23,357 research outputs found

    KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development

    Get PDF
    Automated negotiation is widely applied in various domains. However, the development of such systems is a complex knowledge and software engineering task. So, a methodology there will be helpful. Unfortunately, none of existing methodologies can offer sufficient, detailed support for such system development. To remove this limitation, this paper develops a new methodology made up of: (1) a generic framework (architectural pattern) for the main task, and (2) a library of modular and reusable design pattern (templates) of subtasks. Thus, it is much easier to build a negotiating agent by assembling these standardised components rather than reinventing the wheel each time. Moreover, since these patterns are identified from a wide variety of existing negotiating agents(especially high impact ones), they can also improve the quality of the final systems developed. In addition, our methodology reveals what types of domain knowledge need to be input into the negotiating agents. This in turn provides a basis for developing techniques to acquire the domain knowledge from human users. This is important because negotiation agents act faithfully on the behalf of their human users and thus the relevant domain knowledge must be acquired from the human users. Finally, our methodology is validated with one high impact system

    Developing a labelled object-relational constraint database architecture for the projection operator

    Get PDF
    Current relational databases have been developed in order to improve the handling of stored data, however, there are some types of information that have to be analysed for which no suitable tools are available. These new types of data can be represented and treated as constraints, allowing a set of data to be represented through equations, inequations and Boolean combinations of both. To this end, constraint databases were defined and some prototypes were developed. Since there are aspects that can be improved, we propose a new architecture called labelled object-relational constraint database (LORCDB). This provides more expressiveness, since the database is adapted in order to support more types of data, instead of the data having to be adapted to the database. In this paper, the projection operator of SQL is extended so that it works with linear and polynomial constraints and variables of constraints. In order to optimize query evaluation efficiency, some strategies and algorithms have been used to obtain an efficient query plan. Most work on constraint databases uses spatiotemporal data as case studies. However, this paper proposes model-based diagnosis since it is a highly potential research area, and model-based diagnosis permits more complicated queries than spatiotemporal examples. Our architecture permits the queries over constraints to be defined over different sets of variables by using symbolic substitution and elimination of variables.Ministerio de Ciencia y Tecnología DPI2006-15476-C02-0

    Abstract Diagnosis for Timed Concurrent Constraint programs

    Full text link
    The Timed Concurrent Constraint Language (tccp in short) is a concurrent logic language based on the simple but powerful concurrent constraint paradigm of Saraswat. In this paradigm, the notion of store-as-value is replaced by the notion of store-as-constraint, which introduces some differences w.r.t. other approaches to concurrency. In this paper, we provide a general framework for the debugging of tccp programs. To this end, we first present a new compact, bottom-up semantics for the language that is well suited for debugging and verification purposes in the context of reactive systems. We also provide an abstract semantics that allows us to effectively implement debugging algorithms based on abstract interpretation. Given a tccp program and a behavior specification, our debugging approach automatically detects whether the program satisfies the specification. This differs from other semiautomatic approaches to debugging and avoids the need to provide symptoms in advance. We show the efficacy of our approach by introducing two illustrative examples. We choose a specific abstract domain and show how we can detect that a program is erroneous.Comment: 16 page

    Reusable Knowledge-based Components for Building Software Applications: A Knowledge Modelling Approach

    Get PDF
    In computer science, different types of reusable components for building software applications were proposed as a direct consequence of the emergence of new software programming paradigms. The success of these components for building applications depends on factors such as the flexibility in their combination or the facility for their selection in centralised or distributed environments such as internet. In this article, we propose a general type of reusable component, called primitive of representation, inspired by a knowledge-based approach that can promote reusability. The proposal can be understood as a generalisation of existing partial solutions that is applicable to both software and knowledge engineering for the development of hybrid applications that integrate conventional and knowledge based techniques. The article presents the structure and use of the component and describes our recent experience in the development of real-world applications based on this approach

    Querying a Polynomial Object-Relational Constraint Database in Model-Based Diagnosis

    Get PDF
    Many papers related to Constraint Databases (CDBs) theories exist, including proposals that present frameworks for the treatment of constraints as a new data type. Our proposal presents a new way of storing and manipulating constraints as a usual data, and of making queries about the constraint variables derived from an Object-Relational Constraint Database (ORCDB). In this work, the constraints stored in an ORCDB are only polynomial equality constraints. The proposal is based on Gr¨obner bases, constraint consistency and constraint optimisation techniques. Most works in CDB use spatial-temporal data as a case study, however this work presents an emergent engineering domain, that of fault diagnosis.Ministerio de Ciencia y Tecnología DPI2003-07146-C02-0

    Conceptual graph-based knowledge representation for supporting reasoning in African traditional medicine

    Get PDF
    Although African patients use both conventional or modern and traditional healthcare simultaneously, it has been proven that 80% of people rely on African traditional medicine (ATM). ATM includes medical activities stemming from practices, customs and traditions which were integral to the distinctive African cultures. It is based mainly on the oral transfer of knowledge, with the risk of losing critical knowledge. Moreover, practices differ according to the regions and the availability of medicinal plants. Therefore, it is necessary to compile tacit, disseminated and complex knowledge from various Tradi-Practitioners (TP) in order to determine interesting patterns for treating a given disease. Knowledge engineering methods for traditional medicine are useful to model suitably complex information needs, formalize knowledge of domain experts and highlight the effective practices for their integration to conventional medicine. The work described in this paper presents an approach which addresses two issues. First it aims at proposing a formal representation model of ATM knowledge and practices to facilitate their sharing and reusing. Then, it aims at providing a visual reasoning mechanism for selecting best available procedures and medicinal plants to treat diseases. The approach is based on the use of the Delphi method for capturing knowledge from various experts which necessitate reaching a consensus. Conceptual graph formalism is used to model ATM knowledge with visual reasoning capabilities and processes. The nested conceptual graphs are used to visually express the semantic meaning of Computational Tree Logic (CTL) constructs that are useful for formal specification of temporal properties of ATM domain knowledge. Our approach presents the advantage of mitigating knowledge loss with conceptual development assistance to improve the quality of ATM care (medical diagnosis and therapeutics), but also patient safety (drug monitoring)

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains
    corecore