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Abstract—Ribonucleic Acid (RNA) has important structural
and functional roles in the cell and plays roles in many stages
of protein synthesis. The structure of RNA largely determines its
function. Current physical methods for structure determination
are time-consuming and expensive, thus the methods for the
computational prediction of structure are necessary. Various
algorithms that have been used for RNA structure prediction
based in minimum free energy include dynamic programming
(DP) and meta heuristic algorithms. One of the most recent meta
heuristic algorithms is Musician’s behavior-inspired harmony
search (HS) algorithm that has been successful in numerous
complex optimization problems. This paper builds on the previous
work of the harmony search algorithm (HSRNAFold) which was
used to find the RNA secondary structure with minimum free
energy. In this paper, the accuracy of prediction is compared to
the dynamic programming technique RNAFold. The results show
that HSRNAFold is able to predict more accurate structures than
RNAFold for all test sequences.

Index Terms—Meta heuristic algorithms; Dynamic program-
ming algorithms;RNA folding; Minimum Free Energy.

I. INTRODUCTION

RNA is nucleic acid consist of a long linear polymer of
nucleotide units found in the nucleus. RNA is similar to DNA
but usually consists of a single strand instead of double-
stranded, containing ribose rather than deoxyribose, and has
the base uracil (U) in place of thymine (T). There are a
various forms of RNA are found: heterogeneous nuclear RNA
(hnRNA), messenger RNA (mRNA), transfer RNA tRNA),
ribosomal RNA (rRNA), and small nuclear RNA. Structurally,
hnRNA and mRNA are both single stranded, while rRNA and
tRNA form three-dimensional molecular configurations. Each
type of RNA has a different role in various cellular processes
such as carrying genetic information (mRNA), interpreting the
code (rRNA), and transferring genetic code (tRNA). It also
performs different functions which include: catalyzing chem-
ical reactions [1], [2], directing the site specific modification
of RNA nucleotides, controlling gene expression, modulating
protein expression and serving in protein localization [3].

The function of RNA molecules determines many diseases
caused by RNA viruses. Identifying the secondary structure
of an RNA molecule is the fundamental key to understand its
biological function [4],[5].

The physical methods to determine the secondary structure
such as x-ray diffraction and NMR spectroscopy are difficult,

error prone, time-consuming and expensive. Therefore, com-
putational approaches are appropriate alternatives to predict
the secondary structure of an RNA molecule. Two different
computational approaches exist for RNA secondary prediction;
either comparative methods or thermodynamic optimization.

Since RNA folding is subject to the laws of thermodynam-
ics, there is an assumption that the correct structure is a low
energy structure [6]. The stability of the secondary structure
depends on the amount of free energy released to form the base
pairs. Thus, the more negative the free energy of a structure
is, the more stable a particular sequence is formed. This
structure is called the minimum free energy (MFE) secondary
structure [7]. In case of only the sequence of a given RNA
molecule is known, the ab initio methods are used to perform
RNA secondary structure prediction as an energy minimization
problem through the use of thermodynamic models. These
methods are either dynamic programming or meta-heuristics.

Mfold [8] and RNAFold [9]algorithms are DP techniques
for RNA secondary structure prediction based on finding the
minimum free energy. Dynamic programming algorithm as
mathematical technique can hit the global optima in small
problems. But in real world problems there are some draw-
backs. For examples, when the number of variables increases,
the number of evaluations of the recursive function will also in-
crease exponentially. For RNA Secondary structure prediction
the large number of structure alternatives make it difficult to
determine which one is more correct [10]. In addition, these
algorithms only predict the minimum free energy structure,
while the native structure usually has a free energy of about
5-10% from the minimum free energy of the sequence.

On the other hand, many meta-heuristics algorithms were
proposed such as Genetic Algorithm; RnaPredict [11],[12],
Simulated Annealing; SARNA-Predict [10], Particle Swarm
Optimization; HelixPSO [13] and Harmony search algorithm;
HSRNAFold [14]. These algorithms generate a structure vector
instead of only the minimum free energy structure.
This paper builds on the previous research in harmony search
[14] which showed that it is possible to use an HS to minimize
the free energy associated with RNA secondary structures
and predict structures similar to the known structures. The
performance of HSRNAFold is compared to dynamic program-
ming algorithm RNAFold based on standard sets of RNA test
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molecules.

II. RNA SECONDARY STRUCTURE PREDICTION

RNA molecule consists of a single stranded sequence of
four nucleotides: adenine (A), guanine (G), cytosine (C), or
uracil (U). This linear sequence is the primary structure of
RNA molecule.

The RNA strand can fold back upon itself. During the
folding process, the hydrogen bonds between the different
nucleotides form the base pairs. These hydrogen bonds which
occur mostly between G and C, or A and U are called the
Watson-Crick base pairs and the bond between G and U
is called the wobble base pair. These base pairs; GC, AU,
and GU, and their mirrors, CG, UA, and UG are called the
canonical base pairs.

RNA secondary structure is defined by a set of base pairs
that satisfy the following constraints: i) for (i,j), it must be
canonical base pairs; ii) each base cannot share more than one
base; iii) pairing bases must be at least three bases apart i−j >
3; and iv) Two base pairs must not cross, i.e.:i, j

⋂
i
′
, j

′
= Φ or

for all (i, j), (i
′
, j

′
) either i < i

′
< j

′
< j or i

′
< i < j < j

′

holds.
The stability of the RNA secondary structure is quantified

as the amount of free energy being released or used by the
forming base pairs. The stability increases according to the
number of GC versus AU and GU base pairs and the number
of base pairs in a hairpin loop region. The number of unpaired
bases decreases the stability of the structure such as interior
loops, hairpin loop or bulges.

III. APPROACH

A. harmony search algorithm

HS algorithm is a meta-heuristic searching algorithm in-
spired by the music improvisation process in which the musi-
cians in an orchestra try to find a fantastic harmony through
musical improvisations. In the improvisation processes, musi-
cians look for the best combination of state in order to produce
a fantastic harmony just like optimization process seeks a best
solution (global optimum) determined by objective function
evaluation.

HS algorithm is a stochastic iterative search optimization
algorithm based on successive update steps. Geem et al. [15]
in 2001 were the first to apply harmony search to optimization
problems.

This algorithm was applied to many minimization problems
such as: continuous engineering optimization, vehicle routing,
combined heat and power economic dispatch, water pump
switching problem, optimal scheduling of multiple dam system
and transport energy modeling [16].

In general, HS has five steps: i) Initializing the problem
and algorithm parameters including a representation of solution
vectors to the problem; ii) creating an initial harmony memory
(HM) of candidate solutions as a solution vector ; iii) impro-
vising a new harmony from HM; iv) updating the harmony
memory; v) and ,finally, checking the stopping criterion.

HS has four main parameters that direct the search toward
the most favorable areas of the search space. These parameters
are:

• Harmony memory size (HMS) represents the total number
of harmonies in the HM.

• Harmony memory consideration rate (HMCR) represents
the probability of picking up values from HM to the
variables in the solution vector.

• Random selection rate (RSR) represents the probability
of randomly choosing feasible values from the rage of all
possible values to the variables in the solution vector.

• Pitch adjusting rate (PAR) represents the probability of
further adjusting the pitch with neighboring pitches.

HS manages harmony memory vectors of harmonies in
which each harmony represents a potential solution to the given
problem. Harmony memory size (HMS) represents the total
number of harmonies in the HM. Each harmony in HM is
evaluated to determine its relative fitness within the harmony
memory vectors. In each cycle or ’improvisation’,a new har-
mony retained via each improvisation process. HS parameters:
harmony memory consideration rate ,random selection rate ,
and pitch adjusting rate , are applied to the HM for each
improvisation process to guide the algorithm to the promising
area in the search space.

After the improvisation of a new harmony is complete, the
new harmony is evaluated by its objective function (fitness
function). If the value of its objective function is better than
the value of the objective function of the worst harmony in the
HM, the new harmony is included in the HM and the existing
worst harmony is excluded from the HM. Consequently, the
vectors are sorted out based on their fitness functions.
Finally, the cycle repeats itself with a new harmony. After a
varying number of improvisations, the algorithm will converge

Algorithm 1 HSRNAFold algorithm
Generate all possible base-pairs pool.
Generate all possible helices from the base-pairs pool.
Initial HS parameters: HMCR, RSR and PAR
for i = 1 to HMS do

Generate feasible structure[i] randomly from the helices
FreeEnergy[i] = Evaluate(structure[i])
Sort the generated structures according to the freeEnergy

end for
for i = 1 to number of iterations do

Change the rate of HMCR
Change the Rate of PAR
Generate new feasible structure depending on the HMCR,
RSR and PAR
newFeeEnergy = Evaluate(newstructure);
if newFeeEnergy < FreeEnergy[HMS] then

structure[HMS] = newstructure
end if

end for
Return the best structure
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TABLE I
TESTING RNA ORGANISMS WITH THEIR ACCESSION NUMBERS, CLASSES, LENGTHS AND NUMBER OF BASE PAIRS IN THEIR

KNOWN STRUCTURES.

Organism Accession RNA Class Length BP in Known Structure
Number

Geobacillus stearothermophilus AJ251080 5S rRNA 117 38
Saccharomyces cerevisiae X67579 5S rRNA 118 37

Escherichia coli V00336 5S rRNA 120 40
Haloarcula marismortui AF034620 5S rRNA 122 38

Thermus Aquaticus X01590 5S rRNA 123 40
Deinococcus radiodurans AE002087 5S rRNA 124 40

Metarhizium anisopliae var. anisopliae(3) AF197120 Group I intron, 23S rRNA 394 120
Chlorella saccharophila AB058310 Group I intron,16S rRNA 454 126

Hildenbrandia rubra L19345 Group I intron, 16S rRNA 543 141
Acanthamoeba grifini U02540 Group I intron, 16S rRNA 556 131

Drosophila virilis X05914 16S rRNA 784 233
Xenopus laevis M27605 16S rRNA 945 254

to the best harmony which represents a sub optimal or optimal
solution to the given problem.

B. HSRNAFold

HSRNAFold is a meta-heuristic algorithm based on harmony
search for RNA secondary structure prediction by minimizing
the the free energy of a particular RNA sequence [14].

HSRNAFold starts by creating a pool of all possible pairs,
and consequently stems (helices) that can be generated from
the given sequence using helix generation algorithm described
in [12],[10],[13]. This algorithm will fold the sequence into a
structure and also reduce the search space.

After building the set of helices, H , the algorithm tries
to find a subset of H that defines an optimal secondary
structure with the minimum free energy [12],[10],[13]. Thus,
the structure prediction becomes a combinatorial optimization
problem of picking a subset x from H . Since RNA folds
into a structure with near minimal free energy, HSRNAFold
attempts to find the combination of helices that produce a
feasible structure with the lowest possible free energy.

In HSRNAFold, Each harmony in the HS encodes a potential
RNA feasible structure. A permutation-based representation is
used to encode the RNA secondary structure. Each helix in
H is numbered by an integer ranging from 0 to n ; where n
is the number of helices in H . For example, if n = 4, {2, 3,
1, 0} and {1, 0, 3, 2} will be two possible permutations. To
produce feasible structures, each permutation is decoded from
left to right. Each helix is checked for conflicts with helices
to its left. If there are no conflicts found, the helix is retained;
otherwise it is discarded. After that, the algorithm generates a
new structure based on the memory consideration rate, pitch
adjustment and random selection.

Then, the new structure is evaluated by calculating its free
energy; if it is better than the worst structure in the HM, then
it will be included in the HM and the existing worst structure
will be excluded.
Finally, the algorithm iterates through the solution vectors and
generates a new structure in each iteration until the structure
of the minimum free energy is found or the maximum number

of iterations is reached. Algorithm 1 shows the pseudo code
of the proposed HSRNAFold algorithm

IV. RESULTS AND DISCUSSION

All HSRNAFold experiments were conducted on an Intel
Core 2 Quad. Each CPU is a 2.4 GHz. HSRNAFold was
implemented using C# 2005. Twelve sequences were used for
testing HSRNAFold.

All sequences were taken from the Comparative RNA web
site [17], and their details are summarized in Table I.

It should be mentioned that the names of the organisms
are used to refer to these specific RNA sequences in this
manuscript.

The parameters which remained fixed throughout all exper-
iments presented here are as follows: HMS*100 iterations, a
HMCR probability (PHMCR) varies between 0.70 and 0.90
and a PAR probability (PPAR) varies between 0.1 and 0.5.

The RNAFold Web server was used to generate the RNAFold
results presented here with default settings.

Six measures are used for a comparison of HSRNAFold to
RNAFold which can be defined as follows: true positive (TP)
represents the number of base pairs for both the known and
predicted structure; false positive (FP) is the total of predicted
base pairs which are not found in the known structure; false
negative (FN) indicates the base pairs in the known structures
which have not been predicted. Sensitivity (SE) is the ratio
between TP and the total number of base pairs found in the
native structure. Specificity (SP) is the ratio between TP and
all base pairs predicted. Finally, F-measure (FM) is a metric
that combines both sensitivity and specificity into a single
performance measure: FM = 2 ∗ SE ∗ SP/(SE + SP ).

In table II, the results for HSRNAFold (HS) are compared to
those of the minimum free energy structure as calculated by the
RNAFold (Fold) algorithm of the ViennaRNA package. For TP,
it is clearly that HSRNAFold is able to predict TP better than
RNAFold in seven out of twelve sequences. They were equal
in only Saccharomyces cerevisiae sequence. On average, HSR-
NAFold predicted 52.75 percent TP base pairs which is better
than RNAFold (45.17percent). HSRNAFold predicted a fewer
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TABLE II
COMPARISON OF BEST RESULTS OF HSRNAFOLD AND THE MINIMUM FREE ENERGY STRUCTURES OF RNAFOLD (FOLD) IN TERMS

OF CORRECTLY PREDICTED BASE PAIRS (TP), INCORRECTLY PREDICTED BASE PAIRS (FP) AND BASE PAIRS IN NATIVE
STRUCTURE THAT WERE NOT PREDICTED (FN); THE BEST RESULTS ARE IN BOLD.

Organism Seq. Length HS Fold HS Fold HS Fold
TP TP FP FP FN FN

Geobacillus stearothermophilus 117 23 12 7 23 15 26
Saccharomyces cerevisiae 118 33 33 4 8 4 4

Escherichia coli 120 28 10 6 28 12 30
Haloarcula marismortui 122 29 16 5 23 9 22

Thermus Aquaticus 123 26 27 3 11 14 13
Deinococcus radiodurans 124 26 31 4 5 14 9

Metarhizium anisopliae var. anisopliae(3) 394 69 70 30 55 51 50
Chlorella saccharophila 454 84 103 50 49 42 23

Hildenbrandia rubra 543 84 53 63 123 61 88
Acanthamoeba grifini 566 90 76 40 102 41 55

Drosophila virilis 784 56 37 147 221 177 196
Xenopus laevis 945 85 74 109 173 169 180

Average 52.75 45.17 39 68.42 50.75 58

TABLE III
COMPARISON OF BEST RESULTS OF HSRNAFOLD AND THE MINIMUM FREE ENERGY STRUCTURES OF RNAFOLD (FOLD) IN TERMS

OF SENSITIVITY (SE), SPECIFICITY (SP), AND F- MEASURE (FM); THE BEST RESULTS ARE IN BOLD.

Organism Seq. HS Fold HS Fold HS Fold
Length

SE SE Sp Sp FM FM
Geobacillus stearothermophilus 117 60.53 31.58 76.67 34.29 67.65 32.88

Saccharomyces cerevisiae 118 89.19 89.19 89.19 80.49 89.19 84.62
Escherichia coli 120 70 25 82.35 26.32 75.68 25.64

Haloarcula marismortui 122 76.32 42.11 85.29 41.03 80.56 41.56
Thermus Aquaticus 123 65 67.5 89.66 71.05 75.36 69.23

Deinococcus radiodurans 124 65 77.5 86.67 86.11 74.29 81.58
Metarhizium anisopliae var. anisopliae(3) 394 57.5 58.33 69.7 56 63.01 57.14

Chlorella saccharophila 454 66.67 81.75 62.69 67.76 64.62 74.1
Hildenbrandia rubra 543 59.57 37.59 57.93 30.11 58.74 33.44

Acanthamoeba grifini 566 68.7 58.02 69.23 42.7 68.97 49.19
Drosophila virilis 784 24.03 15.88 27.59 14.34 25.69 15.07
Xenopus laevis 945 33.46 29.13 43.18 29.96 37.95 29.54

Average 61.33 51.13 70.01 48.35 65.14 49.5

false positive base pairs than RNAFold in all sequences except
Chlorella saccharophila sequence. Furthermore, the average
performance of HSRNAFold clearly outperformed RNAFold in
terms of FP (39 percent and 68.42 percent respectively). For
FN, HSRNAFold failed to predict a fewer number of base pairs,
as in the known structures, than RNAFold in seven sequences.
On average performance, HSRNAFold algorithm substantially
outperformed RNAFold by 7.25 percent.

Compared to RNAFold in terms of sensitivity, specificity
and F-measure, table III reveals that HSRNAFold achieved
substantially a higher sensitivity than RNAFold in eight out
of twelve sequences. On the overall average, it is clear that
HSRNAFold outperformed RNAFold in terms of sensitivity
by 10.20 percent. HSRNAFold has a higher specificity in
eleven out of twelve sequences except Chlorella saccharophila
sequence. The overall performance shows that HSRNAFold was
significantly better than RNAFold by 21.67 percent. Finally, for
the FM, HSRNAFold produced better results than RNAFold in
ten out of twelve sequences except Metarhizium anisopliae
var. anisopliae(3) and Chlorella saccharophila sequences. The

average performance of HSRNAFold is better than that of
RNAFold by 15.64 percent.

It has been noted that the HSRNAFold is clearly outper-
formed RNAFold in all sequences larger than 500 nucleotides
with all measures.

Fig.1 shows secondary structure for three RNA sequences
Geobacillus stearothermophilus, Saccharomyces cerevisiae
and Escherichia coli. jViz.Rna [18] was used to create the
structures’ images. The first column shows the secondary
structures predicted by RNAFold, the middle column shows the
secondary structures predicted by HSRNAFold and last column
shows the native structure for these three sequences as in the
comparative RNA web site [17]. Accordingly, the first row
represents the structures of Geobacillus stearothermophilus,
the second row represents the structures of Saccharomyces
cerevisiae whereas the last row represents Escherichia coli
structures.

For Geobacillus stearothermophilus, the structure predicted
by HSRNAFold (Fig. 1b) is somewhat similar to the native
fold (Fig. 1c). On contrast, there is no real similarity between
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 1. HSRNAFold best structures of G. stearothermophilus 5S rRNA (AJ251080),S. cerevisiae 5S rRNA (X67579) and E. coli 5S rRNA(V00336) compared
with the MFE structures predicted by RNAFold with regard to native structures. (a) G. stearothermophilus (RNAFold). (b) G. stearothermophilus (HSRNAFold).
(c) G. stearothermophilus (Native). (d) S. cerevisiae (RNAFold). (e) S. cerevisiae (HSRNAFold). (f) S. cerevisiae (Native). (g) E. coli(RNAFold). (h) E. coli
(HSRNAFold). (i) E. coli (Native).

the structure predicted by RNAFold (Fig. 2a) and the native
one (Fig. 2c). Similarly, for Escherichia coli, the structure
predicted by HSRNAFold (Fig. 1h) is similar to the native
fold (Fig. 1i) with some exceptions where as the structure
predicted by RNAFold (Fig. 1g) is different to a large extent.
These exceptions can be observed, especially, on the right most
branch and in the multi branch loop.

For Saccharomyces cerevisiae, the both structures predicted
by RNAFold (Fig. 1d) and HSRNAFold (Fig. 1e) are similar
to each other and to the native fold (Fig. 1f) with small

differences can still be observed. Particularly, HSRNAFold has
the superiority of similarity to the native fold. For example,
there is a multi branch loop and three internal loops in both
structures. The stems look very similar in all three branches
with the exceptions. These exceptions resulted because the
inability of the current thermodynamic models to predict the
two CU non-canonical base pairs.

V. CONCLUSION

This paper builds on the previous research in harmony
search; HSRNAFold. Comparisons performed to RNAFold de-
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termined that HSRNAFold can predict structures with a higher
number of true positive base pairs and a lower number of false
positive base pairs than the minimum 4G structure computed
by RNAFold for the majority of sequences tested.

Overall, the prediction accuracy of both methods is good for
shorter sequences. Prediction accuracy decreases as sequence
lengths increase; this is a result of limitations in the perfor-
mance of the thermodynamic models.

In future work, Code optimization, effect of parameters
adaptation and the possibility to hybridize HS with other
optimization algorithms to enhance the HS performance should
be studied and modeling non-canonical base pairs to further
improve the prediction accuracy of HSRNAFold.
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