3,816 research outputs found

    CDAR : contour detection aggregation and routing in sensor networks

    Get PDF
    Wireless sensor networks offer the advantages of low cost, flexible measurement of phenomenon in a wide variety of applications, and easy deployment. Since sensor nodes are typically battery powered, energy efficiency is an important objective in designing sensor network algorithms. These algorithms are often application-specific, owing to the need to carefully optimize energy usage, and since deployments usually support a single or very few applications. This thesis concerns applications in which the sensors monitor a continuous scalar field, such as temperature, and addresses the problem of determining the location of a contour line in this scalar field, in response to a query, and communicating this information to a designated sink node. An energy-efficient solution to this problem is proposed and evaluated. This solution includes new contour detection and query propagation algorithms, in-network-processing algorithms, and routing algorithms. Only a small fraction of network nodes may be adjacent to the desired contour line, and the contour detection and query propagation algorithms attempt to minimize processing and communication by the other network nodes. The in-network processing algorithms reduce communication volume through suppression, compression and aggregation techniques. Finally, the routing algorithms attempt to route the contour information to the sink as efficiently as possible, while meshing with the other algorithms. Simulation results show that the proposed algorithms yield significant improvements in data and message volumes compared to baseline models, while maintaining the integrity of the contour representation

    Symmetry in Graph Theory

    Get PDF
    This book contains the successful invited submissions to a Special Issue of Symmetry on the subject of ""Graph Theory"". Although symmetry has always played an important role in Graph Theory, in recent years, this role has increased significantly in several branches of this field, including but not limited to Gromov hyperbolic graphs, the metric dimension of graphs, domination theory, and topological indices. This Special Issue includes contributions addressing new results on these topics, both from a theoretical and an applied point of view

    DALiuGE: A Graph Execution Framework for Harnessing the Astronomical Data Deluge

    Full text link
    The Data Activated Liu Graph Engine - DALiuGE - is an execution framework for processing large astronomical datasets at a scale required by the Square Kilometre Array Phase 1 (SKA1). It includes an interface for expressing complex data reduction pipelines consisting of both data sets and algorithmic components and an implementation run-time to execute such pipelines on distributed resources. By mapping the logical view of a pipeline to its physical realisation, DALiuGE separates the concerns of multiple stakeholders, allowing them to collectively optimise large-scale data processing solutions in a coherent manner. The execution in DALiuGE is data-activated, where each individual data item autonomously triggers the processing on itself. Such decentralisation also makes the execution framework very scalable and flexible, supporting pipeline sizes ranging from less than ten tasks running on a laptop to tens of millions of concurrent tasks on the second fastest supercomputer in the world. DALiuGE has been used in production for reducing interferometry data sets from the Karl E. Jansky Very Large Array and the Mingantu Ultrawide Spectral Radioheliograph; and is being developed as the execution framework prototype for the Science Data Processor (SDP) consortium of the Square Kilometre Array (SKA) telescope. This paper presents a technical overview of DALiuGE and discusses case studies from the CHILES and MUSER projects that use DALiuGE to execute production pipelines. In a companion paper, we provide in-depth analysis of DALiuGE's scalability to very large numbers of tasks on two supercomputing facilities.Comment: 31 pages, 12 figures, currently under review by Astronomy and Computin

    Local earthquake tomography of Central America : structural variations and fluid transport in the Nicaragua-Costa Rica subduction zone

    Get PDF
    The Central American convergent margin is characterized by pronounced lateral changes from north to south such as a decreasing dip of the slab, a decreasing magma production and a shift in the volcanic front. To investigate this transition in terms of seismicity and tectonics, a joint on- and offshore local earthquake tomography and P-wave anisotropy studies were performed in central Costa Rica and in S Nicaragua/N Costa Rica respectively. In central Costa Rica, seismic travel time data sets of three on- and off-shore seismic networks were combined for a simultaneous inversion of hypocenter locations, 3-D structure of P-wave velocity and Vp/Vs ratio. The tomographic inversion was performed using about 2000 high quality events. The seismicity and slab geometry as well as Vp and Vp/Vs show significant lateral variation along the subduction zone corresponding to the changes of the incoming plate which consists of serpentinized oceanic lithosphere in the NW, a seamount province in the center and the subducting Coscos Ridge in the SE of the investigation area. Three prominent features can be identified in the Vp and Vp/Vs tomograms: a high velocity zone with a perturbation of 4-10 % representing the subducting slab, a low velocity zone (10-20 %) in the forearc probably caused by deformation, fluid release and hydration, and a low-velocity zone below the volcanic arc related to upwelling fluids and magma. Unlike previously suggested, the dip of the subducting slab does not decrease to the south. Instead, an average steepening of the plate interface from 30° to 45° is observed from north to south and a transition from a plane to a stair-shape plate interface. This is connected with a change in the deformation style of the overriding plate where roughly planar, partly conjugated, clusters of seismicity of regionally varying dip are observed. It could be shown that the Costa Rica Deformation Belt represents a deep crustal transition zone extending from the surface down to 40 km depth. This transition zone indicates the lateral termination of the active part of the volcanic chain and seems to be connected with the changing structure of the incoming plate as well. In S Nicaragua/N Costa Rica, the same inversion procedure was performed using 860 events. The analysis shows low S-wave velocities (~4 km/s), high Vp/Vs ratios (~ 2.0) and an aseismic gap in the upper mantle along the Sandino Basin. These findings are intrepereted as an indication of mantle wedge hydration. The existence of a hydrated forearc upper-mantle wedge in southern Nicaragua and the absence of it in northern Costa Rica is important to understand the variations in the tectonic structures along the margin and provides an improved view of the deep dehydration process in subduction zones. The sharp transition between the Nicaraguan and northern Costa Rican margins is explained by the dominating extensional forces in the southern Nicaraguan overriding plate. In addition to the velocity inversion, a P-wave anisotropy study was performed to have a better understanding in the mantle dynamics and tectonics of the Earth's interior. P-wave anisotropy results show two main structures: 1) Trench-perpendicular seismically fast directions in the incoming plate which can be explained either by the initial mineral orientation at the mid-oceanic ridge or by the deformation parallel to the subduction direction. 2) Trench-parallel seismically fast directions and abrupt rotations to trench-parallel anisotropy in the forearc which support the mantle escape towards to northwest. These patterns of seismic anisotropy may be caused by the olivine fabric transition from A-type to B-type or three dimensional flow associated with along-strike variations in slab geometry

    Contour Based 3D Biological Image Reconstruction and Partial Retrieval

    Get PDF
    Image segmentation is one of the most difficult tasks in image processing. Segmentation algorithms are generally based on searching a region where pixels share similar gray level intensity and satisfy a set of defined criteria. However, the segmented region cannot be used directly for partial image retrieval. In this dissertation, a Contour Based Image Structure (CBIS) model is introduced. In this model, images are divided into several objects defined by their bounding contours. The bounding contour structure allows individual object extraction, and partial object matching and retrieval from a standard CBIS image structure. The CBIS model allows the representation of 3D objects by their bounding contours which is suitable for parallel implementation particularly when extracting contour features and matching them for 3D images require heavy computations. This computational burden becomes worse for images with high resolution and large contour density. In this essence we designed two parallel algorithms; Contour Parallelization Algorithm (CPA) and Partial Retrieval Parallelization Algorithm (PRPA). Both algorithms have considerably improved the performance of CBIS for both contour shape matching as well as partial image retrieval. To improve the effectiveness of CBIS in segmenting images with inhomogeneous backgrounds we used the phase congruency invariant features of Fourier transform components to highlight boundaries of objects prior to extracting their contours. The contour matching process has also been improved by constructing a fuzzy contour matching system that allows unbiased matching decisions. Further improvements have been achieved through the use of a contour tailored Fourier descriptor to make translation and rotation invariance. It is proved to be suitable for general contour shape matching where translation, rotation, and scaling invariance are required. For those images which are hard to be classified by object contours such as bacterial images, we define a multi-level cosine transform to extract their texture features for image classification. The low frequency Discrete Cosine Transform coefficients and Zenike moments derived from images are trained by Support Vector Machine (SVM) to generate multiple classifiers

    Modelling and Detecting Faults of Permanent Magnet Synchronous Motors in Dynamic Operations

    Get PDF
    Paper VI is excluded from the dissertation until the article will be published.Permanent magnet synchronous motors (PMSMs) have played a key role in commercial and industrial applications, i.e. electric vehicles and wind turbines. They are popular due to their high efficiency, control simplification and large torque-to-size ratio although they are expensive. A fault will eventually occur in an operating PMSM, either by improper maintenance or wear from thermal and mechanical stresses. The most frequent PMSM faults are bearing faults, short-circuit and eccentricity. PMSM may also suffer from demagnetisation, which is unique in permanent magnet machines. Condition monitoring or fault diagnosis schemes are necessary for detecting and identifying these faults early in their incipient state, e.g. partial demagnetisation and inter-turn short circuit. Successful fault classification will ensure safe operations, speed up the maintenance process and decrease unexpected downtime and cost. The research in recent years is drawn towards fault analysis under dynamic operating conditions, i.e. variable load and speed. Most of these techniques have focused on the use of voltage, current and torque, while magnetic flux density in the air-gap or the proximity of the motor has not yet been fully capitalised. This dissertation focuses on two main research topics in modelling and diagnosis of faulty PMSM in dynamic operations. The first problem is to decrease the computational burden of modelling and analysis techniques. The first contributions are new and faster methods for computing the permeance network model and quadratic time-frequency distributions. Reducing their computational burden makes them more attractive in analysis or fault diagnosis. The second contribution is to expand the model description of a simpler model. This can be achieved through a field reconstruction model with a magnet library and a description of both magnet defects and inter-turn short circuits. The second research topic is to simplify the installation and complexity of fault diagnosis schemes in PMSM. The aim is to reduce required sensors of fault diagnosis schemes, regardless of operation profiles. Conventional methods often rely on either steady-state or predefined operation profiles, e.g. start-up. A fault diagnosis scheme robust to any speed changes is desirable since a fault can be detected regardless of operations. The final contribution is the implementation of reinforcement learning in an active learning scheme to address the imbalance dataset problem. Samples from a faulty PMSM are often initially unavailable and expensive to acquire. Reinforcement learning with a weighted reward function might balance the dataset to enhance the trained fault classifier’s performance.publishedVersio
    corecore