11 research outputs found

    Advanced modelling and design considerations for interconnects in ultra- low power digital system

    Get PDF
    PhD ThesisAs Very Large Scale Integration (VLSI) is progressing in very Deep submicron (DSM) regime without decreasing chip area, the importance of global interconnects increases but at the cost of performance and power consumption for advanced System-on- Chip (SoC)s. However, the growing complexity of interconnects behaviour presents a challenge for their adequate modelling, whereby conventional circuit theoretic approaches cannot provide sufficient accuracy. During the last decades, fractional differential calculus has been successfully applied to modelling certain classes of dynamical systems while keeping complexity of the models under acceptable bounds. For example, fractional calculus can help capturing inherent physical effects in electrical networks in a compact form, without following conventional assumptions about linearization of non-linear interconnect components. This thesis tackles the problem of interconnect modelling in its generality to simulate a wide range of interconnection configurations, its capacity to emulate irregular circuit elements and its simplicity in the form of responsible approximation. This includes modelling and analysing interconnections considering their irregular components to add more flexibility and freedom for design. The aim is to achieve the simplest adaptable model with the highest possible accuracy. Thus, the proposed model can be used for fast computer simulation of interconnection behaviour. In addition, this thesis proposes a low power circuit for driving a global interconnect at voltages close to the noise level. As a result, the proposed circuit demonstrates a promising solution to address the energy and performance issues related to scaling effects on interconnects along with soft errors that can be caused by neutron particles. The major contributions of this thesis are twofold. Firstly, in order to address Ultra-Low Power (ULP) design limitations, a novel driver scheme has been configured. This scheme uses a bootstrap circuitry which boosts the driver’s ability to drive a long interconnect with an important feedback feature in it. Hence, this approach achieves two objectives: improving performance and mitigating power consumption. Those achievements are essential in designing ULP circuits along with occupying a smaller footprint and being immune to noise, observed in this design as well. These have been verified by comparing the proposed design to the previous and traditional circuits using a simulation tool. Additionally, the boosting based approach has been shown beneficial in mitigating the effects of single event upset (SEU)s, which are known to affect DSM circuits working under low voltages. Secondly, the CMOS circuit driving a distributed RLC load has been brought in its analysis into the fractional order domain. This model will make the on-chip interconnect structure easy to adjust by including the effect of fractional orders on the interconnect timing, which has not been considered before. A second-order model for the transfer functions of the proposed general structure is derived, keeping the complexity associated with second-order models for this class of circuits at a minimum. The approach here attaches an important trait of robustness to the circuit design procedure; namely, by simply adjusting the fractional order we can avoid modifying the circuit components. This can also be used to optimise the estimation of the system’s delay for a broad range of frequencies, particularly at the beginning of the design flow, when computational speed is of paramount importance.Iraqi Ministry of Higher Education and Scientific Researc

    Voltage sensing based built-in current sensor for IDDQ test

    Get PDF
    Quiescent current leakage test of the VDD supply (IDDQ Test) has been proven an effective way to screen out defective chips in manufacturing of Integrated Circuits (IC). As technology advances, the traditional IDDQ test is facing more and more challenges. In this research, a practical built-in current sensor (BICS) is proposed and the design is verified by three generations of test chips. The BICS detects the signal by sensing the voltage drop on supply lines of the circuit under test (CUT). Then the sensor performs analog-to-digital conversion of the input signal using a stochastic process with scan chain readout. Self-calibration and digital chopping are used to minimize offset and low frequency noise and drift. This non-invasive procedure avoids any performance degradation of the CUT. The measurement results of test chips are presented. The sensor achieves a high IDDQ resolution with small chip area overhead. This will enable IDDQ of future technology generations

    Reliability-aware memory design using advanced reconfiguration mechanisms

    Get PDF
    Fast and Complex Data Memory systems has become a necessity in modern computational units in today's integrated circuits. These memory systems are integrated in form of large embedded memory for data manipulation and storage. This goal has been achieved by the aggressive scaling of transistor dimensions to few nanometer (nm) sizes, though; such a progress comes with a drawback, making it critical to obtain high yields of the chips. Process variability, due to manufacturing imperfections, along with temporal aging, mainly induced by higher electric fields and temperature, are two of the more significant threats that can no longer be ignored in nano-scale embedded memory circuits, and can have high impact on their robustness. Static Random Access Memory (SRAM) is one of the most used embedded memories; generally implemented with the smallest device dimensions and therefore its robustness can be highly important in nanometer domain design paradigm. Their reliable operation needs to be considered and achieved both in cell and also in architectural SRAM array design. Recently, and with the approach to near/below 10nm design generations, novel non-FET devices such as Memristors are attracting high attention as a possible candidate to replace the conventional memory technologies. In spite of their favorable characteristics such as being low power and highly scalable, they also suffer with reliability challenges, such as process variability and endurance degradation, which needs to be mitigated at device and architectural level. This thesis work tackles such problem of reliability concerns in memories by utilizing advanced reconfiguration techniques. In both SRAM arrays and Memristive crossbar memories novel reconfiguration strategies are considered and analyzed, which can extend the memory lifetime. These techniques include monitoring circuits to check the reliability status of the memory units, and architectural implementations in order to reconfigure the memory system to a more reliable configuration before a fail happens.Actualmente, el diseño de sistemas de memoria en circuitos integrados busca continuamente que sean más rápidos y complejos, lo cual se ha vuelto de gran necesidad para las unidades de computación modernas. Estos sistemas de memoria están integrados en forma de memoria embebida para una mejor manipulación de los datos y de su almacenamiento. Dicho objetivo ha sido conseguido gracias al agresivo escalado de las dimensiones del transistor, el cual está llegando a las dimensiones nanométricas. Ahora bien, tal progreso ha conllevado el inconveniente de una menor fiabilidad, dado que ha sido altamente difícil obtener elevados rendimientos de los chips. La variabilidad de proceso - debido a las imperfecciones de fabricación - junto con la degradación de los dispositivos - principalmente inducido por el elevado campo eléctrico y altas temperaturas - son dos de las más relevantes amenazas que no pueden ni deben ser ignoradas por más tiempo en los circuitos embebidos de memoria, echo que puede tener un elevado impacto en su robusteza final. Static Random Access Memory (SRAM) es una de las celdas de memoria más utilizadas en la actualidad. Generalmente, estas celdas son implementadas con las menores dimensiones de dispositivos, lo que conlleva que el estudio de su robusteza es de gran relevancia en el actual paradigma de diseño en el rango nanométrico. La fiabilidad de sus operaciones necesita ser considerada y conseguida tanto a nivel de celda de memoria como en el diseño de arquitecturas complejas basadas en celdas de memoria SRAM. Actualmente, con el diseño de sistemas basados en dispositivos de 10nm, dispositivos nuevos no-FET tales como los memristores están atrayendo una elevada atención como posibles candidatos para reemplazar las actuales tecnologías de memorias convencionales. A pesar de sus características favorables, tales como el bajo consumo como la alta escabilidad, ellos también padecen de relevantes retos de fiabilidad, como son la variabilidad de proceso y la degradación de la resistencia, la cual necesita ser mitigada tanto a nivel de dispositivo como a nivel arquitectural. Con todo esto, esta tesis doctoral afronta tales problemas de fiabilidad en memorias mediante la utilización de técnicas de reconfiguración avanzada. La consideración de nuevas estrategias de reconfiguración han resultado ser validas tanto para las memorias basadas en celdas SRAM como en `memristive crossbar¿, donde se ha observado una mejora significativa del tiempo de vida en ambos casos. Estas técnicas incluyen circuitos de monitorización para comprobar la fiabilidad de las unidades de memoria, y la implementación arquitectural con el objetivo de reconfigurar los sistemas de memoria hacia una configuración mucho más fiables antes de que el fallo suced

    Design and implementation of gallium arsenide digital integrated circuits

    Get PDF

    Characterisation and modelling of Random Telegraph Noise in nanometre devices

    Get PDF
    The power consumption of digital circuits is proportional to the square of operation voltage and the demand for low power circuits reduces the operation voltage towards the threshold of MOSFETs. A weak voltage signal makes circuits vulnerable to noise and the optimization of circuit design requires an accurate noise model. RTN is the dominant noise for modern CMOS technologies. This research focuses on the instability induced by Random Telegraph Noise (RTN) in nano-devices for low power applications, such as the Internet of Things (IoT). RTN is a stochastic noise that can be observed in the drain/gate current of a device when traps capture and emit electrons or holes. The impact of RTN instabilities in devices has been widely investigated. Although progress has been made, the understanding of RTN instabilities remains incomplete and many issues are unresolved. This work focuses on developing a statistical model for characterising, modelling and analysing of the impact of RTN on MOSFET performance, as well as to study the prediction for long-term RTN impact on real circuits. As transistor sizes are downscaled, a single trapped charge has a larger impact and RTN becomes increasingly important. To optimize circuit design, one needs to assess the impact of RTN on circuits, which can only be accomplished if there is an accurate statistical model of RTN. The dynamic Monte Carlo modelling requires the statistical distribution functions of both the amplitude and the capture/emission time (CET) of traps. Early works were focused on the amplitude distribution and the experimental data of CETs has been too limited to establish their statistical distribution reliably. In particular, the time window used has often been small, e.g. 10 sec or less, so that there is little data on slow traps. It is not known whether the CET distribution extracted from such a limited time window can be used to predict the RTN beyond the test time window. The first contribution of this work is three-fold: to provide long-term RTN data and use it to test the CET distributions proposed by early works; to propose a methodology for characterising the CET distribution for a fabrication process efficiently; and, for the first time, to verify the long-term prediction capability of a CET distribution beyond the time window used for its extraction. On the statistical distributions of RTN amplitude, three different distributions were proposed by early works: Lognormal, Exponential, and Gumbel distributions. They give substantially different RTN predictions and agreement has not been reached on which distribution should be used, calling the modelling accuracy into question. The second contribution of this work is to assess the accuracy of these three distributions and to explore other distributions for better accuracy. A novel criterion has been proposed for selecting distributions, which requires a monotonic reduction of modelling errors with increasing number of traps. The three existing distributions do not meet this criterion and thirteen other distributions are explored. It is found that the Generalized Extreme Value (GEV) distribution has the lowest error and meets the new criterion. Moreover, to reduce modelling errors, early works used bimodal Lognormal and Exponential distributions, which have more fitting parameters. Their errors, however, are still higher than those of the monomodal GEV distribution. GEV has a long distribution tail and predicts substantially worse RTN impact. The project highlights the uncertainty in predicting the RTN distribution tail by different statistical models. The last contribution of the project is studying the impact of different gate biases on RTN distributions. At two different gate voltage conditions: one close to threshold voltage |Vth| and the other under operating conditions, it is found that the RTN amplitude follows different distributions. At operating voltage condition, Lognormal distribution has the lowest error for RTN amplitude distribution in comparison with other distributions. The amplitude distribution at close to |Vth| has a longer tail compared with the distribution tail at operating voltage. However, RTN capture/emission time distribution is not impacted by gate bias and follows Log-uniform distribution

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    Digital mixing consoles: parallel architectures and taskforce scheduling strategies

    Get PDF
    This thesis is concerned specifically with the implementation of large-scale professional DMCs. The design of such multi-DSP audio products is extremely challenging: one cannot simply lash together n DSPs and obtain /7-times the performance of a sole device. M-P models developed here show that topology and IPC mechanisms have critical design implications. Alternative processor technologies are investigated with respect to the requirements of DMC architectures. An extensive analysis of M-P topologies is undertaken using the metrics provided by the TPG tool. Novel methods supporting DSP message-passing connectivity lead to the development of a hybrid audio M-P (HYMIPS) employing these techniques. A DMC model demonstrates the impact of task allocation on ASP M-P architectures. Five application-specific heuristics and four static-labelling schemes are developed for scheduling console taskforces on M-Ps. An integrated research framework and DCS engine enable scheduling strategies to be analysed with regard to the DMC problem domain. Three scheduling algorithms — CPM, DYN and AST — and three IPC mechanisms — FWE, NSL and NML — are investigated. Dynamic-labelling strategies and mix-bus granularity issues are further studied in detail. To summarise, this thesis elucidates those topologies, construction techniques and scheduling algorithms appropriate to professional DMC systems
    corecore