41,111 research outputs found

    On the Selection of Tuning Methodology of FOPID Controllers for the Control of Higher Order Processes

    Get PDF
    In this paper, a comparative study is done on the time and frequency domain tuning strategies for fractional order (FO) PID controllers to handle higher order processes. A new fractional order template for reduced parameter modeling of stable minimum/non-minimum phase higher order processes is introduced and its advantage in frequency domain tuning of FOPID controllers is also presented. The time domain optimal tuning of FOPID controllers have also been carried out to handle these higher order processes by performing optimization with various integral performance indices. The paper highlights on the practical control system implementation issues like flexibility of online autotuning, reduced control signal and actuator size, capability of measurement noise filtration, load disturbance suppression, robustness against parameter uncertainties etc. in light of the above tuning methodologies.Comment: 27 pages, 10 figure

    Embedded Network Test-Bed for Validating Real-Time Control Algorithms to Ensure Optimal Time Domain Performance

    Get PDF
    The paper presents a Stateflow based network test-bed to validate real-time optimal control algorithms. Genetic Algorithm (GA) based time domain performance index minimization is attempted for tuning of PI controller to handle a balanced lag and delay type First Order Plus Time Delay (FOPTD) process over network. The tuning performance is validated on a real-time communication network with artificially simulated stochastic delay, packet loss and out-of order packets characterizing the network.Comment: 6 pages, 12 figure

    Robust PI Controller Design Satisfying Gain and Phase Margin Constraints

    Get PDF
    This paper presents a control design algorithm for determining PI-type controllers satisfying specifications on gain margin, phase margin, and an upper bound on the (complementary) sensitivity for a finite set of plants. Important properties of the algorithm are: (i) it can be applied to plants of any order including plants with delay, unstable plants, and plants given by measured data, (ii) it is efficient and fast, and as such can be used in near real-time to determine controller parameters (for on-line modification of the plant model including its uncertainty and/or the specifications), (iii) it can be used to identify the optimal controller for a practical definition of optimality, and (iv) it enables graphical portrayal of design tradeoffs in a single plot (highlighting tradeoffs among the gain margin, complementary sensitivity bound, low frequency sensitivity and high frequency sensor noise amplification)

    Design and practical implementation of a fractional order proportional integral controller (FOPI) for a poorly damped fractional order process with time delay

    No full text
    One of the most popular tuning procedures for the development of fractional order controllers is by imposing frequency domain constraints such as gain crossover frequency, phase margin and iso-damping properties. The present study extends the frequency domain tuning methodology to a generalized range of fractional order processes based on second order plus time delay (SOPDT) models. A fractional order PI controller is tuned for a real process that exhibits poorly damped dynamics characterized in terms of a fractional order transfer function with time delay. The obtained controller is validated on the experimental platform by analyzing staircase reference tracking, input disturbance rejection and robustness to process uncertainties. The paper focuses around the tuning methodology as well as the fractional order modeling of the process' dynamics

    Design of PID Controllers Satisfying Gain Margin and Sensitivity Constraints on a Set of Plants

    Get PDF
    This paper presents a method for the design of PID-type controllers, including those augmented by a filter on the D element, satisfying a required gain margin and an upper bound on the (complementary) sensitivity for a finite set of plants. Important properties of the method are: (i) it can be applied to plants of any order including non-minimum phase plants, plants with delay, plants characterized by quasi-polynomials, unstable plants and plants described by measured data, (ii) the sensors associated with the PI terms and the D term can be different (i.e., they can have different transfer function models), (iii) the algorithm relies on explicit equations that can be solved efficiently, (iv) the algorithm can be used in near real-time to determine a controller for on-line modification of a plant accounting for its uncertainty and closed-loop specifications, (v) a single plot can be generated that graphically highlights tradeoffs among the gain margin, (complementary) sensitivity bound, low-frequency sensitivity and high-frequency sensor noise amplification, and (vi) the optimal controller for a practical definition of optimality can readily be identified

    Universal direct tuner for loop control in industry

    Get PDF
    This paper introduces a direct universal (automatic) tuner for basic loop control in industrial applications. The direct feature refers to the fact that a first-hand model, such as a step response first-order plus dead time approximation, is not required. Instead, a point in the frequency domain and the corresponding slope of the loop frequency response is identified by single test suitable for industrial applications. The proposed method has been shown to overcome pitfalls found in other (automatic) tuning methods and has been validated in a wide range of common and exotic processes in simulation and experimental conditions. The method is very robust to noise, an important feature for real life industrial applications. Comparison is performed with other well-known methods, such as approximate M-constrained integral gain optimization (AMIGO) and Skogestad internal model controller (SIMC), which are indirect methods, i.e., they are based on a first-hand approximation of step response data. The results indicate great similarity between the results, whereas the direct method has the advantage of skipping this intermediate step of identification. The control structure is the most commonly used in industry, i.e., proportional-integral-derivative (PID) type. As the derivative action is often not used in industry due to its difficult choice, in the proposed method, we use a direct relation between the integral and derivative gains. This enables the user to have in the tuning structure the advantages of the derivative action, therefore much improving the potential of good performance in real life control applications

    Networked PID control design : a pseudo-probabilistic robust approach

    Get PDF
    Networked Control Systems (NCS) are feedback/feed-forward control systems where control components (sensors, actuators and controllers) are distributed across a common communication network. In NCS, there exist network-induced random delays in each channel. This paper proposes a method to compensate the effects of these delays for the design and tuning of PID controllers. The control design is formulated as a constrained optimization problem and the controller stability and robustness criteria are incorporated as design constraints. The design is based on a polytopic description of the system using a Poisson pdf distribution of the delay. Simulation results are presented to demonstrate the performance of the proposed method

    Robust PI Controller Design Satisfying Sensitivity and Uncertainty Specifications

    Get PDF
    This paper presents a control design method for determining proportional-integral-type controllers satisfying specifications on gain margin, phase margin, and an upper bound on the (complementary) sensitivity for a finite set of plants. The approach can be applied to plants that are stable or unstable, plants given by a model or measured data, and plants of any order, including plants with delays. The algorithm is efficient and fast, and as such can be used in near real-time to determine controller parameters (for online modification of the plant model including its uncertainty and/or the specifications). The method gives an optimal controller for a practical definition of optimality. Furthermore, it enables the graphical portrayal of design tradeoffs in a single plot, highlighting the effects of the gain margin, complementary sensitivity bound, low frequency sensitivity and high frequency sensor noise amplification
    • …
    corecore