2,502 research outputs found

    An efficient closed frequent itemset miner for the MOA stream mining system

    Get PDF
    Mining itemsets is a central task in data mining, both in the batch and the streaming paradigms. While robust, efficient, and well-tested implementations exist for batch mining, hardly any publicly available equivalent exists for the streaming scenario. The lack of an efficient, usable tool for the task hinders its use by practitioners and makes it difficult to assess new research in the area. To alleviate this situation, we review the algorithms described in the literature, and implement and evaluate the IncMine algorithm by Cheng, Ke, and Ng (2008) for mining frequent closed itemsets from data streams. Our implementation works on top of the MOA (Massive Online Analysis) stream mining framework to ease its use and integration with other stream mining tasks. We provide a PAC-style rigorous analysis of the quality of the output of IncMine as a function of its parameters; this type of analysis is rare in pattern mining algorithms. As a by-product, the analysis shows how one of the user-provided parameters in the original description can be removed entirely while retaining the performance guarantees. Finally, we experimentally confirm both on synthetic and real data the excellent performance of the algorithm, as reported in the original paper, and its ability to handle concept drift.Postprint (published version

    Knowledge discovery in data streams

    Full text link
    Knowing what to do with the massive amount of data collected has always been an ongoing issue for many organizations. While data mining has been touted to be the solution, it has failed to deliver the impact despite its successes in many areas. One reason is that data mining algorithms were not designed for the real world, i.e., they usually assume a static view of the data and a stable execution environment where resources are abundant. The reality however is that data are constantly changing and the execution environment is dynamic. Hence, it becomes difficult for data mining to truly deliver timely and relevant results. Recently, the processing of stream data has received many attention. What is interesting is that the methodology to design stream-based algorithms may well be the solution to the above problem. In this entry, we discuss this issue and present an overview of recent works

    Sequential pattern mining with uncertain data

    Get PDF
    In recent years, a number of emerging applications, such as sensor monitoring systems, RFID networks and location based services, have led to the proliferation of uncertain data. However, traditional data mining algorithms are usually inapplicable in uncertain data because of its probabilistic nature. Uncertainty has to be carefully handled; otherwise, it might significantly downgrade the quality of underlying data mining applications. Therefore, we extend traditional data mining algorithms into their uncertain versions so that they still can produce accurate results. In particular, we use a motivating example of sequential pattern mining to illustrate how to incorporate uncertain information in the process of data mining. We use possible world semantics to interpret two typical types of uncertainty: the tuple-level existential uncertainty and the attribute-level temporal uncertainty. In an uncertain database, it is probabilistic that a pattern is frequent or not; thus, we define the concept of probabilistic frequent sequential patterns. And various algorithms are designed to mine probabilistic frequent patterns efficiently in uncertain databases. We also implement our algorithms on distributed computing platforms, such as MapReduce and Spark, so that they can be applied in large scale databases. Our work also includes uncertainty computation in supervised machine learning algorithms. We develop an artificial neural network to classify numeric uncertain data; and a Naive Bayesian classifier is designed for classifying categorical uncertain data streams. We also propose a discretization algorithm to pre-process numerical uncertain data, since many classifiers work with categoric data only. And experimental results in both synthetic and real-world uncertain datasets demonstrate that our methods are effective and efficient

    Towards Efficient Sequential Pattern Mining in Temporal Uncertain Databases

    Get PDF
    Uncertain sequence databases are widely used to model data with inaccurate or imprecise timestamps in many real world applications. In this paper, we use uniform distributions to model uncertain timestamps and adopt possible world semantics to interpret temporal uncertain database. We design an incremental approach to manage temporal uncertainty efficiently, which is integrated into the classic pattern-growth SPM algorithm to mine uncertain sequential patterns. Extensive experiments prove that our algorithm performs well in both efficiency and scalability

    The Minimum Description Length Principle for Pattern Mining: A Survey

    Full text link
    This is about the Minimum Description Length (MDL) principle applied to pattern mining. The length of this description is kept to the minimum. Mining patterns is a core task in data analysis and, beyond issues of efficient enumeration, the selection of patterns constitutes a major challenge. The MDL principle, a model selection method grounded in information theory, has been applied to pattern mining with the aim to obtain compact high-quality sets of patterns. After giving an outline of relevant concepts from information theory and coding, as well as of work on the theory behind the MDL and similar principles, we review MDL-based methods for mining various types of data and patterns. Finally, we open a discussion on some issues regarding these methods, and highlight currently active related data analysis problems

    Frequent itemset mining in big data with effective single scan algorithms

    Get PDF
    © 2013 IEEE. This paper considers frequent itemsets mining in transactional databases. It introduces a new accurate single scan approach for frequent itemset mining (SSFIM), a heuristic as an alternative approach (EA-SSFIM), as well as a parallel implementation on Hadoop clusters (MR-SSFIM). EA-SSFIM and MR-SSFIM target sparse and big databases, respectively. The proposed approach (in all its variants) requires only one scan to extract the candidate itemsets, and it has the advantage to generate a fixed number of candidate itemsets independently from the value of the minimum support. This accelerates the scan process compared with existing approaches while dealing with sparse and big databases. Numerical results show that SSFIM outperforms the state-of-the-art FIM approaches while dealing with medium and large databases. Moreover, EA-SSFIM provides similar performance as SSFIM while considerably reducing the runtime for large databases. The results also reveal the superiority of MR-SSFIM compared with the existing HPC-based solutions for FIM using sparse and big databases

    An evolutionary model to mine high expected utility patterns from uncertain databases

    Get PDF
    In recent decades, mobile or the Internet of Thing (IoT) devices are dramatically increasing in many domains and applications. Thus, a massive amount of data is generated and produced. Those collected data contain a large amount of interesting information (i.e., interestingness, weight, frequency, or uncertainty), and most of the existing and generic algorithms in pattern mining only consider the single object and precise data to discover the required information. Meanwhile, since the collected information is huge, and it is necessary to discover meaningful and up-to-date information in a limit and particular time. In this paper, we consider both utility and uncertainty as the majority objects to efficiently mine the interesting high expected utility patterns (HEUPs) in a limit time based on the multi-objective evolutionary framework. The benefits of the designed model (called MOEA-HEUPM) can discover the valuable HEUPs without pre-defined threshold values (i.e., minimum utility and minimum uncertainty) in the uncertain environment. Two encoding methodologies are also considered in the developed MOEA-HEUPM to show its effectiveness. Based on the developed MOEA-HEUPM model, the set of non-dominated HEUPs can be discovered in a limit time for decision-making. Experiments are then conducted to show the effectiveness and efficiency of the designed MOEA-HEUPM model in terms of convergence, hypervolume and number of the discovered patterns compared to the generic approaches.acceptedVersio
    • …
    corecore