185 research outputs found

    Comparison Of HSRNAFold and RNAFold Algorithms for RNA Secondary Structure Prediction.

    Get PDF
    Ribonucleic Acid (RNA) has important structural and functional roles in the cell and plays roles in many stages of protein synthesis. The structure of RNA largely determines its function

    Nature Inspired Evolutionary Swarm Optimizers for Biomedical Image and Signal Processing -- A Systematic Review

    Full text link
    The challenge of finding a global optimum in a solution search space with limited resources and higher accuracy has given rise to several optimization algorithms. Generally, the gradient-based optimizers converge to the global solution very accurately, but they often require a large number of iterations to find the solution. Researchers took inspiration from different natural phenomena and behaviours of many living organisms to develop algorithms that can solve optimization problems much quicker with high accuracy. These algorithms are called nature-inspired meta-heuristic optimization algorithms. These can be used for denoising signals, updating weights in a deep neural network, and many other cases. In the state-of-the-art, there are no systematic reviews available that have discussed the applications of nature-inspired algorithms on biomedical signal processing. The paper solves that gap by discussing the applications of such algorithms in biomedical signal processing and also provides an updated survey of the application of these algorithms in biomedical image processing. The paper reviews 28 latest peer-reviewed relevant articles and 26 nature-inspired algorithms and segregates them into thoroughly explored, lesser explored and unexplored categories intending to help readers understand the reliability and exploration stage of each of these algorithms

    Deriving Protein Structures Efficiently by Integrating Experimental Data into Biomolecular Simulations

    Get PDF
    Proteine sind molekulare Nanomaschinen in biologischen Zellen. Sie sind wesentliche Bausteine aller bekannten Lebensformen, von Einzellern bis hin zu Menschen, und erfüllen vielfältige Funktionen, wie beispielsweise den Sauerstofftransport im Blut oder als Bestandteil von Haaren. Störungen ihrer physiologischen Funktion können jedoch schwere degenerative Krankheiten wie Alzheimer und Parkinson verursachen. Die Entwicklung wirksamer Therapien für solche Proteinfehlfaltungserkrankungen erfordert ein tiefgreifendes Verständnis der molekularen Struktur und Dynamik von Proteinen. Da Proteine aufgrund ihrer lichtmikroskopisch nicht mehr auflösbaren Größe nur indirekt beobachtet werden können, sind experimentelle Strukturdaten meist uneindeutig. Dieses Problem lässt sich in silico mittels physikalischer Modellierung biomolekularer Dynamik lösen. In diesem Feld haben sich datengestützte Molekulardynamiksimulationen als neues Paradigma für das Zusammenfügen der einzelnen Datenbausteine zu einem schlüssigen Gesamtbild der enkodierten Proteinstruktur etabliert. Die Strukturdaten werden dabei als integraler Bestandteil in ein physikbasiertes Modell eingebunden. In dieser Arbeit untersuche ich, wie sogenannte strukturbasierte Modelle verwendet werden können, um mehrdeutige Strukturdaten zu komplementieren und die enthaltenen Informationen zu extrahieren. Diese Modelle liefern eine effiziente Beschreibung der aus der evolutionär optimierten nativen Struktur eines Proteins resultierenden Dynamik. Mithilfe meiner systematischen Simulationsmethode XSBM können biologische Kleinwinkelröntgenstreudaten mit möglichst geringem Rechenaufwand als physikalische Proteinstrukturen interpretiert werden. Die Funktionalität solcher datengestützten Methoden hängt stark von den verwendeten Simulationsparametern ab. Eine große Herausforderung besteht darin, experimentelle Informationen und theoretisches Wissen in geeigneter Weise relativ zueinander zu gewichten. In dieser Arbeit zeige ich, wie die entsprechenden Simulationsparameterräume mit Computational-Intelligence-Verfahren effizient erkundet und funktionale Parameter ausgewählt werden können, um die Leistungsfähigkeit komplexer physikbasierter Simulationstechniken zu optimieren. Ich präsentiere FLAPS, eine datengetriebene metaheuristische Optimierungsmethode zur vollautomatischen, reproduzierbaren Parametersuche für biomolekulare Simulationen. FLAPS ist ein adaptiver partikelschwarmbasierter Algorithmus inspiriert vom Verhalten natürlicher Vogel- und Fischschwärme, der das Problem der relativen Gewichtung verschiedener Kriterien in der multivariaten Optimierung generell lösen kann. Neben massiven Fortschritten in der Verwendung von künstlichen Intelligenzen zur Proteinstrukturvorhersage ermöglichen leistungsoptimierte datengestützte Simulationen detaillierte Einblicke in die komplexe Beziehung von biomolekularer Struktur, Dynamik und Funktion. Solche computergestützten Methoden können Zusammenhänge zwischen den einzelnen Puzzleteilen experimenteller Strukturinformationen herstellen und so unser Verständnis von Proteinen als den Grundbausteinen des Lebens vertiefen

    Using SetPSO to determine RNA secondary structure

    Get PDF
    RNA secondary structure prediction is an important field in Bioinformatics. A number of different approaches have been developed to simplify the determination of RNA molecule structures. RNA is a nucleic acid found in living organisms which fulfils a number of important roles in living cells. Knowledge of its structure is crucial in the understanding of its function. Determining RNA secondary structure computationally, rather than by physical means, has the advantage of being a quicker and cheaper method. This dissertation introduces a new Set-based Particle Swarm Optimisation algorithm, known as SetPSO for short, to optimise the structure of an RNA molecule, using an advanced thermodynamic model. Structure prediction is modelled as an energy minimisation problem. Particle swarm optimisation is a simple but effective stochastic optimisation technique developed by Kennedy and Eberhart. This simple technique was adapted to work with variable length particles which consist of a set of elements rather than a vector of real numbers. The effectiveness of this structure prediction approach was compared to that of a dynamic programming algorithm called mfold. It was found that SetPSO can be used as a combinatorial optimisation technique which can be applied to the problem of RNA secondary structure prediction. This research also included an investigation into the behaviour of the new SetPSO optimisation algorithm. Further study needs to be conducted to evaluate the performance of SetPSO on different combinatorial and set-based optimisation problems.Dissertation (MS)--University of Pretoria, 2009.Computer Scienceunrestricte

    Adaptive And Cooperative Harmony Search Models For Rna Secondary Structure Prediction

    Get PDF
    Penentuan fungsi molekul RNA amat bergantung kepada struktur sekunderya. Kaedah fizikal yang sedia ada untuk penentuan struktur sekunder adalah mahal dan memakan masa. Determining the function of RNA molecules relies heavily on its secondary structure

    Constrained optimization applied to multiscale integrative modeling

    Get PDF
    Multiscale integrative modeling stands at the intersection between experimental and computational techniques to predict the atomistic structures of important macromolecules. In the integrative modeling process, the experimental information is often integrated with energy potential and macromolecular substructures in order to derive realistic structural models. This heterogeneous information is often combined into a global objective function that quantifies the quality of the structural models and that is minimized through optimization. In order to balance the contribution of the relative terms concurring to the global function, weight constants are assigned to each term through a computationally demanding process. In order to alleviate this common issue, we suggest to switch from the traditional paradigm of using a single unconstrained global objective function to a constrained optimization scheme. The work presented in this thesis describes the different applications and methods associated with the development of a general constrained optimization protocol for multiscale integrative modeling. The initial implementation concerned the prediction of symmetric macromolecular assemblies throught the incorporation of a recent efficient constrained optimizer nicknamed mViE (memetic Viability Evolution) to our integrative modeling protocol power (parallel optimization workbench to enhance resolution). We tested this new approach through rigorous comparisons against other state-of-the-art integrative modeling methods on a benchmark set of solved symmetric macromolecular assemblies. In this process, we validated the robustness of the constrained optimization method by obtaining native-like structural models. This constrained optimization protocol was then applied to predict the structure of the elusive human Huntingtin protein. Due to the fact that little structural information was available when the project was initiated, we integrated information from secondary structure prediction and low-resolution experiments, in the form of cryo-electron microscopy maps and crosslinking mass spectrometry data, in order to derive a structural model of Huntingtin. The structure resulting from such integrative modeling approach was used to derive dynamic information about Huntingtin protein. At a finer level of resolution, the constrained optimization protocol was then applied to dock small molecules inside the binding site of protein targets. We converted the classical molecular docking problem from an unconstrained single objective optimization to a constrained one by extracting local and global constraints from pre-computed energy grids. The new approach was tested and validated on standard ligand-receptor benchmark sets widely used by the molecular docking community, and showed comparable results to state-of-the-art molecular docking programs. Altogether, the work presented in this thesis proposed improvements in the field of multiscale integrative modeling which are reflected both in the quality of the models returned by the new constrained optimization protocol and in the simpler way of treating the uncorrelated terms concurring to the global scoring scheme to estimate the quality of the models

    Towards Visualization of Discrete Optimization Problems and Search Algorithms

    Get PDF
    Diskrete Optimierung beschäftigt sich mit dem Identifizieren einer Kombination oder Permutation von Elementen, die im Hinblick auf ein gegebenes quantitatives Kriterium optimal ist. Anwendungen dafür entstehen aus Problemen in der Wirtschaft, der industriellen Fertigung, den Ingenieursdisziplinen, der Mathematik und Informatik. Dazu gehören unter anderem maschinelles Lernen, die Planung der Reihenfolge und Terminierung von Fertigungsprozessen oder das Layout von integrierten Schaltkreisen. Häufig sind diskrete Optimierungsprobleme NP-hart. Dadurch kommt der Erforschung effizienter, heuristischer Suchalgorithmen eine große Bedeutung zu, um für mittlere und große Probleminstanzen überhaupt gute Lösungen finden zu können. Dabei wird die Entwicklung von Algorithmen dadurch erschwert, dass Eigenschaften der Probleminstanzen aufgrund von deren Größe und Komplexität häufig schwer zu identifizieren sind. Ebenso herausfordernd ist die Analyse und Evaluierung von gegebenen Algorithmen, da das Suchverhalten häufig schwer zu charakterisieren ist. Das trifft besonders im Fall von emergentem Verhalten zu, wie es in der Forschung der Schwarmintelligenz vorkommt. Visualisierung zielt auf das Nutzen des menschlichen Sehens zur Datenverarbeitung ab. Das Gehirn hat enorme Fähigkeiten optische Reize von den Sehnerven zu analysieren, Formen und Muster darin zu erkennen, ihnen Bedeutung zu verleihen und dadurch ein intuitives Verstehen des Gesehenen zu ermöglichen. Diese Fähigkeit kann im Speziellen genutzt werden, um Hypothesen über komplexe Daten zu generieren, indem man sie in einem Bild repräsentiert und so dem visuellen System des Betrachters zugänglich macht. Bisher wurde Visualisierung kaum genutzt um speziell die Forschung in diskreter Optimierung zu unterstützen. Mit dieser Dissertation soll ein Ausgangspunkt geschaffen werden, um den vermehrten Einsatz von Visualisierung bei der Entwicklung von Suchheuristiken zu ermöglichen. Dazu werden zunächst die zentralen Fragen in der Algorithmenentwicklung diskutiert und daraus folgende Anforderungen an Visualisierungssysteme abgeleitet. Mögliche Forschungsrichtungen in der Visualisierung, die konkreten Nutzen für die Forschung in der Optimierung ergeben, werden vorgestellt. Darauf aufbauend werden drei Visualisierungssysteme und eine Analysemethode für die Erforschung diskreter Suche vorgestellt. Drei wichtige Aufgaben von Algorithmendesignern werden dabei adressiert. Zunächst wird ein System für den detaillierten Vergleich von Algorithmen vorgestellt. Auf der Basis von Zwischenergebnissen der Algorithmen auf einer Probleminstanz wird der Suchverlauf der Algorithmen dargestellt. Der Fokus liegt dabei dem Verlauf der Qualität der Lösungen über die Zeit, wobei die Darstellung durch den Experten mit zusätzlichem Wissen oder Klassifizierungen angereichert werden kann. Als zweites wird ein System für die Analyse von Suchlandschaften vorgestellt. Auf Basis von Pfaden und Abständen in der Landschaft wird eine Karte der Probleminstanz gezeichnet, die strukturelle Merkmale intuitiv erfassbar macht. Der zweite Teil der Dissertation beschäftigt sich mit der topologischen Analyse von Suchlandschaften, aufbauend auf einer Schwellwertanalyse. Ein Visualisierungssystem wird vorgestellt, dass ein topologisch equivalentes Höhenprofil der Suchlandschaft darstellt, um die topologische Struktur begreifbar zu machen. Dieses System ermöglicht zudem, den Suchverlauf eines Algorithmus direkt in der Suchlandschaft zu beobachten, was insbesondere bei der Untersuchung von Schwarmintelligenzalgorithmen interessant ist. Die Berechnung der topologischen Struktur setzt eine vollständige Aufzählung aller Lösungen voraus, was aufgrund der Größe der Suchlandschaften im allgemeinen nicht möglich ist. Um eine Anwendbarkeit der Analyse auf größere Probleminstanzen zu ermöglichen, wird eine Methode zur Abschätzung der Topologie vorgestellt. Die Methode erlaubt eine schrittweise Verfeinerung der topologischen Struktur und lässt sich heuristisch steuern. Dadurch können Wissen und Hypothesen des Experten einfließen um eine möglichst hohe Qualität der Annäherung zu erreichen bei gleichzeitig überschaubarem Berechnungsaufwand.Discrete optimization deals with the identification of combinations or permutations of elements that are optimal with regard to a specific, quantitative criterion. Applications arise from problems in economy, manufacturing, engineering, mathematics and computer sciences. Among them are machine learning, scheduling of production processes, and the layout of integrated electrical circuits. Typically, discrete optimization problems are NP hard. Thus, the investigation of efficient, heuristic search algorithms is of high relevance in order to find good solutions for medium- and large-sized problem instances, at all. The development of such algorithms is complicated, because the properties of problem instances are often hard to identify due to the size and complexity of the instances. Likewise, the analysis and evaluation of given algorithms is challenging, because the search behavior of an algorithm is hard to characterize, especially in case of emergent behavior as investigated in swarm intelligence research. Visualization targets taking advantage of human vision in order to do data processing. The visual brain possesses tremendous capabilities to analyse optical stimulation through the visual nerves, perceive shapes and patterns, assign meaning to them and thus facilitate an intuitive understanding of the seen. In particular, this can be used to generate hypotheses about complex data by representing them in a well-designed depiction and making it accessible to the visual system of the viewer. So far, there is only little use of visualization to support the discrete optimization research. This thesis is meant as a starting point to allow for an increased application of visualization throughout the process of developing discrete search heuristics. For this, we discuss the central questions that arise from the development of heuristics as well as the resulting requirements on visualization systems. Possible directions of research for visualization are described that yield a specific benefit for optimization research. Based on this, three visualization systems and one analysis method are presented. These address three important tasks of algorithm designers. First, a system for the fine-grained comparison of algorithms is introduced. Based on the intermediate results of algorithm runs on a given problem instance the search process is visualized. The focus is on the progress of the solution quality over time while allowing the algorithm expert to augment the depiction with additional domain knowledge and classification of individual solutions. Second, a system for the analysis of search landscapes is presented. Based on paths and distances in the landscape, a map of the problem instance is drawn that facilitates an intuitive cognition of structural properties. The second part of this thesis focuses on the topological analysis of search landscapes, based on barriers. A visualization system is presented that shows a topological equivalent height profile of the search landscape. Further, the system facilitates to observe the search process of an algorithm directly within the search landscape. This is of particular interest when researching swarm intelligence algorithms. The computation of topological structure requires a complete enumeration of all solutions which is not possible in the general case due to the size of the search landscapes. In order to enable an application to larger problem instances, we introduce a method to approximate the topological structure. The method allows for an incremental refinement of the topological approximation that can be controlled using a heuristic. Thus, the domain expert can introduce her knowledge and also hypotheses about the problem instance into the analysis so that an approximation of good quality is achieved with reasonable computational effort

    On the optimization of offshore wind farm layouts

    Get PDF
    Layout optimization of offshore wind farms seeks to automate the design of the wind farm and the placement of wind turbines such that the proposed wind farm maximizes its potential. The optimization of an offshore wind farm layout therefore seeks to minimize the costs of the wind farm while maximizing the energy extraction while considering the effects of wakes on the resource; the electrical infrastructure required to collect the energy generated; the cost variation across the site; and all technical and consenting constraints that the wind farm developer must adhere to. As wakes, electrical losses, and costs are non-linear, this produces a complex optimization problem. This thesis describes the design, development, validation, and initial application of a new framework for the optimization of offshore wind farm layouts using either a genetic algorithm or a particle swarm optimizer. The developed methodology and analysis tool have been developed such that individual components can either be used to analyze a particular wind farm layout or used in conjunction with the optimization algorithms to design and optimize wind farm layouts. To accomplish this, separate modules have been developed and validated for the design and optimization of the necessary electrical infrastructure, the assessment of the energy production considering energy losses, and the estimation of the project costs. By including site-dependent parameters and project specific constraints, the framework is capable of exploring the influence the wind farm layout has on the levelized cost of energy of the project. Deploying the integrated framework using two common engineering metaheuristic algorithms to hypothetical, existing, and future wind farms highlights the advantages of this holistic layout optimization framework over the industry standard approaches commonly deployed in offshore wind farm design leading to a reduction in LCOE. Application of the tool to a UK Round 3 site recently under development has also highlighted how the use of this tool can aid in the development of future regulations by considering various constraints on the placement of wind turbines within the site and exploring how these impact the levelized cost of energy
    corecore