
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla
Developing a labelled object-relational constraint database
architecture for the projection operator

María Teresa Gómez-López , Rafael Ceballos, Rafael M. Gasca, Carmelo Del Valle
University of Seville, Language and Computer Systems Department, ETS Ingeniría Informática s/n, Avd de Reina Mercedes,

41012 Sevilla, Spain
Keywords:
Constraint database architecture
Model-based diagnosis
Knowledge-based design methodologies
and tools
Query language
Query evaluation
the rectangle, but the constraint of Fig. 1b
mation stored in the database will be neit
of x and y will be stored in an intension
straightforward than if the extensional va
that represent relations between variables
a b s t r a c t

Current relational databases have been developed in order to improve the handling of
stored data, however, there are some types of information that have to be analysed for
which no suitable tools are available. These new types of data can be represented and trea-
ted as constraints, allowing a set of data to be represented through equations, inequations
and Boolean combinations of both. To this end, constraint databases were defined and
some prototypes were developed. Since there are aspects that can be improved, we propose
a new architecture called labelled object-relational constraint database (LORCDB). This pro-
vides more expressiveness, since the database is adapted in order to support more types of
data, instead of the data having to be adapted to the database. In this paper, the projection
operator of SQL is extended so that it works with linear and polynomial constraints and
variables of constraints. In order to optimize query evaluation efficiency, some strategies
and algorithms have been used to obtain an efficient query plan.

Most work on constraint databases uses spatiotemporal data as case studies. However,
this paper proposes model-based diagnosis since it is a highly potential research area,
and model-based diagnosis permits more complicated queries than spatiotemporal exam-
ples. Our architecture permits the queries over constraints to be defined over different sets
of variables by using symbolic substitution and elimination of variables.
1. Introduction

Relational databases have numerous utilities for classic data such as Integer, Date and String. However, there are types of
data that cannot be handled nor stored in current relational databases in an easy way, thereby it is necessary to look for other
alternatives. These complex types of data are those where the information is very large or even infinite, since it describes the
relation between a group of variables. Fig. 1 shows two different examples where the values of variables x and y are infinite,
hence it is necessary to define a way to store a representation of this data. Fig. 1a can be represented using the four corners of
 cannot be stored in this way. If only some values of Fig. 1b are selected, the infor-
her complete nor accurate. If the information is stored as constraints, all the values
al way, since the representation and visualization of the information are more
lues are stored. These constraints make it easier and more precise to handle data
 which cannot be stored in a classic relational database.

https://core.ac.uk/display/299807123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mayte@lsi.us.es
mailto:ceballos@lsi.us.es
mailto:gasca@lsi.us.es
mailto:carmelo@lsi.us.es
http://www.lsi.us.es/~mayte
http://www.lsi.us.es/~ceballos
http://www.lsi.us.es/~gasca
http://www.lsi.us.es/~carmelo
http://www.lsi.us.es/~carmelo
http://www.sciencedirect.com/science/journal/0169023X
http://www.elsevier.com/locate/datak

X

Y

ℜ∈
≤≤∧≤≤

yx

xy

,

4251

ℜ∈
≥∧≤+

yx

yxyx

,

1*422

a b

Fig. 1. Examples of constraints.
The applications in which the information can be represented by constraints are very common in engineering and indus-
trial activities, for example in CAD/CAM (computer-aided design and manufacturing) [53], GIS (geographic information sys-
tems) [48], scientific data [24], and medical data [14], among others. In these cases, there is a great quantity of data that
cannot be stored in an extensional way because infinite tuples of values would be produced. A method for handling the infor-
mation of these applications has been approached by constraint databases (CDBs), since CDBs allow the storage of con-
straints in a database. The problem is that there are no solutions that allow constraint data to be handled with the same
versatility as classic information. By using constraints to store the relation between variables it is possible to represent both
intensional and extensional information. It entails storing constraints directly in a database and offering a way to answer
queries about constraints whilst simultaneously permitting classic data to be accessed.

Although there are important and interesting proposals in the CDB field, there are aspects that can be improved in rela-
tion with the projection operator and the execution time for its evaluation. We have improved some ideas, such as that intro-
duced by Veltri [55]. Veltri proposed storing the box consistency of the variables for each constraint to improve the
computational time, but our proposal is more general since the solution of Veltri works only with linear constraints, and
the box consistency is stored combined with the constraints. Our solution extends the use of polynomial constraints and pro-
poses another way to store the box consistency in a classic field, as explained in the following sections. For this reason, an
extension of SQL for the treatment of constraints as a new data type is presented together with the architecture which sup-
ports it. This paper presents a new architecture named labelled object-relational constraint database (LORCDB) which stores
the constraints as objects in a relational database which are labelled depending on their types. These labels determine which
technique is more appropriate in order to evaluate the queries. Moreover, different optimizations are presented in order to
improve the computational complexity.

There are five primitive operations defined in relational algebra for classic information. These operations are: selection,
projection, Cartesian product, union and difference. A selection over a relation obtains a horizontal subset of tuples where a
condition is satisfiable, thereby if the relation is formed by constraints it is necessary to adapt the type of conditions over
constraints and the method of evaluation. For union and difference operations two relations are combined vertically into
a new relation. For both operators it is necessary to compare the different tuples to know if there are shared solutions
and to adapt them for constraint information. Finally, the Cartesian product makes a concatenation between two relations,
and its behaviour is equal to that in classic relational algebra.

In this paper, only the projection operator is redefined for constraint data, since it has specific and significant problems
that have to be analysed. The rest of the operators will be studied in future work. The projection operator obtains a vertical
subset of attributes of a relation. When constraint information is stored in a relation, it means that a set of the variables that
form the constraints can be obtained. These variables can be represented in a symbolic way as a new relation or as the pos-
sible values that these variables represent in a extensional way.

In order to evaluate the different queries about constraint information related to the projection, sometimes it is necessary
to create constraint problems as constraint satisfaction problems, constraint optimization problems and symbolic variable-
elimination problems. These problems are created dynamically according to the query and they are solved using different
techniques: Gröbner Bases algorithm; cylindrical algebraic decomposition algorithm, constraint satisfaction problem solver
or constraint optimization problem solver. In the proposed architecture all these techniques are combined in order to rede-
fine the projection operator for CDBs. In order to develop this architecture several techniques that allow the evaluation of the
queries have been used, and since these techniques can be computationally difficult, some improvements are presented such
as the indexation between variables and constraints; labelling the constraints according to their types, in order to combine

them in an efficient way; looking for the constraints related to the query; using heuristics to solve constraint satisfaction
problems; and using relational and object-oriented paradigms.

Although our architecture can be used for any type of problem which involves linear or polynomial constraints, in this
work model-based diagnosis is employed since it has many industrial utilities, such as with hardware and software compo-
nents, industrial plants and vehicles. Another reason for using model-based diagnosis is that very complex problems can be
defined, where many variables can participate. Hence, it implies that very different types of queries can be defined which
require different procedures for their evaluation, while spatiotemporal problems are defined over only four dimensions
(height, width, length and time). This work is organised as follows: Section 2 presents some definitions about constraint dat-
abases and analyses previous work on CDBs. Section 3 gives some definitions necessary for the explanation of model-based
diagnosis, which is the case study used in this paper. Section 4 shows a new definition of CDB, the query language to create
and query a LORCDB and the proposed architecture. Section 5 explains how a query is evaluated. Section 6 presents some
examples to show how the models are created in order to evaluate the queries by using the different techniques for the dif-
ferent types of projection. Section 7 presents some examples of queries and their average evaluation times, and shows how
the use of our architecture improves the computation time for the different projections over constraints. Finally, conclusions
and future work are presented.
2. Background

Constraint databases were initially developed in 1990 with a paper by Kanellakis et al. [37], and were extended through
research on a query language which is a subset of Prolog from the syntactical point of view (Datalog [9]) and through con-
straint logic programming (CLP) [35,36]. However, Datalog and Prolog differ in their semantics, whilst Prolog uses a depth-
first search method, Datalog uses breadth-first search strategy which returns answer sets. These paradigms were used to
define the first constraint databases, and created a new research area [46,47]. The basic idea behind the CDB model is to gen-
eralize the notion of a tuple in a relational database to a conjunction of constraints, since a tuple in relational algebra can be
represented as an equality constraint between an attribute of the database and a constant.

Many database applications have to deal with an enormous quantity of data which can be even infinite such as time and
space. However, databases have a finite capacity. Constraints represent the relation between different variables, thereby they
can be used to represent an infinite group of values of variables in a compact way, with only one appropriate expression.

2.1. Constraint databases definitions

Before starting the explanation of some of the most important prototypes developed in the constraint databases, some
modified definitions from [20] are necessary.

Definition 2.1 (Vocabulary). A vocabulary X consists of three sets: a set F of function symbols, a domain of values D and a
set P of predicate symbols. The sets of functions and predicates have an associated arity. For example the vocabulary
X = ({+, �}, {0,1}, {<}) has two function symbols of arity two (+, �), one predicate symbol with arity two (<), and two constant
symbols 0 and 1.

Definition 2.2 (First-order logic over X). Terms are defined inductively as a variable, or a value v 2 D, or f ðt1; . . . ; tnÞ where
f 2F is of arity n, and t1; . . . ; tn are terms.

Definition 2.3 (Atomic formula). This has the form t � t0 or pðt1; . . . tnÞ, where t, t0, t1; . . . ; tn are terms, and p 2 P is an n-ary
predicate.

A formula can be an atomic formula, or a Boolean combination of atomic formulas. In our case, if u and w are formulas,
then (u ^ w) and (u _ w) are also formulas.

Definition 2.4 (Constraint). Let X be a vocabulary, thereby a constraint over X is a first-order formula over X, and is also
called an X-constraint.

The previous definitions can be expressed with the following grammar:

Constraint:= Atomic_Constraint BOOL_OP Constraint
j Atomic_Constraint
;

BOOL_OP:=’_’j ’^’
;

Atomic_Constraint:= function PREDICATE function

;

function:= Var FUNCTION_SYMBOL function

j Var

j Value
;

PREDICATE:=’ =’j ’<’j
;

FUNCTION_SYMBOL:=’+’j ’-’j ’*’
;

The constraint types permitted in our architecture are based on [36,11], and are:

� Linear equality constraints: These are constraints over the vocabulary X ¼ ðfþg; fDg; f¼gÞ, where D can be N, Z or R. Such
constraints are of the form p ¼ 0, where p is a linear function of the form a1x1 þ � � � þ ajxj þ a0, where ai is a coefficient
belonging to the domain D, and xi is a variable.

� Polynomial equality constraints: These are constraints over the vocabulary X ¼ ðfþ; �g; fDg; f¼gÞ, where D can be N, Z or R.
Such constraints are of the form p ¼ 0, where p is a polynomial with coefficients belonging to the domain D.

� Linear inequality constraints: These are constraints over the vocabulary X ¼ ðfþg; fDg; f<gÞ, where D can be N, Z or R. Such
constraints are of the form p > 0 or p 6 0, where p is a linear function of the form a1x1 þ � � � þ ajxj þ a0 with coefficients
belonging to the domain D.

� Polynomial inequality constraints: These are constraints over the vocabulary X ¼ ðfþ; �g; fDg; f<gÞ, where D can be N, Z or
R. Such constraints are of the form p > 0 or p 6 0, where p is a polynomial with coefficients belonging to the domain D.
Definition 2.5. Constraint database modelGiven a vocabulary X:

� A constraint k-tuple, with the variables x1; . . . ; xk, over X, is a finite conjunction u1 ^ � � � ^uN , where each ui ð1 6 i 6 NÞ is
an X-constraint. The variables of each ui are all contained in x1; . . . ; xk.

� A constraint relation of arity k, over X, is a finite set r ¼ fw1; . . . ;wMg, where each wi ð1 6 i 6 MÞ is a constraint k-tuple over
the same variables x1; . . . ; xk. The corresponding formula is the disjunction w1 _ � � � _ wk. This formula is represented in a
relation as different tuples, where each wi forms a constraint k-tuple.

� A constraint database is a finite collection of constraint relations. An example of a constraint relation is presented in Fig. 2.
2.2. Related work

There are several important proposals for implementing and building prototypes for CDBs. The most important proposals
are analysed below:

� DISCO [8] (DATALOG with Integer Set COnstraints) is a CDB system which implements Datalog with Boolean constraints on
variables that range over finite and infinite sets of integers. The constraints in DISCO are stored in a file using facts and
rules, thereby the advantages of relational databases are not used, despite the fact that a lot of research about relational
databases have been published over the years, such as in the design of large-scale databases and concurrent access. The
syntax of DISCO is very similar to that of Datalog, and very different from the standard SQL. DISCO is presented as an
extensible system where the Boolean algebra can be modified by replacing some operators in a non-complicated way.

� MLPQ/PReSTO [49,48] presents a combination of MLPQ (Management of Linear Programming Queries) and PReSTO (Para-
metric Rectangle SpatioTemporal Object). MLPQ is a system to manage and query linear constraints in a CDB. It allows
Datalog queries and the addition of operators over linear functions. PReSTO enables query systems which change over
time, with similar semantics to that of classic relational algebra. Although both present a similar SQL syntax, they actually
use a plain text to store the information and a query transformation process into Datalog.
constraint
relation

2)5()5(1)4()4(

...

628)1()1(

1*4)1(4

2222

22

2222

≤−+−∧≤−+−
∨

∨
<+∧≤++−

∨
<∧≤++∧≤+

yxyx

yxyx

yxyxyx

constraint
k-tuple

Fig. 2. An example of a constraint relation.

� DEDALE [31] is an implementation of CDBs based on linear constraint models. DEDALE proposes a language to query CDBs,
which permits information to be obtained by using a graphical interface to show the results. In order to represent the con-
straints, DEDALE uses the object-oriented paradigm, which is an appropriate way to represent complex data. The disad-
vantage in this proposal is that all the information is stored as objects, therefore, does not take advantage of relational
algebra.The syntax of DEDALE is very different from standard SQL, and therefore, any user of the system must learn
another language, which is a great disadvantage.

� CCUBE [5] (constraint comprehension calculus) is the first constraint object-oriented database system. The CCUBE system
was designed to be used for the implementation and optimization of high-level constraint object-oriented query lan-
guages. The CCUBE data manipulation language, constraint comprehension calculus, is an integration of constraint calcu-
lus for extensible constraint domains within monoid comprehension. CCUBE serves as an optimization-level language for
object-oriented queries. The data model for the constraint calculus is based on Constraint SpatioTemporal (CST) objects.
CCUBE guarantees polynomial time data complexity whose implementation uses the linear programming package CPLEX
developed by Bixby et al. [4]. CPLEX allows both integer programming and very large linear programming problems to be
solved.

� CQA/CDB is a CDB prototype whose constraints are linear over rational coefficients [27,28]. This solution uses only linear
constraints in order to represent and process the information, since it studies the spatiotemporal area, whose data can be
approximated with linear constraints. The constraint tuples are represented by a matrix of coefficients. In this prototype,
queries are based on relational operators, and look similar to SQL; however, there are numerous syntactic and semantic
differences to the standard. CQA/CDB does not allow new constraints to be inferred by using the constraints stored in the
CDB.

The different characteristics are shown in Table 1. The main disadvantages of the proposals mentioned are:

� None of these prototypes offers a versatile solution for any type of application, neither do they offer a general solution
independent of the nature of the problem domain. Most of these prototypes are developed to work with spatiotemporal
data such as [21,54], since the domain is specific. In this paper, model-based diagnosis is used since it has some charac-
teristics which are different from the spatiotemporal information.

� There are many query languages whose syntax are very different to SQL, whereby the user needs to learn a new language.
Sometimes this syntax is focused on the application of CDBs, frequently in the spatiotemporal domain.

� Proposals, such as MLPQ, do not use relational databases, therefore, they have worse execution times than solutions based
on relational databases. Some of these proposals are based on deductive databases whose disadvantages of consistency
were analysed in [42]. A lot of experiences and theories in relational databases have improved the retrieval of data using
indexation, clustering and hashing. All of them have been included in commercial relational databases managements, but
not when deductive databases are used.

� These proposals only handle linear constraints, since, for spatiotemporal problems, this type of constraint is good enough
to approximate the problem, and solving linear constraint problems is more efficient than for polynomial constraints. This
approximation is inappropriate for other applications where more precision is necessary.

� None of these prototypes defines constraints as a new type of data, and although some of them use the object-oriented
paradigm, they do not distinguish between discrete and continuous information, and hence are unable to exploit the rela-
tional algebra in any of these aspects.

� These proposals are not focused on handling several variables simultaneously. Although work such as [20,39,10] analyses
the projection operator over the variables of a constraint by using quantifier elimination, there are no proposals that
define the projection over a set of constraints with different variables which generate new constraints by using variable
substitution techniques. This type of projection is necessary in applications such as model-based diagnosis, whose details
are explained in the next section.
3. Model-based diagnosis: a new application domain for CDB

Most work on constraint databases uses spatiotemporal data as case studies, however, this paper proposes model-based
diagnosis since it is a highly potential research area. The use of model-based diagnosis permits the enrichment of both the
Table 1
Characteristics of the CDB prototypes

Logic model Logic Progr. SQL syntax Constraint type Any application Multiple variables

MLPQ/PReSTO File Datalog Yes Linear No No
DISCO File Datalog No Linear No No
DEDALE BDOO No Yes Linear No No
CCUBE BDOO No Yes Linear No No
CQA/CDB ? No Yes Linear No No
LORCDB BDOR No Yes Linear and polynomial Yes Yes

type of constraints stored and queries about them, by defining problems that are more complicated than spatiotemporal
examples.

Fault detection and identification of faulty components are very important from the strategic point of view of companies
due to the economic demands and environment conservation required to remain in competitive markets. This paper pro-
poses storing and handling all the information related to the model-based diagnosis process in a CDB, and also helps in fault
detection. In engineering applications, such as model-based diagnosis, the storage of these data and the query processing are
often overlooked. Although spatiotemporal problems are the normal field of study in CDBs, model-based diagnosis is a very
good example since it is possible to use a great number of variables while spatiotemporal problems are defined over only
four dimensions (height, width, length and time). Furthermore, the use of model-based diagnosis also proves that CDBs
can be used in other types of applications.

Model-based diagnosis allows the identification of failures in a system, and by using CDB technology it is possible to make
information of the models readily available. Model-based diagnosis began in the 1980s with the DX proposal in [16,43,38].
These papers were developed in order to discover the discrepancies between the observed and correct behaviour of a system.

Constraint satisfaction problems have sometimes been used in discrete model-based diagnosis [52,50]. The relation be-
tween the components is equal to the network of related constraints defined in [40], although in our proposal the compo-
nents have been modelled as constraints and the links between the components are their shared variables.

In order to clarify the necessity of using the projection operator in some scenarios, the following definitions on model-
based diagnosis are required. These definitions can be explained by means of a simple example shown in Fig. 3. The example
presents a set of components, multipliers (Mi), and adders (Ai), which work together and where the sensors are located in the
variables a, b, c, e, d, f and g.

Definition 3.1. (System polynomial model (SPM)). This can be defined as a finite set P of linear or polynomial equality
constraints which determines the system behaviour. This set is created by using the relation between the non-observable
system variables ðVnobÞ and the observable variables ðVobÞ which are directly obtained from sensors which are assumed to
work correctly. An SPM is formed by the tuple fP;Vob;Vnobg.

Definition 3.2. (Context set (CS)). Any subset of components which composes the system. There are 2nComps � 1 possible con-
text sets, where nComps is the number of components of the system.

Definition 3.3. (Context analytical redundancy constraint (CARC)). A constraint derived from the system in such a way that
only the observable variables are related. By using CARCs, the diagnosis process is made easier, since a new system with only
observable variables is created. In the example of Fig. 3 the CARCs are:
� CARC1 ff ¼ a � c þ b � dg, generated with the constraints of the components fM1;M2;A1g.
� CARC2 fg ¼ b � dþ c � eg, generated with the constraints of the components fM2;M3;A2g.

� CARC3 ff � g ¼ a � c � c � eg, generated with the constraints of the components fM1;M3;A1;A2g.
Definition 3.4. (Observational model (OM)). A set of tuples of values for the observable variables of the system. The CARCs are
formed of only variables with sensors, meaning that the values of an OM can be substituted in a CARC. If a CARC is satisfiable
for an OM and there is no fault compensation, this means that the components associated with the constraint work correctly.
Otherwise, if the CARC is unsatisfiable, then it is known that at least one component of the CS is not working correctly.

For example, for the OM {a = 1, b = 2, c = 2, d = 3, e = 2, f = 9, g = 11}, CARC1 and CARC2 are unsatisfiable. It means that at
least one component of fM1;M2;A1g and another of fM2;M3;A2g are failing. A solution of the diagnosis in this case is that the
component M2 is failing.

A system composed of components that can be handled by the projection operator of the relational algebra adapted to the
constraints, has the following characteristics:

� Obtaining some values of a correct behaviour of the system is similar to performing a projection where the values of some
of the variables of the constraints are obtained.

� To obtain the CARCs of a system means obtaining the same constraints represented only by a set of variables. This idea is
similar to that of the projection operator, where only a set of attributes are obtained. The main difference is that in CDB the
attributes can be variables.
M1

M2

M3
A2

A1

a
b

c
d

e

x

y

z

f

g

Fig. 3. Fault diagnosis toy example.

� Deducing whether a constraint is satisfiable is similar to obtaining a constraint using a projection where the variables are
instantiated.

In the following sections, the methodology for adapting the projection operator for constraints and their variables is ex-
plained. Using our SQL extension over constraints makes it possible to obtain several constraint models depending on the
query, which can be compared to real values in order to perform the diagnosis of the system. The location of sensors defines
which variables are observable, while the remaining variables are non-observable.

4. A new definition of CDB

In order to differentiate between the intensional or extensional information in a relation of a CDB, the definition of CDB is
changed in this paper as follows.

Definition 4.1 (Revision of the CDB model).

� A constraint k-tuple with the variables x1; . . . ; xk over the vocabulary X is a finite conjunction u1 ^ � � � ^uN where each ui,
for 1 6 i 6 N, is either a constraint such that fxj ¼ Constantg, where xj 2 fx1; . . . ; xkg, called Classic Attribute, or an X-con-
straint over the variables x1; . . . ; xk which do not correspond to a classic attribute, called Constraint Attribute.

� A constraint relation is defined as a finite set of Classic Attributes and Constraint Attributes. A constraint relation of arity k, is a
finite set of r ¼ fw1; . . . ;wMg, where each wj for 1 6 j 6 M is a constraint k-tuple over fx1; . . . ; xkg. The corresponding for-
mula is the disjunction w1 _ � � � _ wM , such that wj ¼ u1 ^ � � � ^uN for each ui is a constraint k-tuple, where 1 6 i 6 N . If in
each wj 2 r there is a ui such that fx ¼ Constantg, where x is the same variable in all ui belonging to different wj, and x does
not appear in the rest of the ui of the same wj, then the x variable is a classic attribute, while the rest of the variables belong
to constraint attributes.
In Fig. 4, the relationship between a constraint relation and a constraint k-tuple is presented. A relation has classic attri-
butes if and only if:

uij is a ui 2 u1 ^ � � � ^uN and wj 2 w1 _ � � � _ wM , such that wj ¼ u1j ^ � � � ^uNj, then a constraint relation will have a classic
attribute ðxÞ if:
9uij � 8j 2 1 . . . Mj i 2 1; . . . ;N; fuij � x ¼ cjg;
^ 8t 2 1; . . . ;N ^ t–i ^utjðx1; . . . ; xkÞ ^ x R fx1; . . . ; xkg;
where cj is a constant, M the number of tuples and N the number of attributes (columns).

This implies that if an equality relation exists between a variable and a constant (the same variable in all tuples) in all
constraint k-tuples, and that if this variable does not appear in another constraint attribute, then this variable is a classic
attribute, since this variable follows the relational algebra defined by Codd.

An example is presented in Fig. 5, where the constraint relation is composed of a constraint attribute and two classic attri-
butes. In the example, there are two variables (x and y) that appear in all the tuples which have an equality relation with a
constant, and do not appear in the rest of the attributes.

� Therefore, a constraint database is a finite collection of constraint relations composed of classic and constraint attributes.

Derived from the previous definitions, it is necessary to enlarge the types of attributes for CDBs. We define three types of
attributes:
Constraint
Relation

mψ

ψ

ψ

∨

∨

∨

...

2

1

nmmm

n

n

ϕϕϕ

ϕϕϕ

ϕϕϕ

∧∧∧
∨

∨
∧∧∧

∨
∧∧∧

...

...

...

...

21

22212

12111

Constraint
k-tuple

Fig. 4. Representation of constraint k-tuple and constraint relation.

� Classic attribute ðatiÞ: ati belongs to the n-tuples of a relation ð1 6 i 6 nÞ, where ati is of a type permitted by standard SQL,
for example Integer, String, Date, etc. This type of attribute can be represented as a constraint such as {ati = constant}, since
relational databases only permit attributes with atomic values.

� Constraint attribute ðatc
i Þ: atc

i belongs to the n-tuples of a relation where atc
i is of constraint type defined as a constraint k-

tuple with the variables v1 � � � vk, over a vocabulary X. A constraint attribute represents a relation between the set of vari-
ables v1 � � � vk. For our proposal a constraint relation is formed by classic and constraint attributes.

� Constraint-variable attribute ðatc
i � vjÞ: vj is a variable which belongs to a constraint attribute atc

i . This attribute is repre-
sented by:

hConstraint_column_namei�hVariable_namei.
where hVariable_namei is not an attribute, but is a variable of a constraint stored as a value inside the column Name
of the table Variables. A column of the database (constraint attribute) can have several constraints, and these con-
straints can be defined over different variables.

In order to give support to the definitions of constraint k-tuple, constraint relation and CDB, and to enable the use of the
projector operator over the new attributes, we propose a new language and an architecture called labelled object-relational
constraint database (LORCDB).

4.1. CORQL: constraint object-relational query language

This section shows the syntax of the language to create, query and fill a LORCDB, whereas the following sections present
the details about the architecture. Some implementation decisions have been proposed for the improvement of average eval-
uation query time of the queries, for the accessibility to information and for the flexibility in the storage when dealing with
different types of data.

In this work, the projection operator is revised since it is a vertical subset of a relation. For CDBs the projection can obtain
a subset of constraints or a subset of variables of a set of constraints, which makes it necessary to define this type of query a
new way. The semantics of SQL has been extended whilst changing the syntax of the queries as little as possible. In order to
facilitate the handling of constraints by inexpert users, we propose a new language CORQL (constraint object-relational
query language), developed to facilitate the relation between the user and the system for the projection operator. Since
one of the most important aims of our proposal is to make the utilisation of constraints transparent to the user, therefore,
the language CORQL maintains very similar syntax to SQL. CORQL is a superset of SQL, where new syntactical constructors
are added in order to handle constraint data. This expansion is based on the addition and querying of constraint information.

4.1.1. Creating a LORCDB
In order to create a LORCDB the following sentence is used:

CREATE LORCDBhdatabase_namei

The constraints used in the architecture are numerical, and are stored as objects indexed by the variables contained within,
hence, when a LORCDB is created, three auxiliary tables are also automatically created (Constraints, Variables and Constraints/
Variables) which relate each constraint with its variables. These tables, shown in Fig. 6, improve the computation time of
obtaining the constraints related to the variables of a projection. There are studies [30] that improve the compilation time
for the query which handles the constraints, whereas our proposal focuses on the improvement in running time. These tables
make it unnecessary to study all the constraints for a query. The Constraints/Variables table can also store the minimum and
maximum value of each variable for every constraint, which is the box consistency for each variable [29] obtained by creating
and solving a COP combined to interval arithmetic [3]. These tables are not directly accessible to the users, however, these
tables implicitly change according to the constraints added to or removed from the LORCDB. The table Constraints stores
the idConstraint, which is the object identification (OID) generated by the system, and the Label according to the type of con-
straint, in order to decide which technique will be used to handle the constraint. The table Variables stores the names of the
univaluate
attributes

589

72*37

3135

825

=++∧=∧=
<+∧>∧=∧=

<+∧>−+∧=∧=
<+∧>+∧=∧=

cbayx

adcdyx

aecbayx

adcbayx
x y Constraint

5 2

5 3

7 3

9 8

8<+∧>+ adcba

31 <+∧>−+ aecba

72* <+∧> adcd
5=++ cba

Constraint
attributes

for a , b , c , d , e : N atural

Fig. 5. Example of constraint relation with constraint k-tuples.

variables, their identification and their type (Integer, Natural or Float). The users cannot see nor modify the indexes in order to
prevent the database from changing information without control. These internal tables are just used to speed up the evalu-
ation of the queries in order to obtain the constraints related to each query. These indexes are updated when constraints are
added, and they are created and stored in an implicit way in order to locate constraints more quickly and efficiently.

4.1.2. Creating and inserting information into a table
As our proposal tries to modify SQL syntax as little as possible, the syntax is not modified at all for the creation of a table.

The only change is that it is now possible to create constraint fields as constraint type. It is also possible to create a table with
several columns of constraint type.

For the example shown in Fig. 3, the sentence is:

CREATE TABLE Component(IdComponent Integer,
Name String, Behaviour Constraint)

If a field of a table has been created as constraint type, it is possible to add constraint information to this table. Therefore,
if the user tries to add information in a field of an incorrect type, an error will be produced as in a common relational data-
base. The checking of the type is performed as for usual types.

The constraint objects are stored as syntactic trees, where the internal nodes can be comparator operators (=, <, 6, > or P),
Boolean operator (^), or arithmetic operators (+, � or *). The leaves of the trees are the variables and constants of the con-
straint. This means that any logical combination of equations and inequations of constraints, as defined in the grammar of
Section 2, can be represented as a syntactic tree. When a constraint is added it is also possible to define the type and range of
its variables. If the range of a variable is not specified, by default it is defined as {Integer.MIN_VALUE..Integer.MAX _VALUE}
for Integer variables, {0..Integer.MAX_VALUE} for Natural variables, and {Float.MIN_VALUE..Float.MAX_VALUE} for Float
variables, values provided by the language JavaTM which is used to implement CORQL.

The syntax to insert a constraint (according to Definition 2.4) is:

{hConstrainti,

(htypei [hMin_Valuei..hMax_Valuei] hvariablei, . . .)}

In order to store the example shown in Fig. 3 in a LORCDB, a sentence can be:

INSERT INTO Component(IdComponent, Name, Behaviour) VALUES
(101,’A1’, { xþ y ¼ f , (Float 0..100 x, Float 3..50 y, Float f)})

There are four types of constraint labels: linear equality (LinEQ), linear inequality (LinIEQ), polynomial equality (PolEQ)
and polynomial inequality (PolIEQ). The labels help to decide which tool is more appropriate to solve the constraint problem
that will be created depending on the query.

4.1.3. Querying a labelled object-relational CDB
An attribute of a relation can be a constraint, and a constraint is a relation of variables. Thereby it is necessary to analyse

the new queries permitted by our architecture, and hence a new type of data and a new way to query this data are proposed
here. According to the new attributes, we propose an extension of the functionality of the projection operator when the
information involved in the query is a constraint. This operator is analysed below, and we study how it is affected when
working with constraint information.

The projection operator has the signature R1 ¼ pða1 ;...;anÞðR2Þ, where R1 and R2 are relations and ða1; . . . ; anÞ are attributes.
Relation R1 is a vertical subset of the relation R2, and is composed of only the specified attributes and without duplicated
tuples. Some examples for model-based diagnosis can be the following queries, that use the projection operator for the dif-
ferent types of attributes:

(1) pðat1 ���atnÞðRÞ. What is the identifier of component A1? This type of query is the one efficiently analysed by classic rela-
tional algebra.

(2) pðatc
1 ���atc

nÞðRÞ. Obtain the attribute Behaviour of relation Component, where Behaviour is of constraint type. As defined in
Definition 4.1, a constraint k-tuple is formed by a conjunction of X-constraints, thereby it can only be formed by ^ as a
Boolean operator. In order to represent the _ operator, the constraints will be stored in different tuples that represent
the OR operator.

(3) pðatc
1 �v1 ���atc

1 �vk ���atc
n �v1 ���atc

n �vkÞðRÞ. Obtain 20 values of variables a, c, d, e and f for the attribute Behaviour of relation Component.
Constraints/Variables
(k)IdConstraint: int
(k)IdVariable: int
Range_Inf: number
Range_Sup: number

Variables

(k)IdVariable: int
Name: String
Type: String

Constraints

(k)IdConstraint: int
Constraint: Object
Label: String

1..1

 1..n

1..n

 1..1

Fig. 6. Database tables to index constraints and variables.

It is only necessary to redefine the syntax of the projection over constraint-variable attributes ðatc
i � vj), and there are two

different ways to obtain the evaluation of this type attribute, either in an extensional or in an intensional form. It will be
possible to obtain tuples of satisfiable values of the variables, or to obtain the symbolic relation of the variables as new con-
straints inferred from the original constraints with only those variables that appear in the projection.

In order to carry on the symbolic projection over variables of constraints, a new type of query is defined. When a user of
the LORCDB wants to obtain a set of variables in a symbolic way, the following syntax is used:

SELECT CONSTRAINTS(atc
1 � v1; . . . ; atc

1 � vk; . . . ; atc
n � v1; . . . ; atc

n � vk) FROM hTablei

If it is possible, a new set of constraints formed by only the variables of the projection is inferred, using symbolic-elim-
ination techniques based on existential quantifier elimination. This quantifier has been analysed in [45], where it is defined
that a conjunction of constraints over the variables x1; . . . ; xi; . . . ; xn can be transformed into another constraint by eliminat-
ing xi if and only if there is an S* such that S� ¼ 9xiS.

In order to carry on the numeric projection over variables of constraints, two different queries are defined. When a user of
the LORCDB wants to obtain a group of values of variables, the following syntax is used:

SELECT VALUES[n](atc
1 � v1; . . . ; atc

1 � vk; . . . ; atc
n � v1 � � � atc

n � vk) FROM hTablei
where n is the number of tuples of values that the user wants to obtain for the variables of the projection, since it is pos-
sible that the number of solutions will be infinite.

Some aggregate functions are also revised for constraints in our proposal. An aggregate function takes a set of tuples (a
relation) as an argument and produces a single value (usually a number) as a result. The main functions are COUNT, SUM,
AVG, the MIN and MAX. For our language CORQL, only the MIN and MAX functions are extended in order to obtain the max-
imum or minimum value of a variable, whereas the rest of the aggregate functions will be studied in future work. The
syntax of the MIN and MAX functions to obtain the minimum or maximum value of the variable vj in the constraint attri-
bute atc

i is:

SELECT [MAXjMIN] VALUEðatc
i � vjÞ FROM hTablei
4.2. Computational techniques

In order to evaluate and obtain the outputs of the types of projection operator presented above, different techniques are
used. These techniques are divided into two different families: symbolic techniques (Gröbner Bases and cylindrical algebraic
decomposition), used in order to obtain new symbolic constraints; and numeric techniques (constraint satisfaction and con-
straint optimization solvers), used in order to obtain values of variables. Gröbner Bases are used for equality constraints,
while cylindrical algebraic decomposition is used for quantifier elimination when inequality constraints are involved. Some
of their characteristics are explained in the following subsections.

4.2.1. Gröbner Bases
One of the most promising schemes to solve systems of polynomial equality equations is Gröbner Bases. Gröbner Bases

theory is the origin of many symbolic algorithms used to manipulate multiple-variable polynomials. This scheme is a gen-
eralization of Gauss’s elimination of multivariable linear equations and of Euclides’s algorithm for one-variable polynomial
equations.

Using Gröbner Bases makes it possible to transform a set of polynomial constraints into a standard form. Let the set of
polynomial equality constraints be in the form P ¼ 0, hence Gröbner Bases theory allows an equivalent system G ¼ 0 to
be obtained, which has the same solutions as the original but is easier to solve. Gröbner Bases have better computational
properties than the original systems.

An easy example of Gröbner Bases is: By using the equations {a + b = c, d + e = f,c * f = g}, obtain a new constraint where
only the variables {a,b,d,e,g} are presented. Here the solution is {g � (a + b) * (d + e) = 0}.

The Buchberger algorithm [7] was the first algorithm for computing such Gröbner Bases. The first improvement was re-
lated with strategies during Gröbner computation (F4 [23]). Another open issue was to remove useless computations, which
was precisely the goal of Faugère [22] in order to give a theoretical and practical answer.

In general, the complexity of the Gröbner Bases algorithm is high, exponential according to the number of variables in the
worst case, however, it is the best known method for symbolic substitution. For this reason, in this paper, we propose an
algorithm which uses Gröbner Bases the fewest number of times possible.
4.2.2. Cylindrical algebraic decomposition
The quantifier elimination for inequality constraints is based on cylindrical algebraic decomposition. It is a technique

used in the study of topological properties of semi-algebraic sets, which decomposes the space into a number of regions,

-1 -1/2 0

X

y

Fig. 7. Cylindrical algebraic decomposition example.
in each of which the equations and inequalities have the same sign (positive or negative). In this work, cylindrical decom-
position is used to eliminate variables of a group of polynomial inequality constraints. More details can be found in [1,6,2].

The cylindrical algebraic decomposition returns inequality constraints whose borders involve algebraic functions. In or-
der to explain these ideas, the example shown in Fig. 7 is used.

In the example of Fig. 7, the following constraints are represented:
ðx2 þ y2 < 1Þ and ððxþ 1Þ2 þ y2 < 1Þ:
The first constraint is represented by a circumference centred at (0,0) of radius 1, and the second constraint by another cir-
cumference, also of radius 1, but centred at (�1,0).

If cylindrical algebraic decomposition is performed over variable x, then the cells shown in the figure as discontinuous
lines are created. These divisions are formed depending on the value of x where both constraints have the same y value,
which leads us to perform an analysis of these points. In this case the following new constraints are obtained:
� 1 < x < �1=2 ^ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

< y <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

_
� 1=2 < x < 0 ^ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� x2
p

< y <
ffi
�2x� x2
p

:

The quantifier elimination over variable y can separate the part of the constraint where only x is involved, and yields:
�1 < x < 0:
These constraints define the intersection of the original constraints. The major problem with cylindrical algebraic decom-
position is the complexity, since the complexity of the algorithm is double exponential according to the number of cells. This
problem has been analysed in order to improve the computational time [12,6,13,51]. In the same way as when Gröbner Bases
are used, an algorithm is developed in order to avoid using cylindrical algebraic decomposition when it is not necessary. An-
other problem has to be considered when the quantifier elimination is used, since it is not always possible to obtain a solu-
tion over integer or natural domains [33].

4.2.3. Constraint satisfaction problems and constraint optimization problems
Constraint satisfaction problems (CSPs) represent a reasoning framework consisting of variables, domains and con-

straints. Formally, it is defined as a triple hX,D,Ci where X ¼ fx1; x2; . . . ; xng is a finite set of variables, D ¼ fdðx1Þ;
dðx2Þ; . . . ; dðxnÞg is a set of domains of the values of the variables, and C ¼ fC1;C2; . . . ;Cmg is a set of constraints. Each con-
straint Ci is defined as a relation R on a subset of variables V ¼ fxi; xj; . . . ; xkg, called the constraint scope. The relation R
may be represented as a subset of the Cartesian product dðxiÞ � dðxjÞ � � � � � dðxkÞ. A constraint Ci ¼ ðVi;RiÞ specifies the pos-
sible values of the variables in V simultaneously in order to satisfy R. Let Vk ¼ fxk1 ; xk2 ; . . . ; xkl

g be a subset of X, and an l-tuple
ðxk1 ; xk2 ; . . . ; xkl

Þ from dðxk1 Þ; dðxk2 Þ; . . . ; dðxkl
Þ is called an instantiation of the variables in Vk. An instantiation is a solution only

if it satisfies the constraints C.
Usually, to solve a CSP, a combination of search and consistency techniques is used [17]. The consistency techniques re-

move inconsistent values from the domains of the variables during or before the search. Several local consistency and opti-
mization techniques have been proposed as ways of improving the efficiency of search algorithms.

A constraint optimization problem (COP) is a constraint satisfaction problem defined as a triple hX,D,Ch and an objective
function f that has to be optimized (maximised or minimised):
f : fdðx1Þ � dðx2Þ � � � � � dðxnÞg !St where ðSt;6Þ defines the total order:
For example, in a COP where an objective is maximised, A is a solution for the COP if and only if A is a solution of the CSP
and no solution of A0 exists where f ðA0Þ > f ðAÞ. Therefore, the best solution of the CSP for a goal is considered a solution of
the COP [15,34].

4.3. Labelled object-relational CDB architecture

Here, the term architecture is used to refer to a set of software components which work with constraints. The computa-
tional techniques presented above contribute towards the definition of the new architecture (labelled object-relational con-
straint database) which permits constraint information to be processed by querying classic attributes, constraint attributes
and constraint-variable attributes in order to create and solve constraint problems dynamically. This architecture is designed
to improve the computational complexity in the query evaluation task, by combining the advantages of relational databases,
object-oriented paradigms, indexation of variables and box consistency for each variable and constraint, thereby giving a
holistic solution as a proposal.

The architecture follows a pattern formed by different layers, as shown in Fig. 8. It has four main subsystems: interface,
query-driven model, computational processing and data layer:

� The interface layer reads the sentences from the user and presents the result of the query. The submodule Lexical/Syntactic
Analysis Filter checks if the query is correct, as explained in Section 4.1. This module also selects those queries related to
constraints by leading the query to query-driven model, and filters out the classic queries, in which case the database can
offer the solution and no other module is necessary. This means that in a LORCDB, not only is it possible to store the same
information as in a relational database, but it is also possible to store constraints as objects.

� The query-driven model layer obtains the constraints related to the query, and builds a model that will be solved by the
appropriate tool. The submodule search engine for the related constraints obtains the constraints of the database that are
needed to evaluate the projection depending on the type of query, as explained in Section 5. This submodule is crucial
since it allows the creation of constraint problems with only those constraints necessary, thereby improving the compu-
tational evaluation time. Once the related constraints are known, the submodule Build Models depending on the type of
Query works as an adapter by creating different types of models as explained in Section 6. The types of models are divided
into two families, depending on the technique necessary for their solution: numeric resolution or symbolic resolution. The
submodule numeric resolution deals with queries whose solutions are numeric values (when the projection uses the word
VALUES), while the submodule symbolic resolution works with symbolic techniques for queries whose answers are new
constraints inferred from the stored constraints (when the projection uses the word CONSTRAINTS). At the same time,
the module numeric resolution has two submodules in order to build constraint satisfaction problems (if a set of values
has to be obtained) or constraint optimization problems (if only the minimum or maximum value of a variable has to be
known). The module symbolic resolution has two submodules that are used depending on the type of constraints related
to the query. These submodules are: Gröbner Bases symbolic technique for equality polynomial constraints, and cylindrical
algebraic decomposition for inequality polynomial constraints.
CDB

Lexical/
Syntactic Analysis

Filter

Mathematica v.5

Building Models depending on the type of Query

USER

JSolver

Search Engine
for the Related

Constraints

Output
Transformation

Input
Transformation

Interface

Query-Driven Model

Computational
Processing

Data
Constraint

Satisfaction
Problem

Constraint
Optimization

Problem

Numeric Resolution Symbolic Resolution

Gröbner Bases
Model

Cylindrical
Algebraic

Decomposition
Model

classic query

constraint query

Fig. 8. Labelled object-relational CDB architecture for projection.

� The Computational Processing layer solves the different types of problems created in the query-driven model by using dif-
ferent tools. In our case ILOGTM) JSolver [41] and MathematicaTM)v.5 [44] are used as examples, although it is possible to
include other tools.

� The Data layer stores all the constraints and relational information in the LORCDB. The three tables used for indexing con-
straints and variables are also stored in this layer. In order to store the object in a relational database, OracleTM)9:i Database
Management has been used, although it is also possible to use any database management that permits the object-rela-
tional paradigm. When a LORCDB is created or queried, the CORQL sentences are transformed into SQL sentences known
by the database management system (Oracle in this case).

This architecture is modular so that those modules which evaluate the query can be modified or extended. For example, if
it were possible to find another technique to work with trigonometric functions such as sine, cosine or tangent, then new
modules would be added. Furthermore, if other better tools can be found to solve constraint problems, then the current tools
can be easily adapted. This architecture permits the addition of new modules, due to the pattern strategy used, and it also
allows modifications to provide more efficiency and versatility. This means that the architecture can be adapted to different
types of constraints and the evaluation query modules can be extended.

In the following sections, some details about the submodules search engine for the related constraints and Building Models
depending on the Query are presented. These submodules are in charge of analysing the query to reduce the computational
complexity and to define an efficient plan for the evaluation of the query.

5. Search engine for related constraints

In order to obtain the evaluation of the projection operator over a constraint relation, two steps have to be carried out. The
first step consists of deciding which part of the architecture can evaluate the query, and the second one consists of the detec-
tion of all the constraints related to the query depending on the first step. In this work, a computational improvement is pro-
posed in order to obtain all the constraints related to the queries and optimize the query evaluation, by creating the different
models only with those constraints necessary. This detection is possible thanks to the indexation of the variables and con-
straints in the relational database. Moreover, an algorithm is proposed to find sets of constraints that can be evaluated sep-
arately, thereby building smaller and easier problems to solve.

5.1. Step 1 – Selection of the solving tool and the type of model

Depending on the query, different parts of the architecture will be used. With the constraints related to the query, a Mod-
el-Driven Query is created. In Fig. 9, the decision tree shows the type of model created depending on the syntax of the query.
There are three types of projection over variables to obtain: new constraints; values of the variables; or a minimum or max-
imum value of a variable. Depending on the syntax of the query, and the types of the related constraints, different models are
created and different techniques are used. When the related constraints are of different types, the most general technique is
used. For example, if the related constraints in a symbolic elimination of variables are polynomial and linear constraints,
then the problem will be solved using cylindrical algebraic decomposition.

5.2. Step 2 – Identification of clusters of related constraints

Depending on the type of projection (numeric or symbolic), the constraints related to the projection are different. In order
to understand this idea, graph theory is used, where each constraint of a CDB is represented as a node, and the variables rep-
resent the edges. Two constraints have an edge in common if they have a common variable.

For numeric resolution cases, a constraint c is a constraint related to the projection if and only if there exists a path from c
to another constraint (node) with a variable of the projection.
Is there a goal
(MAX or MIN) in

the query?

A COP is created, and
then solved by JSolver

Is the solution a
value?

YES NO

YES NO

Are all the constraints
linear?

A CSP is created,
and then solved by

JSolver YES NO

It is solved by Cylindrical
Decomposition

It is solved by
Gröbner

SELECT [MIN|MAX] (...)

SELECT VALUES[n] (...)

SELECT CONSTRAINTS (...)

Fig. 9. Decision tree to choose what part of the architecture to use.

Definition 5.1 (Cluster of related constraints for numeric projection (CRC)). A cluster is a connected component of the defined
graph, where the connected component has at least one variable of the projection.

For the example shown in Fig. 3 for the variables of the projection {a,b,c,d,e, f, g} the cluster of related constraint is
fA1;A2;M1;M2;M3g.

For symbolic resolution cases, it is necessary to obtain new constraints inferred from those stored ones, and the variables
that do not appear in the projection sentence are eliminated. In order to obtain the new constraints, Gröbner Bases and cylin-
drical algebraic decomposition are used, however, these techniques could be computationally very costly, hence in this step
for symbolic resolution an algorithm is presented to reduce the use of these techniques in a significant way. In order to ob-
tain the constraints involved in a query, the variables that appear in the projection (VarQuerys) are used, together with those
variables that do not appear in the projection (VarNoQuerys) but that belong to the constraints necessary for the evaluation of
the query. For example, if there are two constraints with the constraints fb ¼ 2 � a; c ¼ 3 � bg, and we want to obtain a new
constraint with only the related variables a and c, then by combining these constraints it is possible to obtain a new con-
straint as fc ¼ 6 � ag, because b is presented in both constraints and can therefore be substituted.

The objective in this step is to find all the clusters of related constraints where: if a VarNoQuery variable participates in a
cluster, then this VarNoQuery variable appears in more than one constraint of the cluster so that elimination is possible, and
new constraints with only VarQuery variables are obtained by using only a symbolic representation. This means that all the
VarNoQuery variables could be replaced with VarQuery variables. In order to avoid duplicate solutions, these sets of con-
straints have to be minimal, which means that there is no subset of constraints that forms a cluster of related constraints.
This idea generates a new definition.

Definition 5.2 (Cluster of related constraints for symbolic projection (CRC)). G �
S

ifcig is a cluster of related constraints for a
query Q (CRC(Q)) if
8ci 2 GjVarNoQuerysðfcig;Q Þ# VarNoQuerysðG� ci;Q Þ
^ VarQuerysðG;Q Þ–; ^ 9=G0 � GjG0 is ðCRCðQ ÞÞ;
where ci is a constraint, VarNoQuerys(C,Q) are the variables of the constraints C that do not appear in the query Q, and Var-
Querys(C,Q) are the variables of the constraints C that appear in the query Q.

For the example shown in Fig. 3 for the variables of the projection a,b,c,d,e, f,g, the clusters of related constraints are
fA1;M1;M2g; fA2;M2;M3g and fA1;A2;M1;M3g.

First of all, we present an example to explain the idea of finding the related constraints in a query. For example, if a query
asks about the variables fa; b; eg, where the constraints are faþ b ¼ c; c þ d ¼ eg, then these constraints do not form a cluster
of related constraints since variable d is not a VarQuery nor can it be substituted by any of the VarQuery variables fa; b; eg.
This means that a CRC is a set of constraints whose variables are in the query or are in other constraints of the CRC, and there-
by they can be substituted by VarQuery variables. However, if the previous example has the variables fa; b; e; dg as VarQuery
variables, then these constraints form a CRC.

However, another definition is necessary to describe the algorithm to obtain the clusters of related constraints:

Definition 5.3. Unsolved constraintThis is a constraint with one or more than one VarNoQuery variable that is only in this
constraint, or in another unsolved constraint. This means that this varNoQuery variable cannot be substituted by another.

Since the constraints related to the query by the variables are unknown, it is necessary to find the CRCs by extending the
relation between constraints through the proposed indexation of constraint objects. Algorithm 1 expands the search, starting
with the constraints with VarQuery variables, which are the constraint-variable attributes that appear in the projection. The
algorithm uses a list of constraints in the search (ConstraintList):

Algorithm 1. Obtaining CRCs for Symbolic Projection

List ConstraintList :¼ new List()
List CRC :¼ new List()
Boolean end :¼ LoadConstraintList(ConstraintList)
while (:end) do
deleteUnSolvedConstraints(ConstraintList)
CRC.add(obtainCRC(ConstraintList))
end :¼ LoadConstraintList(ConstraintList)
Description of methods:

� Boolean LoadConstraintList(List): The first time this method is called (when ConstraintList is empty), the method obtains the
constraints related to the VarQuerys. The rest of the times, the method obtains the constraints related to the VarNoQuerys
of the ConstraintList which have not already been included. All the information is stored in ConstraintList, but if Constraint-
List does not change, the method returns false to indicate that the search has finished.

� List obtainCRC(List): This method identifies if there is a set of constraints that satisfies the CRC definition, and returns it. In
this part of the algorithm the graph theory is also used, where the constraints are the nodes and the VarNoQuery variables
are the edges. In order to determine if a set of constraints forms one or more CRCs, the method looks for the connected
components. These connected components form a CRC if all the VarNoQuery variables are in at least two constraints
and it is minimal. In order to determine if the CRC is minimal, it is necessary to analyse only the VarNoQuery variables
that appear in more than two constraints. If a connected component cci has a constraint c with a VarNoQuery variable that
appear in more than two constraints, then the method analyses whether fcci � cg is a CRC: if fcci � cg is not a CRC, it
means that cci is a CRC. Otherwise, the process continues to determine whether fcci � cg is a minimal CRC.
When a CRC is determined in the ConstraintList, these constraints are deleted from ConstraintList.

� void deleteUnSolvedConstraints(List): This method deletes the unsolved constraint according to Definition 5.3.
The algorithm to obtain the CRCs is better explained with a more complex example, as shown in Fig. 10 where the Var-
Query variables are fa; b; c; d;u; a1; b1; c1; d1; y1; a2g. The following syntax of projection is used:

SELECT CONSTRAINTS (Behaviour.a, Behaviour.b, Behaviour.c,
Component.Behaviour.d, Behaviour.u, Behaviour.a1, Behaviour.b1,

Behaviour.c1, Behaviour.d1, Behaviour.y1, Behaviour.a2)

FROM Component

For the example in Fig. 10 and the variables of the last query, the names of the components related to the constraints
obtained with the LoadConstraintList method are:

{A1, A2, M3, A7, A23, S1, A11, M4, A18}
In fact the algorithm works with the field idConstraint, although here the names of the components are used in order to
clarify the explanation. The known constraints are those shown in Step a of Fig. 11, obtained with the method LoadCon-
straintList. After obtaining these constraints, the algorithm checks if there are any CRCs among them (obtainCRC method).
In the example, there are no CRCs, thereby the process continues to look for more related constraints. The next search will
be executed with the variables of the obtained constraints that do not appear in the query (VarNoQuery variables). In this
case, the search uses only the variables fe; f ; g; s; k;m1;n1; z1; x1;h2g, and it adds the new constraints, related to these vari-
ables, to the previous list. After this execution the ConstraintList has the constraints:

{A1, A2, M3, A7, A9, S1, A11, M4, A18, M1, A3, A8, A23, M6, A10, M9}
The algorithm searches among the constraints (shown in Step b of Fig. 11) to find the CRCs. In this case the algorithm finds
two CRCs:

{A1, A2, M3, M1} and {A9, S1, A11, M11, M6, A10}
A10

A11

M4

y1

x1

z1

a2

S4

S5

A17

o2

r2

b2

A23

S1

M6

a1
b1

c1
d1

m1

n1

s1

A14

A15

A22

e1
f1

g1
h1

o1

p1

t1

A16

S2

M7

i1
j1

k1
l1

q1

r1 u1

A12

A13

M10

s2

t2

c2

A18

A19

M9

h2

i2

g2

S3

A20

M8

k2

p2

A21

M5

l2

q2

w1

A1

A2

M1

M2

A3

a
b

c
d

h

i

e

f

j

g

k

M3

u

A4

A5

m
n

o
p

A6

A9

A7

q

r

s

A8 t

Fig. 10. Example for projection.

A10

A11

M4

x1

z1

A23

S1

m1

n1

s1

A18
h2

A1

A2

e

f
g

M3

A7

k
s

a1
b1

c1
d1

a
b

c
d

u

y1

a2

A3j

g
k

A9

A7

q

r

A8
t

M5 q2

l2
M2h

i

m A6

su

A3
j
g k

A9

A7

q

r

A8 t

u s

A10

A11

M4

x1

z1

A23

S1

M6

m1

n1

s1

A18

M9

h2

g2

A1

A2

M1

A3

e

f

j

g

k

M3

A9

A7

q

r

s

A8 t

i2

a2

u

a1
b1

a2c1
d1

a
b

c
d

y1

LoadConstraintList(...)

ObtainCRC(...)
LoadConstraintList(...)

deletedUnsolvedConstraints(...)

deletedUnsolvedConstraints(...)
ObtainCRC(...)

LoadConstraintList(...)
deletedUnsolvedConstraints(...)

a

b

c

d

Fig. 11. Example of the steps for the CRC algorithm.
Hence the rest of the constraints of ConstraintList are:

{A7, A3, M4, A8, A18, M9}
However, some constraints of this list never participate in a CRC because they have at least one variable that is not in the
query and is not in another constraint, thereby they are never substituted by VarQuery variables. An example of these Un-
solved Constraints is M9, since g2 is not a VarQuery, and this variable does not appear in other constraints and therefore, it is
not substituted by VarQuery variables. This also means that A18 is an unsolved constraint since it has a variable (h2) which is

only in an unsolved constraint. After these eliminations performed by the method deleteUnSolvedConstraints, the list (shown
in Step c of Fig. 11) becomes:

{A7, A3, M4, A8}
The search continues with the variables {j,q, t}, and the new list (shown in Step d of Fig. 11) becomes:

{A7, A3, M4, A8, M2, A6, M5}
In this case M5 is an unsolved constraint because it has the variable q2 and this variable is only in this constraint and is
not a VarQuery. Therefore, A8 is also an unsolved constraint because the variable t is only in an unsolved constraint (M5). As
a consequence, M4, A7, A3, A6 and M2 are also unsolved constraints because they have variables in unsolved constraints. At
this point the process finishes, since there are no constraints left to analyse in ConstraintList.

It is very interesting to note that these CRCs can be solved in a parallel or distributed way, owing to the independence of
their variables. This characteristic permits the computation time to be improved due to the added efficiency of the solution,
both for numeric problems and for symbolic problems. If no CRC is found for a query, the evaluation of the query does not
return any information.

The computational complexity of the algorithm is related to the number of constraints stored in the LORCDB and not to
the number of variables. It is also related to the distance between the variables of the query, hence the following definition is
required.

Definition 5.4 (Distance between variables). Representing the constraints of a relation as a graph, where the nodes are the
constraints, there is an edge between two nodes if they have the same variable. If C1 and C2 are constraints, a and b variables,
and a 2 C1 and b 2 C2, then the distance between the two variables (Distance(a,b)) is the minimal distance between C1 and
C2. The distance between two variables of the same constraint is 0.

In order to analyse the number of steps needed to extend the search for constraints and obtain the CRCs for a query, it is
necessary to study two scenarios, which are:

� When it is possible to find a CRC for the VarQuery variables defined for the projection. In each step of the algorithm, the
search for the constraints is expanded depending on both VarQuery variables and VarNoQuery variables included in pre-
vious expansions. Hence, the worst case is half of the longest distance between two variables of the same CRC. For the
example of Fig. 11, the distance between the variables a1 and a2 is 4, and both of them are VarQuery variables, which
means that it is necessary to execute the search algorithm for constraints twice.

� When it is not possible to find a CRC for the VarQuery variables defined for the projection. It is not always possible to find CRCs
for any constraints, since the constraints studied in the algorithm cannot participate in those CRCs which cannot be solved
(such as M5, A8, M4, . . .) because they are unsolved constraints. Another unfavourable case is the greatest distance between a
VarQuery and another VarNoQuery which is impossible to solve because this variable belongs to an unsolved constraint. For the
example of Fig. 11, the distance between the variables u and q2 is 3, where u is a VarQuery but q2 is a VarNoQuery, which
means that it is necessary to execute the search for constraints three times until an unsolved constraint is found.

When the set of constraints is found, it is necessary to detect if there is a CRC. This occurs when there is a connected com-
ponent and all the VarNoQuery variables are at least in two constraints. By using the graph theory, the complexity to deter-
mine if a graph is connected is OðnÞ, where n is the number of constraints. In order to know if all the variables are in two
constraints, the complexity is OðvÞ, where v is the number of VarNoQuery. Therefore, the computational complexity of the
algorithm to obtain CRCs is:
O Max
max
8a;b
ðDistanceða; bÞÞ

2
;max
8c;d
ðDistanceðc;dÞÞ

0
@

1
A � ðnþ vÞ

0
@

1
A;
where a, b, c are VarQuerys and d is a variable of an unsolved constraint.

6. Building models depending on the type of query

In this section, the creation of the different models for the projections are presented, using the CRC algorithm explained in
the section above. Depending on the query, one of the aforementioned techniques is used for its evaluation.

6.1. Symbolic model for equality constraint query

This type of model is created when a new set of constraints has to be obtained using those stored, and the stored con-
straints are equations. In this case, the variables which do not appear in the query but are related to constraints that contain
the variables of the query, must be replaced by variables of the query.

An example of a query solved using this symbolic technique is:

SELECT CONSTRAINTS (Behaviour.m, Behaviour.j, Behaviour.g,
Behaviour.d, Behaviour.r, Behaviour.s) FROM Component

This type of query is used in diagnosis in order to know the CARCs (Definition 3.3) of a system if the sensors are located in
the variables {m, j,g,d,r,s}.

For these variables and using the explained algorithm, three different CRCs are found, as shown in Fig. 12. This figure
shows an example formed by equality polynomial constraints and the new constraints inferred from the originals. The dif-
ferent lines outline the three sets of constraints, and to the right of the figure, the new constraints related with each set of
constraints are presented.

Since all the constraints are labelled as polynomial equality constraints, Gröbner Bases technique implemented in Math-
ematicaTM) v:5 is used. The prototype of the function is:

GroebnerBasis[{CRC}, {VarQuerys}, {VarNoQuerys}]

For the system presented in the figure above, an example of the model for equality constraint projection is:

GroebnerBasis[fg � d� u ¼ 0;mþ j� q ¼ 0; q � k� r ¼ 0; kþ u� s ¼ 0g,

{m, j,g,d,r, s}, {k,q,u}]

whose result is: {d * g * j + d * g * m + r � j * s �m * s = 0}.
It is also possible to combine classic and constraint attributes using projection. For example, to know the CARCs of the

systems and the Context Sets for these CARCs, the query could be:

SELECT Name, CONSTRAINTS (Behaviour.m, Behaviour.j, Behaviour.g,
Behaviour.d, Behaviour.r, Behaviour.s) FROM Component

The result is shown in Table 2, where three different CARCs appear in the column Behaviour, and the components related
with them in the column Name.
6.2. Symbolic model for inequality constraint query

When a CRC of a query has at least one inequality constraint, it is necessary to use cylindrical algebraic decomposition. If,
for example, the system of Fig. 10 has constraints associated to the components such as:

A16: i1+j1 6 q1

S2: k1-l1 6 r1

M7: q1*r1 6 u1

A12: q1+u1 6 s2

An example of a query in fault diagnosis could be: how does the system work if the sensors are located in the variables
{i1, j1,k1, l1,s2}? The query is:

SELECT CONSTRAINTS (Behaviour.i1, Behaviour.j1,
Behaviour.k1, Behaviour.l1, Behaviour.s2) FROM Component

Since the constraints are inequalities, the cylindrical algebraic decomposition module is used. In this case MathematicaTM)
v.5 is also used. The syntax is:

Reduce[Exists[{VarNoQuery},CRC],{VarQuery}]
A3

j

g

k

M3

u

A6

M4

A7

q

r

s

m

d

{m*j + m*g + j^2 + j*g -r = 0 }

{d*g*m+d*g*j+r-m*s-j*s = 0 }

{g+d*g+j-s = 0}

Fig. 12. CRCs detected by the query.

Table 2
Classic and constraints attributes (context sets and CARCs)

Name Behaviour(j,m,g,d,r,s)

M3 f�g � d � g � jþ s ¼ 0g
A3 f�g � d � g � jþ s ¼ 0g
A7 f�g � d � g � jþ s ¼ 0g
A6 f�ðg � jÞ � j� g �m� j �mþ r2 ¼ 0g
A3 f�ðg � jÞ � j� g �m� j �mþ r2 ¼ 0g
M4 f�ðg � jÞ � j� g �m� j �mþ r2 ¼ 0g
M3 fd � g � jþ d � g �mþ r � j � s�m � s ¼ 0g
A6 fd � g � jþ d � g �mþ r � j � s�m � s ¼ 0g
M4 fd � g � jþ d � g �mþ r � j � s�m � s ¼ 0g
A7 fd � g � jþ d � g �mþ r � j � s�m � s ¼ 0g
For the example, the model created to solve the projection is:

Reduce[Exists[{q1, r1, u1},i1 + j1 6 q1 ^ q1 * r16u1 ^ k1 - l16r1 ^ q1 + u16s2],{i1, j1, k1, l1, s2}]

In this case, the output of the function is:

j1 < -i1 _ j1 = -i1 ^ (l1P 1 + k1 ^ s2P 0 _ l1 > 1 + k1) _ j1 > -i1 ^ (l1 < 1 + k1 ^ s2P i1 + j1 + i1 k1 + j1 k1 -

i1 l1 - j1 l1 _ l1 = 1 + k1 ^ s2 P 0 _ l1 > 1 + k1)

However, a constraint attribute cannot be formed by _ operators. It is thereby necessary to represent it in disjunctive nor-
mal form in order to present the solution as a set of tuples, as presented in Table 3. The elimination of variables sometimes
obtains non-polynomial constraints as a result, and in this case the output of the query evaluation is empty to maintain the
closed property.

6.3. Numeric model for constraint satisfaction problems

When the answer of a query is not a new constraint but is a value or a set of values, then it is not necessary to use sym-
bolic techniques. This type of query is used to obtain an extensional representation of constraint-variable attributes. An
example in fault diagnosis is when the user wants to know the values of some variables with sensors. An example of numeric
projection can be the search for 10 possible tuples of values for the variables g2, p2, q2:

SELECT VALUES[10](Behaviour.g2, Behaviour.p2, Behaviour.q2)
FROM Component

It is also possible to instantiate some variables, for example the inputs of the system, in order to know some possible out-
puts, when the user knows the values of some variables but wants to know the values of others. For instance, what is the
value of u if the value of the sensors are: fa ¼ 1; b ¼ 3; c ¼ 2; d ¼ 1g? The query for this example is:

SELECT VALUES[1](Behaviour.u) FROM Component

WHERE Behaviour.a=1 AND Behaviour.b=3
AND Behaviour.c=2 AND Behaviour.d=1

In order to know the values of variables, a CSP is created dynamically by using the constraints obtained from the database,
and if it is necessary, by including the values of the variables of the query. In the CSP all the variables are instantiated
although only VarQuery variables are presented as the solution. A common issue in diagnosis is the problem of knowing
whether the system works correctly for an observational model. This is discovered by carrying out the projection over a
constraint attribute. An example of this type of query can be: Does the system work correctly for the OM
fa ¼ 1; b ¼ 3; c ¼ 2; d ¼ 1;u ¼ 15g? This query is:
Table 3
Output from projection over inequality constraints

Behaviour(i1, j1,k1, l1, s2)

j1 < �i1
j1 = �i1 ^ (l1 P 1 + k1 ^ s2 P 0 _ l1 < 1 + k1)
j1 > �i1 ^ l1 < 1 + k1 ^ s2 P i1 + j1 + i1 k1 + j1 k1 � i1 l1 � j1 l1
j1 > �i1 ^ l1 = 1 + k1 ^ s2 P 0
j1 > �i1 ^ _ l1 > 1 + k1

SELECT VALUES[1] (Behaviour.a, Behaviour.b, Behaviour.c,

Behaviour.d, Behaviour.u) FROM Component

WHERE Behaviour.a=1 AND Behaviour.b=3 AND Behaviour.c=2

AND Behaviour.d=1 AND Behaviour.u=15
The problem involves constraint satisfiability in CDBs. If the result is not empty, it means that the involved constraints are
satisfiable for the instantiation of the variables in the query. In order to know the solution, a CSP is created with the related
constraints with the VarQuery variables a, b, c, d and u. For the example no solution is found, which means that the system is
not working correctly.

6.4. Numeric model for constraint optimization problems

When a numeric evaluation obtains several tuples and the user wants to select from among the possible options, a COP
has to be created. CORQL makes it possible to obtain the maximum or minimum value of a variable, and an example of a
query that creates this type of module is:

SELECT MIN VALUE(Behaviour.u) FROM Component

A COP is built according to a query in a similar way to a CSP, and it is also possible to add new constraints to the COP
defined in the query. An example can be:

SELECT MIN VALUE(Behaviour.u) FROM Component

WHERE Behaviour.a>¼3 AND Behaviour.b>¼1

AND Behaviour.b< 5 AND Behaviour.c>¼2
AND Behaviour.d<¼3 AND Behaviour.d>¼0
With the constraints of the attribute Behaviour of the relation Components and the added constraints in the query, a COP is
created in order to infer the value of the variable, u in this example. This COP is created dynamically by using the objective of
the query, the constraints obtained from the CDB, VarNoQuery and the instantiated variables in the query. Fig. 13 shows the
COP built automatically for the example, solved using JSolverTM) [41].

7. Experimental results for the projection operator

In this section, all the types of projections are analysed in order to show how the design of the architecture affects the
efficiency of the query evaluation. For this reason, several comparisons are carried out between the time of evaluation with
and without using CRCs for symbolic projection, and also with and without using heuristics for numeric projection.

All the measures have been obtained using an AMD AthlonTM) 64 Dual Core Processor 4200 + 2.21 GHz, where the Data-
base Management System Oracle is running. All the measures are presented in milliseconds.

All solutions are presented over float domain problems, since natural or integer domains cannot always be used for sym-
bolic solvers [33,26]. The results shown for CSPs are defined over the float domain because this type of problem is more
complex to solve than over the integer domain, and hence the worst domain case for the numeric projection is analysed
in this work.

The problems used in the tests are generated randomly, whereby different parameters are changed. All the constraints
have the form {v1 operation v2 comparator v3}. Each constraint of a problem has a set of variables (v1, v2, v3), the
Int Infinite = Integer.MAX_VALUE;
IlcSolversolver = new IlcSolver();
IlcIntVar[] variables = newIlcIntVar[numbeVariables];
variables[0] = solver.intVar(4, Infinite,"a");
variables[1] = solver.intVar(1, 5,"b");
variables[2] = solver.intVar(2, Infinite,"c");
variables[3] = solver.intVar(0, 3,"d");
…
IlcConstraintct=solver.neq(variables [1], 5);
solver.add(ct);
ct = solver.neq(variables[2],2);
solver.add(ct);
solver.add(solver.eq(solver.sum(variables[0],variables[1]),variables[4]));
solver.add(solver.eq(solver.sum(variables[2],variables[3]),variables[5]));
solver.add(solver.eq(solver.prod(variables[4],variables[5]),variables[6]));
solver.add(solver.eq(solver.prod(variables[6],variables[3]),variables[7]));

solver.add(solver.minimize(variables[7]));

Define the variables
and their domains

Limit some domain values
e.g. b < 5

Establish the goal

Add the
constraints

Fig. 13. Example of model for a COP.

operations (+, *, �) and the comparators (=, 6, <, P, >). In this case, these different parameters are fixed to build
problems that can be diagnosed. The relation between the constraints will be defined for those variables shared between
the different constraints.

The random problems are created incrementally, by adding new constraints whose variables can be new variables or vari-
ables already included in the problem. The systems created in this way are composed of one connected component according
to the definition of graph introduced in Section 5.2. For the different types of projection, the variables that will be obtained
(in a numeric or symbolic way) are those variables whose distance is the greatest (according to Definition 5.4), which implies
the worst case of the projection for a constraint problem.

7.1. Symbolic projection evaluation

Symbolic projection allows new constraints to be obtained with the same solutions as the original constraints. In order to
obtain these new constraints it is necessary to analyse the clusters of related constraints for both equality and inequality
constraints.

Thanks to the indexation between variables and constraints, it is possible to use the developed algorithm in order to ob-
tain the CRCs. In this section, a comparison between the run times is made to obtain the projection with different examples.
To show how the evaluation time decreases when only CRCs are analysed, two options are compared. The first option is to
study all the possibilities, whereas the second one is our proposal to improve the computational time. Both options obtain
the same results, since the CRCs evaluation is a subset of all the possibilities where the sets of constraints without solutions
or with duplications are not analysed. The compared options are:

� Checking all the combinations: This involves the analysis of ð2n � 1Þ combinations. With these ð2n � 1Þ sets of constraints,
either Gröbner Bases or cylindrical decomposition is used to obtain new constraints with only VarQuery variables depend-
ing on the type of related constraints.

� Obtaining the CRCs. The designed architecture allows the definition of the relation between constraints and variables, and
an algorithm has been developed in order to obtain the sets of constraints related to a projection in accordance with their
variables. This means that symbolic-elimination techniques can be only used with some sets of constraints.

7.1.1. Test queries for symbolic projection performance
The test queries for symbolic elimination are divided into two different groups, since the execution time will be very dif-

ferent depending on the technique used to evaluate the projection (Gröbner Bases or cylindrical decomposition). In both
cases, different random examples with a different number of constraints have been created, thereby obtaining different eval-
uation times.

First the Gröbner Bases test queries are presented, which means that all the constraints of the system have to be equality
constraints. In Fig. 14 (presented in logarithm scale), the mean times using 10 instances for the evaluation of different que-
ries over systems with a different number of constraints are shown. This figure presents the different times both with the
proposed improvement using CRCs, and without this improvement. The evaluation time used to obtain the CRCs is also
shown as a part of the whole time necessary to evaluate the whole query. In Fig. 14, it is also possible to observe how
the evaluation time for the solution without improvement increases exponentially according to the number of options, while
the use of CRCs drastically reduces the evaluation time. Using more than 18 constraints, the evaluation times without
improvement go sky high. In the bar diagram this is presented with the value 109, although the processes take longer than
five days. This behaviour is expected since the number of variables increases when the number of constraints increases, and
the evaluation time is exponential according to the number of variables, as was explained in Section 4.2.1.
1.00E-01
1 2 3 4 5 6 7 8 9

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

10 11 12 13 14 15 16 17 18 19 20
Number of Constraints related to the query

T
im

e
(m

s) Time to evaluate
all possibilities

Time to evaluate
the projection

Time to obtain
CRCs

Fig. 14. Runtime for Gröbner symbolic projection.

Obviously, the evaluation time depends on the structure of the constraint relation (relation between constraints), the
number of constraints, the number of variables of the projection and the type of constraints (linear or polynomial).
Fig. 15 shows, by using five different examples, how the evaluation time changes for a system when the number of VarQuery
variables changes and the type of constraints changes.

The results presented in Fig. 15 have been generated by a randomly created static structure whilst changing the number
of variables of the projection and the number of polynomial constraints for different tests. In Fig. 15, it is possible to show
how the time drops when the number of variables of the projection grows because the distance between the variables are
smaller and the CRCs are easier to find and solve. If the number of polynomial constraints changes, the results do not permit
a relation to be found between the number of polynomial constraints and the execution time when Gröbner Bases are used,
since the algorithm complexity is exponential according to the number of variables that have to be eliminated.

In the cylindrical algebraic decomposition case, it is possible to have inequality constraints in the systems. In Fig. 16, the
mean times using 10 instances for the evaluation of different queries over the system with a different number of constraints
are presented. The comparison is defined both with the proposed improvement, and without this improvement. The part of
the evaluation time used to obtain the CRCs is also shown. In Fig. 16, it is possible to observe how the evaluation time for the
solution without improvement increases exponentially, according to the number of constraints, while the use of CRCs dras-
tically reduces the evaluation time. Using more than 14 constraints, the evaluation times without improvement go sky high.
In the bar diagram this is presented with the value 109, although the processes take longer than 8 days.

For cylindrical decomposition, the evaluation time is double exponential according to the number of cells, and in a similar
way to Gröbner Bases, the evaluation time depends on the structure of the system, the number of constraints and the num-
ber of variables of the projection. However, in this is case, the type of constraint (linear or polynomial) is also important,
since polynomial constraints help to generate more cells than do linear constraints. Fig. 17 shows how the evaluation time
changes for a constraint relation when the number of VarQuery variables changes and the type of constraints changes.

The results presented in Fig. 17 have been generated by a randomly created static structure whilst changing the number
of variables of the projection and the number of polynomial constraints for different tests. Different tests have been exe-
cuted, analysing the time when the number of variables of the projection and the number of polynomial constraints change.
In Fig. 17, it is possible to show how, by using five different examples, the time drops when the number of variables of the
projection grows, for the same reason as was given in Gröbner Bases. In the case where the number of polynomial constraints
is changed, it is possible to observe how the time increases when the number of polynomial constraints grows.
1.00E-01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

Number of Constraints related to the query

T
im

e
(m

s)

Time to obtain
CRCs
Time to evaluate the
projection
Time to evaluate all
possibilities

Fig. 16. Runtime for cylindrical decomposition symbolic projection.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Number of variables of the projection

T
im

e
(m

s)

Example 1

Example 2

Example 3

Example 4

Example 5

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 2 3 4 5 6 7 8 9 10111213141516171819202122

Number of Polynomial constraints

T
im

e
(m

s)

Example 1

Example 2

Example 3

Example 4

Example 5

Fig. 15. Runtime while changing parameters for Gröbner symbolic projection.

1.00E-01

1.00E+01

1.00E+03

1.00E+05

1.00E+07

1.00E+09

1.00E+11

4 6 8 10 12 14 16 18 20
Number of Variables of the projection

T
im

e
(m

s)

Example 1

Example 2

Example 3

Example 4

Example 5

1.00E+07
0 1 2 3 4 5 6 7 8 9 10 11 12

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

Number of Polynomial Constraints

T
im

e
(m

s)

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Fig. 17. Runtime while changing parameters for cylindrical decomposition symbolic projection.
7.2. Numeric projection evaluation

Some of the different heuristics that can be used in order to solve CSPs are presented in this paper. It is well known that
the order in which variables and values are selected has a dramatic effect on the algorithm efficiency [18]. For this reason,
our architecture makes using these heuristics easier in order to solve the models, and some comparisons are presented in
this work:

� No heuristics: This means solving CSPs with no heuristics. In this case, the variables of constraints are selected in the order
obtained from the CDB.

� By domain: This means starting with the variable with the smallest domain. The most used variable-ordering heuristic
selects the variable with the minimum number of values in its current domain [32]. This is possible since the LORCDB
stores the minimum and maximum value of each variable as a box consistency.

� By type of constraint: This means starting with the variables that belong to the linear constraint scope. The labels of the
constraints are also stored, and it is thereby possible to analyse the variables of linear constraints first and the variables
of polynomial constraints after.

7.2.1. Test queries with numeric projection
In this section, some examples of queries which obtain instantiated values of variables are presented. A set of random

examples and projections have been executed, whereby some parameters have been changed such as the number of con-
straints and the number of polynomial constraints.

Some measurement times for the evaluation of each query using the different heuristics are presented in Fig. 18. These
heuristics solve the same types of problems but the number of constraints is changed. As shown in this diagram, the execu-
tion time depends on the number of constraints. Fig. 18 also shows how the evaluation time for the same problem changes
depending on the heuristic used. In this figure it is possible to observe the importance of selecting a good heuristic [19], and
how the evaluation time can consequently increase or decrease. For the random examples for 14 and 19 constraints, the dif-
ference is very high. Furthermore, whether the type of constraint is always important has been analysed. In Fig. 19, the eval-
uation time is presented for five different examples where the structure is always the same for each example, but where the
linear constraints are changed into polynomial constraints. This means that the behaviour of the constraints changes
although the structure is maintained. All the tests have been generated by a randomly created static structure whilst the type
of constraint is changed. For the solved examples, the execution time experiences a slight decrease when the number of
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5
10
15
20
25

30
35
40
45
50

Number of Constraints related to the query

T
im

e
(m

s) No heuristics

By domain

By type of
constraint

Fig. 18. Runtime for numeric projection.

0
0 1 2 3 4 5 6 7 8 9

20

40

60

80

100

120

10 11 12 13 14 15 16 17 18 19 20

Number of Polynomial Constraints related to the query

T
im

e
(m

s)

Example 1

Example 2

Example 3

Example 4

Example 5

Fig. 19. Runtime while changing type of constraints.
polynomial constraints increases. This is due to the type of problems created, and the reduction of the possible values in the
domain of the solution through the use of polynomial constraints.

In order to solve a CSP, all the variables of the constraints have to be instantiated. This means that for a numeric projection
all the variables have to be instantiated, although they have not been presented as a solution of the projection. For this rea-
son, the number of variables of the projection has not been analysed for numeric resolution purposes.

7.3. Projection over the maximum or minimum value of a constraint-variable attribute

When a projection over a set of constraints requires the minimum or maximum value of a variable, it is necessary to build
a constraint optimization problem with all the constraints which belong to the CRCs. By using the proposed architecture
which stores the box consistency of each variable, it is possible to use heuristics to make the evaluation more efficient. In
this case two ways are compared to show how the evaluation time drops sharply when using the box consistency. The dif-
ferent ways that are compared are:

� Analysing all the solutions: Building a COP where the variable of the projection is defined as the objective of the COP and all
the solutions are analysed to find the best value from among all the solutions found.

� Starting the search by instantiating the objective variable: As explained in the previous section, the selection of a good heu-
ristics to solve a CSP is an important factor for the improvement of the evaluation time. In this case, we propose the use of
value-ordering heuristics which define the order of values to instantiate the variables to find the different solutions of the
COP. Generally, value-ordering heuristics suppose that good values are those which are more likely to participate in solu-
tions [19]. Another possibility is sorting the value of the variable by increasing the size of the resulting domain [25]. Our
idea to solve a COP is to avoid studying all the possible solutions to obtain the maximum or minimum value of a con-
straint-variable attribute, trying to know if a tuple of values where the objective value is the best option is a solution.
In this case, it is not necessary to continue looking for another solution: the solution found is the best solution. If the tuple
is not a solution another solution can be sought although the objective will be slightly worse. This implies that to find the
first solution is to find the best solution because determine the value-ordering of the objective variable is determined. To
this end, we propose starting the instantiation for the objective variable with a value-ordering by using the most prom-
ising value. If the query evaluation consists of obtaining the minimum value of a variable, the search starts with the min-
imum value of the objective variable stored in the LORCDB or with the maximum value otherwise. Hence, we transform
the analysis of all solutions into the search for the first solution. For example, if r has to be maximised and its box con-
sistency is defined over 10–20, the heuristics starts looking for a solution where r ¼ 20. If this solution is not found the
process continues until the first solution is found and the process finishes. If this heuristics is not used, and for example
a solution is found for r ¼ 15, the process has to proceed until the whole domain is analysed.

7.3.1. Test queries over maximum value
In this case, different random queries are also evaluated by increasing the number of constraints of the COP to obtain the

maximum value of a variable. In Fig. 20, the different measurements are presented which are produced by changing the
number of constraints. The comparison is defined between the analysis of all solutions and the resolution of a CSP by starting
with the objective variable and the appropriate instantiated value.

In this figure, it is possible to observe how the computational time is drastically reduced by avoiding the study of all the
solutions. This heuristic transforms the study of all solutions into the search of a solution with a defined order of the
variables and the instantiation values. In the examples, the computation time is improved 1000 or even 10,000 times in com-
parison with all other solutions.

1.00E+00
1 2 3 4 5 6 7 8 9 1011 12 131415 16 17 181920

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

Number of Constraints related to the query

T
im

e
(m

s)

All Solutions

First Solution

Fig. 20. Runtime for projection over maximum value.

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Polynomial Constraints related to the
query

T
im

e
(m

s)

Example 1

Example 2

Example 3

Example 4

Example 5

Fig. 21. Runtime for projection over maximum value while changing the type of constraint.
In this case, other tests have also been executed which are produced by changing the number of polynomial constraints
for the same structure. The execution time for different constraint relations, represented with different symbols, are pre-
sented in Fig. 21. In this case, a relation between the number of polynomial constraints and evaluation time exists. This is
due to the type of problems created, and the reduction of the possible values in the domain of the solution through the
use of polynomial constraints.

8. Conclusions and future work

This work presents a new architecture for CDB in order to store constraint information as a new data type. For querying over
the CDB, an extension of SQL called CORQL has been provided. In this architecture, the constraints are labelled and stored as
objects in a object-relational database in order to create different models and select the most appropriate technique and tool
to evaluate each query. Furthermore, important optimization improvements are presented, such as:

� The indexation of variables in order to improve the computation time of the query or the use of heuristics to solve CSP.
� An algorithm to obtain the CRCs, which improves the computation time in symbolic techniques. This algorithm creates

constraint problems with only those constraints related to the query.
� The storing of the box consistency to reduce the options to solve the CSPs and COPs.
� The labelling of the constraints to decide which tool is more appropriate for the evaluation of a query where the con-

straints are involved.

The architecture is designed in layers which provides a means of interaction between the user and the system. The use of
patterns allows changes and extensions to the different modules and tools, proving itself to be flexible and versatile. The
architecture also offers a way of including constraints into the query which are not stored in the CDB.

Finally, some examples and computation times are presented in order to demonstrate how the architecture helps in the
evaluation of queries with the projection operator.

As future work, we suggest an extension to the selection, Cartesian product, union and difference operators in order to
complete the relational algebra for Constraint type. As for SQL sentences, it is necessary to offer all the possibilities of stan-
dard SQL, such as UPDATE, REMOVE and other aggregation functions.

Acknowledgements

This work has been partially funded by the Ministry of Science and Technology of Spain (DPI2006-15476-C02-00) and the
European Regional Development Fund (ERDF/FEDER).

References

[1] S. Basu, Algorithms in semi-algebraic geometry, Ph.D. Thesis, 1996.
[2] S. Basu, R. Dhandapani, R. Pollack, On the realizable weaving patterns of polynomial curves in r3, in: Graph Drawing, Lecture Notes in Computer

Science, vol. 3383, Springer, 2004.
[3] F. Benhamou, L. Granvilliers, Continuous and interval constraints, in: F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Programming,

Foundations of Artificial Intelligence, Elsevier Science Publishers, Amsterdam, The Netherlands, 2006 (Chapter 16).
[4] R.E. Bixby, E.A. Boyd, R.Z. Ríos-Mercado (Eds.), Integer Programming and Combinatorial Optimization, Sixth International IPCO Conference, Houston,

Texas, USA, June 22–24, Proceedings, Lecture Notes in Computer Science, vol. 1412, Springer, 1998.
[5] A. Brodsky, V.E. Segal, J. Chen, P.A. Exarkhopoulo, The CCUBE constraint object-oriented database system, in: ACM SIGMOD Conference, ACM Press,

1999.
[6] C.W. Brown, Improved projection for cylindrical algebraic decomposition, Journal of Symbolic Computation 32 (5) (2001) 447–465.
[7] B. Buchberger, Gröbner bases: an algorithmic method in polynomial ideal theory, in: N.K. Bose (Ed.), Multidimensional Systems Theory, 1985, pp. 184–

232.
[8] J.H. Byon, P.Z. Revesz, DISCO: a constraint database system with sets, in: Constraint DataBases, Lecture Notes in Computer Science, vol. 1034, Springer,

1995.
[9] S. Ceri, G. Gottlob, L. Tanca, What you always wanted to know about Datalog (and never dared to ask), IEEE Transactions on Knowledge and Data

Engineering 1 (1) (1989) 146–166.
[10] J. Chomicki, D.Q. Goldin, G.M. Kuper, D. Toman, Variable independence in constraint databases, IEEE Transactions on Knowledge and Data Engineering

15 (6) (2003) 1422–1436.
[11] J. Cohen, Constraint logic programming languages, Communications of the ACM 33 (7) (1990) 52–68.
[12] G.E. Collins, H. Hong, Partial cylindrical algebraic decomposition for quantifier elimination, Journal of Symbolic Computation 12 (3) (1991) 299–328.
[13] G.E. Collins, J.R. Johnson, W. Krandick, Interval arithmetic in cylindrical algebraic decomposition, Journal of Symbolic Computation 34 (2) (2002) 145–

157.
[14] C. Combi, M. Gozzi, J.M. Juárez, R. Marín, B. Oliboni, Querying clinical workflows by temporal similarity, in: AIME, 2007.
[15] P. Dasgupta, P.P. Chakrabarti, A. Dey, S. Ghose, W. Bibel, Solving constraint optimization problems from CLP-style specifications using heuristic search

techniques, IEEE Transactions on Knowledge and Data Engineering 14 (2) (2002) 353–368.
[16] R. Davis, Diagnostic reasoning based on structure and behavior, Artificial Intelligence 24 (1984) 347–410.
[17] R. Dechter, Constraint Processing (The Morgan Kaufmann Series in Artificial Intelligence), Morgan Kaufmann, 2003.
[18] R. Dechter, I. Meiri, Experimental evaluation of preprocessing algorithms for constraint satisfaction problems, Artificial Intelligence 68 (2) (1994) 211–

241.
[19] R. Dechter, J. Pearl, Network-based heuristics for constraint satisfaction problems, Artificial Intelligence 34 (1988) 1–38.
[20] J.V. den Bussche, Constraint databases, queries, and query languages, in: G. Kuper, L. Libkin, J. Paredaes (Eds.), Constraint Databases, Springer, 2000.
[21] A.D. Deo, Modeling spatial and temporal data in an object-oriented constraint database framework, Ph.D. Thesis, von der Fakultät IV-Elektrotechnik

und Informatik der Technish Universität zur Erlangung des akademischem Grades, Berlin, 2002.
[22] J. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to zero (f5), ACM Press, New York, NY, USA, 2002.
[23] J.C. Faugère, A new efficient algorithm for computing Gröbner bases (f4), Journal of Pure and Applied Algebra 139 (1–3) (1999) 61–88.
[24] R.M. Gasca, J.A. Ortega, M. Toro, A framework for semiqualitative reasoning in engineering applications, Applied Artificial Intelligence 16 (3) (2002)

173–197.
[25] P.A. Geelen, Dual viewpoint heuristics for binary constraint satisfaction problems, in: ECAI’92: Proceedings of the 10th European Conference on

Artificial Intelligence, John Wiley & Sons, Inc., New York, NY, USA, 1992.
[26] F. Geerts, B. Kuijpers, On the decidability of termination of query evaluation in transitive-closure logics for polynomial constraint databases,

Theoretical Computer Science 336 (1) (2005) 125–151.
[27] D. Goldin, A. Kutlu, M. Song, Extending the Constraint Database Framework, in: PCK50, ACM Press, New York, USA, 2003.
[28] D.Q. Goldin, Taking constraints out of constraint databases, in: Constraint DataBases, Lecture Notes in Computer Science, vol. 3074, Springer, 2004.
[29] L. Granvilliers, F. Goualard, F. Benhamou, Box consistency through weak box consistency, in: ICTAI’99: Proceedings of the 11th IEEE International

Conference on Tools with Artificial Intelligence, IEEE Computer Society, Washington, DC, USA, 1999.
[30] R. Gross-Brunschwiler, Implementation of constraint database systems using a compiler-time rewrite approach, Ph.D. Thesis, Swiss Federal Institute of

Technology, Zürich, May 1996.
[31] S. Grumbach, P. Rigaux, L. Segoufin, The DEDALE system for complex spatial queries, in: SIGMOD Conference, 1998.
[32] R.M. Haralick, G.L. Elliott, Increasing tree search efficiency for constraint satisfaction problems, in: Proceedings of the Sixth International Joint

Conferences on Artificial Intelligence (IJCAI), Tokyo, Japan, 1979.
[33] W. Hodges, Some strange quantifiers, in: Structures in Logic and Computer Science, 1997.
[34] X. Huang, A general extension of constraint propagation for constraint optimization, in: CP, 2004.
[35] J. Jaffar, J.-L. Lassez, Constraint logic programming, in: Principles of Programming Languages (POPL), 1987.
[36] J. Jaffar, M.J. Maher, Constraint logic programming: a survey, Journal of Logic Programming 19–20 (1994) 503–581.
[37] P.C. Kanellakis, G.M. Kuper, P.Z. Revesz, Constraint query languages, Symposium on Principles of Database Systems (1990) 299–313.
[38] J.D. Kleer, A. Mackworth, R. Reiter, Characterizing diagnoses and systems, Artificial Intelligence 56 (2) (1992) 197–222.
[39] L. Libkin, Variable independence, quantifier elimination, and constraint representations, in: ICALP’00: Proceedings of the 27th International

Colloquium on Automata, Languages and Programming, Springer-Verlag, London, UK, 2000.
[40] A.K. Mackworth, Consistency in networks of relations, Artificial Intelligence 8 (1) (1977) 99–118.
[41] R. Manual, Jsolver 2.1, 2003.
[42] E. Mayol, E. Teniente, Consistency Preserving Updates in Deductive Databases, vol. 47, Elsevier Science Publishers B.V., Amsterdam, The Netherlands,

2003.
[43] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1) (1987) 57–96.
[44] W. Research, Mathematica 5, Reference Manual April.
[45] P. Revesz, Evaluation of queries, Introduction to Constraint Databases, Springer, 2001.
[46] P.Z. Revesz, Datalog queries of set constraint databases, in: ICDT’95: Proceedings of the Fifth International Conference on Database Theory, Springer-

Verlag, London, UK, 1995.
[47] P.Z. Revesz, Safe query languages for constraint databases, ACM Transactions on Database Systems 23 (1) (1998) 58–99.
[48] P.Z. Revesz, R. Chen, P. Kanjamala, Y. Li, Y. Liu, Y. Wang, The MLPQ/GIS constraint database system, in: ACM SIGMOD Conference, May 16–18, Dallas,

Texas, USA, ACM, 2000.
[49] P.Z. Revesz, Y. Li, Mlpq: a linear constraint database system with aggregate operators, in: IDEAS’97: Proceedings of the 1997 International Symposium

on Database Engineering and Applications, IEEE Computer Society, Washington, DC, USA, 1997.
[50] M. Sachenbacher, B. Williams, Diagnosis as semiring-based constraint optimization, in: 15th International Workshop on Principles of Diagnosis, 2004.
[51] A.W. Strzebonski, Cylindrical algebraic decomposition using validated numerics, Journal of Symbolic Computation 49 (9) (2006) 1021–1038.
[52] M. Stumptner, F. Wotawa, Coupling CSP decomposition methods and diagnosis algorithms for tree-structured systems, in: International Joint

Conferences on Artificial Intelligence (IJCAI), 2003.

[53] V. Telerman, Using constraint solvers in CAD/CAM systems, in: PSI’02: Revised Papers from the Fourth International Andrei Ershov Memorial
Conference on Perspectives of System Informatics, Springer-Verlag, London, UK, 2001.

[54] D. Toman, SQL/TP: a temporal extension of SQL, in: Constraint Databases, Springer, 2000.
[55] P. Veltri, Constraint database query evaluation with approximation, in: ITCC’01: Proceedings of the International Conference on Information

Technology: Coding and Computing, IEEE Computer Society, Washington, DC, USA, 2001.

	Developing a labelled object-relational constraint database architecture for the projection operator
	Introduction
	Background
	Constraint databases definitions
	Related work

	Model-based Diagnosis: diagnosis: a new application domain for CDB
	A new definition of CDB
	CORQL: Constraint constraint object-relational query language
	Creating a LORCDB
	Creating and inserting information into a table
	Querying a labelled object-relational CDB

	Computational techniques
	Gröbner basesBases
	Cylindrical algebraic decomposition
	Constraint satisfaction problems and constraint optimization problems

	Labelled object-relational CDB architecture

	Search engine for related constraints
	Step 1.- 1 – Selection of the solving tool and the type of model
	Step 2.- 2 – Identification of clusters of related constraints

	Building models depending on the type of query
	Symbolic model for equality constraint query
	Symbolic model for inequality constraint query
	Numeric model for constraint satisfaction problems
	Numeric model for constraint optimization problems

	Experimental results for the projection operator
	Symbolic projection evaluation
	Test queries for symbolic projection performance

	Numeric projection evaluation
	Test queries with numeric projection

	Projection over the maximum or minimum value of a constraint-variable attribute
	Test queries over maximum value

	Conclusions and future work
	Acknowledgements
	References

