
Quantitative Properties of Software Systems:
Specification, Verification, and Synthesis

Srd̄an Krstić
DEEPSE group - DEIB - Politecnico di Milano, Milano, Italy

via Golgi 42 - 20133, Milano, Italy
srdan.krstic@polimi.it

http://home.deib.polimi.it/krstic/

ABSTRACT
Functional and non-functional requirements are becoming
more and more complex, introducing ambiguities in the nat-
ural language specifications. A very broad class of such re-
quirements are the ones that define quantitative properties
of software systems. Properties of this kind are of key rel-
evance to express quality of service. For example, they are
used to specify bounds on the timing information between
specific events, or on their number of occurrences. Some-
times, they are also used to express higher level proper-
ties such as aggregate values over the multiplicity of cer-
tain events in a specific time window. These are practical
specification patterns that can be frequently found in sys-
tem documentation. The goal of this thesis is to develop an
approach for specifying and verifying quantitative proper-
ties of complex software systems that execute in a changing
environment. In addition, it will also explore synthesis tech-
niques that can be applied to infer such type of properties
from execution traces.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms
Theory, Language

Keywords
Temporal logic, trace checking, verification, quantitative
properties, synthesis, specifications, aggregate operators

1. INTRODUCTION
Today, software is a key element in solutions of very hard

problems and as a result it is becoming very complex and
hard to verify and maintain. The desirable properties of
systems (and the assumed properties of the environment)
are becoming more complex, as well.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05 ...$15.00.

In the last decade, the research efforts in the area of soft-
ware verification have focused on verifying qualitative prop-
erties of systems (e.g., safety or liveness properties). How-
ever, many important software characteristics can be quanti-
tative, such as those related to non-functional requirements
like response-time, throughput or availability. Because of
this, better techniques are needed to assist in the design
and implementation of reliable and correct software.

For example, model checking is a verification technique
that consists of an exhaustive exploration of the state-space
of a model to provide a proof that a system conforms to its
specification; otherwise, it provides a counterexample in a
form of a violating run of the system. Quantitative verifica-
tion [18] is still an immature research area: its goal is to offer
the full benefits of model checking in addition to performing
quantitative evaluation to establish properties such as:

P1: “A client is allowed to submit no more than 3 service
requests each hour.” (throughput)

P2: “The system must not have more than 2 failures per
month.” (reliability)

P3: “The average response time of a service must not exceed
30 milliseconds, if invoked by a premium customer.”
(response time)

P4: “Never allocate more then 3 machines within 2 minute
time window.” (resource thrashing)

P5: “The probability of authentication service failure is less
than 0.001.” (reliability)

In my thesis I will deal with quantitative properties from
three key perspectives: specification, verification and syn-
thesis.

In the first part, I will provide a formal language for spec-
ifying this kind of properties and provide an overview of
related specification patterns occurring in practice.

The first three properties above have four common char-
acteristics: 1) they express a numerical bound on a certain
value (e.g., “response time must not exceed 30 milliseconds”);
2) they consider a time-bounded sequence of past events
(e.g., “since the last downtime”); 3) they refer to specific
event(s) (e.g., “service requests”) and/or timing relations
between specific events (e.g., “response time of a service”);
and 4) they (possibly) apply aggregate transformations on
the multiplicity of events and/or on their timing informa-
tion (e.g., “average response time”). Property P4 refers to
quantitative bound on the behavior of cloud-based, elastic
systems. The aspects of interest in this area are high-level

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55259186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

properties, such as elasticity, plasticity, and resonance [15].
Elasticity is defined in [16] as the degree to which a system
is able to adapt to workload changes by provisioning and
deprovisioning resources in autonomous manner, such that
in each point of time available resources match the current
demand as closely as possible. Plasticity and resonance are
unwanted properties of elastic systems; the former states
that a system is unable to recover its initial configuration
after scaling up, while the latter refers to a situation when
the number of allocated resources is continuously increas-
ing, even when subjected to a bounded load [3]. In the
last property, probability is used to quantify unreliable or
unpredictable behavior of systems, for example reliability
requirement of an external service in a service composition.

After identifying common set of recurring specification
patterns and defining a language that can express them, I
will focus on verification procedures that can be applied to
it. Since non-functional requirements highly depend on the
behavior of the environment, the approach mainly aims at
performing verification at run time, where the real behav-
iors can be observed. For example, given that our system
uses an external service, at design time we can only make an
assumption (usually based on the service level agreement)
on the response time of that service. However, during ex-
ecution, this assumption can be invalidated, since response
time may vary. Therefore, the approach needs to be efficient
to avoid introducing a high overhead in the performance of
the system. Additionally, the approach has to be general,
i.e., applicable in different domains and contexts (e.g., Web
service compositions, pervasive systems, etc.).

It is known that formal specification and runtime verifi-
cation are not widely adopted by practitioners and most of
the companies still use specifications written in natural lan-
guage. Therefore, another goal of my thesis is to promote
the use of formal specifications and their adoption in prac-
tice. Specification inference [23] is a process of constructing
a statement offered as an explanation or justification of pro-
gram behavior. Program synthesis [23] is the set of search-
based techniques that generate a program that matches a
given specification. Synthesis techniques will be applied in
the context of the developed language to help requirements
engineers automatically formalize specifications of existing
systems.

2. PROPOSED APPROACH
The main contribution of this thesis is a formal method-

ology and the tools for the specification and verification of
quantitative properties of complex software systems, as well
as to promote the use of formal specifications in practice
by providing specification-aid tools based on synthesis tech-
niques. The assumptions are that applications execute in a
changing environment, thus design-time verification cannot
model and simulate the behavior of the underlying execu-
tion infrastructure and of the external components used by
the application, which play an important role in applica-
tions’ ability to satisfy its non-functional requirements. The
contributions of this thesis are threefold:

1. A high-level specification language for expressing quan-
titative properties of software systems.

2. A lightweight runtime verification technique able to
detect (or predict) violations of such properties.

3. A specification aid tool that synthesizes formal speci-
fications from the execution traces of the existing sys-
tems.

In the following subsections, I will detail on each contribu-
tion point.

2.1 Specification of Quantitative properties
To specify in a precise way, the quantitative properties de-

scribed in Section 1 it is necessary to develop a specification
language with appropriate semantics.

Current state of the art languages, as detailed in Section 3,
cannot completely capture these properties. My starting
point is a language called SOLOIST [9], [10], developed in
our research group to specify service composition interac-
tions. It has useful constructs to express quantitative prop-
erties. For example, using SOLOIST we can write property
P1 as:

G(C3600
≤3 (req))

where proposition req denotes the client request event; G(·)
is the globally temporal operator and C3600

≤3 (·) is a counting
modality. It expresses the bound (≤ 3) on the number of
occurrences of the req proposition within a time window
(3600 seconds).

However, SOLOIST cannot express all the properties men-
tioned in Section 1. My plan is to extend SOLOIST by
incrementally adding new modalities that will express dif-
ferent types of quantitative properties and extending timing
features of the language to add more flexibility for the users.

The main requirements of the new language are: 1) to re-
fer to certain events in a bounded window of time, that can
be defined using constraints on timing information - time-
based (e.g., “in the last 10 days”) or with respect to certain
events - interval-based (e.g., “since the last authentication
failure”); 2) to capture timing information between specific
pairs of events; 3) to perform aggregation operations on the
event multiplicity (e.g., “maximum number of service invo-
cations”) and/or timing information (e.g., “weighted sum of
response times”); 4) to express a bound on the result of the
aggregation; and finally, 5) to express high level properties
of systems, like elasticity, explained in Section 1.

To formalize these properties I plan to make an exten-
sive literature overview (consisting of both scientific papers
and industrial specifications) in the field of service-based
applications, pervasive and cloud-based systems, to comple-
ment the study that lead to development of SOLOIST and
to collect information on all additional parameters consid-
ered when expressing each of the properties. For example,
elasticity parameters that need to be investigated are speed
and precision [16] of the scaling process.

The final specification language will be developed to con-
form with recommended criteria for formal specifications [19].
In short, decidability and the complexity of the language
needs to be studied to enable practical automatic verifica-
tion; each decision about its semantics needs to be docu-
mented and justified; and the language needs to be usable
and communicable to reasonably well-trained people.

Additionally, I intend to classify all the properties I en-
counter in terms of specification patterns, as done in [9].

2.2 Runtime Verification of Quantitative prop-
erties

The aforementioned approach will develop a verification
procedure for the proposed specification language. The aim
of the verification is to demonstrate that systems conform
to the quantitative properties stated in their requirements.
The road-map for obtaining appropriate tool consists of first
developing off-line trace checking procedure for the new lan-
guage and then a runtime verification procedure [21] and ex-
tending them incrementally as the language is constructed.

At the time of writing, an SMT-based technique for veri-
fying SOLOIST formulae has already been developed. The
implemented tool supports offline trace checking as a part
of post-mortem system analysis. The current focus is on
efficient runtime verification procedure. Runtime verifica-
tion can be used to detect violations of specifications and
trigger automatic adaptation or notify the developers about
the need for offline evolution. To create an efficient runtime
verification procedure I plan to investigate different encod-
ings of past execution traces [13] to minimize the amount
of bookkeeping needed to decide whether a property is vio-
lated. Other ideas include leveraging existing cloud comput-
ing infrastructure [1] and parallelizing the verification proce-
dure over the independent subformalae of the specification.
Performing incremental verification [7] can be beneficial to
determine the minimal part of the system that needs to be
reverified and avoid unnecessary repetitions.

2.3 Synthesis of formal specifications
While the theoretical basis for synthesis from logical spec-

ification has been known for decades, only recently a rather
broad class of synthesis systems has reached the level of prac-
tical applications [11]. In the context of my thesis I will in-
vestigate methods for synthesizing formal specifications from
a given set of correct runs of a system. This can be used as a
specification aid in a practical scenario where companies al-
ready have execution traces of their systems that are deemed
correct. The focus will be on the inference of quantitative
specifications of the systems, in contrast with inference of
behavioral specifications, for which there is an ample liter-
ature. The tool will analyze multiple execution traces and
either infer the complete quantitative specification or syn-
thesize values of the parameters of a specific specification
pattern.

3. RELATED WORK
There are several distinct definitions of quantitative prop-

erties and approaches to their specification and verification.
Finkbeiner et al. [14] propose an extension of LTL that re-
turns values from an execution trace. They use it to compute
aggregate values and collect statistics over runtime execu-
tions. Reference [2] defines an extension of metric first-order
temporal logic (MFOTL) which supports aggregation. The
language can express aggregate properties over the values of
the parameters of relations, while the missing requirement
is to expresses aggregate properties on the multiplicity of
relations in the temporal first-order structure.

The approach shown in [18] defines quantitative properties
as bounds on the probability of occurrence of a certain event
or bounds on the expected reward in a given state of a model
of the application. In this case, models are represented as
discrete (or continuous) time Markov chains with rewards

and properties as PCTL formulae with rewards. Another
definition of quantitative properties comes from the work
in [12], which considers a notion of quantitative languages
as a generalization of boolean languages. A boolean lan-
guage is a set of words over some finite alphabet. We can
view these languages as functions that assign a boolean value
to each word, depending on whether it belongs to the lan-
guage. In contrast, a quantitative language is a function
that assigns a real value to each word, thus a word has a
degree of membership in a quantitative language.

The approach presented in [1] exploits a Map-Reduce frame-
work to validate properties of traces written in LTL. This
work focuses on recasting the trace checking problem into
a Map-Reduce framework, by distributing verification tasks
of property subformulae over many parallel sites.

Although a lot of work has been done in the field of func-
tional specification inference (e.g., [26], [6]), inference of non-
functional aspects of systems is still an immature research
field. The work of Tan et al. [24] addresses the problem of
obtaining the timing constraints of external services, given a
global constraint of the service composition. They build a la-
bel transition system describing states of the parametrized
composite service model, where the parameters represent
timing constraints on the external services. Their algorithm
can synthesize the values of the parameters. However, it as-
sumes that the composite service is already formalized, and
is able to synthesize only response times. In [17] authors
use counterexample-guided inductive synthesis technique to
synthesize parameters of signal temporal logic formulae us-
ing simulation traces of the system.

None of the mentioned work reasons on the aggregate
values that are extracted from a time-bounded sequence of
events, which are frequently used in practice [9].

4. PROGRESS TO DATE
In the work done so far we explored possible mappings

of SOLOIST to several classes of lower-level languages like
CLTLB(D), to support automated verification. CLTLB(D)
is a Constrained PLTLB (Propositional Linear Temporal
Logic with both future and past modalities) augmented with
atomic formulae over a constraint system D. This enabled
us to perform trace checking using an SMT-based decision
procedure for CLTLB(D) [5]. We showed that the encoding
is feasible and reported the trace checking efficiency in [8].

After applying this approach to several data sets, we no-
ticed a common property of all the real-life traces we used:
they are very sparse. We measured that the number of
meaningful occurrences of events was 0.0008 times smaller
than the total number of time instants, the traces span.
This led us to explore a more suitable low-level logic - QF-
EUFIDL (Quantifier-free Integer Difference Logic with Equal-
ity and Uninterpreted Functions) and develop a more suc-
cinct encoding of the traces. The approach reported in [4] is
able to check sparse traces much more efficiently then using
the previous approach. These approaches are implemented
as two separate plugins in the bounded model checker ZOT1

and validated by performing trace checking on traces from
real-life data sets like [20], [25], [22], showing promising re-
sults. We have reported time and memory scalability of the
approaches, and the encoding complexity (linear in case of
CLTLB(D) and polynomial in case of QF-EUFIDL).

1http://code.google.com/p/zot/

Ongoing work involves developing a Map-Reduce variant
of the trace checking algorithm that will leverage a cloud
infrastructure to parallelize the procedure.

5. EVALUATION METHODOLOGY
Evaluation of the approach will consist of its application

to realistic case studies obtained from open-source reposito-
ries or, preferably, from collaborations in industrial projects.
Generality of the approach will be assessed by applying it to
problems from various domains, using different technologies
(e.g., Web service orchestrations, Java RMI, etc.).

The real-life requirement descriptions will be used to vali-
date the specification language. It is important to note how
many requirements are expressed and the size of the each
final specification formula (in terms on total number of sub-
formulae). Also, usability of the language will be evaluated
by performing a controlled experiment and recording the
experience of the practitioners.

The runtime verification will be evaluated by measuring
the amount of overhead it will introduce to the normal exe-
cution of the system.

Finally, the specification synthesis will be evaluated by
generating traces with a certain predefined property and
applying specification inference on them. We will compare
the inferred specification with the original one, and perform
statistical characterization on the amount of traces that are
needed to obtain a certain precision in the inferred property.

6. ACKNOWLEDGMENTS
This work is supported by the European Community un-

der the IDEAS-ERC grant agreement no. 227977-SMScom.

7. REFERENCES
[1] B. Barre, M. Klein, M. Soucy-Boivin, P.-A. Ollivier,

and S. Hallé. MapReduce for Parallel Trace Validation
of LTL Properties. In Proc. of RV 2012, volume 7687
of LNCS, pages 184–198. Springer, 2013.

[2] D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu.
Monitoring of temporal first-order properties with
aggregations. In Proc. of RV, LNCS. Springer, 2013.

[3] M. M. Bersani, D. Bianculli, S. Dustdar, A. Gambi,
C. Ghezzi, and S. Krstić. Towards the formalization of
properties of cloud-based elastic systems. In Proc. of
PESOS 2014, co-located with ICSE. ACM, June 2014.

[4] M. M. Bersani, D. Bianculli, C. Ghezzi, S. Krstić, and
P. San Pietro. SMT-based checking of SOLOIST over
sparse traces. In Proc. of FASE. Springer, April 2014.

[5] M. M. Bersani, A. Frigeri, A. Morzenti, M. Pradella,
M. Rossi, and P. San Pietro. Constraint LTL
Satisfiability Checking without Automata. CoRR,
abs/1205.0946, 2012.

[6] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and
M. D. Ernst. Leveraging existing instrumentation to
automatically infer invariant-constrained models. In
Proc. of the ESEC/FSE, pages 267–277. ACM, 2011.

[7] D. Bianculli, A. Filieri, C. Ghezzi, and D. Mandrioli.
Syntactic-semantic incrementality for agile
verification. Science of Computer Programming,
November 2013. In Press.

[8] D. Bianculli, C. Ghezzi, S. Krstić, and P. San Pietro.
From SOLOIST to CLTLB(D): Checking quantitative

properties of service-based applications. Technical
Report 2013.26, Politecnico di Milano - DEIB, Oct.
2013. https://db.tt/E1hGH5Zq.

[9] D. Bianculli, C. Ghezzi, C. Pautasso, and P. Senti.
Specification patterns from research to industry: a
case study in service-based applications. In Proc. of
ICSE 2012, pages 968–976. IEEE Press, 2012.

[10] D. Bianculli, C. Ghezzi, and P. San Pietro. The tale of
SOLOIST: a specification language for service
compositions interactions. In Proc. of FACS’12,
volume 7684 of LNCS, pages 55–72. Springer, 2013.

[11] R. Bodik and B. Jobstmann. Algorithmic program
synthesis: introduction. International Journal on
STTT, 15(5-6):397–411, 2013.

[12] K. Chatterjee, L. Doyen, and T. A. Henzinger.
Quantitative languages. ACM Trans. Comput. Logic,
11(4):23:1–23:38, 2010.

[13] J. Chomicki. Efficient checking of temporal integrity
constraints using bounded history encoding. ACM
Trans. Database Syst., 20(2):149–186, June 1995.

[14] B. Finkbeiner, S. Sankaranarayanan, and H. Sipma.
Collecting statistics over runtime executions. Formal
Methods in System Design, 27:253–274, 2005.

[15] A. Gambi, A. Filieri, and S. Dustdar. Iterative test
suites refinement for elastic computing systems. In
Proc. of ESEC/FSE, pages 635–638. ACM, 2013.

[16] N. R. Herbst, S. Kounev, and R. Reussner. Elasticity
in Cloud Computing: What it is, and What it is Not.
In Proc. of ICAC 2013. USENIX, June 2013.

[17] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia.
Mining requirements from closed-loop control models.
In Proc. of the 16th HSCC, pages 43–52. ACM, 2013.

[18] M. Kwiatkowska. Advances in quantitative verification
for ubiquitous computing. In ICTAC 2013, volume
8049 of LNCS, pages 42–58. Springer, 2013.

[19] A. v. Lamsweerde. Formal specification: a roadmap.
In Proc. of the Conference on The Future of Soft.
Eng., ICSE, pages 147–159. ACM, 2000.

[20] P. Leitner, W. Hummer, and S. Dustdar. A Monitoring
Data Set for Evaluating QoS-Aware Service-Based
Systems. In Proc. of PESOS 2012, pages 67–68, 2012.

[21] M. Leucker and C. Schallhart. A brief account of
runtime verification. The Journal of Logic and
Algebraic Programming, 78(5):293 – 303, 2009.

[22] A. Metzger, R. Franklin, and Y. Engel. Predictive
monitoring of heterogeneous service-oriented business
networks: The transport and logistics case. In SRII
Global Conference, pages 313–322, 2012.

[23] S. Srivastava. Satisfiability-based program reasoning
and program synthesis. PhD thesis, University of
Maryland, College Park, 2010.

[24] T. H. Tan, E. André, J. Sun, Y. Liu, J. S. Dong, and
M. Chen. Dynamic synthesis of local time requirement
for service composition. In Proc. of ICSE 2013, pages
542–551. IEEE Press, 2013.

[25] B. van Dongen. Bpi challenge, 2012.

[26] Y. Wang, Z. Zhang, D. D. Yao, B. Qu, and L. Guo.
Inferring protocol state machine from network traces:
A probabilistic approach. In Proc. of ACNS, pages
1–18. Springer, 2011.

