between 6-12 August 
of 2021. In Sicily, due to criminal acts on the night of 6 August in the territory of 
Gangi, in the Madonie Mountains, several wildfires started. The wildfires have 
surrounded first the Gangi village and later spread out over two directions: one 
towards San Mauro Castelverde village and one towards Collesano, Lascari, and 
Geraci Siculo villages. The wildfire spread, devastating an area of about 2,000 ha, 
damaging villages, houses, animals, and farms drastically and changing the whole 
Madonie ecosystem irreversibly. 

Concerning the U.S. area, on the morning (11:00 p.m. ET) of August 25, 2017, 
Category 4 Hurricane Harvey made landfall along the Texas coast near Port 
Aransas and brought a devastating impact. The hurricane had a diameter of about 
280 miles and generated winds of 130mph during its landfall. The intense 
phenomenon busted all the US records for rainfall from a single storm, with a 
maximum of 60.5 inches of rain in some parts of Texas. Counting only coastal 
areas, Beaumont, Port Arthur, and Galveston received about 26 inches of rain in 24 
hours. This rainfall caused catastrophic drainage issues and made rivers rise 
considerably. Flooding forced 39,000 people out of their homes and into shelters. 
Only around 10% of the forecast river points in southeast Texas remained below 
flood stage due to the event, and approximately 46% of the river forecast points 
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reached new record levels. Harvey had a considerable economic impact, causing 
about $130 billion in damage, moving Harvey to be ranked as the second-costliest 
hurricane to hit the U.S. mainland since 1900. 

Fire and flooding perimeters were derived using the Copernicus Emergency 
Management Service (EMS), which provides geospatial information within hours 
or days after the catastrophic phenomenon with its Rapid Mapping component. 
Specifically, the Rapid Damage Assessment (RDA) module of the European Forest 
Fire Information System (EFFIS) has been used for wildfire events. By analyzing 
near real-time MODIS daily images at 250m spatial resolution, the RDA provides 
the daily update of the perimeters of the burn areas in Europe. The process involves 
delineating the extent of wildfire events based on the semi-automatic classification 
of MODIS satellite imagery using ancillary spatial datasets such as CORINE Land 
Cover, the active-fire detection products from MODIS and VIIRS. The Global 
Flood Awareness (GloFAS) system has been used for flood events. GloFAS 
provides a floods map using flood mapping algorithms developed by the Global 
Flood Mapping (GFM) consortium11. Specifically, three individual flood mapping 
algorithms operate in parallel, analyzing historical time-series of Sentinel-1 SAR 
intensity data [342]–[345]. Topography-derived indices are used to refine the 
classification of water bodies. Once each algorithm generates its own “Observed 
flood extent” map, an ensemble-based approach is used to combine the maps into a 
single “consensus map” in which a pixel is accepted as “flooded” when at least most 
of the classification algorithms that compose the ensemble classify it accordingly. 

6.6 EXPERIMENTAL RESULTS 

Temporal multi-looked sigma naught maps and Coherence Changes Indexes 
(CCI) extracted from the available SAR images were used to detect changes from 
the wildfire and flooding events characterizing the AOIs. The SAR images were 
preliminarily radiometrically calibrated [346] to extract from the digital data the 
maps of the radar backscatter, i.e., the sigma naught maps [202]. I selected the 24 
July of 2021 as the primary fire event. I selected a time series of acquisitions with 
a temporal baseline of ±6, ±12, ±18 days, before (6, 12, and 18 July), during (24 
July) and after (30 July, 5 and 11 August) the wildfire event, respectively. Each 
SAR image of the time series was independently post-processed by applying the 
de-speckling noise-filtering algorithm [347] and co-registered using Enhanced 

 
11 https://wiki.c-scale.eu/GFM/PUM/ConsortiumMembers 

https://wiki.c-scale.eu/GFM/PUM/ConsortiumMembers
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Spectral Diversity (ESD) with respect to the 24 July acquisition. The maps of sigma 
naught were finally converted from linear to decibel, and six sigma naught 

differences (dB) with respect to the 24 July maps were computed and 
geocoded. For representability, Figure 89 shows the maps of 0σ∆  (dB) with a 
temporal baseline of ±6 days for the VH and VV polarization. 

 

Figure 89. Sigma naught 0σ∆  differences (dB) were computed over the Sardinia AOI for VH 
polarization. (A)-(C) pre-fire event differences. (D)-(F) post-fire event differences. 

Once the sigma naught difference time series has been computed, the 
incoherent temporal multi-looking step described in Section 6.1.1 has singularly 
been applied to the VH and VV SAR sigma naught time series. 

 

Figure 90. Temporal multilook maps of 0σ∆  time-series for (A) VH and (B) VV polarization channels. 
Read Section 6.1.1 for more details. 
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As shown in Figure 90, the temporal multi looking operation allows us to 

highlight better the variations of amplitude SAR backscatter 0σ∆  at VH and VV 
polarizations connected to changes in ground properties related to the wildfire 
event.  

 

Figure 91. (A) Sum and (B) difference of incoherent temporal multi-look maps at VV and VH 
polarization channels. 

Finally, as described in Section 6.1.1, the sum and difference of two incoherent 
temporal multi-look maps obtained at the two available VV and VH polarization 
channels are used as additional CDIs. The relevant maps are shown in Figure 91 A 
and B. 

Interferometric SAR (InSAR) coherence change post preND −  and post preρ −   CCIs 

have also been determined and used to detect changes related to the wildfire disaster 
event. Considering triplets of SAR images using temporal baselines of  , ,
, , , and  days with respect to the 24 July 2021 primary event date 
acquisition, pre- and co-fire event interferometric pairs CCI time-series were 
obtained by applying Equations (6.25), and (6.26). The use of these temporal 
baselines was chosen to highlight as much as possible the changes between the pre- 
and co-disaster coherence maps. In the same way, of sigma nought differences for 
representability. Figure 92 shows the R and ND CCIs using interferometric 
coherence related to pairs of SAR acquisitions with a temporal baseline of ±6 days 
(24-30 July and 24-18 July) for VH and VV polarization. 
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Figure 92. (A) and (C) ND CCI, (B) and (D) R CCI for VH and VV polarization, respectively. The 
considered temporal baseline is equal to ±6 days (24-30 July and 24-18 July). 

It is worth remarking that both for sigma naught and coherence maps, changes 
depend on several natural phenomena that can act simultaneously (e.g., soil 
moisture and humidity changes due to weather conditions), and their use in 
vegetated areas, such as the investigated one, is more challenging due to the 
presence of volume scattering decorrelation, especially at C- and X-band. As shown 
in Figures Figure 90, Figure 91 and Figure 92, the fire event signal is easily visible and 
in agreement with the fire perimeter provided by the EFFIS platform. The same 
processing methodology has been used for the Sicily and Texas AOIs. The 
acquisition of the 8 August 2021 and 24 August 2017 has been used as main event 
dates, respectively. 

6.6.1. DISCUSSION ON RANDOM FOREST TRAINING AND RESEARCH 

OUTCOMES  

For the three selected case-study areas in Italy and U.S., I applied the AI-aided 
strategy described in Sections 6.4 and 6.5. In this Section, I discuss the results of 
the experiments that were carried out using an RF model trained using as inputs the 
set of synthetic incoherent (sigma naught) and coherent (coherence-based) change 
detection indices at VV and VH polarizations. Supervised training is carried out 
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using the fire and flood perimeters from EFFIS and Glo-FAS by the determination 
of a synthetic binary change mask, in which all pixels within the perimeters are 
identified as changed and labelled as one and all pixels outside the perimeters are 
identified as unchanged and labelled as 0; see Figure 93. 

 

Figure 93. Synthetic binary change masks of the (A) Sardinia, (B) Sicily, and (D) Texas Galveston bay 
AOIS, respectively. 

In addition, to avoid the class imbalance problem, an additional preprocessing 
step has been carried out. Specifically, the dataset of samples related to the Sardinia 
and Sicily AOIs presents a class imbalance of about 3:1 for the positive (1) class; 
see Figure 94. 
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Figure 94. Class imbalance before (A) and after random-oversampling and -undersampling techniques 
(B). 

As we can see from Figure 94 A, the dataset presents a class imbalance for the 
positive class (1). Imbalanced datasets pose a challenge for predictive modelling 
such as RF because they introduce a bias in the training that results in the poor 
predictive performance of the minority class with respect to the majority one [348]–
[351]. In this way, the random-oversampling and -undersampling techniques [349], 
[350] have been used to make the training dataset imbalance less severe; see Figure 
94 B. Using Optuna's [120] hyperparameter optimization framework, an RF 
structure composed of 209 decision trees was designed. Stratified K-Fold [352], 
[353] used ten folds to cross-validate the RF model in the training step. To evaluate 
the effectiveness of the proposed method, I decided to use only the data related to 
the Sardinia and Sicily AOIs to train the RF model and subsequently assess it on all 
the AOIs. 
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Figure 95. RF predicted binary change masks (coloured in red) of the (A) Sardinia, (B) Sicily, and (C) 
Texas, Galveston Bay AOIs, respectively. Change masks are superimposed over SAR amplitude images of the 
areas. 

Figure 95 shows the RF predicted change masks. By a spatial comparison with 
the binary change mask used as truth, the RF model can identify the area related to 
the wildfire and flooding events very well. However, it is also clear that 
misclassifying regions is generated by the proposed method. This is due to the 
presence of speckle noise consistently in each AOIs analyzed. I used the confusion 
matrix (CM) test to quantitatively examine the RF prediction performance. 
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Figure 96. Confusion matrices of the (A) Sardinia, (B) Sicily, and (C) Texas, Galveston Bay AOIs, 
respectively. 

Confusion matrices of the tested AOIs are shown in Figure 96. From their 
analysis, it is very straightforward to note the goodness of the proposed method. I 
want to remark that the probability values reported in the confusion matrixes are 
calculated starting from available polygons of burned/changed areas; thus, errors 
due to incorrect knowledge of the true areas affected by changes can affect the 
reported estimates. In addition, starting from the information given by the confusion 
matrix, i) precision, ii) recall, and iv) F-1 scores have been determined. I reported 
these scores in Table 25. 

Table 25. RF classification scores report for the Sardinia, Sicily and Texas AOIs. 

 Sardinia Sicily Texas 

  N# Precision Recall F1 N# Precision Recall F1 N# Precision Recall F1 

Unchanged (0) 3.164.393 0.99 0.98 0.99 2.108.222 0.99 0.99 0.99 2.726.416 0.96 0.91 0.93 
Changed (1) 955.933 0.94 0.97 0.96 672.808 0.98 0.97 0.98 439.280 0.58 0.76 0.65 

Weighted avg. 4.120.326 0.98 0.98 0.98 2.781.030 0.99 0.99 0.99 3.165.696 0.91 0.89 0.90 

Analyzing the results shown in Table 25, from the precision and recall scores 
of the classification of unchanged/changed pixels, is evident to note that the RF 
model expresses very high change detection capacity in all the three analyzed areas. 
F1 scores are also very high. In particular, for the Texas case the F1 scores indicate 
that the proposed RF model is able to identify changes with high precision and 
accuracy in new unseen areas afflicted by a different phenomenon. 
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Figure 97. Ranking of features essential for the proposed RF model calculated on Sardinia, Sicily and 
Houston AOIs, respectively. 

 Finally, I determined how much each selected feature contributes to the 
classification of changed, unchanged pixels in the analyzed phenomenon using the 
RF feature importance statistic. Figure 97 shows that among the coherent and 
incoherent set of features, the incoherent temporal multi-look VH map significantly 
contributes to the final estimate. The sum follows this, and the difference of mutual 
sigma naught ratio maps between different polarization is also relevant. Features 
related to CCIs also make a high contribution. The ranking of importance reported 
in Figure 97 further confirms that, for what attains the SAR backscattered returns, 
the cross-polarization channel is more sensitive than the co-polarization one to fire 
damages. This result is in good agreement with the findings of the work [354] where 
the authors demonstrated with theoretical observations and direct evidences with 
Sentinel-1 SAR data that the VH channel is more apt to detect fire disturbance scars 
and this outcome is ascribable to the associated reduction of the volumetric 
scattering contribution after a fire event. Furthermore, the results show that the sum 
of SAR backscattered signals (sigma naught) on the co-pol VV and cross-pol VH 
channels has a great importance in the final estimate of changed areas. 

It is remarkable that the results of Figure 97 show that the coherent indices 
contribute to the final estimate of changed areas but with a less importance than 
information coming from incoherent indices. This finding was expected, being 
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known that coherence is more sensitive to subtle spatial-varying changes of ground 
properties over time after a disastrous event.  

Summarizing, the importance rank of the different coherent layers for a fire-
disturbed regions, which is described in Figure 97, demonstrates that:  

i) Short temporal InSAR baselines are preferred to long-baselines because 
coherence rapidly varies after a primary event and tends to achieve a 
new (random) state, not linked to the primary event under investigation, 
just a few days after the event itself. This finding is in accordance with 
the fact that temporal decorrelation is sensitive not only to random 
changes (linked to the event) but also to composite ground and 
volumetric changes that determine a systematic decay of the coherence 
over time (see the model in Section 6.2.2). 

ii) The normalized coherence difference has generally an enhanced 
importance than the coherence ratio. This finding was also expected and 
it is in agreement with theory (see Section 6.2.2); indeed, the 

normalized coherence difference 
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includes in a unique estimator the advantaged of the coherence 
difference and coherence ratio to discriminate and better isolate the 
random coherent components. 

iii) The co-pol and cross-pol channels have almost the same importance, 
with a slight marked preference versus the co-pol VV polarization. 

6.7 CONCLUSIONS AND FUTURE PERSPECTIVE 

This work addressed a review of the theory of existing coherent and incoherent 
CD methodologies used to study and monitor ground surface changes that arise 
when a disaster event (i.e., wildfires or floods) occurs, using sequences of synthetic 
aperture radar (SAR) images. Then, I focused on new trends of evolution of the 
research branch on Change Detection with SAR data, by addressing specifically the 
emerging ML-driven CD approaches. I investigated the potential of different 
synthetic coherent/incoherent CDI’s and their mutual interactions for the rapid 
mapping of “changed areas” relying on the joint exploitation of SAR sigma naught 
and interferometric coherence maps. A classifier based on RF has been trained 
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combining different information coming from coherent/incoherent CDIs in a 
unique corpus, over different AOIs characterized by wildfire and flood phenomena. 

Specifically, the study of the Montiferru and Madonie wildfires showed that 
the combined use of different CDI’s able to synthetically describe ground surface 
changes associated with a disaster event (i.e., the pre-, cross- and post-disaster 
phases) and RF classifier is a powerful way to quickly identify areas related to 
wildfire events and fast assessing fire damages. The proposed methodology has 
been also tested considering a flood event that interested the south of Texas in 
August of 2017, in the Galveston Bay, using S-1 SAR data. The goodness of RF 
CD performance is also demonstrated by a quantitative analysis using confusion 
matrix statistic that shows very high rate in identify changed and unchanged areas. 
The achieved F-1 scores of about 0.9 highlights the potential of RF methods in 
remote sensing CD tasks. As a result, our findings demonstrate that S-1 C-band 
SAR data can provide suitable information on fire and flood events over the most 
severely affected areas (the highest level of fire or flood damage), supporting how 
such systems can be a complementary source of data to optical one, in case of cloud 
covers or plumes due to extreme weather and fire events. As a further development, 
I intend to extend this research on change detection based on sets of heterogeneous 
optical and radar images. The inclusion of optical features and the fusion with the 
SAR one in RF forest classifier is expected to improve generalization performance 
(e.g., in flooded areas). Fine tuning and extensive exploitation of the proposed 
method on a large scale require the selection and processing of several independent 
SAR datasets and a heterogenous family of disasters (e.g., floods, droughts, extreme 
events, forest and vegetation disturbance, urban changes, earthquakes, volcano 
eruptions, man-made changes, etc.). This perspective is worth and is an issue to be 
investigated in the future. 
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Chapter 7 

FURTHER ACTIVITIES 

This chapter will briefly show and discuss additional research works actively 
carried out by me in the framework of SAR remote sensing analyses during the 
three-year Ph.D. period. 

7.1 ADAPTIVE MULTILOOKING OF MULTITEMPORAL 
DIFFERENTIAL SAR INTERFEROMETRIC DATA STACK 
USING DIRECTIONAL STATISTICS 

In [7], my research activities focused on the implementation of an innovative 
space-time adaptive multilooking technique that operates on a sequence of 
multitemporal, differential synthetic aperture radar interferograms is shown. The 
developed approach relies on the application of the fundamentals of directional 
statistics theory. At variance with other methods that identify the set of statistically 
homogenous pixels (SHPs) within a multilooking (complex averaging) window 
based on the statistics of the single-look-complex (SLC) SAR images, the proposed 
method is exclusively based on the analysis of the multitemporal sequence of full 
resolution DInSAR interferograms. The SHPs are then used to generate spatially 
adaptive multilooked interferograms both at the native, full-scale grid of the SLC 
images and at the multilooked resolution scale. The algorithm is effective and 
simple to implement, only requiring the availability of a sequence of full-scale 
differential SAR interferometry (DInSAR) interferograms.  
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Figure 98. Block diagram of the proposed space–time adaptive multilooking technique. 

The interferograms can then be used to generate ground displacement time-
series through advanced multitemporal interferometric SAR (MTIn-SAR) 
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approaches. The whole process is pictorially represented in Figure 98. Experimental 
results obtained by applying the adopted technique to two SAR data sets acquired 
at X- and L-band, respectively, demonstrate the validity of the developed method. 

The paper is the result of a cooperation between CNR and the Jet Propulsion 
Laboratory (JPL/NASA Caltech) and it has been published on Transaction of 
Geoscience and Remote Sensing in 2020[7].  

7.2 AN ADAPTIVE STATISTICAL MULTI-GRID DINSAR 
TECHNIQUE FOR STUDYING MULTI-SCALE EARTH 
SURFACE DEFORMATION PHENOMENA 

In this study [9], focused my researches to address the potential of an adaptive 
quad-tree-based decomposition method applied to Differential Synthetic Aperture 
Radar (DInSAR) data is presented. Specifically, the proposed method exploits a 
multi-resolution scheme for the phase unwrapping of sequences of DInSAR 
interferograms and allows one to produce DInSAR deformation products at 
different scales of resolution (see Figure 99). 

 

Figure 99. Adaptive quad-tree decomposition scheme. 

 The selection of the used multi-grid is based on the analysis of the statistical 
properties of a sequence of interferometric phase, allowing to recognizing major 
deformation areas where phase unwrapping operations can be performed more 
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efficiently, with a computational improvement and without losing significant 
information. 

The presented analysis relies on a set of 60 SAR data acquired by the Sentinel 
1A/B RADAR sensor over the Pearl River Delta (PRD) region, specifically the 
island of Hong Kong, from December 2017 to January 2019. Starting from these 
data, I generated a stack of 226 interferograms at three k  different spatial scales (
2 10× , 4 20×  and 8 40×  samples in azimuth and range, respectively) on which I 
have tested the proposed adaptive quadtree-based decomposition method.  

 

Figure 100. Hong Kong deformation time-series, (a) H.K. airport, (b) H.K. Disneyland and (c) H.K. 
city coastal area. 

In Figure 100, the preliminary results of the developed multi-grid method is 
presented by showing the time-series of deformation and the mean deformation 
velocity map of the Hong Kong area. Particularly, in the temporal analysis 
performed at 2 10×  resolution scale, I have focused on three man-made lands of 
Hong Kong area, reclaimed from the sea that is major characterized by subsidence 
phenomena: Hong Kong airport (Figure 100 A), Hong Kong Disneyland (Figure 
100 B) and Hong Kong city coastal area (Figure 100 C). As a result, I discuss the 
improvement, in terms of data reduction that is guaranteed by the proposed multi-
grid PhU methods, based on the adaptive selection of the pixels with slow varying 
deformation signals moving from a less-resolute to a more-resolute scale (bottom-
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up approach). In particular, in the Hong Kong case study, the adaptive exploitation 
of the circular variance statistic, allowed us to efficiently identify at different 
resolution scales k masks of consistent pixels, related to areas characterized by 
significant deformation gradients, so as not to take into account other areas not 
characterized by any significant deformation gradient (e.g., oceanic areas or other 
where there is no subsidence phenomena).  

 

Figure 101. Data reduction improvement bar chart. 

Overall, an average improvement of about 85% has been registered in terms of 
data reduction (data that does not represent significant information in terms of 
deformation gradient signature) at every resolution scale k  for the PhU operation 
(see Figure 101). 

The results and analyses made in this work were presented and published at the 
2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 
conference [9]. 
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7.3 THE TRIPLET NETWORK ENHANCED SPECTRAL 
DIVERSITY (T-NESD) METHOD FOR THE CORRECTION OF 
TOPS DATA CO-REGISTRATION ERRORS FOR NON-
STATIONARY SCENES 

In this work [8], my research activities focused on the implementation of a 
novel approach for the correction of misregistration errors in sequences of Terrain 
Observation with Progressive Scan (TOPS) Sentinel-1 SAR data is presented. The 
method represents a further evolution of the Enhanced Spectral Diversity (ESD) 
approaches. Remarkably, the developed algorithm is almost insensitive to the 
presence of large azimuth ground displacements due, for instance, to massive 
earthquakes, volcanic eruptions or glacier movements. Indeed, in such non-
stationary contexts, the conventional ESD and network ESD approaches [269], 
[270], [355] for the SAR TOPS data co-registration reveals problematic being co-
registration errors and azimuth ground deformation components mixed out. 

 

Figure 102. Closed loops scheme of three interferograms forming a SAR triplet. 

In particular, the key idea of the proposed method is to compute the residual 
azimuth misregistration over closed loops of three interferograms forming a SAR 
triplet [253] (see Figure 102). 

Preliminary experiments conducted on a set of TOP SAR data related to the 
area hit by the Ridgecrest earthquake MW 7.1, California, on July 04 2019 confirm 
the validity of the theoretical framework.  
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Figure 103. Intraburst interferograms, generated selecting the second swath, and the third and fourth 
bursts of the 28/06/2019-10/07/2019 (α), 10/07/2019-03/08/2019 (β), and 28/06/2019-03/08/2019 (γ) 

interferometric SAR data pairs. 

Here, are presented some results achieved using the triplet, determined starting 
from three Sentinel-1 SAR acquisitions, collected on 06/28/2019, 07/10/2019, and 
08/03/2019, in correspondence with the geophysical event that struck the 
Ridgecrest area in July 2019. The third and fourth bursts have been selected from 
the second swath of the Sentinel-1 scenes, because they are related to the epicenter 
area of the earthquake (see Figure 103). 

In Figure 103; it is evident that the α and the γ intraburst differential 
interferograms are representative of the non-stationary case, where both the signals 
related to the along-track deformation and the residual misregistration errors are 
present. Conversely, the differential intraburst β interferogram, representative of 
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the stationary case, only exhibits the signal related to the residual (constant) 
misregistration error. 

 

Figure 104. Plots of the mean α, β and γ azimuth intraburst misalignment errors vs. range direction. 

These behaviours are confirmed plotting the mean value of the misregistration 
azimuth error of the three intraburst differential interferograms (see Figure 104). As 
evident, in the non-stationary case, the azimuth misalignments are pixel-dependent 
(highlighted by the red boxes), whereas in the stationary case, the azimuth shifts do 
not have a trend. 
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Figure 105. (A) Residual intraburst interferometric phase and (B) azimuth misregistration error over the 
closed triplet 

Finally, following the scheme depicted in Figure 102, the residual intraburst 
phase and the azimuth misregistration error over the triplet is determined, see Figure 
105. It is remarkably, these phase residuals do not contain any information related 
to the (along-track) azimuth displacement induced by the earthquake. 

The results and analyses made in this work were presented and published at the 
2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 
conference [8]. 

 

7.4 ANALYSIS OF GROUNDWATER DEPLETION/INFLATION 
AND FREEZE–THAW CYCLES IN THE NORTHERN URUMQI 
REGION WITH THE SBAS TECHNIQUE AND AN ADJUSTED 
NETWORK OF INTERFEROGRAMS 

In this work [10], my research activities focused on an investigation of the 
ground deformation of the Northern Urumqi region, China. The presented analysis 
is based on applying the small baseline subset (SBAS) method [242]. Furthermore, 
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a new method for selecting a suitable set of small baseline (SB) interferometric 
SAR data pairs to be used by the SBAS algorithm. Usually, the interferometric SAR 
data pairs are selected by merely imposing a threshold on their maximum allowed 
temporal and perpendicular baselines [242]. However, this selection strategy can 
lead to some high-quality interferograms being discarded or some low-quality ones 
being included in actual cases. Some approaches for selecting optimal sets of SB 
interferograms have already been proposed in the literature [247], [253], [356]–
[360]. In particular, the minimum spanning tree (MST) algorithm was used to 
determine a set of optimized interferograms using a quasi-PS (QPS) method in 
[356], [357]. The use of a simulated annealing algorithm was proposed in [247] for 
the optimal selection of a triangular network of SB interferograms that were 
exploited by the space–time minimum cost flow (EMCF) phase unwrapping 
algorithm [253]. Graph theory (GT) and a variance–covariance matrix of 
observations was used in [358] to identify sets of interferograms less influenced by 
turbulent atmosphere phase artifacts. The semiautomatic selection of optimum 
image pairs was also proposed in[359], using the coherence of point targets based 
on a small feature region. A higher coherence pixel density of interferograms 
through eigenvalue decomposition was introduced in [360]. 

 

Figure 106. Flowchart of the developed SB interferogram selection algorithm. 

The SB interferometric selection algorithm proposed in this work was aimed at 
selecting SB interferograms that would minimize the mean ground deformation 
velocity relative error. Toward that aim, the average spatial coherence of the chosen 
interferograms and the connectivity of their network were taken into account at the 
same time. 
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Specifically, the method consists of 3 distinctive steps to determine the optimal set 
of SB interferograms, which is briefly summarized as follows: 

I. Generate a pool of (candidate) multi-look SB interferograms and the 
relevant coherence maps. Candidate SB data pairs are initially selected 
by considering a reasonably large threshold for the temporal and 
perpendicular baselines of the interferograms.  

I. Estimate the optimal value of a coherence threshold, namely criticalγ  and 
discard the multi-look SAR interferograms with an average spatial 
coherence smaller than criticalγ  

II. Apply the SBAS procedure [242] to the selected set of optimal SB SAR 
data pairs, selected using the optimal coherence threshold criticalγ . 

Figure 106 shows the block diagram of the developed SB interferogram 
selection algorithm.  

The work benefits from the primary outcomes of a recent investigation [361] 
that addressed the error budget analysis of SB Mt-InSAR techniques. Experiments 
were carried out on 102 pieces of Sentinel-1B SAR data collected from 12 April 
2017 to 29 October 2020. Starting from the available SAR data, a group of optimal 
SB interferograms was adequately selected and used within the SBAS processing. 
As a result, in the region of maximum deformation, a ground subsidence velocity 
of about 120 mm/year and seasonal amplitude displacement of about 120 mm was 
revealed. 

The principal achievement of this work is that the developed interferogram 
selection method allows to minimize the relative error of mean ground displacement 
velocity measurements, demonstrating that the accuracy of SBAS ground 
deformation time series improves when an optimal network of SB interferograms 
is used. Finally, the above analyses and results were discussed in a paper that has 
been published on Remote Sensing journal [10]. 

7.5 RECENT ADVANCEMENTS IN MULTI-TEMPORAL 
METHODS APPLIED TO NEW GENERATION SAR SYSTEMS 
AND APPLICATIONS IN SOUTH AMERICA 

 Detection and continuous monitoring of Earth’s ground surface changes, 
triggered by natural phenomena or induced by human activities, is nowadays 
possible using Earth Observation (EO) technologies. Indeed, the exploitation of 
remotely sensed data collected by constellations of new-generation satellite 
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platforms, complemented with in-situ measurements and ground-based observation 
systems, represents a well-established practice to get valuable information on 
Earth’s crust and subsurface dynamics. The effects of extreme natural or man-
induced events (e.g., earthquakes, volcanic eruptions, flooding phenomena, sea-
level rise, big fires, etc.) have severe societal and economic impacts. In particular, 
the technologies based on the use of Synthetic Aperture Radar (SAR) images 
reached significant improvements in the last decade due to the growing availability 
of vast amounts of data collected by multiple-satellite sensors operating at different 
frequency bands and with complementary viewing angles, polarization and 
acquisition modes. Accordingly, to process a large amount of SAR data in a timely 
fashion, up-to-date high-performance computing (HPC) methods and tools are 
required. In [207] my research activities focused on addressing the state-of-the-art 
of SAR technologies for the analysis of long sequences of multiple sets of SAR 
images and providing a perspective on the forthcoming improvements of these 
technologies. In particular, the emphasis is placed on novel interferometric SAR 
and change detection methods, giving an overview of how those processing 
techniques have been used for investigating sites located in South and Central 
America. Moreover, an overview of the new generation of SAR sensors’ 
observational capability, especially in the field of ground deformation analysis for 
mitigating the risk associated with natural and human-induced hazards, is provided. 
COSMO-SkyMed, ALOS, Sentinel-1, and SAOCOM data are exploited to show 
how natural and human-induced terrain displacement phenomena can be detected 
and investigated in different portions (X-, L- and C-band) of the microwave 
spectrum using SAR technologies. 

The results of the analyses presented in this paper provide important 
information on the joint exploitation of the different operational bands, polarimetric 
channels, and orbits of SAR systems. Therefore, they represent a basis for future 
studies for optimized processing and analysis of tons of SAR images to be collected 
by next-generation SAR sensor constellations. 

The paper is the result of a cooperation between CNR and the Universidad 
Nacional de Cuyo, Facultad de Ingeniería, Instituto CEDIAC & CONICET 
(Argentina) and it has been published in the Journal of South American Earth 
Sciences in 2021 [11].  

  



Conclusions 210 

 

Chapter 8 

CONCLUSIONS 

My P.h.D. research activities, which have been summarized in this thesis, have 
been devoted to developing and applying innovative remote sensed data inversion 
techniques and algorithms for the study of physical phenomena that characterize 
the Earth’s atmosphere and the surface of our planet. 

Against this background, the central question was to investigate the potential 
application of ML methodologies to address, at most, the following issues: 

1) The characterization of clouds in terms of their microphysical key 
parameters (e.g., the CLWC and CIWC profiles, their corresponding CLWP 
and CIWP vertical integrated paths, and their effective drop radii) by the 
synergic use of satellite observation in IR and MW bands; 

2) The study and analysis of Earth’s surface changes by the use of coherent 
and incoherent information gathered from sets of multi-temporal SAR 
acquisitions. 

The former was addressed by me during the research activities carried out 
within the ComboCloud project funded by EUMETSAT. In this scenario, this thesis 
aimed to design, prototype, and validate a regression framework based on ML for 
cloud products using MW and IR measurements in synergy. Validation with 
simulated and real observations demonstrates qualitatively and quantitatively the 
value of combining ML-based regression methodologies and MW and IR 
observations from optical satellite sensors to retrieve cloud properties. The 
synergistic retrievals demonstrate the combined sensitivity of MW and IR to cloud 
properties, thus outperforming the performances achievable by either one alone. In 
addition, the analysis of the results demonstrated the added value and promising 
performance of future EPS-SG sensors (IASI-NG and MWS) compared with 
currently available EPS-FG sensors (IASI and AMSU/MHS), opening 
opportunities for more comprehensive exploitation of these platforms for weather 
and climate. ML-based solutions played a central role in the achieved results. They 
have been observed to be superior to state-of-the-art solutions already present in the 
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literature. A role that was also confirmed in exercises involving cloud classification 
and atmospheric methane profiling.  

The second has concerned an in-depth analysis of the role played by modern 
SAR instruments that permit to continuously monitor the Earth’s surface and 
recover from the analysis of the recorded (complex) backscattered signals valuable 
information permitting to characterize and partly prevent the effects of disastrous 
natural and man-made conditions that affect Earth’s surface. In this context, the 
exploitation of ML classification methodologies for handling the different 
information coming from coherent/incoherent systems, including both amplitude-
based and InSAR analyses, represents one of the present-day challenges for the 
reference scientific community. The developed methods and applications, 
complemented with those considered for the study of Earth’s atmosphere, could 
potentially lead to further insights and open new possibilities in the next coming 
years.  Indeed, a new acceleration in the knowledge is expected with the advent of 
new SAR systems with almost daily acquisition repeat times (i.e., the 
geosynchronous systems) and the deployment of a constellation of micro-SAR 
satellites. All the innovative methods presented in this Ph.D. thesis, especially those 
that integrate conventional and AI-based approaches as well as RS data collected at 
different microwave bands, will surely have a significant role in the next decades 
to face expected new technological challenges. 
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ACRONYMS 

AATSR Advanced Along-Track Scanning Radiometer 

AER Atmospheric and Environmental Research 
AI Artificial Intelligence 

AID Algorithm for Ice cloud Detection aided by Support Vector 
Machine 

AIRS Atmospheric Infrared Sounder 
AMSR Advanced Microwave Sounding Radiometer 

AMSU Advanced Microwave Sounding Unit 
ANN Artificial Neural Network 

AOI Area Of Interest 
ARTS Atmospheric Radiative Transfer Simulator 

ASAR Advanced Synthetic Aperture Radar 
ASTEX Atlantic Stratocumulus Transition Experiment 

ATMS Advance Technology Microwave Sounder 
AVHRR Advanced Very High-Resolution Radiometer 

BFEMIS Baseline Fit Emissivity Database 
BT Brigthness Temperature 

BTD Brightness Temperature Difference 
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization 

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 
CART Classification and Regression Trees 

CCI Coherence Changes Indexes 
CD Change Detection 

CDI Change Detection Indices 
CERES Clouds and the Earth’s Radiant Energy System 

CIWC Cloud Ice Water Content 
CIWP Cloud Ice Water Path 
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CLWC Cloud Liquid Water Content 

CLWP Cloud Liquid Water Path 
CM Climate Monitoring 

COT Cloud Optical Thickness 
CPP Cloud Physical Properties 

CR Coherence Ratio 
CRTM Community Radiative Transfer Model 

CTH Cloud Top Height 
CTP Cloud Top Pressure 

DARDAR raDAR/liDAR 
DC Doppler Centroid 

ECMWF European Centre for Medium-Range Weather Forecasts 
EOF Empirical Orthogonal Function 

EPS EUMETSAT Polar System 
ERA Enhanced Retrieval of Aerosol 

ERS European Remote-Sensing Satellite 
EUMETSAT European operational satellite agency for monitoring weather 
EFFIS European Forest Fire Information System 

FM Forward Model 
FOV Field Of View 

FTIR Fourier-Transform Infrared 
HIRS High resolution Infrared Radiation Sounder 

HIS High-resolution Interferometer Sounder 
IASI Infrared atmospheric sounding interferometer 

IASI-NG Infrared atmospheric sounding interferometer Next Generation 
IFOV Instantaneous Field of View 

IFS Integrated Forecast System 
IR Infrared 

IW Interferometric Wide 
LBLRTM Line By Line Radiative Transfer Model 
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LOS Line of Sigth 

MACC Monitoring Atmospheric Composition and Climate 
MAI Multiple Aperture Interferometry 

METOP Meteorological Operational satellite programme 
MHS Microwave Humidity Sounder 

MIRS Microwave Integrated Retrieval System 
ML Machine Learning 

MLC Maximum Likelihood Classification 
MLCD Machine Learning based Change Detection 

MLO Mauna Loa Observatory 
MLP Multilayer Perceptron 

MMW Millimeter-Wave 
MODIS Moderate Resolution Imaging Spectroradiometer 

MR Minimum Residual 
MSE Mean Squared Error 

MSG Meteosat Second Generation 
MSPPS Microwave Surface and Precipitation Products System 
MVI Microwave, Visible, and Infrared 

MW Microwave 
MWS Microwavee Sounder 

NASA National Aeronautics and Space Administration 
ND Normalized Coherence Difference Ratio 

NDACC Network for the Detection of Atmospheric Composition Change 
NESD Network based Enhanced Spectral Diversity 

NL Number of Looks 
NN Neural Network 

NOAA National Oceanic and Atmospheric Administration 
NUCAPS NOAA Unique Combined Atmospheric Processing System 

NWP Numerical Weather Prediction 
OBCT Onboard Calibration Target 
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OSCAR Observing Systems Capability Analysis and Review Tool 

OSSE Observing-System Simulation Experiments 
PC Principal Component 

PCA Principal Component Analysis 
PCRTM Principal Component Radiative Transfer Model 

PRF Pulse Repetition Frequency 
QH Quasi Horizontal 

QV Quasi Vertical 
RADAR Radio Detection and Ranging 

RF Random Forest 
RMSE Root Mean Squared Error 

ROC Receiver Operating Characteristic 
RTE Radiative Transfer Equation 

RTM Radiative Transfer Model 
RTTOV Radiative Transfer for TOVS 

SAF Satellite Application Facility 
SAR Synthetic Aperture Radar 
SB Small Baseline 

SBAS Small Baseline Subset 
SD Spectral Diversity 

SEVIRI Spinning Enhanced Visibile and Infrared Imager 
SGD Stochastic Gradient Descent 

SSM/I Special Sensor Microwave/Imager 
SVD Singular Valued Decomposition 

SVM Support Vector Machine 
SW Software 

TIR Termal Infrared 
TOA Top of Atmosphere 

TOPS Terrain Observation with Progressive Scans 
TPW Total Precipitable Water 
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VIS Visible 

VZA Vertical Zenith Angle 
WMO World Meteorological Organization 
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