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Using SetPSO to determine RNA secondary structure

by

Charles Marais Neethling

Abstract

RNA secondary structure prediction is an important field in Bioinformatics. A number of

different approaches have been developed to simplify the determination of RNA molecule

structures. RNA is a nucleic acid found in living organisms which fulfils a number of

important roles in living cells. Knowledge of its structure is crucial in the understanding

of its function. Determining RNA secondary structure computationally, rather than

by physical means, has the advantage of being a quicker and cheaper method. This

dissertation introduces a new Set-based Particle Swarm Optimisation algorithm, known

as SetPSO for short, to optimise the structure of an RNA molecule, using an advanced

thermodynamic model. Structure prediction is modelled as an energy minimisation

problem.

Particle swarm optimisation is a simple but effective stochastic optimisation technique

developed by Kennedy and Eberhart [55]. This simple technique was adapted to work

with variable length particles which consist of a set of elements rather than a vector of

real numbers. The effectiveness of this structure prediction approach was compared to

that of a dynamic programming algorithm called mfold. It was found that SetPSO can

be used as a combinatorial optimisation technique which can be applied to the problem

of RNA secondary structure prediction. This research also included an investigation

into the behaviour of the new SetPSO optimisation algorithm. Further study needs to

be conducted to evaluate the performance of SetPSO on different combinatorial and

set-based optimisation problems.

Keywords: combinatorial, computational intelligence, particle swarm optimiser, RNA,

secondary structure, SetPSO.
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Chapter 1

Introduction

1.1 Rationale

The first attempts to predict the structures of RNA molecules, given their nucleotide

sequences, were made in 1978 by Nussinov and co-workers [70]. They tried to max-

imise the number of paired bases by using a dynamic programming algorithm (DPA) to

optimise the RNA secondary structure. In time, the objective function used for these

types of optimisation problems became more sophisticated. Nussinov et al published

an adapted algorithm which used a simple nearest-neighbour energy model to evaluate

the structures [69]. Following on that, Zuker and Stiegler proposed a more sophisti-

cated stacking energy model in 1981 [117]. The energy parameters used in the stacking

model were derived from empirical calorimetric experiments done in laboratories. Many

single-structure prediction approaches still use the stacking energy model, which was last

updated with the latest parameters in 2004 [64].

The dynamic programming algorithms used for these structure predictions are com-

putationally expensive and can consume a large amount of time for predictions on longer

sequences. Finding a more efficient way to predict low energy structures (the natural

conformations are believed to be close to the lowest energy structures of a molecule)

is high on the agenda. Several stochastic optimisation methods have been tried, most

notably the genetic algorithm (GA). The approaches that use a GA to minimise the free

energy of RNA structures include a massively parallel GA [84], a program by Wiese et

1

 
 
 



Chapter 1. Introduction 2

al called RnaPredict [104] [106], a GA using an annealing mutation operator [85] and

various older GA approaches [97] [2]. Another approach includes CONTRAfold, which

is based on stochastic context-free grammars (SCFGs). SCFGs use fully-automated sta-

tistical learning algorithms to derive model parameters and does not rely on a physical

RNA thermodynamic model.

Particle swarm optimisation (PSO) has proved to be an effective yet simple optimi-

sation algorithm [22]. Introduced in 1995 by Kennedy and Eberhart [55], PSO has made

rapid advances in a number of optimisation fields and has proved to outclass other opti-

misation algorithms, like the GA, in many ways [24]. The original PSO is not suited to

the combinatorial type of optimisation required for RNA secondary structure predictions

due to its operation in continuous real vector space. This work develops a new set-based

particle swarm adaptation which can be used for combinatorial optimisation problems

or for finding optimal sets of elements, given an objective function. RNA structure

prediction is an ideal domain for validating the modified particle swarm optimisation

technique introduced in this work. This study aims to evaluate and validate the new

SetPSO algorithm on a real world problem.

1.2 Objectives

The primary objectives of this dissertation are summarised as follows:

� To validate the SetPSO algorithm and make sure that it is able to optimise set-

based problems.

� To implement a SetPSO algorithm in order to do RNA secondary structure pre-

dictions.

� To investigate the performance of the SetPSO when applied to the prediction of

RNA secondary structure.

� To determine whether SetPSO is a viable stochastic optimisation algorithm to be

used in the prediction of RNA secondary structures.
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� To investigate the behaviour of the newly introduced SetPSO and the influence of

its parameters on performance.

� To identify any relations between the new parameters introduced by SetPSO.

1.3 Contributions

The novel contributions of this work include the following:

� A novel adaptation of the particle swarm optimiser algorithm that can be used to

optimise variable length, set-based solutions.

� A stochastic RNA secondary structure prediction method based on SetPSO and

using the Vienna RNA stacking energy model as the objective function.

� The first application of particle swarm optimisation on RNA secondary structure

prediction.

� An investigation of the behaviour of SetPSO when used as an optimisation algo-

rithm.

1.4 Dissertation outline

All cited sources within this dissertation are listed in a bibliography. References to

online material are only provided in instances where a document’s primary publication

method is online, or where a persistent Digital Object Identifier (DOI)1 to an electronic

document, provided within the CrossRef 2 framework, is available.

1A DOI is a unique alphanumeric identification string for a digital object, which provides a persistent

link to the object in question. A DOI is a permanent URL maintained in the same way as a domain

name. For further information on the DOI system, refer to http://www.doi.org.

2CrossRef is a non-profit network providing an infrastructure for linking online citations, using

the DOIs of electronically published documents. A CrossRef DOI has the form doi:10.1234/5678.

CrossRef DOIs function like standard hyperlinks in most web browsers, but may also be resolved via

http://dx.doi.org. For information on the CrossRef system, see http://www.crossref.org.
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The organisation of the remaining chapters of this dissertation is reflected below

along with a brief description of the topics dealt within each:

� Chapter 2 introduces the RNA molecule and describes its significance along with

the various levels of RNA structure.

� Chapter 3 gives a background view of the RNA thermodynamic models in use in

various prediction methods.

� Chapter 4 gives an overview of the original particle swarm optimiser algorithm.

The algorithm and its control parameters are discussed.

� Chapter 5 introduces the adapted PSO, i.e. SetPSO, along with the new operators

that are defined to work on the set solution space.

� Chapter 8 describes the experimental approach followed to set up SetPSO in

order to predict RNA secondary structure.

� Chapter 9 shows the preliminary results obtained from experiments run on the

RNA sequences.

� Chapter 10 contains conclusion remarks and suggestions for future work stem-

ming from the research done in this dissertation.

� Appendix A provides result summaries for all the experiments done in this dis-

sertation.

� Appendix B provides a list of the acronyms used and defined in this work, as

well as their associated definitions.

� Appendix C lists and defines the mathematical symbols used in this work, cate-

gorised according to the relevant chapter in which they appear.

� Appendix D lists the publications derived from this work.

 
 
 



Chapter 2

Ribonucleic acid

Contemporary research is increasingly revealing that RNA molecules are of great impor-

tance in biological organisms. RNA is a fundamental building block of all living cells

and has a variety of different functions [1] [27] [57] [71] [73] [80]. This chapter introduces

ribonucleic acid and its structure. Section 2.1 introduces the basic building blocks of

RNA. Then section 2.2 explains how the RNA strands are formed. Sections 2.3 and

2.4 describe RNA and its function. Sections 2.5, 2.6 and 2.7 discuss RNA primary,

secondary and tertiary structure respectively and section 2.8 introduces the methods of

determining RNA molecules’ natural conformations.

2.1 Nucleotides

RNA molecules consist of nucleotides connected together on a sugar-phosphate backbone

to form a polymer. A nucleotide is formed by the sugar-phosphate and a nitrogenous

heterocyclic functional group, called a base, either a purine or a pyrimidine. The ni-

trogenous bases in RNA nucleotides are adenine, cytosine, guanine and uracil (A, C, G

or U) (see figure 2.1). These bases are formed by hydrogen, carbon, nitrogen and oxygen

molecules [47] [102].

5

 
 
 



Chapter 2. Ribonucleic acid 6

Figure 2.1: A representation of the helical structure of RNA and DNA, showing the structures

of the nucleotides.

2.2 RNA strands

The nucleotides are connected together in a chain through shared oxygen atoms to form

the polymer. Conventionally, the carbons to which the phosphate group is connected

are called the 5’ and 3’ carbons. Ligation takes place between the oxygen on the 3’-

hydroxyl and the oxygen on the 5’-phosphate on the ribose sugar. The 5’ and 3’ naming

convention also indicates direction. RNA strands are always synthesised (built) in the

5’ to 3’ direction. This happens fairly rapidly at a rate of 50-100 nucleotides per second.

A nucleic acid that is less than 50 nucleotides long is called an oligonucleotide. Any-

thing longer (chain with up to several thousand nucleotides) is called a polynucleotide.

The lengths of RNA strands differ, depending on their respective function and classes.
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2.3 RNA

RNA is a nucleic acid. This is the name given to a high molecular weight macro molecule

consisting of a chain of nucleotides. The most common nucleic acids found in living cells

are DNA (deoxyribonucleic acid) and RNA (ribonucleic acid). These nucleic acids convey

genetic information in addition to performing many other functions, which are discussed

later in this chapter.

RNA, unlike DNA, exists as a single strand (see figure 2.1). The strand then folds

back onto itself. Hydrogen bonds form between certain base pairs, which are known as

canonical pairs. These pairs are said to be complementary and form the strongest bonds.

In RNA, cytosine is complementary to guanine where three hydrogen bonds form and

adenine is complementary to uracil where two hydrogen bonds form. These are called

the Watson-Crick pairs, after the discoverers of the DNA structure.

Another important base pair to consider is the so-called wobble pair, a double hy-

drogen bond between guanine and uracil. Other combinations of base pairings are also

found in RNA, but these pairs have weak bonds between them and are much rarer and

will not be considered in this work. Double helical sections are formed where canonical

base pairs bond.

2.4 Function of RNA

RNA serves a diverse range of very important functions in living cells. The most impor-

tant function is related to the expression of proteins from DNA encodings. Firstly mRNA

(messenger RNA), which is a coding RNA, is synthesised from a gene, a DNA template,

with the help of an enzyme (another type of RNA) in a process called transcription. This

produces a complementary copy of the gene which encodes for a particular protein. The

mRNA leaves the protected environment of the cell nucleus to carry the message to cell

ribosomes. A ribosome consists of ribosomal RNA (rRNA), a non-coding or functional

RNA, and protein molecules. The ribosome “reads” the mRNA message and assembles

a protein according to the mRNA template.

Each triplet of nucleotides, called a codon, on the RNA encodes for 1 of 20 amino

acids (see figure 2.2). The possible number of codes that can be constructed in this
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Figure 2.2: Each codon consists of three nucleotides.

way is 43 = 64. The 64 codes are mapped to the 20 amino acids, so that some of the

amino acids have more than one representative “code” from the 64 possible codes. This

redundancy improves the reliability of the message and guards against possible fatal

mutations. Some codes are reserved to indicate the start and end (start codons and end

codons) of the protein string, where expression starts and stops.

Transfer RNA (tRNA), also a non-coding RNA, binds to amino acids. The tRNA

molecule has an anticodon binding site (reverse of the RNA triplet or codon for that

specific amino acid the tRNA is bound to) that corresponds to a codon on the mRNA.

When a match is found, the amino acid binds to the previous amino acid on the chain

to form a polypeptide. A reading frame is used to read the sequence, one triplet at a

time. When a triplet is read, the reading frame moves forward by a full triplet. This

will ensure that a single nucleotide mutation will not affect more than one amino acid.

Evidence has been found that RNA also acts as a catalyst for some biochemical

reactions [44]. A review of the function of RNA as a catalyst is given in Evolution of

catalytic function [52] and a description from this work on some of the catalytic functions

follows:
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5’-GGUUGCGGCCAUAUCUACCAGAAAGCACCGUUUCCCGUC

CGAUCAACUGUGUUAAGCUGGUAGAGCCUGACCGAGUAGU

GUAUGGGUGACCAUACGCGAAACUCAGGUGCUGCAAUCU-3’

Figure 2.3: 5S rRNA sequence of Saccharomyces cerevisiae

RNA has been shown to catalyse phosphoester transfer reactions, phospho-

ester hydrolysis, aminoacyl ester hydrolysis and peptide bond formation.

A review of the function of RNase P, a catalytic ribonuclease, in the maturation of

tRNA and the role of self-splicing introns in the maturation of mRNA can be found in

the work of Cech et al [21].

RNA also serves as the genetic material of some viruses, namely the retroviruses [72]

[8], unlike other organisms which utilise DNA to convey their genetic information to

their offspring.

2.5 RNA primary structure

Three representations of RNA structure are used. Each one represents a degree of

abstraction. The primary structure is simply a one-dimensional string of characters from

the set A, C, G, U representing the nucleotides in the RNA. The sequence is written, by

convention, from left to right, starting at the 5’ end of the string and ending at the 3’ end.

This representation only describes the sequence of nucleotides in the RNA strand. This

is particularly useful when comparing patterns in the RNA, or doing sequence alignment

to find the similarity between sequences.

Primary structure is also the easiest structure to determine in the laboratory using

highly refined and efficient gene sequencing techniques. RNA sequences are derived from

DNA primary sequence information using Chargaff’s rules and knowledge of transcrip-

tion start and ending sites. An alternative method is to generate primary sequence in-

formation from expressed sequence tags (ESTs) which provides direct information about

expressed RNA in the cell. An example of an RNA primary structure is given in figure

2.3.
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2.6 RNA secondary structure

The term secondary structure refers only to the base pair bindings of the RNA strand that

folds onto itself and the higher order structures that emerge from this folding process.

A nucleotide (base) can bind with at most one complementary base, subject to certain

constraints. For this work it is assumed that only canonical base pairs can form, that is

Watson-Crick pairs (AU, GC and their mirrors UA and CG) and the GU wobble pair

(and its mirror UG) as these pairs are the most stable and hence the most common. The

listing of these pairs is called a conformation. This is the RNA secondary structure.

Valid conformations should satisfy the following criteria [100] [101]: For any two

bases [i, j] and [k, l] with i < j and k < l,

1. the contacts must form canonical pairs,

2. each base must pair with only one other: i = k iff j = l,

3. no pseudo-knots are allowed (see section 2.7), and

4. if i < k < j, then i < k < l < j.

The higher order structures mentioned previously are common RNA substructures

such as hairpin loops, internal loops, bulges, multi-branch loops and dangling ends.

These substructures are discussed in section 2.6.1.

Base pairs that are adjacent to each other tend to increase the stability of the con-

formation. These stacked pairs are commonly referred to as stems or helices. Formally,

stacked pairs exist when two or more base pairs,

(i, j), ..., (i+ n, j − n), 1 ≤ n < m, where m =
(j − i− 3)

2
, n ∈ [1...m] (2.1)

exist such that ends of the pairs are adjacent, forming a helical structure. m is used

to restrict the minimum length of the nucleotide sequence connecting the helix. This

connecting nucleotide sequence is the hairpin loop.
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Figure 2.4: RNA secondary structure motifs. The pseudo knot is indicated but is considered

part of the tertiary structure.

2.6.1 RNA secondary structure motifs

Some RNA secondary structure motifs (substructures) have been identified and described

[11] [101]. These include loops such as hairpin loops, interior loops and multi-branch

loops, all of which contribute to the minimization of energy of the conformation. Dan-

gling ends, which is a string of unpaired nucleotides, can be seen at each end of the

sequence. Figure 2.4 shows the most common RNA conformation substructures. These

common motifs in figure 2.4 include stems, which consist of a stack of base pairs. Various

loops such as hairpins, which are closed by a single stem, internal loops which are closed

by 2 stems and multi loops which are closed by more than 2 stems. A special case of the

loop is a bulge which shares adjacent stems on one side. The remaining motif in figure

2.4 is a pseudo knot. This is a stem that violates the properties of equation 2.1.
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Figure 2.5: RNA secondary structure circular representation. The bands inside the circle of

bases indicate which bases are paired.

2.6.2 RNA secondary structure graphical representation

The representations used in this text include graphical representations as illustrated

in figure 2.4 and circular [70] representations as shown in figure 2.5. Another useful

representation is the dot plot representation shown in figure 2.6. Apart from the repre-

sentations used in this text, there are some other well known and useful representations

of RNA secondary structure.

One representation that is easier to write is called dot-bracket notation. Dots repre-

sent bases that do not pair, and a matching opening and closing bracket marks a paired

base. The dot-bracket notation is written as follows, from the 5’ end of the sequence:

AUCAGGUUCGCAGAUUCUGGAGCUCUGAGGUCACAG
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Figure 2.6: RNA secondary structure dot plot representation. The paired bases are repre-

sented by a dot in the row and column of a pair of bases.

..((.(((...(((.)).)..((..))))..)..))

A pair of brackets represents a binding between the two corresponding bases in the

sequence.

2.7 RNA tertiary structure

Tertiary structure represents the RNA molecule in 3-dimensional space. Every atom has

a coordinate in 3D space. Features in tertiary structure include pseudo-knots, helices,

kissing hairpins and bulge contacts. Although these interactions can be represented just

like secondary structure interaction (by listing of the base pairs that bind) most authors

consider these interactions to be part of tertiary structure [11] [86].
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2.8 Predicting the natural conformation

It is important to find the conformation or structure of biomolecules because the struc-

ture of the molecule dictates the function of the molecule. Biomolecules expose cer-

tain functional binding sites (active sites) with which to interact with other molecules.

Knowing this structure, and how it interacts, would be advantageous when inventing

new compounds for use in medicines that target these molecules [107] [17]. For example,

the function of a targeted molecule could be inhibited when a compound is found which

binds to the active site of the molecule, thereby rendering it ineffective.

Ligand docking is an example of a process that could benefit from this type of struc-

tural prediction. A small three-dimensional ligand is oriented, through an optimisation

process, in such a way that it binds to an active site on a biomolecule [13].

It is thought that tertiary structure arises from the secondary structure in sequence.

The thermodynamics that determine secondary structure is much more important than

in the case of the tertiary structure. The base pair interactions of the secondary structure

have to happen before the tertiary structural elements can form. Determining the final

structure of a molecule therefore entails solving the primary, secondary and tertiary

structures independently and in sequence. Finding the primary structure is relatively

easy with powerful gene sequencing techniques. Determining the secondary structure

is the most difficult part of the structure prediction because of the high combinatorial

complexity.

2.8.1 Physical methods

There are physical methods for determining RNA secondary and tertiary structure [16]

[28] [41] [65]. Unfortunately these are expensive and time-consuming experiments. A

simple method of determining secondary or tertiary structure has not yet been developed.

Finding the primary structure is easy and can be done on a large scale using se-

quencing techniques. The primary structure provides a starting point for predicting the

structure of the natural RNA conformation quickly and inexpensively using computer

models.

The following subsections briefly describe the existing physical and computational
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methods of determining RNA secondary structure.

X-ray crystallography

X-ray crystallography is a method used to determine the structure of molecules through

X-ray diffraction [16] [28]. The closely spaced atoms in a crystal lattice diffract X-rays,

which form a diffraction pattern on a recording surface. From this pattern, the position

of the atoms in the crystal can be deduced. Nevertheless, there is still the problem of

forming a crystal of the molecules to be studied. It is notoriously difficult to get RNA to

crystallise. If crystallisation is achieved, there is still the problem that the crystallised

RNA is not likely to be in a natural conformation, since the RNA conformation needs

to take on a specific form in order to crystallise. Not all molecular structures are suited

to crystallisation.

NMR spectroscopy

Nuclear magnetic resonance spectroscopy or NMR spectroscopy can be used to determine

the physical, chemical, structural and electronic properties of a molecule. NMR can

provide exact three-dimensional coordinates of the atoms in a biological molecule [41]

[65].

Different atoms resonate at different frequencies when placed in the same strength

magnetic field. The sample of biomolecules is irradiated with radio waves of different

frequencies. The atoms absorb the energy and re-emit radio waves at a specific frequency.

A receiving antenna detects these signature wavelengths.

NMR spectroscopy has been used extensively to determine the secondary structure

of RNA [34] [60]. But NMR spectroscopy has its drawbacks. In the first place, expensive

equipment is needed to perform NMR spectroscopy. Secondly it is possible that the

RNA sample is not in the natural conformation when doing the spectroscopy, owing

to environmental and temperature differences the sample has been exposed to, which

hampers determination of the natural conformation.
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2.8.2 Computational methods

Apart from the physical methods of determining the secondary structure of RNA, there

are computational methods which are relatively inexpensive to perform. Computational

methods usually employ a model of RNA folding in order to predict the structure of RNA

given only the nucleotide sequence of the RNA molecule. Two computational methods

are discussed next.

Free energy minimisation

Everyday prediction of RNA secondary structure has become viable with the consider-

able improvement in the speed and memory capacity of personal computers [90] [114]

[116] [117]. The accuracy of the RNA thermodynamic models (discussed in chapter 3),

used in the free energy minimisation prediction methods, have been improved with new

experiments giving more accurate parameters for use in the models [62].

Free energy minimisation for RNA strands is essentially a combinatorial optimisation

problem, where the objective is to find the combination of nucleotide contacts that yields

the lowest free energy, ∆G.

Comparative analysis of homologous RNA sequences

Comparative analysis is more accurate than a free energy minimisation based algorithm

for determining the secondary structure of RNA [108]. However, comparative analysis

only works when a number of homologous RNA sequences are available. Homology is a

definition of shared ancestry. Homologous sequences, which are sequences with similar

origin, but found in different genomes are said to be orthologous. Homologous sequences

which are found within the same genome (because of a gene duplication event), are said

to be paralogous.

One of the principles in molecular biology that comparative analysis relies on is that

the structure of RNA is more accurately conserved than the nucleotide sequence. Even

though base pair drift occurs, the structure is conserved. For example, if one base of a

pair changes, the complementary base will also change in order to keep the pair bound,

and hence conserve the structure. This is called a compensationary base change or base
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pair drift. Evidence of complementary base changes most likely indicates secondary

structure base pairs.

Given a set of aligned RNA sequences, an analysis of the structures are done us-

ing a characteristic known as mutual information content of two columns. Columns of

nucleotides appear when writing the aligned sequences underneath each other. A high

correlation between two columns might indicate conserved base pairs.

To find multiple aligned sequences, a number of approaches have been developed.

One of the best known is a program called CLUSTAL [43] and its descendant CLUSTAL

W [92]. For an in-depth discussion on multiple sequence alignment programs and their

performance, the reader is referred to [42].

A number of new approaches which combines comparative analysis (sequence align-

ment) and free energy minimisation have been comprehensively reviewed in [35].

2.9 Conclusion

This chapter provided an introduction to the ribonucleic acid molecule and its most im-

portant functions. Nucleotides, strands and the different structures of the RNA molecules

were discussed. Primary structure is the nucleotide sequence, secondary structure is the

base pairings that form, and tertiary structure is the 3-dimensional structure of the

molecule. The most common RNA secondary structure motifs were also shown. Differ-

ent methods of predicting the natural conformation were then highlighted. A number of

physical methods and a number of computational methods were discussed. The energy

minimisation method of predicting RNA conformations is of particular interest in the

remainder of this work. In the remainder of this work, the RNA thermodynamic models

that are used in RNA structure prediction, are described, and a new method of RNA

secondary structure free energy minimisation is described and analysed.

 
 
 



Chapter 3

RNA Thermodynamics

The prediction of RNA secondary structure by minimising the free energy (∆G) of RNA

molecules requires a reliable thermodynamic model of RNA binding. Several thermody-

namic models for RNA binding has been developed.

This chapter discusses the theory of RNA thermodynamics in section 3.1 before

introducing thermodynamic models of various sophistication in section 3.2 and section

3.3.

3.1 Theory of RNA thermodynamics

Thermodynamic free energy denotes the total amount of energy in a physical system that

can be converted to do work. Free energy can be expressed as a function of enthalpy, ∆H

(the amount of energy possessed by a thermodynamic system to transfer between itself

and the environment), entropy, ∆S (a measure of randomness or disorder of a system),

and temperature T, (the measure of the average kinetic energy in a system). The free

energy is calculated as follows using enthalpy, entropy and temperature:

∆G = ∆H − T∆S (3.1)

Josiah Gibbs has described this equation for calculating free energy of a system as long

ago as 1873 [38] [39] [40].

18

 
 
 



Chapter 3. RNA Thermodynamics 19

The free energy of each structure determines the relative amounts of each structure

present at equilibrium. The Boltzmann factor, e−
∆GS
RT , in this case, is used to compute a

partition function. The partition function,

Q =
∑
S∈S

e−
∆GS
RT (3.2)

gives a Boltzmann weighted counting of all structures with different free energies, ∆GS,

at a certain temperature [66], where S is a structure, R is the gas constant and T is

the absolute temperature of the system. According to statistical mechanical theory, this

weighting gives the probability density for every folding S. That is, the probability of

any particular folding, S, is given by

e
−∆GS

RT

Q
(3.3)

The concentration ratio
[C1]

[C2]
= e−

∆G
RT (3.4)

where C1 and C2 represent the concentrations of two different structures in equilibrium

in a system. The concentration of structures varies exponentially with free energy, ∆G,

as seen in equation (3.4). Small differences in free energy translate into relatively large

differences between concentrations of specific structures. Because the RNA folding en-

ergy surface is not smooth, it contains many local optimum conformations. Changing

the conformation by a few base pairs greatly impacts the free energy of the conformation

and hence the conformation’s relative concentration in the system.

The secondary structure motifs discussed in section 2.6.1 and presented in figure

2.4 contribute the most to the free energy calculation. A motif’s contribution can be

calculated using thermodynamic parameters determined for the type of motif. Each motif

is independent of the other in the way the thermodynamic parameters are described,

giving them additive property, meaning the contributions of each motif (i.e. helices,

loops and hairpins) are simply added together to obtain the total free energy of the

conformation [7].

Relatively good thermodynamic models are needed to produce accurate predictions

of RNA secondary structures. Although much research has been done on refining these
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thermodynamic models over the years, they are not perfect yet [116]. Some models

are too simple and do not capture all the elements that contribute to free energy. The

thermodynamic energy parameters are also derived from noisy data. Further, there are

no parameters to describe some of the secondary structure motifs that are present in

actual RNA molecules. This uncertainty in the thermodynamic models translates to

uncertainty in the free energy predictions of conformations. It is believed that the native

conformation of RNA molecules exist close to or at the minimum free energy state. It is

also possible that the RNA molecules exist as a distribution of low free energy structures

which may fluctuate between the different states [50] [51] [63].

3.2 Hydrogen bond models

The hydrogen bond model for RNA thermodynamics is primarily used by an RNA sec-

ondary prediction algorithm called RnaPredict [106]. Hydrogen bond models are ex-

tremely simple to implement and quick to evaluate due to the simple energy rules it

depends on.

The hydrogen bond model assigns a free energy change to the formation of a base

pair. This means that an energy value is assigned to each possible canonical base pair.

When this pair appears in a structure, the related energy value is added to the structure’s

total energy.

3.2.1 Major model

Wiese and Glen proposed using a simple scheme devised by Major, where the free energy

change introduced by the forming of base pairs, are summed [106]. The following values

are used in formation of base pairs:

∆G(GC) = ∆G(CG) = −3kcal/mol

∆G(AU) = ∆G(UA) = −2kcal/mol

∆G(GU) = ∆G(UG) = −1kcal/mol

To calculate the free energy of a given structure, the sum of energies of all pairs is
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computed:

∆G(S) =
∑

i,j∈S

e(ri, rj)

where e(ri, rj) is the free energy between the ith and the jth nucleotide of the struc-

ture that forms a base pair. This is a very simple thermodynamic energy model which

accounts for the bonding energies between the base pairs only. The GC pair has three

hydrogen bonds, the AU pair has two hydrogen bonds, and the wobble pair GU has a

weaker bonding than the AU pair. Thus the UG pair contribute only −1kcal/mol to the

total energy, although it has 2 hydrogen bonds.

3.2.2 The Mathews model

The Mathews model is based on the same principal of adding up the free energy contri-

bution of the individual base pair combinations [106]. Instead of using the approximate

proportional stability of the base pairs, the actual number of hydrogen bonds is used:

∆G(GC) = ∆G(CG) = −3kcal/mol

∆G(AU) = ∆G(UA) = −2kcal/mol

∆G(GU) = ∆G(UG) = −2kcal/mol

The GC pair has three hydrogen bonds, the AU pair has two hydrogen bonds, and

the GU pair has two hydrogen bonds, hence the UG pair contribute −2kcal/mol to the

total energy. Again, to calculate the structure’s free energy, the free energy contributions

from each base pair are summed [62].

3.2.3 Limitations of the hydrogen bond model

The hydrogen bond model assumes that the identity of the individual base pairs de-

termines the free energy contribution. This is a reasonable approximation because each

base pair bond reduces the amount of free energy of the structure. But this model fails to

include the intramolecular contributions, such as stacking energies and loop strain, that

exist in regular RNA molecules [106]. A more sophisticated energy model was therefore

developed which does take into account stacking energies and loop contributions. This

energy model is described in the next section.
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3.3 Stacking energy model

Stacking energy models used in more advanced algorithms, e.g. mfold [115] and Vienna

RNA package [45] contain two important components: reliable energy parameters and

a statistical mechanical model. The statistical model and energy parameters are deter-

mined in the laboratory [33] [58]. This process basically entails synthesising the RNA

sequence of interest. When a large enough quantity of the RNA is synthesised, it is

subject to radiation. Chemical substances absorb radiation at specific frequencies. The

amount of radiation absorbed for a specific frequency is related to the concentration of

the chemical substance. By changing the temperature and monitoring the absorbency

of radiation using a spectrophotometer, the curve of absorbence versus temperature can

be plotted. From this plot, the energy needed to break or melt the base pairs can be

determined. The free energy loss (∆G) for the formation of the synthesised base pair

can now be determined from this melting energy [78].

By determining melting energies for all possible combinations of base pairs, and

solving sets of equations, thermodynamic parameters for adjacent pairs can be calculated

[62].

For a number of years the Turner laboratory has been estimating the nearest neigh-

bour parameters for synthetically constructed RNA oligoribonucleotides [32] [50] [81] [90]

[91] [99] [109].

Two basic stacking energy thermodynamic models exist: individual nearest neighbour

(INN) (Serra and Turner, [81]) and individual nearest neighbour-hydrogen bond (INN-

HB) (Xia et al., [110]). The essential idea behind the INN and INN-HB stacking-energy

models is that the stabilizing contribution each base pair makes to its helix depends on

that base pair’s nearest neighbours. For example, the free energy contribution of a GC

base pair would vary depending on whether the adjacent base pair in the helix is either

an AU base pair, or its mirror a UA base pair.

3.3.1 Individual nearest neighbour model

There are two distinct components to computing the free energy of a helix using INN.

The first is initiation, or the formation of the first base pair. Initiation brings the two
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strands together and entails hydrogen bonding. The second component is propagation,

or the continued formation of subsequent base pairs. Propagation involves nearest-

neighbour or stacking interactions as well as hydrogen bonding. The nearest-neighbour

thermodynamic parameters used in the INN model were initially measured at 25 �, [7],

but were later remeasured and extended at 37 �. A thorough review of the INN model

complete with thermodynamic parameters can be found in [81].

3.3.2 Individual nearest neighbour-hydrogen bond model

Later experimentation determined that duplexes with identical nearest neighbours but

varying terminal ends also differed in their stabilities. Specifically, a duplex with one

additional terminal GC pair and one less terminal AU pair is always more stable [110].

This new thermodynamic detail is added to the INN model, resulting in the individual

nearest-neighbour hydrogen bond model. Although the INN-HB model only specifies

a penalty for terminal AU pairs, the terminal GU pairs are given the same penalty as

suggested by Mathews et al. [62].

3.4 Conclusion

Chapter 3 discussed different thermodynamic models for RNA conformation. The sim-

plistic hydrogen bond models were discussed first. These models do not capture all

the effects of the loops and the destabilising effects of other substructures. A more so-

phisticated thermodynamic model, the stacking-energy model was then discussed. The

stacking energy model is used in the remainder of this work to make predictions of RNA

conformations.

 
 
 



Chapter 4

Particle Swarm Optimisation

Nature has inspired many algorithms in computer science applications, for example ar-

tificial neural networks for pattern recognition or genetic algorithms and ant colony

simulations for solving optimisation problems. Nature has solved a lot of hard problems

already, and by closely observing Nature, one can deduce the principles of its efficient

processes and apply those principles to computational problems. Particle swarm opti-

misation is another algorithm inspired by Nature. In this chapter, the PSO algorithm

is introduced in section 4.1. Section 4.2 describes the basic PSO algorithm while the

following sections, sections 4.3 and 4.4 describe the swarm structures and parameters

used in the PSO algorithm.

4.1 Introduction

The particle swarm optimisation (PSO) algorithm is a stochastic optimisation algorithm

developed by Kennedy and Eberhart in 1995 [55], and has subsequently proved to be a

better optimisation algorithm than evolutionary computation (EC) algorithms including

genetic algorithms [22] [24] [25] on certain complex computational problems. PSO is an

elegant and simple algorithm modelled after the flocking behaviour of birds. It was ini-

tially intended to be a visualisation of the unpredictable choreography of a flock of birds

in flight. From these visualisation experiments, a very efficient optimisation algorithm

was developed.

24
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Individuals or “particles” in a swarm, fly around in a multidimensional search space.

The movements of these particles are influenced by their own successes and the success

of other particles in the swarm. Each particle shares information about its own best

solutions thus far so the swarm knows the most promising areas in the search space.

Particles in the swarm tend to return to previous successful regions in the search space.

A social structure exists within the swarm. This social structure determines the

communication channels that exist between individuals. This structure is in the form of

a neighbourhood. A number of neighbourhood topologies have been invented for use by

the PSO like the star, ring, wheel and Von Neumann network topologies. These social

structures are discussed in section 4.3. The basic particle swarm optimisation algorithm

is described next.

4.2 PSO algorithm

This section describes the basic PSO algorithm as invented by Kennedy and Eberhart

in 1995. The algorithm, swarm social structures and algorithm parameters are discussed

in the following subsections.

4.2.1 Position and velocity

The PSO algorithm works by moving the particles through the search space. A particle

represents a potential solution in the search space. Each particle has a position vector,

xi, and a velocity vector vi. This position is updated at every iteration by adding the

particle’s current velocity, vi, to the position vector. xi(t) denotes the position of the

particle at time-step t, where t is a discreet time step. The position update is done via

the update equation, as follows

xi(t+ 1) = xi(t) + vi(t+ 1) (4.1)

with xi(0) ∼ U(xmin,xmax).

The velocity vector is updated at every iteration with social and cognitive compo-

nents. The social component reflects the social knowledge about the best solution found
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so far in the particle’s neighbourhood. When the best particle in a specified particle’s

neighbourhood is used to provide social knowledge, the PSO algorithm is called local best

PSO or lbest PSO for short. A special case exist where the neighbourhood encompasses

the whole swarm and is called global best PSO or gbest PSO. The cognitive component

reflects the particle’s own experience and represents the best solution the particle itself

has found so far. Velocity is a linear combination of the previous velocity, the social

component, and the cognitive component and is updated as follows:

vij(t+ 1) = vij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷj(t)− xij(t)] (4.2)

where vij(t) is the velocity of particle i in dimension j = 1, ..., nx at time step t, xij(t)

is the position of particle i in dimension j at time step t, c1 and c2 are positive accel-

eration constants used to scale the contribution of the cognitive and social components

respectively (discussed in section 4.4.2), and r1j(t), r2j(t) ∼ U(0, 1) are random values

in the range [0,1], sampled from a uniform distribution. These random values introduce

a stochastic element to the algorithm.

The personal best position, yi, associated with particle i is the best position the

particle has found so far, which is updated as follows:

yi(t+ 1) =

 yi(t) if f(xi(t+ 1)) ≥ f(yi(t))

xi(t+ 1) if f(xi(t+ 1)) < f(yi(t))
(4.3)

where f is the fitness function to be minimised.

The global best position, ŷj(t), at time step t can be calculated as follows:

ŷj(t) ∈ {y0(t), ...,yns(t)} |f(ŷ(t)) = min {f(y0(t)), ..., f(yns(t))} (4.4)

where ns is the total number of particles in the swarm.

A variation on calculating the global best is to select the particle with the best fitness

in the current iteration as the best solution. Equation (4.4) then becomes

ŷj(t) ∈ {x0(t), ...,xns(t)} |f(ŷ(t)) = min {f(x0(t)), ..., f(xns(t))} (4.5)

 
 
 



Chapter 4. Particle Swarm Optimisation 27

where xi(t) is the current position of particle i.

4.2.2 Algorithm

A concise pseudo code PSO algorithm is presented in algorithm 4.1.

First, a swarm S, of size ns, particles is initialised to random positions in the search

space. The algorithm then begins to iterate and performs the following steps:

� The personal best position of each particle is determined, after which the global

best particle of the swarm is determined.

� The velocity of each particle and its resulting new position is calculated.

The algorithm keeps on performing these iterations until a stopping condition, such as

swarm convergence or maximum number of iterations, is met.

4.3 Swarm structure

The driving force behind PSO is the social interaction between particles and their own

memory of good solutions. Particles will try to emulate their “better” neighbours and

move towards these neighbours in the neighbourhood and also to their own best experi-

ences. These particle neighbourhoods are defined in terms of particle labels and not in

terms of topological information like Euclidean distance measures [53].

The star topology [53], also known as gbest topology, arises when all the particles are

in the same neighbourhood, that is, a fully interactive social network exists where each

particle can communicate with all other particles. The entire swarm is then attracted to

the single best particle in the swarm.

In the ring topology [53], each particle only communicates with its n immediate

neighbours. Each particle attempts to move closer to the best particle in its neighbour-

hood. The lbest version of PSO uses this topology. The gbest PSO is a special case of

the lbest PSO where the entire swarm is the neighbourhood.

In the wheels topology [53], all the particles communicate with only one specific

particle. The individuals are effectively isolated from each other. The middle particle
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Create and initialise a swarm, S, of size ns

repeat

for each particle i = 1, ..., S.ns do

// set personal best position

if f(S.xi) < f(S.yi) then

S.yi = S.xi

end

// set global best position

if f(S.yi) < f(S.ŷ) then

S.ŷ = S.yi

end

end

for each particle i = 1, ..., S.ns do

update the velocity using equation (4.2)

update the position using equation (4.1)

end

until stopping condition is true

Algorithm 4.1: Pseudocode outline of the gbest PSO algorithm

moves in the direction of the best particle. If this middle particle’s position improves,

all other particles will then be attracted to its position.

The Von Neumann topology arranges the particle’s social structure in a grid structure.

This topology has been shown to outperform other social network structures on a large

number of problems in a number of empirical studies [24] [56] [74]. The Von Neumann

topology strikes a good balance between a fully connected swarm which converges quickly

and a loosely connected swarm which covers a larger search space.
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4.4 PSO control parameters

The PSO algorithm is very sensitive to its control parameters. In this section, the PSO

inertia weight, acceleration constants cognitive and social components and a maximum

velocity constraint are discussed.

4.4.1 Inertia weight

Performance of the PSO algorithm can be improved by introducing an inertia weight ω,

[88], that is used to control the influence of the previous velocity on the current velocity:

v(t) = ωvij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷj(t)− xij(t)] (4.6)

Larger inertia weights cause more exploration of the search space while small inertia

weights focus the search on a smaller region. The inertia weight in equation (4.6) is

important for convergent behaviour [87]. When ω ≥ 1, velocities will increase over time,

and the swarm will diverge. For ω < 1, particles decelerate, depending on the values of

c1 and c2, until their velocities reach zero. Larger values of ω enhance the explorative

behaviour of the swarm while smaller values of ω promotes local exploitation. The choices

of parameter values for ω and c1 and c2 are important to ensure convergent particle

trajectories. Various studies have been done on parameter values and suggestions have

been made about the parameter value combinations to be used for ω, c1 and c2, discussed

in great detail in [24].

4.4.2 Cognitive and social components

The cognitive component, c1r1(yi−xi), represents the particle’s performance relative

to its own experience. The effect of this component is that the particle tends to return to

the position where it experienced the best fitness value. Kennedy and Eberhart referred

to this component as the “nostalgia” of the particle [55].

The social component, c2r2(ŷ−xi) in the case of gbest PSO or c2r2(ŷi−xi) in the

case of lbest PSO, represents the performance of the particle relative to the best solution

found so far in the neighbourhood. The social component will tend to direct the particle
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to the neighbourhood best solution.

4.4.3 Acceleration constants

As mentioned previously, the acceleration constants determine the amount of influence

from the social or cognitive components in the velocity update. A comparatively larger c1

will bias the movement towards the particle’s own best position whereas a comparatively

larger c2 will bias the movement towards the best particle in the neighbourhood. This

means that when c1 is large, particles tend to explore more and conversely, when c2 is

comparatively large, the swarm is attracted to a single point ŷ. If c1 = c2, particles are

attracted towards the average of yi and ŷ. Some heuristics for choosing values for c1 and

c2 have been derived theoretically by Trelea [94] and Van den Bergh and Engelbrecht

[98].

Trelea suggested choosing values under the constraint [94]

ω >
1

2
(c1 + c2)− 1 (4.7)

while Van den Berg and Engelbrecht proved that for an unconstrained simplified PSO

with inertia, the particle trajectory converges if the following conditions hold [98]

1 > ω >
1

2
(c1 + c2)− 1 ≥ 0 (4.8)

4.4.4 Maximum velocity

A maximum velocity could be imposed on the particles to limit step sizes and thus limit

the particles from accelerating out of control and causing divergent particle trajectories.

Using maximum velocity restrictions is however problem dependent and is not always

needed.

One solution to impose a maximum velocity is by velocity clamping [23] [89] where a

particle’s velocity is set to the maximum velocity whenever the particle’s velocity exceeds

that maximum velocity:

vij(t+ 1) =

 v′ij(t+ 1) if v′ij(t+ 1) < Vmax,j

Vmax,j if v′ij(t+ 1) ≥ Vmax,j

(4.9)

 
 
 



Chapter 4. Particle Swarm Optimisation 31

where v′ij is calculated using equation (4.2) or (4.6).

Velocity clamping is a very simplistic way of trying to minimise swarm divergence,

provided the correct value of Vmax is used. Unfortunately, velocity clamping when done in

this manner has a few unwanted side-effects. Firstly, velocity clamping not only changes

the step size, but can also change the direction the particle moves in. Consider when

one of the components of v′i say v′ij is above the Vmax,j threshold, only that particular

component, v′ij, is changed, which results in a change of the direction of vector v′i.

Secondly, a problem with velocity clamping occurs when all velocities are equal to the

maximum velocity. Particles will remain on the boundary of a hypercube defined by

[xi(t) − Vmax,xi(t) + Vmax]. This problem can be resolved by introducing a inertia

weight (refer to section 4.4.1). Alternative velocity clamping solutions can be found in

[24].

4.5 Conclusion

This chapter introduced the particle swarm optimisation algorithm developed by Kennedy

and Eberhart in 1995. The emergent swarm behaviour of the particles in the swarm has

proved to be a simple but very reliable optimisation technique. After a general discussion

of the PSO algorithm, a pseudo code algorithm was given. Subsequently, the different

parameters of the algorithm were discussed in detail. The different topologies for swarm

communication were also highlighted. In the following chapter, the PSO algorithm is

adapted to a discrete-valued problem domain, the domain of mathematical sets.
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Set Particle Swarm Optimisation

This chapter proposes a new version of the PSO algorithm [55] described in the previous

chapter, namely SetPSO which operates on mathematical sets in order to solve set-based

combinatorial problems. The particle representation in SetPSO is introduced before the

new operators of the SetPSO algorithm is introduced. Finally, the complexity of the new

SetPSO algorithm is analysed.

5.1 Introduction

The original PSO algorithm was designed to work in continuous-valued search space.

Not all optimisation problems are set in the continuous-valued domain though. SetPSO

therefore was designed to work with discrete-valued search spaces, in an attempt to

extend the powerful optimisation capabilities of PSO to the discrete-valued domain.

More specifically, SetPSO [68] is the first PSO adapted to work on mathematical sets

which can contain a variable number of elements. In order to adapt PSO, new operators

are defined to work on sets instead of the usual continuous vector space.

SetPSO is not the first variant of PSO which changes the particle representation and

the meaning of the position and velocity vectors of the original PSO in order to adapt

PSO to new domains. Binary PSO, created by Eberhart and Kennedy [54] changes the

representation of the position vector in Binary PSO into a bit-string, while the velocity

is used to calculate a probability of a bit being flipped in the binary position string.

32
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Clerc [15] and Schoofs and Naudts [79] also modified particle swarm optimisers to solve

discrete-valued problems by defining new abstract arithmetic operators.

The solution space for the SetPSO and the representation of a particle’s position are

discussed in section 5.2.1. The redefinition of the addition and subtraction operators is

discussed in sections 5.2.2 and 5.2.3 respectively. The distance operator, which is used in

a swarm diversity measurement later in this work, is defined in section 5.2.4. A pseudo

code algorithm of the proposed algorithm is discussed in 5.3. Particle initialisation is

discussed in section 5.3.1 and the new velocity update and position update operations

are shown in sections 5.3.2 and 5.3.3. Finally, the new parameters for SetPSO are defined

and discussed in section 5.4.

5.2 Defining SetPSO

This section presents the necessary particle representation, operator definitions and ve-

locity and position update operators used in SetPSO.

5.2.1 Solution space and particle position

The solutions (particle positions), Si, generated with the SetPSO algorithm are mathe-

matical sets. Therefore, elements within a solution are unique. The solution to a problem

is a subset S ⊆ U , which is a combination of elements from the universal set U . The

universal set can be either finite or infinite, although the solution sets Si are always finite.

It is possible that the problem to be solved imposes some constraints on the solution

sets. For example, some elements in the universal set are not compatible with each other

and cannot exist together in a solution set. It is important that the implementation of

the operators modify the solution sets in such a manner that the solution sets are always

valid under the constraints set by the problem. This is certainly the case in this SetPSO

implementation to solve RNA secondary structures, as shown in chapter 8.
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In order to change the vector space from the basic PSO into the set space the SetPSO

algorithm operates in, only three operators need to be redefined, namely the

� addition operator, the

� subtraction operator, and the

� distance operator.

The addition operator and subtraction operator have their naive set theory defini-

tions. Subsequently, it is shown how each of these operators is applied in the new SetPSO

algorithm. The multiplication operator retains its normal mathematical function and is

only used to multiply scalar values in SetPSO.

5.2.2 Addition operator

The addition operator “adds” two sets together. The operator is also known as the union

operator in set theory. Given two sets, A and B, their union is written as

A ∪B

or

A+B

5.2.3 Subtraction operator

The subtraction operator, also known as the relative complement or set theoretic differ-

ence between two sets A and B, is written as

A-B

or

A\B

and denotes the set of all elements which are members of A but not members of B.
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5.2.4 Distance operator

The metric that computes the distance between two sets is based on the well-known string

edit distance metric. The Levenshtein distance [61] is a string edit metric, given by the

minimum number of operations needed to transform one string into another, where an

operation is an insertion, deletion or substitution of a character. However, it is no trivial

task to compute the minimum number of operations needed to transform one string into

another using the Levenshtein metric. Usually a dynamic programming algorithm is

used to compute the edit distance. For the purpose of measuring the distance between

two sets, the substitution operation is not considered.

The distance metric for sets is given by the number of operations needed to transform

one set into the other using insertion (adding an element to a set) and deletion (removing

an element from a set) operations only. Given a subject set A, and a target set B, the

number of operations needed to do the transformation from A to B can be calculated

using the previously defined set subtraction operator in conjunction with the set size

operator. First, the size of the set of elements present in A and not present in B is

calculated. This represents the number of deletion operations necessary. Then the size

of the set of elements present in B but not in A is calculated. This represents the

number of insertion operations required. The sum of these two calculations gives the

edit distance. In set notation the distance between A and B is:

|A−B|+ |B−A|

Remember that, “+” has its normal arithmetic meaning here as the result of a size

operation is a scalar value.

5.3 SetPSO Algorithm

The algorithm differs from the basic PSO in the velocity update and position update

steps. Algorithm 5.1 outlines the new algorithm. In this algorithm, the notation S.Xi

is used to denote the position X of particle i in the swarm S. S.Yi is the personal best

position of particle i while S.Ŷi represent the neighbourhood best position.
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Create and initialise a swarm, S, of size ns (see section 5.3.1)

repeat

for each particle i = 1, ..., S.ns do

// set personal best position

if f(S.Xi) < f(S.Yi) then

S.Yi = S.Xi

end

// set neighbourhood best position

if f(S.Yi) < f(S.Ŷ ) then

S.Ŷ = S.Yi

end

end

for each particle i = 1, ..., S.ns do

update the velocity (see section 5.3.2)

update the position (see section 5.3.3)

end

until stopping condition

Algorithm 5.1: Pseudo code outline of the SetPSO algorithm.

5.3.1 Particle initialisation

Each particle is initialised to a random subset of the (finite or infinite) universal set U ;

that is,

S.Xi ⊆ U, |S.Xi| ≤ |U |

and all elements of S.Xi are unique.

If there are constraints specified on the solution sets, the particles should be initialised

in a manner that does not violate any constraints. In this case, particles are initialised

with stems that do not contain conflicting base pairs.
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5.3.2 Velocity update

The velocity of a particle is actually represented by two sets of elements: The first set

contains the elements that should be removed from the current position set. This first

set is called the open set or O. Removing the open set from the current position produces

an intermediate set, because the resulting set is not yet a particle position. The second

set contains the elements that should be added to the intermediate set. This second set

is called the close set or C.

Calculating the open set

The open set is a random subset of the current position. The elements in O will be re-

moved from the current position in the position update step. The open set is computed

as follows:

for each element e in X

r ∼ U(0, 1)

if r < PI

add e to O

end for

where PI is an entropy weight. The entropy weight is discussed in section 5.4. The

entropy determines how many of the elements in the current position are removed.

Calculating the close set

The close set is a random combination of elements from the target set B and the universal

set U .

Step 1

Add the pbest and lbest positions sets together to construct the target set, i.e.

B = S.Y ∪ S.Ŷ (5.1)

 
 
 



Chapter 5. Set Particle Swarm Optimisation 38

The target set, B is used to direct the particle towards its own personal best position

and the neighbourhood best position similar to the velocity update of the original PSO.

Step 2

for each element e in B

r ∼ U(0, 1)

if r < PC and e not in X

add e to C

end for

where PC is a closing probability weight used to control the influence of the target set.

PC is discussed in section 5.4.

Step 3

for each element e in U

r ∼ U(0, 1)

if r < PR

add e to C

end for

where PR is a random add probability weight and determines the rate at which new

elements are introduced into the particle’s position set. PR is discussed in section 5.4.

The elements included in the close set are added to the current position of the particle

in the position update step, as explained in section 5.3.3. This tends to move the current

particle towards the target position. In order to introduce diversity, random elements

from the universal set are added to the close set in step 3 of the velocity update. If this

is not done, the particles would explore only combinations of the elements with which

the swarm was initialised.

In some combinatorial optimisation problems, like this implementation of RNA sec-

ondary structure prediction, all the elements in U might not be compatible with each

other and cannot exist in the same solution set. Refer to chapter 7 for a discussion of
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the constraints on elements of this RNA structure prediction method. The constraints

on the compatibility of the elements need not be considered in the velocity update. In-

compatible stems are allowed to be in the close set as the constraints are enforced in the

position update step, described in the next section. This saves computation time during

the velocity update step.

5.3.3 Position update

The objective of the position update is to create a new candidate solution. In this process

the current position set, S.Xi, for particle i is modified using the particle’s velocity to

produce a new position S.X ′′i . The position update occurs in two steps.

The first step removes all the elements in the open set O from the current position

S.Xi to give an intermediate set S.X ′i:

Step 1

S.X ′i = S.Xi −O (5.2)

Remember that the open set O contains elements that are in the current position

S.Xi. Elements are removed from the current position to make space for new elements

introduced to the particle position in step 2.

The second step adds all the elements in the close set C that will not cause the new

solution set to violate any constraints, if any, to S.X ′i. S.X
′′
i represents the new particle

position.

Step 2

S.X ′′i = S.X ′i ∪ C (5.3)

Step 2 introduces the new elements that might be contained in C to the particle’s

position.

The basic position update procedure would just add all of the elements of C to the

particle position in step 2, except of course where it would introduce a duplicate element

into the position set (sets contain unique elements by definition). Where constraints on

the solution sets are specified, for example when some elements are incompatible in a
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solution set, a specialised addition operator is implemented. The specialised addition

operator verifies that the resulting set is valid under the constraints specified by the

problem.

Further modification to the specialised addition operator can be made. The addition

of elements to a set under constraints can be seen as an optimisation process in itself.

A simple and naive optimisation technique is to give the addition operator hill climbing

characteristics. A hill climbing addition operator then adds the element in C to the

S.X ′i set in a greedy fashion, i.e. the element which increases the fitness of S.X ′i the

most is added first. Then the next best element is added, and so forth. The hill climbing

addition operator forces the particle to the best position it can be in under the constraints

and leads to quicker convergence. Unfortunately, this approach has the drawback that

it requires a large number of comparisons and thus is considerably slower than a non-

optimising addition operator. Of course, other optimisation techniques may be used

in the implementation of the optimised addition operator. Refer to section 7.4 for a

discussion on the optimised addition operator used in this dissertation.

5.4 SetPSO parameters

The performance of the SetPSO is influenced by three parameters, namely the closing

probability, PC , the random add probability, PR, and the entropy weight, PI . These

parameters are described in detail in this section.

5.4.1 Closing probability

The closing probability parameter, PC , is analogous to the social and cognitive compo-

nent parameters in the original PSO. PC controls the way both the neighbouring particles

and the particle’s own memory influence the position of the particle. PC determines the

probability that an element contained in the particle’s personal best position or in the

neighbourhood best position will be added to the close set of the particle’s velocity (see

step 2 of calculating the close set in the previous section). Theoretically, the greater the

value of PC , the more influence the particle’s own best position and the neighbourhood

best position will have in the particle position update. This should speed up conver-
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gence of the swarm. Conversely, the lower the value of PC , the less the influence of the

previously found “good” solutions will be in the particle position update step of SetPSO.

5.4.2 Random add probability

The random add probability, PR, controls the probability that new random stems will

be added to the close set of the particle’s velocity. Thus, PR determines the amount of

diversity introduced to the solutions. The higher the value of PR, the better the chance

that a randomly selected stem from the universal set, U , will be added to the close set

C. The consequence of having a small value for PR is less diversity in the swarm, which

leads to less exploration of the search space. In the border case where PR = 0, no new

elements from U can be added to a particle’s position apart from the elements contained

in the neighbourhood best position. In the case of PR = 0, all the particles’ positions

will be a subset of the elements with which the swarm is initialised.

5.4.3 Entropy weight

The entropy weight parameter, PI , is analogous to the inertia weight in the original

PSO. The reason that PI is analogous to the inertia weight is because it determines

what influence the particle’s current position has on the future position of the particle.

This parameter controls the probability of stems being added to the open set of the

velocity. Hence PI controls the size of the open set and the “disruption” that the removal

of elements from the current solution set will cause in the position update (see step 1

of the position update operation). The greater the entropy probability, the greater

the disruption to the solutions. Disruption simply means the particle loses many of

its elements which can be replaced by new elements, improving swarm diversity. The

consequence of a low entropy is that the swarm change less and less randomness is

introduced into the swarm.
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5.5 Diversity measurement

Diversity measurements provide an indication of how diverse the population of solutions

are, or stated differently, how dissimilar the solutions are. By measuring the diversity of

the swarm when using varying values for the PI , PC and PR parameters, the combination

of PI , PC and PR result in the most diverse swarms, or which one of the three parameters

has the most significant impact on the diversity of the swarm, can be determined.

A simple swarm diameter measurement determines the diameter of a swarm of par-

ticles in the classic PSO, by calculating the Euclidean distance between the particles.

Using swarm diameter as a diversity measurement in SetPSO implies measuring distance

between particles that consists of sets. Therefore, a distance operator for sets has been

proposed in section 5.2.4. The diversity of the swarm is determined by calculating the

average distance, D, of the particles in the swarm to the gbest particle [76]. Obviously,

the larger the average distance from the gbest particle (or swarm diameter), the more di-

verse the swarm is, as the particles cover more of the search space. Diversity is calculated

by the following equation,

D(S(t)) =

∑ns
i=1

(∣∣∣S.Xi(t)− S.Ŷ (t)
∣∣∣+ ∣∣∣S.Ŷ (t)− S.Xi(t)

∣∣∣)
ns

(5.4)

where ns is the size of the swarm, S.Xi is the current position of particle i and S.Ŷ is

the position of the gbest particle.

The swarm diameter measurement can be taken after each iteration of the SetPSO

algorithm and is simply used to track the diversity of the swarm during an experiment.

5.6 Computational complexity

Computational complexity provides an indication of the extent of the resources needed to

perform a computation. These resources are time and memory. Usually there is a trade

off in computations between time and complexity. The more complex a computation is,

the more time it will take to execute. Time complexity is estimated as the number of

steps for a computation to complete while space complexity is estimated as the number

of bits the computation needs to store data while the computation executes. Complexity
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is usually expressed as a function of some input parameter.

The time complexity for mfold, for example, isO(n3) where n is the length of the input

RNA sequence [117]. This notation is called Big O notation and is used in mathematics

to describe the asymptotic behaviour of a function. For mfold this means the number of

steps needed to fold a sequence grows in the order of n3.

5.6.1 PSO computational complexity

For a stochastic algorithm like PSO, the complexity is harder to determine. Attempts

have been made to analyse the complexity of a GA and it is concluded that the complexity

cannot yet be formally defined for a GA [77].

Analysing the time complexity of classical PSO might be a more tractable problem

than analysing a GA. Moving each particle through multidimensional space is a process

that consists of a number of deterministic steps. These steps are calculation of the parti-

cle’s new velocity and updating the particle’s position, which are constant time or O(nx)

calculations. Calculating the swarm’s new position as well as updating the velocity are

O(nsnx) operations where ns represents the number of particles and nx represents the di-

mension of the particles. In each iteration of the algorithm, each particle’s fitness should

be calculated. The number of steps required to do this depends on the problem and,

specifically, the objective function used. In the best case, the operation is a constant

time operation for each particle O(1), which translates to O(ns) for the swarm. The

remaining factor which has a big influence on the complexity is the number of iterations

the algorithm is executed. This number could be fixed or this number could be deter-

mined by stopping conditions like a convergence condition. If T is the total number of

iterations completed by the computation, then the time complexity for classical PSO is

in the order of O(Tnsnx).

5.6.2 SetPSO computational complexity

SetPSO has a few complications when it comes to complexity analysis. Like the GA, the

individuals in the swarm of a SetPSO can have different lengths, and this determines

the number of steps necessary to update each individual. The method of updating
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the individual also has an impact. An optimising addition operator such as described

in section 5.3.3, for example, will have greater complexity than a standard addition

operator. The objective function used to calculate the fitness of an individual, in this

case the mean free energy of RNA molecules, is dependant on the number of stems, l,

contained in the individual, and is thus in the order of O(l) complexity.

A discussion of complexity of all the subalgorithms of the SetPSO for this work is pro-

vided in this section. The SetPSO can be broken down into the following subalgorithms:

stem enumeration, particle initialisation, particle evaluation, hill climbing and swarm

updates. The complexity of each subalgorithm is listed below. The following symbols

are used: n represents the length of the RNA sequence, ns is the number of particles in

the swarm, s is the number of stems in a particle, and c represents the number of stems

in the close set. The complexity of each subalgorithm is:

� Stem enumeration is ofO(n2), because each nucleotide in the sequence is matched

to every other nucleotide.

� Particle initialisation is of O(lns), because the number of particles to be ini-

tialised is ns, each containing l stems.

� Particle evaluation is of O(lns), because it is assumed that evaluation of a single

particle is in the order of O(l).

� Swarm update is of O(lcns), because swarm update entails removing some of the

current stems from each particle and adding new stems to each particle.

As with classic PSO, if the total number of iterations is T , the time complexity for

SetPSO, excluding the stem enumeration operation at the start, is of the order O(T lcns).

To give an indication of the size of the search space, the size increases in an exponen-

tial relation to sequence length. It is estimated that the number of possible structures

for an input sequence of length n is more than 1.8n [20]. Because the search space grows

exponentially with sequence length, the conformation of longer sequences is significantly

harder to predict and requires significantly more computation time.

 
 
 



Chapter 5. Set Particle Swarm Optimisation 45

5.7 Conclusion

This chapter introduced a new set-based PSO algorithm, useful for combinatorial and

set-based optimisation problems. The redefinition of the particles and the redefinition

of the solution space were given in section 5.2.1. The new addition and subtraction

operators, which need to work in the new set space, were discussed in sections 5.2.2,

5.2.3 and 5.2.4 after the solution space definition had been given in section 5.2.1.

Following a pseudo code algorithm for the new SetPSO in section 5.3, the important

velocity update and position update methods were shown in sections 5.3.2 and 5.3.3

respectively. The three new parameters introduced by the new SetPSO algorithm were

discussed individually in section 5.4.

Lastly, the computational complexity of the SetPSO algorithm was discussed. Deter-

mining the exact computational needs of a stochastic algorithm is not easy. A study of

the algorithm’s subprocesses and their complexities provides an indication of the overall

complexity of the algorithm. The estimated computational complexity for SetPSO is of

the order O(T lcns) and that of mfold is O(n3). This indicates that for large values of n,

mfold might be at a disadvantage in terms of computational complexity. SetPSO should

have an advantage over mfold in terms of computational complexity when (T, l, c) < n.

 
 
 



Chapter 6

Related work

An overview of previous work done in RNA secondary structure prediction is given in this

chapter. The emphasis is placed on work which uses the mean free energy (MFE) minimi-

sation technique to predict RNA secondary structures. Mean free energy minimisation

methods are more comparable to this work than other methods such as comparative

analysis.

6.1 Introduction

Most of the proposed algorithms for prediction of RNA secondary structure use a genetic

algorithm (GA) as the optimisation algorithm. Among the work that proposes to use

GAs to solve the problem are Shapiro and Navetta [82], Van Batenburg et al. [96],

Benedetti and Morosetti [3], Shapiro et al. [83], Chen et al. [12], Zhang et al. [112] and

Del Carpio et al. [18].

Three algorithms are discussed in this chapter. All three uses free energy (∆G) as the

objective to minimise, but each uses a different optimisation mechanism. In section 6.2,

the mfold algorithm is discussed which uses dynamic programming (DP) to generate

optimal solutions. P-RnaPredict is a modern algorithm which uses an evolutionary

algorithm (EA) as its optimisation technique. P-RnaPredict is discussed in section 6.3.

The final algorithm discussed also uses a modified PSO algorithm as its optimisation

algorithm. HelixPSO is discussed in section 6.4.

46
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6.2 mfold

The first implementation of a deterministic algorithm for predicting RNA secondary

structure using an RNA thermodynamic model to evaluate the structure’s energy, was

done by Pipas et al. in 1975 [75]. The mfold program by Zuker et al. [62] [113] [114] [115]

[116] [117] represents the latest developments in RNA secondary structure prediction

using energy minimisation. mfold is a dynamic programming algorithm (DPA) with a

complex thermodynamic model for free energy evaluation of conformations. Because

the natural fold does not always correspond to the fold with the lowest energy [50] [51]

[63], it is necessary to predict a number of suboptimal foldings, some of which will be

more accurate than the lowest energy structure, although it is not possible to tell which

structure is the most accurate without a known reference structure.

The mfold DPA uses INN-HB parameters [110], and adds modelling for some com-

mon RNA substructures like single base stacking energies, hairpin loops, interior loops

and other energies. mfold has a helper program called efn2 which re-evaluates the

structures with a more complete thermodynamic model. This helper program includes

improvements to the multi-branch loop thermodynamic model. mfold was also ported

to the Microsoft Windows platform with a point and click interface. This port is called

RNAStructure [64].

6.3 P-RnaPredict

P-RnaPredict is a parallelised version of RnaPredict and is still actively being developed

[105]. RnaPredict has evolved to a level where prediction quality is comparable to that

of mfold [106]. P-RnaPredict is a genetic algorithm (GA), more broadly classed as

an evolutionary algorithm (EA). Evolutionary computation refers to methods by which

evolution is simulated on a computer. The algorithms reliant on these methods are

known as evolutionary algorithms (EAs), and include evolutionary programming (Fogel

et al., [29]), genetic algorithms (Fraser, [31] and Holland, [46]), and genetic programming

(Koza, [59]).

Generally, an EA uses a genetic representation of a solution to a problem which it

optimises through a number of evolutionary steps. After an initial population of can-
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didate solutions (individuals) are created, an evaluation function (objective function)

determines the fitness of each individual. More fit individuals are allowed to repro-

duce offspring, through genetic operators, which are allowed into the next generation of

individuals. Thus, natural selection occurs in the genetic population.

Selection operators include the elitism operator, which retains the best individuals in

the population for the next generation, various crossover operators which is responsible

for creating offspring from selected individuals, and a mutation operator which introduces

random genetic material into a solution to enhance population diversity.

An evolutionary process takes place for a number of generations until the algorithm

converges on an optimum solution or some other stopping criteria are met. The most fit

individual at that point is taken to be the solution.

P-RnaPredict constructs a set, H, of RNA helices (stems) from which an individual

is created (refer to section 7.3 for an explanation of how such a set can be constructed).

Each helix in H has an index and the individual in P-RnaPredict is simply an ordered

list of the indexes of the helices in H which makes up a RNA secondary structure.

P-RnaPredict uses either the individual nearest-neighbour (INN) or individual nearest-

neighbour hydrogen bond (INN-HB) thermodynamic model as its objective function. See

section 3.3 for a discussion on INN and INN-HB.

6.4 HelixPSO

Recently, another PSO approach to predicting RNA secondary structure has come to

light. Geis and Middendorf proposed the HelixPSO [36]. HelixPSO uses a modified PSO

and the ViennaRNA package to determine structures with minimum free energy.

Similar to P-RnaPredict, HelixPSO encode a structure as a permutation of indexes

from the set of all helices, H. Similar to SetPSO, a particle moves with respect to a

target position. Each particle i has an associated set of candidate target positions Ti

and for each t ∈ Ti, a weight w(t) > 0. The relative weight of a position in Ti determines

the probability that Ti is chosen as a target. Ti is initialized with a random position,

i.e., a permutation that is generated randomly, and Ti is assigned a weight of 1.0. After

each iteration of HelixPSO, each weight is decreased by multiplication with a parameter
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ρ, 0 < ρ < 1. A position that has a weight less than a threshold, τ , is removed from Ti.

Then the personal best position and either the global best or the neighbourhood best

position are added to Ti with probability c1 · r1 and c2 · r2, respectively, where r1 and r2

are random numbers sampled uniformly within the range [0, 1].

When a particle i has chosen its target position from the set Ti, the particle moves

towards the target. This is done by performing a number of transpositions in the particle

vector in such a way that the particle becomes more like the target.

The objective function used by HelixPSO is, however, not just a free energy calcula-

tion of a structure. The fitness function is a combination of each structure’s free energy

and the structure’s similarity to a centroid structure. First the free energy component

is computed. The energy component is a ratio between the structure’s energy and the

mfE, which is the structure with the lowest energy as computed by the Vienna RNAfold

DPA. The second part is the agreement between the structure and the centroid struc-

ture which is computed by the Vienna package’s centroid function. The complete fitness

function is thus

Fitness(S) = λ ∗ |S ∩ C|
|C|

+ (1− λ) ∗Min

{
0,
E(S)

mfE

}
, 0 <= λ <= 1 (6.1)

where S is the potential solution, C is the centroid structure determined, and λ is a

scaling weight which determines the influence of each component. By varying λ in

equation (6.1), the influence of the components are determined. The resulting fitness is

also in the range [0,1].

The centroid C is the structure with the smallest base pair distance to the structures

in the thermodynamic ensemble of a sequence, of which the mfE is the member with

the highest probability. The mfE is the lowest possible energy structure possible for

the sequence and was determined exhaustively through the DPA. The actual solution

determined by HelixPSO is however not the structure with the lowest energy; the low-

est energy structure has already been found in the algorithm initialisation by the DPA!

HelixPSO keeps a count of all the different structures that appears throughout the ex-

periment and picks the structure that appears most frequent as the final solution. The

reasoning behind this is that the structure that is formed most frequently is located in

an easily accessible position in the energy landscape, and thus is a good candidate to be

the native conformation.
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6.5 Conclusion

This chapter described previous work done in the realm of RNA secondary structure

prediction. The genetic algorithm approaches were mentioned first. mfold, the long time

benchmark in RNA structure prediction was introduced in section 6.2. The current state

of the art free-energy minimisation algorithms, namely P-RnaPredict and HelixPSO,

where described in sections 6.3 and 6.4.
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RNA modelling

This chapter describes how the SetPSO algorithm can be used to predict the confor-

mations of RNA molecules. A number of aspects of this SetPSO implementation are

described next. The objective function used to determine the fitness of a particle is

defined in section 7.1. Section 7.2 describes how a SetPSO particle can represent an

RNA secondary structure. Section 7.3 provides the steps, called stem enumeration, used

to generate the elements of the sets in SetPSO. The modified addition operator used in

this implementation is discussed in section 7.4.

7.1 Objective function

The Gibbs free energy, or ∆G, of the RNA secondary structure is used as the objective

function for the SetPSO experiments. Free energy is a thermodynamic potential which

measures the process-initiating work obtainable from an isothermal, isobaric thermody-

namic system, first described by Josiah Gibbs in 1870.

A strong correlation between the free energy of a conformation and the accuracy of

the conformation exists [5] [6] [7] [62] [93]. As the free energy reduces, the stability of

the structure increases.

The Vienna RNA package’s energy calculation routines are used to compute ∆G [45].

The Vienna RNA package uses stacking energy rules and parameters from Mathews et al.

[62], the same energy rules used by Zuker’s mfold algorithm [115]. The stacking energy
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model is discussed in section 3.3. The Vienna energy calculation routines are unable to

deal with pseudo-knot motifs. Pseudo-knots are not considered in the experiments for

SetPSO structure prediction. If in the future, the Vienna RNA package adds support for

calculating pseudo-knot energy contributions, it will be possible to extend the SetPSO

implementation to enable prediction of pseudo-knots.

7.2 Particle representation

A conformation can be seen as consisting of a collection of stems. A stem in turn consists

of a set of stacked nucleotide pairs. This set of stacked pairs is formed by two or more

base pairs (i, j), ..., (i+n, j−n), 1 ≤ n ≤ m, such that the ends of the pairs are adjacent,

forming a ladder-type structure. Figure 7.1 shows an example of the stems that make

up the known conformation of Saccharomyces cerevisiae’s 5S rRNA. Each individual

therefore consists of a collection of stems and the remaining nucleotides in the string are

considered unbound. Benedetti and Morosetti used this representation first in their GA

algorithm for finding suboptimal RNA secondary structures [2]. Wiese and Glenn also

used this representation in their GA implementation, RnaPredict [106].

Certain restrictions apply to forming stems. First, the stem should consist of at least

three consecutive canonical base pairs that form a stack. Secondly, any loop that is

closed by the stem should be at least three nucleotides (nt) long (refer to figure 7.2).

The minimum loop lengths are chemical requirements for the stable formation of stems.

Although stems with a shorter length than three nucleotides can occur, this does not

often happen. The minimum stem length of three allows construction of most of the

possible conformations, but reduces the search complexity enormously.

All the possible stems with a minimum length of three are enumerated (refer to

section 7.3 for a description of stem enumeration) and put into the universal set U .

Particles are initialised from the universal set.
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Figure 7.1: The boxes indicate the stems of a conformation. The conformation depicted is

the known conformation of S.cerevisiae’s 5S rRNA.

7.3 RNA stem enumeration

The first step in structure prediction is to build a set U of all the potential helices

(stems) which could form in a given RNA sequence under the thermodynamic model.

First, all canonical base pairs for a given RNA sequence are iterated through, and the

algorithm attempts to build a helix by stacking additional base pairs on top of existing

ones. Consider an RNA sequence r of length n, and a canonical base pair (i, j), where

0 ≤ i < j < n. A base pair that does not meet the condition of |j − i| > 9 is discarded,
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Figure 7.2: Restrictions on stem formation. The minimum stem length is 3 and the minimum

loop length is 3.

as it could not be the base of a valid helix (see figure 7.2 which contains 9 nucleotides).

If (i + 1, j − 1) is a canonical base pair, this base pair is added to the potential helix

h, and the next potential base pair (i + 2, j − 2) is checked. This proceeds until the

first non-canonical base pair is encountered, or until (i + k, j − k) is reached, where

(j − k)− (i+ k) ≤ 3. At this stage, if k > 1 the helix h is considered valid and is added

to U .

With the complete helix set U , structure prediction then becomes a combinatorial

optimization problem of picking a subset s from U . As helix generation stops at the first

mismatched base pair, higher-order secondary structure elements are implicitly defined

by the various bulges and loops outside of the helices stacked pairs. As a result, it is only

necessary to determine the helices to account for all other secondary structure elements.

7.4 Optimised addition operator

The method that is used in the implementation of an optimised addition operator to

add stems to the new position set is relatively simple. The operator introduces a bias

regarding the stems it adds to the new position. The stems that are added first to the

close set are those of the lbest and pbest positions. These are subsequently added to

the new position first as well, before any new random stems are added to the current

position set. This favours stems that are found in structures with better fitness.

The addition operator also serves to construct only valid RNA conformations. A

lookup table is created after the stem enumeration is done. This lookup table indicates

which stems are incompatible because of shared base pairs. When a stem is about to be
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added to a set, a lookup is done in the lookup table to see if the stem will be in conflict

with any of the existing stems in the set. When it is determined that no conflict will

occur, the stem is added to the set.

7.5 Conclusion

This chapter explained how SetPSO is implemented in order to do predictions on RNA

secondary structures. The objective function and particle representation were defined.

The process of enumerating all the valid stems for the universal set, U , was outlined.

Finally, the addition operator was described. The addition operator is responsible for

ensuring that potential solutions are valid RNA structures.

 
 
 



Chapter 8

Experimental Approach

This chapter explains the experimental procedure followed in this work. The SetPSO

RNA structure prediction algorithm is tested on various RNA sequences using different

combinations of parameter values.

8.1 Introduction

This chapter details how the SetPSO experiments are done, what is measured, and to

what the results are compared. Section 8.2 introduces the RNA sequences used in this

study. Next, the measurements that are applied to quantify performance are explained in

section 8.3. The results obtained from SetPSO are analysed and compared to the results

of other RNA prediction algorithms. The method is described in section 8.4. Sections

8.5 and 8.5.1 and 8.6 describes the investigation that is done to determine the influence

of the control parameter on various aspects of the SetPSO swarm. Finally, section 8.8

gives an overview of a useful visualisation tool called Parallel coordinates visualisation.

8.2 Sequences tested

In order to asses the feasibility of the SetPSO algorithm when used to predict the sec-

ondary structure of RNA, a number of RNA sequences are tested. The sequences and

their known conformations are taken from the Comparative RNA Website [10]. Se-
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quences were chosen from different species. The sequences were also chosen with different

lengths to test the implementation’s ability to predict conformations of different sizes.

A short summary of each RNA sequence’s attributes are given in tables. Each table

contains the file name of the RNA sequence, its accession number, sequence length in

nucleotides (nt), number of base pairs in the known structure (#BP) and the type of base

pairs in the known sequence. RNA sequences of the following organisms are investigated:

Homo sapiens 16S rRNA (954nt) in table 8.1, Xenopus laevis mitochondrial 12S rRNA

(945 nt) in table 8.2, Drosophila virilis 16S rRNA (784 nt) in table 8.3, Caenorhabditis

elegans 16S rRNA (697 nt) in table 8.4, Aureoumbra lagunensis 18S rRNA (468 nt) in

table 8.5, Haloarcula marismortui 5S rRNA (122 nt) in table 8.6, Arthrobacter globi-

formis 5S rRNA (123 nt) in table 8.7, Saccharomyces cerevisiae 5S rRNA (118 nt) in

table 8.8).

Table 8.1: Homo sapiens 16S rRNA details

Filename d.16.m.H.sapiens.5.bpseq

Accession number J01415

Length 954 nt

# BP in known structure 267

# BP by type

GC 116 CU 2

AU 107 GG 1

GU 14 GG 1

CC 4 AA 5

CA 13 UU 4
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Table 8.2: Xenopus laevis 16S rRNA details

Filename d.16.m.X.laevis.bpseq

Accession number M27605

Length 945 nt

# BP in known structure 257

# BP by type

GC 126 CU 5

AU 95 GG 1

GU 12 GA 4

CC 5 AA 1

CA 6 UU 2

Table 8.3: Drosophila virilis 16S rRNA details

Filename d.16.m.D.virilis.bpseq

Accession number X05914

Length 784 nt

# BP in known structure 233

# BP by type

GC 38 CU 1

AU 157 GG 0

GU 27 GA 4

CC 0 AA 1

CA 1 UU 4
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Table 8.4: Caenorhabditis elegans 16S rRNA details

Filename d.16.m.C.elegans.bpseq

Accession number X54252

Length 697 nt

# BP in known structure 189

# BP by type

GC 41 CU 4

AU 103 GG 2

GU 22 GA 5

CC 0 AA 4

CA 0 UU 8

Table 8.5: Aureoumbra lagunensis 18S rRNA details

Filename b.I1.e.A.lagunensis.C1.SSU.516.bpseq

Accession number U40258

Length 468 nt

# BP in known structure 113

# BP by type

GC 59 CU 0

AU 33 GG 0

GU 15 GA 1

CC 0 AA 0

CA 2 UU 1
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Table 8.6: Haloarcula marismortui 5S rRNA details

Filename d.5.a.H.marismortui.bpseq

Accession number AF034620

Length 122 nt

# BP in known structure 38

# BP by type

GC 27 CU 1

AU 5 GG 0

GU 2 GA 1

CC 0 AA 0

CA 0 UU 2

Table 8.7: Arthrobacter globiformis 5S rRNA details

Filename d.5.b.A.globiformis.1.bpseq

Accession number M16173

Length 123 nt

# BP in known structure 39

# BP by type

GC 12 CU 5

AU 1 GG 7

GU 2 GA 5

CC 3 AA 1

CA 2 UU 1
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Table 8.8: Saccharomyces cerevisiae 5S rRNA details

Filename d.5.e.S.cerevisiae.bpseq

Accession number X67579

Length 118 nt

# BP in known structure 39

# BP by type

GC 18 CU 2

AU 14 GG 0

GU 3 GA 0

CC 0 AA 0

CA 0 UU 0

8.3 Measurements

The metrics used to determine the accuracy of the predicted structures are the true

positives (TP), sensitivity (SE) and specificity (SP). True positives is the number of

correctly predicted base pairs in the candidate structure as compared to the known

structure. The sensitivity is the ratio between TP and the number of base pairs in the

natural fold, expressed as a percentage. Specificity is the ratio between TP and the

number of base pairs in the candidate solution expressed as a percentage.

8.4 Accuracy of the structures and comparison to

other algorithms

The SetPSO is compared to other free energy minimisation algorithms in terms of accu-

racy of predicted structures. These algorithms are the mfold DPA, RnaPredict EA and

HelixPSO algorithms discussed in chapter 6. The results and accuracy comparisons are

given in section 9.5.
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All the results given in this work were generated using the mfold web server version

3.2. All the settings were left in the default state, including the percentage of subopti-

mality, which was set to 5%.

Results from HelixPSO are obtained by running experiments using the published

HelixPSO code [37]. This algorithm has been modified and improved by the authors

since the initial work published in [36].

Results for RnaPredict are obtained in the literature, mainly from [19] but also from

other published articles [104] [105]. The results in [19] are more complete and include

results on average accuracy over 30 samples. Results reported in [104] and [105] include

the best results over several runs, not the average results over several runs. The authors

of [104] and [105] sometimes report (and does comparisons to mfold) on the best result

obtained by RnaPredict in terms of structure accuracy and not on the lowest energy

structure. The flaw when using the best structure accuracy in reporting is that in

practice the best structure cannot be known beforehand, except if the native structure

is already known. This is different to the case where a lowest energy structure in a set

can be determined since an evaluation function exist to do it. See [4] for a discussion on

why reporting empirical best results for stochastic algorithms are problematic.

8.5 Investigating control parameters

The SetPSO algorithm introduced three new parameters, PI or entropy, PC or closing

probability and PR or random add probability. In order to investigate the influence of

these three parameters, 64 experiments are conducted on each of five representative

sequences. Each experiment consists of 30 samples. The experiments are run with

the three parameters each taking on the values 0.2, 0.4, 0.6 and 0.8 in all possible

combinations, giving rise to 64 experiments per sequence.

Other PSO parameters, e.g. the topology of the swarm and the number of particles,

were not investigated. The Von Neumann swarm topology is used as it has been shown

to be one of the best topologies to used in a wide range of problems [24] [56] [74].

Many studies have been done on the influence of swarm size [9] [26]. The number of

particles, ns, was set to 20. Empirical results have shown that a swarm size of between
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10 and 30 particles is effective in finding optimal solutions.

The experiments were run under Suse Linux 10 with a SUN Java 5.0 VM. The source

code for the experiments is part of the CIlib open source library [14].

SetPSO’s ability to predict RNA secondary structures is investigated in chapter 9.

The influence of the entropy parameter, PI , is also investigated. It is also postulated that

using a linear decreasing entropy weight, starting at PI=0.9 and decreasing to PI=0.1,

throughout the course of an experiment, will lead to greater diversity of the swarm in

the initial stages and more refinement of the solution in the later stages. The results of

these experiments are shown in section 9.6.

8.5.1 Accuracy under linear decreasing entropy

Dynamically changing weights have been used in particle swarms to change the behaviour

of the swarm during the experiment [67] [76] [95] [111]. In classic PSO, a linear decreasing

inertia weight is an example of such a dynamically changing weight. The reason for

changing the entropy weight dynamically is to try to influence the searching behaviour

of the swarm. A large initial value for the entropy weight PI means the particles should

theoretically cover larger areas of the search space because larger entropy causes more

disruption. As the experiment progresses, the value of PI is decreased in order to try

and exploit the search space around the best solutions.

The entropy weight is changed according to

PI(t) = (PI(0)− PI(nt))
(nt − t)
nt

+ PI(nt) (8.1)

where PI(t) is the entropy at time step t, nt is the maximum number of time steps for

which the algorithm is executed, PI(0) is the initial entropy weight and PI(nt) is the

final entropy weight. Note that PI(0) < PI(nt).

Over the 700 iterations of each experiment, the entropy value was decreased from an

initial value of PI = 0.9 to PI = 0.1.

The results of the linear decreasing entropy experiments can be found in section 9.6.2.
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8.6 Investigating the influence of weights on swarm

diversity

When particles are disrupted by removing elements from their sets, the particles are in

a position to take on new elements which could potentially put the particles in a totally

different part of the search space. Taken to the limit, this implies that the entropy, PI ,

could remove all the elements from a particle set and the particle could get a new random

position that does not share an element with any of its previous positions. The entropy

can be seen as the inverse inertia of a particle. The fewer the elements that change in

the particle, the more inertia it is said to have.

In an attempt to explain the searching behaviour of the SetPSO, the swarm diversity

during experiments is investigated. The PI parameter is tested with different fixed values

as well as with a dynamically changing value.

8.7 Minimum Stem Length

For the previously described experiments, a constraint was placed on the minimum

number of paired bases that constitute a stem. This minimum length constraint is set

in order to reduce computational complexity at the expense of possible minor loss in

accuracy of the predicted conformations.

At least two of the three shorter conformations have stems with two or less base

pairs. These are A. lagunensis (which also contains a pseudo knot) and H. marismortui.

Examination of the known conformations for these sequences as given in figures 9.4 and

9.3 confirms the presence of shorter stem lengths. Theoretically, more accurate confor-

mations can be predicted for these structures when stems with length 2 are included.

S. cerevisiae on the other hand can theoretically be predicted perfectly when minimum

stem lengths of three base pairs are used, as seen in figure 9.6. Section 9.8 investigates

the accuracy of SetPSO when reduced stem length elements are used.

 
 
 



Chapter 8. Experimental Approach 65

8.8 Parallel coordinates visualisation

To better understand the influence of the parameters on the behaviour of the particle

swarm, a visualisation technique known as parallel coordinates is used in the results

chapter [48] [49]. Parallel coordinates is a common way of visualising and analysing

high-dimensional data.

Essentially, the method entails drawing a vertical parallel line for each of the di-

mensions in the data. These lines are referred to as axes. Each axis (or dimension) is

scaled independently so that all the axes are of equal length. A point in n-dimensional

space is then represented as a polyline with vertices on each axis. The position of the

vertex on the i-th axis corresponds to the i-th coordinate of the point. Another method

of connecting the vertices is to draw curves through the vertices on the parallel axes.

Dependencies between parameters can be identified more easily with the aid of these

curves. Curves are used for visualisation in this chapter because the structured way in

which parameter values where chosen causes the polylines to overlap. Curves space out

better to allow all the lines to show.

8.9 Conclusion

The experimental approach was outlined in this chapter. The nine sequences that were

tested were listed first. A method of using SetPSO to predict RNA secondary structures

was discussed next. This included the particle representation, the objective function

used, the swarm topology and the values of the parameters investigated. To summarise,

the particle position is a set of possible stems. The objective function is the free energy

of the structure as computed by the Vienna RNA package. The swarm topology used is

the Von Neumann structure. The entropy weight, random add probability, and the close

probability are tested with several values.

A parallel coordinates visualisation technique was described in section 8.8 in order

to facilitate the investigation.

 
 
 



Chapter 9

Results and Comparisons

Several experiments were done in order to asses the performance of the SetPSO algo-

rithm. This chapter shows and discusses the results of the experiments. The results

are also compared to results found by other RNA prediction algorithms employing free

energy minimisation.

9.1 Introduction

This chapter reports on the results obtained from running a number of experiments

as described in chapter 8. Tables with summarised experimental results are given in

this chapter at the relevant locations for the reader’s convenience. Five representative

sequences are discussed in this chapter. The complete tables of results for these sequences

as well as the results of other sequences appear in appendix A. The five structures are

Xenopus laevis - table 8.2, Drosophila virilis - table 8.3, Aureoumbra lagunensis - table

8.5, Haloarcula marismortui - table 8.6 and Saccharomyces cerevisiae - table 8.8.

The results for each sequence are then discussed and compared in section 9.4 to

the known structure. The SetPSO results are also compared to HelixPSO, RnaPredict

and the mfold DPA (dynamic programming algorithm) in section 9.5. mfold was dis-

cussed briefly in section 6.2. RnaPredict was discussed in section 6.3 and HelixPSO was

discussed in section 6.4.

66
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9.2 Initial results for SetPSO

The accuracy of the SetPSO algorithm in determining the secondary structures is shown

first. These results were obtained by running multiple experiments with different values

for the input parameters PC , PR and PI . The tables with the complete experimental

results are given in appendix A.

Table 9.1: Best fitness results obtained by SetPSO for the five sequences discussed

∆G Pairs Pairs

Sequence PR PC PI (kcal/mol) predicted correct (%)

X. laevis 945nt 0.8 0.6 0.8 -192.3±5.0 242.6±6.0 67.0±10.7 (26.1%)

D. virilis 784nt 0.8 0.8 0.8 -113.0±4.1 255.1±5.1 30.7±6.7 (13.2%)

A. lagunensis 468nt 0.8 0.8 0.8 -128.3±1.8 128.6±3.0 47.1±7.6 (41.7%)

H .marismortui 122nt 0.8 0.6 0.8 -48.4±0 33±0 16±0 (42.1%)

S .cerevisiae 118nt 0.8 0.6 0.8 -53.4±0 40±0 28±0 (75.7%)

The results of the experiments of the representative sequences are reflected in table

9.1. The best fitnesses (∆G) have been selected from each of the sequences’ results table

from appendix A. The corresponding PC , PR and PI parameter values that gave the best

result are shown.

An obvious first impression when looking at the summarised results in table 9.1

is that the longer sequences, X. laevis and D. virilis, show less accurate predictions

than the shorter sequences. The longer sequences contain more unpredictable base pairs

due to pseudo knots and non Watson-Crick base pairs. The shorter sequences show

no deviation in the fitness of their predictions, suggesting that all the samples of the

experiment converged to the same solution.

9.3 Accuracy

The first metric to be investigated is the accuracy of the secondary structure predictions.

A number of plots are included to show the average progression of the fitness1 and

1One examiner suggested that the fitness of a population should always increase in an evolving
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accuracy of the swarm (over 700 iterations) for each of the sequences. The plots indicate

the fitness of the gbest particle as well as the corresponding accuracy of the gbest solu-

tion. The solid line represents the mean value of the fitness and accuracy respectively,

while the dark grey area represents the standard deviation from the mean. The light

grey area represents the minimum and maximum value over all the samples.

9.3.1 X. laevis accuracy
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Graph 9.1: The fitness and accuracy of X. laevis over 700 iterations

population. While this is true, the objective function (∆G) which represents the fitness of the population

is minimized in this instance. This is acceptable and widely practised in the field of optimization.
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The two graphs in graph 9.1 show the improvement in mean free energy and the

improvement in correctly predicted pairs over the 700 iterations of an experiment. This

particular experiment was run with values of PR = 0.8, PC = 0.6 and PI = 0.8. These

parameter values resulted in the best swarm fitness of -192.3±5.0 as noted in table 9.1.

The average number of base pairs predicted for the structures was 242.6±6.0 with a

resulting accuracy of 67.0±10.7 correctly predicted pairs. However, the experiment with

the best average accuracy after 700 iterations was recorded at 71.13±11.72 correct base

pairs. This was with a parameter configuration of PR = 0.8, PC = 0.6 and PI = 0.6.

The average fitness for this configuration was -184.30±3.84 kcal/mol. See table A.1 in

appendix A for the complete results set.

Generally, the experiments on the sequences show an increase in the accuracy of

the predicted structure with an increase in the fitness of the solution. However, the

accuracy does not continue to improve as the fitness improves for X. laevis. Remember

that a lower free energy represents a better fitness. In this case, the accuracy sometimes

decreases for a while (see graph 9.1 between iterations 300 to 600) while the mean free

energy is decreasing. This observation can be attributed to the fact that the natural

conformation of an RNA molecule does not always correspond to the absolute lowest

energy state it can attain [50] [51] [63].

9.3.2 D. virilis accuracy

The fitness and accuracy graphs for the D. virilis sequence are illustrated in graph 9.2.

These experimental runs were obtained with parameter values of PR = 0.8, PC = 0.8 and

PI = 0.8 which correspond to the best average fitness of the swarm. The fitness graph

shows that the fitness was still decreasing when the 700 iteration limit was reached. The

average fitness after 700 iterations was -113.0±4.1 with 255.1±5.1 base pairs predicted

of which 30.7±6.69 were correct. The reason for the low accuracy will become apparent

later in this chapter when the predicted structure is compared with the actual known

structure.

The best accuracy obtained for D. virilis was with a parameter configuration of

PR = 0.8, PC = 0.6 and PI = 0.4. The average accuracy was 38.80±8.17 correct base

pairs and the average fitness was -75.72±5.38. This is much lower than the best average
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Graph 9.2: The fitness and accuracy of D. virilis over 700 iterations.

fitness found for this sequence.

The fitness and accuracy graphs show the same general trend as that of X. laevis

in section 9.3.1. In fact, the most accurate structures for D. virilis in graph 9.2 were

obtained even before the 100th iteration was reached, and the mean free energy was still

relatively high.

9.3.3 A. lagunensis

The accuracy of the base pairs predicted in the experiments increased with shorter

sequences. The A. lagunensis sequence is significantly shorter than the previous two

sequences discussed and also showed a much better accuracy as can be seen from table

9.1. The average fitness of the swarm after 700 iterations was -128.3±1.8. The number
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Graph 9.3: The fitness and accuracy of A. lagunensis over 700 iterations.

of base pairs predicted in the structure was 128.6±3.0 of which 47.1±7.6 were correct

on average. This represents an accuracy of 41.7%. The parameter values that resulted

in these best average fitnesses were PR = 0.8, PC = 0.8 and PI = 0.8. The parameter

values that resulted in the best average accuracy were, however, PR = 0.6, PC = 0.2 and

PI = 0.8. The average accuracy for these parameter values was 48.47±11.95. This is not
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much better than the accuracy obtained from the best fitness configuration and it also

has a larger deviation. See table A.7 for the complete results set.

The variation in fitness at the last iteration is much lower than that of the two longer

preceding sequences. Some of the best structures were also predicted within the first 100

iterations when looking at the maximum shaded part of the accuracy graph.

9.3.4 H. marismortui
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Graph 9.4: The fitness and accuracy of H. marismortui over 30 iterations.

The last two sequences are really short in comparison with the previously discussed

sequences. The structure search space is much smaller with fewer possible stems that

can form. The results showed that most of the parameter configurations gave the same

results for these two short sequences. Table A.11 shows that 43 combinations out of the

 
 
 



Chapter 9. Results and Comparisons 73

possible 64 parameter combinations resulted in a fitness of -48.4±0. This means that

every sample in the experiment found the same solution. The accuracy of the structure

with this fitness is 16±0 bases correctly predicted. The total number of predicted bases

is 33.

A notable exception, compared with the other sequences, is the number of iterations

required to converge on the solution. In the case of H. marismortui, the gbest particle

converged on a solution after a maximum of 12 iterations of the simulation, and never

once changed afterwards. The search space for this sequence is so small that SetPSO

has no problem in quickly finding the optimum solution.2

9.3.5 S. cerevisiae

The results for the S. cerevisiae sequence are very similar to those of H. marismortui

in the previous section. The same fitness was reached in 53 of the 64 possible param-

eter configurations, namely ∆G = -53.4 kcal/mol. Further, S. cerevisiae only took a

maximum of 8 iterations to converge to a solution. The results for all the parameter

configurations are shown in table A.15.

The fitness and accuracy plots for the two short sequences in graphs 9.4 and 9.5 of

the gbest particle show how quickly the solutions were found.

9.4 Comparison with known structures

Even though the base pairs are not entirely correctly predicted by the SetPSO, it is worth

looking at the conformations and visualising them. Two conformations might only share

50% of the same base pairs, but their structures might be very closely related.

9.4.1 Xenopus laevis

Xenopus laevis is the longest sequence to be evaluated in detail. Table A.1 shows the

results obtained from the experiments. The average free energy of the best fitness struc-

2The solution is optimum in terms of the objective function, i.e. the minimum fitness, and not in

terms of the accuracy.
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Graph 9.5: The fitness and accuracy of S. cerevisiae over 20 iterations.

tures was -192.3±5.0 kcal/mol. These structures contained 242.6±6.0 predicted base

pairs of which 67.1±10.7 were correct, on average. That represents an accuracy of

26.1%.

Figure 9.1 shows a folding from one of the samples, compared to the known structure.

The green lines represent the correctly predicted pairs while the blue lines show the

unpredicted pairs or false negatives. The red lines are the false positive predictions.

This particular predicted sample had 240 base pairs, of which 76 pairs were correct. 164

pairs are false positive predictions and there are 181 false negatives.

The known structure of Xenopus laevis contains 257 base pairs of which 24 are non-

canonical base pairs. These 24 base pairs cannot be predicted with SetPSO. The known

structure for Xenopus laevis also contains 4 pseudo knots which could not be predicted
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Figure 9.1: Xenopus laevis known and predicted structures, circular representation

because of the limitation of the free energy calculation function used.
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Figure 9.2: Drosophila virilis known and predicted structures, circular representation

9.4.2 Drosophila virilis

Drosophila virilis was the most difficult structure for SetPSO to predict. SetPSO man-

aged to predict on average, across 30 samples, a structure with a minimum free energy of

-113.0±4.1 kcal/mol. These structures contained 255.1±5.1 base pairs. Graph 9.2 shows

how the average fitness of the population decreased over 700 iterations. The correspond-

ing accuracy improved initially, but at iteration 90 it decreased suddenly and remained

relatively poor, improving and deteriorating alternately. The accuracy of the average
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structure predicted by SetPSO after 700 iterations was at a level where only 30.7±6.7

or 13.2% base pairs were correctly predicted out of 233 known base pairs.

Figure 9.2 shows a comparison between the known structure and one of the structures

predicted by SetPSO. This particular structure had 256 base pairs, of which 34 were

correct (the green lines), 222 pairs were false positives (the red lines) and 199 pairs were

false negatives (the blue lines).

Eleven of the known base pairs are non-canonical base pairs and Drosophila virilis

also contains 2 pseudo knots which could not be predicted at all.

9.4.3 Aureoumbra lagunensis

A graphical representation of a structure is a convenient means of getting an overview

of its similarity or dissimilarity to other structures. A circular representation of the

predicted and known structure for A. lagunensis is shown in figure 9.3 because it is a

more compact representation for a longer sequence than a structural view.

Figure 9.3 shows the known conformation of A. lagunensis obtained from the Com-

parative RNA website, with the SetPSO predicted conformation as an overlay. The

predicted conformation was taken from one of the experimental examples and contains

127 base pairs, of which 56 where correct. One noticeable feature of the known con-

formation is a pseudo-knot motif, indicated by some of the intersecting blue connecting

lines.

Almost half the known base pairs are present in the SetPSO predicted conformation.

Notice the similarity in the two structures between base number 90 and base number

286 and again between base number 358 and base number 404.

The SetPSO predicted structures had an average free energy of -130.2±2.0 with

127.3±2.9 base pairs. The accuracy of SetPSO predictions improves markedly with the

shorter A. lagunensis sequence. On average 47.1±7.6 or 41.7% of the 113 known base

pairs were correctly predicted after 700 iterations, as noted in table 9.1. The best run out

of the 30 runs actually predicted 67 correct base pairs (59.3%). A. lagunensis contains

only 4 non-canonical base pairs and a pseudo knot that could not be predicted because

of limitations in the energy model used.
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Figure 9.3: Known structure of A. lagunensis, circular representation

9.4.4 Haloarcula marismortui

For the H. marismortui sequence, SetPSO predicted a sequence, the same in all 30 runs,

with a free energy of -48.4 kcal/mol. This structure had 33 base pairs. Remember that

16 of the 33 pairs of H. marismortui predicted by SetPSO were correct from table 9.1.

That translates to a 42.1% accuracy for the 38 known base pairs. Although this is one

of the shortest sequences, SetPSO did not do very well at predicting this structure.
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Figure 9.4, the known conformation, and figure 9.5, the predicted conformation,

provide visual confirmation of the differences in the conformations. The outermost stem

(nearest the 3’ and 5’ ends) was predicted completely correct. The other features, e.g. the

internal loop and the number of stems in the conformation were predicted less accurate.

The structures differ to such an extent that the combined visualisation technique used

for the other sequences does not give a clear view of the two foldings.

A possible reason for the lower accuracy of the predicted conformation could be

the fact that a minimum stem length of three base pairs was set to limit the number of

stems in the universal set, hence the complexity of the problem. The known conformation

contains two stems with only two base pairs, as can be seen in figure 9.4. The influence

of shorter stems is investigated in section 9.8. H. marismortui also contains three non-

canonical base pairs that can not be scored by the objective function used.

9.4.5 Saccharomyces cerevisiae

Again, for this short sequence, the same structure was predicted in all 30 runs. The

structure had a free energy of -53.4 kcal/mol and contained 40 base pairs. S. cerevisiae

had the most correctly predicted base pairs of all the sequences tested, with 28 out of

the 40 predicted pairs correctly predicted. Again, the outermost stem was predicted

correctly.

Figure 9.6 shows the known and predicted structures of S. cerevisiae. The green

bands indicate the pairings in both foldings, the blue bands indicate pairings only on

the known structure (false negatives) and the red bands indicate pairings only in the

predicted structure (false positives). Notice the similarity between the structures. In

this case, the motifs such as the multi-branch loop, internal loops, and hairpin loops are

all present, although not always in the correct form. The known S. cerevisiae contains

only canonical base pairs, thus no stem was impossible to predict by means of the

SetPSO.
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9.5 Comparison with RnaPredict, HelixPSO and mfold

The accuracy of the predictions made by SetPSO is compared to the predictions made by

mfold, RnaPredict and HelixPSO which also use free energy minimisation as an objective

function.

Table 9.2: Average sensitivity of SetPSO, RnaPredict, HelixPSO and mfold

RnaPredict

Sequence SetPSO INN-HB INN HelixPSO mfold

H. sapiens 954nt 20.6 18.0 17.2 25.5 35.7

X. laevis 945nt 26.1 25 25.1 30.4 36.7

D. virilis 784nt 13.2 12.7 16.5 18.7 15.9

A. lagunensis 468nt 41.7 36.7 41.7 38.4 53.1

H. marismortui 122nt 42.1 42.1 42.1 76.3 76.3

S. cerevisiae 118nt 75.7 89.2 75.7 78.8 89.2

Table 9.2 summarises the average solution accuracy (sensitivity) as predicted by

SetPSO, RnaPredict, HelixPSO and mfold. SetPSO performed the same as RnaPredict

except for D. virilis and S. cerevisiae where at least one of RnaPredict’s thermodynamic

models outperformed SetPSO.

HelixPSO performed almost as well as mfold on most sequences and also outper-

formed SetPSO in most cases. SetPSO and HelixPSO uses the same energy model as

mfold, thus SetPSO and HelixPSO will not be able to find a structure with a lower energy

than mfold does, simply because mfold performs an exhaustive search over the structure

space and returns the absolute lowest energy structure. SetPSO can only approach mfold

in terms of free energy, never surpass it. But this does not mean the algorithms can not

predict a more accurate structure as the most accurate structure often does not have the

lowest energy.

SetPSO scores lower on the sensitivity metric than mfold and HelixPSO on the

H. marismortui sequence in particular. In section 9.8.2, this low accuracy of SetPSO is

addressed, and a more favourable result is obtained.

From table 9.2 it seems that the HelixPSO has a better objective function than
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SetPSO, in the combination of free energy minimisation and similarity to the centroid

structure. All three of the stochastic algorithms performed worse than the DPA though.

The structure search space is probably too convoluted for the stochastic optimisation

algorithms to consistently find the lowest energy structures.

9.5.1 Xenopus laevis

The mfold results are presented in table A.3. The first column gives the free energy of the

structure optimised by mfold. The second column gives the energy of the conformation

after being evaluated by efn2. The third column indicates the number of base pairs

predicted. The fourth column shows the number of correctly predicted base pairs while

the last column displays the percentage of correctly predicted base pairs.

The structure with the lowest energy predicted by mfold had a mean free energy of

-250.6 kcal/mol and contained 249 base pairs of which 92 pairs were correct, giving an

accuracy of 36.7%. However, the most accurate structure is not the structure with the

lowest energy. Scanning down the list, a structure with -248.0 kcal/mol and 245 base

pairs had the most correct base pairs at 113 or 45.0%. It is only possible to tell that the

structure is the most accurate because the natural conformation for X. laevis is known.

On average, SetPSO is not as accurate as mfold. SetPSO managed to predict a

structure with 240±3.9 base pairs, of which 73.8±11.2 or (29.4%) were correct. Refer

to table 9.1 for the SetPSO results. The most accurate structure of the 30 samples in

the experiment contained 105 correct base pairs. This is almost as good as the best

structure for mfold, which contained 114 correct base pairs.

9.5.2 Drosophila virilis

mfold predicted quite a number of structures within the 5% threshold limit for D. virilis.

The lowest energy structure had a mean free energy of -146.3 kcal/mol with 236 base

pairs of which 37 were correct (out of 233 known base pairs). This translates to an

accuracy of 15.9%. However, the two most accurate structures only appear much lower

in the energy rankings in table A.6, which summarises the results for the mfold DPA.

The most accurate structures both contained 82 correct base pairs, which translates to
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a 35.2% accuracy.

SetPSO managed to predict structures with an average accuracy of 31.1±3.8 correct

base pairs (refer to table 9.1). The most accurate of the samples after 700 iterations

contained 37 correct base pairs. The most accurate structure overall was found between

iteration 22 and iteration 82, while the swarm still had a lower overall fitness. This

structure contained 47 correct base pairs or a 20.2% accuracy. Refer to graph 9.2 and

notice the light grey area between iterations 22 and 82 which illustrates the maximum

accuracy of the experiment.

9.5.3 Aureoumbra lagunensis

The mfold DPA generally made very good predictions on the A. lagunensis sequence.

The folding with the lowest free energy had a ∆G = −142.35 for the efn2 evaluation

function. Refer to table A.10 for the results of the SetPSO predictions. This sequence

consisted of 128 base pairs, of which 60 were correct, with an accuracy of 53.1%. The

most accurate structure, however, was the 12th structure in the list, which consisted of

133 base pairs of which 74 were correct. That is a 65.5% accuracy rate.

SetPSO predicted structures with an average accuracy of 47.1±7.6 base pairs which

translates to an accuracy of 41.7%. Of the 30 samples, however, the most accurate

structure had 69 correct base pairs, giving an accuracy of 61.1%. This is not quite

as good as the best mfold conformation. Figure 9.7 illustrates the circular structure

representation of the mfold prediction with the lowest energy, compared to the known

structure. Part of the structure was predicted very faithfully but the thermodynamic

model of mfold failed to predict accurately in the longer range pairings.

9.5.4 Haloarcula marismortui

For a short sequence like H. marismortui, the 5% threshold limit of mfold returned only

1 conformation as shown in table A.14. This singular structure had a mean free energy of

-59.5 kcal/mol and contained 34 base pairs, of which 29 were correctly predicted. That

is an accuracy of 76.3%. Figure 9.8 illustrates the actual structure that mfold predicted.

The results contained a number of stems with only 2 base pairs and 1 base pair contact
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that is not part of a stem. The overall structure is, however, much closer in form to that

of the known structure of H. marismortui (refer to figure 9.4).

Because the structure that SetPSO predicted, as illustrated in figure 9.5, had the

wrong shape, it predicted far fewer correct base pairs than mfold managed to predict.

The mfold results for S. cerevisiae contained 2 structures. The structure with the

lowest energy was also the most accurate. This structure had a mean free energy of -53.5

kcal/mol and contained 41 base pairs, of which 33 were correct. This gives an accuracy

of 89.2%. Figure 9.9 illustrates the secondary structure of S. cerevisiae as predicted by

mfold and compared to the known structure. This structure compares favourably with

the known structure of S. cerevisiae. There are only 8 false positive predictions and 4

false negative predictions for mfold.

SetPSO predicted, in all cases, a structure with 40 base pairs and an accuracy of

75.7% which translates to 28 correct pairs. This is, incidentally, the same as the second

structure predicted by mfold (refer to table A.18 and table 9.1).

9.5.5 Saccharomyces cerevisiae

The mfold results for S. cerevisiae contained 2 structures. The structure with the lowest

energy was also the most accurate. This structure had a mean free energy of -53.5

kcal/mol and contained 41 base pairs, of which 33 were correct. This gives an accuracy

of 89.2%. Figure 9.9 illustrates the secondary structure of S. cerevisiae as predicted by

mfold and compared to the known structure. This structure compares favourably with

the known structure of S. cerevisiae. There are only 8 false positive predictions and 4

false negative predictions for mfold.

SetPSO predicted, in all cases, a structure with 40 base pairs and an accuracy of

75.7% which translates to 28 correct pairs. This is, incidentally, the same as the second

structure predicted by mfold (refer to table A.18 and table 9.1).
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Figure 9.4: Known structure of H. marismortui, structural representation.

Figure 9.5: SetPSO predicted structure of H. marismortui, structural representation
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Figure 9.6: Combined known and SetPSO predicted structure of S. cerevisiae, structural

representation
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Figure 9.7: A. lagunensis structure predicted by mfold, using a circular representation
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Figure 9.8: H. marismortui structure predicted by mfold, using a structural representation

Figure 9.9: S. cerevisiae structure predicted by mfold, using a structural representation
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9.6 Investigating the influence of SetPSO control pa-

rameters

The parameters used to tune a model or algorithm usually have a big impact on the

performance of the model or algorithm. The SetPSO algorithm is no different. The three

most important parameters of the SetPSO algorithm are the closing probability (PC),

random add probability (PR), and the entropy weight (PI), introduced in section 5.4. This

section explores the influence that these parameters, especially the entropy weight, have

on the performance of the SetPSO algorithm when predicting RNA secondary structures.

Because RNA secondary structures with the best fitness in SetPSO does not correspond

to the most accurate structures, the parameter investigation considers both the fitness

and accuracy attained in the experiments.

Remember that the entropy weight determines the amount of disruption caused to

particles (individuals) in the swarm. The higher the entropy, the more likely it is that

elements will be removed from the set that constitutes a particle in the SetPSO. It is

postulated that the entropy weight influences the diversity of the swarm. The larger

the value of the entropy weight, the more elements are removed in each iteration, which

leaves space for other elements to be added to the particle’s set, thus increasing diversity

in the swarm.

9.6.1 Accuracy under constant entropy

From section 9.2, table 9.1 and the results given in the tables in appendix A, it is clear

that higher values of PR and PI resulted in better average swarm fitness. But what is

the influence of PC and are there any relationships between the control parameters? In

order to gain some initial insight into the influence of the control parameters, a parallel

coordinates plot of the 64 parameter combinations for the X. laevis sequence is shown

in figure 9.10. The first three axes represent PR, PC and PI in that order. The last axis

represents the fitness values obtained from the experiment. The fitness is also known as

the dependent variable. The axes have the lowest value at the top and the largest value

at the bottom, thus the best fitness is at the top and the worst at the bottom.

The curves in figure 9.10 are of different colours. Each curve is coloured according to
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Figure 9.10: Parallel coordinate visualisation for parameter influence on X. laevis fitness.

The axes represent PR, PC , PI and ∆G.

the fitness value the curve represents. The red end of the spectrum represents the best

fitness while the blue end of the spectrum represents parameter values that map to the

worst fitness. Note the points on each axis where the red and dark blue curves cross; All

the red curves cross the first axis at PR = 0.8. This means that all the best solutions

have PR = 0.8 in common. All the dark blue curves cross at PR = 0.2 which means all

the worst fitness solutions have PR = 0.2 in common.

In order to emphasise these best and worst patterns, the best fitness and accuracy

patterns are highlighted in figure 9.11 and the worst fitness and accuracy patterns are

highlighted in figure 9.12. The best fitness is at the top of the fitness axis (lowest value)

while the best accuracy is at the bottom of the accuracy axis (higest value). The top

20% of the patterns are grey and the top 5% of the patterns are coloured. The top

pattern is shown as a red dotted line.

Figure 9.11 shows that the three best fitness patterns have values of PR = 0.8 and

PI = 0.8 in common, whereas the value for PC varied. The three worst fitness patterns
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Figure 9.11: Curves mapping to top 20% fitness values on the left and the top 20% accuracy

values on the right for X. laevis. The top 5% are shown in colour.

Figure 9.12: Curves mapping to worst 20% fitness values on the left and the worst 20%

accuracy values on the right for X. laevis. The bottom 5% are shown in colour.

in figure 9.12 are an exact mirror of the best patterns, with common values of PR = 0.2

and PI = 0.2 and different values of PC . The patterns resulting in the best accuracy also

had PR = 0.8 in common (refer to figure 9.11, right hand side) but were less dependant

on the value of either PC or PI .

Thus a pattern emerges where higher values of PR and PI result in better fitness so-

lutions and lower values of PR and PI result in worse fitness solutions. The graph shows

that the value of PC is not very important in determining whether the outcome of the
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fitness of the swarm will be good or bad. Good and bad fitness results were obtained for

any given value of PC . Remember that PC determines the influence of the personal best

and neighbourhood best on the particle’s position. It can’t be said that PC will have

no effect in all circumstances. There might be other RNA sequences or other problem

domains entirely where PC may play a bigger role in the fitness that a swarm attains. It

can also be concluded that there is a relationship between the two parameters PR and

PI where the fitness is concerned. Only when both have high values, that is PR = 0.8

and PI = 0.8, do the results show the best fitness, and only when the parameters both

have low values does it result in the worst fitness. In this instance the values of PR and

PI plays a bigger role in the performance of SetPSO. So it can not be concluded that

PC has no effect at all, it only has a lesser effect than PR and PI .

Parallel coordinate visualisations for the rest of the sequences are investigated next.

The first visualisations represent the best and worst fitness experiments for D. virilis.

Figure 9.13 illustrates the curves mapping to the best fitnesses and accuracy and figure

9.14 illustrates the curves mapping to the worst fitnesses and accuracy for experiments

using D. virilis.

The fitness visualisations look almost identical to those of X. laevis, with the two pa-

rameters PR and PI showing the same behaviour as they did previously. Again, PR = 0.8

and PI = 0.8 resulted in the experimental runs with the best fitness while parameter

values of PR = 0.2 and PI = 0.2 resulted in the worst fitness performance. Again, the

value of the PI parameter played a lesser role in determining the accuracy of SetPSO.

PC does not seem to influence the performance of the particle swarm optimiser in terms

of fitness or accuracy.

The parallel coordinates visualisation for A. lagunensis is given in figures 9.15 and

9.16. Again, the same patterns seen for X. laevis and D. virilis are observed for A. la-

gunensis.

The only visualisations that looked different are those of S. cerevisiae and H. maris-

mortui. Most of the parameter combinations on these two sequences led to the same
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Figure 9.13: Curves mapping to top 20% fitness values on the left and the top 20% accuracy

values on the right for D. virilis. The top 5% are shown in colour.

Figure 9.14: Curves mapping to worst 20% fitness values on the left and the worst 20%

accuracy values on the right for D. virilis. The bottom 5% shown in colour.

optimum fitness, because the search space is so much smaller for these sequences. The

parallel coordinates visualisation for S. cerevisiae is given in figure 9.17 for interest’s

sake. All 64 parameter combinations are shown in this figure. Only a handful of curves,

the ones with a weak combination of parameter values, do not end up at the optimum

fitness. The most patterns have blue curves because said patterns ended up on the same

fitness value (the highest fitness). Figure 9.18 illustrates the accuracy of the different

parameter values on S. cerevisiae. The most patterns are green which corresponds to the
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Figure 9.15: Curves mapping to top 20% fitness values on the left and the top 20% accuracy

values on the right for A. lagunensis. The top 5% are shown in colour.

Figure 9.16: Curves mapping to worst 20% fitness values on the left and the top 20% accuracy

values on the right for A. lagunensis. The bottom 5% are shown in colour.

most fit patterns (blue) in figure 9.17. Some of the patterns with weaker fitness actually

have better accuracy (up to 30.17 correct base pairs). The underlying data for figures

9.17 and 9.18 is listed in table A.15. The combinations of parameters resulting in weak

fitnesses can be seen in this underlying data. The H. marismortui sequence showed a

similar result to S. cerevisiae and is therefore not visualised here.
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Figure 9.17: Parallel coordinates visualisation for S. cerevisiae fitness.

Figure 9.18: Parallel coordinates visualisation for S. cerevisiae accuracy.

9.6.2 Accuracy under linear decreasing entropy

Table 9.3 shows the results obtained from the linear decreasing entropy (LDE) exper-

iments compared to a constant entropy (CE) weight, PI = 0.8. The linear decreasing

entropy experiments and constant entropy were done with all combinations of PR and

PC and the appropriate value of PI . Only the combinations resulting in the best fitness

are shown in table 9.3. Only the longer sequences are discussed because the shorter

sequences converged to the same conformation in both the constant entropy and the
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linear decreasing entropy experiments, and therefore had the same fitness and accuracy.

Table 9.3: Results of linear decreasing entropy weight’s effect on fitness and accuracy.

∆G Pairs Pairs

Entropy Sequence (kcal/mol) Predicted Correct (%)

CE X. laevis 945nt -192.3±5.0 242.6±6.0 67.1±10.7 (26.1%)

LDE X. laevis 945nt -187.7±4.2 240.9±6.3 66.7±13.6 (26.0%)

CE D. virilis 784nt -114.1±3.9 256.7±4.9 31.2±9.0 (13.4%)

LDE D. virilis 784nt -108.9±3.9 256.6±4.7 29.5±5.7 (12.7%)

CE A. lagunensis 468nt -128.3±1.8 128.6±3.0 47.1±7.7 (41.7%)

LDE A. lagunensis 468nt -125.9±1.9 129.0±3.8 46.5±6.9 (41.2%)

For al three sequences, the constant entropy experiments fared better in terms of the

fitness result and the accuracy result.

9.7 Investigating the influence of weights on swarm

diversity

Swarm diversity is computed using the current position of each particle relative to the

gbest position. Swarm diversity gives an indication of the dissimilarity of the particles

and hence the amount of the search space that the particles cover. Refer to section 5.5

for a discussion on swarm diversity. This section shows the results of the swarm diversity

experiments.

9.7.1 Swarm diversity under constant entropy

The swarm diversity for experiments in which the entropy stays constant for the duration

of the experiment is discussed first. Only two sequences (X. laevis and S. cerevisiae) are

considered because these sequences are representative of all the sequences with respect

to swarm behaviour during experiments.

Two figures are shown with diversity results for the X. laevis sequence to highlight the

influence of SetPSO parameters on the diversity of the swarm. The parallel coordinate
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visualisation in figure 9.19 shows the top 20% parameter combinations that produces

the greatest diversity. The top 5% of combinations are shown in colour. Similarly, figure

9.20 highlights the bottom 20% of combinations resulting in the lowest swarm diversity

with those under the 5% limit shown in colour. The axes represent the parameters PR,

PC , PI , and diversity, D. The greatest diversity is at the bottom on the fourth axis. It is

immediately obvious that the combinations with the greatest diversities all have PI = 0.2

in common. Most of the parameter combinations that resulted in lower diversity had

PI = 0.8 in common.

Figure 9.19: Top 20% experiments with highest diversity on X. laevis sequence. The axes

represent PR, PC , PI and diversity.

Figure 9.20: Bottom 20% experiments with lowest diversity on X. laevis sequence. The axes

represent PR, PC , PI and diversity.

When figures 9.19 and 9.20 are examined in conjunction with figures 9.11 and 9.12,

which show the parameter combinations for fitness, a pattern emerges where large values
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of PI result in high fitness and low swarm diversity and low values of PI result in low

fitness but higher swarm diversity. The low diversity at higher fitness levels could indicate

that the swarm is able to converge on a solution which has a good fitness.

Figure 9.21: Top 20% of experiments with highest diversity on S. cerevisiae sequence. The

axes represent PR, PC , PI and diversity.

Figure 9.22: Bottom 20% of experiments with lowest diversity on S. cerevisiae sequence. The

axes represent PR, PC , PI and diversity.

Figures 9.21 and 9.22 show the same tendency for high swarm diversity with smaller

values of PI for the S. cerevisiae sequence.

The fact that the swarm diversity is lower with higher entropy values is counter

intuitive. But after some investigation, it was concluded that the bias towards adding

stems that are in the pbest and nbest solutions to a particle’s velocity dominated the

procedure of particle position updates. The larger entropy effectively opened the door
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to making the particles more homogeneous by removing many elements from the set and

replacing them with stems that are already in use.

Graph 9.6, which shows the diversity of the swarms over time, illustrates this phe-

nomenon of lower diversity in spite of the higher entropy. The swarm has an initial

higher diversity due to the random initialisation process. Gradually, the biased stems

dominates and reduces the diversity of the swarm. This process happens at different

speeds, depending on the value of PI . PI = 0.2, for example, does not allow the favoured

elements to dominate as quickly and the diversity only levels out at around iteration

300. In contrast, a high value of say PI = 0.8 enables the dominating elements to spread

through the swarm fairly quickly in around 20 iterations.

The bias towards elements from the nbest and pbest positions can be removed, which

should result in higher swarm diversity, but that investigation is left as future work.

9.7.2 Swarm diversity under linear decreasing entropy

The linear decreasing entropy for each experiment was decreased from the initial value of

PI = 0.9 to PI = 0.1 over the 700 iterations. The results of the linear decreasing entropy

experiments are shown together with the constant entropy experiments in graphs 9.6

and 9.7 for S. cerevisiae and X. laevis respectively.

After the analysis of the swarm diversity under various constant entropy values, the

results for linear decreasing entropy are more or less in line with expectations: The initial

high entropy value results in low swarm diversity, and as the entropy decreases, swarm

diversity becomes larger. The complete results for all the linear decreasing entropy

experiments can be found in appendix A.
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Graph 9.6: The average swarm diversity over the course of an experiment for S. cerevisiae

sequence.
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Graph 9.7: The average swarm diversity over the course of an experiment for X. laevis

sequence.
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9.8 Minimum Stem Length

This section presents the results obtained from experiments done on a universal set

containing stems with fewer base pairs (bp), two base pairs to be exact, in addition to

the normal stems with three or more base pairs. Section 8.7 gave an overview of the

motivation for these experiments.

9.8.1 Reduced minimum stem length

Setting a minimum stem length of three in the previous experiments meant that there are

far fewer elements in the universal set of stems for each experiment. The disadvantage

is that finer structure elements, where for example an isolated stem of two paired bases

exists in a known structure, cannot be modelled. The number of possible stems increases

dramatically with the reduction of the minimum stem length to two base pairs. The set

with minimum stem lengths of three base pairs is a subset of the set containing stems

with a minimum stem length of two base pairs. Table 9.4 shows the number of possible

stems for each sequence with a minimum stem length of three and two.

Table 9.4: Computational complexity for different minimum stem lengths.

Min stem Possible Computation time

Sequence length stems (s)

X. laevis 3 bp 11 329 4 080

X. laevis 2 bp 32 717 -

D. virilis 3 bp 14 460 5 160

D. virilis 2 bp 32 466 -

A. lagunensis 3 bp 2 926 810

A. lagunensis 2 bp 8 351 2 340

H. marismortui 3 bp 220 180

H. marismortui 2 bp 600 240

S. cerevisiae 3 bp 222 190

S. cerevisiae 2 bp 564 210

The table also shows the time taken by SetPSO to complete one experiment consisting
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of 30 simulations for each stem length. Allowing stems with a minimum of 2 base pairs

results in two to three times more stems and significantly longer computation times,

especially for A. lagunensis.

Owing to time constraints, only the shorter sequences, namely A. lagunensis, H. maris-

mortui and S. cerevisiae were taken into consideration for testing with a minimum stem

length of two base pairs. In order to reduce the number of experiments for this investi-

gation, only experiments with a linear decreasing entropy were done.

9.8.2 Results for reduced stem length SetPSO experiments

The accuracy of the 2 base pair stem experiments is compared with previous experiments

and summarised in table 9.5. The parameter combination that resulted in the best fitness

(∆G) is shown for each experiment.

The complete tables with results for the experiments can be found in appendix A, in

tables A.8, A.9, A.12, A.13, A.16 and A.17.

Table 9.5: Experimental results and comparison between minimum stem length of 2 and

minimum stem length of 3 base pairs.

Min stem ∆G Pairs Pairs

Sequence length PR PC (kcal/mol) Predicted Correct

A. lagunensis 3 bp 0.8 0.8 -125.9 ± 1.9 129.0 ± 3.8 46.5 ± 6.9

A. lagunensis 2 bp 0.8 0.2 -106.8 ± 3.5 133.3 ± 2.9 44.4 ± 8.7

H. marismortui 3 bp 0.8 0.8 -48.4 ± 0.0 33.0 ± 0.0 16.0 ± 0.0

H. marismortui 2 bp 0.8 0.8 -59.2 ± 0.0 36.0 ± 0.0 31.0 ± 0.0

S. cerevisiae 3 bp 0.8 0.8 -53.4 ± 0.0 40.0 ± 0.0 28.0 ± 0.0

S. cerevisiae 2 bp 0.6 0.6 -54.1 ± 0.0 42.0 ± 0.0 28.2 ± 0.1

A. lagunensis shows a decline

The results given in table 9.5 show very interesting and differing SetPSO behaviour for

each sequence tested. The A. lagunensis sequence shows an increase in mean free energy

(∆G) when the stem length is reduced to 2 base pairs and a subsequent decrease in
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Table 9.6: Average sensitivity of SetPSO, RnaPredict, HelixPSO and mfold on H. marismor-

tui sequence

RnaPredict

Sequence SetPSO INN-HB INN HelixPSO mfold

H. marismortui 122nt 81.6 42.1 42.1 76.3 76.3

accuracy. The average predicted mean free energy for A. lagunensis with a minimum

stem length of 3 was -125.9±1.9 kcal/mol but it increased to -106.8±3.5 kcal/mol with

a minimum stem length of 2. The resulting accuracy dropped, with on average 2 base

pairs less correctly predicted. Remember that the larger stem set for the minimum stem

length of 2 is just a superset of the minimum stem length of 3 set, and there is no reason

why the same low energy conformations cannot be predicted with the larger set.

The only explanation for the decline in the performance of the algorithm in predict-

ing the A. lagunensis sequence is the increased size of the search space. The possible

combinations of stems exploded exponentially with the number of stems increasing from

2 926 to 8 351 stems. The actual number of stems in the known conformation containing

2 or fewer base pairs is relatively low compared to the other, longer stems. The known

structure is illustrated in figure 9.3. Thus, suboptimal foldings can be predicted with

longer stems - relatively accurately - without needing finer grained building blocks to

work with. In this case, the additional shorter stems impeded the functioning of the

prediction algorithm instead of helping it.

S. cerevisiae remains unchanged

The SetPSO found a marginally better solution for S. cerevisiae with respect to the

fitness function when adding shorter stems to the set. The mean free energy decreased

from -53.4±0.0 kcal/mol to -54.1±0.0 kcal/mol, as seen in table 9.5. The number of

pairs in the predicted conformation increased from 40 to 42. But ultimately, the accuracy

of the predicted structure hardly increased. The accuracy was still around 28 correctly

predicted base pairs.

The known structure of S. cerevisiae does not contain any stems with less than

3 base pairs. Figure 9.6 shows the known structure for S. cerevisiae. Supplementing
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the universal stem set U with shorter stems did not improve the accuracy and just

adds to the computational complexity of the problem. In the case of S. cerevisiae, the

thermodynamic model used was inadequate for determining the correct folding.

H. marismortui improves dramatically

The third sequence, H. marismortui, showed the most promising results where the addi-

tional finer grained building blocks helped to improve the results of SetPSO. The mean

free energy was markedly lower from -48.4±0.0 kcal/mol to -59.2±0.0 kcal/mol. This

only resulted in 3 more predicted base pairs than with longer stems but many more

correctly predicted stems. SetPSO could predict a conformation with 31 correct base

pairs (sensitivity measure of 81.6%) instead of only 16 correct. Table 9.6 shows the sen-

sitivity obtained by all the algorithms on H. marismortui and clearly shows the SetPSO

performed the best on this sequence.

The H. marismortui sequence was able to benefit greatly from the additional shorter

sequences, as the known sequence contains two stems with 2 base pairs. It was thus

possible to take this tiny detail into account. For interest’s sake, a visual representation

of the H. marismortui conformations is given. First, figure 9.23 shows the conformation

as predicted using stems with a minimum length of 3 base pairs. Figure 9.24 shows a

combined structure visualisation of the known structure and the predicted structure of

Haloarcula marismortui 5S rRNA with shorter stems included. The green bond shows

the correctly predicted pairings. The blue bonds are pairings that are in the known

structure and not in the predicted structure (false negatives). The red bonds are wrongly

predicted pairings (false positives).

Notice in figure 9.24 that both of the stems of length 2 in the known structure are

also predicted by SetPSO.

9.9 Conclusion

SetPSO was able to determine structures with relatively low mean free energy values

and by implication, very good fitness values according to the objective function. The

most accurate structures were mostly not the structures with the best fitness value.
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Figure 9.23: The predicted structure of Haloarcula marismortui 5S rRNA using stems with

a minimum length of 3 base pairs

Figure 9.24: The predicted structure of Haloarcula marismortui 5S rRNA using stems with

a minimum length of 2 base pairs, compared to the known structure

The exact matching criteria used in determining the accuracy score make it difficult

to score a good accuracy value. Even though a predicted structure might have significant

structural similarities in term of motifs, if the base pairing is off by 1 nucleotide, it scores

as a false positive.
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The short sequences were easier to predict than the longer sequences. The search

space for the shorter sequences was significantly smaller and could easily be searched

exhaustively by the swarm. The SetPSO predicted H. marismortui solution was not

very accurate, in spite of the good fitness value attained for the molecule. This finding

was investigated in greater detail in section 9.8.

Although the results showed that the conformations found by the SetPSO are not

100% accurate, obtaining complete accuracy is impossible for a number of reasons.

Firstly, an important feature, namely pseudo knots, are not modeled in these exper-

iments because the objective function, the Vienna RNA energy calculation, does not

support the inclusion of pseudo knots. Secondly, the thermodynamic energy model is

not perfect. The model was built from observations made in laboratory experiments.

Finally, the known structures do contain non-canonical base pairs, although in limited

numbers. The energy contributions of these non-canonical base pairs cannot be deter-

mined by the objective function. The accuracy investigation was carried out in section

9.3.

The predicted structures and the known structures were compared in section 9.4. This

can also be seen as an accuracy comparison, but it focused on representing the similarity

or dissimilarity of the structures, which cannot easily be deduced from the raw figures

alone. Some parts of the conformations were accurately predicted by SetPSO, but if the

whole set of sequences is taken into account, the accuracy was not very high.

The results of SetPSO and the mfold DPA were compared in section 9.5. The SetPSO

managed to obtain results almost on par with mfold on some of the sequences.

Section 9.6 aimed to gain insight into the influence that the SetPSO parameters have

on the behaviour of the swarm. The fitness and accuracy of the swarms came under the

spotlight. In section 9.6 the parameter combinations that resulted in the best fitnesses,

highlighted a relationship between the PR and PI parameters. The best fitnesses are

obtained when both of these parameters have high values (PR = 0.8 and PI = 0.8) and

the worst fitnesses are found when these parameters have low values (PR = 0.2 and PI =

0.2). The accuracy of the SetPSO decreased when subject to a linear decreasing entropy.

It seems that the bias introduced to favour nbest and pbest stems drove the swarm to

more accurate solutions, even though the swarm exhibited less diversity. The diversity
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of the swarms showed counter intuitive results which could, however, be explained by

the above-mentioned bias in the SetPSO algorithm in section 9.7.

Fairly diverging results in section 9.8 for the different sequences where observed when

reducing the minimum stem length. Fewer stems in the set helped SetPSO to find a

better generalised solution with the A. lagunensis sequence. The smaller search space

aided the SetPSO in finding better solutions.

The predicted structures for S. cerevisiae did not differ much between the experiments

with longer and shorter stems. More finer grained stems only increased the running time

of the algorithm without gaining much in terms of accuracy of the predicted foldings.

However, the H. marismortui sequence conformation was much more accurate when

the necessary 2 base pair stem building blocks were added. Reducing stem length enabled

the algorithm to overcome a major hurdle in predicting a better sequence.

The minimum stem length experiment result raises the following question: What

would happen if the minimum stem length was increased for the longer sequences, thereby

reducing the complexity of the search space? Of course, this generalisation needs to be

balanced by the accuracy of the conformations that can be predicted with only coarser

grained building blocks. More research needs to be done to determine the impact of the

minimum stem length variable on different sequences.

 
 
 



Chapter 10

Conclusions

This chapter lists the conclusions arrived at by the work presented in this dissertation.

These conclusions are elaborated on in section 10.1. In addition, possible future research

topics that are suggested by this work are enumerated in section 10.2.

10.1 Conclusions of this dissertation

This study aimed to introduce a new set-based PSO which works on discrete solution

spaces. The newly developed SetPSO was used to predict the natural foldings of RNA

molecules, given their nucleotide sequences. A background investigation into existing

prediction methods showed that the early approaches all used DPA with various ther-

modynamic energy models. Later techniques used stochastic optimisation algorithms like

GAs, coinciding with the algorithms’ rise in popularity. Existing stochastic algorithm

approaches suggested the idea of using the PSO algorithm to predict RNA conformations.

The new SetPSO algorithm differs from the original PSO which operates in real

vector space, by operating on mathematical sets. Each set contains discrete elements

which can be added and removed from the set. In the end, the solution provided by

SetPSO is a set of elements that has been optimised by the objective function used

in the experiments. In order for the algorithm to operate on the set, a new addition

operator and subtraction operator were introduced. A distance operator analogous to

the string-edit distance operator was introduced to determine the distance from one set
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to another in the solution space.

SetPSO also introduced three new parameters, the random add probability PR, the

closing probability PC and the entropy PI . Experimental results showed that the PR

and PI parameters had the most significant influence on the performance as well as the

swarm diversity of the SetPSO. Contrary to intuition, the larger the entropy value (PI),

the less diversity the swarm exhibited. This was probably due to a bias introduced in

the velocity and position update procedures of the particles which favoured previously

found “good” stems. Stems from the nbest and pbest positions received preference to

be inserted into the new position set of a particle in the subsequent iteration. This

limits the number of randomly introduced stems. The larger the entropy, the bigger the

influence of the stems that had been in other low energy structures.

Eight sequences were tested on SetPSO, namely Homo sapiens 16S rRNA (954nt),

Xenopus laevis mitochondrial 12S rRNA (945 nt), Drosophila virilis 16S rRNA (784

nt), Caenorhabditis elegans 16S rRNA (697 nt), Aureoumbra lagunensis 18S rRNA (468

nt), Haloarcula marismortui 5S rRNA (122 nt), Arthrobacter globiformis 5S rRNA (123

nt) and Saccharomyces cerevisiae 5S rRNA (118 nt). Only five of the sequences were

discussed in detail although results for all the sequences are given in appendix A. The

conclusions reached for the 5 tested sequences can be generalised to the remaining undis-

cussed sequences.

The experimental results showed that SetPSO was able to predict structures with

relatively low mean free energies as evaluated by the Vienna RNA package. This validates

the SetPSO algorithm as an optimisation algorithm that is able to work on discrete

mathematical sets and optimise these sets.

Comparisons with RnaPredict, HelixPSO and the mfold DPA shows that further

improvement needs to be made on SetPSO’s ability to predict native conformations.

SetPSO compares favourably with RnaPredict but trails HelixPSO and mfold in accuracy

of the predicted structures. There is an upper bound to the accuracy that SetPSO can

achieve. This upper bound is given by mfold, because it exhaustively finds the lowest

energy structure under the stacking energy model used by both mfold and SetPSO.

SetPSO can only approach and match the lowest energy structures that mfold can obtain.

HelixPSO made adaptations to the objective function which improves it’s ability to
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predict more accurate structures.

Some implementation changes where made to SetPSO which helped in the energy

minimisation process. When the stems used as building blocks in the SetPSO were

shortened to 2 base pairs, experiments produced mixed results. The A. lagunensis se-

quence saw a reduction in the accuracy because of a reduction in the average fitness of

the solutions found when the shorter stems where added to the universal set. The search

space became more complex, hence the reduction in average fitness. On the other hand,

the H. marismortui sequence showed marked improvement in fitness and accuracy. This

was because the natural folding for that stem actually contained two stems with only 2

base pairs. This could not previously have been predicted because the minimum stem

length was 3 base pairs. This suggests that there is a trade-off between the accuracy of

the conformations that can be predicted and the complexity of the search space.

Even with the imperfect energy model and the inability to model pseudo knots in a

structure, SetPSO was able to generate reasonable predictions and showed that it might

be a useful optimisation algorithm for use in RNA structure prediction.

10.2 Future work

Future work suggested by this study includes the following:

1. Testing the SetPSO discrete optimisation algorithm on different domains and prob-

lems. There are a number of discrete optimisation problems that can be used to

gauge the effectiveness of SetPSO. These include applications on floorplanning,

travelling-sales man problems, packing and knapsack, minimum spanning trees,

satisfiability, path optimisation, knights cover problem, n-queens problem, layout

optimisation, vehicle routing, urban planning and FPGA placement.

2. Investigating the relation between the accuracy of the predicted stems and the min-

imum stem length allowed in the structures. Certain heuristics might be deduced

to help in predicting better structures on unseen sequences.

3. The tuning of the SetPSO control parameters might result in even better fitness

and accuracy results for RNA structure prediction. Further investigation into the
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behaviour of SetPSO with varying parameters could also be done.

4. An investigation of the performance and swarm behaviour of SetPSO when the bias

towards pbest and nbest elements is removed from the particle position updates.
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Complete Results for All Sequences

This appendix gives the results obtained for the 5 sequences discussed in the main body

and 3 additional sequences and the comparative results obtained from mfold.
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A.1 Xenopus laevis mitochondrial 12S rRNA

A.1.1 SetPSO results, constant entropy

Table A.1: Experimental results for Xenopus laevis mi-

tochondrial 12S rRNA showing the mean and standard

deviation over 30 samples.

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.8 0.6 0.8 -192.3 ± 5.0 67.3 ± 3.6 242.6 ± 6.0 67.1 ± 10.7 26.1

0.8 0.8 0.8 -192.2 ± 4.0 67.8 ± 3.3 242.3 ± 5.8 67.0 ± 10.1 26.1

0.8 0.4 0.8 -191.9 ± 3.3 68.1 ± 2.8 242.0 ± 6.1 67.2 ± 8.9 26.1

0.8 0.2 0.8 -190.8 ± 3.9 67.8 ± 2.6 239.7 ± 5.4 64.7 ± 8.4 25.2

0.8 0.2 0.6 -185.1 ± 4.2 74.2 ± 2.6 242.4 ± 5.8 67.3 ± 11.0 26.2

0.8 0.6 0.6 -184.3 ± 3.8 74.8 ± 3.0 241.4 ± 7.0 71.1 ± 11.7 27.7

0.8 0.8 0.6 -183.0 ± 5.5 75.4 ± 2.9 242.2 ± 6.1 67.9 ± 7.8 26.4

0.8 0.4 0.6 -182.7 ± 3.9 74.7 ± 3.0 241.5 ± 8.0 67.2 ± 12.1 26.1

0.8 0.2 0.4 -176.1 ± 5.0 80.7 ± 2.3 242.5 ± 5.6 67.9 ± 11.4 26.4

0.8 0.4 0.4 -173.8 ± 4.3 81.2 ± 3.1 244.2 ± 6.5 69.4 ± 13.0 27.0

0.6 0.2 0.8 -172.9 ± 3.8 76.1 ± 1.7 230.6 ± 6.3 57.7 ± 14.0 22.4

0.8 0.6 0.4 -172.9 ± 6.3 82.1 ± 3.3 242.7 ± 6.3 62.9 ± 8.9 24.5

0.6 0.4 0.8 -172.0 ± 5.2 76.8 ± 2.0 234.1 ± 5.9 60.3 ± 12.5 23.5

0.8 0.8 0.4 -171.9 ± 4.8 81.7 ± 2.5 243.4 ± 6.4 69.9 ± 12.3 27.2

0.6 0.8 0.8 -170.8 ± 5.6 74.6 ± 2.7 231.0 ± 6.6 59.3 ± 11.7 23.1

0.6 0.6 0.8 -170.7 ± 3.7 75.3 ± 2.5 231.1 ± 6.6 61.5 ± 15.4 23.9

0.6 0.2 0.6 -161.6 ± 5.3 80.3 ± 2.4 228.2 ± 4.5 59.0 ± 14.7 22.9

0.6 0.8 0.6 -160.5 ± 6.1 81.1 ± 2.0 230.5 ± 5.1 58.8 ± 10.6 22.9

0.6 0.6 0.6 -159.3 ± 6.2 81.9 ± 3.0 229.8 ± 6.1 58.7 ± 13.2 22.9

0.8 0.2 0.2 -158.8 ± 6.8 90.2 ± 2.8 245.8 ± 5.6 61.7 ± 10.9 24.0

0.6 0.4 0.6 -158.2 ± 4.6 81.9 ± 2.4 229.6 ± 7.5 57.4 ± 9.5 22.3

Continued on next page
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Table A.1 – continued from previous page

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.8 0.4 0.2 -157.2 ± 9.1 89.8 ± 3.2 246.9 ± 6.9 61.9 ± 15.1 24.1

0.8 0.6 0.2 -153.2 ± 7.7 89.8 ± 3.1 246.3 ± 4.8 61.9 ± 11.0 24.1

0.4 0.2 0.8 -151.2 ± 7.4 77.7 ± 2.3 214.4 ± 7.6 50.5 ± 11.0 19.7

0.8 0.8 0.2 -150.6 ± 6.7 89.5 ± 2.9 247.6 ± 6.3 59.7 ± 11.9 23.2

0.6 0.2 0.4 -149.4 ± 4.9 87.4 ± 2.6 229.5 ± 5.5 55.2 ± 12.3 21.5

0.4 0.8 0.8 -146.7 ± 6.7 77.5 ± 2.5 217.8 ± 5.8 50.1 ± 9.0 19.5

0.4 0.4 0.8 -146.4 ± 5.5 77.6 ± 2.4 212.9 ± 7.8 46.6 ± 11.1 18.1

0.6 0.4 0.4 -146.3 ± 6.3 87.8 ± 2.3 228.5 ± 6.3 56.1 ± 11.7 21.8

0.6 0.6 0.4 -146.1 ± 6.8 86.9 ± 1.9 231.7 ± 6.5 55.6 ± 12.9 21.6

0.4 0.6 0.8 -146.0 ± 6.0 77.9 ± 2.2 215.6 ± 6.7 52.1 ± 12.8 20.3

0.6 0.8 0.4 -143.7 ± 8.5 86.7 ± 2.4 232.5 ± 8.2 50.3 ± 7.7 19.6

0.4 0.2 0.6 -137.1 ± 5.4 82.4 ± 2.2 213.7 ± 8.5 46.8 ± 11.8 18.2

0.4 0.6 0.6 -135.6 ± 4.8 83.0 ± 2.4 216.7 ± 7.5 48.9 ± 10.4 19.0

0.4 0.8 0.6 -134.8 ± 6.2 82.6 ± 1.3 216.4 ± 6.9 49.5 ± 10.0 19.2

0.4 0.4 0.6 -134.4 ± 6.0 83.0 ± 2.1 215.9 ± 6.9 46.5 ± 8.8 18.1

0.6 0.2 0.2 -130.2 ± 8.0 95.6 ± 2.9 235.6 ± 6.5 50.5 ± 10.9 19.6

0.6 0.6 0.2 -125.2 ± 7.5 95.1 ± 2.4 233.5 ± 6.2 47.3 ± 9.0 18.4

0.6 0.4 0.2 -124.4 ± 7.7 96.1 ± 3.1 233.3 ± 6.6 47.9 ± 9.1 18.6

0.4 0.2 0.4 -123.3 ± 7.6 87.9 ± 1.5 213.5 ± 7.3 43.8 ± 10.9 17.0

0.4 0.8 0.4 -121.0 ± 7.5 88.7 ± 2.0 218.6 ± 7.9 46.6 ± 10.6 18.1

0.4 0.4 0.4 -120.2 ± 7.1 88.1 ± 2.4 216.3 ± 8.1 47.0 ± 9.9 18.3

0.6 0.8 0.2 -120.2 ± 5.5 95.4 ± 2.4 236.2 ± 8.1 42.2 ± 10.9 16.4

0.2 0.8 0.8 -118.5 ± 6.7 73.3 ± 2.6 194.4 ± 8.7 42.1 ± 11.3 16.4

0.4 0.6 0.4 -117.0 ± 7.3 88.6 ± 2.4 215.9 ± 7.9 45.4 ± 9.9 17.7

0.2 0.4 0.8 -116.8 ± 4.5 73.3 ± 2.7 188.9 ± 7.4 42.0 ± 10.2 16.3

0.2 0.2 0.8 -116.4 ± 4.9 73.2 ± 1.8 186.2 ± 6.9 39.6 ± 7.7 15.4

0.2 0.6 0.8 -115.5 ± 5.8 74.0 ± 2.2 190.5 ± 8.4 39.9 ± 9.5 15.5

Continued on next page
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Table A.1 – continued from previous page

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.2 0.8 0.6 -105.4 ± 5.6 78.5 ± 2.3 193.0 ± 9.1 36.3 ± 9.0 14.1

0.2 0.6 0.6 -104.8 ± 6.8 78.1 ± 2.4 191.0 ± 9.3 38.8 ± 10.8 15.1

0.2 0.2 0.6 -104.8 ± 6.3 77.1 ± 1.8 185.5 ± 8.9 38.1 ± 8.9 14.8

0.2 0.4 0.6 -103.6 ± 6.3 77.3 ± 1.9 185.0 ± 8.9 34.6 ± 11.5 13.5

0.4 0.2 0.2 -101.3 ± 6.0 96.5 ± 2.4 218.1 ± 8.3 38.8 ± 12.5 15.1

0.4 0.4 0.2 -100.0 ± 7.7 96.2 ± 1.7 218.7 ± 5.2 35.8 ± 9.2 13.9

0.4 0.8 0.2 -99.3 ± 6.0 95.5 ± 2.7 223.4 ± 7.8 34.7 ± 11.7 13.5

0.4 0.6 0.2 -97.8 ± 7.3 97.0 ± 2.0 224.4 ± 8.8 39.5 ± 10.0 15.4

0.2 0.8 0.4 -93.5 ± 7.1 83.2 ± 2.2 198.1 ± 9.7 36.6 ± 12.5 14.2

0.2 0.6 0.4 -91.9 ± 6.2 83.5 ± 2.0 195.4 ± 7.8 35.1 ± 8.0 13.7

0.2 0.4 0.4 -90.4 ± 4.5 82.7 ± 2.5 190.8 ± 10.6 35.6 ± 10.6 13.9

0.2 0.2 0.4 -89.8 ± 5.5 81.6 ± 2.0 185.8 ± 7.2 34.0 ± 9.0 13.2

0.2 0.8 0.2 -76.7 ± 5.3 90.5 ± 2.2 208.8 ± 6.8 31.6 ± 8.5 12.3

0.2 0.2 0.2 -74.6 ± 5.7 90.8 ± 2.3 193.5 ± 8.9 29.6 ± 10.2 11.5

0.2 0.6 0.2 -73.3 ± 5.3 91.7 ± 2.4 200.6 ± 6.4 27.6 ± 8.0 10.7

0.2 0.4 0.2 -71.0 ± 5.4 91.4 ± 2.5 195.5 ± 7.0 26.5 ± 9.0 10.3
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A.1.2 SetPSO results, linear decreasing entropy

Table A.2: Experimental results for Xenopus laevis mi-

tochondrial 12S rRNA showing the mean and standard

deviation over 30 samples.

∆G Swarm Pairs Pairs %

PR PC kcal/mol diversity Predicted Correct Correct

0.2 0.2 -111.2 ± 5.8 87.4 ± 2.0 184.7 ± 9.2 34.6 ± 8.5 13.5

0.2 0.4 -106.2 ± 4.9 88.1 ± 1.5 183.4 ± 7.2 32.3 ± 7.8 12.6

0.2 0.6 -108.0 ± 7.5 88.3 ± 1.6 188.3 ± 8.3 34.3 ± 12.8 13.4

0.2 0.8 -111.2 ± 7.0 87.5 ± 2.2 191.7 ± 9.6 37.3 ± 9.3 14.5

0.4 0.2 -142.8 ± 4.9 93.0 ± 2.1 210.9 ± 7.7 47.6 ± 12.5 18.5

0.4 0.4 -140.0 ± 6.4 93.8 ± 2.1 211.9 ± 8.5 46.0 ± 10.9 17.9

0.4 0.6 -139.8 ± 5.7 94.2 ± 2.7 216.3 ± 8.0 47.2 ± 11.4 18.4

0.4 0.8 -139.1 ± 6.3 93.2 ± 2.4 214.7 ± 8.2 45.5 ± 13.5 17.7

0.6 0.2 -165.6 ± 5.0 93.7 ± 2.2 231.6 ± 6.8 58.9 ± 10.6 22.9

0.6 0.4 -163.9 ± 5.1 93.7 ± 2.0 228.4 ± 7.3 58.3 ± 11.0 22.7

0.6 0.6 -165.8 ± 5.4 91.9 ± 2.5 228.3 ± 7.2 62.4 ± 11.7 24.3

0.6 0.8 -161.6 ± 6.8 93.5 ± 2.2 229.5 ± 8.5 55.7 ± 12.7 21.7

0.8 0.2 -187.7 ± 4.2 87.7 ± 1.8 240.9 ± 6.3 66.7 ± 13.6 26.0

0.8 0.4 -186.4 ± 4.4 87.2 ± 2.7 240.7 ± 6.3 66.9 ± 10.9 26.0

0.8 0.6 -183.9 ± 5.9 87.2 ± 2.3 238.9 ± 7.0 62.4 ± 9.0 24.3

0.8 0.8 -182.9 ± 6.0 87.4 ± 2.6 241.0 ± 5.1 62.2 ± 10.8 24.2
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A.1.3 mfold results

Table A.3: Mfold results for Xenopus laevis mitochon-

drial 12S rRNA.

mfold ∆G efn2 ∆G Pairs Pairs %

kcal/mol kcal/mol Predicted Correct Correct

-250.6 -222.85 249 92 35.8

-249.6 -219.75 251 71 27.6

-248.8 -219.63 241 97 37.7

-248.6 -218.69 246 84 32.7

-248 -216.51 245 113 44.0

-248 -213.01 242 100 38.9

-247.8 -210.87 241 84 32.7

-247.4 -209.26 243 74 28.8

-247.2 -218.3 246 79 30.7

-247.1 -215.7 244 76 29.6

-246.7 -211.01 238 69 26.8

-246.5 -221.02 244 88 34.2

-246.5 -214.62 245 68 26.5

-246.3 -223.07 248 101 39.3

-245.3 -214.07 250 103 40.1

-245 -217.38 248 62 24.1

-244.7 -215.17 243 80 31.1

-244.3 -223.49 246 86 33.5

-243.7 -213.42 237 73 28.4

-243.6 -205.9 242 91 35.4

-242.5 -202.27 251 81 31.5
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A.2 Drosophila virilis 16S rRNA

A.2.1 SetPSO results, constant entropy

Table A.4: Experimental results for Drosophila virilis

16S rRNA showing the mean and standard deviation over

30 samples.

∆G Swarm Pairs Pairs Percentage

PR PC PI kcal/mol diversity Predicted Correct Correct

0.8 0.8 0.8 -113.03±4.10 57.86±3.13 255.10±5.14 30.70±6.69 12.0

0.8 0.6 0.8 -112.90±3.87 57.21±4.05 256.57±5.46 31.47±9.24 12.3

0.8 0.2 0.8 -112.66±1.73 56.01±2.44 255.47±4.68 28.43±8.19 11.1

0.8 0.2 0.6 -102.42±4.65 66.72±2.24 255.13±7.23 32.87±10.97 12.9

0.8 0.4 0.6 -100.78±4.96 68.58±2.53 253.87±5.12 29.63±11.09 11.7

0.6 0.2 0.8 -100.05±4.08 65.73±1.99 244.83±7.22 28.30±9.03 11.6

0.6 0.4 0.8 -98.10±4.93 66.85±2.80 244.07±6.20 28.73±9.46 11.8

0.8 0.8 0.6 -97.16±7.10 70.88±2.83 252.63±6.10 28.23±10.21 11.2

0.6 0.8 0.8 -96.87±6.60 67.88±2.26 247.50±7.88 27.30±7.66 11.0

0.8 0.6 0.6 -96.53±4.64 71.01±3.20 252.47±6.29 32.47±9.78 12.9

0.6 0.6 0.8 -96.10±4.48 68.76±2.59 247.37±6.46 30.40±10.20 12.3

0.8 0.2 0.4 -84.65±5.30 75.77±2.21 249.50±5.21 33.90±7.31 13.6

0.6 0.2 0.6 -83.62±3.92 74.74±1.64 244.43±6.61 28.00±12.90 11.5

0.4 0.2 0.8 -81.17±4.18 69.68±2.08 231.07±7.35 28.87±13.85 12.5

0.8 0.4 0.4 -80.04±5.83 78.43±2.12 248.97±6.33 31.47±8.76 12.6

0.6 0.4 0.6 -79.96±6.72 74.82±1.95 242.53±6.76 30.03±11.09 12.4

0.4 0.8 0.8 -77.19±7.46 71.57±2.60 232.53±8.53 27.80±9.39 12.0

0.4 0.4 0.8 -76.73±4.45 70.84±1.67 230.50±7.20 27.93±9.18 12.1

0.4 0.6 0.8 -76.33±5.71 71.41±1.81 232.10±7.68 27.33±10.20 11.8

0.6 0.6 0.6 -75.94±5.36 75.36±1.73 239.33±5.55 27.07±9.48 11.3

0.8 0.6 0.4 -75.72±5.38 79.50±1.39 248.03±7.23 38.80±8.17 15.6

Continued on next page
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Table A.4 – continued from previous page

∆G Swarm Pairs Pairs Percentage

PR PC PI kcal/mol diversity Predicted Correct Correct

0.8 0.8 0.4 -74.16±5.86 80.90±2.01 248.20±5.75 28.03±9.25 11.3

0.6 0.8 0.6 -73.59±5.32 77.29±1.93 239.33±6.91 31.57±10.07 13.2

0.4 0.2 0.6 -65.47±5.88 74.95±2.04 229.47±8.92 26.20±10.09 11.4

0.6 0.2 0.4 -61.77±5.51 81.54±1.89 237.00±8.06 30.43±10.29 12.8

0.4 0.4 0.6 -59.05±5.03 77.21±1.87 226.53±7.47 29.67±11.17 13.1

0.2 0.2 0.8 -59.00±3.89 67.64±1.73 206.00±7.95 23.37±9.34 11.3

0.6 0.4 0.4 -57.90±7.80 83.17±2.73 236.17±9.22 32.77±11.82 13.9

0.4 0.6 0.6 -57.20±4.95 77.64±2.12 225.67±8.61 29.90±13.25 13.2

0.8 0.2 0.2 -55.49±5.27 88.36±2.30 245.93±7.74 24.87±9.13 10.1

0.4 0.8 0.6 -55.00±6.95 78.59±2.18 226.30±8.67 27.90±13.57 12.3

0.2 0.4 0.8 -54.59±4.68 68.45±2.15 203.53±7.75 26.13±10.20 12.8

0.6 0.6 0.4 -54.29±6.60 84.65±2.27 235.80±7.14 27.60±11.77 11.7

0.6 0.8 0.4 -52.17±5.32 84.45±1.98 235.77±7.53 25.93±12.24 11.0

0.2 0.6 0.8 -51.16±4.81 69.26±2.04 201.97±9.06 20.73±11.30 10.3

0.2 0.8 0.8 -50.80±4.64 68.48±1.87 205.07±6.44 21.83±10.92 10.6

0.8 0.4 0.2 -49.32±5.62 90.33±2.12 244.77±6.85 27.93±10.83 11.4

0.8 0.6 0.2 -47.51±6.56 90.69±2.46 242.70±6.30 26.27±10.47 10.8

0.8 0.8 0.2 -44.79±8.96 91.81±1.83 242.90±4.93 24.77±9.02 10.2

0.4 0.2 0.4 -42.85±5.58 82.52±1.66 223.30±6.47 20.40±10.50 9.1

0.2 0.2 0.6 -41.42±4.46 71.61±1.94 199.30±7.52 22.03±10.87 11.1

0.2 0.4 0.6 -37.58±6.17 72.88±2.18 199.30±8.60 23.97±11.31 12.0

0.4 0.4 0.4 -37.01±4.92 83.56±1.47 223.23±7.54 24.07±10.55 10.8

0.2 0.6 0.6 -35.37±5.24 73.75±1.76 199.97±7.50 20.97±11.00 10.5

0.4 0.6 0.4 -34.95±5.44 83.93±1.56 217.87±5.48 22.33±11.67 10.2

0.2 0.8 0.6 -33.87±6.14 73.94±1.66 200.30±8.96 19.33±9.35 9.7

0.4 0.8 0.4 -31.35±7.53 85.09±1.38 219.73±8.03 22.37±10.41 10.2

0.6 0.2 0.2 -30.49±6.53 92.05±2.12 232.63±8.04 23.33±13.18 10.0

Continued on next page
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Table A.4 – continued from previous page

∆G Swarm Pairs Pairs Percentage

PR PC PI kcal/mol diversity Predicted Correct Correct

0.6 0.4 0.2 -22.89±5.60 93.77±1.52 231.57±8.31 17.83±6.77 7.7

0.2 0.2 0.4 -21.28±6.14 78.31±2.13 197.40±8.35 18.90±8.60 9.6

0.6 0.6 0.2 -19.83±5.94 94.15±1.92 229.03±7.72 19.77±7.83 8.6

0.2 0.4 0.4 -18.39±4.68 78.77±1.98 195.80±6.96 16.13±8.22 8.2

0.6 0.8 0.2 -18.16±6.67 95.38±1.50 232.37±6.07 15.30±8.81 6.6

0.2 0.6 0.4 -14.12±3.57 79.94±1.96 198.10±7.05 16.00±9.55 8.1

0.2 0.8 0.4 -12.58±4.70 81.22±1.31 199.63±7.09 15.73±9.92 7.9

0.4 0.2 0.2 -10.08±6.16 92.06±1.85 216.57±8.75 18.37±10.99 8.5

0.4 0.4 0.2 -4.20±4.45 93.52±1.88 216.33±6.23 15.33±8.30 7.1

0.4 0.6 0.2 -1.22±4.65 94.44±2.09 214.73±7.31 14.00±8.15 6.5

0.4 0.8 0.2 0.44±6.50 94.98±2.07 217.20±8.27 12.97±8.19 6.0

0.2 0.2 0.2 6.99±6.61 87.67±1.49 197.50±8.57 11.70±6.78 5.9

0.2 0.4 0.2 8.59±7.12 87.74±1.58 194.93±7.84 12.03±9.32 6.2

0.2 0.6 0.2 11.98±6.36 88.73±1.93 196.20±6.35 9.63±7.38 4.9

0.2 0.8 0.2 12.61±5.31 88.89±2.18 196.97±6.70 11.60±7.59 5.9
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A.2.2 SetPSO results, linear decreasing entropy

Table A.5: Experimental results for Drosophila virilis

16S rRNA showing the mean and standard deviation over

30 samples.

∆G Swarm Pairs Pairs %

PR PC kcal/mol diversity Predicted Correct Correct

0.2 0.2 -53.8 ± 4.8 82.8 ± 1.3 203.8 ± 5.5 20.8 ± 10.4 8.9

0.2 0.4 -51.0 ± 6.6 83.0 ± 2.0 202.0 ± 7.6 19.4 ± 9.9 8.3

0.2 0.6 -47.7 ± 5.1 83.3 ± 1.3 201.1 ± 9.3 19.9 ± 11.7 8.5

0.2 0.8 -49.2 ± 7.4 83.8 ± 2.4 202.1 ± 8.3 20.6 ± 9.4 8.9

0.4 0.2 -78.8 ± 4.8 87.8 ± 1.4 229.7 ± 6.3 26.3 ± 7.8 11.3

0.4 0.4 -73.8 ± 6.3 88.0 ± 1.7 229.5 ± 8.5 27.0 ± 10.4 11.6

0.4 0.6 -72.9 ± 5.0 87.5 ± 1.7 226.8 ± 5.5 23.4 ± 11.3 10.1

0.4 0.8 -71.4 ± 7.4 88.5 ± 1.6 228.9 ± 6.6 27.4 ± 6.9 11.8

0.6 0.2 -95.9 ± 4.4 88.3 ± 1.3 247.3 ± 7.5 29.5 ± 10.0 12.6

0.6 0.4 -95.0 ± 3.8 88.4 ± 1.3 244.5 ± 7.5 32.2 ± 9.3 13.8

0.6 0.6 -92.6 ± 4.9 89.6 ± 2.0 245.7 ± 5.9 25.9 ± 10.3 11.1

0.6 0.8 -92.5 ± 5.0 89.0 ± 1.3 245.0 ± 7.3 26.7 ± 9.9 11.5

0.8 0.2 -108.9 ± 3.9 82.8 ± 2.1 256.6 ± 4.7 29.5 ± 5.7 12.7

0.8 0.4 -107.7 ± 3.6 84.0 ± 1.9 255.6 ± 5.8 25.1 ± 6.9 10.8

0.8 0.6 -108.3 ± 3.7 84.6 ± 1.9 256.4 ± 4.3 27.9 ± 8.1 12.0

0.8 0.8 -107.6 ± 5.4 84.2 ± 2.3 254.3 ± 5.7 33.0 ± 8.1 14.2
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A.2.3 mfold results

Table A.6: mfold results for suboptimal foldings of

Drosophila virilis 16S rRNA

mfold ∆G efn2 ∆G Pairs Pairs %

kcal/mol kcal/mol Predicted Correct Correct

-146.3 -124.43 236 37 15.9

-146.3 -128.56 238 37 15.9

-146.2 -124.07 246 37 15.9

-146.1 -126.92 243 21 9.0

-145.8 -126.59 257 37 15.9

-145.5 -123.19 253 68 29.2

-145.4 -123.30 261 44 18.9

-145.1 -126.92 232 27 11.6

-145.0 -123.57 256 37 15.9

-144.7 -128.43 265 49 21.0

-144.4 -125.39 271 31 13.3

-144.3 -125.03 246 38 16.3

-144.2 -124.69 228 33 14.2

-144.2 -124.04 247 37 15.9

-143.9 -121.32 249 27 11.6

-143.7 -129.30 251 28 12.0

-143.5 -122.97 245 37 15.9

-142.9 -120.17 253 68 29.2

-142.8 -120.26 252 82 35.2

-142.5 -122.76 230 26 11.2

-142.4 -116.91 237 22 9.4

-142.4 -121.04 255 82 35.2

-142.3 -123.88 253 38 16.3

-142.1 -126.36 249 21 9.0

Continued on next page
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Table A.6 – continued from previous page

mfold ∆G efn2 ∆G Pairs Pairs %

kcal/mol kcal/mol Predicted Correct Correct

-141.8 -118.65 246 79 33.9

-141.4 -125.98 244 28 12.0

-141.2 -131.55 254 33 14.2

-141.1 -120.77 242 39 16.7
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A.3 Aureoumbra lagunensis 18S rRNA

A.3.1 SetPSO results, constant entropy

Table A.7: Experimental results for Aureoumbra la-

gunensis 18S rRNA showing the mean and standard de-

viation over 30 samples.

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.8 0.8 0.8 -128.3 ± 1.8 29.1 ± 2.2 128.6 ± 3.0 47.1 ± 7.7 41.7

0.8 0.6 0.8 -127.7 ± 0.9 29.1 ± 2.3 128.0 ± 2.7 44.7 ± 6.1 39.6

0.8 0.4 0.8 -126.5 ± 1.9 31.5 ± 2.1 127.1 ± 2.8 46.7 ± 4.8 41.3

0.8 0.6 0.6 -126.1 ± 2.8 33.2 ± 2.0 128.0 ± 3.5 45.0 ± 5.8 39.8

0.8 0.8 0.6 -125.8 ± 2.3 32.0 ± 2.7 127.7 ± 4.1 43.3 ± 5.0 38.3

0.8 0.4 0.6 -124.5 ± 2.1 34.6 ± 2.5 126.8 ± 3.8 45.9 ± 7.3 40.6

0.8 0.2 0.8 -124.0 ± 0.9 31.8 ± 2.7 127.1 ± 2.5 45.6 ± 6.2 40.4

0.8 0.2 0.6 -122.9 ± 1.5 34.6 ± 1.4 127.9 ± 2.0 46.8 ± 8.2 41.4

0.8 0.6 0.4 -121.5 ± 3.1 39.8 ± 2.2 127.2 ± 3.0 45.5 ± 8.9 40.2

0.6 0.6 0.8 -120.8 ± 3.6 36.2 ± 1.8 122.9 ± 3.6 47.6 ± 9.8 42.2

0.6 0.8 0.8 -120.5 ± 3.1 35.4 ± 2.2 122.9 ± 5.2 47.8 ± 8.6 42.3

0.8 0.2 0.4 -120.2 ± 2.3 40.0 ± 2.3 127.8 ± 3.5 45.2 ± 8.2 40.0

0.8 0.4 0.4 -120.0 ± 3.4 40.3 ± 2.1 127.5 ± 2.3 43.0 ± 7.3 38.0

0.8 0.8 0.4 -119.8 ± 4.1 39.6 ± 2.5 127.2 ± 3.8 45.1 ± 7.2 39.9

0.6 0.4 0.8 -117.7 ± 2.6 36.9 ± 1.6 122.0 ± 4.0 46.3 ± 8.1 41.0

0.6 0.2 0.8 -117.5 ± 3.1 37.8 ± 1.2 120.3 ± 5.8 48.5 ± 12.0 42.9

0.6 0.6 0.6 -114.8 ± 3.3 40.3 ± 1.5 122.3 ± 4.6 45.0 ± 11.0 39.8

0.6 0.8 0.6 -114.4 ± 3.5 39.9 ± 1.0 122.1 ± 3.2 46.3 ± 7.7 40.9

0.6 0.4 0.6 -113.0 ± 3.2 41.2 ± 1.5 121.0 ± 3.4 45.6 ± 8.4 40.4

0.6 0.2 0.6 -111.7 ± 3.4 40.8 ± 1.3 120.0 ± 4.3 42.0 ± 9.1 37.2

0.4 0.8 0.8 -110.2 ± 4.3 37.9 ± 1.7 118.4 ± 4.8 45.4 ± 9.5 40.2

Continued on next page
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Table A.7 – continued from previous page

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.8 0.2 0.2 -109.8 ± 4.7 47.0 ± 1.3 125.4 ± 3.1 35.6 ± 11.8 31.5

0.4 0.6 0.8 -108.0 ± 2.8 38.4 ± 1.5 114.8 ± 5.5 43.3 ± 7.6 38.3

0.8 0.4 0.2 -107.9 ± 4.5 46.6 ± 1.5 125.3 ± 4.4 33.6 ± 10.8 29.8

0.6 0.8 0.4 -107.5 ± 5.3 44.6 ± 1.6 122.2 ± 4.0 37.4 ± 8.0 33.1

0.8 0.8 0.2 -106.5 ± 5.5 47.4 ± 1.6 126.7 ± 3.8 31.3 ± 14.6 27.7

0.4 0.2 0.8 -105.8 ± 3.5 39.6 ± 1.5 111.6 ± 5.7 39.0 ± 10.3 34.5

0.8 0.6 0.2 -105.5 ± 6.4 47.8 ± 1.8 125.7 ± 3.7 35.3 ± 13.7 31.2

0.6 0.6 0.4 -105.3 ± 5.0 45.6 ± 1.9 122.8 ± 5.2 37.0 ± 11.6 32.7

0.6 0.4 0.4 -105.2 ± 6.4 45.5 ± 1.8 121.1 ± 5.1 39.7 ± 10.5 35.1

0.4 0.4 0.8 -104.7 ± 3.6 39.7 ± 1.5 110.0 ± 5.7 39.1 ± 10.2 34.6

0.6 0.2 0.4 -104.4 ± 3.3 45.3 ± 1.0 118.1 ± 3.9 42.2 ± 8.5 37.3

0.4 0.8 0.6 -102.1 ± 4.8 41.4 ± 1.5 114.1 ± 4.6 37.5 ± 12.0 33.2

0.4 0.2 0.6 -100.3 ± 4.5 42.2 ± 1.4 111.0 ± 4.7 40.3 ± 8.0 35.6

0.4 0.6 0.6 -99.6 ± 4.1 42.6 ± 1.1 112.1 ± 3.7 39.2 ± 12.2 34.7

0.4 0.4 0.6 -99.0 ± 2.9 42.4 ± 1.4 111.6 ± 4.7 36.7 ± 13.5 32.5

0.2 0.8 0.8 -94.6 ± 4.4 36.6 ± 1.5 106.8 ± 5.6 38.6 ± 12.1 34.1

0.6 0.2 0.2 -92.5 ± 3.7 49.8 ± 1.8 119.2 ± 4.0 27.6 ± 11.3 24.4

0.6 0.4 0.2 -90.9 ± 5.7 50.9 ± 1.3 119.8 ± 4.9 30.3 ± 12.5 26.8

0.2 0.6 0.8 -90.9 ± 3.7 37.3 ± 1.8 101.5 ± 6.3 33.0 ± 10.1 29.2

0.4 0.8 0.4 -90.8 ± 3.6 45.4 ± 1.8 113.7 ± 5.5 28.8 ± 12.6 25.5

0.6 0.6 0.2 -90.7 ± 6.3 50.1 ± 1.5 120.6 ± 4.8 25.4 ± 10.4 22.5

0.4 0.2 0.4 -90.4 ± 4.2 44.8 ± 1.5 109.3 ± 5.5 27.6 ± 10.8 24.4

0.4 0.4 0.4 -90.1 ± 3.7 46.4 ± 0.5 111.6 ± 5.5 27.4 ± 11.1 24.3

0.6 0.8 0.2 -90.0 ± 6.3 50.8 ± 1.6 123.4 ± 3.2 23.3 ± 10.6 20.6

0.4 0.6 0.4 -89.9 ± 5.3 45.9 ± 1.5 112.5 ± 5.0 27.5 ± 10.7 24.3

0.2 0.4 0.8 -88.8 ± 3.7 38.5 ± 2.0 100.9 ± 5.1 38.6 ± 9.6 34.2

0.2 0.8 0.6 -86.7 ± 5.8 39.2 ± 1.7 103.2 ± 5.3 33.9 ± 10.4 30.0

Continued on next page
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Table A.7 – continued from previous page

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.2 0.2 0.8 -86.5 ± 3.0 38.1 ± 1.2 97.3 ± 4.3 26.5 ± 8.8 23.5

0.2 0.6 0.6 -84.1 ± 3.7 39.9 ± 1.0 101.3 ± 4.1 31.6 ± 10.5 27.9

0.2 0.4 0.6 -81.9 ± 4.4 40.4 ± 0.9 99.5 ± 5.3 29.5 ± 9.2 26.1

0.2 0.2 0.6 -81.4 ± 3.8 39.3 ± 1.3 96.9 ± 5.9 26.4 ± 11.2 23.4

0.4 0.2 0.2 -79.8 ± 4.5 50.6 ± 1.3 113.2 ± 4.6 23.3 ± 11.4 20.6

0.2 0.8 0.4 -78.8 ± 4.1 42.5 ± 1.2 104.8 ± 4.9 26.6 ± 10.8 23.5

0.4 0.4 0.2 -78.0 ± 4.1 50.7 ± 1.1 114.9 ± 4.5 19.5 ± 8.6 17.3

0.4 0.6 0.2 -77.6 ± 4.3 50.5 ± 1.5 114.7 ± 5.2 19.8 ± 7.2 17.5

0.4 0.8 0.2 -76.9 ± 4.8 49.6 ± 1.2 115.3 ± 4.5 21.0 ± 9.6 18.6

0.2 0.6 0.4 -75.0 ± 4.2 42.8 ± 0.9 101.0 ± 4.9 25.2 ± 10.9 22.3

0.2 0.4 0.4 -74.3 ± 3.6 43.1 ± 0.9 100.4 ± 5.2 23.4 ± 7.7 20.7

0.2 0.2 0.4 -73.7 ± 3.0 42.7 ± 1.7 98.9 ± 6.1 21.6 ± 6.3 19.1

0.2 0.8 0.2 -68.0 ± 4.2 47.5 ± 1.4 109.0 ± 4.7 16.7 ± 7.4 14.8

0.2 0.6 0.2 -66.8 ± 3.2 47.7 ± 1.2 106.7 ± 6.6 19.9 ± 9.2 17.6

0.2 0.2 0.2 -66.4 ± 4.8 47.4 ± 1.2 103.1 ± 5.1 17.7 ± 8.6 15.7

0.2 0.4 0.2 -64.9 ± 2.8 47.5 ± 1.0 103.5 ± 4.4 17.1 ± 7.2 15.1
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A.3.2 SetPSO results, linear decreasing entropy

Table A.8: Experimental results for Aureoumbra la-

gunensis 18S rRNA showing the mean and standard de-

viation over 30 samples.

∆G Swarm Pairs Pairs %

PR PC kcal/mol diversity Predicted Correct Correct

0.8 0.8 -125.9 ± 1.9 40.9 ± 1.9 129.0 ± 3.8 46.5 ± 6.9 41.1

0.8 0.6 -124.6 ± 1.6 43.0 ± 1.0 127.7 ± 2.7 44.2 ± 7.0 39.1

0.8 0.4 -123.7 ± 1.7 44.5 ± 1.9 127.7 ± 2.9 44.7 ± 6.5 39.5

0.8 0.2 -123.0 ± 2.1 45.0 ± 1.3 128.5 ± 3.8 45.3 ± 6.6 40.1

0.6 0.6 -115.2 ± 3.6 48.4 ± 1.2 119.6 ± 4.5 44.6 ± 9.8 39.5

0.6 0.8 -114.9 ± 3.9 48.0 ± 1.4 122.1 ± 3.7 43.1 ± 9.8 38.2

0.6 0.4 -114.3 ± 3.0 48.7 ± 1.3 121.1 ± 4.7 45.7 ± 9.2 40.4

0.6 0.2 -113.9 ± 3.6 49.0 ± 1.3 118.9 ± 4.4 44.3 ± 8.1 39.2

0.4 0.2 -102.5 ± 3.8 49.3 ± 0.9 109.5 ± 5.2 37.1 ± 11.2 32.8

0.4 0.6 -102.2 ± 4.3 49.3 ± 1.7 113.7 ± 5.5 41.2 ± 9.8 36.5

0.4 0.8 -102.0 ± 3.7 48.6 ± 1.2 113.4 ± 6.0 39.4 ± 10.0 34.9

0.4 0.4 -99.8 ± 3.2 49.5 ± 1.1 111.6 ± 3.8 40.9 ± 8.5 36.2

0.2 0.8 -89.5 ± 5.1 45.5 ± 1.1 102.9 ± 6.5 30.5 ± 10.6 27.0

0.2 0.6 -85.3 ± 4.5 46.4 ± 1.5 101.5 ± 5.2 26.4 ± 10.6 23.3

0.2 0.2 -83.2 ± 4.0 46.3 ± 1.4 98.3 ± 6.3 27.1 ± 9.4 24.0

0.2 0.4 -82.4 ± 3.5 46.1 ± 1.0 98.6 ± 5.6 24.8 ± 9.6 22.0
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A.3.3 SetPSO results, minimum stem length of 2

Table A.9: Experimental results for Aureoumbra la-

gunensis 18S rRNA with a minimum stem length of 2

showing the mean and standard deviation over 30 sam-

ples.

∆G Swarm Pairs Pairs %

PR PC kcal/mol diversity Predicted Correct Correct

0.8 0.2 -106.8 ± 3.5 67.4 ± 1.2 133.3 ± 2.9 44.4 ± 8.7 39.3

0.8 0.4 -106.3 ± 4.9 68.9 ± 1.2 134.0 ± 3.4 43.5 ± 9.1 38.5

0.8 0.8 -105.7 ± 5.4 68.6 ± 2.1 132.1 ± 4.1 37.9 ± 12.6 33.5

0.8 0.6 -103.9 ± 5.0 68.4 ± 1.2 130.8 ± 3.3 40.0 ± 13.8 35.4

0.6 0.2 -96.6 ± 6.4 70.9 ± 1.8 127.2 ± 4.7 37.0 ± 12.0 32.7

0.6 0.4 -92.3 ± 4.6 71.0 ± 1.6 126.3 ± 4.0 34.5 ± 9.2 30.5

0.6 0.8 -92.1 ± 4.0 72.1 ± 1.4 126.6 ± 3.4 34.7 ± 11.9 30.7

0.6 0.6 -91.2 ± 6.7 71.7 ± 1.1 126.1 ± 3.9 32.5 ± 11.9 28.8

0.4 0.2 -82.8 ± 4.7 70.2 ± 1.4 119.7 ± 4.2 27.7 ± 9.8 24.5

0.4 0.4 -80.3 ± 6.3 71.4 ± 1.5 120.1 ± 5.0 30.4 ± 10.4 26.9

0.4 0.8 -76.3 ± 5.3 71.9 ± 1.4 118.1 ± 3.7 29.1 ± 10.3 25.8

0.4 0.6 -76.3 ± 4.9 71.9 ± 1.6 119.2 ± 4.2 27.2 ± 10.9 24.1

0.2 0.2 -62.3 ± 5.3 66.6 ± 2.4 105.9 ± 5.7 19.7 ± 8.8 17.5

0.2 0.4 -58.6 ± 5.2 67.0 ± 1.7 106.2 ± 3.9 20.3 ± 8.9 18.0

0.2 0.6 -58.6 ± 7.2 66.9 ± 1.0 105.8 ± 6.2 19.2 ± 8.7 17.0

0.2 0.8 -56.7 ± 5.8 67.1 ± 0.9 106.6 ± 4.1 20.7 ± 7.8 18.3
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A.3.4 mfold results

Table A.10: mfold results for suboptimal foldings of Au-

reoumbra lagunensis

mfold ∆G efn2 ∆G Pairs Pairs %

kcal/mol kcal/mol Predicted Correct Correct

-160.1 -142.35 128 60 53.1

-159.7 -143.71 136 60 53.1

-158.1 -141.78 134 60 53.1

-156.6 -143.17 134 61 54.0

-156.4 -138.52 133 63 55.8

-156.2 -140.50 132 60 53.1

-155.7 -143.49 137 72 63.7

-154.5 -141.88 131 72 63.7

-154.5 -138.76 130 72 63.7

-153.9 -136.16 133 48 42.5

-153.8 -136.47 140 60 53.1

-153.8 -140.57 133 74 65.5

-153.4 -134.89 125 51 45.1

-153.3 -140.79 131 60 53.1
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A.4 Haloarcula marismortui 5S rRNA

A.4.1 SetPSO results, constant entropy

Table A.11: Experimental results for Haloarcula maris-

mortui 5S rRNA showing the mean and standard devia-

tion over 30 samples.

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.2 0.4 0.6 -48.4 ± 0.0 8.4 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.2 0.4 0.8 -48.4 ± 0.0 7.7 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.2 0.6 0.6 -48.4 ± 0.0 7.5 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.2 0.6 0.8 -48.4 ± 0.0 7.0 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.2 0.8 0.6 -48.4 ± 0.0 6.6 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.2 0.8 0.8 -48.4 ± 0.0 6.1 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.4 0.2 0.4 -48.4 ± 0.0 9.9 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.4 0.2 0.6 -48.4 ± 0.0 8.8 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.4 0.2 0.8 -48.4 ± 0.0 8.2 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.4 0.4 0.4 -48.4 ± 0.0 9.4 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.4 0.4 0.6 -48.4 ± 0.0 8.0 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.4 0.4 0.8 -48.4 ± 0.0 7.5 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.4 0.6 0.6 -48.4 ± 0.0 7.5 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.4 0.6 0.8 -48.4 ± 0.0 7.0 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.4 0.8 0.4 -48.4 ± 0.0 8.4 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.4 0.8 0.6 -48.4 ± 0.0 7.2 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.4 0.8 0.8 -48.4 ± 0.0 6.6 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.6 0.2 0.4 -48.4 ± 0.0 9.0 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.6 0.2 0.6 -48.4 ± 0.0 7.9 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.6 0.2 0.8 -48.4 ± 0.0 7.4 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.6 0.4 0.4 -48.4 ± 0.0 8.9 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

Continued on next page
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Table A.11 – continued from previous page

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.6 0.4 0.6 -48.4 ± 0.0 7.2 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.6 0.4 0.8 -48.4 ± 0.0 6.9 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.6 0.6 0.4 -48.4 ± 0.0 8.2 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.6 0.6 0.6 -48.4 ± 0.0 7.2 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.6 0.6 0.8 -48.4 ± 0.0 6.2 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.6 0.8 0.4 -48.4 ± 0.0 7.9 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.6 0.8 0.6 -48.4 ± 0.0 7.0 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.6 0.8 0.8 -48.4 ± 0.0 6.3 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.2 0.2 -48.4 ± 0.0 9.7 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.2 0.4 -48.4 ± 0.0 7.6 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.2 0.6 -48.4 ± 0.0 7.1 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.2 0.8 -48.4 ± 0.0 6.7 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.4 0.2 -48.4 ± 0.0 10.0 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.4 0.4 -48.4 ± 0.0 7.4 ± 0.6 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.4 0.6 -48.4 ± 0.0 6.5 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.4 0.8 -48.4 ± 0.0 6.1 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.6 0.4 -48.4 ± 0.0 7.2 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.6 0.6 -48.4 ± 0.0 6.2 ± 0.1 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.6 0.8 -48.4 ± 0.0 5.6 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.8 0.4 -48.4 ± 0.0 6.6 ± 0.7 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.8 0.6 -48.4 ± 0.0 5.8 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.8 0.8 -48.4 ± 0.0 5.6 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.2 0.4 0.4 -48.3 ± 0.0 9.4 ± 0.0 32.8 ± 0.0 16.7 ± 2.6 44.0

0.2 0.6 0.4 -48.3 ± 0.0 8.7 ± 0.0 33.0 ± 0.0 15.9 ± 0.0 41.8

0.8 0.6 0.2 -48.3 ± 0.0 9.6 ± 0.8 33.0 ± 0.0 15.9 ± 0.0 41.8

0.4 0.6 0.4 -48.2 ± 0.0 8.9 ± 0.0 32.9 ± 0.0 15.7 ± 0.0 41.4

0.6 0.2 0.2 -48.2 ± 0.0 11.2 ± 0.0 32.8 ± 0.0 16.6 ± 2.7 43.7
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Table A.11 – continued from previous page

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.2 0.2 0.8 -48.2 ± 0.0 8.7 ± 0.0 32.8 ± 0.0 16.1 ± 2.0 42.4

0.2 0.8 0.4 -48.1 ± 0.4 7.8 ± 0.5 33.2 ± 0.0 15.0 ± 2.8 39.5

0.6 0.4 0.2 -48.0 ± 0.0 11.3 ± 0.0 33.0 ± 0.0 15.5 ± 0.9 40.7

0.8 0.8 0.2 -48.0 ± 0.5 9.9 ± 0.4 33.1 ± 0.0 15.1 ± 2.4 39.7

0.2 0.2 0.6 -47.9 ± 0.0 9.2 ± 0.0 32.6 ± 0.0 16.6 ± 3.6 43.6

0.6 0.6 0.2 -47.5 ± 1.0 11.2 ± 0.0 33.0 ± 0.0 14.7 ± 3.7 38.7

0.2 0.2 0.4 -47.2 ± 0.7 10.2 ± 0.0 32.2 ± 0.7 16.9 ± 5.3 44.4

0.4 0.2 0.2 -47.0 ± 1.0 11.6 ± 0.0 32.4 ± 1.2 16.5 ± 5.7 43.5

0.6 0.8 0.2 -47.0 ± 1.2 10.8 ± 0.0 33.1 ± 0.2 13.5 ± 3.0 35.6

0.4 0.4 0.2 -46.6 ± 1.0 11.3 ± 0.0 32.8 ± 1.0 13.8 ± 3.5 36.4

0.4 0.6 0.2 -46.6 ± 1.2 11.0 ± 0.0 33.2 ± 1.0 13.0 ± 4.4 34.3

0.4 0.8 0.2 -46.0 ± 1.1 10.0 ± 1.2 33.6 ± 1.2 10.9 ± 5.9 28.8

0.2 0.6 0.2 -45.5 ± 1.0 10.9 ± 0.0 33.3 ± 1.4 11.5 ± 5.5 30.2

0.2 0.4 0.2 -45.3 ± 1.2 11.2 ± 0.0 33.1 ± 1.4 12.0 ± 4.8 31.6

0.2 0.8 0.2 -45.2 ± 1.4 9.5 ± 1.2 33.6 ± 1.2 9.2 ± 4.0 24.2

0.2 0.2 0.2 -44.5 ± 1.0 11.0 ± 0.0 32.1 ± 1.5 14.4 ± 5.5 37.9
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A.4.2 SetPSO results, linear decreasing entropy

Table A.12: Experimental results for Haloarcula maris-

mortui 5S rRNA showing the mean and standard devia-

tion over 30 samples.

∆G Swarm Pairs Pairs %

PR PC kcal/mol diversity Predicted Correct Correct

0.8 0.8 -48.4 ± 0.0 10.0 ± 0.8 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.6 -48.4 ± 0.0 10.1 ± 0.7 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.4 -48.4 ± 0.0 10.3 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.8 0.2 -48.4 ± 0.0 10.0 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.6 0.8 -48.4 ± 0.0 11.0 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.6 0.6 -48.4 ± 0.0 11.6 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.6 0.4 -48.4 ± 0.0 11.3 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.6 0.2 -48.4 ± 0.0 11.6 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.4 0.8 -48.4 ± 0.0 10.9 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.4 0.6 -48.4 ± 0.0 11.3 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.4 0.4 -48.4 ± 0.0 11.7 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.4 0.2 -48.4 ± 0.0 12.0 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.2 0.8 -48.4 ± 0.0 9.4 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.2 0.6 -48.4 ± 0.0 10.0 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.2 0.4 -48.4 ± 0.0 11.1 ± 0.0 33.0 ± 0.0 16.0 ± 0.0 42.1

0.2 0.2 -47.8 ± 0.5 11.5 ± 0.0 32.6 ± 0.0 15.9 ± 3.2 41.9
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A.4.3 SetPSO results, minimum stem length of 2

Table A.13: Experimental results for Haloarcula maris-

mortui 5S rRNA with a minimum stem length of 2 show-

ing the mean and standard deviation over 30 samples.

∆G Swarm Pairs Pairs %

PR PC kcal/mol diversity Predicted Correct Correct

0.8 0.8 -59.2 ± 0.0 14.7 ± 0.5 36.0 ± 0.0 31.0 ± 0.0 81.6

0.8 0.6 -59.2 ± 0.0 15.9 ± 0.8 36.0 ± 0.0 31.0 ± 0.0 81.6

0.8 0.4 -59.2 ± 0.0 16.6 ± 0.4 36.0 ± 0.0 31.0 ± 0.0 81.6

0.8 0.2 -59.2 ± 0.0 17.3 ± 0.0 36.0 ± 0.0 31.0 ± 0.0 81.6

0.6 0.6 -59.2 ± 0.0 17.4 ± 0.0 36.0 ± 0.0 31.0 ± 0.0 81.6

0.6 0.4 -59.2 ± 0.0 18.1 ± 0.0 36.0 ± 0.0 31.0 ± 0.0 81.6

0.4 0.8 -59.2 ± 0.0 17.0 ± 0.0 36.0 ± 0.0 31.0 ± 0.0 81.6

0.6 0.8 -59.2 ± 0.0 16.8 ± 0.0 36.1 ± 0.0 31.0 ± 0.0 81.6

0.6 0.2 -58.8 ± 0.0 19.3 ± 0.0 36.5 ± 0.0 31.0 ± 0.0 81.6

0.4 0.6 -58.5 ± 1.3 17.9 ± 0.0 36.2 ± 0.0 30.1 ± 3.7 79.2

0.4 0.4 -58.3 ± 1.1 18.9 ± 0.0 36.5 ± 0.2 29.9 ± 3.9 78.7

0.2 0.8 -57.3 ± 2.5 15.8 ± 0.0 36.2 ± 0.8 28.8 ± 4.7 75.9

0.4 0.2 -55.3 ± 2.2 19.7 ± 0.0 35.4 ± 1.6 29.0 ± 4.2 76.4

0.2 0.6 -54.7 ± 3.3 16.9 ± 0.0 35.0 ± 1.6 27.9 ± 4.9 73.4

0.2 0.4 -51.6 ± 2.4 17.8 ± 0.0 33.6 ± 1.7 24.5 ± 6.1 64.6

0.2 0.2 -48.0 ± 2.7 17.6 ± 0.4 32.8 ± 2.1 21.8 ± 6.2 57.4
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A.4.4 mfold results

Table A.14: mfold results for suboptimal foldings of

Haloarcula marismortui

mfold ∆G efn2 ∆G Pairs Pairs %

kcal/mol kcal/mol Predicted Correct Correct

-59.5 -56.44 34 29 76.3
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A.5 Saccharomyces cerevisiae 5S rRNA

A.5.1 SetPSO results, constant entropy

Table A.15: Experimental results for Saccharomyces

cerevisiae 5S rRNA showing the mean and standard de-

viation over 30 samples.

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.2 0.4 0.6 -53.4 ± 0.0 8.7 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.2 0.4 0.8 -53.4 ± 0.0 8.4 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.2 0.6 0.4 -53.4 ± 0.0 8.0 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.2 0.6 0.6 -53.4 ± 0.0 7.6 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.2 0.6 0.8 -53.4 ± 0.0 7.3 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.2 0.8 0.4 -53.4 ± 0.0 7.0 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.2 0.8 0.6 -53.4 ± 0.0 6.7 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.2 0.8 0.8 -53.4 ± 0.0 6.4 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.4 0.2 0.4 -53.4 ± 0.0 10.4 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.4 0.2 0.6 -53.4 ± 0.0 9.5 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.4 0.2 0.8 -53.4 ± 0.0 8.7 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.4 0.4 0.4 -53.4 ± 0.0 9.2 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.4 0.4 0.6 -53.4 ± 0.0 8.4 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.4 0.4 0.8 -53.4 ± 0.0 7.8 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.4 0.6 0.4 -53.4 ± 0.0 8.4 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.4 0.6 0.6 -53.4 ± 0.0 7.9 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.4 0.6 0.8 -53.4 ± 0.0 7.1 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.4 0.8 0.2 -53.4 ± 0.0 9.8 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.4 0.8 0.4 -53.4 ± 0.0 7.7 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.4 0.8 0.6 -53.4 ± 0.0 7.2 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.4 0.8 0.8 -53.4 ± 0.0 6.3 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

Continued on next page
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Table A.15 – continued from previous page

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.6 0.2 0.2 -53.4 ± 0.0 10.8 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.6 0.2 0.4 -53.4 ± 0.0 9.1 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.6 0.2 0.6 -53.4 ± 0.0 7.7 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.6 0.2 0.8 -53.4 ± 0.0 7.2 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.6 0.4 0.2 -53.4 ± 0.0 10.4 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.6 0.4 0.4 -53.4 ± 0.0 8.2 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.6 0.4 0.6 -53.4 ± 0.0 7.7 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.6 0.4 0.8 -53.4 ± 0.0 6.7 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.6 0.6 0.2 -53.4 ± 0.0 9.7 ± 0.4 40.0 ± 0.0 28.0 ± 0.0 75.7

0.6 0.6 0.4 -53.4 ± 0.0 7.9 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.6 0.6 0.6 -53.4 ± 0.0 7.0 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.6 0.6 0.8 -53.4 ± 0.0 6.6 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.6 0.8 0.2 -53.4 ± 0.0 9.5 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.6 0.8 0.4 -53.4 ± 0.0 7.5 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.6 0.8 0.6 -53.4 ± 0.0 6.5 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.6 0.8 0.8 -53.4 ± 0.0 6.3 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.8 0.2 0.2 -53.4 ± 0.0 8.5 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.8 0.2 0.4 -53.4 ± 0.0 6.6 ± 0.2 40.0 ± 0.0 28.0 ± 0.0 75.7

0.8 0.2 0.6 -53.4 ± 0.0 5.6 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.8 0.2 0.8 -53.4 ± 0.0 5.5 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.8 0.4 0.2 -53.4 ± 0.0 8.1 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.8 0.4 0.4 -53.4 ± 0.0 6.5 ± 0.1 40.0 ± 0.0 28.0 ± 0.0 75.7

0.8 0.4 0.6 -53.4 ± 0.0 5.4 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.8 0.4 0.8 -53.4 ± 0.0 5.0 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.8 0.6 0.2 -53.4 ± 0.0 7.9 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.8 0.6 0.4 -53.4 ± 0.0 6.4 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.8 0.6 0.6 -53.4 ± 0.0 5.6 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

Continued on next page
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Table A.15 – continued from previous page

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.8 0.6 0.8 -53.4 ± 0.0 4.8 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.8 0.8 0.2 -53.4 ± 0.0 7.6 ± 0.6 40.0 ± 0.0 28.0 ± 0.0 75.7

0.8 0.8 0.4 -53.4 ± 0.0 6.3 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.8 0.8 0.6 -53.4 ± 0.0 5.2 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.8 0.8 0.8 -53.4 ± 0.0 5.0 ± 0.0 40.0 ± 0.0 28.0 ± 0.0 75.7

0.2 0.4 0.4 -53.4 ± 0.0 9.4 ± 0.0 40.0 ± 0.0 28.2 ± 0.0 76.1

0.2 0.8 0.2 -53.4 ± 0.0 8.9 ± 0.0 40.0 ± 0.0 28.2 ± 0.0 76.1

0.4 0.4 0.2 -53.4 ± 0.0 11.5 ± 0.0 39.9 ± 0.0 28.3 ± 0.8 76.6

0.4 0.2 0.2 -53.3 ± 0.0 12.2 ± 0.0 39.9 ± 0.0 28.7 ± 1.4 77.5

0.2 0.2 0.6 -53.3 ± 0.0 9.7 ± 0.0 39.8 ± 0.0 29.0 ± 1.7 78.4

0.2 0.2 0.8 -53.2 ± 0.0 8.8 ± 0.0 39.6 ± 0.0 29.8 ± 2.2 80.6

0.2 0.2 0.4 -53.1 ± 0.0 10.5 ± 0.0 39.5 ± 0.0 30.2 ± 2.3 81.5

0.4 0.6 0.2 -53.1 ± 0.8 10.4 ± 0.0 39.9 ± 0.0 27.9 ± 0.0 75.4

0.2 0.6 0.2 -52.7 ± 2.6 10.0 ± 0.0 39.5 ± 1.4 27.4 ± 3.6 74.1

0.2 0.4 0.2 -52.0 ± 2.3 11.2 ± 0.0 38.9 ± 1.5 28.0 ± 0.7 75.6

0.2 0.2 0.2 -50.0 ± 4.3 11.6 ± 0.0 38.2 ± 2.1 27.8 ± 3.9 75.1
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A.5.2 SetPSO results, linear decreasing entropy

Table A.16: Experimental results for Saccharomyces

cerevisiae 5S rRNA showing the mean and standard de-

viation over 30 samples.

∆G Swarm Pairs Pairs %

PR PC kcal/mol diversity Predicted Correct Correct

0.6 0.6 -54.1 ± 0.0 17.7 ± 0.0 42.0 ± 0.0 28.2 ± 0.0 76.1

0.4 0.8 -54.1 ± 0.0 17.5 ± 0.0 41.9 ± 0.0 28.3 ± 0.8 76.6

0.8 0.8 -54.0 ± 0.0 16.8 ± 0.0 41.9 ± 0.0 28.5 ± 1.1 77.0

0.8 0.2 -54.0 ± 0.0 16.7 ± 0.0 41.9 ± 0.0 28.5 ± 1.1 77.0

0.6 0.8 -54.0 ± 0.0 17.6 ± 0.0 41.9 ± 0.0 28.5 ± 1.1 77.0

0.2 0.8 -54.0 ± 0.0 16.4 ± 0.0 41.9 ± 0.0 28.5 ± 1.1 77.0

0.8 0.6 -54.0 ± 0.0 16.7 ± 0.0 41.9 ± 0.0 28.7 ± 1.4 77.5

0.8 0.4 -54.0 ± 0.0 16.6 ± 0.0 41.9 ± 0.0 28.7 ± 1.4 77.5

0.6 0.4 -54.0 ± 0.0 18.0 ± 0.0 41.9 ± 0.0 28.7 ± 1.4 77.5

0.4 0.6 -54.0 ± 0.0 17.8 ± 0.0 41.8 ± 0.0 29.0 ± 1.7 78.4

0.6 0.2 -54.0 ± 0.0 18.2 ± 0.0 41.8 ± 0.0 29.2 ± 1.9 78.8

0.4 0.4 -53.9 ± 0.0 18.2 ± 0.0 41.6 ± 0.0 30.0 ± 2.2 81.1

0.2 0.6 -53.7 ± 0.0 17.1 ± 0.0 41.3 ± 0.0 30.1 ± 2.2 81.3

0.4 0.2 -53.7 ± 0.0 18.2 ± 0.0 41.3 ± 0.0 30.6 ± 2.3 82.6

0.2 0.4 -52.9 ± 0.6 17.0 ± 0.0 40.2 ± 0.9 31.0 ± 2.3 83.9

0.2 0.2 -51.0 ± 1.8 16.8 ± 0.0 38.7 ± 1.5 29.9 ± 2.5 80.7
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A.5.3 SetPSO results, minimum stem length of 2

Table A.17: Experimental results for Saccharomyces

cerevisiae 5S rRNA with a minimum stem length of 2

showing the mean and standard deviation over 30 sam-

ples.

∆G Swarm Pairs Pairs %

PR PC kcal/mol diversity Predicted Correct Correct

0.6 0.6 -54.1 ± 0.0 17.7 ± 0.0 42.0 ± 0.0 28.2 ± 0.0 76.1

0.4 0.8 -54.1 ± 0.0 17.5 ± 0.0 41.9 ± 0.0 28.3 ± 0.8 76.6

0.8 0.8 -54.0 ± 0.0 16.8 ± 0.0 41.9 ± 0.0 28.5 ± 1.1 77.0

0.8 0.2 -54.0 ± 0.0 16.7 ± 0.0 41.9 ± 0.0 28.5 ± 1.1 77.0

0.6 0.8 -54.0 ± 0.0 17.6 ± 0.0 41.9 ± 0.0 28.5 ± 1.1 77.0

0.2 0.8 -54.0 ± 0.0 16.4 ± 0.0 41.9 ± 0.0 28.5 ± 1.1 77.0

0.8 0.6 -54.0 ± 0.0 16.7 ± 0.0 41.9 ± 0.0 28.7 ± 1.4 77.5

0.8 0.4 -54.0 ± 0.0 16.6 ± 0.0 41.9 ± 0.0 28.7 ± 1.4 77.5

0.6 0.4 -54.0 ± 0.0 18.0 ± 0.0 41.9 ± 0.0 28.7 ± 1.4 77.5

0.4 0.6 -54.0 ± 0.0 17.8 ± 0.0 41.8 ± 0.0 29.0 ± 1.7 78.4

0.6 0.2 -54.0 ± 0.0 18.2 ± 0.0 41.8 ± 0.0 29.2 ± 1.9 78.8

0.4 0.4 -53.9 ± 0.0 18.2 ± 0.0 41.6 ± 0.0 30.0 ± 2.2 81.1

0.2 0.6 -53.7 ± 0.0 17.1 ± 0.0 41.3 ± 0.0 30.1 ± 2.2 81.3

0.4 0.2 -53.7 ± 0.0 18.2 ± 0.0 41.3 ± 0.0 30.6 ± 2.3 82.6

0.2 0.4 -52.9 ± 0.6 17.0 ± 0.0 40.2 ± 0.9 31.0 ± 2.3 83.9

0.2 0.2 -51.0 ± 1.8 16.8 ± 0.0 38.7 ± 1.5 29.9 ± 2.5 80.7
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A.5.4 mfold results

Table A.18: mfold results for suboptimal foldings of Sac-

charomyces cerevisiae

mfold ∆G efn2 ∆G Pairs Pairs %

kcal/mol kcal/mol Predicted Correct Correct

-53.5 -50.70 41 33 89.2

-53.0 -50.76 42 28 75.7
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A.6 Arthrobacter globiformis 5S rRNA

A.6.1 SetPSO results, constant entropy

Table A.19: Experimental results for Arthrobacter globi-

formis 5S rRNA showing the mean and standard devia-

tion over 30 samples.

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.4 0.4 0.8 -48.8 ± 0.0 8.9 ± 0.9 34.0 ± 0.0 17.0 ± 0.0 43.6

0.4 0.6 0.8 -48.8 ± 0.0 8.0 ± 0.7 34.0 ± 0.0 17.0 ± 0.0 43.6

0.4 0.8 0.6 -48.8 ± 0.0 7.6 ± 0.7 34.0 ± 0.0 17.0 ± 0.0 43.6

0.6 0.4 0.8 -48.8 ± 0.0 8.2 ± 0.7 34.0 ± 0.0 17.0 ± 0.0 43.6

0.6 0.6 0.6 -48.8 ± 0.0 8.1 ± 1.0 34.0 ± 0.0 17.0 ± 0.0 43.6

0.6 0.6 0.8 -48.8 ± 0.0 7.3 ± 0.8 34.0 ± 0.0 17.0 ± 0.0 43.6

0.6 0.8 0.6 -48.8 ± 0.0 7.3 ± 0.7 34.0 ± 0.0 17.0 ± 0.0 43.6

0.6 0.8 0.8 -48.8 ± 0.0 6.8 ± 0.7 34.0 ± 0.0 17.0 ± 0.0 43.6

0.2 0.8 0.6 -48.8 ± 0.1 7.5 ± 0.8 34.0 ± 0.0 17.1 ± 0.4 43.8

0.4 0.6 0.6 -48.8 ± 0.1 8.4 ± 0.9 34.0 ± 0.0 17.1 ± 0.4 43.8

0.4 0.8 0.8 -48.8 ± 0.1 7.4 ± 0.8 34.0 ± 0.0 17.1 ± 0.4 43.8

0.6 0.2 0.8 -48.8 ± 0.1 8.9 ± 0.7 34.0 ± 0.0 17.1 ± 0.4 43.8

0.6 0.4 0.6 -48.8 ± 0.1 8.7 ± 0.6 34.0 ± 0.0 17.1 ± 0.4 43.8

0.8 0.8 0.8 -48.8 ± 0.1 6.2 ± 0.9 34.0 ± 0.0 17.1 ± 0.4 43.8

0.2 0.6 0.8 -48.8 ± 0.1 7.9 ± 0.6 34.0 ± 0.0 17.1 ± 0.5 43.9

0.6 0.6 0.4 -48.8 ± 0.1 9.0 ± 0.9 34.0 ± 0.0 17.1 ± 0.5 43.9

0.2 0.8 0.8 -48.8 ± 0.2 7.3 ± 0.8 34.1 ± 0.6 17.0 ± 0.0 43.6

0.4 0.2 0.8 -48.8 ± 0.1 9.7 ± 0.7 34.0 ± 0.0 17.2 ± 0.6 44.1

0.4 0.4 0.6 -48.8 ± 0.1 9.4 ± 0.6 34.0 ± 0.0 17.2 ± 0.6 44.1

0.4 0.8 0.4 -48.8 ± 0.2 8.5 ± 0.9 34.1 ± 0.7 17.0 ± 0.0 43.6

0.6 0.8 0.4 -48.8 ± 0.1 8.0 ± 1.0 34.0 ± 0.0 17.2 ± 0.6 44.1

Continued on next page
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Table A.19 – continued from previous page

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.8 0.4 0.6 -48.8 ± 0.1 7.5 ± 0.7 34.0 ± 0.0 17.2 ± 0.6 44.1

0.8 0.6 0.6 -48.8 ± 0.1 6.7 ± 0.6 34.0 ± 0.0 17.3 ± 0.7 44.3

0.8 0.8 0.6 -48.8 ± 0.1 6.6 ± 0.9 34.0 ± 0.0 17.2 ± 0.6 44.1

0.2 0.6 0.4 -48.8 ± 0.1 8.9 ± 0.8 34.0 ± 0.0 17.2 ± 0.6 44.1

0.6 0.2 0.6 -48.8 ± 0.1 9.1 ± 0.7 34.0 ± 0.0 17.3 ± 0.8 44.4

0.8 0.2 0.8 -48.8 ± 0.1 7.7 ± 0.7 34.0 ± 0.0 17.3 ± 0.8 44.4

0.8 0.6 0.8 -48.8 ± 0.1 6.6 ± 0.6 34.0 ± 0.0 17.3 ± 0.8 44.4

0.2 0.4 0.6 -48.8 ± 0.1 9.5 ± 0.5 34.0 ± 0.0 17.2 ± 0.6 44.1

0.2 0.4 0.8 -48.8 ± 0.1 9.0 ± 0.6 34.0 ± 0.0 17.4 ± 0.8 44.6

0.2 0.6 0.6 -48.8 ± 0.2 8.3 ± 0.7 34.1 ± 0.7 17.1 ± 0.5 43.9

0.4 0.4 0.4 -48.8 ± 0.1 9.9 ± 0.6 34.0 ± 0.0 17.3 ± 0.8 44.4

0.8 0.4 0.8 -48.8 ± 0.1 6.9 ± 0.7 34.0 ± 0.0 17.4 ± 0.8 44.6

0.4 0.6 0.4 -48.7 ± 0.2 9.1 ± 0.8 34.1 ± 0.6 17.3 ± 0.7 44.3

0.6 0.2 0.4 -48.7 ± 0.1 10.0 ± 0.6 34.0 ± 0.0 17.5 ± 0.9 44.8

0.4 0.2 0.6 -48.7 ± 0.2 9.8 ± 0.6 34.1 ± 0.7 17.3 ± 0.8 44.4

0.8 0.4 0.4 -48.7 ± 0.1 8.2 ± 0.8 34.0 ± 0.0 17.5 ± 0.9 44.9

0.6 0.4 0.4 -48.7 ± 0.2 9.3 ± 0.6 34.1 ± 0.7 17.4 ± 0.8 44.6

0.2 0.8 0.4 -48.7 ± 0.2 7.7 ± 1.0 34.2 ± 0.9 17.2 ± 0.6 44.1

0.4 0.2 0.4 -48.7 ± 0.1 10.6 ± 0.6 34.0 ± 0.0 17.6 ± 0.9 45.1

0.2 0.4 0.4 -48.7 ± 0.2 10.1 ± 0.5 34.1 ± 0.7 17.5 ± 0.9 44.9

0.8 0.8 0.4 -48.7 ± 0.1 7.4 ± 0.8 34.0 ± 0.0 17.7 ± 1.0 45.5

0.8 0.6 0.4 -48.7 ± 0.2 7.6 ± 0.9 34.1 ± 0.7 17.6 ± 0.9 45.1

0.8 0.2 0.6 -48.7 ± 0.1 8.1 ± 0.6 34.0 ± 0.0 18.0 ± 1.0 46.2

0.8 0.4 0.2 -48.7 ± 0.2 9.5 ± 1.1 34.1 ± 0.7 17.8 ± 1.0 45.6

0.8 0.2 0.4 -48.6 ± 0.1 8.4 ± 0.6 34.0 ± 0.0 18.2 ± 1.0 46.7

0.6 0.2 0.2 -48.6 ± 0.2 11.0 ± 0.7 34.3 ± 1.0 17.7 ± 1.0 45.3

0.6 0.8 0.2 -48.6 ± 0.3 9.7 ± 1.0 34.5 ± 1.3 17.5 ± 0.9 44.9

Continued on next page
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Table A.19 – continued from previous page

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.4 0.8 0.2 -48.6 ± 0.4 9.9 ± 1.0 34.7 ± 1.5 17.3 ± 0.7 44.3

0.8 0.2 0.2 -48.6 ± 0.2 9.4 ± 0.6 34.1 ± 0.7 18.3 ± 1.0 46.8

0.8 0.6 0.2 -48.6 ± 0.2 9.2 ± 1.2 34.3 ± 1.0 18.1 ± 1.0 46.3

0.6 0.4 0.2 -48.6 ± 0.3 10.6 ± 0.8 34.4 ± 1.2 17.8 ± 1.0 45.6

0.8 0.8 0.2 -48.6 ± 0.3 9.2 ± 1.3 34.5 ± 1.4 17.9 ± 1.0 45.8

0.4 0.6 0.2 -48.5 ± 0.4 10.6 ± 0.7 35.1 ± 1.8 17.3 ± 0.8 44.4

0.6 0.6 0.2 -48.5 ± 0.4 10.2 ± 1.0 35.2 ± 1.8 17.5 ± 0.9 44.8

0.4 0.4 0.2 -48.4 ± 0.3 10.8 ± 0.7 34.8 ± 1.6 17.7 ± 1.0 45.3

0.2 0.8 0.2 -48.4 ± 0.4 9.1 ± 1.0 35.3 ± 1.7 17.1 ± 0.5 43.9

0.2 0.6 0.2 -48.4 ± 0.4 10.1 ± 0.5 35.5 ± 1.9 17.5 ± 0.9 44.8

0.4 0.2 0.2 -48.3 ± 0.4 11.7 ± 0.6 35.2 ± 2.1 17.7 ± 2.1 45.4

0.2 0.4 0.2 -48.3 ± 0.5 10.8 ± 0.7 35.5 ± 1.9 17.1 ± 0.5 43.9

0.2 0.2 0.6 -48.1 ± 0.5 10.2 ± 0.6 34.1 ± 2.3 17.3 ± 2.3 44.4

0.2 0.2 0.8 -48.1 ± 0.6 9.8 ± 0.8 33.1 ± 2.1 18.1 ± 3.7 46.4

0.2 0.2 0.4 -47.9 ± 0.6 10.6 ± 0.5 34.1 ± 2.7 17.4 ± 3.2 44.6

0.2 0.2 0.2 -47.4 ± 1.2 11.6 ± 0.7 35.2 ± 2.5 17.4 ± 2.3 44.7
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A.7 Caenorhabditis elegans 16S rRNA

A.7.1 SetPSO results, constant entropy

Table A.20: Experimental results for Caenorhabditis el-

egans 16S rRNA showing the mean and standard devia-

tion over 30 samples.

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.8 0.4 0.8 -100.7 ± 3.0 56.1 ± 2.5 218.4 ± 7.4 28.3 ± 4.3 15.0

0.8 0.6 0.8 -100.7 ± 4.1 57.0 ± 3.6 216.7 ± 4.1 24.8 ± 5.1 13.1

0.8 0.2 0.8 -100.6 ± 2.9 56.8 ± 3.1 216.5 ± 4.8 26.6 ± 6.1 14.1

0.8 0.8 0.8 -99.4 ± 4.2 55.8 ± 4.2 216.3 ± 4.4 27.1 ± 7.2 14.3

0.8 0.2 0.6 -94.9 ± 3.6 62.3 ± 2.8 217.4 ± 7.1 27.3 ± 5.9 14.4

0.8 0.6 0.6 -92.7 ± 5.2 65.2 ± 2.7 217.2 ± 6.0 23.5 ± 6.5 12.4

0.8 0.4 0.6 -92.5 ± 4.9 64.1 ± 3.3 216.0 ± 5.3 29.4 ± 6.9 15.6

0.8 0.8 0.6 -90.8 ± 5.5 65.3 ± 3.9 216.3 ± 5.3 25.8 ± 6.6 13.7

0.6 0.2 0.8 -87.4 ± 4.3 63.1 ± 1.7 207.0 ± 4.9 25.0 ± 7.7 13.2

0.6 0.6 0.8 -87.0 ± 5.3 63.6 ± 2.4 209.2 ± 6.2 22.3 ± 7.3 11.8

0.6 0.4 0.8 -86.4 ± 4.3 64.2 ± 2.5 207.9 ± 5.6 24.7 ± 5.6 13.1

0.6 0.8 0.8 -84.7 ± 5.1 63.9 ± 2.3 209.1 ± 7.1 27.4 ± 8.1 14.5

0.8 0.2 0.4 -83.2 ± 4.3 70.4 ± 2.3 216.9 ± 6.0 25.0 ± 5.1 13.2

0.8 0.4 0.4 -79.2 ± 5.5 71.9 ± 3.0 216.8 ± 5.4 24.0 ± 6.5 12.7

0.6 0.2 0.6 -79.1 ± 4.0 67.5 ± 3.1 204.9 ± 7.4 26.3 ± 7.8 13.9

0.8 0.6 0.4 -76.5 ± 5.6 74.0 ± 2.3 215.7 ± 7.1 25.1 ± 8.1 13.3

0.6 0.4 0.6 -73.9 ± 5.8 69.5 ± 2.3 205.8 ± 7.1 21.4 ± 8.4 11.3

0.8 0.8 0.4 -73.8 ± 6.3 74.1 ± 2.9 215.2 ± 6.3 25.5 ± 7.8 13.5

0.6 0.6 0.6 -73.0 ± 4.6 70.2 ± 1.9 206.6 ± 6.7 22.8 ± 8.1 12.1

0.6 0.8 0.6 -72.1 ± 6.4 70.9 ± 2.6 207.0 ± 6.4 22.5 ± 7.5 11.9

0.4 0.2 0.8 -71.4 ± 4.2 64.5 ± 2.0 192.9 ± 6.7 20.9 ± 6.9 11.1

Continued on next page
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Table A.20 – continued from previous page

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.4 0.6 0.8 -69.6 ± 5.7 66.0 ± 2.0 195.6 ± 7.5 19.7 ± 6.0 10.4

0.4 0.8 0.8 -69.5 ± 4.4 65.7 ± 1.9 193.7 ± 7.4 23.5 ± 8.1 12.4

0.4 0.4 0.8 -68.7 ± 4.4 65.6 ± 2.2 194.4 ± 5.6 23.8 ± 6.2 12.6

0.6 0.2 0.4 -61.3 ± 5.2 76.4 ± 2.4 207.6 ± 7.9 21.0 ± 8.5 11.1

0.4 0.2 0.6 -61.1 ± 5.0 69.5 ± 2.2 191.1 ± 8.2 20.4 ± 7.5 10.8

0.8 0.2 0.2 -59.8 ± 6.9 81.7 ± 2.8 215.0 ± 7.9 21.1 ± 9.6 11.2

0.4 0.4 0.6 -57.4 ± 4.2 70.8 ± 2.4 194.3 ± 6.5 21.6 ± 6.6 11.4

0.6 0.4 0.4 -56.6 ± 4.9 76.5 ± 2.3 204.6 ± 6.1 22.4 ± 7.0 11.9

0.6 0.6 0.4 -56.0 ± 5.5 77.9 ± 2.1 205.5 ± 6.5 19.3 ± 5.6 10.2

0.8 0.4 0.2 -54.8 ± 6.3 82.2 ± 2.4 213.1 ± 7.0 18.7 ± 7.5 9.9

0.4 0.6 0.6 -54.0 ± 4.2 71.2 ± 2.2 192.8 ± 8.6 20.3 ± 8.4 10.7

0.4 0.8 0.6 -53.5 ± 5.4 71.6 ± 2.4 195.5 ± 8.8 20.8 ± 7.5 11.0

0.6 0.8 0.4 -52.3 ± 6.4 78.1 ± 1.7 204.0 ± 7.8 19.9 ± 6.9 10.5

0.2 0.2 0.8 -51.1 ± 4.0 61.6 ± 1.9 173.5 ± 8.5 15.9 ± 7.4 8.4

0.2 0.4 0.8 -50.1 ± 4.7 62.1 ± 2.1 171.7 ± 6.1 18.9 ± 8.1 10.0

0.8 0.6 0.2 -50.0 ± 7.8 83.7 ± 2.1 213.5 ± 7.0 16.9 ± 6.5 8.9

0.2 0.6 0.8 -49.6 ± 5.6 62.7 ± 1.9 174.3 ± 8.7 17.1 ± 7.5 9.1

0.2 0.8 0.8 -48.9 ± 4.7 62.1 ± 2.1 172.7 ± 11.2 16.3 ± 7.3 8.6

0.8 0.8 0.2 -47.0 ± 6.7 83.6 ± 1.9 214.8 ± 7.1 22.3 ± 7.1 11.8

0.4 0.2 0.4 -44.2 ± 6.9 75.5 ± 2.3 192.9 ± 7.1 18.8 ± 9.3 10.0

0.2 0.2 0.6 -40.1 ± 4.9 65.8 ± 2.4 171.1 ± 6.4 17.1 ± 7.9 9.0

0.4 0.4 0.4 -39.3 ± 5.4 76.6 ± 2.5 191.5 ± 6.8 18.4 ± 8.6 9.7

0.2 0.4 0.6 -37.8 ± 4.4 65.7 ± 1.9 170.3 ± 8.8 18.7 ± 7.0 9.9

0.2 0.6 0.6 -37.2 ± 5.6 67.2 ± 1.7 173.7 ± 7.2 17.3 ± 6.7 9.2

0.4 0.6 0.4 -35.6 ± 5.1 77.2 ± 2.0 190.3 ± 7.9 18.0 ± 8.1 9.5

0.2 0.8 0.6 -34.9 ± 5.1 66.6 ± 2.5 171.8 ± 10.1 14.7 ± 7.2 7.8

0.6 0.2 0.2 -34.6 ± 5.3 84.9 ± 2.1 202.0 ± 6.0 16.7 ± 8.6 8.8

Continued on next page
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Table A.20 – continued from previous page

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.4 0.8 0.4 -34.5 ± 6.5 77.5 ± 2.7 190.7 ± 8.2 18.4 ± 7.2 9.8

0.6 0.4 0.2 -31.9 ± 7.4 85.9 ± 2.3 203.0 ± 6.9 15.4 ± 10.0 8.2

0.2 0.2 0.4 -26.1 ± 6.3 70.5 ± 2.0 170.2 ± 6.2 15.9 ± 7.9 8.4

0.6 0.6 0.2 -25.9 ± 5.4 85.8 ± 2.1 203.1 ± 7.4 17.2 ± 8.6 9.1

0.6 0.8 0.2 -21.7 ± 6.0 86.7 ± 2.1 204.8 ± 7.6 16.0 ± 7.9 8.5

0.2 0.4 0.4 -21.1 ± 5.3 70.9 ± 2.5 166.9 ± 10.5 17.3 ± 6.6 9.1

0.2 0.8 0.4 -20.4 ± 5.7 72.1 ± 2.3 172.1 ± 8.5 14.9 ± 7.8 7.9

0.2 0.6 0.4 -19.7 ± 4.6 72.2 ± 2.2 170.2 ± 8.1 14.9 ± 7.2 7.9

0.4 0.2 0.2 -16.5 ± 5.5 84.0 ± 2.1 190.4 ± 7.3 13.4 ± 5.6 7.1

0.4 0.4 0.2 -14.7 ± 5.3 84.7 ± 2.1 190.8 ± 6.9 17.1 ± 8.1 9.0

0.4 0.6 0.2 -8.1 ± 5.3 85.3 ± 2.4 190.3 ± 7.1 15.8 ± 8.5 8.3

0.4 0.8 0.2 -7.2 ± 5.7 85.4 ± 2.7 190.1 ± 7.9 14.7 ± 7.5 7.8

0.2 0.2 0.2 -0.5 ± 5.1 78.9 ± 1.8 170.9 ± 7.0 11.7 ± 6.0 6.2

0.2 0.6 0.2 0.7 ± 6.2 80.2 ± 2.5 171.4 ± 9.7 12.9 ± 7.8 6.8

0.2 0.8 0.2 1.7 ± 5.8 80.3 ± 2.0 174.7 ± 7.5 14.6 ± 6.7 7.7

0.2 0.4 0.2 2.5 ± 5.9 79.9 ± 2.1 172.2 ± 6.9 11.6 ± 8.3 6.1
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Table A.21: mfold results for suboptimal foldings of

Caenorhabditis elegans 16S rRNA

mfold ∆G Pairs Pairs %

kcal/mol Predicted Correct Correct

-128.97 216 20 10.6

-126.56 221 25 13.2

-126.18 221 25 13.2

-125.99 213 20 10.6

-125.22 217 40 21.2

-124.20 211 40 21.2

-124.04 216 40 21.2

-123.68 212 37 19.6

-123.20 219 32 16.9

-122.56 218 35 18.5

-122.10 211 20 10.6

-121.59 213 40 21.2

-121.46 219 25 13.2

-120.81 216 37 19.6

-120.06 208 35 18.5

-118.90 211 27 14.3

-118.87 205 27 14.3

-117.46 206 32 16.9

-115.94 200 27 14.3
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A.8 Homo sapiens 16S rRNA

A.8.1 SetPSO results, constant entropy

Table A.22: Experimental results for Homo sapiens 16S

rRNA showing the mean and standard deviation over 30

samples.

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.8 0.6 0.8 -191.1 ± 6.4 72.0 ± 3.3 234.5 ± 6.2 54.9 ± 15.1 20.6

0.8 0.4 0.8 -190.4 ± 5.1 72.7 ± 3.5 236.8 ± 6.5 55.8 ± 12.3 20.9

0.8 0.8 0.8 -190.2 ± 5.5 70.3 ± 4.3 237.8 ± 7.0 53.1 ± 12.5 19.9

0.8 0.2 0.8 -188.2 ± 3.7 72.7 ± 3.4 233.2 ± 7.2 52.6 ± 11.9 19.7

0.8 0.4 0.6 -183.3 ± 5.8 79.5 ± 3.6 237.7 ± 7.6 51.1 ± 13.9 19.1

0.8 0.8 0.6 -181.9 ± 6.4 79.7 ± 2.9 237.6 ± 5.0 55.2 ± 15.2 20.7

0.8 0.2 0.6 -180.6 ± 3.2 78.5 ± 3.5 236.1 ± 5.5 54.3 ± 10.7 20.3

0.8 0.6 0.6 -179.9 ± 6.1 80.2 ± 2.8 239.8 ± 7.0 57.8 ± 12.3 21.7

0.6 0.2 0.8 -174.2 ± 3.7 78.6 ± 1.9 228.3 ± 7.2 50.1 ± 11.7 18.8

0.6 0.4 0.8 -173.1 ± 5.6 78.9 ± 3.2 228.3 ± 6.9 47.5 ± 13.6 17.8

0.6 0.8 0.8 -172.4 ± 5.3 79.0 ± 3.4 230.0 ± 7.6 45.0 ± 9.4 16.9

0.6 0.6 0.8 -171.7 ± 6.6 79.9 ± 2.5 228.3 ± 6.1 47.2 ± 10.4 17.7

0.8 0.2 0.4 -168.9 ± 4.8 85.9 ± 2.9 239.6 ± 7.0 55.2 ± 13.9 20.7

0.8 0.4 0.4 -168.2 ± 7.9 86.7 ± 2.9 240.7 ± 6.7 48.7 ± 11.7 18.2

0.8 0.6 0.4 -167.8 ± 8.7 87.8 ± 2.5 239.4 ± 7.1 48.7 ± 12.4 18.2

0.8 0.8 0.4 -167.0 ± 7.5 88.3 ± 3.1 242.2 ± 5.1 51.8 ± 12.9 19.4

0.6 0.2 0.6 -162.7 ± 4.0 83.7 ± 1.9 227.7 ± 6.5 51.4 ± 12.8 19.2

0.6 0.4 0.6 -159.1 ± 5.5 85.0 ± 2.6 227.4 ± 6.6 47.5 ± 13.0 17.8

0.6 0.8 0.6 -157.1 ± 5.3 85.9 ± 2.4 230.1 ± 7.8 46.2 ± 10.8 17.3

0.6 0.6 0.6 -156.4 ± 7.4 85.9 ± 2.5 227.3 ± 7.5 46.2 ± 12.3 17.3

0.4 0.2 0.8 -153.6 ± 4.3 80.0 ± 2.9 213.8 ± 6.4 42.1 ± 13.4 15.8

Continued on next page

 
 
 



Appendix A. Complete Results for All Sequences 161

Table A.22 – continued from previous page

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.4 0.4 0.8 -149.5 ± 5.5 79.9 ± 1.5 212.0 ± 6.1 40.6 ± 11.5 15.2

0.4 0.8 0.8 -149.5 ± 6.0 79.2 ± 2.2 215.5 ± 8.0 41.5 ± 8.5 15.6

0.8 0.2 0.2 -147.9 ± 5.1 95.2 ± 2.7 240.8 ± 7.4 42.4 ± 13.0 15.9

0.4 0.6 0.8 -147.7 ± 6.3 80.3 ± 2.9 214.1 ± 7.6 39.8 ± 11.8 14.9

0.6 0.2 0.4 -147.0 ± 4.8 90.7 ± 2.4 230.3 ± 6.2 47.3 ± 10.6 17.7

0.8 0.4 0.2 -143.0 ± 6.2 96.0 ± 3.2 244.4 ± 7.9 40.7 ± 11.5 15.2

0.8 0.6 0.2 -142.9 ± 6.3 94.8 ± 3.2 246.2 ± 6.4 41.9 ± 12.9 15.7

0.6 0.4 0.4 -142.2 ± 5.5 91.4 ± 2.5 226.2 ± 7.1 44.7 ± 11.9 16.8

0.6 0.6 0.4 -139.7 ± 8.4 92.0 ± 2.7 232.8 ± 7.5 40.5 ± 11.0 15.2

0.4 0.2 0.6 -138.9 ± 4.4 84.3 ± 2.7 210.6 ± 7.2 36.7 ± 13.1 13.7

0.6 0.8 0.4 -138.6 ± 6.9 91.7 ± 2.4 228.6 ± 7.7 42.2 ± 12.8 15.8

0.8 0.8 0.2 -136.4 ± 4.7 96.1 ± 2.9 245.6 ± 7.6 37.8 ± 11.4 14.2

0.4 0.6 0.6 -134.3 ± 4.3 85.5 ± 1.9 212.8 ± 6.9 39.7 ± 9.8 14.9

0.4 0.4 0.6 -133.8 ± 6.1 85.6 ± 3.0 212.8 ± 8.0 40.2 ± 13.0 15.1

0.4 0.8 0.6 -133.0 ± 4.3 85.8 ± 2.4 215.2 ± 8.7 40.3 ± 9.6 15.1

0.6 0.2 0.2 -122.8 ± 5.3 100.0 ± 2.3 233.1 ± 7.1 35.7 ± 12.4 13.4

0.4 0.2 0.4 -122.7 ± 3.9 90.6 ± 2.4 213.0 ± 7.4 36.8 ± 12.9 13.8

0.2 0.2 0.8 -121.5 ± 6.4 73.9 ± 2.3 186.2 ± 8.3 31.1 ± 12.2 11.6

0.2 0.8 0.8 -119.9 ± 7.6 75.0 ± 2.8 192.8 ± 8.2 37.5 ± 10.1 14.0

0.6 0.4 0.2 -119.9 ± 5.9 100.0 ± 3.0 233.9 ± 6.7 35.7 ± 10.8 13.4

0.2 0.4 0.8 -118.4 ± 6.1 76.3 ± 2.7 189.9 ± 7.1 30.5 ± 10.3 11.4

0.4 0.4 0.4 -118.0 ± 4.5 91.4 ± 3.1 214.5 ± 8.7 38.1 ± 10.8 14.3

0.6 0.8 0.2 -117.6 ± 6.1 98.8 ± 2.4 235.1 ± 6.6 36.3 ± 14.6 13.6

0.6 0.6 0.2 -117.5 ± 6.5 99.4 ± 2.8 236.3 ± 5.3 35.7 ± 7.7 13.4

0.4 0.6 0.4 -117.3 ± 6.5 90.8 ± 2.4 214.1 ± 8.9 38.8 ± 10.0 14.5

0.2 0.6 0.8 -117.1 ± 5.9 76.6 ± 2.7 190.7 ± 8.3 32.2 ± 11.4 12.1

0.4 0.8 0.4 -115.3 ± 5.5 91.7 ± 2.2 217.1 ± 6.4 33.8 ± 10.7 12.7

Continued on next page
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Table A.22 – continued from previous page

∆G Swarm Pairs Pairs %

PR PC PI kcal/mol diversity Predicted Correct Correct

0.2 0.2 0.6 -108.9 ± 5.3 79.1 ± 2.7 189.6 ± 7.3 29.9 ± 8.8 11.2

0.2 0.8 0.6 -108.0 ± 7.2 79.5 ± 2.4 192.3 ± 7.4 32.2 ± 12.5 12.1

0.2 0.4 0.6 -106.7 ± 5.6 79.4 ± 2.7 187.1 ± 8.2 33.1 ± 13.1 12.4

0.2 0.6 0.6 -105.3 ± 5.2 79.8 ± 2.4 190.3 ± 7.2 33.8 ± 11.8 12.7

0.4 0.8 0.2 -100.1 ± 7.3 98.3 ± 2.9 228.8 ± 8.4 31.2 ± 7.8 11.7

0.4 0.2 0.2 -98.9 ± 4.5 98.8 ± 3.0 218.2 ± 7.1 27.7 ± 11.6 10.4

0.4 0.4 0.2 -97.2 ± 5.2 99.9 ± 2.3 219.6 ± 7.4 28.3 ± 9.5 10.6

0.4 0.6 0.2 -96.4 ± 5.8 99.8 ± 1.9 221.4 ± 7.9 30.3 ± 11.1 11.3

0.2 0.8 0.4 -95.2 ± 8.1 84.4 ± 2.3 195.5 ± 8.2 29.5 ± 9.2 11.0

0.2 0.2 0.4 -92.0 ± 5.9 83.9 ± 2.3 188.1 ± 9.2 28.9 ± 10.7 10.8

0.2 0.4 0.4 -91.9 ± 5.8 85.5 ± 2.9 191.9 ± 9.7 30.2 ± 9.9 11.3

0.2 0.6 0.4 -91.6 ± 7.1 85.8 ± 3.1 193.7 ± 9.9 30.3 ± 9.0 11.3

0.2 0.8 0.2 -81.4 ± 5.8 92.3 ± 3.1 208.7 ± 10.9 26.2 ± 6.8 9.8

0.2 0.6 0.2 -78.0 ± 6.0 92.9 ± 2.4 200.9 ± 6.9 24.8 ± 8.9 9.3

0.2 0.4 0.2 -77.0 ± 5.3 93.7 ± 2.7 199.4 ± 9.7 22.9 ± 9.1 8.6

0.2 0.2 0.2 -75.5 ± 5.4 93.4 ± 2.3 193.3 ± 7.2 23.2 ± 8.3 8.7
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Table A.23: mfold results for suboptimal foldings of

Homo sapiens 16S rRNA

mfold ∆G Pairs Pairs %

kcal/mol Predicted Correct Correct

-222.51 255 93 34.8

-219.97 251 53 19.9

-219.87 259 52 19.5

-217.55 255 59 22.1

-217.20 258 97 36.3

-214.50 256 84 31.5

-213.14 262 44 16.5

-211.12 258 67 25.1

-210.39 255 84 31.5

-210.26 257 61 22.8

-207.98 260 52 19.5

-207.85 257 83 31.1

-206.53 256 37 13.9

-205.51 262 43 16.1

-204.14 266 57 21.3

-202.39 245 53 19.9

-198.70 259 50 18.7

-198.17 258 44 16.5

 
 
 



Appendix B

Acronyms

CE Constant Entropy

CILib Computational Intelligence Library

DNA Deoxyribonucleic acid

DPA Dynamic Programming Algorithm

EC Evolutionary Computation

GA Genetic Algorithm

INN Individual Nearest Neighbour

INN-HB Individual Nearest Neighbour Hydrogen Bonding model

LDE Linear Decreasing Entropy

mRNA Messenger Ribonucleic acid

NMR Nuclear magnetic resonance

PSO Particle Swarm Optimiser

RNA Ribonucleic acid

rRNA Ribosomal Ribonucleic acid

SetPSO Set Particle Swarm Optimiser

tRNA Transfer Ribonucleic acid

VM Virtual Machine
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Appendix C

Symbols

This appendix lists the mathematical symbols used throughout this dissertation, and

their definitions. The symbols used within each chapter are listed under separate sections.

Each section lists only newly introduced symbols, and those that have by necessity been

re-defined. In cases where an equation in the text defines a symbol, the relevant equation

and page numbers are provided in brackets, after the symbol definition:

C.1 Chapter 2: Ribonucleic acid

[i, j] Base pairing formed between base at position i and base at position j

m Minimum length of hairpin loop [Eq. (2.1), pg. 10]

S Set containing all possible stems

C Subset of S defining a conformation

∆G Change in free energy of an RNA conformation

C.2 Chapter 3: RNA thermodynamics

∆G Change in free energy of an RNA conformation [Eq. (3.1), pg. 18]

∆H Change in enthalpy, the amount of energy posessed by a thermodynamic

system to transfer between itself and the environment

T Temperature
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∆S Change in entropy, a measure of randomness or disorder of a system

Q Partition function [Eq. (3.2), pg. 19]

S Structure or folding

∆GS Change in free energy of structure S

R Gas constant

ri Nucleotide at position i

rj Nucleotide at position j

C.3 Chapter 4: Particle Swarm Optimisation

x Position vector of particle

v Velocity vector of particle

xi(t) i-th dimension of the particle position vector x at time step t [Eq. (4.1),

pg. 25]

vij(t) The velocity of particle i in dimension j = 1, ..., nx at time step t

xij(t) The position of particle i in dimension j = 1, ..., nx at time step t

c1 Positive acceleration constant

c2 Positive acceleration constant

r1j(t) Random number sampled from ∼ U(0, 1)

r2j(t) Random number sampled from ∼ U(0, 1)

yi Particle i’s personal best position (pbest)

ŷ(t) Global best position at time step t [Eq. (4.4), pg. 26]

ns Number of particles in swarm

ω Inertia weight

C.4 Chapter 5: Set Particle Swarm Optimisation

U Universal set containing all possible elements

O open set, elements to be removed from the current particle position
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C close set, stems to be added to the new particle position

B temporary set

e element from U

S.Xi position X of particle i in the swarm S

S.Yi personal best position Y of particle i in the swarm S

S.Ŷ neighbourhood best position of swarm S

PI Entropy weight

PC Closing probability

PR Random add probability

D Diversity [Eq. (5.4), pg. 42]
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Derived Publications

This appendix lists the publications derived from the work presented here. Both accepted

publications and those in the process of submission at the time of this dissertation’s

publication are listed:

� C. Marais Neethling and Andries P. Engelbrecht. Determining RNA Secondary

Structure using Set-based Particle Swarm Optimization. In Gary G. Yen, Simon

M. Lucas, Gary Fogel, Graham Kendall, Ralf Salomon, Byoung-Tak Zhang, Carlos

A. Coello Coello, Thomas Philip Runarsson, editors, Proceedings of the 2006 IEEE

Congress on Evolutionary Computation, pages 1670–1677, Vancouver, BC, Canada,

16-21 July 2006. IEEE Press

168

 
 
 


	Front
	Title page
	Abstract
	Dedication
	Acknowledgements
	Contents
	List of figures
	List of graphs
	List of algorithms
	List of tables

	1 Introduction
	1.1 Rationale
	1.2 Objectives
	1.3 Contributions
	1.4 Dissertation outline

	2 Ribonucleic acid
	2.1 Nucleotides
	2.2 RNA strands
	2.3 RNA
	2.4 Function of RNA
	2.5 RNA primary structure
	2.6 RNA secondary structure
	2.6.1 RNA secondary structure motifs
	2.6.2 RNA secondary structure graphical representation

	2.7 RNA tertiary structure
	2.8 Predicting the natural conformation
	2.8.1 Physical methods
	2.8.2 Computational methods

	2.9 Conclusion

	3 RNA Thermodynamics
	3.1 Theory of RNA thermodynamics
	3.2 Hydrogen bond models
	3.2.1 Major model
	3.2.2 The Mathews model
	3.2.3 Limitations of the hydrogen bond model

	3.3 Stacking energy model
	3.3.1 Individual nearest neighbour model
	3.3.2 Individual nearest neighbour-hydrogen bond model

	3.4 Conclusion

	4 Particle Swarm Optimisation
	4.1 Introduction
	4.2 PSO algorithm
	4.2.1 Position and velocity
	4.2.2 Algorithm

	4.3 Swarm structure
	4.4 PSO control parameters
	4.4.1 Inertia weight
	4.4.2 Cognitive and social components
	4.4.3 Acceleration constants
	4.4.4 Maximum velocity

	4.5 Conclusion

	5 Set Particle Swarm Optimisation
	5.1 Introduction
	5.2 Defining SetPSO
	5.2.1 Solution space and particle position
	5.2.2 Addition operator
	5.2.3 Subtraction operator
	5.2.4 Distance operator

	5.3 SetPSO Algorithm
	5.3.1 Particle initialisation
	5.3.2 Velocity update
	5.3.3 Position update

	5.4 SetPSO parameters
	5.4.1 Closing probability
	5.4.2 Random add probability
	5.4.3 Entropy weight

	5.5 Diversity measurement
	5.6 Computational complexity
	5.6.1 PSO computational complexity
	5.6.2 SetPSO computational complexity

	5.7 Conclusion

	6 Related work
	6.1 Introduction
	6.2 mfold
	6.3 P-RnaPredict
	6.4 HelixPSO
	6.5 Conclusion

	7 RNA modelling
	7.1 Objective function
	7.2 Particle representation
	7.3 RNA stem enumeration
	7.4 Optimised addition operator
	7.5 Conclusion

	8 Experimental Approach
	8.1 Introduction
	8.2 Sequences tested
	8.3 Measurements
	8.4 Accuracy of the structures and comparison to other algorithms
	8.5 Investigating control parameters
	8.5.1 Accuracy under linear decreasing entropy

	8.6 Investigating the influence of weights on swarm diversity
	8.7 Minimum Stem Length
	8.8 Parallel coordinates visualisation
	8.9 Conclusion

	9 Results and Comparisons
	9.1 Introduction
	9.2 Initial results for SetPSO
	9.3 Accuracy
	9.3.1 X. laevis accuracy
	9.3.2 D. virilis accuracy
	9.3.3 A. lagunensis
	9.3.4 H. marismortui
	9.3.5 S. cerevisiae

	9.4 Comparison with known structures
	9.4.1 Xenopus laevis
	9.4.2 Drosophila virilis
	9.4.3 Aureoumbra lagunensis
	9.4.4 Haloarcula marismortui
	9.4.5 Saccharomyces cerevisiae

	9.5 Comparison with RnaPredict, HelixPSO and mfold
	9.5.1 Xenopus laevis
	9.5.2 Drosophila virilis
	9.5.3 Aureoumbra lagunensis
	9.5.4 Haloarcula marismortui
	9.5.5 Saccharomyces cerevisiae

	9.6 Investigating the influence of SetPSO control parameters
	9.6.1 Accuracy under constant entropy
	9.6.2 Accuracy under linear decreasing entropy

	9.7 Investigating the influence of weights on swarm diversity
	9.7.1 Swarm diversity under constant entropy
	9.7.2 Swarm diversity under linear decreasing entropy

	9.8 Minimum Stem Length
	9.8.1 Reduced minimum stem length
	9.8.2 Results for reduced stem length SetPSO experiments

	9.9 Conclusion

	10 Conclusions
	10.1 Conclusions of this dissertation
	10.2 Future work

	Bibliography
	Appendices
	A Complete Results for All Sequences
	A.1 Xenopus laevis mitochondrial 12S rRNA
	A.1.1 SetPSO results, constant entropy
	A.1.2 SetPSO results, linear decreasing entropy
	A.1.3 mfold results

	A.2 Drosophila virilis 16S rRNA
	A.2.1 SetPSO results, constant entropy
	A.2.2 SetPSO results, linear decreasing entropy
	A.2.3 mfold results

	A.3 Aureoumbra lagunensis 18S rRNA
	A.3.1 SetPSO results, constant entropy
	A.3.2 SetPSO results, linear decreasing entropy
	A.3.3 SetPSO results, minimum stem length of 2
	A.3.4 mfold results

	A.4 Haloarcula marismortui 5S rRNA
	A.4.1 SetPSO results, constant entropy
	A.4.2 SetPSO results, linear decreasing entropy
	A.4.3 SetPSO results, minimum stem length of 2
	A.4.4 mfold results

	A.5 Saccharomyces cerevisiae 5S rRNA
	A.5.1 SetPSO results, constant entropy
	A.5.2 SetPSO results, linear decreasing entropy
	A.5.3 SetPSO results, minimum stem length of 2
	A.5.4 mfold results

	A.6 Arthrobacter globiformis 5S rRNA
	A.6.1 SetPSO results, constant entropy

	A.7 Caenorhabditis elegans 16S rRNA
	A.7.1 SetPSO results, constant entropy

	A.8 Homo sapiens 16S rRNA
	A.8.1 SetPSO results, constant entropy


	B Acronyms
	C Symbols
	C.1 Chapter 2: Ribonucleic acid
	C.2 Chapter 3: RNA thermodynamics
	C.3 Chapter 4: Particle Swarm Optimisation
	C.4 Chapter 5: Set Particle Swarm Optimisation

	D Derived Publications




