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An Evolutionary Model to Mine High Expected
Utility Patterns from Uncertain Databases

Usman Ahmed, Jerry Chun-Wei Lin∗, Gautam Srivastava, Rizwan Yasin, and Youcef Djenouri

Abstract—In recent decades, mobile or the Internet of Thing
(IoT) devices are dramatically increasing in many domains
and applications. Thus, a massive amount of data is generated
and produced. Those collected data contain a large amount of
interesting information (i.e., interestingness, weight, frequency,
or uncertainty), and most of the existing and generic algorithms
in pattern mining only consider the single object and precise
data to discover the required information. Meanwhile, since the
collected information is huge, and it is necessary to discover
meaningful and up-to-date information in a limit and particular
time. In this paper, we consider both utility and uncertainty as the
majority objects to efficiently mine the interesting high expected
utility patterns (HEUPs) in a limit time based on the multi-
objective evolutionary framework. The benefits of the designed
model (called MOEA-HEUPM) can discover the valuable HE-
UPs without pre-defined threshold values (i.e., minimum utility
and minimum uncertainty) in the uncertain environment. Two
encoding methodologies are also considered in the developed
MOEA-HEUPM to show its effectiveness. Based on the developed
MOEA-HEUPM model, the set of non-dominated HEUPs can
be discovered in a limit time for decision-making. Experiments
are then conducted to show the effectiveness and efficiency of
the designed MOEA-HEUPM model in terms of convergence,
hypervolume and number of the discovered patterns compared
to the generic approaches.

Index Terms—High expected utility pattern mining, data min-
ing, multi-objective optimization, evolutionary computation.

I. INTRODUCTION

Over the past few decades, pattern mining algorithms [1]
showed the effectiveness to discover valuable information
for decision-making. Apriori [2] is the most fundamental
algorithm, which is used to find the association rules among
the items in the databases. It first uses the minimum support
threshold to discover the set of frequent itemsets. After that,
the satisfied frequent itemsets are then combined, forming a
set of rules and if the confidence of a rule is no less than
a minimum confidence threshold, it is then defined as an
association rule. The association-rule mining (ARM) has been
widely utilized in many domains and applications to show
its effectiveness in knowledge discovery. However, ARM only
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considers the binary database but ignores other factors, such as
weight, importantness, interestingness, or quantity. An obvious
example is for the basket-market analysis. Any items with
their purchase quantities in a transaction are not considered
in ARM. Another limitation of ARM is that all items are con-
sidered equally and treated as the same importances. Although
ARM has been used to recognize the relationships of the
items/sets in a transactional database, the valuable and useful
patterns can thus be ignored due to the limitation of ARM;
the incomplete information may produce the wrong strategies
in decision-making.

High-utility itemset mining (HUIM) [3], [4] is an emerging
topic, which considers both unit profit of the items and the
quantity of the items to retrieve the set of high-utility itemsets
(HUIs) from the quantitative databases. The purpose of HUIM
is to reveal patterns that having high utility to users. If the
utility of an item/set is no less than a pre-defined minimum
utility threshold, it is then considered as a HUI. Based on the
HUIM, more profitable products or relationships can thus be
revealed, which can be used to make more efficient strategies
in decision-making. Also, most existing methods [1] in pattern
mining rely on a priori threshold value to discover the required
knowledge, which is a non-trivial task since it needs the
domain and expert knowledge to set an appropriate thresh-
old to avoid the “rare-item” and “combinational explosion”
problems.

Motivation: In a complex industrial environment, data
encounters many challenges, i.e., the uncertainty about the
data sources and the processing environment factors. Due
to the uncertainty factor existing in many resources (e.g.,
Wifi system, RFID, wireless sensor network and GPS) [5],
traditional data mining methods cannot be utilized to mine
all the required knowledge from the uncertain databases. The
reason is that both factors (i.e., the utility and uncertainty) are
two different measures that bring the semantic and objective
value for each pattern. Traditional data mining approaches use
the utility (a semantic mechanism) as a measure to assess
the value of the pattern, i.e., a pattern is available in the
relevant data and is useful too. The uncertainty measure can be
considered as an objective measure that assesses the reliability
and existence of the pattern in terms of probability. Both
factors are different from each other. It is a non-trivial task
to both consider the utility and uncertainty factors for mining
the HUIs in the uncertain databases. For most utility-based
approaches, data sources are considered as precise, while
data uncertainty factor is not taken into consideration. If the
uncertainty factor is not considered, the extracted patterns may
become useless, unreliable and lack of essential information
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with low probability. Furthermore, more than two factors are
considered together for decision-making, and they could have
the trade-off and non-dominated relationships (i.e., price and
distance to the downtown for booking a hotel room). To make
an efficient decision in a limit time, it is necessary to have
a robust approach that considers both uncertainty and utility
factors together to extract the information.

In this paper, we first take the uncertainty and utility
as the two objects for the consideration to find the non-
dominated solutions based on evolutionary computation. The
contributions of this paper are then listed below.
• In this study, we examine the problem by considering

both utility and uncertainty objects (multi-objectives)
simultaneously to discover the qualified non-dominated
high expected utility patterns (HEUPs) from the uncertain
databases based on the evolutionary computation.

• An Multi-Objective Evolutionary Approach to mine
High Expected Utility Pattern Mining (MOEA-HEUPM)
model is first developed, which can be used to find
the required HEUPs in a limit time for the uncertain
environment.

• The designed MOEA-HEUPM does not require the priori
knowledge, i.e., minimum utility threshold or minimum
uncertain threshold, for knowledge discovery, but the non-
dominated patterns can be mined, which is much more
unique and meaningful for decision-making.

• The weight-based (Tchebycheff) algorithm is utilized here
for quickly obtaining the non-dominated solutions based
on the multi-objective (utility and uncertainty) mecha-
nism.

• Two encoding schemas are then developed and utilized
in the designed MOEA-HEUPM model to show its effec-
tiveness, and the experiments showed that the developed
MOEA-HEUPM outperforms the generic pattern-mining
algorithms in terms of convergence, hypervolume and
number of the discovered patterns.

II. LITERATURE REVIEW

Association rule mining (ARM) is the most fundamental
knowledge in Knowledge Discovery in Database (KDD), and
the first algorithm is called Apriori [2], which was proposed
by Agrawal and Srikant to find the relationships of the items
in the databases. Apriori uses two phases to first find the set
of frequent itemsets in the database based on the minimum
support threshold. After that, the combinations of the frequent
itemsets are formed to generate the set of association rules
based on the minimum confidence threshold.

Since the occurrence frequency does not show the insight
of the discovered patterns, for example, the amount of the
purchased diamond in a shopping mall is much less than that
of the number of clothes; however, the obtained profit of the
diamond for the retailer is much more than that of the clothes.
High-utility itemset mining (HUIM) [4], [6] was proposed to
find the profitable items/sets from the databases, and it has
been widely developed for the last decades. The HUIM takes
both unit profit of the items and quantity of items as the
consideration to discover the set of high-utility itemsets (HUIs)

in databases. Since the original HUIM does not hold the
downward closure property, thus the two-phase model called
transaction-weighted utilization (TWU) [6] was designed to
build the downward closure property by high transaction-
weighted utilization itemsets (HTWUIs) for maintaining the
correctness and completeness of the derived HUIs. Many
extensions were presented and studied [7], and most of the
pattern-mining algorithms including whether ARM or HUIM
require to set a minimum threshold value to verify whether
an item/set is considered as a valuable, important pattern.
Some algorithms were studied to mine the HUIs without the
threshold setting, for example, top-k HUIM [8]. Instead of
using the minimum threshold as the standard metric to find the
set of HUIs, the evolutionary computation was also involved
in finding useful and meaningful information from databases.
Kannimuthu et al. [9] proposed a GA-based model with ranked
mutation operator to mine HUIs. However, the GA-based
model requires an amount of computational cost, Lin et al. [10]
then presented the PSO-based model for mining the set of
HUIs. An effective OR/NOR tree [11] was also designed to
verify the valid solutions in the evolutionary progress, which
can provide more accurate HUIs. The ACO-based algorithm
called HUIM-ACS [12] was then also developed to find the set
of HUIs efficiently. The above studies focused, however, either
on mining frequent itemsets or mining high utility itemsets
individually using the priori parametric values (i.e., minimum
support threshold or minimum utility threshold). The above
approaches cannot be used to mine the interesting patterns with
more than one object, i.e., uncertainty and utility together. As
the rapid growth of Internet of Things (IoTs), varied data is
collected from the uncertain environment, and it is necessary
to design the robust approach to handle this situation.

The generic evolutionary computation (EC) [13] is a meta-
heuristic approach, which is used to solve the NP-hard and
optimization problems efficiently based on the single-objective
fitness function in evolutionary progress. In evolutionary
computation, multi-objective optimization is one of the most
research areas and used in many domains and applications
[14], [13]. MOEA/D is a generic framework that integrates
the multi-objective evolutionary problem into small multi-
objective optimization subproblems [15]. The MOEA/D uses
the population-based approach to optimize these subproblems
[15]. Based on the MOEA/D framework, it can produce a set
of equally disseminated solutions and has a great convergence
as compared to the other MOEA algorithms such as NSGA-II
[16] and SPEA-II [17]. In the field of data mining, the multi-
objective evolutionary algorithms (MOEAs) are commonly
utilized to solve the classification [13], and clustering and
feature selection [13], [18] problem since the multi-criteria are
considered into those problems that have to be optimized [13].
For example, the interesting pattern in the database depends
upon the multiple measures, i.e., interestingness, support,
confidence comprehensibility, and lift.

Zhang et al. [19] developed the evolutionary progress to
mine the frequent and utility patterns. This model does not
require to give the priori parameters but discovers the non-
dominated patterns regarding utility and frequency factors.
However, this approach fails to find sufficient patterns for
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decision-making. Djenouri et al. [20] developed several meta-
heuristic algorithms for efficiently mining the high frequent
and utility patterns from the databases. Up to now, non-existing
models focus on mining the HUIs from the uncertain database,
which is the major consideration in this paper.

Recently, many uncertain pattern mining algorithms mine
useful patterns from the database including uncertain high-
utility itemsets [21], frequent uncertain patterns (UFPs) -
[22], [23], uncertain sequential patterns [24], [25], uncertain
weighted frequent itemsets [26] and interesting uncertain pat-
terns [27]. Liu et al. [24] proposed the uncertain sequential
pattern mining algorithm based on the candidate generation
approach and applied it to the sensor data set of the pollu-
tion monitoring network. Palacios et al. [25] applied fuzzy
uncertain mining technique to mine the events in the uncertain
health data of aero-engine condition monitoring. Lin et al. [21]
proposed the novel framework named potential high-utility
itemsets mining (PHUIM) in uncertain databases. PHUIM
mines high utility uncertain patterns using the uncertainty tuple
model. Lin et al. [26] applied Apriori-like two-phase approach
to mine weighted frequent itemsets and proposed high upper
bound to reduce the search space and irrelevant itemsets. Bui
et al. [28] introduced the uncertain high utility closed itemsets
that is based on Lin et al. [21] work. The model prunes
non-closed potential high utility itemsets using the downward
closure property and depth-first search to discover the required
information.

Ahmed et al. [27] proposed a weighted uncertain interesting
patterns approach that uses a tree-based structure for comput-
ing the prefix values. Lee et al. [23] proposed weight-based
distinct uncertain mining approach and selectively mined the
meaningful itemsets. Lee et al. [22] designed the list-based
data structure that mined the frequent uncertain patterns. Yun
et al. [29] highlighted the performance issue with the current
incremental high utility mining algorithm that has a high false
discovery rate and generates many patterns. The list-based
mining technique was then presented to mine high utility
patterns without candidate generations in incremental mining.
Furthermore, Yun et al. [30] proposed a window-based method
to mine utility patterns from data streams. The algorithm
avoids the generate-and-test approach for many unpromising
candidates and it can be efficiently performed in the complex
dynamic systems.

In summary, most studies focused on using the uncertain
database to mine high frequent or high utility patterns by two
individual measures, i.e., support and utility factors. Fewer
approaches used those two measures to mine the required
information. The TKQ-Miner [31] considered two factors and
used the bound estimation to mine the top-k high utility
patterns. However, TKQ-Miner still required the priori param-
eters, i.e., the minimum support value and a minimum utility
value. In real applications, users require domain knowledge to
set the appropriate parameters to mine the high utility patterns.

Mai et al. [32] addressed the issue of mining a small set of
non-redundant high-utility itemsets for better efficiency. The
proposed NR-HARs algorithm mines a smaller set of HUIM
using lattice structure. This model helps make timely decisions
by mining a limited set of high utility itemsets. Baek et al. [33]

proposed the uncertain itemset mining algorithm that uses the
list-based method. The method extracts the commodities with
large values that can help to find the non-defective products
in the manufacturing plants [33]. Lee et al. [34] proposed a
tree structure based on the uncertain frequent pattern mining
approach. The method allows to examine the uncertain data
and overcome the limitations of traditional approaches that
is not able to concern the probabilities of items for pattern-
mining progress [34]. Lin et al. [35] addressed the uncertain
HUIM by considering the existence of probabilistic of the
transactions based on a list structure. The designed method
can avoid the multiple database scans and the huge amount
of unpromising itemsets can be early removed by applying
efficient pruning strategies. Gan et al. then proposed the
HUPNU (mining High-Utility itemsets with both Positive and
Negative unit profits from Uncertain databases) [36] to bother
consider the positive and negative HUIs in the uncertain
databases. The above methods required pre-defined threshold
values (that can be varied in different datasets) to mine the
HUIM. However, the proposed algorithm does not require any
threshold values and mine the high utility itemset from the
uncertain database by considering both uncertain and utility
as multi-objectives in the pattern-mining progress.

III. PRELIMINARIES AND PROBLEM STATEMENTS

Let I = {ı1, i2, . . . , im} be a set of items, and let the
uncertain transactional database be a set of transactions such
as D = {T1, T2, . . . , Tn} where each transaction is a set of
items belonging to I and has a unique identifier called Tid.
Each item in a transaction has an uncertain value (probability
of existence) such as uv(ik, Tc). Table I shows a simple exam-
ple for the quantitative and uncertain database. Furthermore,
Table II shows the unit profits of the items in the database.

TABLE I: The quantitative and uncertain database

TID Item: quantity, probability
T1 (a:5, 0.3); (b:3, 0.40); (c:6, 0.9)
T2 (c:4, 0.75); (d:2, 0.9)
T3 (a:7, 1.0); (b:8, 1.0); (e:2, 0.75)
T4 (a:3, 0.9); (c:1, 0.9)
T5 (b:2, 1.0); (c:4, 0.95); (e:4, 1.0)

TABLE II: The unit profit of the items

Item Profit
a 8
b 3
c 8
d 3
e 5

Tables I and II are used as a running example in this
paper. It is then described as follows: It has five transactions
(T1, T2, T3, T4, T5). For example, transaction T2 showed the
items (c) and (d); their purchase quantities respectively are 4
and 2, and their uncertain values are 0.75 and 0.9 in T2. The
unit of profit of each sold item in the database is shown in
Table II, i.e., the retailer receives $8 as the profit of an unit
for a sold item (a).
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Definition 1: (Item Utility in a Transaction) The u(ik, Tc)
is the utility of an item ik in the transaction Tc, which is
defined as:

u(ik, Tc) = pr(ik)× q(ik, Tc) (1)

Example 1: For example, the utility of an item (a) in T1 is
calculated as: u(a, T1) = 5× $8 = $40.

Definition 2: (Itemset Utility in a Transaction) The
u(X,Tc) is the utility of an itemset X in a transaction Tc,
in which ik ∈ X ⊆ Tc. It is defined as:

u(X,Tc) =
∑
ik∈X

u(ik, Tc) (2)

Example 2: For example, the utility of an itemset (ab) in
T1 is calculated as: u(ab, T1) = $40 + $9 = $49.

Definition 3: (Itemset Utility in a Database) The utility of
X in a transaction database D is denoted as u(X), which is
defined as:

u(X) =
∑

X⊆Tc∧TcεD

u(X,Tc) (3)

Example 3: For example, the utility of an itemset (ac) in
T1 is calculated as: u(ac) = u(a, T1) + u(c, T1) + u(a, T4) +
u(c, T4) = $40 + $48 + $24 + $8 = $120.

Definition 4: (Itemset Uncertainty in a Transaction) The
uncertain value of an itemset X in a transaction is denoted as
uc(X,Tc), which is defined as:

p(X,Tc) = ΠxiεXp(xi, Tc) (4)

Example 4: For example, the probability of (a) in T1 is
calculated as: p(a, T1) = 0.3. The probability of the itemset
(ac) in T1 is calculated as p(ac, T1) = p(a, T1)× p(c, T1) =
0.3× 0.9 = 0.27.

For the generic pattern-mining approaches [37], [1], most
of the existing algorithms focus on evaluating the patterns by
the individual thresholds, i.e., support, confidence, uncertainty,
or utility. Also, it is not a trivial task to set the appropriate
threshold for pattern evaluation since it can easily cause the
“rare-item” and “combinational explosion” problems [19]. For
example, when the threshold is set higher, the low number of
patterns is then discovered. However, when the threshold is
set higher, a huge amount of knowledge is then mined; the
priori domain knowledge is required for the pattern mining to
define the suitable threshold. It is not an easy task to find
the most valuable patterns for decision-making. Moreover,
most algorithms in KDD focus on mining the information
from the precise database. In the recent IoT environment, the
collected information brings, however, the uncertainty value
in the databases. To solve the above limitations, the problem
statement of this paper is defined below.

Problem Statement: For the quantitative and uncertain
database, the purpose of this paper is to address both of the
utility and uncertainty factors to discover the set of the non-
dominated high expected utility patterns without the priori
threshold settings for knowledge discovery. To reduce the com-
putational cost for handling the big dataset and discovering the
most up-to-date information, the multi-objective evolutionary
computation (MOEA) is then utilized here to find the required
information in a limit time.

IV. DESIGNED MOEA-HEUPM MODEL

In this section, we first present the MOEA-based model
called MOEA-HEUPM for mining the non-dominated high
expected utility patterns (HEUPs) from the quantitative and
uncertain databases. The proposed model is then described in
Fig. 1.

The objective of the developed MOEA-HEUPM considers
both utility and uncertainty factors to simultaneously discover
the set of the non-dominated high expected utility patterns
(HEUPs) from the uncertain databases. Both two measures
somehow have a conflict to each other. In some cases, the pat-
terns with higher utility do not have higher uncertainty while
lower utility will not lead to higher utility. To both consider
those two factors together without the priori knowledge, it can
thus be considered as the two-objective optimization problem.
Compared to the traditional pattern-mining algorithms, the
developed model only illustrates fewer and valuable patterns
for decision-making. Since both the utility and uncertainty
are considered in the designed MOEA-HEUPM model, two
objectives are then considered to be maximized and shown
in equation 5. Details of the designed framework are then
described below.

Max F (X) =
{
max (utility(X), uncertainty (X)T

}
(5)

A. Initialization

The population initialization is an essential step in the multi-
objective evolutionary approach as the population may lead to
a weak solution or take large computational requirements to
converge [13]. In general, the initial population was randomly
generated from the databases based on random item-selection.
However, the random item-selection mechanism always leads
to generate invalid patterns. i.e., the pattern does not ex-
ist in the transactions. In the first step of the developed
MOEA-HEUPM, problem-specific initialization strategy was
proposed. We use two strategies to select the population,
which are named as meta-itemset-selection and transaction-
itemset-selection. For the transaction-itemset-selection, the
50% individuals in a population are selected from the trans-
actions in the database based on the utility probability. This
method ensures that all the selected individuals are the ultimate
solutions in the database. For the resting 50% individuals in a
population of the meta-itemset-selection, only one item in a
transaction is encoded and selected based on the uncertainty
probability. The transaction-itemset is useful to quickly obtain
the optimal solutions in the evolutionary progress (i.e., used
in the crossover and mutation operations). The reason is that
the transaction itemset is selected using the utility probability,
in which it can quickly achieve the stable convergence of the
solutions. In contrast, meta-itemset is useful to generate new
offsprings from parents with higher diversity. The reason to
obtain higher diversity of the derived solutions is that meta-
itemset contains single items and has higher possibility to
generate a new offspring by operating the crossover operator.
Thus in this step, we first calculate the uncertain probability
of the meta-itemset (Algorithm 1, lines 1 to 3). The results
are then shown in Table III. After that, we further calculate
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Quantitative and uncertain 

databases

TID Itemset

T1 A(2, 0.5),B(1, 0.8),C(5, 0.3)

T2 A(4, 0.2),B(6, 0.7),E(2, 0.9)

… …

… …

T100 B(2, 0.5), D(1, 0.4)

Value encoding

TID A B C D E

T1 0 0 0 0 0

T2 0 0 0 0 0

… … … … ... ...

T100 0 0 0 0 0

TID A B C D E

T1 2 1 5 0 0

T2 4 6 0 0 2

… … … … ... ...

T100 0 2 0 0 1

Two encoding schema 

Binary encoding

• Initialize the population 

Initialization

• Use MOEA/D for iteratively progress

Population evolution

• Retrieve the non-dominated solutions

Population selection

YESEND

NO

• Find Tchebycheff reference point

Reference point

• Explore the N neighbor set

Neighbor exploration

Termination

Satisfy the criteria 

(i.e. Maximum number 

of generation)

Fig. 1: The framework of the designed MOEA-HEUPM model

the utility probability of the transaction-itemset (Algorithm
1, lines 4 to 6). The results are shown in Table IV. Each
50% individuals of Tables III and IV are then generated
forming the population (Algorithm 1, line 7). For example,
the population size is initialized as 4. The designed MOEA-
HEUPM respectively selects two individuals from Table IV
based on the utility probability, and two individuals from
Table III based on the uncertain probability. The algorithm
for initialization is shown in Algorithm 1.

TABLE III: Meta-itemset-selection strategy

Itemset Uncertainty Uncertain Probability
a 1.3 0.16
b 1.4 0.17
c 2.75 0.34
d 0.9 0.11
e 1.75 0.22

TABLE IV: Transaction-itemset-selection strategy

TID a b c d e Utility Utility Probability
T1 5 3 6 0 0 97 0.31
T2 0 0 4 2 0 38 0.12
T3 7 8 0 0 2 90 0.29
T4 3 0 1 0 0 32 0.10
T5 0 2 4 0 4 58 0.18

1) Encoding: In evolutionary computation, many encod-
ing mechanisms were respectively studied based on different
domains and applications. However, both binary and value
encoding method is commonly used in EC since they can
help to obtain the higher convergence and diversity of the
derived solutions [13]. Thus in the designed model, after the
initialization process of the population, encoding is performed
on the initialized population (Algorithm 2, line 1). In the
designed MOEA-HEUPM model, we first utilize two encoding
schemas, i.e., binary and value encodings. For the binary
encoding, if an item appears in a transaction, the position of
the corresponding item is then defined as 1 for the encoding
schema, and vice-versa. For the value encoding, we then set
the quantity of the items as the encoding value in the schema.

Algorithm 1 MOEA-HEUPM: initialization

INPUT: The transaction data set D, population pop size,
weight vector {w1, w2, . . . , wpop}, the size of neighbors
ns, crossover probability pc, mutation probability pm.

OUTPUT: Initialize individuals in a population.
1: foreach i ∈ metaitemset do
2: M ← (uncertain(Di)

uncertain(D) )

3: end foreach
4: foreach j ∈ transactionitemset do
5: T ← (

utility(Dj)
utility(D) )

6: end foreach
7: P ← initial(M,T, pop)
8: Return P

According to [38], the fitness function for a specific encoding
schema depends on two factors, i.e., value and order. The
schema that only preserves the order is a permutation and
mostly used in order problems [38], whereas binary and value
encoding schemas preserve the value as well as order. For each
item in the transaction, the quantity is the value of a purchased
item. The uncertainty value can also be used as an encoding
value. However, the uncertain value does not have any direct
relation as it was multiple with each item to give the uncertain
value of the transaction.

2) Reference point: In the designed MOEA-HEUPM, the
Tchebycheff reference point [19] is utilized to find the noon-
dominated solutions based on the utility and uncertainty fac-
tors (Algorithm 2, line 2). The Tchebycheff value is used to
evaluate the goodness of the encoding schema [19], which is
defined in equation 6. The purpose of Tchebycheff value is to
generate an efficient set that helps to find the non-dominated
high expected utility patterns.
min gte(X|wi, z∗) ← max2

j=1

{
wji . (|Fj(X) − z∗|)

}
(6)

An example is given below to show the progress for finding
the reference point. Assume that the pop contains the number
of sub-problem and set W to be a set of even weights such
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that (w1, w2, . . . , wn), in which w1
i + w2

i = 1. Suppose that
we have an encoding individual such that {1, 0, 1, 0, 0} with
the utility value 22 and uncertainty value is 0.13, respectively.
Suppose that the maximum utility of the database is calculated
as 107, and the maximum uncertainty is calculated as 0.715.
Based on the equation 6, the maximum utility and uncertainty
values of the individual will be used as the reference point
z∗ (Algorithm 2, lines 3 to 5). Assume that the w1

i is set as
0.34 and w2

i is set as 0.66, respectively, which are the even
weights for uncertainty and utility. We then calculate the the
utility value of the individual based on equation 6 as 0.34 ×
|22− 107| = 28.9, and the uncertainty value of the individual
as 0.66 × |0.13 − 0.715| = 0.38. The Tchebycheff value is
then calculated as max(28.9, 0.38) that is 28.9. Thus, the
Tchebycheff values of all individuals in the population are
then estimated.

3) Neighbor exploration: After that, the neighbors of the
individuals are then calculated (Algorithm 2, lines 3 to 5).
For each weight vector wi (i < pop), in which pop is
the population size initialized at the beginning of the algo-
rithm. The Euclidean distance of the each individual between
weight vector wi in the population (pop) is then calculated
as:
√

(|u(ind)− w1
i |2 + |p(ind)− w2

i |2). The neighbor set is
used to perform two-way crossover for the mutated child
produced in population evolution. Details of the calculation
for the reference point and the neighbor exploration are shown
in Algorithm 2.

Algorithm 2 MOEA-HEUPM: reference point calculation and
neighbor exploration

INPUT: P, the size of neighbors ns, crossover probability pc
and mutation probability pm.

OUTPUT: Population with neighbors.
1: P ← Encode(P ) . Binary or Value encoding
2: z∗ ← initialize reference point.
3: for all p ∈ pop do
4: Ni ←from P get the ns individual using

Euclidean distance between any individual in P
the weight vector Wi.

5: end for
6: Return Ni

B. Population evolution

In the evolution progress, the MOEA/D procedure is then
utilized here of the developed MOEA-HEUPM model (Al-
gorithm 3, lines 1 to 6). For each individual in Popi , one
individual Pop‘i is randomly chosen from Nj (i.e., neighbors
of Popi). Two-way crossover operator is then used between
Popi, Pop‘i. The mutation operator is also performed in the
same way. The Tchebyshev value of the offsprings is then
calculated compared with the value of the neighbor N . If
the Tchebyshev value of the individual shows better goodness,
it will be used to replace the Popi with the offspring and
update the reference point z∗ as mentioned (Algorithm 3, lines
2 to 5). This progress is then iteratively performed until the
termination maxgen is achieved. The Tchebyshev value [19],

[39] provides an alternative way to find the non-dominated
solutions; thus, the generic methodology in pattern mining
with the priori defined thresholds (i.e., minimum utility and
minimum uncertainty) can thus be avoided.

Algorithm 3 MOEA-HEUPM: population evolution

INPUT: P, Ni and number of generations maxgen
OUTPUT: Non-dominated solutions

1: while maxgen do
2: for all i ∈ pop do
3: P ‘

i ← Randomly select an individualfrom Ni

4: child← CrossMutation(P ‘
i , Pi)

Compute child objective function, if the Chebyshev
value of the child is better than any individual ind
in Ni, then replace ind with child and update
reference point z∗

5: end for
6: end while
7: Finalsolution ← SelectNonDominatedItemsets(P )

Apply fast non-dominated sorting strategy to get the
non-dominated item sets from final population P .

8: Return Finalsolution

C. Population selection

After the iteratively evolutionary progress of MOEA/D, the
final population is generated and produced. The individuals in
the population are then sorted [40] and selected as the non-
dominated solutions for the final results (Algorithm 3, lines 7
to 8). Take population Pop containing K fronts (1 < i < K)
as an example to illustrate the steps. Firstly, all non-dominated
solutions are found using Pop and assigned to F1. After that,
the assigned F1 are removed as Pop − F1. In this way, all
fronts are extracted and selected for the final recommendation.
The final evaluation is terminated when the algorithm reaches
the maximal number of generations, as mentioned in Fig. 1.
After that, the solutions are then produced. The steps of the
algorithm are then described in Algorithm 3.

V. EXPERIMENTAL EVALUATION

In this section, we have compared the proposed MOEA-
HEUPM model with two baseline algorithms, i.e., U-Apriori
algorithm [41] that requires the minimum uncertainty thresh-
old and EFIM [42] that requires minimum utility threshold.
The experiments were carried out on a Windows 10 PC with
AMD Ryzen 5 PRO 3500U processor and 16 GB of RAM.
For MOEA-HEUPM, the population size was set to 100, the
maximal generation was set to 100, the size of neighbors was
set to 10, the crossover probability was set to 1.0, and the
mutation probability was set to 0.01.

For the experiments, we acquire six databases of varying
characteristics. All these databases are available on SPMF
library [43]. The characteristics of the datasets are shown in
Table V that includes number of transactions (#Transaction)
, number of distinct items (#item), average length of the
transactions in the dataset (Ave-length) and type of dataset
(dense or sparse). The chess dataset has 3,196 number of
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TABLE V: The used datasets in the experiments

Dataset #Transactions #items Ave-Length Type
Chess 3196 76 37 Dense

Mushroom 8124 120 23 Dense
Pumsb 49,045 21113 74 Dense

Kosarak 9899 1044 8 Sparse
Retail 8162 8345 10 Sparse

Accident 34018 468 33 Dense

transactions (game moves) and 76 items (position on the
chessboard). The mushroom dataset has an average transaction
length of 23, 120 distinct items and 8,124 transactions. The
pumsb is the dense census data for population and housing.
The average length of pumsb data is 74, having 49,046
transactions with 7,116 unique items. The kosarak dataset is
a Hungarian news portal data that has information of click
stream transactions. It contains 1,044 distinct items, 9,899
transactions and the average transaction length is 8. The retail
dataset contains 8,162 customer transactions from a Belgian
anonymous retail store. It has 8,345 unique market items and
the average transaction length is 10. The accident dataset is a
collection of Belgium road accidents (the anonymous incident
happened on a public road). It has 34,018 transactions, 468
unique items, and the average transaction length is 33.

To generate the utility and uncertainty values for the
datasets, we then used a similar strategy of the previous
studied [7] for utility values. The individual probability of the
items was randomly assigned to each transaction itemset in the
range of 0.0 to 1 as used by the HUPM [21] by the normal
distribution.

Two well-known measurements are used to assess the dis-
covered patterns, respectively called hypervolume (HV) and
Coverage (Cov) [19]. The HV is used to measure the distri-
bution and convergence of the mined item-sets in the search
space of the objective, i.e., in our case, the values of uncertain
and utility. According to [19], [39], hypervolume can be
defined as: Let A = (x1, x2, . . . , xl) ⊆ X be a set of l decision
vectors. The function S(A) gives the volume enclosed by the
union of the polytopes p1, p2, . . . , pl where each pi is formed
by the intersections of the following hyperplanes arising out
of xi , along with the axes: for each axis in the objective
space, there exists a hyperplane perpendicular to the axis and
passing through the point (f1(xi), f2(xi), . . . , fk(xi)). In the
two-dimensional case, each pi represents a rectangle defined
by the points(0, 0) and (f1(xi), f2(xi)) [19].

The Cov is a common measure to show the diversity of
the derived solutions and item-set distinct behaviors [19]. The
larger value of Cov indicates the higher diversity of the derived
solutions and non-dominated solution set has distinct item-sets.
The equation for convergence is shown in equation 7.

Cov = Nd/N, (7)

where N is the total number of discovered patterns and Nd is
the different patterns.

A. Encoding schemas analysis

The encoding schemas, i.e., value and binary encoding, are
then compared in terms of several generations for the Cov and

TABLE VI: The compared algorithms in terms of Cov, HV,
and number of patterns

Algorithm Thresolds Metrics Datasets
Chess Mushrooms Korasak Pumsb Accidents Retails

U-Apriori
(minUncertanity)

0.2
Cov 0.32 0.24 0.63 0.35 0.39 0.45
HV 2267.90 5800.12 430.06 3410.52 23996.42 375.19

# patterns 18562.00 12926.00 26857.00 35035.00 6080.00 17054.00

0.4
Cov 0.11 0.07 0.33 0.12 0.15 0.16
HV 1920.48 4909.05 281.66 2754.43 20337.12 229.31

# patterns 6076.00 3631.00 14057.00 12223.00 2322.00 6150.00

0.6
Cov 0.03 0.02 0.14 0.03 0.04 0.05
HV 1573.19 3732.24 230.45 2257.76 16675.81 187.61

# patterns 1469.00 875.00 5800.00 3448.00 602.00 1912.00

0.8
Cov 0.00 0.00 0.04 0.01 0.00 0.01
HV 1165.46 1979.21 179.25 953.30 13006.52 10.97

# patterns 210.00 163.00 1623.00 555.00 76.00 376.00

MOEA-HEUPM

Binary
Cov 1.00 0.80 0.50 0.60 0.60 1.00
HV 215088.60 94314.83 138219.34 83481.53 83481.53 2117792.17

# patterns 2900.00 1939.00 509.00 900.00 900.00 10766.71

Value
Cov 1.00 0.65 0.50 1.00 1.00 1.00
HV 138219.34 146600.20 146600.20 134567.41 134567.41 756963.07

# patterns 486.00 2039.00 1929.00 500.00 500.00 9818.60

EFM
(minUtil) 0.20

Cov 0.50 0.50 0.12 0.50 0.50 0.50
HV - - - - - -

# patterns 95381.00 4801.00 8.00 34270.00 3756.00 35288968.00

HV metrics. The HV and Cov are then evaluated to verify the
efficiency of two binary and value encoding schemas. The
results for the two variants of encoding schemas are then
showed in Fig. 2 and 3, respectively. From Fig. 2, the value
encoding is converged with the low number of generations,
whereas the binary encoding performs better when more
generations are achieved especially in the sparse dataset. Thus,
we can conclude that the binary encoding is more suitable for
the dataset that has a large number of itemsets. In contrast,
when the number of several itemsets is lower, or dataset is a
dense type, then value encoding schema is considered to be
used. Fig. 3 represents the HV that depicts the same behavior
as Cov.
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Fig. 2: The Cov of two encoding schemas
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Fig. 3: The HV of two encoding schemas

B. Pattern analysis

Since there is no existing algorithm working on the evo-
lutionary progress by considering both utility and uncertainty
factors, the standard baseline algorithms called U-Apriori [41]
and EFIM [42] are then compared with the designed model
in terms of HV, Cov, and the number of generated patterns.
However, those two algorithms require to have the priori
knowledge to set the threshold value whether for utility or
uncertainty, we then respectively set them from 20% to 80%
with 20% increment each time for the U-Apriori, and set 20%
for the EFIM since the resting thresholds (i.e., 40%, 60% and
80%) generate empty patterns (HUIs) in the mining progress.
The number of discovered patterns is also shown in Table VI.

The patterns produced by MOEA-HEUPM is at least 5 to
10 times smaller than the number of patterns generated by
the U-Apriori and EFIM. For example, the number of the
pattern produced by the proposed algorithm on six datasets
without any threshold value is 486 and maximum is 2,900,
respectively, as mention in Table VI. However, U-Apriori
generated a minimum of 12,926 and maximum of 35,035 and
EFIM generated a minimum of 67 and a maximum of 190,573.
Due to this reason, both U-Apriori and EFIM require more
computational time, whereas the proposed model is quickly
converged and provides fewer patterns for decision-making.

As mention in Table VI, when we use the low value for the
uncertainty, the magnitude of the U-Apriori is relatively high
for both measures, i.e., Cov and HV in the dense and sparse

datasets. When the threshold is set higher for the uncertainty,
the magnitude of the U-Apriori is dropped in datasets, and it
generated a huge amount of patterns, as it can be seen in Table
VI. For this reason, it is not an efficient algorithm for mining
high uncertain patterns, whereas EFIM is not able to get the
solution when the utility threshold is set higher, i.e., more than
20%. The algorithm performs better in the kosarak dataset.
However, the EFIM algorithm only generated 67 candidates,
as seen in Table VI. When the EFIM algorithm is running on
other datasets, it extracted many patterns. The reason is that it
only considers the utility factor but the uncertainty. Thus, both
of those two standard algorithms cannot handle the uncertainty
and utility factors together to obtain valuable and meaningful
patterns.

Furthermore, the developed MOEA-HEUPM gets the high-
est Cov value with a maximum of 1 and a minimum of
0.50, as it can be seen in Table VI. In the case of HV, the
proposed model has achieved the maximum value of 138,219
and minimum of 83,481. However, the number of generated
patterns is much less than the other two approaches, and those
derived patterns are the non-dominated solutions for making
the efficient decisions. In the experiments, the uncertainty
and utility values are usually large in dense databases (i.e.,
chess, mushroom, kosarak, retails and accidents) that results
in the large value of HV. The itemset size of the dense
dataset is small that causes no overlapping item sets. It is
thus resulting in higher Cov. The higher Cov is also due to
meta-itemset and transaction-itemset population initialization
method as it helps to get higher diversity of the solutions
after each generation. For sparse dataset (i.e., Pumsb), the
itemset contains overlapping itemset due to sparse nature, as
mentioned in Table VI. For this reason, two-bit or more meta-
itemset should be used to get higher convergence values. Thus
the MOEA-HEUPM was able to extract the high expected
utility patterns based on the magnitude of Cov and HV. To be
concluded, for the sparse dataset, two-bit or more meta-item-
set should be considered to obtain better solutions.

C. Scalability analysis

In this section, we analyze the scalability of the proposed
algorithm compare to the other algorithms in the synthetic
dataset T10I4N4KDXK (X is the size of the dataset in
terms of the number of the transaction). The synthetic dataset
is generated by IBM Quest Synthetic Data generator [44].
The results under different threshold values are shown in in
Table VII. From the results, it can be seen that the U-Apriori
and EFM both generated a huge number of patterns and have
less performance in terms of Cov and HV compared to the
designed MOEA-HEUPM. When the uncertain threshold is
set higher, the number of patterns is then decreased, as well
as the HV. It shows the same trend in the results of EFM. In
this experiments, it is not able to calculate the hypervolume as
a large number of patterns discovered in EFIM. Furthermore,
the utility and uncertainty are both required, which is difficult
for the calculation due to the large number transaction and a
huge number of extracted patterns in EFIM. The threshold in
EFIM is set very high because it generates a large number
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TABLE VII: Scalability analysis

Algorithm Thresolds Metrics T40I10DXK
X=20 X=40 X=60 X=80 X=100

U-Apriori
(minUncertanity)

0.2
Cov 1 0.56 0.39 0.39 0.38
HV 41818.9 41820.0 41819.5 41819.8 41820.0

# patterns 164589 380353 624123 624760 625398

0.4
Cov 1 0.56 0.39 0.39 0.39
HV 203.9 203.9 203.9 203.9 203.9

# patterns 30756 71415 117669 118077 118485

0.6
Cov 1 0.56 0.39 0.38 0.38
HV 163.0 163.04 163.04 163.06 163.03

# patterns 8197 18808 30840 31080 31318

0.8
Cov 1 0.51 0.34 0.28 0.24
HV 120.69 120.04 121.50 121.33 121.89

# patterns 116 239 365 446 523

MOEA-HEUPM

Binary
Cov 0.97 0.97 0.96 0.97 0.98
HV 2013667.9 4110374.0 4624663.4 8113592.7 7249258.8

# patterns 4182 3570 2754 3774 6222

Value
Cov 0.97 0.96 0.97 0.97 0.97
HV 1515809.4 4109259.5 4622814.3 6111761.8 9586723.6

# patterns 4998 3264 4386 4284 4284

EFM
(minUtility) 0.8

Cov 1 0.74 0.69 1 0.69
HV - - - - -

# patterns 71705 250558 733474 239405 518260

of patterns. The U-Apriori and EFM achieved significantly
higher convergence rates and numerous patterns when the
synthetic dataset number of transaction is 20K. However,
when the number of the transactions increases, the Cov is
then decreased. However, the proposed MOEA-HEUPM still
obtains good performance as the increasing of database size.
The empirical evidence thus shows that the proposed model is
useful to extract a set of high utility uncertain itemsets without
a threshold value.

VI. CONCLUSION AND FUTURE WORK

Utility-pattern mining can discover more valuable infor-
mation rather than traditional and generic association-rule
mining, which attracts more attention in recent decades. As
the rapid growth of technologies, data uncertainty is also
considered as an important factor in the pattern-mining field.
Most existing and generic methods have, however, to set a
priori threshold for mining the required information, which
is a non-trivial task and unreasonable in many domains and
applications. In this paper, we first consider both the utility
and uncertainty factors together and develop an evolutionary
model called MOEA-HEUPM to find the non-dominated high
expected-utility patterns (HEUPs) based on MOEA/D. Two
binary and value encoding schemas are then used in the
developed MOEA-HEUPM to show its effectiveness. Based
on the developed MOEA-HEUPM, it is efficient to produce
fewer but valuable non-dominated HEUPs for decision-making
without the priori threshold value in the uncertain environment.
Experiments are then conducted to show the efficiency and ef-
fectiveness of the designed model compared to the generic and
standard U-Apriori and EFIM model in terms of convergence,
hypervolume and number of the discovered patterns.

Since the proposed multi-objective model is first work to
use both objectives, i.e., utility and uncertainty in an uncertain
database, there are many new opportunities that can be pursued
in the future works. For example, the model can address the
tuple uncertainty as to the multi-objective problem where each
tuple has an associated probability distribution. More factors
can also be considered for the multi-objective problems to
derive fewer but valuable non-dominated patterns. It is also an
interesting topic to extend the proposed MOEA-based model
to the dynamic data mining, stream data mining and top-k
pattern mining fields.
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