2,453 research outputs found

    Within-socket Myoelectric Prediction of Continuous Ankle Kinematics for Control of a Powered Transtibial Prosthesis

    Get PDF
    Objective. Powered robotic prostheses create a need for natural-feeling user interfaces and robust control schemes. Here, we examined the ability of a nonlinear autoregressive model to continuously map the kinematics of a transtibial prosthesis and electromyographic (EMG) activity recorded within socket to the future estimates of the prosthetic ankle angle in three transtibial amputees. Approach. Model performance was examined across subjects during level treadmill ambulation as a function of the size of the EMG sampling window and the temporal \u27prediction\u27 interval between the EMG/kinematic input and the model\u27s estimate of future ankle angle to characterize the trade-off between model error, sampling window and prediction interval. Main results. Across subjects, deviations in the estimated ankle angle from the actual movement were robust to variations in the EMG sampling window and increased systematically with prediction interval. For prediction intervals up to 150 ms, the average error in the model estimate of ankle angle across the gait cycle was less than 6°. EMG contributions to the model prediction varied across subjects but were consistently localized to the transitions to/from single to double limb support and captured variations from the typical ankle kinematics during level walking. Significance. The use of an autoregressive modeling approach to continuously predict joint kinematics using natural residual muscle activity provides opportunities for direct (transparent) control of a prosthetic joint by the user. The model\u27s predictive capability could prove particularly useful for overcoming delays in signal processing and actuation of the prosthesis, providing a more biomimetic ankle response

    Preliminary Investigation of Residual Limb Plantarflexion and Dorsiflexion Muscle Activity During Treadmill Walking for Trans-tibial Amputees

    Get PDF
    Background: Novel powered prosthetic ankles currently incorporate finite state control, using kinematic and kinetic sensors to differentiate stance and swing phases/sub-phases and control joint impedance and position or torque. For more intuitive control, myoelectric control of the ankle using the remnant residual limb dorsiflexors and plantarflexors, perhaps in concert with kinetic and kinematic sensors, may be possible. Objective: The specific research objective was to assess the feasibility of using myoelectric control of future active or powered prosthetic ankle joints for trans-tibial amputees. Study Design: The project involved human subject trials to determine whether current techniques of myoelectric control of upper extremity prostheses might be readily adapted for lower extremity prosthetic control. Methods: Gait analysis was conducted for three unilateral trans-tibial amputee subjects during ambulation on an instrumented split belt treadmill. Data included ankle plantarflexor and dorsiflexor activity for the residual limb, as well as lower limb kinematics and ground reaction forces and moments of both the sound and prosthetic limbs. Results: These data indicate that: 1) trans-tibial amputees retain some independent ankle plantarflexor and dorsiflexor muscle activity of their residual limb; 2) it is possible to position surface electromyographic electrodes within a trans-tibial socket that maintain contact during ambulation; 3) both the plantarflexors and dorsiflexors of the residual limb are active during gait; 4) plantarflexor and dorsiflexor activity is consistent during multiple gait cycles; and 5) with minimal training, trans-tibial amputees may be able to activate their plantarflexors during push-off. Conclusions: These observations demonstrate the potential for future myoelectric control of active prosthetic ankles. Clinical relevance This study demonstrated the feasibility of applying upper extremity prosthetic myoelectric signal acquisition, processing and control techniques to future myoelectric control of active prosthetic ankles for trans-tibial amputees

    EMG-to-Speech: Direct Generation of Speech from Facial Electromyographic Signals

    Get PDF
    The general objective of this work is the design, implementation, improvement and evaluation of a system that uses surface electromyographic (EMG) signals and directly synthesizes an audible speech output: EMG-to-speech

    Moving approximate entropy and its application to the electromyographic control of an artificial hand

    No full text
    A multiple-degree-of-freedom artificial hand has been developed at the University of Southampton with the aim of including control philosophies to form a highly functional prosthesis hand. Using electromyographic signals is an established technique for the control of a hand. In it simplest form, the signals allow for opening a hand and subsequent closing to grasp an object.This thesis describes the work carried out in the development of an electromyographic control system, with the aim to have a simple and robust method. A model of the control system was developed to differentiate grip postures using two surface electromyographic signals. A new method, moving approximate entropy was employed to investigate whether any significant patterns can be observed in the structure of the electromyographic signals. An investigation, using moving approximate entropy, on twenty healthy participants' wrist muscles (flexor carpi ulnaris and extensor carpi radialis) during wrist exion, wrist extension and cocontraction at different speeds has shown repeatable and distinct patterns at three states of contraction: start, middle and end. An analysis of the results also showed differences at different speeds of contraction. There is a low variation of the approximate entropy values between participants. This result, if used in the control of an artificial hand, would eliminate any training requirement. Other methods, mean absolute value, number of zero crossings, sample entropy, standard deviation, skewness and kurtosis have been determined from the signals. Of these features, mean absolute value and kurtosis were selected for information extraction. These three methods: moving approximate entropy, mean absolute value and kurtosis are used in the feature extraction process of the control system. A fuzzy logic system is used to classify the extracted information in discriminating the final grip posture. The results demonstrate the ability of the system to classify the information related to different grip postures

    Differentiation among bio- and augmented- feedback in technologically assisted rehabilitation

    Get PDF
    Introduction: In rehabilitation practice, the term ‘feedback’ is often improperly used, with augmented feedback and biofeedback frequently confused, especially when referring to the human-machine interaction during technologically assisted training. The absence of a clear differentiation between these categories represents an unmet need for rehabilitation, emphasized by the advent of new technologies making extensive use of video feedback, exergame, and virtual reality. Area covered: In this review we tried to present scientific knowledge about feedback, biofeedback, augmented feedback and neurofeedback, and related differences in rehabilitation settings, for a more proper use of this terminology. Despite the continuous expansion of the field, few researches clarify the differences among these terms. This scoping review was conducted through the searching of current literature up to May 2020, using following databases: PUBMED, EMBASE and Web of Science. After literature search a classification system, distinguishing feedback, augmented feedback, and biofeedback, was applied. Expert opinion: There is a need for clear definitions of feedback, biofeedback, augmented feedback, and neurofeedback in rehabilitation, especially in the technologically assisted one based on human-machine interaction. In fact, the fast development of new technologies requires to be based on solid concepts and on a common terminology shared among bioengineers and clinicians

    Multiscale Topological Properties Of Functional Brain Networks During Motor Imagery After Stroke

    Full text link
    In recent years, network analyses have been used to evaluate brain reorganization following stroke. However, many studies have often focused on single topological scales, leading to an incomplete model of how focal brain lesions affect multiple network properties simultaneously and how changes on smaller scales influence those on larger scales. In an EEG-based experiment on the performance of hand motor imagery (MI) in 20 patients with unilateral stroke, we observed that the anatomic lesion affects the functional brain network on multiple levels. In the beta (13-30 Hz) frequency band, the MI of the affected hand (Ahand) elicited a significantly lower smallworldness and local efficiency (Eloc) versus the unaffected hand (Uhand). Notably, the abnormal reduction in Eloc significantly depended on the increase in interhemispheric connectivity, which was in turn determined primarily by the rise in regional connectivity in the parieto-occipital sites of the affected hemisphere. Further, in contrast to the Uhand MI, in which significantly high connectivity was observed for the contralateral sensorimotor regions of the unaffected hemisphere, the regions that increased in connection during the Ahand MI lay in the frontal and parietal regions of the contralaterally affected hemisphere. Finally, the overall sensorimotor function of our patients, as measured by Fugl-Meyer Assessment (FMA) index, was significantly predicted by the connectivity of their affected hemisphere. These results increase our understanding of stroke-induced alterations in functional brain networks.Comment: Neuroimage, accepted manuscript (unedited version) available online 19-June-201

    Simultaneous Robotic Manipulation and Functional Magnetic Resonance Imaging: Feasibility in Children with Autism Spectrum Disorders

    Get PDF
    An unanswered question concerning the neural basis of autism spectrum disorders (ASD) is how sensorimotor deficits in individuals with ASD are related to abnormalities of brain function. We previously described a robotic joystick and video game system that allows us to record functional magnetic resonance images (FMRI) while adult humans make goal- directed wrist motions. We anticipated several challenges in extending this approach to studying goal-directed behaviors in children with ASD and in typically developing (TYP) children. In particular we were concerned that children with autism may express increased levels of anxiety as compared to typically developing children due to the loud sounds and small enclosed space of the MRI scanner. We also were concerned that both groups of children might become restless during testing, leading to an unacceptable amount of head movement. Here we performed a pilot study evaluating the extent to which autistic and typically developing children exhibit anxiety during our experimental protocol as well as their ability to comply with task instructions. Our experimental controls were successful in minimizing group differences in drop-out due to anxiety. Kinematic performance and head motion also were similar across groups. Both groups of children engaged cortical regions (frontal, parietal, temporal, occipital) while making goal- directed movements. In addition, the ASD group exhibited task- related correlations in subcortical regions (cerebellum, thalamus), whereas correlations in the TYP group did not reach statistical significance in subcortical regions. Four distinct regions in frontal cortex showed a significant group difference such that TYP children exhibited positive correlations between the hemodynamic response and movement, whereas children with ASD exhibited negative correlations. These findings demonstrate feasibility of simultaneous application of robotic manipulation and functional imaging to study goal-directed motor behaviors in autistic and typically developing children. The findings also suggest the presence of marked changes in neural activation during a sensorimotor task requiring goal- directed movement

    Physical Activity Modulates Corticospinal Excitability of the Lower Limb in Young and Old Adults

    Get PDF
    Aging is associated with reduced neuromuscular function, which may be due in part to altered corticospinal excitability. Regular physical activity (PA) may ameliorate these age-related declines, but the influence of PA on corticospinal excitability is unknown. The purpose of this study was to determine the influence of age, sex, and PA on corticospinal excitability by comparing the stimulus-response curves of motor evoked potentials (MEP) in 28 young (22.4 ± 2.2 yr; 14 women and 14 men) and 50 old adults (70.2 ± 6.1 yr; 22 women and 28 men) who varied in activity levels. Transcranial magnetic stimulation was used to elicit MEPs in the active vastus lateralis muscle (10% maximal voluntary contraction) with 5% increments in stimulator intensity until the maximum MEP amplitude. Stimulus-response curves of MEP amplitudes were fit with a four-parameter sigmoidal curve and the maximal slope calculated (slopemax). Habitual PA was assessed with tri-axial accelerometry and participants categorized into either those meeting the recommended PA guidelines for optimal health benefits (\u3e10,000 steps/day, high-PA; n = 21) or those not meeting the guidelines (n = 41). The MEP amplitudes and slopemax were greater in the low-PA compared with the high-PA group (P \u3c 0.05). Neither age nor sex influenced the stimulus-response curve parameters (P \u3e 0.05), suggesting that habitual PA influenced the excitability of the corticospinal tract projecting to the lower limb similarly in both young and old adults. These findings provide evidence that achieving the recommended PA guidelines for optimal health may mediate its effects on the nervous system by decreasing corticospinal excitability

    Design and Control of a Hand Prosthesis

    Get PDF
    PrĂĄce pƙedklĂĄdĂĄ metody a vĂœsledky nĂĄvrhu, vĂœroby a vĂœzkumu pětiprstĂ© protĂ©zy ruky. Inspirace jdoucĂ­ z pƙírody a z toho vyvozenĂœ princip pouĆŸitĂ©ho mechanizmu je uveden. ZĂĄkladnĂ­ koncept ƙídĂ­cĂ­ho schĂ©ma zaloĆŸenĂ©ho na procesingu a ohodnocenĂ­ EMG je navrhnut a implementovĂĄn. Části senzorickĂ©ho systĂ©mu protĂ©zy jsou navrhnuty a zahrnuty do rĂ­dĂ­cĂ­ho algoritmu a shĂ©matu. VelkĂ© mnoĆŸstvĂ­ inovacĂ­ a nĂĄvrhĆŻ pro budoucĂ­ prĂĄce a vĂœzkum jsou prezentovĂĄny, stejně tak komplexnĂ­ analĂœza a diskuse dosaĆŸenĂœch a moĆŸnĂœch budoucĂ­ch vĂœsledkĆŻ.The text shows idea flow, methods and results in design, manufacture and research of five--fingered prosthetic hand. The inspiration of the nature and mechanical principle elicited is presented. Fundamental control scheme based on processing and evaluation of EMG is designed and implemented. The segments of sensory system are designed and involved into the overall controll scheme idea. Large innovations and suggestions for future work and research are given with complex discussion through reached and hopefully future results.
    • 

    corecore