370 research outputs found

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    SAT-Solving in Practice, with a Tutorial Example from Supervisory Control

    Get PDF
    Satisfiability solving, the problem of deciding whether the variables of a propositional formula can be assigned in such a way that the formula evaluates to true, is one of the classic problems in computer science. It is of theoretical interest because it is the canonical NP-complete problem. It is of practical interest because modern SAT-solvers can be used to solve many important and practical problems. In this tutorial paper, we show briefly how such SAT-solvers are implemented, and point to some typical applications of them. Our aim is to provide sufficient information (much of it through the reference list) to kick-start researchers from new fields wishing to apply SAT-solvers to their problems. Supervisory control theory originated within the control community and is a framework for reasoning about a plant to be controlled and a specification that the closed-loop system must fulfil. This paper aims to bridge the gap between the computer science community and the control community by illustrating how SAT-based techniques can be used to solve some supervisory control related problems

    Progress Report : 1991 - 1994

    Get PDF

    Layering Assume-Guarantee Contracts for Hierarchical System Design

    Get PDF
    Specifications for complex engineering systems are typically decomposed into specifications for individual subsystems in a manner that ensures they are implementable and simpler to develop further. We describe a method to algorithmically construct component specifications that implement a given specification when assembled. By eliminating variables that are irrelevant to realizability of each component, we simplify the specifications and reduce the amount of information necessary for operation. We parametrize the information flow between components by introducing parameters that select whether each variable is visible to a component. The decomposition algorithm identifies which variables can be hidden while preserving realizability and ensuring correct composition, and these are eliminated from component specifications by quantification and conversion of binary decision diagrams to formulas. The resulting specifications describe component viewpoints with full information with respect to the remaining variables, which is essential for tractable algorithmic synthesis of implementations. The specifications are written in TLA + , with liveness properties restricted to an implication of conjoined recurrence properties, known as GR(1). We define an operator for forming open systems from closed systems, based on a variant of the “while-plus” operator. This operator simplifies the writing of specifications that are realizable without being vacuous. To convert the generated specifications from binary decision diagrams to readable formulas over integer variables, we symbolically solve a minimal covering problem. We show with examples how the method can be applied to obtain contracts that formalize the hierarchical structure of system design

    Model Predictive Control for Signal Temporal Logic Specification

    Get PDF
    We present a mathematical programming-based method for model predictive control of cyber-physical systems subject to signal temporal logic (STL) specifications. We describe the use of STL to specify a wide range of properties of these systems, including safety, response and bounded liveness. For synthesis, we encode STL specifications as mixed integer-linear constraints on the system variables in the optimization problem at each step of a receding horizon control framework. We prove correctness of our algorithms, and present experimental results for controller synthesis for building energy and climate control
    • 

    corecore