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If you are reading this thesis, you probably won’t need much convincing of the
fact that software is now an essential ingredient in many different aspects of
our society. The improvement of software and its development is therefore a
broad area of academic pursuit.

A lot of important research is about writing software that is correct, efficient
and secure. The research presented in this thesis, however, is primarily about
writing software that is modular and easy to maintain. Now that software
is updated over the internet —even hosted entirely online—, release cycles
become ever shorter and it becomes ever more important that software be easy
to adapt and extend without making it too complex.

Specifically, this thesis is about Abstract Delta Modeling (ADM), a for-
mal framework developed to achieve modularity and separation of concerns in
software, as well as provide the opportunity for variability management and
automated product generation in Software Product Line Engineering (SPLE).

The thesis follows a predominantly formal approach. This is important, as
it avoids vagueness and ambiguity. It allows the use of mathematical proof
techniques, which gives the academic community a high level of confidence in
the results. While software engineering in general has come a long way when
it comes to formal analysis, SPLE has been mostly an empirical field of study.
But this has changed in recent years. This thesis is a product of the European
HATS project [80]:

HATS: Highly Adaptable and Trustworthy Software using Formal Models

This thesis presents a formal foundation for the techniques of delta modeling,
which was the main approach to variability used by the HATS project. To do
this, it employs (among other things) abstract algebra, modal logic, operational
semantics and Mealy machines, and lays the bridges between the different dis-
ciplines as we go. The chapters to come provide a broad overview of the ADM
framework and its possibilities, as well as a number of existing practical appli-
cations, laying a foundation for further research and development.

This Introduction chapter is organized as follows. Section 1.1 introduces
the main problems we are trying to solve. Section 1.2 introduces a number of
existing approaches to solving those problems and points out shortcomings that
we will try to overcome. Section 1.3 then outlines the general delta modeling
approach proposed in this thesis. To illustrate and motivate this approach we
study an example in Section 1.4, which we’ll be referring back to throughout the
rest of the thesis. Section 1.5 outlines the structure of the thesis and relates the
chapters to my academic publications. This thesis is primarily a work of formal
methods, introducing and building upon mathematical and logical notions. To
help the reader, it adheres to a number of typographic conventions and the
theory is based on well-established concepts of discrete mathematics. These
are introduced, respectively, in Sections 1.6 and 1.7.
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1.1 Problem Statement

Programming is an activity very prone to human error. As more and more fea-
tures are implemented in a software system by different programmers, progress
will often slow to a crawl. It is all too easy for programmers to lose overview of
what their code is doing when it is spread across the code base surrounded by
the code of others. This can result in bugs and inevitably much time will need
to be spent on maintenance. This, in turn, results in more expensive software
that takes longer to reach the user.

To prevent a large software system from collapsing under its own complexity,
its code needs to be well-structured. Manny Lehman (remembered as the
Father of Software Evolution) stated the following as his second law of software
evolution [48, 119]:

“As a program is evolved its complexity increases unless work
is done to maintain or reduce it.”

Ideally we want all code related to a certain feature (sometimes called concern)
to be grouped together in one module —which is called feature modularity or
feature locality [89, 109, 156]— and code belonging to different features not to
be mixed together — which is called separation of concerns [96, 112, 114, 147].
But many concerns cannot be easily captured by existing abstractions. They
are known as cross-cutting concerns. By their very nature their implementation
needs to be spread around the code base, so modularization and separation of
concerns are still elusive.

The software engineering discipline that has the most to gain from those
properties is Software Product Line Engineering (SPLE), a relatively new de-
velopment. To quote van der Linden, Schmid and Rommes [122]:

“Software product lines represent perhaps the most exciting
paradigm shift in software development since the advent of
high-level programming languages.”

SPLE is concerned with the development and maintenance of multiple software
systems at the same time, each possessing a different (but often overlapping)
set of features — a form of mass customization [117, 155].1 This gives rise
to an additional need. It is no longer enough that the code for a given fea-
ture is separated and modular; it also need to be composable and able to deal
gracefully with the presence or absence of other features. We need to be able
to make a selection from a set of available features and have the correspond-
ing software mechanically generated for us — a process known as automated
product derivation [1, 2, 65, 163] (Figure 1.1). That is no small order.

1The term ‘product line’ is really a misnomer. It comes from 1834, when a typical retailer
had only a small number of products, lined up in front of him [55, 157]. In a (software)
product line, neither the products nor the features need to be linearly ordered in any way.
The term ‘product family’, used primarily in Europe [155], is therefore technically more
accurate. Nonetheless, ‘product line’ is used much more widely, so we’ll stick with it.
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Figure 1.1: The process of Automated Product Derivation.

1.2 Existing Approaches

A number of programming paradigms have recently emerged out of a need to
solve the problem of cross-cutting concerns. Among the more recent are As-
pect Oriented Programming (AOP) and Feature Oriented Software Development
(FOSD) [13, 104, 110, 125, 156]. We now summarize these existing approaches.

1.2.1 Aspect Oriented Programming
Around the turn of the millenium, Aspect Oriented Programming (AOP) [107,
112, 114, 126, 133, 144] was proposed to tackle cross-cutting concerns. An
aspect can specify code (called advice) to be added at specific locations (called
pointcuts) in an existing code base. All code belonging to a concern can be
grouped together.

AOP is a step in the right direction, as many related code fragments that
once had to be spread around can now be grouped into one aspect. Gener-
ally, however, AOP only supports the insertion of statements around identified
join-points inside methods and the addition of members to an existing class
(using inter-type declarations [12]). Moreover, there has been a general lack of
support from AOP to help us reason about —and coordinate— the interaction
between different concerns [51], though there has been recent work attempting
to improve this situation [129].

1.2.2 Feature Oriented Software Development
In literature, Feature Oriented Software Development (FOSD) is often equated
with software product line engineering, so approaches that claim to follow
FOSD are often capable of automated product derivation to some degree. A
Software Product Line (SPL) is a collection of similar software systems (or
software products) that differ only by which features they support and can,
therefore, share a lot of the same source code. FOSD and SPLE share basi-
cally the same techniques. Compared to AOP, these techniques have the added
benefit of supporting automated product derivation.

To accomplish this, methods were developed to express the variability be-
tween products: where and how can the code of one product differ from that
of another, and which features account for those differences?

Techniques for expressing SPL variability can be divided into two main
categories [108]: annotative techniques and compositional techniques.
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1.2.3 Annotative Software Product Line Techniques
An annotative code-base consists of the totality of available code — all features
included. Specific annotated parts of that code —parts belonging to features
we don’t want— can be removed to create a final program [106, 108, 181].
Of all approaches to automate product derivation, the annotative approach
is probably most popular one practice. A prominent example of this is the
Linux kernel, which is an immense collection of C code annotated by #ifdef
preprocessor directives, which allow conditional compilation [171].

But in the annotative approach, code is not gathered in modules; just an-
notated wherever it appears. Consequently, it does not enjoy the modularity
or separation of concerns we want. Furthermore, it forces feature related code
into an improper structure: a linear textual order. This is an overspecification,
as it can never be clear whether the order between two different lines of code
was by design, or forced upon the developers by the annotative paradigm. As
the order between two statements can be semantically significant in an imper-
ative programming model, this can cause unanticipated bugs and complexity
in the long run.

1.2.4 Compositional Software Product Line Techniques
Of particular interest to us are the so-called compositional techniques, such as
GenVoca [30], AHEAD [31] and Delta Modeling [160, 162–164]. In contrast to
the annotative techniques, the idea here is to gather all code belonging to a
feature —or a closely related set of features— into a single module: a feature
module. To obtain any specific product from the product line, one only has
to choose the appropriate set of modules and apply them to the core product

—the code that contains only the bare basics— in the proper order. When
applied, they can then modify the core in order to integrate their features.
This is generally done by a process known as invasive composition [23], called
so because feature modules often need break object oriented encapsulation and
class boundaries in order to apply the proper modifications to the code.

1.3 The Abstract Delta Modeling Approach

This thesis is about Delta Modeling, a compositional technique for implement-
ing variability of software product lines. Its feature modules are called deltas,
as they describe the difference between two systems.

Rather than focus merely on software, we define an abstract approach to
delta modeling called Abstract Delta Modeling (ADM), which comprises a num-
ber of related formalisms. These allow us to reason about delta modeling
without having to consider any specific programming paradigm. A great num-
ber of relevant concepts can be discussed without ever mentioning software.
In fact, focussing on software too early —or worse, a specific programming
language— could narrow our vision and cause us to miss good ideas.

Dave Clarke, Ina Schaefer and myself [1, 2] first introduced ADM as a
formal approach for modeling software product lines. These articles give an
algebraic description of deltas and how they can be combined and linked to
the higher level notion of feature. One of the main contributions of that work
was a way of organizing deltas in a partially ordered structure. This allows us
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to express relations and dependencies between deltas that closely mirror the
original design intentions. Specifically, we could now reason about conflicting
deltas —independent deltas with incompatible implementations— and conflict
resolving deltas — specialized modules to mediate conflicts and streamline fea-
ture interaction.

Already in that work, delta modeling was not restricted to software, but
rather product lines of any domain. So even though the main inspiration for
ADM was to structure software systems, it can just as readily be used to formu-
late sets of mathematical equations, model possible hardware configurations or
design a line of office furniture.

Since the original article, delta modeling has been extended and refined in
several directions [3–7], all of which we will discuss in this thesis. In particular,
a modal logic was created to make it easier to reason about the semantics of
products and deltas; a development workflow for product lines was introduced;
and last but not least, an abstract semantics for dynamic delta modeling was
developed, allowing deltas to be applied at runtime, on demand, based on
environmental conditions. Much of this theory has already been put into prac-
tice. Delta modeling was implemented in the ABS modeling language [8, 52]
(developed by the HATS project), and I have implemented it for Javascript
and LATEX. The development workflow was applied to the Fredhopper Access
Server [7] —an industrial scale case study—, and I applied dynamic delta mod-
eling techniques to the development of a profile management application for
Android.

1.4 A Running Example: The Editor Product Line

In this section we introduce the plans for a fictional software product line of
source code editors such as you might find in IntelliJ IDEA [99] or Eclipse [139].
We will use this product line as an illustrative example throughout most of
the thesis.

Section 1.4.1 describes the features we want to implement and Section 1.4.2
gives an idea of how our delta modeling based implementation will work.

1.4.1 The Specification
The specification of the Editor product line includes a set of feature configu-
rations corresponding to the different kinds of editors we want to be able to
generate. Each represents a different selection of features to include in the
final product. Such a set of feature configurations is called a feature model.
Figure 1.2 shows a feature diagram [66] representing the feature model of the
Editor product line. We’ll consider the following features:

• Editor (𝐸𝑑) is the only mandatory feature of the product line. It repre-
sents basic text editing functionality.

• Printing (𝑃𝑟) allows the user to print the code in the editor on paper.
• Syntax Highlighting (𝑆𝐻) displays code in color for easier recognition of

different programming language constructs.
• Error Checking (𝐸𝐶) performs simple grammatical analysis on code and

underlines certain errors. Hovering over an error with the mouse-pointer
triggers a tooltip with extra information.
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..Printing. Syntax
Highlighting

. Error
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Figure 1.2: The feature diagram of the Editor product line. Each ..box rep-
resents a feature. The base feature (Editor) is mandatory. A connector with
an open circle at the end . indicates an optional subfeature. A subfeature
can only be selected if its parent feature is also selected. A curve between two
connectors . indicates a mutually exclusive choice between subfeatures.

• Error Checking has an optional subfeature: Semantic Analysis (𝑆𝐴). It
performs more sophisticated error analysis of program code.

• Tooltip Information (𝑇𝐼) shows contextual information in a tooltip when
the mouse-pointer hovers over some code. Since Error Checking can also
trigger tooltips, we decide to make the two features mutually exclusive,
i.e., a final product should not include both.

This product line consists of 16 different editors, as there are 16 possible feature
configurations.

1.4.2 An Implementation using Deltas

We now look at a delta-based implementation of the Editor product line in
some object oriented programming language. It will be complete enough to
generate all 16 possible end products, yet modular enough not to require any
code duplication.

Figure 1.3 shows an overview of the entire code-base. Each delta is rep-
resented by a dashed box, displaying the modifications it can perform to the
program. The internal boxes mimic UML class-notation [159]. The keywords
add, mod and rep respectively indicate addition, modification and replacement
of code artefacts. A modification descends one level to apply more fine-grained
transformations. Each delta is also annotated with its application condition,
indicating the feature configurations for which it should be applied.

The Editor code-base consists entirely of deltas. They are designed to
incrementally modify the empty program (which is not shown). Each feature
𝑓 is implemented by a single delta — which we’ll call 𝑑𝑓. For example, 𝑑𝐸𝑑
implements the basic editing functionality of 𝐸𝑑 by adding the Editor class
to the empty program. It is always applied, because 𝐸𝑑 is a mandatory feature.
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..

. ..
add Editor

.m_model: Model;.init(m: Model): void
model(): Model
font(c: int): Font
onMouseOver(c: int): void

..mod Editor..
rep onMouseOver(c: int): void

..
mod Editor

.
add m_printer: Printer

.
mod init(m: Model): void
add print(): void

..
mod Editor

.
add m_syntaxhl: SyntaxHL;

.
mod init(m: Model): void
rep font(c: int): Font

..
mod Editor

.
add m_errorch: ErrorCh;

.
mod init(m: Model): void
rep font(c: int): Font
rep onMouseOver(c: int): void. ..

add SyntaxHL
.

m_model: Model;

.

init(m: Model): void
color(c: int): Color

..
add ErrorCh

.
m_model: Model;

.
init(m: Model): void
errorOn(c: int): bool
errorText(c: int): string

..
mod Editor

..
rep print(): void

..
mod Editor

..
rep font(c: int): Font

..
mod ErrorCh

..
mod init(m: Model): void
add process(m: Model): void
rep errorOn(c: int): bool
rep errorText(c: int): string

...

𝐸𝑑

..

𝑇𝐼

..𝑃𝑟 ..

𝑆𝐻

..

𝐸𝐶

..

𝑃𝑟 ∧ 𝑆𝐻

..

𝑆𝐻 ∧ 𝐸𝐶

..

𝑆𝐴

Figure 1.3: A delta diagram of the Editor product line implementation. Each
..dashed box represents a delta with an overview of the modifications it can

apply to the core product in a UML-like notation. Method bodies are omitted
for brevity. The arrows . indicate which deltas are allowed to overwrite or
alter the modifications of others. The propositional logic ..formula attached
to the bottom right corner of each delta represents the feature configurations
for which that delta should be applied.

The other deltas add some functionality on top of the basic editor, just
as a programmer would in traditional software engineering. For instance, 𝑑𝑃𝑟
implements the 𝑃𝑟 feature by making some modifications to the Editor class.
It adds a field m_printer, a method print() and it modifies the pre-existing
init() method.

Since 𝑑𝑃𝑟 continues where 𝑑𝐸𝑑 left off, it is important that they are applied
in the right order. That’s where the arrows in the diagram come in. They
represent the partial application order, a part of the code-base design. Because
of this order, 𝑑𝑃𝑟 can be written with the certainty that 𝑑𝐸𝑑 will be applied
first. This is always necessary for deltas that implement subfeatures. Besides
the subfeatures on the first level, it is also the case for 𝑑𝑆𝐴, which implements
the second-level subfeature 𝑆𝐴. By not placing an order between two deltas, a
developer indicates that the order in which the deltas are applied should not
matter — an important design intention.
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This makes the code-base very robust to change, as code dependencies are
made explicit in the design. If the code of 𝑑𝐸𝑑 is ever changed, the developers
of 𝑃𝑟 may receive an automated warning, so they can determine whether they
should make corresponding changes to 𝑑𝑃𝑟.

In certain situations the application order can even ensure an automated
error message when two independent deltas make incompatible changes to the
program. For example, because of the limited interface of Editor, 𝑑𝑆𝐻 and
𝑑𝐸𝐶 both need to replace the font(int) method; the former to change the
color of the content, the latter to underline it in case of errors. (Incidentally,
note that besides modifying Editor, both deltas also add a new class of their
own.) Since neither delta has priority over the other —and rightfully so—
there is a conflict in the code-base that needs to be resolved, and it can be
automatically detected.

We resolve the conflict with what we call a conflict resolving delta. The
delta annotated with 𝑆𝐻 ∧ 𝐸𝐶 —which we’ll call 𝑑𝑆𝐻∧𝐸𝐶— is applied only
in situations where this conflict would occur and replaces the font(int)
method with a final version that properly combines the implementations of
𝑑𝑆𝐻 and 𝑑𝐸𝐶.

At first glance it appears as though 𝑑𝐸𝐶 and 𝑑𝑇𝐼 are also in conflict, as
they both replace the onMouseOver(int) method. However, this will never
be a problem. By the feature model (Figure 1.2) the features 𝐸𝐶 and 𝑇𝐼 can
never be selected together, so there can never be a conflict in the first place.

So what is 𝑑𝑃𝑟∧𝑆𝐻 doing? 𝑑𝑃𝑟 and 𝑑𝑆𝐻 are not in conflict. However, we’d
like these two features to be more than the sum of their parts. When we can
both highlight the code and print it, it makes sense that we should also be
able to print the code in color. We call 𝑑𝑃𝑟∧𝑆𝐻 an interaction implementation
delta. It replaces print() with a version that makes use of the font(int)
method from 𝑑𝑆𝐻. It is similar in many ways to a conflict resolving delta, but
the reason we need it cannot be detected automatically.

And so we have an implementation that explicitly links features to their
corresponding code. It is modular: all code belonging to the same feature
(combination) is grouped together in a delta. It has separation of concerns:
code belonging to different features is separated. We also have automated
product derivation: given any desired feature configuration, we can select the
relevant deltas from the model, then apply them in the proper order. This
description did leave out a lot of details. We will spend the rest of this thesis
exploring those details.

1.5 Papers & Chapters

This section outlines the chapter structure of this thesis and lists the publica-
tions on which it is based.

1.5.1 My Publications
In October 2009 I presented my idea for conflict resolving deltas at a HATS
working meeting in Leuven, Belgium. This began my collaboration with Dave
Clarke and Ina Schaefer on Abstract Delta Modeling. I was fortunate to stum-
ble upon a viable research idea so early on. It provided me with a sense of focus
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for more than three years, improving and extending ADM. All of my publica-
tions since the abovementioned collaboration, therefore, are on the same topic,
allowing for a thesis with a coherent narrative. A bibliography-style list of
those publications can be found on Page 234. They are split off from the main
bibliography, and are numbered sequentially throughout the thesis: [1–10]

[1, 9] Abstract Delta Modeling

This paper was written by Dave Clarke, Ina Schaefer and myself, and forms
the theoretical core of this entire thesis. A technical report [9] accompanied
the main paper [1], containing full proofs that did not fit within the page limit.
I presented the paper at GPCE 2010 in Eindhoven, the Netherlands. It intro-
duces an abstract notion of products, of deltas that can transform products,
partially ordered delta structures called delta models and delta-based product
lines. This theory is treated in Chapters 2 to 4. This paper is also the source
of the Editor Product Line example of Section 1.4. I’ve chosen to extend it for
this thesis, since it seems to have done a great job in helping fellow researchers
understand the practical application of the theory. It is simple and familiar,
yet flexible enough to demonstrate most of ADM’s benefits.

[5] Delta Modeling Workflow

This paper was written by me in 2011 and presented at VaMoS 2012 in Leipzig,
Germany, together with its companion paper [7]. ADM is meant to model
real-world software product lines, but the main work only presented a formal
framework; one that encompasses a vast expressive space, but without any
guidelines to its recommended use. So this paper proposed a development
workflow based on ADM, which allows concurrent and isolated development of
features while preserving beneficial global properties. The workflow is treated
in Chapter 7, and a more thorough formalization can be found in Appendix A.

[7] Delta Modeling in Practice, a Fredhopper Case Study

This paper was written by Radu Muschevici, Peter Wong and myself in 2011,
and put the Delta Modeling Workflow through its paces on the industrial-scale
case study of the Fredhopper Access Server. I presented it at VaMoS 2012
together with the theoretical paper described above. It includes an analysis
on the effectiveness of the workflow in a practical setting, which is included
in Chapter 7.

[3] A Modal Logic for Abstract Delta Modeling

This paper was written by Frank de Boer, Joost Winter and myself, one of three
publications presented by me at SPLC 2012 in Salvador, Brazil. It presents
a multimodal logic meant for reasoning about the effects of deltas and the
semantics of products. Its main innovation is a modality for delta models.
This theory is treated fully in Chapter 6.

This was the first paper to interpret deltas as mathematical relations be-
tween products, rather than functions. This idea has been fully integrated
into the main ADM theory of this thesis — something which has not yet been
published. It’s had a particularly profound effect on Chapters 2 and 3.
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[6] Dynamic Delta Modeling

This paper was written by me and presented at SPLC 2012 in Salvador, Brazil.
It put the flexibility of ADM to the test, as it applies the formalism in a
dynamic setting: the selected feature configuration can change at runtime,
and the system has to adapt in real time. The main case-study is an Android
application which allows automated profile management, reconfiguring a mobile
device’s operating profile based on environmental factors. This paper is covered
fully in Chapter 8, together with its submitted extension [⌛1].

[4] Abstract Delta Modeling: My Research Plan

This is a PhD research plan submitted to the doctoral symposium colocated
with SPLC 2012. It describes my plans for this thesis and was published in
the digital proceedings of the conference. The thesis does not fulfill all of my
earlier predictions, but I believe that in most of those instances, the result was
a better reading experience.

[2] Abstract Delta Modeling (Journal Version)

This paper was written by Dave Clarke, Ina Schaefer and myself as an extended
version of the ADM conference paper [1, 9], accepted to a special issue of
MSCS. (We received notification of acceptance a long time ago, but the article
has not yet been published as of this writing, because of a backlog.) This
article subsumes the original work. Aside from a more detailed treatment of
the formalism, its main addition was that of nested delta models, which are
discussed in Sections 3.6 and 4.5.

[8] HATS Abstract Behavioral Specification: The Architectural View

This paper was written by Reiner Hähnle, Einar Broch Johnsen, Michael Lien-
hardt, Davide Sangiorgi, Ina Schaefer, Peter Y. H. Wong and myself and
submitted as a HATS publication, published by Springer in 2013. It describes
the Abstract Behavioral Specification (ABS) language from an architectural
perspective, a perspective that includes delta modeling. My contribution to
this article was an accounting of the Delta Modeling Workflow tailored to
ABS, which is summarized in Chapter 7.

[10] The pkgloader and lt3graph Packages: Toward simple and
powerful package management for LaTeX

I was invited to write this article by the editor of TUGboat, the Commu-
nications of the TEX Users Group, based on my work on the pkgloader
LATEX package. This package oversees the package loading process and uses
delta modeling principles to address one of the major frustrations of LATEX:
package conflicts. The article introduces the pkgloader package, as well as
lt3graph, a LATEX3 library used by pkgloader to do most of the heavy
lifting. This practical application of delta modeling is treated in Chapter 5.

1.5.2 Unpublished Work
The following have been written, but not yet accepted for publication.
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[⌛1] An Operational Semantics for Dynamic Product Lines

This paper was written by me in 2013, and submitted to a SoSyM Special
Issue on Integrated Formal Methods. It is loosely based on the first paper on
dynamic delta modeling [6]. It takes a more formal, more general approach
and subsumes the earlier work. The main new contribution is an operational
semantics, which now formalizes the previously vague notion of ‘strategy’. The
new approach incorporates unrestricted feature models as well as relational
deltas, whereas the original work required that the feature model considers
all features to be independent and all deltas to have a functional behavior.
Finally, the description of the case-study has been greatly extended. It is on
this article that Chapter 8 is based.

[⌛2] A Formal Software Product Line Development Workflow

This paper was written by me in 2013, but has not yet been submitted. It
extends the first abstract paper on the Delta Modeling Workflow [5], and sub-
sumes most of the theory from that paper. The main contribution absent from
the earlier work is a focus on concurrent development and a proof that such
concurrent development is possible without sacrificing correctness. To that end,
an operational semantics is used to model the various implementation steps of
the workflow. This theory is presented in Appendix A.

1.5.3 The Chapters

The distribution of the work over the chapters of the thesis is based on narrative
merit, rather than a one-to-one correspondance. Pretty much every publication
has influenced every chapter in some way, but there are some clear connections,
which are mentioned in the summaries below.

Chapter 1: Introduction

What remains of the current chapter is a set of typographic conventions in
Section 1.6 —recommended, if you plan on reading a significant portion of
the other chapters— and some preliminary theory on discrete mathematics in
Section 1.7, which is meant primarily as a reference.

Chapter 2: Algebraic Delta Modeling

This chapter introduces the basic building blocks of delta modeling: products
and deltas, as well as their characteristics and interactions. Most of the theory
comes from the original papers [1, 2], but it adopts refinements introduced
in other papers. Notably, it introduces the semantics of deltas as relational,
rather than functional, which was first done in the papers on delta logic [3]
and dynamic delta modeling [6]. It also contains some unpublished material.
In particular, a number of new algebraic interpretations are discussed in Sec-
tion 2.6.
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..Chapter 1
Introduction

.

Chapter 2
Algebraic

Delta Modeling

.

Chapter 3
Delta Models

.

Chapter 4
Product Lines

.

..
Chapter 5
LATEX Meets

Delta Modeling

..
Chapter 6
Delta Logic

..
Chapter 7

Delta Modeling
Workflow

..
Chapter 8

Dynamic
Product Lines

..

Chapter 9
Conclusion

Figure 1.4: The suggested reading order of the thesis. Chapters 5 to 8 can
basically be read in any order. Before that, however, each chapter builds upon
the theory of its predecessor.
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Chapter 3: Delta Models

This chapter introduces the partially ordered structure and conflict resolution
models that first inspired the work on ADM. Again, most of this comes from the
original ADM papers [1, 2], but includes adaptation to the relational semantic
view. The chapter also introduces a distinction between several different types
of delta model semantics, one of which —conjunctive semantics— is as of yet
unpublished.

Chapter 4: Product Lines

This chapter introduces features and ADM-based product lines and is the final
chapter based on the original work [1, 2]. The theory in this chapter has
been influenced most by the work on the development workflow [5], which split
up the description of a delta-based product line into a specification and an
implementation, and introduced the concept of parametric deltas: deltas that
behave differently for different feature configurations.

Chapter 5: LATEX Meets Delta Modeling

This chapter demonstrates the LATEX implementation of delta modeling by
documenting two new LATEX-packages. The delta-modules package defines
deltas that can be used for the preparation of documents, and families of related
documents. For example, this thesis was prepared using the delta-modules
package, and different versions of the thesis are available that skip certain
topics for a different reading experience.

The pkgloader package solves a long-existing problem with the LATEX
ecosystem: that of package management. Many document authors suffer from
the fact that various LATEX packages are mutually incompatible, and the fact
that this is very poorly documented. The pkgloader package uses delta
modeling principles to load third party packages in the proper order, apply
code to resolve certain package conflicts or, as a last resort, provide the user
with a clear error message.

Chapter 6: Delta Logic

This chapter introduces a modal logic for reasoning about products and deltas.
It is almost fully based on [3], but some theory was already introduced in
earlier chapters. It presents a multi-modal language and a number of proof
techniques with accompanying soundness and completeness proofs. A possible
new adaptation to hybrid logics is briefly discussed as well.

Chapter 7: Delta Modeling Workflow

This chapter introduces a recommended workflow for building delta-based prod-
uct lines. It is almost fully based on the corresponding publications [5, 7, 8].
The theory is strengthened by a new formulation in terms of operational se-
mantics based on an as of yet unpublished paper [⌛2]. To improve readability,
the operational semantics is not exposed in the chapter itself, but is instead
presented in Appendix A.
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Chapter 8: Dynamic Product Lines

This chapter introduces dynamic delta modeling: a basis for modeling product
lines that can adapt at runtime to a dynamically changing feature configura-
tion. It is based on the corresponding paper [6], though thoroughly reworked
and extended since 2012. The new theory, based on an interplay between oper-
ational semantics and Mealy machines, has been submitted to a SoSyM special
issue on integrated formal methods [⌛1].

Chapter 9: Conclusion

This chapter summarizes the main contributions, goals and lessons of each
chapter, and then presents a number of possible directions for future work.

1.6 Typographic Conventions

This section contains the various typographic conventions used throughout this
thesis. Knowing them is not necessary for understanding the theory, but it can
help the reader to spot certain constructs at a glance and to read and parse
the text more efficiently.

1.6.1 Fonts
The following variations in font serve a special purpose:

• A Serif Roman typeface, apart from being used for the prose, is also used
for the names of mathematical functions.

• Italic type is used to put emphasis on certain words or phrases, either in
a linguistic sense (“we can represent product lines of any domain”) or to
mark certain notions as important to the theory (“units called deltas”).
It is also used for the names of mathematical variables and constants.

• A Sans Serif typeface is used for the names of mathematical predicates,
relations and classes.

• 𝒞𝑎𝑙𝑖𝑔𝑟𝑎𝑝ℎ𝑖𝑐 or 𝔉𝔯𝔞𝔨𝔱𝔲𝔯 typefaces are used in mathematical formulas for
specific kinds of variables related to the theory of discourse, usually to
maintain consistency with previous work.

• A Monospaced typeface is used for (fragments of) source-code. Inside
source code, keywords and core language constructs are bold, values are
italic, comments are /*gray*/ and types are green. The color con-
trast should still be high enough for the last two to be readable (though
not distinguishable) when printed in grayscale.

• Small caps is used in Chapter 8 and Appendix A for the names of
specific inference rules in the operational semantics. The definition of
new inference rules sets the pace of the respective chapters and their
names form convenient reference points.

1.6.2 Formal Concepts
The main chapters of this thesis present various theories. The definitions, as-
sumptions and results that constitute the formalisms for those theories are
placed in clearly delimited blocks that break up the running text. These con-
cepts are numbered sequentially per chapter, and they come in the following
flavors:
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0.1. Definition: a formal definition ⌟

0.2. Notation: a formal notation ⌟

0.3. Action: a formal action that may be taken by a developer ⌟

0.4. Example: an example of a formal concept ⌟

0.5. Axiom: a formal restriction on an existing definition ⌟

0.6. Theorem: an important formal result ◻

▹ 0.7. Lemma: an intermediate or smaller formal result ◻

..▸ 0.8. Corollary: a formal result that readily follows from a previous result ◻ ..

.In the left margin of each of these types of blocks you may find one of two
symbols. A white triangle ( ▹) indicates that the concept belongs to one of the
concrete examples or case studies of the thesis, .rather than the overall abstract
formalism. A black triangle ( ▸) indicates concepts of a greater scope. Blocks
without either symbol are local in nature and could be skipped without missing
too much in the long run. But a black triangle indicates that later sections or
chapters will refer back to the concept in question.

Not all formal results will be accompanied by a proof. A lot of the required
proofs are conceptually quite simple, but long, tedious and generally uninter-
esting to read. A proof is included only if reading it would provide valuable
insight into the theory. For some results about the running example, a mechan-
ically checked proof has been written with the Coq proof assistant [36]. Those
results show the Coq logo ( ) .in the right margin. This gives the reader some
confidence in the result without requiring them to plow through quadruply
nested case distinctions. .

1.6.3 PDF Features
When viewing the PDF file of this thesis on a computer monitor, you have
access to several extra features. First, there are clickable hyperlinks between
sections, formal environments, bibliography references and more. Second, the
logo next to the results checked with the Coq proof assistant can be clicked to
download an embedded copy of the Coq proofs. This will only work for certain
PDF viewers, such as Adobe Reader.


(****************************************************
 * (C) Copyright 2014                               *
 * This file contains proofs of a number of results *
 * in the PhD Thesis of Michiel Helvensteijn.       *
 ****************************************************)

Require Import Coq.Unicode.Utf8.

Notation "a ⇒ b ⇒ c" := ((implb a (implb b c)) = true)  (at level 90, b at next level).
Notation "a = b = c" := (a = b ∧ b = c)                 (at level 70, b at next level).

(*************************************************************
 * The definitions and proofs in this file are all about     *
 * the software deltoid of Section 2.3. These mechanically   *
 * checked proofs are about the class level operations only, *
 * to simplify the work. Mapping these results to the        *
 * coarser granularity levels using finite maps is relat-    *
 * ively intuitive, but quite frustrating to do with Coq.    *
 *************************************************************)

(********** Operations **********)

Inductive Operation :=
  | err: Operation
  | add: Operation
  | rep: Operation
  | rem: Operation
  | frb: Operation
  | nop: Operation.


(********** Algebraic Operators **********)


(* Equivalence *)

Definition equiv (x y: Operation) : bool :=
  match x, y with
  |  err, err  =>  true
  |  add, add  =>  true
  |  rep, rep  =>  true
  |  rem, rem  =>  true
  |  frb, frb  =>  true
  |  nop, nop  =>  true
  |  _  , _    =>  false
  end.
Infix "≃" := equiv (at level 70, no associativity).


(* Sequential Composition *)

Definition comp (x y: Operation) : Operation :=
  match x, y with
  |  add, rem  =>  rep
  |  add, frb  =>  add
  |  rep, add  =>  add
  |  rep, rep  =>  rep
  |  rem, add  =>  frb
  |  rem, rep  =>  rem
  |  frb, rem  =>  rem
  |  frb, frb  =>  frb
  |  nop, _    =>  y
  |  _  , nop  =>  x
  |  _  , _    =>  err
  end.
Infix "·" := comp (at level 40).


(* Syntactic Refinement *)

Definition refines (x y: Operation) : bool :=
  match x, y with
  |  err, err  =>  true
  |  add, add  =>  true
  |  rep, rep  =>  true
  |  rem, rem  =>  true
  |  frb, frb  =>  true
  |  nop, nop  =>  true
  |  frb, nop  =>  true
  |  _  , _    =>  false
  end.
Infix "≲" := refines (at level 70, no associativity).


(* Consensus *)

Definition cons (x y: Operation) : Operation :=
  if       (x ≲ y) then (x)
  else (if (y ≲ x) then (y)
                   else (err) ).
Infix "⊓" := cons (at level 40).


(********** Lemma 2.50 **********)

Lemma consRespectsEquiv: ∀ x x' y y',  (x ≃ x')  ⇒  (y ≃ y')  ⇒  (x ⊓ y  ≃  x' ⊓ y').
  case x, x', y, y'; auto.
Qed.


(********** Lemma 2.51 **********)

Lemma compRespectsEquiv: ∀ x x' y y',  (x ≃ x')  ⇒  (y ≃ y')  ⇒  (x · y  ≃  x' · y').
  case x, x', y, y'; auto.
Qed.


(********** Lemma 2.52 **********)

Lemma compAssociative: ∀ x y z,  (x · y) · z = x · (y · z).
  case x, y, z; auto.
Qed.


(********** Lemma 2.53 **********)

Lemma compIdentity: ∀ x,  (x · nop)  =  x  =  (nop · x).
  intro; case x ; auto.
Qed.


(********** Lemma 2.54 **********)

Lemma consAbsorbing: ∀ x,  (x ⊓ err)  =  err  =  (err ⊓ x).
  intro; case x ; auto.
Qed.


(********** Lemma 2.55 **********)

Lemma compAbsorbing: ∀ x,  (x · err)  =  err  =  (err · x).
  intro; case x ; auto.
Qed.


(********** Prep for Lemma 3.20 **********)

Ltac use_assoc := repeat rewrite compAssociative; simpl.
Ltac find_false H H0 H1 :=
    intros; ((contradiction; auto; fail) ||
             (contradict H0; auto; fail) ||
             (contradict H1; auto; fail)).
Ltac GO H H0 H1 := use_assoc; repeat(find_false H H0 H1 || simpl in * || (intros; auto; fail)).


(********** Lemma 3.20 **********)

Lemma CCR: ∀ x y z d,  z·y·x = z·x·y  →  z·x ≠ err  →  z·y ≠ err
                       →  z·d·y·x = z·d·x·y.
  intros x y z d.
  elim z; GO H H0 H1;
  elim d; GO H H0 H1;
  elim y; GO H H0 H1;
  elim x; GO H H0 H1;
  congruence.
Qed.
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1.7 Mathematical Preliminaries

This section establishes the basic mathematical notations and definitions that
are used in this thesis. We assume that the reader already has an intuitive grasp
of the concepts in this section, as the treatment will be dense. A basic ground-
ing in the topics of Sections 1.7.1 to 1.7.7 can be gained from any introductory
textbook on discrete mathematics [123]. As for the more specialized material
of Sections 1.7.8, 1.7.9, 1.7.10 and 1.7.11, there are some great introductions
on abstract algebra [179], modal logic [42] and operational semantics [153] to
be found. I found these cited sources well written and accessible.

1.7.1 Sets
A set is an unordered collection of elements —finite or infinite— which does not
contain the same element more than once. For this thesis, an understanding
of naive set theory [83] is sufficient.

▸ 1.1. Definition (Basic Set Concepts): The basic set notations are as follows,
for any set 𝑆, elements 𝑒, 𝑒1, …, 𝑒𝑛, predicate 𝖯, relation 𝖱 and function f:

{ 𝑒1, …, 𝑒𝑛 } the finite set containing only the elements 𝑒1, …, 𝑒𝑛
{ f(𝑒) | 𝖯(𝑒) } the set of all elements f(𝑒) such that 𝑒 satisfies 𝖯

{ 𝑒 𝖱 𝑔 | 𝖯(𝑒) } an abbreviation for { 𝑒 | 𝑒 𝖱 𝑔 ∧ 𝖯(𝑒) }
𝑒 ∈ 𝑆 𝑒 is a member of 𝑆

|𝑆| the cardinality of 𝑆

The following relations and operations are defined for all sets 𝑆, 𝑇 :

𝑆 ⊆ 𝑇 ⟺≝ ∀𝑒 ∈ 𝑆: 𝑒 ∈ 𝑇 𝑆 ∖ 𝑇 ≝ { 𝑒 ∈ 𝑆 | 𝑒 ∉ 𝑇 }
𝑆 ⊂ 𝑇 ⟺≝ 𝑆 ⊆ 𝑇 ∧ 𝑆 ≠ 𝑇 𝑆 ⊖ 𝑇 ≝ (𝑆 ∪ 𝑇 ) ∖ (𝑆 ∩ 𝑇 )
𝑆 ∪ 𝑇 ≝ { 𝑒 | 𝑒 ∈ 𝑆 ∨ 𝑒 ∈ 𝑇 } Pow(𝑆) ≝ { 𝑆′ ∣ 𝑆′ ⊆ 𝑆 }
𝑆 ∩ 𝑇 ≝ { 𝑒 | 𝑒 ∈ 𝑆 ∧ 𝑒 ∈ 𝑇 } 𝑆∁ ≝ 𝑈 ∖ 𝑆

A universal set 𝑈 is assumed to be clear from context when the 𝑆∁ notation is
used. ⌟

▸ 1.2. Definition (𝒏-ary Set Operations): The 𝑛-ary set operations ⋃ and ⋂ are
defined as follows, for all sets 𝑆, properties 𝖯 and functions f:

⋃ 𝑆 ≝ { 𝑒 | ∃𝑠 ∈ 𝑆: 𝑒 ∈ 𝑠 } ⋃𝖯(𝑔) f(𝑔) ≝ ⋃ { f(𝑔) | 𝖯(𝑔) }
⋂ 𝑆 ≝ { 𝑒 | ∀𝑠 ∈ 𝑆: 𝑒 ∈ 𝑠 } ⋂𝖯(𝑔) f(𝑔) ≝ ⋂ { f(𝑔) | 𝖯(𝑔) }

where 𝑔 is a fresh variable name. ⌟
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▸ 1.3. Notation (Important Sets): The following specific sets are used often:

∅ the empty set
ℕ+ the positive natural numbers 1, 2, 3, …
ℕ the natural numbers 0, 1, 2, …
ℤ the integers …, −2, −1, 0, 1, 2, …
ℝ the real numbers

Each is a strict subset of the ones that follow. ⌟

1.7.2 Tuples
To represent ordered collections of elements, we use tuples.

▸ 1.4. Notation (Tuples): A tuple can be given directly as a comma-separated list
of elements between parentheses (𝑒, 𝑔, ℎ), or sometimes angle brackets ⟨𝑒, 𝑔, ℎ⟩.
The order between the elements is significant. ⌟

Tuples with 2, 3, 4, 5 and 𝑛 elements are respectively called pairs, triples,
quadruples, quintuples and 𝑛-tuples.

▸ 1.5. Definition (Cartesian Product): The Cartesian product operation × on
two sets 𝑆, 𝑇 is a set of pairs defined as follows:

𝑆 × 𝑇 ≝ { (𝑒, 𝑔) | 𝑒 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 } ⌟

▸ 1.6. Definition (𝒏-ary Cartesian Product): For some number 𝑛 ∈ ℕ+, the 𝑛-
ary Cartesian product on sets 𝑆1, …, 𝑆𝑛 is a set of 𝑛-tuples defined as follows:

𝑆1 × ⋯ × 𝑆𝑛 ≝ { (𝑒1, …, 𝑒𝑛) | 𝑒1 ∈ 𝑆1 ∧ ⋯ ∧ 𝑒𝑛 ∈ 𝑆𝑛 } ⌟

▸ 1.7. Definition (Cartesian Power): For any number 𝑛 ∈ ℕ+, the 𝑛th Cartesian
power of a set 𝑆 is defined as follows:

𝑆𝑛 ≝ 𝑆 × ⋯ × 𝑆⏟⏟⏟⏟⏟⏟⏟
𝑛

⌟

1.7.3 Sequences
Sequences are basically tuples, but always contain elements of the same type
and are usually of unspecified (but finite) length.

▸ 1.8. Definition (Sequences): Given a set 𝑆, the set of all finite sequences of ele-
ments from 𝑆 is defined as follows:

𝑆∗ ≝ ⋃
𝑛∈ℕ

𝑆𝑛 ⌟

▸ 1.9. Definition (Sequence Concatenation): The concatenation of two sequences
𝑒 = (𝑒1, …, 𝑒𝑛) and 𝑔 = (𝑔1, …, 𝑔𝑚) with 𝑛, 𝑚 ∈ ℕ is defined as follows:

𝑒 ⌢ 𝑔 ≝ (𝑒1, …, 𝑒𝑛, 𝑔1, …, 𝑔𝑚)
A sequence on either side with only one element may be abbreviated by omitting
the parentheses, e.g., 𝑒 ⌢ (𝑔1, 𝑔2) instead of (𝑒) ⌢ (𝑔1, 𝑔2). ⌟
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1.7.4 Relations

▸ 1.10. Definition (Relation): Given 𝑛 ∈ ℕ+, an 𝑛-ary relation 𝖱 over the sets
𝑆1, …, 𝑆𝑛 is a subset of their Cartesian product: 𝖱 ⊆ 𝑆1 × ⋯ × 𝑆𝑛. A unary
relation is also called a predicate. ⌟

▸ 1.11. Definition (Relation Operations): Given two binary relations 𝖱 ⊆ 𝑆 × 𝑇
and 𝖰 ⊆ 𝑇 × 𝑈 we define the following operations:

𝖰 ∘ 𝖱 ≝ { (𝑒, ℎ) | ∃𝑔 ∈ 𝑇 : (𝑒, 𝑔) ∈ 𝖱 ∧ (𝑔, ℎ) ∈ 𝖰 }
𝖱−1 ≝ { (𝑔, 𝑒) | (𝑒, 𝑔) ∈ 𝖱 }
id𝑆 ≝ { (𝑒, 𝑒) | 𝑒 ∈ 𝑆 }

with 𝖰 ∘ 𝖱 ⊆ 𝑆 × 𝑈 and 𝖱−1 ⊆ 𝑇 × 𝑆 and id𝑆 ⊆ 𝑆2. Note that relation
composition ∘ should be read from right to left. ⌟

▸ 1.12. Notation: For all sets 𝑆, 𝑆′, elements 𝑒, 𝑔, ℎ ∈ 𝑆 and predicates 𝖯 ⊆ 𝑆:

𝖯(𝑒) ⟺≝ 𝑒 ∈ 𝖯 𝖯(𝑆′) ⟺≝ 𝑆′ ⊆ 𝖯

Additionally, for all binary relations 𝖱, 𝖰 ⊆ 𝑆 × 𝑇 :

𝑒 𝖱 𝑔 ⟺≝ (𝑒, 𝑔) ∈ 𝖱 𝖱(𝑒) ≝ { 𝑔 | 𝑒 𝖱 𝑔 }
𝑒 𝖱/ 𝑔 ⟺≝ ¬(𝑒 𝖱 𝑔) 𝖱(𝑆′) ≝ ⋃𝑒∈𝑆′ 𝖱(𝑒)
𝑒 𝖱𝑔 ⟺≝ 𝑔 𝖱 𝑒 img(𝖱) ≝ 𝖱(𝑆)

𝑒 𝖱 𝑔 𝖰 ℎ ⟺≝ 𝑒 𝖱 𝑔 ∧ 𝑔 𝖰 ℎ pre(𝖱) ≝ 𝖱 −1(𝑆)
𝑒, 𝑔 𝖱 ℎ ⟺≝ 𝑒 𝖱 ℎ ∧ 𝑔 𝖱 ℎ 𝑒 𝖱/ ⟺≝ 𝖱(𝑒) = ∅

𝖱(𝑒) is called the image of 𝑒 in 𝖱 and 𝖱−1(𝑔) is called the preimage of 𝑔 in 𝖱.
img(𝖱) and pre(𝖱) are called the image and preimage of the relation 𝖱 itself.

The notational conventions regarding 𝖱/ and 𝖱often hold in literature, but
are not often formalized. In this thesis they always hold; as does the implied
convention that binary relation symbols with a horizontal symmetry, such as
=, ≡ and ⇔, are also symmetric in a relational sense (Definition 1.13). ⌟

▸ 1.13. Definition (Binary Relation Properties): A binary relation 𝖱 ⊆ 𝑆 × 𝑇
may have the following named properties:
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..................𝑒 .

𝑔

.
ℎ

𝑆 𝖱 𝑇
Figure 1.5: The visualization of a specific relation 𝖱 ⊆ 𝑆 × 𝑇 . The two groups
of nodes represent the domain 𝑆 and codomain 𝑇 of the relation with 𝑒, 𝑔 ∈ 𝑆
and ℎ ∈ 𝑇 . The arrows represent the relation 𝖱 itself. They show, for example,
that 𝑒 𝖱 ℎ and that 𝑔 𝖱/ ℎ.

uniquely defined: ∀𝑒, 𝑔, ℎ ∈ 𝑆: 𝑒 𝖱 𝑔 ∧ 𝑒 𝖱 ℎ ⇒ 𝑔 = ℎ
fully defined: pre(𝖱) = 𝑆
well defined: uniquely and fully defined
injective: ∀𝑒, 𝑔, ℎ ∈ 𝑆: 𝑒 𝖱 ℎ ∧ 𝑔 𝖱 ℎ ⇒ 𝑒 = 𝑔
surjective: img(𝖱) = 𝑇
bijective: surjective and injective
one-to-one: uniquely defined and injective

Uniquely defined and fully defined are often called ‘functional’ and ‘total’. In
the case that 𝑆 = 𝑇 we also distinguish the following:

reflexive: ∀𝑒 ∈ 𝑆: 𝑒 𝖱 𝑒
symmetric: ∀𝑒, 𝑔 ∈ 𝑆: 𝑒 𝖱 𝑔 ⇒ 𝑒 𝖱𝑔
transitive: ∀𝑒, 𝑔, ℎ ∈ 𝑆: 𝑒 𝖱 𝑔 ∧ 𝑔 𝖱 ℎ ⇒ 𝑒 𝖱 ℎ
irreflexive: ∀𝑒 ∈ 𝑆: 𝑒 𝖱/ 𝑒
antisymmetric: ∀𝑒, 𝑔 ∈ 𝑆: 𝑒 𝖱 𝑔 ∧ 𝑒 𝖱𝑔 ⇒ 𝑒 = 𝑔
asymmetric: ∀𝑒, 𝑔 ∈ 𝑆: 𝑒 𝖱 𝑔 ⇒ 𝑒 𝖱/ 𝑔
total: ∀𝑒, 𝑔 ∈ 𝑆: 𝑒 𝖱 𝑔 ∨ 𝑒 𝖱𝑔
discrete: ∀𝑒, 𝑔 ∈ 𝑆: 𝑒 𝖱/ 𝑔 ∧ 𝑒 𝖱/ 𝑔 ⌟

▸ 1.14. Definition (Transitive Closure): Given a binary relation 𝖱 ⊆ 𝑆 ×𝑆, define
its transitive closure 𝖱+ ⊆ 𝑆 × 𝑆 and reflexive transitive closure 𝖱∗ ⊆ 𝑆 × 𝑆 as
follows for all elements 𝑒, 𝑔 ∈ 𝑆:

𝑒 𝖱+ 𝑔 ⟺≝ 𝑒 𝖱 𝑔 ∨ ∃ℎ ∈ 𝑆: 𝑒 𝖱 ℎ 𝖱+ 𝑔
𝑒 𝖱∗ 𝑔 ⟺≝ 𝑒 = 𝑔 ∨ 𝑒 𝖱+ 𝑔 ⌟

▸ 1.15. Notation (Inference Rule): A specific relation or set of relations is some-
times defined as the smallest relation(s) satisfying a particular set of inference
rules. An inference rule consists of a conclusion and a set of premises, separated
by a horizontal line:

⟨𝑝𝑟𝑒𝑚𝑖𝑠𝑒 1 ⟩ ⟨𝑝𝑟𝑒𝑚𝑖𝑠𝑒 2 ⟩ …
⟨𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛⟩

Free variables present in an inference rule can be consistently replaced by any
concrete value, i.e., they are under an implicit universal quantification. ⌟
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Relations are important in this thesis, particularly because the semantics of
deltas is expressed by relations. Relation diagrams such as the one in Figure 1.5
are occasionally used to illustrate relational concepts.

1.7.5 Functions
▸ 1.16. Definition (Function): A function from 𝑆 into 𝑇 is a well defined relation

over the sets 𝑆, 𝑇 , which are respectively called its domain and codomain.
𝑆 → 𝑇 denotes the set of all functions from 𝑆 into 𝑇 . To declare a function

f of that type, write f: 𝑆 → 𝑇 . When a function is declared this way, and we
have (𝑒, 𝑔) ∈ f, we say that f(𝑒) = 𝑔. This overrides Notation 1.12 ( as we have
f(𝑒) ∈ 𝑇 rather than f(𝑒) ⊆ 𝑇 ). ⌟

▸ 1.17. Definition (Partial Function): A uniquely defined relation over 𝑆, 𝑇 that
is not necessarily fully defined is called a partial function from 𝑆 into 𝑇 .

The set of all partial functions from 𝑆 into 𝑇 is denoted 𝑆 ⇀ 𝑇 . To declare
a partial function f of that type we write f: 𝑆 ⇀ 𝑇 . When 𝑒 ∉ pre(f) we say
that f(𝑒) is undefined, or that f(𝑒) =⊥ (assuming that⊥∉ 𝑇 ). Otherwise, the
notation is the same as for functions. ⌟

▸ 1.18. Notation: A pair (𝑒, 𝑔) ∈ f in some partial function f, indicating that 𝑒 maps
to 𝑔, can also be denoted 𝑒 ↦ 𝑔. ⌟

▸ 1.19. Definition (Function Update): Given a function f: 𝑆 →𝑇 and elements 𝑒 ∈
𝑆 and 𝑔 ∈ 𝑇 , define the updated function f[𝑒 ↦ 𝑔] as follows, for all elements
𝑒′ ∈ 𝑆:

f[𝑒 ↦ 𝑔](𝑒′) ≝ {𝑔 if 𝑒 = 𝑒′

f(𝑒′) otherwise

The same notation is defined for partial functions, in which case the update
f[𝑒 ↦⊥] is also available. ⌟

1.7.6 Transitive Relations
▸ 1.20. Definition (Preorder): A preorder is a transitive and reflexive relation. ⌟

▸ 1.21. Definition (Equivalence Relation): An equivalence relation is a transitive
and symmetric relation (i.e., a symmetric preorder) denoted =, ≈, ≡, ⇔, … ⌟

▸ 1.22. Definition (Orders): An order is a transitive and antisymmetric relation
that is either:

• reflexive, in which case it is called inclusive and denoted ≤, ≼, ⊆, ⊑, …
• or irreflexive, in which case it is called strict and denoted <, ≺, ⊂, ⊏, …

Orders are generally called partial orders, to emphasize the fact that they are
not necessarily total (Definition 1.13). ⌟

▸ 1.23. Definition (Minimal and Maximal Elements): Given an order ≺ on a set
𝑆, an element 𝑒 ∈ 𝑆 is a minimal element in ≺ iff there exists no 𝑔 ∈ 𝑆 such
that 𝑔 ≺ 𝑒 and a maximal element in ≺ iff there exists no 𝑔 such that 𝑒 ≺ 𝑔. ⌟
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▸ 1.24. Definition (Extension): Given two orders ⊑ and ≼ on the same set 𝑆, call
⊑ an extension of ≼ iff ≼ ⊆ ⊑. If ⊑ is total, call it a linear extension. ⌟

1.7.7 Quotient Sets
▸ 1.25. Definition (Equivalence Class): Given a set 𝑆, an element 𝑒 ∈ 𝑆 and an

equivalence relation ∼ ⊆ 𝑆×𝑆, the ∼-equivalence class of 𝑒 is defined as follows:

[ 𝑒 ]∼ ≝ { 𝑔 ∈ 𝑆 | 𝑒 ∼ 𝑔 } ⌟

▸ 1.26. Definition (Quotient Set): The quotient set of a set 𝑆 by an equivalence
relation ∼ ⊆ 𝑆 × 𝑆 is defined as follows:

𝑆/∼ ≝ { [ 𝑒 ]∼ ∣ 𝑒 ∈ 𝑆 } ⌟

▸ 1.27. Notation (Implicit Canonical Projection): When we work with a quo-
tient set 𝑆/∼ and the equivalence relation ∼ is clear from context, we can
choose to omit it. We then treat 𝑆 as an abbreviation for 𝑆/∼ and 𝑒 as an
abbreviation for [ 𝑒 ]∼ — in effect, turning equivalence into equality. ⌟

1.7.8 Operations
▸ 1.28. Definition (Operation): Given some set 𝑆, an 𝑛-ary operation (or operator)

on 𝑆 is a function from 𝑆𝑛 into 𝑆. 𝑛 ∈ ℕ is called the arity of the operation.
As a special exception, a 0-ary operation is an element of 𝑆, also called a
constant. ⌟

▸ 1.29. Definition (Binary Operation Properties): There are a number of impor-
tant properties a binary operation ⋆: 𝑆 × 𝑆 → 𝑆 may have. The following are
the most common. For all elements 𝑒, 𝑔, ℎ ∈ 𝑆:

⋆ is associative: 𝑒 ⋆ (𝑔 ⋆ ℎ) = (𝑒 ⋆ 𝑔) ⋆ ℎ
⋆ is commutative: (𝑒 ⋆ 𝑔) = (𝑔 ⋆ 𝑒)
⋆ is idempotent: 𝑒 ⋆ 𝑒 = 𝑒

With regard to another binary operation ⭒: 𝑆 × 𝑆 → 𝑆 we may have:
⭒ distributes over ⋆: 𝑒 ⭒ (𝑔 ⋆ ℎ) = (𝑒 ⭒ 𝑔) ⋆ (𝑒 ⭒ ℎ)

With regard to a specific element 𝜖 ∈ 𝑆 we may have:

𝜖 is an identity for ⋆: 𝜖 ⋆ 𝑒 = 𝑒 = 𝑒 ⋆ 𝜖
𝜖 absorbs ⋆: 𝜖 ⋆ 𝑒 = 𝜖 = 𝑒 ⋆ 𝜖 ⌟

1.7.9 Algebraic Structures
The following are some concepts regarding abstract algebra required for Chap-
ters 2 and 3. The definitions that follow are quite limited compared to those
in existing literature [98], but they are sufficient for this thesis.
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▸ 1.30. Definition (Algebraic Structure): An algebraic structure or algebra con-
sists of a tuple (𝑆, ⋆1, …, ⋆𝑛) —where 𝑆 is a carrier set and { ⋆1, …, ⋆𝑛 } is a
set of nullary, unary and binary operators on 𝑆. The tuple is also called an
algebraic signature. ⌟

▸ 1.31. Notation: We can write 𝑆 to refer to an algebraic structure (𝑆, ⋆1, …, ⋆𝑛)
and vice versa, if this does not introduce ambiguity. ⌟

When the carrier of an algebraic structure is a quotient set, but its operations
are defined in terms of the original set, some conditions are imposed:

▸ 1.32. Definition (Quotient Algebra): Given any algebraic structure with carrier
set 𝑆, nullary operators 𝑥 ∈ 𝑆, unary operators ⋄: 𝑆 → 𝑆 and binary opera-
tors ⋆: 𝑆 × 𝑆 → 𝑆, the corresponding quotient algebra by equivalence relation
∼ ⊆ 𝑆 × 𝑆 would be the algebra with carrier set 𝑆/∼ and corresponding oper-
ators [ 𝑥 ]∼ ∈ (𝑆/∼), ⋄∼ : (𝑆/∼) → (𝑆/∼) and ⋆∼: (𝑆/∼) × (𝑆/∼) → (𝑆/∼), which
must satisfy the following for all 𝑒, 𝑔 ∈ 𝑆:

[ 𝑒 ]⋄∼
∼ = [ 𝑒⋄ ]∼

[ 𝑒 ]∼ ⋆∼ [ 𝑔 ]∼ = [ 𝑒 ⋆ 𝑔 ]∼ ⌟

This allows us to extend implicit canonical projection (Notation 1.27) to the
operators of the algebra and use 𝑥, ⋄ and ⋆ as abbreviations for [ 𝑥 ]∼, ⋄∼ and ⋆∼.

Here follow three common algebraic structures:

▸ 1.33. Definition (Monoid): A monoid is a tuple (𝑆, ·, 𝜀) where · : 𝑆 × 𝑆 → 𝑆 is a
composition operator and 𝜀 ∈ 𝑆 is a neutral element, satisfying the following
axioms for all elements 𝑒, 𝑔, ℎ ∈ 𝑆:

a. associativity: (𝑒 · 𝑔) · ℎ = 𝑒 · (𝑔 · ℎ)
b. identity element 𝜀: 𝜀 · 𝑒 = 𝑒 = 𝑒 · 𝜀 ⌟

▸ 1.34. Definition (Boolean Algebra): A Boolean algebra is a tuple (𝑆, ⊔, ⊓, −,⊥,⊤)
where ⊔: 𝑆 × 𝑆 → 𝑆 is a disjunction operator, ⊓: 𝑆 × 𝑆 → 𝑆 is a conjunction
operator, −: 𝑆 →𝑆 is a negation operator,⊥∈ 𝑆 is an empty element and⊤∈ 𝑆
is a complete element. For all elements 𝑒, 𝑔, ℎ ∈ 𝑆 it satisfies the following:

a. associativity: (𝑒 ⊔ 𝑔) ⊔ ℎ = 𝑒 ⊔ (𝑔 ⊔ ℎ)
b. commutativity: 𝑒 ⊔ 𝑔 = 𝑔 ⊔ 𝑒
c. identity: 𝑒 ⊔⊥ = 𝑒
d. distributivity: 𝑒 ⊔ (𝑔 ⊓ ℎ) = (𝑒 ⊔ 𝑔) ⊓ (𝑒 ⊔ ℎ)
e. complement: 𝑒 ⊔ 𝑒− = ⊤

It also satisfies the dual axioms a’, b’, c’, d’ and e’ formed by taking an original
axiom and exchanging ⊔ with ⊓ and⊥with⊤. ⌟

▸ 1.35. Definition (Relation Algebra): A relation algebra (𝑆, ⊔, ⊓, −,⊥,⊤, ·, 𝜀, )̆ is
a tuple with a monoid (𝑆, ·, 𝜀), a Boolean algebra (𝑆, ⊔, ⊓, −,⊥,⊤) and a converse
operator ̆ : 𝑆 → 𝑆. In addition to the axioms from Definitions 1.33 and 1.34,
it also satisfies the following for all 𝑒, 𝑔, ℎ ∈ 𝑆:
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a. ̆ is its own inverse 𝑒 ̆ ̆ = 𝑒
b. ̆ is an anti-involution for · (𝑒 · 𝑔) ̆ = 𝑔 ̆ · 𝑒 ̆
c. · distributes over ⊔ 𝑒 · (𝑔 ⊔ ℎ) = (𝑒 · 𝑔) ⊔ (𝑒 · ℎ)
d. ̆ distributes over ⊔ (𝑒 ⊔ 𝑔) ̆ = 𝑒 ̆ ⊔ 𝑔 ̆
e. Tarski’s axiom (𝑒 ̆ · (𝑒 · 𝑔)−) ⊔ 𝑔− = 𝑔− ⌟

1.7.10 Modal Logic
This section provides a terse introduction to the theory of modal logic [40]. It
is required knowledge for Chapter 6, where a new modal logic is presented.

▸ 1.36. Definition (Multimodal Language): Given a set of modal labels 𝑀 and a
set of propositional variables 𝑃𝑅𝑂𝑃 , a multimodal language 𝛹 is defined with
the following grammar:

𝛹 ∋ 𝜑 : : = ⊤ | 𝑘 | ¬𝜑 | 𝜑 ∨ 𝜑 | ⟨𝑚⟩𝜑

where 𝑘 ∈ 𝑃𝑅𝑂𝑃 is a propositional variable and ⟨𝑚⟩ is a modality based on a
modal label 𝑚 ∈ 𝑀 . The following formulas are abbreviations, so formally we
need only be concerned with the grammar above. For all formulas 𝜑, 𝜓 ∈ 𝛹 :

⊥ ≝ ¬⊤
[𝑚]𝜑 ≝ ¬⟨𝑚⟩¬𝜑

𝜑 ∧ 𝜓 ≝ ¬(¬𝜑 ∨ ¬𝜓)
𝜑 → 𝜓 ≝ ¬𝜑 ∨ 𝜓
𝜑 ↔ 𝜓 ≝ (𝜑 → 𝜓) ∧ (𝜓 → 𝜑)

To resolve ambiguity we assume the traditional set of precedence rules (e.g.
∧ binds stronger than ∨) and allow parentheses to override those rules. ⌟

▸ 1.37. Definition (Kripke Frame): A Kripke frame is a tuple (𝑊, 𝑀, 𝑅), often
denoted by 𝔉, with a set of worlds 𝑊 , a set of modal labels 𝑀 and a function
𝑅: 𝑀 →Pow(𝑊 ×𝑊) which maps each modal label 𝑚 ∈ 𝑀 to a corresponding
accessability relation 𝖱𝑚⊆ 𝑊 × 𝑊 . ⌟

▸ 1.38. Definition (Valuation Function): Given a set of worlds 𝑊 and a set of
propositional variables 𝑃𝑅𝑂𝑃 , a valuation function is a function 𝑉 : 𝑃𝑅𝑂𝑃 →
Pow(𝑊) which maps each propositional variable to the set of worlds in which
it is true. ⌟

▸ 1.39. Definition (Kripke Model): Given a set of propositional variables 𝑃𝑅𝑂𝑃 ,
a Kripke model is a tuple (𝑊, 𝑀, 𝑅, 𝑉 ), often denoted by 𝔐, where (𝑊, 𝑀, 𝑅)
is a Kripke frame and 𝑉 : 𝑃𝑅𝑂𝑃 → Pow(𝑊) is a valuation function. ⌟

The truth or falsehood of a formula is determined by the forcing relation:
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▸ 1.40. Definition (Forcing Relation): Given a modal language 𝛹 , a Kripke model
𝔐 = (𝑊, 𝑀, 𝑅, 𝑉 ) and a world 𝑤 ∈ 𝑊 , the forcing relation ⊩ ⊆ 𝑊 × 𝛹 is
defined by induction on the shape of the formula:

𝑤 ⊩ ⊤ ⟺≝ always
𝑤 ⊩ 𝑘 ⟺≝ 𝑤 ∈ 𝑉 (𝑘)
𝑤 ⊩ 𝜑 ∨ 𝜓 ⟺≝ ( 𝑤 ⊩ 𝜑 ) ∨ ( 𝑤 ⊩ 𝜓 )
𝑤 ⊩ ¬𝜑 ⟺≝ ¬( 𝑤 ⊩ 𝜑 )
𝑤 ⊩ ⟨𝑚⟩𝜑 ⟺≝ ∃𝑤′ ∈ 𝑊: (𝑤, 𝑤′) ∈ 𝑅(𝑚) ∧ ( 𝑤′ ⊩ 𝜑 )

When 𝑤 ⊩ 𝜑, we say that 𝜑 is true for 𝑤. If the Kripke model is not clear from
context, we attach a subscript as in ⊩𝔐. ⌟

We also define the following extensions for this notation:
▸ 1.41. Notation: Given a modal language 𝛹 , for every Kripke model 𝔐, Kripke

frame 𝔉, world 𝑤 ∈ 𝑊 and formula 𝜑 ∈ 𝛹 define:

⊩𝔐 𝜑 ⟺≝ ∀𝑤′ ∈ 𝑊: 𝑤′ ⊩𝔐 𝜑
𝑤 ⊩𝔉 𝜑 ⟺≝ ∀𝑉 : 𝑃𝑅𝑂𝑃 → Pow(𝑊): 𝑤 ⊩(𝔉,𝑉 ) 𝜑

⊩𝔉 𝜑 ⟺≝ ∀𝑤′ ∈ 𝑊: 𝑤′ ⊩𝔉 𝜑
denoting respectively that 𝜑 is globally true in 𝔐, valid for 𝑝 and valid on 𝔉.⌟

The forcing relation ⊩ is overloaded for when a formula is semantically entailed
by a set of premises (also formulas):

▸ 1.42. Definition (Local/Global Consequence): Given a set of formulas Γ and a
class of Kripke models 𝖲, we say that 𝜑 ∈ 𝛹 is a local consequence or global
consequence of Γ iff:

Γ ⊩𝖲 𝜑 ⟺≝ ∀𝔐 ∈ 𝖲: ∀𝑤 ∈ 𝑊: ( 𝔐, 𝑤 ⊩ Γ ) ⟹ ( 𝔐, 𝑤 ⊩ 𝜑 )
Γ ⊩𝑔

𝖲 𝜑 ⟺≝ ∀𝔐 ∈ 𝖲: ( ∀𝑤 ∈ 𝑊: 𝔐, 𝑤 ⊩ Γ ) ⟹ ( ∀𝑤 ∈ 𝑊: 𝔐, 𝑤 ⊩ 𝜑 ) ⌟

A normal modal logic is defined by a set of axioms and closure rules:
▸ 1.43. Definition (Normal Modal Logic): Given a modal language 𝛹 based on a

set of modal labels 𝑀 and a set of propositional variables 𝑃𝑅𝑂𝑃 , a normal
modal logic is a set of formulas Γ ⊆ 𝛹 which, for all formulas 𝜑, 𝜓 ∈ 𝛹 and
modal labels 𝑚 ∈ 𝑀 , contains at least the following:

• all propositional tautologies 𝜒: 𝜒 ∈ Γ
• the formula 𝐊: [𝑚](𝜑 → 𝜓) → ([𝑚]𝜑 → [𝑚]𝜓) ∈ Γ
• the formula 𝐃𝐮𝐚𝐥: ⟨𝑚⟩𝜑 ↔ ¬[𝑚]¬𝜑 ∈ Γ

and is closed by the following properties:

• modus ponens: 𝜑, 𝜑 → 𝜓 ∈ Γ ⟹ 𝜓 ∈ Γ
• generalization: 𝜑 ∈ Γ ⟹ [𝑚]𝜑 ∈ Γ
• uniform substitution: ∀𝑘 ∈ 𝑃𝑅𝑂𝑃: 𝜑 ∈ Γ ⟹ 𝜑[𝜓/𝑘] ∈ Γ

Given any set of formulas Γ, a smallest normal modal logic containing all
formulas in Γ always exists. It is called the modal logic generated by Γ. ⌟
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Normal modal logics can be used as proof-systems. Their axioms consist of
all propositional tautologies, the formulas 𝐊, 𝐃𝐮𝐚𝐥, and the other axioms of
the logic in question. Their proof rules consist of the three closure properties:
modus ponens, generalization and uniform substitution.

▸ 1.44. Definition (Provability): Given a modal language 𝛹 and normal modal logic
Λ ⊆ 𝛹 , the provability relation ⊢Λ ⊆ Pow(𝛹 × 𝛹) is defined as follows, for all
sets of formulas Γ ⊆ 𝛹 :

Γ ⊢Λ 𝜑 ⟺≝ ∃𝜓1, …, 𝜓𝑛 ∈ Γ: ( ⋀
1 ≤ 𝑖 ≤ 𝑛

𝜓𝑖 ) → 𝜑 ∈ Λ

A shorthand notation is defined for provability without premises:

⊢Λ 𝜑 ⟺≝ ∅ ⊢Λ 𝜑 ⌟

▸ 1.45. Definition (Soundness): Given a modal language 𝛹 , a normal modal logic
Λ ⊆ 𝛹 is called sound with respect to a class of frames 𝖲, if for any set of
formulas Γ ⊆ 𝛹 and any formula 𝜑 ∈ 𝛹 , we have:

Γ ⊢Λ 𝜓 ⟹ Γ ⊩𝖲 𝜑 ⌟

▸ 1.46. Definition (Strong Completeness): Given a modal language 𝛹 , a normal
modal logic Λ ⊆ 𝛹 is called strongly complete with respect to a class of frames
𝖲, if for any set of formulas Γ ⊆ 𝛹 and any formula 𝜑 ∈ 𝛹 , we have:

Γ ⊩𝖲 𝜑 ⟹ Γ ⊢Λ 𝜓 ⌟

▸ 1.47. Theorem: The normal modal logic 𝐊, generated by the empty set, is sound
and strongly complete with respect to the class of all frames 𝖥.

Proof: See [42]. ◻

1.7.11 Operational Semantics
An operational semantics [88, 153, 154] describes the progress of a dynamic
system by defining a transition relation ⟶ over a set of configurations which
model possible states of the system:

⟨ 𝑐𝑛1 ⟩ ⟶ ⟨ 𝑐𝑛2 ⟩ ⟶ ⟨ 𝑐𝑛3 ⟩ ⟶ ⟨ 𝑐𝑛4 ⟩ ⟶ ⋯

This allows us to both visualize a system moving from state to state and to
reason about whether it could reach certain desirable or undesirable states.
Operational semantics are used in Chapter 8 and Appendix A .

▸ 1.48. Notation (Configuration Space): A configuration space 𝐶𝑆 is a set of con-
figurations 𝑐𝑛 which represent the states of a dynamic system. Specific config-
urations are often typeset inside angle brackets; ⟨ 𝑐𝑛 ⟩. ⌟
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▸ 1.49. Notation (Transition Relation): Given a configuration space 𝐶𝑆, a tran-
sition relation is a binary relation ⟶ ⊆ 𝐶𝑆 × 𝐶𝑆 where

⟨𝑐𝑛 ⟩ ⟶ ⟨ 𝑐𝑛′ ⟩
means that 𝑐𝑛′ is a possible next configuration of 𝑐𝑛. We use ⟶+ and ⟶∗

for, respectively, its transitive closure and reflexive transitive closure (Defini-
tion 1.14). In a nondeterministic system there may be more than one next
configuration. If a configuration 𝑐𝑛 has no next configurations, we say that it
is stuck, denoted ⟨ 𝑐𝑛 ⟩ ⟶/ (Notation 1.12). ⌟

▸ 1.50. Definition (Infinite Transition Path): Given a configuration space 𝐶𝑆, a
transition relation ⟶ ⊆ 𝐶𝑆 × 𝐶𝑆 and a configuration 𝑐𝑛 ∈ 𝐶𝑆, say there is
no infinite transition path from 𝑐𝑛 iff the following holds:

⟨ 𝑐𝑛 ⟩ ⟶/ ∞ ⟺≝ ∀𝑐𝑛′ ∈ 𝐶𝑆: ⟨ 𝑐𝑛 ⟩ ⟶ ⟨𝑐𝑛′ ⟩
⟹ ⟨ 𝑐𝑛′ ⟩ ⟶/ ∞ ⌟

The nature of the configuration space determines what kinds of properties we
can express about a system. For example, the original purpose of operational
semantics [153] was to describe the execution of imperative source-code, using
configurations ⟨ 𝑠𝑡, 𝜎 ⟩ containing a next statement 𝑠𝑡 and a state 𝜎, mapping
variables to their current value.

Transition relations are defined using inference rules (Notation 1.15):

1.51. Example (Inference Rule): The following two classical inference rules de-
scribe the semantics of a while loop in an imperative programming language:

eval(𝐵, 𝜎) = true
⟨while 𝐵 do 𝑠𝑡 od, 𝜎 ⟩ ⟶ ⟨ 𝑠𝑡; while 𝐵 do 𝑠𝑡 od, 𝜎 ⟩

eval(𝐵, 𝜎) = false
⟨while 𝐵 do 𝑠𝑡 od, 𝜎 ⟩ ⟶ ⟨ 𝜆, 𝜎 ⟩ ⌟

The specifics of this particular example are not important. The operational
semantics presented in Chapter 8 and Appendix A use fundamentally different
configuration spaces, as they describe very different kinds of systems.

1.7.12 Mealy Machines
A Mealy machine is a finite-state machine with an input symbol and an output
symbol on each transition [131]. In other words, given a current state and
some input, the system receive some output and can go to a next state. Mealy
machines are used in Chapter 8.

▸ 1.52. Definition (Mealy Machine): A Mealy machine is a 5-tuple ( 𝑆, 𝛴, 𝛬, T, O ).
𝑆 is a set of states, 𝛴 is an input alphabet and 𝛬 is an output alphabet.

Given a state and input symbol, the transition function T: 𝑆 × 𝛴 ⇀ 𝑆 returns
the next state and the output function O: 𝑆×𝛴 ⇀ 𝛬 returns the corresponding
output symbol. The functions O and T are defined for the same inputs, i.e.,
pre(O) = pre(T). A ‘current’ state 𝑠 ∈ 𝑆 and input symbol 𝑖 ∈ 𝛴 together
constitute a transition in the machine iff (𝑠, 𝑖) ∈ pre(T). ⌟
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Figure 1.6: An example of a simple Mealy machine with 𝛴 = 𝛬 = { 0, 1 }. Each
node represents a state. Each arrow is annotated with 𝑖/𝑜: an input and an
output symbol.

This definition differs from most formulations in two ways. First, the transi-
tion and output functions are partial. That means that we can have states
that do not accept all input symbols. Secondly, the machines do not have an
initial state. For our purposes in Chapter 8 an initial state will not have much
meaning, so we choose to omit it. See Figure 1.6 for a small visual example.
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2.1 Introduction

This chapter introduces the basic building blocks of delta modeling —products
and deltas— and lays much of the the formal foundation for this thesis.

A product represents the kind of artefact we want to manufacture. In prac-
tice, it will be built up out of many smaller artefacts. For example: packages,
classes, methods and fields, in an object oriented programming language, to-
gether forming a program. The problem is that the artefacts in such a product
almost never map directly to the higher level concept of feature. Indeed, a
feature can relate to many classes, and a class can relate to many features.

To understand how deltas can help in this regard, let us examine existing
software engineering practices from a formal perspective. First, we introduce
a rudimentary object oriented programming language.

2.1.1 A Simple Programming Language
The definitions that follow describe a set of abstract syntax trees (ASTs). First
we introduce the concept of identifiers, to be used as names for product arte-
facts such as packages, classes, methods and fields:

▸ 2.1. Notation (Identifiers): Identifiers are denoted by 𝑖𝑑. Sets of identifiers are
denoted by 𝐼𝐷 or ℐ𝒟. ⌟

We do not define semantics for this language (Example 1.51, page 28). This
thesis is about manipulating program structure. So we see statements and types
in the same abstract way as identifiers, i.e., as arbitrary strings:

▹ 2.2. Notation (Statements and Types): Statements are denoted by 𝑠𝑡. Sets of
statements are denoted by 𝑆𝑇 or 𝒮𝒯.

Types are denoted by 𝑡𝑝. Sets of types are denoted by 𝑇𝑃 or 𝒯𝒫. ⌟

From this point on, we assume a global set of identifiers ℐ𝒟, a
global set of statements 𝒮𝒯 and a global set of types 𝒯𝒫.

This leads to the definition of classes, which can contain methods and fields:
▹ 2.3. Definition (Classes, Methods and Fields): A method is represented by a

type and a sequence of statements. A field is represented by only a type. The
set of all classes is a finite partial map:

ℳ𝑡𝑑 ≝ 𝒯𝒫×𝒮𝒯∗ ℱ𝑙𝑑 ≝ 𝒯𝒫 𝒞ℒ ≝ ℐ𝒟 ⇀ ( ℳ𝑡𝑑 ∪ ℱ𝑙𝑑 )
A class 𝑐𝑙 ∈ 𝒞ℒ maps each identifier 𝑖𝑑 ∈ pre(𝑐𝑙) to either a method 𝑐𝑙(𝑖𝑑) ∈ ℳ𝑡𝑑
or a field 𝑐𝑙(𝑖𝑑) ∈ ℱ𝑙𝑑. ⌟

▹ 2.4. Example: An example of a class is:

𝑐𝑙 =

⎧{{
⎨{{⎩

“m_name” ↦ “String”,
“run” ↦ “String[] -> void”,

( “m_name = args[1]”,
“output("Hello " + m_name)” )

⎫}}
⎬}}⎭
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But from now on we’ll often use pseudo-code instead, and assume the abstract
mathematical structure to be understood:

1 class {
2 m_name: String;
3 run(args: String[]) : void {
4 m_name = args[1];
5 output("Hello " + m_name);
6 }
7 } ⌟

And finally, we define packages. A package can contain any number of classes
mapped by name:

▸ 2.5. Definition (Packages): A package is a finite partial function 𝑝𝑘𝑔: ℐ𝒟 ⇀ 𝒞ℒ,
mapping identifiers to classes. The set of all packages is denoted 𝒫𝒦𝒢. ⌟

2.1.2 The DeltaEditor Package
We now use this language to write a small package implementing a bare-bone
version of the source code editor introduced in Section 1.4:

▹ 2.6. Example: The software product “DeltaEditor core”:

1 package DeltaEditor {
2 class Editor {
3 m_model: Model;
4

5 init(m : Model) : void {
6 m_model = m;
7 };
8

9 model() : Model { return m_model; };
10

11 font(c : int) : Font {
12 Font result = new Font();
13 result.setColor(Color.BLACK);
14 result.setBold(false);
15 result.setUnderlined(false);
16 return result;
17 };
18

19 onMouseOver(c : int) : void { };
20 };
21 };

Assume that some other class (imported from a widget library perhaps) does
most of the work, drawing and managing the visual interface. It is our job to
implement the model(), font(int) and onMouseOver(int) methods so
that the widget library has the necessary information to manage the editor.
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2.1.3 Implementing Syntax Highlighting

Now, we implement some additional features in the traditional manner. This
will demonstrate some of the disadvantages of the traditional approach —a lack
of modularity, separation of concerns and variability control— and thereby
motivate the work on delta modeling.

The first feature is Syntax Highlighting, which changes the font of the con-
tent to provide a visual distinction between different language constructs. To
accomplish this we develop a new class inside the DeltaEditor package to
handle the business logic of parsing the model and determining the correct font
for each individual character. We then add an instance of it to the Editor
class, initialize it and, finally, replace the font(int) method with one that
consults the new class. The resulting program looks as follows (the modified
lines have been highlighted):

▹ 2.7. Example: The software product “DeltaEditor with 𝑆𝐻”:

1 package DeltaEditor {
2 class Editor {
3 m_model : Model;
4.. m_syntaxhl : SyntaxHL;
5

6 init(m : Model) : void {
7 m_model = m;
8.. m_syntaxhl = new SyntaxHL(m);
9 };

10

11 model() : Model { return m_model; };
12

13 font(c : int) : Font {
14.. return m_syntaxhl.font(c);
15 };
16

17 onMouseOver(c : int) : void { };
18 };
19

20.. class SyntaxHL {
21.. m_model : Model;
22..
23.. init(m : Model) : void { m_model = m; };
24..
25.. font(c : int) : Font { /* something complicated */; };
26.. };
27 };

Note that to implement this one feature, we were forced to make changes in
four different places. When, in the future, another developer needs to change
one of the highlighted code-fragments, they may well neglect to make corre-
sponding changes to the other fragments, which is how bugs are introduced.
Also, keep in mind that this is an oversimplified example. In a full application,
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the implementation of a feature like this would involve designing toolbar but-
tons and configuration screens, developing code for user interaction and code
to link models, views and controllers — not to mention the code necessary for
proper interaction with other features.

The point is, practically all software features are cross cutting concerns:
their code needs to be spread around the code base to do its job properly, at least
if we’re using programming models like OOP. This is a well-known problem in
the world of software engineering. When software approaches certain levels of
complexity, it becomes harder and harder to properly maintain it. We therefore
strive towards the following goal:

Goal: Find a way to ‘group together’ code related to the same feature.

This is called feature modularity or feature locality [89, 109, 156].

2.1.4 Implementing Error Checking
We now add another feature: Error Checking. We’d like certain syntactic
errors to be underlined, and to show a tooltip when the mouse cursor hovers
over them. Similar to before, a new class is responsible for the business logic,
and several lines in the base class are added or modified to accomodate the new
functionality. After implementing this feature, the resulting package might look
as follows (again with the modified lines highlighted):

▹ 2.8. Example: The software product “DeltaEditor with 𝑆𝐻 and 𝐸𝐶”:
1 package DeltaEditor {
2 class Editor {
3 m_model : Model;
4 m_syntaxhl : SyntaxHL;
5.. m_errorch : ErrorChecker;
6

7 init(m : Model) : void {
8 m_model = m;
9 m_syntaxhl = new SyntaxHL(m);

10.. m_errorch = new ErrorChecker(m);
11 };
12

13 model() : Model { return m_model; };
14

15 font(c : int) : Font {
16.. Font result = m_syntaxhl.font(c);
17.. result.setUnderlined(m_errorch.errorOn(c));
18.. return result;
19 };
20

21 onMouseOver(c : int) : void {
22.. if (m_errorch.errorOn(c)) {
23.. super.showTooltip(m_errorch.errorText(c));
24.. }
25 };
26 };
27
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28 class SyntaxHL {
29 m_model : Model;
30

31 init(m : Model) { m_model = m; };
32

33 font(c : int) : Font { /* something complicated */; };
34 };
35

36.. class ErrorChecker {
37.. m_model : Model;
38..
39.. init(m : Model) { m_model = m; };
40..
41.. errorOn(c : int) : bool { /* some code */; };
42..
43.. errorText(c : int) : string { /* more code */; };
44.. };
45 };

The code for this feature has to be spread around just like before. But the thing
to note here is that we had to change the font(int) method again. The new
version handles both Syntax Highlighting and Error Checking correctly, but it
is now hard to say where one feature ends and the other begins. Our original
intention is obscured, even in this local context. If we ever want to expand
either feature —or fix a bug— we risk accidentally tampering with the other
feature too, perhaps breaking it without warning. This kind of problem clearly
makes maintenance more difficult. So we also strive for the following goal:

Goal: Find a way to ‘separate’ code belonging to different features.

This is generally refered to as separation of concerns [96, 112, 114, 147].
Our answer to both problems consists of implementing each feature as a

delta which can mechanically modify the core product (Example 2.6), rather
than implementing them in the product directly. This chapter explores the
interaction between products and deltas which makes this possible.

The remainder of the chapter is structured as follows. In Section 2.2 we
start our abstract treatment of delta modeling by introducing the notions of
product, delta, and how the latter can modify the former. It places these main
ingredients in a structure called a deltoid. It also makes explicit our distinction
between syntax and semantics and discusses the notion of quotient deltoid.
Section 2.3 then applies these concepts to the software packages introduced
in Section 2.1.1.

Section 2.4 further explores the semantic aspects of deltas. It presents no-
tions of delta definedness, (non)determinism and specification. Section 2.5 then
uses delta specifications to give a formulation of refinement and equivalence:
when can one delta behaviorally take the place of another?

In Section 2.6 we explain how to reason syntactically about deltas, and
briefly explore the field of abstract algebras. This is where the delta monoid
is introduced, a structure always present in previous work on ADM. It gives
us the notions of delta composition and the neutral delta. We also take a
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particular look at the relation algebra introduced by Tarski [175], which proves
to be quite relevant. Then, in Section 2.7, we classify deltoids by a number of
expressiveness properties, as well as by means of a notion of deltoid refinement,
defined in terms of product- and delta-homomorphisms.

Section 2.8 compares ADM with some other prominent algebraic formu-
lations of feature-oriented programming, namely the work of Apel et al [17]
and Batory et al [32], both based on the Quark model. We encode these for-
malisms within our own setting and demonstrate thereby the wide applicability
and expressiveness of ADM. Finally, Section 2.9 offers concluding remarks and
Section 2.10 discusses related work in a number of different directions.

2.2 Deltas & Products

This section presents the three main ingredients of the ADM formalism: deltas,
products, and an operation to apply the former to the latter in order to generate
new products.

2.2.1 Products
The object we are ultimately concerned with is the program or, abstractly
put, the product. That is the object of traditional software engineering and
that is what we ship to the end user. This thesis is about modularizing their
design using deltas, but for deltas to make any sense, we first need something
to apply them to.

On the abstract level, we do not specify the concrete nature of products.
They could represent different kinds of development artefacts (e.g., documenta-
tion, models or code) on any level of abstraction (e.g., component level or class
level). The set 𝒫 from Definition 2.5 is a good example of a product set, and
we shall be following up on that formulation throughout the thesis. However,
products might also model something radically different, like something that
comes out of a physical production line.

▸ 2.9. Notation (Products): We denote products by the symbols 𝑝, 𝑞. Sets of prod-
ucts are denoted by 𝑃 or 𝒫.

2.2.2 Deltas
We then introduce the main ingredient: deltas, which can transform one prod-
uct into another. We don’t specify their concrete nature either. They could be
mathematical functions or relations performing the changes directly. But in
practice, those changes will have some finite syntactic representation tailored
to the product domain we are working with.

▸ 2.10. Notation (Deltas): We denote deltas by the symbols 𝑑, 𝑤, 𝑥, 𝑦, 𝑧. Sets of
deltas are denoted by 𝐷 or 𝒟. ⌟

In Section 2.3 we design a set of deltas to operate on the software products
from Section 2.1.
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2.2.3 Delta Application
Deltas are applied to products in a process called delta application. Imagine
for the moment that deltas are mathematical functions mapping products to
products. Then applying a delta consists of simply calling the function, so 𝑑(𝑝)
would be the product resulting from applying delta 𝑑 to product 𝑝. More inter-
esting cases, such as those in software product lines, involve the incremental
application of a number of deltas 𝑑1, …, 𝑑𝑛 to a minimal core product 𝑐, each
changing a specific aspect of it:

𝑑𝑛(⋯𝑑1(𝑐)⋯).

As mentioned in Section 2.2.2, in practice deltas are not mathematical functions
or relations, but finite (syntactic) representations of such functions or relations.
The semantics of deltas are given by the third main ingredient of the formalism,
the delta evaluation operator. Together, a set of products, a set of deltas and
a delta evaluation operator form a deltoid:

▸ 2.11. Definition (Deltoid): A deltoid is a triple (𝒫, 𝒟, ⟦ ⟧) with a set of products
𝒫, a set of deltas 𝒟 and a unary delta evaluation operator ⟦ ⟧: 𝒟→Pow(𝒫×𝒫).
If 𝑑 ∈ 𝒟 is a delta, then ⟦ 𝑑 ⟧ ⊆ 𝒫×𝒫 is a binary relation over the set of products,
sometimes called a semantic delta.

By Notation 1.12, 𝑝 ⟦ 𝑑 ⟧ 𝑞 indicates that 𝑞 may result from applying 𝑑 to
𝑝 and ⟦ 𝑑 ⟧(𝑝) represents the set of all products that may result from such an
application. We use both notations regularly. ⌟

A deltoid describes all building blocks necessary to model delta-based systems
for a specific domain and abstraction level. The sets 𝒫 and 𝒟 represent the
potential products and deltas of the domain of discourse, and are usually infinite
in size (e.g., ‘all object oriented programs and deltas’).

The notion of deltoid presented in Definition 2.11 is a generalization of the
one presented in earlier work [1, 2]. It differs in two important ways:

• Firstly, it does not require that deltas form a monoid with an application
operator and neutral element. However, when they do, the new definition
coincides with the traditional one. Delta composition and other algebraic
topics are discussed in some detail in Section 2.6.

• Instead of a delta evaluation operator, the earlier works define a delta
application operator ( ): 𝒟 × 𝒫 → 𝒟. In essence, all deltas behaved like
functions, whereas we now allow for them to be specified relationally. A
delta may not apply to certain products (i.e., it may be partially defined).
Conversely, it may apply and have more than one possible output prod-
uct (i.e., it may be non-deterministic). We discuss these notions more
thoroughly in Section 2.4.

With regard to that second point: the semantic evaluation operator often serves
to specify delta application for a concrete domain, without actually implement-
ing it. For a deltoid to be usable in practice, an effective procedure (i.e., an
executable algorithm) for delta application must be written, roughly corre-
sponding to the ( ) operator of the earlier work:

▸ 2.12. Definition (Delta Application): Given a deltoid (𝒫, 𝒟, ⟦ ⟧), delta applica-
tion is a partial function apply: 𝒟 × 𝒫 ⇀ 𝒫, representing an effective procedure
satisfying the following axiom for all deltas 𝑑 ∈ 𝒟 and products 𝑝 ∈ 𝒫:
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.................................

𝒫, 𝒫/≅ ⟦ 𝑑 ⟧, ⟦ [𝑑]≃ ⟧≅
≃ 𝒫, 𝒫/≅

Figure 2.1: A delta 𝑑 and its equivalence class (in gray) acting
on a set of products 𝒫 and its quotient set (in gray).

a. (𝑑, 𝑝) ∈ pre(apply) ⟹ 𝑝 ⟦ 𝑑 ⟧ apply(𝑑, 𝑝) ⌟

This thesis maintains a firm distinction between syntax and semantics. Syntax
is concerned with deltas. Semantics is concerned with products. The bridge
between these two worlds is the ⟦ ⟧ notation, as witnessed in Definition 2.11.
In general, we keep to the following convention:

⟦ ⟨something syntactic⟩ ⟧ = ⟨something semantic⟩

We introduce several extensions of the ⟦ ⟧ notation over the course of the thesis.
We begin with a straightforward extension to sets of deltas:

▸ 2.13. Notation: Given any delta set 𝐷 ⊆ 𝒟, we define ⟦ 𝐷 ⟧ ≝ { ⟦ 𝑑 ⟧ | 𝑑 ∈ 𝐷 }. ⌟

2.2.4 Quotient Deltoids
Recall Section 1.7.7 on quotient sets. If the delta set 𝒟 and/or the product
set 𝒫 happen to be quotient sets (Definition 1.26), we require that the delta
evaluation operator ⟦ ⟧ behave appropriately with regard to the associated
equivalence relations, as we would for algebraic operations (Definition 1.32):

▸ 2.14. Definition (Quotient Deltoid): Given any deltoid (𝒫, 𝒟, ⟦ ⟧), the corre-
sponding quotient deltoid by equivalence relations ≅ ⊆ 𝒫 × 𝒫 and ≃ ⊆ 𝒟 × 𝒟,
denoted (𝒫/≅, 𝒟/≃, ⟦ ⟧≅

≃), exists iff a delta evaluation operator ⟦ ⟧≅
≃: (𝒟/≃)→

Pow((𝒫/≅)×(𝒫/≅)) exists such that for all deltas 𝑑 ∈ 𝒟 and products 𝑝, 𝑞 ∈ 𝒫:

𝑝 ⟦ 𝑑 ⟧ 𝑞 ⟺ [ 𝑝 ]≅ ⟦ [ 𝑑 ]≃ ⟧≅
≃ [ 𝑞 ]≅ ⌟

Figure 2.1 illustrates this concept. To prove that such a quotient counterpart
of delta evaluation exists, it suffices to prove the following property for a given
delta evaluation operator:

▸ 2.15. Lemma: The quotient of a deltoid (𝒫, 𝒟, ⟦ ⟧) may be used iff for all products
𝑝1, 𝑝2, 𝑞1, 𝑞2 ∈ 𝒫 and all deltas 𝑑1, 𝑑2 ∈ 𝒟:

𝑝1 ≅ 𝑝2 ∧ 𝑞1 ≅ 𝑞2 ∧ 𝑑1 ≃ 𝑑2 ⟹ ( 𝑝1 ⟦𝑑1⟧ 𝑞1 ⇔ 𝑝2 ⟦𝑑2⟧ 𝑞2 ) ◻

The existence of a quotient deltoid allows us to extend implicit canonical projec-
tion (Notation 1.27) to delta evaluation and use ⟦ ⟧ as an abbreviation for ⟦ ⟧≅

≃.
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2.3 The Software Deltoid

We now continue what we started at the beginning of the chapter and build a
deltoid around the notion of software package from Definition 2.5.

2.3.1 Software Deltas
We need to come up with a language for software deltas that can express mod-
ifications to software packages in 𝒫𝒦𝒢. It needs to be intuitive for developers
and powerful enough to describe implementations of the kinds of features we
are interested in, such as those from the Editor specification (Section 1.4.1).
Recently, some work has been done in automatically deriving a delta language
from a product language [76], but generally the task requires knowledge of the
problem domain and an adequate understanding of the language. We propose
the following, expressive enough to set up most of the Editor features in a
modular fashion:

▹ 2.16. Definition (Software Deltas): We define software deltas on two levels: pack-
ages and classes. We start on the lower level. Software class deltas are defined
as finite partial maps:

𝒟cl ≝ ℐ𝒟 ⇀ 𝒪𝒫cl

mapping each identifier to a class-level operation:

𝒪𝒫cl ≝

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

{add } × ( ℳ𝑡𝑑 ∪ ℱ𝑙𝑑 ) ∪
{rem } ∪
{rep } × ( ℳ𝑡𝑑 ∪ ℱ𝑙𝑑 ) ∪
{frb } ∪
{err }

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

An add operation adds a new entity with the given identifier, and therefore
requires that the identifier is not yet in use. A rem (remove) operation removes
the entity currently using the identifier, and requires that such an entity exists.

A rep (replace) is the same as a remove followed by an add, and
replaces the entity using the given identifier with the given product value. Sim-
ilarly (though perhaps less intuitively), a frb (forbid) is the same as an add
followed by a remove. This is really more an assertion than an operation. It
does not modify anything, but still imposes the condition inherited from add:
that the given identifier is not currently in use.

Finally, an err (error) may be present. A delta with this placeholder on
any level is invalid and will not yield any results when applied to a product.
This construct is presumably never used by developers, but is useful for prop-
agating the result of invalid delta operations, which are examined in detail in
Section 2.6.

We now move to the package level, and define software package deltas (or
software deltas for short) as finite partial maps as well:

𝒟pkg ≝ ℐ𝒟 ⇀ 𝒪𝒫pkg
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mapping each identifier to a package-level operation:

𝒪𝒫pkg ≝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

{add } × 𝒞ℒ ∪
{rem } ∪
{rep } × 𝒞ℒ ∪
{mod } × 𝒟cl ∪
{frb } ∪
{err }

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Deltas on this level are intuitively very similar to deltas on the class level. The
operations can add and remove full classes. However, there is one important
addition: the mod (modify) operation descends one level in order to make
modifications of a finer granularity. We can only do so on the package level
(at least for now). These deltas cannot, for example, tinker with the type or
individual statements of a method. ⌟

As you can see, these deltas follow the structure of Definition 2.5, providing
operations on both the package and class levels. They employ invasive composi-
tion [23], as they disregard object-oriented encapsulation by referencing —from
the outside— artifacts of arbitrary nesting depth and ignoring class boundaries.
The depth at which a modification occurs is called its granularity. Generally, a
modification inside the body of a method is called fine-grained. Modifications
on a higher level are called coarse-grained [108]. By this terminology, the deltas
above are only capable of making coarse-grained modifications.

Since we want to keep our examples as simple as possible, there are obvious
limits to this set of operations. They do not work on a fine-grained level and
cannot alter types or parameters. We have not introduced class inheritance in
the programming language, so these deltas cannot alter the inheritance hier-
archy. But these are merely artificial limits. Chapter 3 will extend software
deltas so they are able to manipulate method bodies. Haber et al. [77, 79]
extended software deltas with connect and disconnect operations for soft-
ware components. In 2013 they applied delta modeling to Matlab/Simulink [78],
a graphical language.

The following is an example of a software delta:

▹ 2.17. Example: The software delta “SH implementation”:
1 modify package DeltaEditor {
2 modify class Editor {
3 add m_syntaxhl : SyntaxHL;
4

5 replace init(m : Model) : void {
6 m_model = m;
7 m_syntaxhl = new SyntaxHL(m);
8 };
9

10 replace font(c : int) : Font {
11 return m_syntaxhl.font(c);
12 };
13 };
14
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15 add class SyntaxHL {
16 m_model : Model;
17

18 init(m : Model) : void { m_model = m; };
19

20 font(c : int) : Font { /* something complicated */; };
21 };
22 };

2.3.2 Software Delta Application
The meaning of software deltas is, hopefully, already somewhat intuitive. The
following definition formalizes their semantics by defining the software delta
evaluation operator, completing the basic software deltoid:

▹ 2.18. Definition (Software Deltoid): Software deltoid 𝐷𝑡pkg ≝ (𝒫𝒦𝒢, 𝒟pkg, ⟦ ⟧)
comprises 𝒫𝒦𝒢 from Definition 2.5 as its product set and 𝒟pkg from Defini-
tion 2.16 as its delta set. We define semantic evaluation of software deltas by
specifying a set of inference rules (Notation 1.15). We do so on four levels:
full package deltas, package level operations, full class deltas and class-level
operations. As before, we start at the lowest level.

a. Class-level Operations

The semantics of class-level operations is defined by the smallest semantic
evaluation operator ⟦ ⟧: ℐ𝒟 × 𝒪𝒫cl → Pow(𝒞ℒ × 𝒞ℒ) satisfying the following
inference rules. For all identifiers 𝑖𝑑 ∈ ℐ𝒟, classes 𝑐𝑙 ∈ 𝒞ℒ and methods or
fields 𝑚𝑓 ∈ ℳ𝑡𝑑 ∪ ℱ𝑙𝑑:

𝑖𝑑 ∉ pre(𝑐𝑙)
𝑐𝑙 ⟦ 𝑖𝑑 ↦ add 𝑚𝑓 ⟧ 𝑐𝑙[𝑖𝑑 ↦ 𝑚𝑓]

method/field addition

𝑖𝑑 ∈ pre(𝑐𝑙)
𝑐𝑙 ⟦ 𝑖𝑑 ↦ rem ⟧ 𝑐𝑙[𝑖𝑑 ↦⊥]

method/field removal

𝑖𝑑 ∈ pre(𝑐𝑙)
𝑐𝑙 ⟦ 𝑖𝑑 ↦ rep 𝑚𝑓 ⟧ 𝑐𝑙[𝑖𝑑 ↦ 𝑚𝑓]

method/field replacement

𝑖𝑑 ∉ pre(𝑐𝑙)
𝑐𝑙 ⟦ 𝑖𝑑 ↦ frb ⟧ 𝑐𝑙

method/field forbiddance

𝑐𝑙 ⟦ 𝑖𝑑 ↦ ⊥⟧ 𝑐𝑙
no operation

Note that the ‘precondition’ of each operation —the presence or absence of a
particular identifier— is specified as a premise for each rule. Note in particular
that the error operation is not mentioned. Indeed, this means that ⟦ 𝑖𝑑 ↦
err ⟧ = ∅. A software delta with an error inside cannot produce a valid
result. The error is propagated to the higher levels.
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b. Class Deltas

The semantics of class deltas is defined by the smallest semantic evaluation
operator ⟦ ⟧: 𝒟cl → Pow(𝒞ℒ × 𝒞ℒ) satisfying the following inference rule. For
all classes 𝑐𝑙 ∈ 𝒞ℒ and class deltas 𝑑cl ∈ 𝒟cl:

∀𝑖𝑑 ∈ ℐ𝒟: 𝑐𝑙(𝑖𝑑) ⟦ 𝑖𝑑 ↦ 𝑑cl(𝑖𝑑) ⟧ 𝑐𝑙′(𝑖𝑑)
𝑐𝑙 ⟦ 𝑑cl ⟧ 𝑐𝑙′

software class
delta application

This basically lifts class-level operation semantics to the level of full class deltas,
applying them for every (relevant) identifier.

c. Package Level Operations

The semantics of package-level operations is defined by the smallest semantic
evaluation operator ⟦ ⟧: ℐ𝒟×𝒪𝒫pkg →Pow(𝒫𝒦𝒢×𝒫𝒦𝒢) satisfying the following
inference rules. For all identifiers 𝑖𝑑 ∈ ℐ𝒟, packages 𝑝𝑘𝑔 ∈ 𝒫𝒦𝒢, classes 𝑐𝑙 ∈ 𝒞ℒ
and class deltas 𝑑cl ∈ 𝒟cl:

𝑖𝑑 ∉ pre(𝑝𝑘𝑔)
𝑝𝑘𝑔 ⟦ 𝑖𝑑 ↦ add 𝑐𝑙 ⟧ 𝑝𝑘𝑔[𝑖𝑑 ↦ 𝑐𝑙]

class addition

𝑖𝑑 ∈ pre(𝑝𝑘𝑔)
𝑝𝑘𝑔 ⟦ 𝑖𝑑 ↦ rem ⟧ 𝑝𝑘𝑔[𝑖𝑑 ↦⊥]

class removal

𝑖𝑑 ∈ pre(𝑝𝑘𝑔)
𝑝𝑘𝑔 ⟦ 𝑖𝑑 ↦ rep 𝑐𝑙 ⟧ 𝑝𝑘𝑔[𝑖𝑑 ↦ 𝑐𝑙]

class replacement

𝑖𝑑 ∉ pre(𝑝𝑘𝑔)
𝑝𝑘𝑔 ⟦ 𝑖𝑑 ↦ frb ⟧ 𝑝𝑘𝑔

class forbiddance

𝑖𝑑 ∈ pre(𝑝𝑘𝑔) 𝑝𝑘𝑔(𝑖𝑑) ⟦𝑑cl⟧ 𝑐𝑙
𝑝𝑘𝑔 ⟦ 𝑖𝑑 ↦ mod 𝑑cl ⟧ 𝑝𝑘𝑔[𝑖𝑑 ↦ 𝑐𝑙]

class modification

𝑝𝑘𝑔 ⟦ 𝑖𝑑 ↦ ⊥⟧ 𝑝𝑘𝑔
no operation

The interesting new rule is the one for class modification. Its second premise
states that applying the class level delta 𝑑cl to the existing class 𝑝𝑘𝑔(𝑖𝑑) can
result in a new class 𝑐𝑙. After ‘delegating’ to the lower level, the rule replaces
the existing class with the new class.
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d. Package Deltas

The semantics of package deltas is defined by the smallest semantic evaluation
operator ⟦ ⟧: 𝒟pkg → Pow(𝒫𝒦𝒢 × 𝒫𝒦𝒢) satisfying the following inference rule.
For all packages 𝑝𝑘𝑔 ∈ 𝒫𝒦𝒢 and package deltas 𝑑pkg ∈ 𝒟pkg:

∀𝑖𝑑 ∈ ℐ𝒟: 𝑝𝑘𝑔(𝑖𝑑) ⟦ 𝑖𝑑 ↦ 𝑑pkg(𝑖𝑑) ⟧ 𝑝𝑘𝑔′(𝑖𝑑)
𝑝𝑘𝑔 ⟦ 𝑑pkg ⟧ 𝑝𝑘𝑔′

software package
delta application

This rule lifts operations to the full delta level, as before. ⌟

▹ 2.19. Definition (Software Delta Application): Software delta application is an
effective procedure, apply: 𝒟pkg × 𝒫𝒦𝒢 ⇀ 𝒫𝒦𝒢, as per Definition 2.12.

Semantic software delta evaluation was defined in a straightforward and
constructive way, so this definition would be almost a repeat of Definition 2.18.
We assume that this partial function is defined to satisfy Axiom 2.12a. For a
definition of this style, the reader is referred to the ADM papers [1, 2]. ⌟

▹ 2.20. Lemma: Referring to Examples 2.6, 2.7 and 2.17, we have:

“DeltaEditor core” ⟦ “SH implementation” ⟧ “DeltaEditor with SH” ◻

The thesis often refers back to this deltoid.

2.3.3 Software Delta Equivalence
When working with concrete syntax as we are now, it soon becomes useful
to define equivalence relations in order to treat structurally different products
and/or deltas the same way.

For software packages this is not the case. But for software deltas it is.
We can equate all deltas that contain an error at any level of nesting. Af-
terwards we can work in the quotient set and use implicit canonical projection
(Notation 1.27).

We require one intermediate definition: a predicate for identifying invalid
software deltas (those that contain an error):

▹ 2.21. Definition (Invalid Software Deltas): The invalid software delta predicate
𝖤𝗋𝗋 ⊆ 𝒟pkg ∪ 𝒪𝒫pkg ∪ 𝒟cl ∪ 𝒪𝒫cl holds for software deltas and operations that
contain an error at any nesting level. It is the smallest predicate so that the
following hold for all identifiers 𝑖𝑑 ∈ ℐ𝒟 and deltas 𝑑cl ∈ 𝒟cl and 𝑑pkg ∈ 𝒟pkg:

𝖤𝗋𝗋 ( 𝑑pkg ) if ∃𝑖𝑑 ∈ pre(𝑑pkg): 𝖤𝗋𝗋( 𝑑pkg(𝑖𝑑) )
𝖤𝗋𝗋 (modify 𝑑cl ) if 𝖤𝗋𝗋 ( 𝑑cl )
𝖤𝗋𝗋 ( 𝑑cl ) if ∃𝑖𝑑 ∈ pre(𝑑cl): 𝖤𝗋𝗋( 𝑑cl(𝑖𝑑) )
𝖤𝗋𝗋 (error ) ⌟

This makes it simple to define the equivalence relation:
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▹ 2.22. Definition (Software Delta Equivalence): The software delta equivalence
relation ≃ ⊆ 𝒟pkg × 𝒟pkg is defined to equate all invalid deltas, as well as each
delta with itself:

≃ ≝ 𝖤𝗋𝗋2 ∪ id𝒟pkg ⌟

Finally, we prove that Definition 2.18 respects this equivalence relation, as
required by Definition 2.14 by using Lemma 2.15. We can then work in the
quotient deltoid.

▹ 2.23. Theorem: For all packages 𝑝1, 𝑝2, 𝑞1, 𝑞2 ∈ 𝒫𝒦𝒢 and software deltas 𝑑1, 𝑑2 ∈
𝒟pkg we have:

𝑝1 ≅ 𝑝2 ∧ 𝑞1 ≅ 𝑞2 ∧ 𝑑1 ≃ 𝑑2 ⟹ ( 𝑝1 ⟦𝑑1⟧ 𝑞1 ⇔ 𝑝2 ⟦𝑑2⟧ 𝑞2 )

Proof: As we have no special package equivalence relation, this is simplified to:

𝑑1 ≃ 𝑑2 ⟹ ( 𝑝 ⟦𝑑1⟧ 𝑞 ⇔ 𝑝 ⟦𝑑2⟧ 𝑞 )

Then it only remains to prove that two deltas that both have an error at
any level have the same behavior. This is trivial, as, by Definition 2.18, all
semantic software deltas with an error are empty relations. This propagates
from the lowest to the highest level, as noted in Definition 2.18a. ◻

2.4 The Semantics of Deltas

In earlier work the semantics of deltas were functions [1, 2]. But since then
the need arose to make them more expressive, hence the current interpretation
of semantic deltas as relations (Definition 2.11). In this section we explore
the implications.

2.4.1 Definedness and Determinism
Deltas may now be partially defined and non-deterministic.

▸ 2.24. Definition (Product Acceptance): Given a deltoid (𝒫, 𝒟, ⟦ ⟧), a delta 𝑑 ∈
𝒟 is said to accept a product 𝑝 ∈ 𝒫 iff 𝑝 ∈ pre⟦ 𝑑 ⟧. ⌟

▸ 2.25. Definition (Fully Defined Delta): Given a deltoid (𝒫, 𝒟, ⟦ ⟧), a delta 𝑑 ∈
𝒟 is said to be fully defined iff it accepts all products, i.e., iff pre⟦ 𝑑 ⟧ = 𝒫.
A delta that is not fully defined is partially defined. A delta that accepts no
products at all is called undefined or invalid. ⌟

▸ 2.26. Definition (Deterministic Delta): Given a deltoid (𝒫, 𝒟, ⟦ ⟧), a delta 𝑑 ∈
𝒟 is said to be deterministic iff ⟦ 𝑑 ⟧ is uniquely defined (Definition 1.13). Oth-
erwise it is called non-deterministic. ⌟

When compared to the old functional interpretation, Definitions 2.25 and 2.26
give useful generalizations of the intuitive concept of a modification. Partiality
(Figure 2.2) allows us to model modifications that only make sense for certain
products. This applies, for example, when a software delta removes an iden-
tifier that is not present in the product, or add an identifier that is present.
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.................

𝒫 ⟦ 𝑥 ⟧ 𝒫
Figure 2.2: A partially defined,
deterministic delta 𝑥.

.................

𝒫 ⟦ 𝑦 ⟧ 𝒫
Figure 2.3: A fully defined, non-
deterministic delta 𝑦.

Non-determinism (Figure 2.3) allows us to model deltas that have more
than one possible result when transforming a product, with no guarantee as
to which it might be. We can use this in certain situations to prove that the
choice ‘does not matter’. We use the term ‘deterministic’ rather than the term
‘uniquely defined’ (Definition 1.13) because it fits better with the idea of a
delta performing a transformation.

Software deltas are deterministic; at least for now. Each operation can only
modify a software product in a single, specific way:

▹ 2.27. Lemma: All software deltas 𝑑 ∈ 𝒟pkg (Definition 2.18) are deterministic. All
except ∅ (the empty map) are partially defined. ◻

Chapter 3 will introduce software deltas that can insert statements in arbitrary
positions inside a method body. This makes them not only fine-grained, but
potentially nondeterministic as well.

2.4.2 Delta Specifications
To help us reason about the behavior of deltas we introduce the notion of delta
specifications:

▸ 2.28. Definition (Delta Specification): Given a deltoid 𝐷𝑡 = (𝒫, 𝒟, ⟦ ⟧), the
corresponding set of delta specifications 𝒮 ≝ Pow(𝒫 × 𝒫) consists of the full
set of product relations.

If the deltoid is not clear from context, we attach a subscript as in 𝒮𝐷𝑡. ⌟

Basically, delta specifications can express any behavior a semantic delta may
have. They look and feel like semantic deltas, but they don’t require a syntactic
counterpart in 𝒟. Now that we have delta specifications, we can establish a no-
tion of delta correctness. We distinguish between partial and total correctness,
based on the same distinction in Hoare Logic [93, 94]:

▸ 2.29. Definition (Delta Correctness): Given a deltoid (𝒫, 𝒟, ⟦ ⟧), to indicate
that a delta 𝑑 ∈ 𝒟 is partially or totally correct with regard to a specifica-
tion 𝑠 ∈ 𝒮 we use the satisfaction relation ⊨ ⊆ 𝒟 × 𝒮:

𝑑 ⊨ 𝑠 ⟺ ∀𝑝 ∈ pre(𝑠): 𝑝 ∈ pre ⟦ 𝑑 ⟧ ⇒ ⟦ 𝑑 ⟧(𝑝) ⊆ 𝑠(𝑝)
𝑑 ⊨tot 𝑠 ⟺ ∀𝑝 ∈ pre(𝑠)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
a

: 𝑝 ∈ pre ⟦ 𝑑 ⟧
⏟⏟⏟⏟⏟⏟⏟⏟⏟

b

∧ ⟦ 𝑑 ⟧(𝑝) ⊆ 𝑠(𝑝)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

c
If the deltoid is not clear from context, we attach a subscript as in ⊨𝐷𝑡. ⌟
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.................................

𝒫 ⟦ 𝑥 ⟧, 𝑠 𝒫
Figure 2.4: A delta 𝑥 partially cor-
rect w.r.t. a specification 𝑠.

.................................

𝒫 ⟦ 𝑦 ⟧, 𝑠 𝒫
Figure 2.5: A delta 𝑦 totally correct
w.r.t. a specification 𝑠.

In other words, (a) for all products that satisfy the precondition of 𝑠, (b) if
delta 𝑑 accepts the product, (c) then any product resulting from its application
will satisfy the postcondition of 𝑠. Partial correctness guarantees that 𝑑 won’t
return an invalid result, but it doesn’t actually guarantee that there will be a
result at all. Total correctness guarantees both.

An interesting equivalent formulation is the following:

2.30. Lemma: For any delta 𝑑 ∈ 𝒟 and any delta specification 𝑠 ∈ 𝒮 we have:

𝑑 ⊨ 𝑠 ⟺≝ ⟦ 𝑑 ⟧ ⊆ 𝑠
𝑑 ⊨tot 𝑠 ⟺≝ ⟦ 𝑑 ⟧ ⊆ 𝑠 ∧ pre ⟦ 𝑑 ⟧ = pre(𝑠) ◻

This formulation can be visualized using relation diagrams. Figures 2.4 and 2.5
show examples of partially correct deltas. The delta in Figure 2.5 is also totally
correct.

2.4.3 Delta Derivation
A related but less expressive concept is that of derived deltas, introduced in [6].
They won’t be used much until Chapter 8. We introduce them here because
they are interesting to compare to delta specifications.

We will use them to express a number of useful notions further on. They
also serve to put the power of delta specifications in perspective.

▸ 2.31. Definition (Delta Derivation): Given deltoid 𝐷𝑡 = (𝒫, 𝒟, ⟦ ⟧), a delta de-
rived from two product sets 𝑃 , 𝑃 ′ ⊆ 𝒫 is one that can transform any product
from the first set into some product from the second. This kind of specification
can also be separated into a partial and total correctness version, denoted by
the operators ⤇, ⤇tot: Pow(𝒫) × Pow(𝒫) → Pow(𝒟), defined as follows:

𝑃 ⤇ 𝑃 ′ ≝ { 𝑑 ∈ 𝒟 ∣ ∀𝑝 ∈ 𝑃 : ⟦ 𝑑 ⟧(𝑝) ⊆ 𝑃 ′ }
𝑃 ⤇tot 𝑃 ′ ≝ { 𝑑 ∈ 𝒟 ∣ ∀𝑝 ∈ 𝑃 : ∅ ⊂ ⟦ 𝑑 ⟧(𝑝) ⊆ 𝑃 ′ }

If the deltoid is not clear from context, we attach a subscript as in ⤇𝐷𝑡. ⌟

We now show the connection between derivations and specifications:

2.32. Lemma: For all deltoid (𝒫, 𝒟, ⟦ ⟧) and all deltas 𝑑 ∈ 𝒟 and all product sets
𝑃 , 𝑃 ′ ⊆ 𝒫 we have:

𝑑 ⊨ 𝑃 × 𝑃 ′ ⟺ 𝑑 ∈ ( 𝑃 ⤇ 𝑃 ′ )
𝑑 ⊨tot 𝑃 × 𝑃 ′ ⟺ 𝑑 ∈ ( 𝑃 ⤇tot 𝑃 ′ )



2.5. DELTA REFINEMENT AND EQUIVALENCE 47

Proof: The proof for ⊨tot proceeds as follows:

𝑑 ⊨tot 𝑃 × 𝑃 ′ ⟺ (Def. 2.29)
∀𝑝 ∈ pre(𝑃 × 𝑃 ′): 𝑝 ∈ pre⟦ 𝑑 ⟧ ∧ ⟦ 𝑑 ⟧(𝑝) ⊆ (𝑃 × 𝑃 ′)(𝑝) ⟺ (Not. 1.12)
∀𝑝 ∈ 𝑃 : 𝑝 ∈ pre⟦ 𝑑 ⟧ ∧ ⟦ 𝑑 ⟧(𝑝) ⊆ 𝑃 ′ ⟺ (Not. 1.12)
∀𝑝 ∈ 𝑃 : ∅ ⊂ ⟦ 𝑑 ⟧(𝑝) ⊆ 𝑃 ′ ⟺ (Not. 1.1)
𝑑 ∈ { 𝑥 ∈ 𝒟 | ∀𝑝 ∈ 𝑃 : ∅ ⊂ ⟦ 𝑥 ⟧(𝑝) ⊆ 𝑃 ′ } ⟺ (Def. 2.31)
𝑑 ∈ ( 𝑃 ⤇tot 𝑃 ′ )

The proof for ⊨ is somewhat simpler but mostly analogous. ◻

Lemma 2.32 shows us exactly how delta derivation is a weaker notion than delta
specification: it can only express delta specifications that are full Cartesian
products. To make an analogy with the field of type theory: one could say
that a delta derivation is to a delta specification what a product type is to a
dependent product type [151, 152]. A delta specification is able to express how
the output type depends on the input. In return, however, delta derivation is
often decidable — something we make good use of in Chapter 8.

2.5 Delta Refinement and Equivalence

A deltoid may contain any number of distinct deltas that have very similar
—or even identical— effects on products. To express such facts, this section
defines semantic notions of delta refinement and delta equivalence.

When a given delta satisfies at least the same specifications as another, and
can thus always safely take its place, it is said to refine the other delta. There
are two kinds of refinement: one that preserves partial correctness and one that
preserves total correctness. When two deltas refine each other, and thus act
identically in every situation, they are equivalent.

▸ 2.33. Definition (Semantic Delta Refinement): Given a deltoid 𝐷𝑡 = (𝒫, 𝒟, ⟦ ⟧),
semantic delta refinement is a preorder ⊒ ⊆ 𝒟 × 𝒟. Delta 𝑥 ∈ 𝒟 is a semantic
refinement of delta 𝑦 ∈ 𝒟 iff its corresponding semantic delta is a subset of
that of the other1:

𝑥 ⊒ 𝑦 ⟺≝ ⟦ 𝑥 ⟧ ⊆ ⟦ 𝑦 ⟧
𝑥 ⊒tot 𝑦 ⟺≝ ⟦ 𝑥 ⟧ ⊆ ⟦ 𝑦 ⟧ ∧ pre ⟦ 𝑥 ⟧ = pre ⟦ 𝑦 ⟧

If the deltoid is not clear from context, we attach a subscript as in ⊒𝐷𝑡. ⌟

The following establishes the expected correspondance between semantic delta
refinement and delta correctness:

2.34. Lemma: Delta 𝑥 refines delta 𝑦 iff 𝑥 satisfies all specifications that 𝑦 does:

𝑥 ⊒ 𝑦 ⟺ ∀𝑠 ∈ 𝒮: 𝑦 ⊨ 𝑠 ⟹ 𝑥 ⊨ 𝑠
𝑥 ⊒tot 𝑦 ⟺ ∀𝑠 ∈ 𝒮: 𝑦 ⊨tot 𝑠 ⟹ 𝑥 ⊨tot 𝑠 ◻

1The direction of the refinement symbol in 𝑥 ⊒ 𝑦 may feel counterintuitive, but it is the
standard direction used in literature [44, 135]. Think of it as 𝑥 being more refined.
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And sometimes it is easier to reason about refinement of relations if it is spec-
ified in the following way:

2.35. Lemma: Delta 𝑥 refines delta 𝑦 iff, for every product 𝑝, 𝑥 will only produce a
subset of 𝑦’s possible results:

𝑥 ⊒ 𝑦 ⟺ ∀𝑝 ∈ pre ⟦ 𝑦 ⟧: ⟦ 𝑥 ⟧(𝑝) ⊆ ⟦ 𝑦 ⟧(𝑝)
𝑥 ⊒tot 𝑦 ⟺ ∀𝑝 ∈ pre ⟦ 𝑦 ⟧: ∅ ⊂ ⟦ 𝑥 ⟧(𝑝) ⊆ ⟦ 𝑦 ⟧(𝑝) ◻

Note that the semantic delta refinement preorder is not always a partial or-
der. There may be multiple distinct syntactic deltas which are mapped to the
same relation. Such deltas are equivalent. Semantic equivalence of deltas is
straightforwardly based on refinement, as is often the case in literature:

▸ 2.36. Definition (Semantic Delta Equivalence): Given a deltoid 𝐷𝑡 = (𝒫, 𝒟, ⟦ ⟧)
we define semantic delta equivalence ≡ ⊆ 𝒟 × 𝒟 as follows for all 𝑥, 𝑦 ∈ 𝒟:

𝑥 ≡ 𝑦 ⟺≝ 𝑥 ⊒ 𝑦 ∧ 𝑥 ⊑ 𝑦

If the deltoid is not clear from context, we attach a subscript as in ≡𝐷𝑡. ⌟

The following is an equivalent formulation:

2.37. Lemma: For every two deltas 𝑥, 𝑦 ∈ 𝒟 we have:

𝑥 ≡ 𝑦 ⟺ ⟦ 𝑥 ⟧ = ⟦ 𝑦 ⟧

Proof: 𝑥 ≡ 𝑦 ⟺ 𝑥 ⊒ 𝑦 ∧ 𝑥 ⊑ 𝑦 ⟺
⟦ 𝑥 ⟧ ⊆ ⟦ 𝑦 ⟧ ∧ ⟦ 𝑥 ⟧ ⊇ ⟦ 𝑦 ⟧ ⟺ ⟦ 𝑥 ⟧ = ⟦ 𝑦 ⟧ ◻

When no two distinct deltas are semantically equivalent, it makes it easier to
reason syntactically about their effects. This is why it can be useful to establish
a quotient deltoid (Definition 2.14). If a syntactic equivalence relation ≃ can be
defined such that id𝒟 ⊂ ≃ ⊆ ≡, syntactic equality of the quotient will approach
semantic equivalence.

2.6 Delta Algebras

The previous sections form a picture of the relation between deltas and prod-
ucts. This section explores deltas from an algebraic perspective. That is, it
introduces a number of useful delta operations and categorizes them in the
style of abstract algebra [98] (Section 1.7.9). This allows us to reason about
deltas on a syntactic level, without actually involving products.

For instance, to reason about incremental application, we need to introduce
a composition operation · , so that applying 𝑦 · 𝑥 is the same as applying first
𝑥 and then 𝑦. It then makes sense to define a delta 𝜀 which is neutral in · and
thus ‘modifies nothing’. Deltas have been presented with a monoid structure
(𝒟, ·, 𝜀) (Definition 1.33) since our first publication about ADM [1].
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A later publication [3] also introduces the operator ⊔ for non-deterministic
choice between two deltas,2 to express the ambiguity of delta models that
contain unresolved conflicts (Chapter 3).

This section discusses these operations. But it does beg the questions: How
are the operations related, and which others might be useful? The key insight is
that the abovementioned operators have obvious interpretations on a semantic
level. Namely relation composition ∘, the identity relation id𝒫 and set union ∪
(Definitions 1.1 and 1.11). Delta semantics are given in terms of relations,
and any operation that makes sense for relations potentially has a syntactic
counterpart that makes sense for deltas.

Relation Algebras

Taking this relational point of view to its logical conclusion leads us to relation
algebras, pioneered by Tarski [101, 102, 175]. Relation algebras capture the
meaning of the standard relational operators (Definitions 1.1 and 1.11) and are
thus worth studying as the limit of what abstract deltas could express.

Relation algebras are formally introduced in Definition 1.35. To summarize,
their signature is (𝑆, ⊔, ⊓, −,⊥,⊤, ·, 𝜀, )̆, with carrier set 𝑆, disjunction operator
⊔: 𝑆 ×𝑆 →𝑆, conjunction operator ⊓: 𝑆 ×𝑆 →𝑆, negation operator −: 𝑆 →𝑆, an
empty element⊥∈ 𝑆, a full element⊤∈ 𝑆, a composition operator · : 𝑆 ×𝑆 →𝑆,
a neutral element 𝜀 ∈ 𝑆 and a converse operator ̆: 𝑆 → 𝑆. If we take 𝑆 = 𝒟
to be the set of deltas from a deltoid, we would assume any of these operators,
when implemented, to respect the following semantics:

▸ 2.38. Definition (Relation Algebra Semantics): A relation algebra operator im-
plemented for a deltoid (𝒫, 𝒟, ⟦ ⟧) should respect the following interpretations.
For any two deltas 𝑥, 𝑦 ∈ 𝒟:

⟦ 𝑥 ⊔ 𝑦 ⟧ = ⟦ 𝑥 ⟧ ∪ ⟦ 𝑦 ⟧ ⟦⊥⟧ = ∅
⟦ 𝑥 ⊓ 𝑦 ⟧ = ⟦ 𝑥 ⟧ ∩ ⟦ 𝑦 ⟧ ⟦⊤⟧ = 𝒫 × 𝒫
⟦ 𝑦 · 𝑥 ⟧ = ⟦ 𝑦 ⟧ ∘ ⟦ 𝑥 ⟧ ⟦ 𝜀 ⟧ = id𝒫

⟦ 𝑥 ̆⟧ = ⟦ 𝑥 ⟧−1 ⟦ 𝑥− ⟧ = ⟦ 𝑥 ⟧∁ ⌟

In the case where deltas are semantic deltas (and delta evaluation ⟦ ⟧ = id𝒫×𝒫
is simply the identity function), they form what is known as a proper rela-
tion algebra [101, 127, 128], with the signature (𝒟, ∪, ∩, ∁,∅, 𝒫×𝒫, ∘, id𝒫, −1).
Delta evaluation ⟦ ⟧ is always a homomorphism from the current ‘delta alge-
bra’ to the proper relation algebra. This behavior is guaranteed if the operator
implementations satisfy the axioms of Definitions 1.33 to 1.35.

So what intuitive interpretation we can attribute to each of these operators?
The monoid operators of composition · and the neutral element 𝜀 would respec-
tively represent sequential application of deltas and the delta that modifies
nothing — notions that have proved their usefulness in previous work. Disjunc-
tion ⊔ represents nondeterministic choice. Its dual, conjunction ⊓, represent
agreement or consensus between two deltas. The empty element⊥ represents
an invalid delta (Definition 2.25). Those are the ones with the most obviously

2Actually, in [3] the ∪ symbol is used for this, but a new notation was chosen to emphasize
the difference between syntax and semantics.



50 CHAPTER 2. ALGEBRAIC DELTA MODELING

.........................

𝒫 ⟦ 𝜀 ⟧ 𝒫 ⟦ 𝑑 ⟧ 𝒫
Figure 2.6: A diagrammatic representation of delta composition 𝑑 · 𝜀.
The dashed arrows are part of 𝜀, but not of the full composition.

useful interpretations. The converse operator ̆ can, for some deltas 𝑑, provide
a delta 𝑑 ̆ that acts as an undo-operation. The full element⊤ represents the
delta that accepts all products, but then guarantees nothing about the output;
it discards all information. The negation operator −, somewhat less intuitively,
will provide a delta 𝑑− that can perform only the modifications that delta 𝑑
cannot (and vice versa).

▸ 2.39. Notation: We can include available algebraic operators in the deltoid tuple,
e.g., (𝒫, 𝒟, ·, 𝜀, ⊓,⊥, ⟦ ⟧) (dropping the inner parentheses), following the con-
vention of notationally confusing an algebra with its carrier (Notation 1.31).
This allows us to directly designate a notation for the available operators. ⌟

2.6.1 Monoids
Delta composition, more than anything else, allows us to focus on deltas in
this thesis rather than on products. Instead of seeing incremental application
as a product undergoing a series of delta applications as in ⟦𝑑𝑛⟧(⋯⟦𝑑1⟧(𝑐)⋯),
we can see it as the application of a single composed delta:

⟦𝑑𝑛 · … · 𝑑1⟧(𝑐)

The composed delta 𝑦 · 𝑥 ∈ 𝒟 applies first 𝑥 and then 𝑦. Delta composition,
like relation composition (Definition 1.11), is read from right to left. The fact
that · is interpreted as relation composition, and thus

⟦ 𝑦 · 𝑥 ⟧ (𝑝) = ⟦ 𝑦 ⟧ ( ⟦ 𝑥 ⟧ (𝑝) ),

makes delta application a monoid action.
The neutral delta 𝜀 is the delta that accepts all products but doesn’t do

anything, returning them unchanged (Figure 2.6). It is fully defined and de-
terministic (Definitions 2.25 and 2.26).

Delta monoids are not necessarily commutative. The order in which two
deltas are applied is often quite significant. The software delta replace op-
eration, for example, overwrites a previous value with a new one. The delta
that does this last determines the result.

▸ 2.40. Definition (Commuting Deltas): In any delta algebra (𝒟, ·), two deltas
𝑥, 𝑦 ∈ 𝒟 are said to commute iff 𝑦 · 𝑥 = 𝑥 · 𝑦. ⌟

See Figure 2.7 for an example of this property. A lack of commutativity between
deltas helps define the notion of conflict in Chapter 3.

We define the following derived operations:
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𝒫 ⟦ 𝑥 ⟧ , ⟦ 𝑦 ⟧ 𝒫 ⟦ 𝑥 ⟧ , ⟦ 𝑦 ⟧ 𝒫
Figure 2.7: A diagrammatic representation of commuting deltas 𝑥 and 𝑦.
Highlighting has been added to clarify this commutativity.

▸ 2.41. Notation: Given a delta set 𝐷 ⊆ 𝒟, the notations

𝐷∗ ≝ { 𝑥𝑛 · … · 𝑥1 | 𝑥1, …, 𝑥𝑛 ∈ 𝐷 } and
𝐷+ ≝ { 𝑥𝑛 · … · 𝑥1 | 𝑥1, …, 𝑥𝑛 ∈ 𝐷 ∧ 𝑛 > 0 }

denote the set of all possible delta compositions from 𝐷 and the set of all
possible non-vacuous delta compositions from 𝐷 respectively. ⌟

By definition we have 𝜀 ∈ 𝐷∗. Depending on 𝐷, we may also have 𝜀 ∈ 𝐷+.

2.6.2 Boolean Algebras
The semantics of deltas are generally relational and can thus be partially de-
fined or non-deterministic (Section 2.4). The syntactic operators that are able
to manipulate that aspect of deltas are those defined in the Boolean algebra
(Definition 1.34).

A delta choice operator ⊔ represents nondeterministic choice. For example,
the term 𝑥 ⊔ 𝑦 represents all modifications available when choosing either 𝑥
or 𝑦. When one is not applicable, the other is used instead.

A delta consensus operator ⊓ can express the set of modifications that two
given deltas agree on. The delta 𝑥⊓𝑦 is only applicable if both 𝑥 and 𝑦 are, and,
when applied, produces a product that might also be produced from applying
only 𝑥 or from applying only 𝑦.

An empty delta⊥ (Figure 2.8) is a delta that does not accept any product.
This concept is useful because it can model invalid deltas (Definition 2.25).

Error handling

If a delta 𝑑 cannot be applied to a product 𝑝 because 𝑝 ∉ pre ⟦ 𝑑 ⟧, it possibly
represents an error of some sort. Perhaps 𝑑 was not designed to operate on 𝑝
in the first place. For example, in the software deltoid we have

⟦remove D; ⟧(class C {} ) = ∅.

because the product in question does not contain an element D to remove.
If 𝑦 · 𝑥 =⊥, it could mean that 𝑥 and 𝑦 should never be applied one-after-

the-other, even if they are individually valid. For example:

(add class C {} ) · (add class C {} ) ≡ ⊥
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.................

𝒫 ⟦⊥⟧ 𝒫
Figure 2.8: The empty delta⊥.

.................

𝒫 ⟦⊤⟧ 𝒫
Figure 2.9: The full delta⊤.

because adding two packages with the same name in a row is always invalid.
(This will be formalized in Definition 2.48.)

So the empty delta⊥ itself represents an invalid delta, which is not appli-
cable to any product because of an internal error. In software deltas this is
indicated by the error placeholder. A composition with an invalid delta is,
itself, invalid.

Constructivism

The remaining operators from the Boolean algebra, negation − and the full
element ⊤ (Figure 2.9) have an intriguing property. In contrast to the other
operators, they are not constructive (or intuitionistic). Boolean algebras cannot
serve as a semantic model for constructive logic, as they can be used to deduce
the law of excluded middle 𝑒 ⊔ 𝑒− [92].

Constructivism is a particularly useful property for modeling deltas, because
constructing things is exactly what deltas are all about. Given some product 𝑝,
a delta should be able to produce another product predictably (within the
bounds of its possibly non-deterministic nature), regardless of the full set of
potential products 𝒫. However, product sets such as ⟦𝑑−⟧(𝑝) and ⟦⊤⟧ could be
changed just by extending the set of potential products 𝒫, without changing
the definitions of 𝑑, 𝑝 or ⟦ ⟧.

Constructive alternatives to Boolean algebras exist, for example, in Heyting
algebras [92] and co-Heyting algebras [34, 177]. Studying their interpretation
in delta modeling, and integrating them with full relation algebras, is a topic
proposed as future work in Chapter 9.

Syntactic Delta Refinement

A boolean algebra is also a lattice. Lattices are not only studied from an
algebraic, but also from an order-theoretic point of view. For deltas, this point
of view yields a reasonable notion of syntactic delta refinement:

▸ 2.42. Definition (Syntactic Delta Refinement): Syntactic delta refinement is a
preorder ≲ ⊆ 𝒟 × 𝒟 satisfying the following equivalences. For all 𝑥, 𝑦 ∈ 𝒟:

𝑥 ≲ 𝑦 ⟺ 𝑦 = 𝑥 ⊔ 𝑦
𝑥 ≲tot 𝑦 ⟺ 𝑦 = 𝑥 ⊔ 𝑦 ∧ ⊤· 𝑥 =⊤· 𝑦 ⌟

The semantic interpretation of ≲ is the subset relation ⊆. For the total correct-
ness case, the⊤ element had to be used, which allows a syntactic comparison
between the ‘preconditions’ of the two deltas. Alas, in an abstract setting, this
cannot be done constructively.
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𝒫 ⟦ 𝑑 ⟧ 𝒫 ⟦ 𝑑 ̆⟧ 𝒫
Figure 2.10: A diagrammatic representation of the composition 𝑑 ̆· 𝑑. The
highlighted path demonstrates that 𝑑 ·̆ 𝑑 ⋣ 𝜀.

This leads to a notion of syntactic delta equivalence:

▸ 2.43. Definition (Syntactic Delta Equivalence): Syntactic delta equivalence is
an equivalence relation ≃ ⊆ 𝒟 × 𝒟 satisfying the following equivalences. For
all 𝑥, 𝑦 ∈ 𝒟:

𝑥 ≃ 𝑦 ⟺ 𝑥 ≲ 𝑦 ∧ 𝑥 ≳ 𝑦 ⌟

If the rules of Definition 2.38 are followed, these syntactic relations will always
be subsets of their semantic counterparts introduced in Section 2.5:

2.44. Lemma: For any given deltoid (𝒫, 𝒟, ⟦ ⟧) well-structured under a lattice order
≲, we have:

≲ ⊆ ⊒

≲tot ⊆ ⊒tot

≃ ⊆ ≡ ◻

2.6.3 Relation Algebra
Last is the full relation algebra, which adds the converse operator ̆ (Defini-
tion 1.35). An implementation of this operator would, quite simply, reverse
the arrows on a delta’s relation diagram (Figure 2.10).

This does not mean 𝑑 ̆will always reverse the effects of 𝑑; it is not a universal
undo-operation. At least, not for all deltas. This is simply because some deltas
are fundamentally not ‘undoable’. Software deltas that overwrite a value, for
example, have no memory to restore that value when converted. A delta 𝑑 is
undoable when it satisfies the following:

𝑑 ·̆ 𝑑 ⊒ 𝜀

Figure 2.10 shows that this is not the case for all deltas. For a delta to be
‘undoable’, it needs to be semantically one-to-one (Definition 1.13). In other
words, it and its converse need to be deterministic.

In Darcs patch theory [97] it is required that all patches have this property,
so that any modification can be reversed. This is accomplished by tailoring
each patch to the product that it modifies. Their replace operation, for
example, includes the old value as well as the new. They can only be applied
if the old values match, and are therefore undoable.

This thesis won’t consider the converse operator any further. But its pos-
sible rôle in ADM is an interesting topic for future work.
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2.6.4 The Algebraic Software Deltoid
We now apply the concepts of this section to the software deltoid of Section 2.3.

The Software Delta Algebra

Software deltas support the algebraic signature: (𝒟pkg, ⊓,⊥, ·, 𝜀).
The easiest operators to define are the empty and neutral software deltas:

▹ 2.45. Definition (Empty and Neutral Software Deltas): Define the empty and
neutral software deltas as follows:

⊥ ≝ { “id” ↦ err }
𝜀 ≝ ∅ ⌟

The empty delta needs to have the property that ⟦⊥⟧ = ∅, so we just choose
an arbitrary invalid delta (Definition 2.21). For the neutral delta there was no
other candidate than the empty function.

Next, we define syntactic refinement (Definition 2.42), as it will help us
define consensus. Software deltas, as defined right now, are deterministic. That
means refinement is not all that difficult to define. It would be trivial if not for
the forbid operation, which can change the precondition of a delta without
changing its output. Without forbid in the picture, we would have 𝑥 ≲ 𝑦 if
and only if 𝑥 ≃ 𝑦 (Definition 2.22). As it is, there is still another possibility:

▹ 2.46. Definition (Syntactic Software Delta Refinement): We define syntactic
software delta refinement ≲ ⊆ 𝒟pkg ×𝒟pkg ∪ 𝒟cl ×𝒟cl as the smallest preorder
satisfying the following inference rules. Two deltas 𝑥, 𝑦 ∈ 𝒟pkg ∪𝒟cl refine each
other if they are both invalid:

𝖤𝗋𝗋(𝑥) ∧ 𝖤𝗋𝗋(𝑦)
𝑥 ≲ 𝑦 by mutual invalidity

and they refine each other if each identifier is either mapped to the same exact
operation, or to operations that refine each other accordingly:

∀𝑖𝑑 ∈ ℐ𝒟: 𝑥(𝑖𝑑) = 𝑦(𝑖𝑑) ∨ 𝑥(𝑖𝑑) ≲ 𝑦(𝑖𝑑)
𝑥 ≲ 𝑦 by pairwise comparison

with the following refinement rules on the operation level:

frb ≲ ⊥ by forbiddance
𝑥 ≲ 𝑦

mod 𝑥 ≲ mod 𝑦 by delegation ⌟

So a software delta is only a partial refinement of another if it is equal, or its
only difference is that it has additional forbid operations.

▹ 2.47. Definition (Software Delta Consensus): Software delta consensus is then
defined as follows for all 𝑥, 𝑦 ∈ 𝒟pkg ∪ 𝒟cl:

𝑥 ⊓ 𝑦 ≝
⎧{
⎨{⎩

𝑥 if 𝑥 ≲ 𝑦
𝑦 if 𝑦 ≲ 𝑥
⊥ otherwise ⌟
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Finally we define software delta composition · . This is a bit more involved:

▹ 2.48. Definition (Software Delta Composition): We define software delta com-
position operator ·: 𝒟pkg × 𝒟pkg → 𝒟pkg in a few stages: (a) we eliminate the
case where one of the operands is invalid, (b) we define composition for valid
delta operations on both the package and class levels, and then (c) we lift that
definition to the software deltas themselves.

a. Invalid deltas and delta operations

We get invalid deltas and invalid delta operations out of the way as follows.
For all invalid deltas 𝑒 ∈ 𝖤𝗋𝗋 and all deltas 𝑑 ∈ 𝒟pkg:

𝑒 · 𝑑 ≝ ⊥

𝑑 · 𝑒 ≝ ⊥

An invalid delta composed with any other delta results in an invalid delta.

b. Valid delta operations — package and class levels

We now define composition for class-level and package-level delta operations at
the same time, using the following table. The left column is a case distinction
on a delta operation 𝑜𝑝2 ∈ ( 𝒪𝒫pkg ∪ 𝒪𝒫cl ). The top row is a case distinction
on a delta operation 𝑜𝑝1 ∈ ( 𝒪𝒫pkg ∪ 𝒪𝒫cl ). The inner cells form 𝑜𝑝21 so that:

𝑜𝑝2 · 𝑜𝑝1 ≝ 𝑜𝑝21

add 𝑝1 rep 𝑝1 mod 𝑑1 rem frb

add 𝑝2 err err err rep 𝑝2 add 𝑝2

rep 𝑝2 add 𝑝2 rep 𝑝2 rep 𝑝2 err err

mod 𝑑2 add a(𝑑2, 𝑝1) rep a(𝑑2, 𝑝1) mod 𝑑2· 𝑑1 err err

rem frb rem rem err err

frb err err err rem frb

The ‘a’ in the table above is an abbreviation of ‘apply’, the software delta
application function (Definition 2.19).

c. Valid deltas — package and class levels

Finally, we lift the operator level definition to deltas. For all deltas 𝑥, 𝑦 ∈
( 𝒟pkg ∪ 𝒟cl ) and all identifiers 𝑖𝑑 ∈ ℐ𝒟:

(𝑥 · 𝑦)(𝑖𝑑) ≝ 𝑥(𝑖𝑑) · 𝑦(𝑖𝑑) ⌟

Combining the above, we have the software delta algebra:
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▹ 2.49. Definition (Software Delta Algebra): The software delta algebra is the
quotient algebra (𝒟pkg, ⊓,⊥, ·, 𝜀) under ≃ (Definition 2.22) with 𝒟pkg from Defi-
nition 2.16 and the operators ⊓,⊥, · and 𝜀 from Definitions 2.45, 2.47 and 2.48.⌟

We now prove that this algebra is well-behaved by establishing a number of
required results from the syntactic domain. Each was proved with the Coq
proof assistant3:

▹ 2.50. Lemma: Software delta consensus ⊓ respects equivalence ≃. ◻

▹ 2.51. Lemma: Software delta composition · respects equivalence ≃. ◻

▹ 2.52. Lemma: Software delta composition · is associative. ◻

▹ 2.53. Lemma: 𝜀 is an identity element for software delta composition · . ◻

▹ 2.54. Lemma: ⊥ is an absorbing element for software delta consensus ⊓. ◻

▹ 2.55. Lemma: ⊥ is an absorbing element for software delta composition · . ◻

Because the software delta operations satisfy the above properties, they satisfy
the requirements of Definition 2.38.

2.7 Classification of Deltoids

It is sometimes useful to group deltoids into classes, both for a good overview,
and to formally compare their properties. One dimension in which to classify
a deltoid is the algebraic signature it supports, as discussed in the previous
section. Another method is to analyze a deltoid in terms of its expressiveness.
Section 2.7.1 introduces some semantic classifications based on expressiveness
properties. Finally, Section 2.7.2 introduces the semantic notion of deltoid
refinement. It then proceeds to introduce three useful classifications based on
refinement.

2.7.1 Classification Based on Expressiveness
We consider a number of expressiveness properties. Expressiveness of a deltoid
is measured by what kind of product modifications can be expressed by 𝒟.

For interests sake, here is the strongest possible expressiveness property:

▸ 2.56. Definition (Fully Expressive Deltoids): The class 𝖥𝗎𝗅𝗅 of fully expressive
deltoids contains those deltoids for which semantic delta evaluation is surjective
(Definition 1.13). Formally, for all deltoids 𝐷𝑡 = (𝒫, 𝒟, ⟦ ⟧):

𝐷𝑡 ∈ 𝖥𝗎𝗅𝗅 ⟺≝ img ⟦ ⟧ = 𝒫 × 𝒫

(See Notation 2.13 and Definition 2.28.) ⌟
3Some of these proofs are written out fully in the ADM journal article [2] and the technical

report that accompanied the earlier conference paper [9]. Software deltas were simpler then
—their operations did not have preconditions— but each proof still took up several pages.
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This class would comprise those deltoids with a set of deltas rich enough to
obtain any possible semantic delta. But this is a theoretical property, not
achievable for deltas with a finite syntactic representation and an infinite set
of products [127].

The following weaker property states that any product can be mapped to
any other product by applying the proper delta:

▸ 2.57. Definition (Maximal Expressiveness): The class 𝖬𝖺𝗑 of maximally ex-
pressive deltoids is defined as follows, for all deltoids 𝐷𝑡 = (𝒫, 𝒟, ⟦ ⟧):

𝐷𝑡 ∈ 𝖬𝖺𝗑 ⟺≝ ∀𝑝, 𝑝′ ∈ 𝒫: ( { 𝑝 } ⤇tot { 𝑝′ } ) ≠ ∅

(See Definition 2.31.) ⌟

This property ensures that we can reach any product from any other product.
The expressiveness of a particular deltoid can also be characterised in terms

of the existence of an element in the product set from which all products can
be generated:

▸ 2.58. Definition (Initial Product): Given a deltoid (𝒫, 𝒟, ⟦ ⟧), a product 0 ∈ 𝒫
is an initial product, indicated by the predicate 𝗂𝗇𝗂𝗍 ⊆ 𝒫, iff:

𝗂𝗇𝗂𝗍(0) ⟺≝ ∀𝑝 ∈ 𝒫: ∃𝑑 ∈ 𝒟: ⟦ 𝑑 ⟧(0) = { 𝑝 } ⌟

The existence of an initial product indicates that the delta set is sufficiently
expressive to describe any product. They are therefore ideal candidates for the
rôle of core product in a product line(more about this in Chapter 4).

▸ 2.59. Definition: The class of deltoids that have an initial product is denoted 𝖨𝗇𝗂𝗍.⌟

Not every deltoid has an initial product. An effective illustration of this is
the following small example deltoid, which inspired the chapter illustration on
Page 30.

▹ 2.60. Definition (Stone Carving Deltoid): Imagine 𝐷𝑡sc = (𝒫sc, 𝒟sc, ·, 𝜀, ⟦ ⟧),
a deltoid which models the art of stone-carving. A product 𝑝 ∈ 𝒫sc contains
an (infinitely dense) set of coordinates in 3-dimensional space, describing a
stone sculpture. A delta 𝑑 ∈ 𝒟sc is the set of coordinates from which excess
material should be carved away.

The set of deltas is defined simply as follows:

𝒟sc ≝ Pow(ℝ3)
But the coordinates comprising a sculpture are finitely bounded in all directions.
After all, it is unrealistic to model a slab of marble infinite in size:

𝒫sc ≝ { 𝐵 ⊆ ℝ3 ∣ ∃𝑙 ∈ ℝ: ∀(𝑋, 𝑌 , 𝑍) ∈ 𝐵: − 𝑙 < 𝑋, 𝑌 , 𝑍 < 𝑙 }
Delta application ⟦ ⟧( ) ≝ ∖ is set difference, composition · ≝ ∪ is set union
and the neutral delta 𝜀 ≝ ∅ is the empty set. Stone carving deltas can only
carve material away, but cannot sincerely add new material back on.4 ⌟

4For readers who do not get the joke: A popular folk etymology proposes that the word
“sincere” derives from the Latin “sine sera”, meaning, “without wax”. When unethical Roman
stonemasons accidentally chipped a marble sculpture, they would fill it in with wax to cover
the flaw, or so the story goes. Modern etymologists have since debunked this theory. [158]
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▹ 2.61. Lemma: The stone carving deltoid has no initial product. Because stone
sculptures are finite in size, whichever one is chosen as a candidate initial
product, there will exist one which is larger. And because stone carving deltas
cannot make a sculpture larger, there cannot be an initial product. ◻

The existence of an initial product would allow us to reason about deltas
without having to talk about products at all. An incremental application
⟦𝑑𝑛 · … · 𝑑1⟧(𝑐) could also be expressed based on an initial product 0 and
a delta 𝑑𝑐 such that ⟦ 𝑑𝑐 ⟧ (0) = {𝑐}. This allows us to instead write

⟦ 𝑑𝑛 · … · 𝑑1 · 𝑑𝑐 ⟧ (0),
disregard products completely and focus on compositions like 𝑑𝑛 · … · 𝑑1 · 𝑑𝑐.

Finally, we connect this notion with the notion of maximal expressiveness:

2.62. Lemma: Every product in a maximally expressive deltoid is initial. Con-
versely, any deltoid in which every product is initial is maximally expressive.

Proof: Assume a maximally expressive deltoid (𝒫, 𝒟, ⟦ ⟧), so then:

∀𝑝, 𝑝′ ∈ 𝒫: ({𝑝} ⤇tot { 𝑝′ } ) ≠ ∅ ⟺ (Def. 2.31)
∀𝑝, 𝑝′ ∈ 𝒫: ∃𝑑 ∈ 𝒟: ∅ ⊂ ⟦ 𝑑 ⟧(𝑝) ⊆ { 𝑝′ } ⟺ (Def. 1.1)
∀𝑝, 𝑝′ ∈ 𝒫: ∃𝑑 ∈ 𝒟: ⟦𝑑 ⟧(𝑝) = { 𝑝′ } ◻

2.7.2 Classification Based on Deltoid Refinement
Another way to classify deltoids, compare them and justify transfering results
from one to another, is to use a notion of refinement based on homomorphisms:

▸ 2.63. Definition (Deltoid Refinement): A deltoid 𝐷𝑡1 = ( 𝒫1, 𝒟1, ⟦ ⟧ ) is said to
refine another deltoid 𝐷𝑡2 = ( 𝒫2, 𝒟2, ⦅ ⦆ ), denoted

𝐷𝑡1 ⊒ 𝐷𝑡2

iff there exists a delta homomorphism β: 𝒟1 →𝒟2 which preserves the algebraic
axioms from 𝐷𝑡1 and a product homomorphism α: 𝒫1 → 𝒫2 such that for all
products 𝑝, 𝑞 ∈ 𝒫1 and all deltas 𝑑 ∈ 𝒟1:

𝑝 ⟦ 𝑑 ⟧ 𝑞 ⟹ α(𝑝) ⦅ β(𝑑) ⦆ α(𝑞)
The pair (α, β) is called a deltoid homomorphism. When α = id𝒫1

we can also
call β by itself a deltoid homomorphism. ⌟

We can classify deltoids by their refinement of specific prototypical deltoids.
We follow up with three such classifications:

▸ 2.64. Definition (Relational Deltoids): The class 𝖱𝖾𝗅 of relational deltoids is de-
fined as follows, for all deltoids 𝐷𝑡:

𝐷𝑡 ∈ 𝖱𝖾𝗅 ⟺≝ 𝐷𝑡 ⊒ (𝒫, 𝒫×𝒫, id𝒫×𝒫) ⌟

We then move to the class of deltoids with deltas that are always deterministic,
but still possibly partially defined — the class in which deltas represent partial
functions (Definition 1.17).
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Potential Operators
𝖱𝖾𝗅 ⊔ ⊓ − ⊥ ⊤ · 𝜀 ̆
𝖯𝖥𝗎𝗇 ⊓ ⊥ · 𝜀 ̆
𝖥𝗎𝗇 · 𝜀 ̆

Table 2.11: This table summarizes potential support for the relation algebra op-
erators by the relational (𝖱𝖾𝗅), partially functional (𝖯𝖥𝗎𝗇) and functional (𝖥𝗎𝗇)
deltoid classes. It is assumed that any deltoid under consideration has a ‘real-
istic variety’ of products and deltas: at least three products and at least two
deltas that produce different outputs when applied to the same product.

▸ 2.65. Definition (Partially Functional Deltoids): The class 𝖯𝖥𝗎𝗇 of partially
functional deltoids is defined as follows, for all deltoids 𝐷𝑡:

𝐷𝑡 ∈ 𝖯𝖥𝗎𝗇 ⟺≝ 𝐷𝑡 ⊒ (𝒫, 𝒫 ⇀ 𝒫, id𝒫⇀𝒫) ⌟

And the next logical step is the class of deltoids with deltas that are always
deterministic and fully defined — the class in which deltas represent functions
(Definition 1.16).

▸ 2.66. Definition (Functional Deltoids): The class 𝖥𝗎𝗇 of functional deltoids is
defined as follows, for all deltoids 𝐷𝑡:

𝐷𝑡 ∈ 𝖥𝗎𝗇 ⟺≝ 𝐷𝑡 ⊒ (𝒫, 𝒫 → 𝒫, id𝒫→𝒫) ⌟

We close off with some observations about these classes:

2.67. Lemma: The class 𝖱𝖾𝗅 encompasses all possible deltoids, because the semantic
evaluation operator ⟦ ⟧ (Definition 2.11) is, by definition, a deltoid homomor-
phism from 𝐷𝑡 to the ‘proper relation deltoid’ (𝒫, 𝒫×𝒫, id𝒫×𝒫).

And for completeness sake: a functional deltoid is also a partially functional
deltoid, and a partially functional deltoid is also a relational deltoid:

𝖥𝗎𝗇 ⊂ 𝖯𝖥𝗎𝗇 ⊂ 𝖱𝖾𝗅 ◻

▹ 2.68. Lemma: The software deltoid (Definition 2.18) is partially functional, but not
functional:

𝐷𝑡 ∈ 𝖯𝖥𝗎𝗇 ∖ 𝖥𝗎𝗇
The stone-carving deltoid (Definition 2.60) is functional:

𝐷𝑡sc ∈ 𝖥𝗎𝗇 ◻

Finally, we list some practical correlations between these refinement-based clas-
sifications above and the algebraic classifications based on Definition 2.38.

A relational deltoid can potentially support all operators of the relation
algebra (Definition 1.35).
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Any practical partially functional deltoid, however, cannot support the⊤, −

or ⊔ operators. If it has at least two products,⊤ is non-deterministic. If it has
at least three products and one delta 𝑑, either 𝑑 or 𝑑− would logically be non-
deterministic. And if any two of its deltas 𝑥, 𝑦 produce different outputs when
applied to the same product, their union 𝑥 ⊔ 𝑦 would be non-deterministic.

Similarly, a practical functional deltoid can, additionally, not support⊥or
⊓. If it has at least one product,⊥ is not fully defined. And if any two of its
deltas 𝑥, 𝑦 behave differently, their intersection 𝑥⊓𝑦 would not be fully defined.

This information is summarized in Table 2.11.

2.8 Encoding Related Approaches

A number of other approaches describing the underlying structure of software
product lines have been proposed [17, 32]. They formalize the mechanisms
underlying AHEAD [31], GenVoca [30] and FeatureHouse [15].

Their approach exhibits some similarities and some differences to ours. Like
us, they distinguish between a semantic and a syntactic notion of product
transformation, the latter of which is structured algebraically.

However, their algebraic treatment is limited to the realm of monoids. In
particular, their transformations cannot be partially defined or nondetermin-
istic (Section 2.4).

Additionally, whereas they equate those product transformations with fea-
tures, we do not make such a claim for deltas. In Chapter 4 we introduce
our own notion of feature, which can structure and combine deltas in more
flexible ways.

Furthermore, they model products as Feature Structure Trees (FSTs) (which
are essentially abstract syntax trees with a coarser granularity) and distinguish
between two types of what we call deltas: introductions and modifications,
which respectively model FST superimposition —which merges two trees into
one— and quantification and weaving — which targets a specific node using
some query language and performs a specific change there. In contrast, the
formalism of products and deltas presented in this chapter is more abstract
and algebraically simpler, since we assume a single, unified collection of deltas.

In this section we analyze the quark model [17] in terms of the concepts of
this chapter. We first did this in 2010 [1, 2] (also encoding the algebraically
similar system of Finite Map Spaces [32]), but this section adapts it to the
more recent formulation of ADM.

Section 2.8.1 provides an overview of quarks and Section 2.8.2 encodes
quarks within the ADM setting.

2.8.1 The Quark Model
In this subsection we introduce the basic notions of introductions, modifica-
tions and quarks as introduced by Apel et al. [17]. They don’t formalize FSTs
with any detail. They point out the isomorphism between introductions and
FSTs and, during their algebraic description, focus on introductions and mod-
ifications only, so we will too.

By a stroke of luck, their notation is entirely separate from ours, so this
section can faithfully preserve both notations.
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Introductions

2.69. Definition (Introductions): Introductions form a monoid (𝐼, ⊕, 𝟎) with a
‘distant idempotence’ property (see Axiom c below), where 𝐼 is a set of intro-
ductions, ⊕: 𝐼 × 𝐼 → 𝐼 is the introduction sum operator and 𝟎 is the empty
introduction, satisfying the following axioms for all 𝑖1, 𝑖2, 𝑖3 ∈ 𝐼 :

a. associativity: (𝑖3 ⊕ 𝑖2) ⊕ 𝑖1 = 𝑖3 ⊕ (𝑖2 ⊕ 𝑖1)
b. identity element 𝟎: 𝟎 ⊕ 𝑖1 = 𝑖1 = 𝑖1 ⊕ 𝟎
c. distant idempotence: 𝑖1 ⊕ 𝑖2 ⊕ 𝑖1 = 𝑖2 ⊕ 𝑖1 ⌟

2.70. Lemma (Direct Idempotence of Sum): For all 𝑖 ∈ 𝐼 , we have 𝑖 ⊕ 𝑖 = 𝑖 by
taking 𝑖2 = 𝟎 in Axiom 2.69c. ◻

2.71. Definition (Introduction Equivalence): Introduction equivalence ∼ ⊆ 𝐼 ×
𝐼 is an equivalence relation defined as follows for all introductions 𝑖1, 𝑖2 ∈ 𝐼 :

𝑖1 ∼ 𝑖2 ⟺≝ 𝑖1 ⊕ 𝑖2 ⊕ 𝑖1 = 𝑖1 ⌟

2.72. Lemma (Quasi-commutativity w.r.t. ∼): We have 𝑖1 ⊕ 𝑖2 ∼ 𝑖2 ⊕ 𝑖1 by
applying Axiom 2.69c to Definition 2.71. ◻

From here on, we will be working with the quotient algebra 𝐼/∼ (Defini-
tion 1.32) —which is, by Lemma 2.72, a commutative monoid— and relying
on implicit canonical projection (Notation 1.27).

Modifications

2.73. Definition (Modifications): Modifications form a monoid (𝑀, ⊛, 𝟏), where
𝑀 is a set of modifications, ⊛: 𝑀 × 𝑀 → 𝑀 is the modification product oper-
ator and 𝟏 is the identity modification, satisfying the following axioms for all
𝑚1, 𝑚2, 𝑚3 ∈ 𝑀 :

a. associativity: (𝑚3 ⊛ 𝑚2) ⊛ 𝑚1 = 𝑚3 ⊛ (𝑚2 ⊛ 𝑚1)
b. identity element 𝟏: 𝟏 ⊛ 𝑚1 = 𝑚1 = 𝑚1 ⊛ 𝟏 ⌟

2.74. Definition (Modification Application): Given introduction monoid (𝐼, ⊕, 𝟎)
and modification monoid (𝑀, ⊛, 𝟏), modification application is a binary oper-
ator ⊙: 𝑀 × 𝐼 → 𝐼 satisfying the following axioms for all 𝑖1, 𝑖2 ∈ 𝐼 and all
𝑚1, 𝑚2 ∈ 𝑀 :

a. ⊙ distributes over ⊕: 𝑚1 ⊙ (𝑖2 ⊕ 𝑖1) = (𝑚1 ⊙ 𝑖2) ⊕ (𝑚1 ⊙ 𝑖1)
b. identity modification 𝟏: 𝟏 ⊙ 𝑖1 = 𝑖1
c. iterative application ⊛: (𝑚2 ⊛ 𝑚1) ⊙ 𝑖1 = 𝑚2 ⊙ (𝑚1 ⊙ 𝑖1) ⌟

Axiom 2.74c makes ⊙ a monoid action.
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Quarks

Introductions and modifications are combined in the quark model, which de-
fines composition on a set of quarks 𝑄, corresponding roughly to our deltas.
They define four different kinds of quarks, each with a composition operator
⧫: 𝑄 × 𝑄 → 𝑄 that behaves differently for each kind of quark. They also define
an empty quark, which does not perform any transformations, and a way to
extract the introduction from a quark corresponding to the ‘end product’. They
do not introduce a notation for those last two concepts, so we use 𝟏Q ∈ 𝑄 and
image: 𝑄 → 𝐼 respectively.

Three of the kinds of quarks (simple quarks, local quarks and global quarks)
are essentially a restriction on the fourth (full quarks) so, to save space, that
is how we define them.

2.75. Definition (Full Quarks): Given an introduction monoid (𝐼, ⊕, 𝟎), a modifi-
cation monoid (𝑀, ⊛, 𝟏) and a modification application operator ⊙, full quarks
form a magma5 (𝑄f , ⧫, 𝟏Q, image) where 𝑄f ≝ 𝑀 ×𝐼×𝑀 is a set of full features
defined as triples ⟨ 𝑔, 𝑖, 𝑙 ⟩ —containing a global modification 𝑔, an introduction
𝑖, and a local modification 𝑙—, the empty feature 𝟏Q ≝ ⟨ 𝟏, 𝟎, 𝟏 ⟩ is the triple of
respective identity elements, the projection function image: 𝑄f → 𝐼 is defined
as follows for all introductions 𝑖 ∈ 𝐼 and all modifications 𝑔, 𝑙 ∈ 𝑀 :

image ( ⟨ 𝑔, 𝑖, 𝑙 ⟩ ) ≝ 𝑖,
and quark composition ⧫: 𝑄f ×𝑄f →𝑄f is defined as follows for all introductions
𝑖1, 𝑖2 ∈ 𝐼 and all modifications 𝑔1, 𝑔2, 𝑙1, 𝑙2 ∈ 𝑀 :

⟨ 𝑔2, 𝑖2, 𝑙2 ⟩ ⧫ ⟨ 𝑔1, 𝑖1, 𝑙1 ⟩ ≝ ⟨ 𝑔2 ⊛ 𝑔1, (𝑔2 ⊛ 𝑔1) ⊙ (𝑖2 ⊕ (𝑙2 ⊙ 𝑖1)), 𝑙2 ⊛ 𝑙1 ⟩
⌟

2.76. Definition (Local Quarks): Local quarks (𝑄l, ⧫, 𝟏Q) are a restriction on full
quarks, disallowing global modifications. The set 𝑄l ≝ { 𝟏 } × 𝐼 × 𝑀 contains
triples ⟨ 𝟏, 𝑖, 𝑙 ⟩ which are abbreviated to ⟨ 𝑖, 𝑙 ⟩. ⌟

2.77. Lemma: Local quark composition —derived from Definitions 2.75 and 2.76—
work as follows for all 𝑖1, 𝑖2 ∈ 𝐼 and all 𝑙1, 𝑙2 ∈ 𝑀 :

⟨ 𝑖2, 𝑙2 ⟩ ⧫ ⟨ 𝑖1, 𝑙1 ⟩ = ⟨ 𝑖2 ⊕ (𝑙2 ⊙ 𝑖1), 𝑙2 ⊛ 𝑙1 ⟩ ◻

2.78. Definition (Global Quarks): Global quarks (𝑄g, ⧫, 𝟏Q) are a restriction on
full quarks, disallowing local modifications. The set 𝑄g ≝ 𝑀 ×𝐼×{ 𝟏 } contains
triples ⟨ 𝑔, 𝑖, 𝟏 ⟩ which are abbreviated to ⟨ 𝑖, 𝑔 ⟩. ⌟

2.79. Lemma: Global quark composition —derived from Definitions 2.75 and 2.78—
work as follows for all 𝑖1, 𝑖2 ∈ 𝐼 and all 𝑔1, 𝑔2 ∈ 𝑀 :

⟨ 𝑖2, 𝑔2 ⟩ ⧫ ⟨ 𝑖1, 𝑔1 ⟩ = ⟨ (𝑔2 ⊛ 𝑔1) ⊙ (𝑖2 ⊕ 𝑖1), 𝑔2 ⊛ 𝑔1 ⟩ ◻

2.80. Definition (Simple Quarks): Simple quarks (𝑄s, ⧫, 𝟏Q) are the intersection
between local quarks and global quarks (in that they disallow all modifications
and are thus, essentially, introductions). The set 𝑄s ≝ { 𝟏 }×𝐼 ×{ 𝟏 } contains
triples ⟨ 𝟏, 𝑖, 𝟏 ⟩ which are abbreviated to 𝑖. ⌟

5A magma is an algebraic structure with a binary operator that need not be associative.



2.8. ENCODING RELATED APPROACHES 63

2.81. Lemma: Simple quark composition ⧫ —derived from Definitions 2.75 and 2.80—
is the same as introduction sum ⊕ (Definition 2.69). ◻

They further observe that while local quarks (and, of course, simple quarks)
form a monoid, composition for global and full quarks has no identity element
and is not even associative. This is due to the fact that global modifications
are applied multiple times — at least once for every composition. For example,
global quark composition produces results such as the following (underlining
specific segments to call attention to them):

( ⟨ 𝑖3, 𝑔3 ⟩ ⧫ ⟨ 𝑖2, 𝑔2 ⟩ ) ⧫ ⟨ 𝑖1, 𝑔1 ⟩ =
⟨ (𝑔3 ⊛ 𝑔2 ⊛ 𝑔1) ⊙ (((𝑔3 ⊛ 𝑔2) ⊙ (𝑖3 ⊕ 𝑖2)) ⊕ 𝑖1 ), 𝑔3 ⊛ 𝑔2 ⊛ 𝑔1 ⟩

⟨ 𝑖3, 𝑔3 ⟩ ⧫ ( ⟨ 𝑖2, 𝑔2 ⟩ ⧫ ⟨ 𝑖1, 𝑔1 ⟩ ) =
⟨ (𝑔3 ⊛ 𝑔2 ⊛ 𝑔1) ⊙ (𝑖3 ⊕ ((𝑔2 ⊛ 𝑔1) ⊙ (𝑖2 ⊕ 𝑖1)) ), 𝑔3 ⊛ 𝑔2 ⊛ 𝑔1 ⟩

To make global quark composition behave they propose to make modification
composition ⊛ (Definition 2.73) distantly idempotent and commutative, which
would grant associativity. This is quite a strong restriction, however, exclud-
ing useful modifications such as method wrapping. We will not persue this
proposal.

2.8.2 Quarks as Deltas
We now wrap quarks into our notion of deltoid (Definition 2.11), to make the
relation between our two formalisms explicit. We say ‘wrap’ rather than encode
because we use a very straightforward interpretation of quarks as deltas. This
allows us to analyze quarks using our own measures.

▹ 2.82. Definition (Quark Deltoid): Given a commutative introduction monoid 𝐼 ,
a modification monoid (𝑀, 𝟏), a modification application operator and associ-
ated quark magma (𝑄, ⧫, image), we define the quark deltoid 𝐷𝑡𝑄 = (𝒫, 𝒟, ⟦ ⟧)
where the set of products 𝒫 ≝ 𝐼 consists of all introductions, the set of deltas
𝒟 ≝ 𝑄 consists of all quarks and delta evaluation ⟦ ⟧: 𝒟 → Pow(𝒫 × 𝒫) is
defined as follows for all deltas ⟨ 𝑔, 𝑖, 𝑙 ⟩ ∈ 𝒟 and all products 𝑝 ∈ 𝒫:

⟦⟨ 𝑔, 𝑖, 𝑙 ⟩⟧(𝑝) ≝ { image( ⟨ 𝑔, 𝑖, 𝑙 ⟩ ⧫ ⟨ 𝟏, 𝑝, 𝟏 ⟩ ) } ⌟

Finally, we classify quarks in our own context:
▹ 2.83. Theorem: Every quark deltoid 𝐷𝑡𝑄 is functional: 𝐷𝑡𝑄 ∈ 𝖥𝗎𝗇

Proof: By Definition 2.82, every semantic delta ⟦ 𝑑 ⟧ ∈ ⟦ 𝒟𝐷𝑡𝑄
⟧ is uniquely and

fully defined (Definitions 1.13 and 1.16), so the deltoid homomorphism we need
for the proof is simply ⟦ ⟧: 𝒟 → (𝒫 → 𝒫), its output interpreted as a function
(rather than a relation). ◻

This demonstrates that, indeed, all quarks are fully defined and deterministic.
According to Table 2.11, functional deltoids can potentially support the monoid
operators and converse operator in a well-behaved manner (Definition 2.38).
Which are actually supported by the four types of quarks? We confirm what
Apel et al. [17] stated about this:
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▹ 2.84. Theorem: The simple and local quark deltoids support the monoid operators,
but not the converse operator. The global and full quark deltoids have a neutral
element (the empty feature 𝟏Q), but don’t support associative composition. ◻

2.9 Conclusion

At the beginning of this chapter we stated two goals: feature modularity and
separation of concerns, a duality we aim for with the delta modeling approach.
This chapter thoroughly explores the interaction between deltas and the inter-
action between a delta and a product, thereby introducing the fundamentals of
Abstract Delta Modeling (ADM), built upon by chapters to follow. The notion
of deltoid is introduced, which contains the full sets of products and deltas
representing a specific domain, as well as the semantics of deltas: how they
modify products. By working abstractly, ADM is ready to encode any domain,
not limited to specific programming language, nor even to software.

To jumpstart the running example introduced in Section 1.4 —the Editor
product line— a concrete deltoid was defined based on an object oriented pro-
gramming domain. Many concepts are illustrated through this example.

Various aspects of delta semantics were discussed, such as partial defined-
ness, non-determinism and correctness with regard to a relational specification.
A number of algebraic operations —such as composition, choice and consensus—
are introduced in order to allow syntactic reasoning over deltas. Certain ex-
pressiveness properties and a refinement relation are then introduced in order
to classify deltoids by what they can do. Finally, it is shown how deltas can
encode quarks, a similar concept introduced in related literature.

2.10 Related Work

Many other approaches have been described for reaching the goals of feature
modularity and separation of concerns. They all have their pros and cons, as
discovered by the academic and industrial communities. This section discusses
a number of those approaches. Some, however, are directly related to topics we
discuss in later chapters. In such cases, their exposition is postponed until then.

In 1997, Prehofer [156] first stated that source-code should treat features
explicitly, rather than as an emergent property of traditional object oriented
programming methodologies. He called this new approach Feature Oriented
Programming. Since then, a lot has been done in that direction. Apel and
Kästner [13] offer a good overview of the progress between then and 2009 which
is, incidentally, the exact year that the research underlying this thesis began.
It is therefore an excellent reference-point for “pre-ADM” progress in the field.

Section 2.10.1 discusses approaches directly targeted at software product
line variability. Aspect Oriented Programming was not so targeted, but has
nonetheless been proposed as a suitable tool on many occasions; a possibility
explored in Section 2.10.2. Finally, Section 2.10.3 discusses the object-oriented
constructs known as mixins and traits, which have also been suggested as pos-
sible solutions.
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2.10.1 Variability Approaches
It was Kastner et al. [108] who first classified variability approaches facilitat-
ing automated product derivation for software product lines in the two main
directions discussed in Sections 1.2.3 and 1.2.4: annotative and compositional.

Annotative techniques, while allowing automated product derivation on a
fine-grained level, offer neither modularity nor separation of concerns. There-
fore, we’ll discuss them in the Related Work section of Chapter 4, which is
dedicated to features and the automated generation of specific products.

Compositional approaches, on the other hand, are meant specifically to
reach the goals of feature modularity and separation of concerns. They gather
all code belonging to a feature —or a closely related set of features— into a
single module.

An early description of feature modules as a monoid, with notions of compo-
sition and a neutral element (Section 2.6.1) came from Batory and O’malley [30],
in a technique which they dubbed GenVoca. A GenVoca codebase consists of
a number of core programs and a number of feature modules (which they call
features), which were applied and composed by model superposition.

GenVoca was later generalized by Batory et al. [31] in an approach called
AHEAD, primarily to allow a product line to contain more than just source
code, and to satisfy two principles: scalability —the ability to consistently
refine different representations belonging to the same program— and unifor-
mity — the ability to represent all of those in the same kind of hierarchical
structure. They also introduced tool-support. Apel et al. [15] presented Fea-
tureHouse, which aims to implement AHEAD for actual use in software product
line engineering, and Kastner at al. [110] introduced FeatureIDE, an IDE for
AHEAD-based development. Work on AHEAD and FeatureHouse lead to the
notion of model superimposition by Apel et al. [19] as a way to merge code-
fragments in the composition of feature modules.

The notion of program delta was first introduced by Lopez-Herrejon et
al. [90] as a general term to describe modifications to object-oriented programs,
such as those by AHEAD. Schaefer et al. [163] built on this and proposed a
model-based software framework based on a what they called a core-design
and a set of Δ-designs, which play a rôle similar to feature modules and,
of course, correspond to what we now call deltas. Source-code composition
was achieved using frame technology [181]. The main innovation compared
to AHEAD was that Δ-designs and features had a many-to-many relationship,
basically separating the two concepts and allowing a module to implement arbi-
trary combinations of features (something we’ll discuss in detail in Chapter 4).
A problem with this approach is that variation points have to be annotated
in the core product and, therefore, known in advance, losing some of the ben-
efits of the compositional approach. This was addressed later, when Schaefer
et al. presented Δ-designs as a way to implement software product line vari-
ability [160]. They implemented it for Java [164] and described the practices
of using an empty program as the core (Definition 2.58) and having all code
introduced by deltas [161, 162].

(Abstract) Delta Modeling has now been extended and analyzed in several
directions. For instance, Lienhardt and Clarke [120] introduced a row poly-
morphic type system which checks whether composition of software deltas, as
presented in Section 2.6.4, results in an invalid delta.
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2.10.2 Aspect Oriented Programming
Aspect Oriented Programming (AOP) [112, 114] has often been suggested as
a way to implement features, because aspects can weave any number of code-
fragments into specified point-cuts from the outside and thus seem, in that
regard, as the right tool for the job.

Generally, however, the AOP model only supports the insertion of state-
ments around identified join-points inside methods and the addition of mem-
bers to an existing class using inter-type declarations [12]. No implementation
or formalization known to me supports the manipulation of higher level con-
structs such as classes and packages. In addition, there has not been much
support for coordinating the interaction and composition between different con-
cerns, though there has been work attempting to improve this situation [129].
We also note that, as far as we could discover, AOP is not able to remove code
from an existing base as software deltas can (Section 2.3).

A well-studied programming language with aspects is AspectJ™ [68, 113].
It has been evaluated as a tool for implementing features in a number of pub-
lications. Lopez-Herrejon et al. [90] note that it lacks a cohesion mechanism
(which would allow feature modularity) and a general model for composition,
but found it otherwise flexible. Kästner et al. [107] were generally negative
about its suitability for implementing features, stating that most of the unique
and powerful features it offers were not useful, and report a decrease in code
readability and maintainability as the number of features grows.

There have been attempts to combine aspects with other technologies or
otherwise extend them for our purposes, usually with more favorable results.
Loughran et al. [126] combined AOP with frame technology. Mezini and
Ostermann [133] present an extension to AspectJ that includes dedicated fea-
ture oriented approaches. Similar approaches were later taken by Völter and
Groher [178] and Apel et al. [16], who note that the two approaches are com-
plementary, aspects being useful on a fine-grained level, but other techniques
still being necessary for implementing large-scale software building blocks. The
algebraic foundation of finite map spaces and Quarks (Section 2.8) by Batory
and Smith [32], and later Apel et al. [17], is based on this combination. On a
different note, Noda and Kishi [144] find that AOP as a tool for product line
development lacks in reusability, and propose a new mechanism to correct this.

All in all, we conclude that while aspects provide separation of concerns
—at least to a certain degree— they were not designed for our purpose, and
still have some distance to go before they can be considered as a solution for
serious feature oriented development.

2.10.3 Mixins and Traits
Bracha and Cook [47] first described the general method of mixin-based in-
heritance, or mixins, which basically allows class inheritance to include the
addition of extra class members. Smaragdakis and Batory [172] have since pro-
posed a large-scale software refinement technique using mixins. Later, Schärli
et al. [67, 165] pointed out a number of shortcomings in mixin-based inheritance
and proposed the alternative construct of traits, which offer more flexibility
with regard to composition and interaction. It appears that traits have since
subsumed mixins for reuse purposes.
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Bettini et al. [37] describe a way of using traits to implement software
product lines. The use of traits for this purpose has also been discussed in
the early stages of the HATS project, but the idea was soon dropped in favor
of delta modeling. Traits are a mechanism designed for code reuse within a
single software product. They are not intended to be the sole mechanism for
implementing software product line variability, and appear, in and of them-
selves, unsuited to the task. Traits are limited to adding methods (and in
some formalisms, fields) to new classes. They cannot describe functionality
across multiple classes, so they offer insufficient modularity. In addition, they
have to be known at the point where a class is first defined and cannot inject
functionality from the outside, i.e., they do not support invasive composition.

This is not to say that traits are useless — far from it. Chapter 9 discusses
the possibility of regarding deltas and traits as orthogonal and complementary
constructs, used together in a single code-base.
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3.1 Introduction

The previous chapter introduced deltas, the basic feature modules used to build
delta-modeling based systems. This chapter explores techniques for organizing
a collection of deltas into a robust system. There is a particular focus on the
possible orders in which a set of modules can be composed. Delta models
can express design intentions such as priority, interaction and conflict between
independently developed deltas by organizing them in a partial order (Defini-
tion 1.22), an approach not found in previous literature.

3.1.1 Syntax Highlighting and Error Checking
The reason why composition order is so important is the simple fact that feature
modules do not necessarily commute (Definition 2.40), and therefore the order
in which they are applied can have a direct effect on the final product.

Take, for example, the features 𝑆𝐻 and 𝐸𝐶 from Section 1.4. Both of their
implementations have to overwrite the font(int) method, each in a different
way. So whichever of them is applied last ‘wins’, and the code of the other is
(partly) discarded. We need to find a way to properly combine the two.

Goal: Find a way to mediate between non-commuting feature modules.

This should be done, of course, without disregarding the goals from the pre-
vious chapter: feature modularity and separation of concerns. This is where
existing approaches seem to fall short. So to demonstrate the need for a new
solution, we’ll attempt to organize the deltas that implement 𝑆𝐻 and 𝐸𝐶 of
the Editor product line (Section 1.4) with two existing techniques for feature
module organization: AHEAD [31, 32, 124, 125] and ‘pre-ADM’ Delta Oriented
Programming [160, 163]. We’ll shine a light on any problems we encounter and,
thereby, motivate the work in this chapter. (Since the advent of ADM, both
techniques have made some strides in the organizational structure of feature
modules; strides which we’ll discuss in Section 3.8.)

3.1.2 AHEAD
The main purpose of AHEAD was to form an algebraic theory of software
composition and tools for applying that theory in practice. These are aspects
already discussed in Chapter 2. The organization between different modules,
though, had been of lower priority.

Batory et al.’s paper on Scaling Step-wise Refinement [31] was strictly al-
gebraic in nature. They recognize the fact that a method cannot be added
twice, or removed when absent (as we did in Definition 2.18). They use a
similar system of preconditions and postconditions based on earlier work on
GenVoca [28], which restricts the application order of feature modules by ex-
amining their source-code. But otherwise, application order is not mentioned.
The same holds in the later paper by Batory and Smith [32]. Nonetheless, in
order to implement tool support [173], a choice had to be made, and it was
this: the application order between modules in the AHEAD tool suite is man-
ually supplied on the composer command line [25, 90]. Let us assume that in
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practice, each product of interest will have this order encoded in a build-script
to avoid having to manually specify it every time. So we can see it as part
of the system design.

The conclusion is that AHEAD feature modules are organized in a total
order (Definitions 1.13 and 1.22), in which later modules can overwrite code
from earlier modules. The most naive way of organizing the implementations
of the features 𝐸𝐶 and 𝑆𝐻 in AHEAD is illustrated in Figure 3.1a. It doesn’t
work because the 𝐸𝐶 module discards the 𝑆𝐻 implementation of font(int)
completely, replacing it with its own.

One solution is to enhance the module implementing 𝐸𝐶 to be aware of 𝑆𝐻
(Figure 3.1b). Rather than add only its own implementation of font(int), it
would supplement the existing one left by the 𝑆𝐻 module. If you recall, this is
basically what we did manually in the introduction of Chapter 2. The AHEAD
toolsuite can do this without duplicating code by using the super keyword [31]
to reference an implementation from the previous module in the chain.

But there are two problems with this approach. First of all, it breaks
separation of concerns; code meant for 𝐸𝐶 is now mixed up with a reference
to 𝑆𝐻, an unrelated feature. Secondly, it is no longer certain that the modules
in this code-base can be used to generate a product with 𝐸𝐶 but without 𝑆𝐻,
as the super call may no longer make sense. Liu et al. [124] introduced this
as the feature optionality problem. They later generalized it and dubbed it
the optional feature problem [125], recognizing that it may be possible for two
feature modules to be composable in both orders, but that those orders need not
necessarily yield the same result, which is exactly the case for the 𝐸𝐶 and 𝑆𝐻
modules. The optional feature problem has since been thoroughly described
by Kastner et al. [111], who summarize a number of possible solutions.

One of those solutions, introduced by Liu et al. [124, 125], was the concept
of special derivative modules, which contain the code necessary for the interac-
tion between two such modules — though still no mention is made of a more
sophisticated organizational structure. A solution using derivative modules is
shown in Figure 3.1c. Two main modules independently implement their own
feature. A derivative module is applied last to implement their interaction.
Separation of concerns has been restored.

But still all is not well. A super call can not be used to reference both
of the original font(int) methods; just the last one in the chain. So it is
now necessary to duplicate code, at least from 𝑆𝐻. Additionally —and more
significantly— while it is true that the application order between the two main
modules no longer matters, we are forced to choose an order nonetheless. If, at
any time in future development, the two modules make another incompatible
change, the 𝑆𝐻 feature will be broken again, and this will not be detected. The
AHEAD composer is a relatively simple piece of software, not smart enough to
realize that the overwrite might be a mistake. The conceptual independence
between the 𝐸𝐶 and 𝑆𝐻 modules is simply not expressable with a linear order.
We call this overspecification.

Goal: Find a way to avoid overspecification of the structural organi-
zation between feature modules.
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3.1.3 Pre-ADM Delta Oriented Programming
Delta oriented programming —as it was before our work on ADM [160, 163]—
had quite a different approach to the problem. Rather than force deltas into
a total order, no order could be specified at all. Deltas were applied in an
arbitrary order. Therefore, any two deltas that might be applied together were
required to commute. Overwriting operations were only allowed to apply to
the core product, not to code from other deltas.

This disadvantage was offset by the ability to annotate deltas with very spe-
cific application conditions. So any two deltas that did not commute could be
given more refined application conditions so that they would never be applied
for the same feature selection.

This approach sacrifices some modularity, as the ‘non-conflicting’ parts of
the 𝐸𝐶 and 𝑆𝐻 implementations are now separated from their font(int)
method. But the main disadvantage is code duplication. For the Editor product
line, a delta-oriented code base would need to contain three deltas that fully
implement the font(int) method, one each for the feature configurations
(𝐸𝐶 ∧ ¬𝑆𝐻), (¬𝐸𝐶 ∧ 𝑆𝐻) and (𝐸𝐶 ∧ 𝑆𝐻). The third configuration leads to
the delta selection shown in Figure 3.2.

Goal: Find a way to avoid code duplication through the structural
organization between feature modules.

3.1.4 The ADM Solution
ADM was initially developed with the main purpose of solving the optional
feature problem, which is what most of this chapter is about. Figure 3.3 shows
a preview of the ADM solution, which is situated in between the two polar
opposites discussed above: a partial order. Figure 3.3 is best compared with
Figure 3.1c. It also uses a derivative module (called a conflict resolving delta

— a term further explained in Section 3.3). We also make sure it is applied
last, so it can overwrite the changes of both 𝑑𝐸𝐶 and 𝑑𝑆𝐻. The two main
modules themselves, however, are not ordered, as they represent conceptually
independent features.

If another conflict ever arises in the future, this can be automatically de-
tected. Furthermore, software deltas can be equipped with a syntax to reference
a specific method implementation by name: ⟨𝑑𝑒𝑙𝑡𝑎⟩@⟨𝑚𝑒𝑡ℎ𝑜𝑑⟩, so no code dupli-
cation is required to resolve the conflict. A possible implementation would be:

▹ 3.1. Example: Software delta 𝑑𝑆𝐻∧𝐸𝐶, the “𝑑𝑆𝐻 ↯ 𝑑𝐸𝐶 conflict resolver”:

1 modify package DeltaEditor {
2 modify class Editor {
3 replace font(c : int) : Font {
4 Font result = new Font();
5 result.setColor (font@𝑑𝑆𝐻(c).color());
6 result.setUnderlined(font@𝑑𝐸𝐶(c).underlined());
7 return result;
8 };
9 };

10 };
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(a) .... .. =. ....

(b) .... .. =. ..s...

(c) ... . .. .. =. ..s....

Figure 3.1: Three ways of organizing the . 𝐸𝐶 and . 𝑆𝐻 features into feature
modules with AHEAD, in a Venn-diagram representation. The intersection
area represents the font(int) method. We need the . 𝑆𝐻∧𝐸𝐶 hybrid ver-
sion of font(int), so (a) is wrong. A super call can reuse code from the
next delta in the chain (represented with the s symbol). But even so, (b) does
not separate concerns, (c) still duplicates code, and both are overspecified.

.. .. .. .. =. .....

Figure 3.2: One of the ways of organizing the . 𝐸𝐶 and . 𝑆𝐻 features into
deltas with pre-ADM delta oriented programming techniques. There is no way
to order two deltas that modify the same method, which limits our options.

.... ...

.

. =. ..

@

.

@

....

Figure 3.3: The recommended way of organizing the . 𝐸𝐶 and . 𝑆𝐻 features
into deltas with ADM. The flexibility of a partial order allows modularity, sep-
aration of concerns and avoids overspecification. Internally referencing specific
delta implementations from . with the @ operator eliminates code duplication.
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3.1.5 Chapter Structure
The remainder of the chapter is structured as follows. Section 3.2 introduces
the formal concept of a delta model, which embodies a partially ordered organi-
zation of deltas, and defines the first of its possible semantics. This semantics
requires a unique derivation, i.e., the existence of a unique composition compat-
ible with the partial order. In Section 3.3 we discuss the more local concepts
of conflict and conflict resolution, which help ensure a unique derivation.

Section 3.4 revisits the software deltoid of Section 2.3 and enhances it to
support fine-grained modification of methods. This will, at times, allow inde-
pendent deltas to modify the same method without losing commutativity and,
therefore, without requiring a conflict resolver. This makes software deltas
potentially non-deterministic.

A unique derivation is not always required to obtain a sensible and robust
delta model. Section 3.5 introduces disjunctive semantics and conjunctive se-
mantics: two ways of interpreting a delta model with multiple derivations.

Section 3.6 introduces nested delta models, which allow a delta to be a delta
model nested inside another, and explains the possible uses of this additional
modularization technique.

Sections 3.7 and 3.8 offer concluding remarks and discuss related work.

3.2 The Delta Model

During the remainder of this chapter we assume a given deltoid
𝐷𝑡 = ( 𝒫, 𝒟, ·, 𝜀, ⟦ ⟧ ), unless specified otherwise.

This section formally introduces the notion of delta model. A delta model
contains a finite set of deltas, each responsible for modifying a different aspect
in the product. In theory, all changes can be encoded in a single delta. But by
splitting up the work we may achieve that coveted separation of concerns.

Furthermore, to be able to express certain design intentions such as depen-
dency, interaction and conflict, a delta model organizes these deltas in a strict
partial order (Definition 1.22), which restricts the order in which they may be
applied to a product:

▸ 3.2. Definition (Delta Model): A delta model is a tuple (𝐷, ≺), where 𝐷 ⊆ 𝒟
is a finite set of deltas and ≺ ⊆ 𝐷 × 𝐷 is their application order, a strict partial
order on 𝐷 (Definition 1.22). An ordering 𝑥 ≺ 𝑦 indicates that 𝑥 should be
applied before 𝑦, though not necessarily directly before. The set of all delta
models is denoted 𝒟ℳ. If the delta set on which it is based is not clear from
context, we attach a subscript as in 𝒟ℳ𝒟. ⌟

Figure 3.4 shows a delta diagram, which is a representation of a delta model.
Figure 1.3 (page 9) also shows a delta diagram, though annotated with ad-
ditional information. In these diagrams, the deltas are dashed circles (in an
abstract setting) or boxes (in a concrete setting) and the partial order is rep-
resented by arrows.
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The order is intended to capture the intuition that a subsequent delta has
full knowledge of (and access to) earlier deltas and more authority over modi-
fications to the product. When two deltas are unordered, such as 𝑥 and 𝑦 in
Figure 3.4, they represent independent modifications. Neither has priority over
the other, but both of them are dominant over 𝑤 and subordinate to 𝑧.

A delta model is applied to a product by sequentially applying each of its
deltas in some linear extension of this partial order (Definition 1.24).

As mentioned before, the possibility of setting up a partial application order,
rather than a total order [31, 32, 124, 125] or no order at all [160, 163], is
important. By allowing these design intentions to be expressed, we set the
stage for a formal notion of conflict between conceptually independent deltas.
We can then talk about how to recognize, avoid and resolve such conflicts
(Section 3.3).

The semantics of a delta model are based on its derivations — deltas formed
by the possible sequential compositions of its partial order:

▸ 3.3. Definition (Derivation Function): We define the derivation function derv:
𝒟ℳ → Pow(𝒟), which maps a delta model to the set of its derivations, as
follows, for all delta models 𝑑𝑚 = (𝐷, ≺):

derv(𝑑𝑚) ≝ { 𝑑𝑛 · … · 𝑑1 ∣ 𝐷 = { 𝑑1, …, 𝑑𝑛 } ∧
∀𝑖, 𝑗 ∈ { 1, …, 𝑛 } : 𝑑𝑖 ≺ 𝑑𝑗 ⇒ 𝑖 < 𝑗 } ⌟

Figure 3.5 shows the derivations of the delta model in Figure 3.4. Note that if
𝐷 is empty, then derv(𝑑𝑚) = { 𝜀 }, as 𝜀 is the identity element of · .

In practice it is often the goal to design a delta model that has exactly one
derivation. This corresponds to its deltas being defined and arranged in such
a way that they unambiguously specify a product modification together. We
typically see this as the mark of a well-designed delta model:

..𝑤.

𝑦

.

𝑥

.

𝑑

.

𝑧

derv(𝑑𝑚) =

⎧{{{{{
⎨{{{{{⎩

𝑤 · 𝑑 · 𝑥 · 𝑦 · 𝑧,
𝑤 · 𝑥 · 𝑑 · 𝑦 · 𝑧,
𝑤 · 𝑥 · 𝑦 · 𝑑 · 𝑧,
𝑤 · 𝑥 · 𝑦 · 𝑧 · 𝑑,
𝑤 · 𝑑 · 𝑦 · 𝑥 · 𝑧,
𝑤 · 𝑦 · 𝑑 · 𝑥 · 𝑧,
𝑤 · 𝑦 · 𝑥 · 𝑑 · 𝑧,
𝑤 · 𝑦 · 𝑥 · 𝑧 · 𝑑

⎫}}}}}
⎬}}}}}⎭

Figure 3.4: A delta diagram of an
abstract delta model 𝑑𝑚 = (𝐷, ≺)
with 𝐷 = { 𝑑, 𝑤, 𝑥, 𝑦, 𝑧 } and order
𝑤 ≺ 𝑥 ≺ 𝑧, 𝑤 ≺ 𝑦 ≺ 𝑧 and 𝑤 ≺ 𝑑.

Figure 3.5: The derivation set of the
delta model 𝑑𝑚 from Figure 3.4.
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▸ 3.4. Definition (Unique Derivation): A delta model 𝑑𝑚 ∈ 𝒟ℳ is said to have
a unique derivation, denoted 𝖴𝖣(𝑑𝑚), iff 𝑑𝑛 · … · 𝑑1 = 𝑑′

𝑛 · … · 𝑑′
1 for all pairs

of linear extensions (𝑑1, …, 𝑑𝑛) and (𝑑′
1, …, 𝑑′

𝑛) of ≺. Or equivalently:

𝖴𝖣(𝑑𝑚) ⟺≝ | derv(𝑑𝑚) | = 1 ⌟

For example, if deltas 𝑥, 𝑦 and 𝑧 from Figure 3.4 all commute with each other,
and 𝑑 commutes with 𝑧, then all derivations in derv(𝑑𝑚) from Figure 3.5 are
equal, and 𝑑𝑚 has a unique derivation. The semantics of a delta model with
a unique derivation can be formally defined as follows:

▸ 3.5. Definition (Sole Derivation Semantics): The semantics of a delta model
𝑑𝑚 ∈ 𝒟ℳ with a unique derivation derv(𝑑𝑚) = { 𝑑 } is defined as follows:

⟦ 𝑑𝑚 ⟧ ≝ ⟦ 𝑑 ⟧ ⌟

In this situation, applying a delta model to a product just means applying its
sole derivation or, in the absence of a composition operator, applying all its
deltas in some compatible order. So the ‘apply’ function on the delta model
level is easily derived from its delta level counterpart (Definition 2.12, page 37).

▸ 3.6. Lemma: If a delta model 𝑑𝑚 = (𝐷, ≺) has a unique derivation and the deltas
in 𝐷 are all deterministic, ⟦ 𝑑𝑚 ⟧ is uniquely defined (Def. 1.13). ◻

That means that we are guaranteed a uniquely defined end-product if the delta
model is applied to a product that it accepts (Definition 2.24).

It is quite possible for a delta model to have more than one distinct deriva-
tion, as we may be working with a noncommutative composition operator.
Composition from the software delta algebra (Definition 2.48) is noncommuta-
tive, as we have results such as 𝑑𝑆𝐻 · 𝑑𝐸𝐶 ≠ 𝑑𝐸𝐶 · 𝑑𝑆𝐻.

Section 3.5 discusses possible semantics for ambiguous delta models. But
first, we explore some techniques for maintaining unambiguity.

3.3 A Conflict Resolution Model

The property that a delta model has a unique derivation (Definition 3.4) can be
checked by brute force. This means generating all derivations (in the worst case,
𝑛! derivations for 𝑛 deltas), and then checking that they all correspond. To
allow for a more efficient way to establish this property, and to better reflect
developers’ intentions, we introduce the notion of unambiguous delta model,
which relies on the notions of conflicting deltas and conflict-resolving deltas.

At this point it is important to explain a crucial distinction. Existing
literature on feature oriented programming [29, 124, 140] speaks of feature
interaction, an undesireable situation in which the final software product will
exhibit wrong behavior if two independent features are both implemented. One
example is the inclusion of both a fire suppression system and a flood prevention
system in a smart building. When a fire is detected, the ceiling sprinklers
discharge water. The flood prevention mechanism, sensing an abundance of
water on the floor, then proceeds to cut off the water supply.
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This thesis recognizes the same notion, though does not comment on the
desirability of such feature interaction. The inclusion of both Printing and
Syntax Highlighting in the Editor product line, for example, leads us to activate
the extra delta 𝑑𝑃𝑟∧𝑆𝐻 (Section 1.4.2). Initially those two features do not
interact, but we want them to. It comes down to the same thing. Implementing
or preventing this kind of feature interaction is explore more fully in Chapter 7.

In this section we are concerned with implementational conflicts, rather
than conceptual ones. Such conflicts can always be automatically detected,
just as we can automatically detect multiple derivations of a delta model. And
while it may require human intervention to resolve a conflict, it can always be
detected whether a conflict has indeed been resolved. Neither is possible for
feature interactions, which involve complex behavioral notions.

3.3.1 Conflicting Deltas
Two deltas in a delta model are in conflict if (1) they do not commute (Defi-
nition 2.40, page 50), and (2) no order is imposed between them. Intuitively,
two conflicting deltas are independently modifying the same part of a product
in different ways, making multiple distinct derivations possible.

▸ 3.7. Definition (Delta Conflict): Given a delta model 𝑑𝑚 = (𝐷, ≺), we intro-
duce the conflict relation ↯ ⊆ 𝐷 × 𝐷. Deltas 𝑥, 𝑦 ∈ 𝐷 are said to be in conflict
iff the following condition holds:

𝑥 ↯ 𝑦 ⟺≝ 𝑦 · 𝑥 ≠ 𝑥 · 𝑦 ∧ 𝑥 ⊀ 𝑦 ∧ 𝑦 ⊀ 𝑥
If the delta model is not clear from context, we attach a subscript as in ↯𝑑𝑚.⌟

The idea, given a concrete deltoid, is to develop a decision procedure for delta
commutativity1 so that conflicts can be automatically detected and developers
warned: “two deltas that you deemed mutually independent have conflicting
implementations”. If, for example, deltas 𝑦 and 𝑑 from Figure 3.4 stop com-
muting at some point during development, this would not go unnoticed.

When a conflict is present, it may cause multiple distinct derivations. By
Definition 3.5 we may only apply a delta model to a product if it has a unique
derivation. So for now, let’s assume that we want to create a delta model with
a unique derivation. Sections 3.3.2 to 3.3.4 present possible ways to achieve
this. More sophisticated methods for dealing with multiple derivations are
discussed in Section 3.5.

One way to ensure that conflicts will never occur is to work in a deltoid
with an inherently commutative composition operator. But such a deltoid
would be severely restricted in the kind of modifications it can express. Any
kind of ‘overwriting’ operation, such as those in our software deltoid, would
not be possible. Apel et al. [14, 17] explore the possibility of commutative
software modifications, and reach the conclusion that this is infeasible for an
object oriented domain.

It should be noted that avoiding conflicts by blindly sticking to a total order
(with the intention of always having either 𝑥 ≺ 𝑦 or 𝑦 ≺ 𝑥; see Definition 1.13)
would be akin to sticking our heads in the sand. The fact that some deltas

1Functionally it would even be enough to have procedures for delta composition and
equality, but one dedicated to deciding commutativity can be a great deal more efficient.
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ought to act independently would not change. Far from solving anything, lin-
earizing such deltas without thinking would hide future problems. At any time
during development, a delta that is granted priority might begin to inadver-
tently —and silently— override modifications of other deltas. In software this
would cause bugs that are hard to diagnose; a serious issue for approaches such
as AHEAD in which a linear order is fundamentally assumed. Such overspecifi-
cation is one of the issues that abstract delta modeling was designed to address.

You might ask: can’t we just apply a delta model with a conflict anyway?
Maybe, but we would still need to choose which of the available derivations to
use. A preference of one derivation over another can (and should) be encoded
in the delta model itself by adjusting ≺, a solution discussed in Section 3.3.3.

3.3.2 Modifying Conflicting Deltas
It is possible that a conflict arose by a simple lack of communication, and that
it could be resolved by making slight modifications to one or both conflicting
deltas so that they are no longer in each others way.

▸ 3.8. Action (Modifying the Conflicting Deltas): Given a delta model (𝐷, ≺)
and a conflict 𝑥 ↯ 𝑦.

𝑥, 𝑦 ⟿ 𝑥′, 𝑦′

Redesign 𝑥 and/or 𝑦 so that 𝑥′ and 𝑦′ commute. ⌟

This solution might apply when two software deltas each introduce a new field
into a class, both with a different purpose but using the same identifier. Upon
recognizing the problem, either delta’s developer could simply switch to a dif-
ferent name, resolving the conflict by making the two deltas commute again.

In practice this action —as well as the actions introduced in the following
two subsections— should be sensibly guided. For example, we actually need to
include the condition that 𝑥′ and 𝑦′ are still individually correct in some sense.
Formulating such a constraint is quite involved, and is explored in Chapter 7.

3.3.3 Linearizing Conflicting Deltas
It is possible that one of the two conflicting deltas should rightfully have priority,
perhaps because it purposely refines or extends the other’s implementation,
such as the delta 𝑑𝑆𝐴 of the Editor product line, which extends 𝑑𝐸𝐶 — it
implements a subfeature. It is then appropriate for that delta to be applied later
and override the implementation of the other. The two deltas are conceptually
dependent, and this should be reflected in the partial order.

▸ 3.9. Action (Linearizing the Conflicting Deltas): Given a delta model (𝐷, ≺)
and a conflict 𝑥 ↯ 𝑦.

≺ ⟿ ≺′

Augment the partial order so that ≺′ = ≺ ∪ {(𝑥, 𝑦)} or ≺′ = ≺ ∪ {(𝑦, 𝑥)}. ⌟

This was the resolution technique offered by Schaefer et al. [164] in one of the
early papers to apply the partially ordered structure of ADM.
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But even conceptually independent deltas can have conflicting implemen-
tations. In those cases extending the partial order is not advised, even if it
appears to resolve the conflict. Further development might introduce addi-
tional conflicts, which could then no longer be detected.

As a side-note: This problem might also occur between superfeature and
subfeature. If delta 𝑑𝑆𝐴, for instance, ever overwrites something in 𝑑𝐸𝐶 that
it was not supposed to, this may be an indication that it is doing too much
work, and that it should be split up into two deltas, one of them becoming a
sibling to 𝑑𝐸𝐶 to detect similar mistakes in the future.

3.3.4 Introducing a Conflict Resolving Delta
Whenever we encounter conflicts that cannot be adequately resolved by either
of the above techniques, we are dealing with the optional feature problem [111,
125]. The noncommutativity of the conflicting deltas is not accidental; they
simply need access to the same resource. And imposing an order between them
might still not give us the product we need. Take 𝑑𝑆𝐻 ↯ 𝑑𝐸𝐶, for example. If
either delta is allowed to fully decide the font(int) implementation, the
feature of the other will be broken (Figure 3.1b).

Sometimes proper interaction between two deltas simply requires additional
effort on the part of the developers; some code that ties the two implementa-
tions together the way they should be. It is true that such code could be
included in one of the two conflicting deltas — make it aware of the other and
order it later. But that would introduce an unnatural dependency and lead to
the kind of maintenance problems described at the end of Section 3.3.3.

The proper solution is to allow the conflicting deltas to remain as they are
—since they each work fine in isolation— and to create a third delta with the
sole purpose of coordinating their interaction. The third delta, in this context,
is called a conflict resolving delta:

▸ 3.10. Definition (Conflict Resolution): Given delta model 𝑑𝑚 = (𝐷, ≺), we de-
fine a conflict resolution relation ◃ ⊆ 𝐷2×𝐷 as follows, for all deltas 𝑥, 𝑦, 𝑧 ∈ 𝐷:

(𝑥, 𝑦) ◃ 𝑧 ⟺≝ 𝑥, 𝑦 ≺ 𝑧 ∧ ∀𝑑 ∈ 𝐷∗: 𝑧 · 𝑑 · 𝑦 · 𝑥 = 𝑧 · 𝑑 · 𝑥 · 𝑦

If 𝑥 and 𝑦 are in conflict, we say that 𝑧 resolves their conflict. If the delta
model is not clear from context, we attach a subscript as in ◃𝑑𝑚. ⌟

A conflict resolving delta is applied after the two conflicting deltas, and allows
them to commute again. It takes the rôle of what, in existing literature, is
called a lifter [156], a derivative module [111, 124, 125], or glue code [67, 165].

▸ 3.11. Action (Introducing a Conflict Resolving Delta): Given a delta model
(𝐷, ≺) and a conflict 𝑥 ↯ 𝑦.

(𝐷, ≺) ⟿ (𝐷 ∪ { 𝑧 } , ≺′)

Design a new delta 𝑧 such that ∀𝑑 ∈ 𝐷∗: 𝑧 · 𝑑 · 𝑦 · 𝑥 = 𝑧 · 𝑑 · 𝑥 · 𝑦. Augment the
partial order so that ≺′ = ≺ ∪ {(𝑥, 𝑧), (𝑦, 𝑧)}. ⌟
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This is what we did for the 𝑑𝑆𝐻 ↯ 𝑑𝐸𝐶 conflict. The conflict resolving delta
is 𝑑𝑆𝐻∧𝐸𝐶. It replaces the font(int) method with a proper combination of
the two conflicting versions (Example 3.1).

How to implement a conflict resolving delta is a genuine design decision and
cannot be automated. And unless we are working with a particularly restrictive
deltoid, there is almost always more than one way to do it [140].

Lienhardt and Clarke [121], in an extension of their earlier work on row
typing for deltas [120], coined the term hard conflict, referring to the situation
where, for example in Figure 3.4, the deltas 𝑦 and 𝑑 are invalid when applied
in a certain order, e.g., 𝑦 · 𝑑 =⊥. They correctly state that a conflict-resolving
delta does not help in such a situation, and suggest that the only way to get
out of it is to introduce an order between 𝑦 and 𝑑. Indeed, when 𝑦 · 𝑑 = ⊥
and 𝑑 · 𝑦 ≠⊥, —for example, when 𝑦 = “modify X” and 𝑑 = “remove X”—,
some wrong assumptions must have been made, and applying Action 3.8 or 3.9
is probably the right thing to do.

3.3.5 Unambiguity
When all conflicts in a delta model are resolved, we end up with an unambiguous
delta model, one which contains a conflict resolving delta for each conflict that
still exists:

▸ 3.12. Definition (Unambiguous Delta Model): A delta model 𝑑𝑚 = (𝐷, ≺) is
unambiguous iff

𝖴𝖠(𝑑𝑚) ⟺≝ ∀𝑥, 𝑦 ∈ 𝐷: 𝑥 ↯ 𝑦 ⇒ ∃𝑧 ∈ 𝐷: (𝑥, 𝑦) ◃ 𝑧 ⌟

And that is the goal we strive for, because a delta model that is unambiguous
always has a unique derivation. This is one of the main results of this chapter,
as it reduces the effort of checking that all possible derivations are equal to
checking that all existing conflicts have a corresponding conflict resolving delta.

▸ 3.13. Theorem: Every unambiguous delta model has a unique derivation.

In order to prove this Theorem, we need some intermediate results. Lemma 3.14
states that in an unambiguous delta model, any two deltas in a derivation are
either ordered or commutative:

▸ 3.14. Lemma: Given an unambiguous delta model 𝑑𝑚 = (𝐷, ≺) and a derivation
𝑑2 · 𝑦 · 𝑥 · 𝑑1 ∈ derv(𝑑𝑚) in which 𝑥, 𝑦 ∈ 𝐷 and 𝑑1, 𝑑2 ∈ 𝐷∗. Then we have
either 𝑥 ≺ 𝑦 or 𝑑2 · 𝑦 · 𝑥 · 𝑑1 = 𝑑2 · 𝑥 · 𝑦 · 𝑑1.

Proof: By case distinction on the unambiguity of 𝑑𝑚 for deltas 𝑥, 𝑦:
• Case 𝑦 · 𝑥 = 𝑥 · 𝑦. By associativity of · we have 𝑑2 ·𝑦 ·𝑥·𝑑1 = 𝑑2 ·𝑥 ·𝑦 ·𝑑1.
• Case 𝑥 ≺ 𝑦. Immediate.
• Case 𝑦 ≺ 𝑥. Cannot happen, as 𝑑2 · 𝑦 · 𝑥 · 𝑑1 is a linear extension of ≺.
• Case ∃𝑧 ∈ 𝐷: (𝑥, 𝑦) ◃ 𝑧. Firstly, from Definition 3.10 we have 𝑥, 𝑦 ≺ 𝑧.

So we have 𝑑2 = 𝑑″
2 · 𝑧 · 𝑑′

2 for some 𝑑′
2, 𝑑″

2 ∈ 𝐷∗. From the remaining
condition on 𝑧, we have 𝑧 · 𝑑′

2 · 𝑦 · 𝑥 = 𝑧 · 𝑑′
2 · 𝑥 · 𝑦, so we finally deduce

𝑑2 · 𝑦 · 𝑥 · 𝑑1 = 𝑑″
2 · 𝑧 · 𝑑′

2 · 𝑦 · 𝑥 · 𝑑1 = 𝑑″
2 · 𝑧 · 𝑑′

2 · 𝑥 · 𝑦 · 𝑑1 = 𝑑2 · 𝑥 · 𝑦 · 𝑑1. ◻



80 CHAPTER 3. DELTA MODELS

Next we prove that removing a minimal element (Definition 1.23) from a delta
model would preserve its unambiguity. To help us express this we first introduce
a new shorthand notation:

▸ 3.15. Notation: Given a delta model 𝑑𝑚 = (𝐷, ≺) and subset 𝐷′ ⊆ 𝐷, introduce
the following notation, representing 𝑑𝑚 after removing the deltas in 𝐷′:

𝑑𝑚 ∖ 𝐷′ ≝ ( 𝐷∖𝐷′, ≺ ∩ (𝐷∖𝐷′)2 ) ⌟

▸ 3.16. Lemma: If a delta model 𝑑𝑚 = (𝐷, ≺) is unambiguous, and 𝑤 ∈ 𝐷 is a
minimal element of ≺, then 𝑑𝑚 ∖ { 𝑤 } is also unambiguous.

Proof: From the unambiguity of (𝐷, ≺) we have that ∀𝑥, 𝑦 ∈ 𝐷: 𝑥 ↯ 𝑦 ⟹
∃𝑧 ∈ 𝐷: (𝑥, 𝑦) ◃ 𝑧. For the absence of 𝑤 to invalidate this property would
require that (𝑥, 𝑦) ◃ 𝑤 for some 𝑥, 𝑦 ∈ 𝐷. But that would also imply 𝑥, 𝑦 ≺ 𝑤,
which is impossible because 𝑤 is a minimal element. So we’ve proved by con-
tradiction that 𝑑𝑚 ∖ { 𝑤 } is unambiguous. ◻

Finally, we state that a minimal element from an unambiguous delta model can
be shuffled to the first position of any derivation without altering its meaning:

▸ 3.17. Lemma: For any unambiguous delta model 𝑑𝑚 = ({ 𝑑1, …, 𝑑𝑛 } , ≺), deriva-
tion 𝑑𝑛 · … · 𝑑1 ∈ derv(𝑑𝑚) and minimal element 𝑑𝑖 with 1 ≤ 𝑖 ≤ 𝑛, we have:

𝑑𝑛 · … · 𝑑1 = 𝑑𝑛 · … · 𝑑𝑖+1 · 𝑑𝑖−1 · … · 𝑑1 · 𝑑𝑖

Proof: We proceed by induction on 𝑖:
• Case 𝑖 = 1. Immediate.
• Case 𝑖 > 1. As 𝑑𝑖 is minimal, we have 𝑑𝑖 ⊁ 𝑑𝑖−1. So by Lemma 3.14

they must commute and we can swap their positions:

𝑑𝑛 · … · 𝑑1 = 𝑑𝑛 · … · 𝑑𝑖+1 · 𝑑𝑖−1 · 𝑑𝑖 · 𝑑𝑖−2 · … · 𝑑1.

𝑑𝑖 is now in position 𝑖 − 1 so, by induction, we can move it all the way:

= 𝑑𝑛 · … · 𝑑𝑖+1 · 𝑑𝑖−1 · … · 𝑑1 · 𝑑𝑖. ◻

We can now prove our main theorem:

Proof of Theorem 3.13: Take unambiguous delta model 𝑑𝑚 = (𝐷, ≺). We need
to prove that |derv(𝑑𝑚)| = 1. We proceed by induction on the size of 𝐷:

• Case |𝐷| = 0. Immediate, as derv(𝑑𝑚) = { 𝜀 }.
• Case |𝐷| = 1. Immediate, as derv(𝑑𝑚) = 𝐷.
• Case |𝐷| > 1. We will prove that any two derivations 𝑑1, 𝑑2 ∈ derv(𝑑𝑚)

must be equal. Let 𝑑1 = 𝑑′
1 · 𝑥 and 𝑑2 = 𝑑″

2 · 𝑥 · 𝑑′
2, for some 𝑥 ∈ 𝐷 and

𝑑′
1, 𝑑′

2, 𝑑″
2 ∈ 𝐷∗. As 𝑥 is the rightmost element of 𝑑1, it must be minimal

in ≺. So by Lemma 3.17, 𝑑″
2 ·𝑥·𝑑′

2 = 𝑑″
2 ·𝑑′

2·𝑥. By Lemma 3.16, 𝑑𝑚∖{ 𝑥 } is
unambiguous. We know from before that 𝑑′

1, (𝑑″
2 ·𝑑′

2) ∈ derv(𝑑𝑚∖{ 𝑥 })
and, therefore, that 𝑑′

1 = 𝑑″
2 · 𝑑′

2 by the induction hypothesis. We can
now deduce 𝑑1 = 𝑑′

1 · 𝑥 = 𝑑″
2 · 𝑑′

2 · 𝑥 = 𝑑′
2 · 𝑥 · 𝑑″

2 = 𝑑2 and we therefore
conclude that |derv(𝑑𝑚)| = 1. ◻
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In the Editor product line, the deltas 𝑑𝑆𝐻 and 𝑑𝐸𝐶 are in conflict over the
implementation of font(int), and this conflict is resolved by 𝑑𝑆𝐻∧𝐸𝐶. As
mentioned, the situation between 𝑑𝑃𝑟 and 𝑑𝑆𝐻 is a case of desired feature
interaction, but there is no conflict. So what about 𝑑𝐸𝐶 and 𝑑𝑇𝐼? Indeed,
looking at Figure 1.3 as a plain delta model, those two would be in conflict
regarding onMouseOver(int). As there is no corresponding conflict resolver,
the delta model is not unambiguous. But the diagram in question represents
a full product line, which is never applied to a core product before a feature
selection is made, after which irrelevant deltas are filtered out. As the features
𝐸𝐶 and 𝑇𝐼 are mutually exclusive (Figure 1.2), their two deltas will never be
applied for the same feature selection, so there won’t be a conflict to resolve.
We discuss this further in Chapter 4.

3.3.6 Consistent Conflict Resolution
The notion of unambiguous delta model alleviates the task of establishing that
a delta model has a unique derivation. However, deciding unambiguity is still
somewhat complex, as the test for conflict resolution (Definition 3.10) has us
iterating over all elements of 𝐷∗. A closer look will indicate that it is enough
to check all permutations of subsets of 𝐷 ∖ { 𝑥, 𝑦, 𝑧 }. We might then eliminate
from that set the deltas that cannot be applied between 𝑧 and 𝑦 · 𝑥 because of
the partial order. But it would still be a complex endeavour.

Instead, in this subsection, we introduce a new class of deltoid that allows
a simpler check for conflict resolution.

If a delta algebra (and, by extension, a deltoid) exhibits consistent conflict
resolution, then any delta 𝑧 which can make deltas 𝑥 and 𝑦 commute when
applied directly after them, will still be able to do so with any number of
deltas applied in between:

▸ 3.18. Definition (Consistent Conflict Resolution): The class of all delta alge-
bras that exhibit consistent conflict resolution is defined as follows:

𝖢𝖢𝖱 ≝ { ( 𝒟, · ) ∣ ∀𝑥, 𝑦, 𝑧 ∈ 𝒟: 𝑧 · 𝑦 · 𝑥 = 𝑧 · 𝑥 · 𝑦 ≠ ⊥ ⇒
∀𝑑 ∈ 𝒟: 𝑧 · 𝑑 · 𝑦 · 𝑥 = 𝑧 · 𝑑 · 𝑥 · 𝑦 }

We use the same term for any deltoid or delta model based on such an algebra.⌟

This definition of consistent conflict resolution differs slightly from the one in
the original ADM papers [1, 2]. Since the earlier work, which did not include
the concept of empty delta, the “≠⊥” condition has been added. Considering
the purpose of the property, this would seem to be a reasonable change.

Since the property of consistent conflict resolution is checked at the level of
the underlying algebra, rather than for any specific delta model, it has to be
established only once and can then be relied upon for checking unambiguity.

To establish the unambiguity of a delta model exhibiting consistent conflict
resolution, it is sufficient to check that for each pair of conflicting deltas 𝑥 and 𝑦
there exists a conflict resolving delta 𝑧 such that 𝑥, 𝑦 ≺ 𝑧 ∧ 𝑧 ·𝑦 ·𝑥 = 𝑧·𝑥·𝑦 ≠⊥;
there is no need to quantify over intermediate delta sequences. Consequently,
the unambiguity of delta models can be established much more efficiently. This
is formalized in the next theorem:
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▸ 3.19. Theorem: For any delta model (𝐷, ≺) exhibiting consistent conflict resolution,
deltas 𝑥, 𝑦, 𝑧 ∈ 𝐷 with 𝑥, 𝑦 ≺ 𝑧 and 𝑧 · 𝑦 · 𝑥 = 𝑧 · 𝑥 · 𝑦 ≠⊥, we have (𝑥, 𝑦) ◃ 𝑧.

Proof: Assume that delta model (𝐷, ≺) exhibits consistent conflict resolution.
Then take arbitrary deltas 𝑥, 𝑦, 𝑧 ∈ 𝐷. We have the following:

𝑧 · 𝑦 · 𝑥 = 𝑧 · 𝑥 · 𝑦 ≠⊥ ⟹ ∀𝑑 ∈ 𝒟: 𝑧 · 𝑑 · 𝑦 · 𝑥 = 𝑧 · 𝑑 · 𝑥 · 𝑦 (Def. 3.18)
⟹ ∀𝑑 ∈ 𝐷∗: 𝑧 · 𝑑 · 𝑦 · 𝑥 = 𝑧 · 𝑑 · 𝑥 · 𝑦 (Not. 2.41)

Together with 𝑥, 𝑦 ≺ 𝑧, the result is precisely the definition of (𝑥, 𝑦) ◃ 𝑧. ◻

This leads us to the following result regarding the running example, which has
been proved with the Coq proof assistant:

▹ 3.20. Theorem: The software delta algebra (Definition 2.49) exhibits consistent
conflict resolution. ◻

3.4 A Fine Grained Software Deltoid

We now take a break from the abstract formalism and discuss the running
example, to motivate the next section.

We have mentioned that the software deltas of Definition 2.16 are capable
only of coarse grained modifications; they can only make modifications on the
level of classes and methods, but cannot work with statements or expressions.
This is actually true for many recent compositional techniques [108]. In real-
istic software development, however, code modifications are rarely so limited,
so we shouldn’t limit deltas either if we expect them to be used for serious
development.

A more specific reason to support fine-grained modifications is something
we’ll call the feature initialization problem. This problem stems from the fact
that the traditional object oriented programming model has a single entry point;
one main() method that is invoked when a program starts. To implement a
feature, it is not enough to add class-, method- and field-declarations. At some
point, every feature will require some code to be run —directly or indirectly—
by main(), to initialize, and, basically, to tell the running program that it
exists. For example, software deltas 𝑑𝑆𝐻 and 𝑑𝐸𝐶 of the Editor product line
need a way to have the new fields m_syntaxhl and m_errorch instantiated
when the application starts. In Example 2.17 (page 40), this is done for 𝑆𝐻
by replaceing the Editor.init() method.

But if the 𝐸𝐶 delta were to do the same, this would introduce a conflict,
as was the case when they both replaced font(int). Of course, this conflict
could be handled by their conflict-resolving delta; just add another replace
operation which adds the initialization code for both; problem solved, right?
True, but assume that 𝑛 independent deltas need to add such initialization code,
for some large 𝑛. This would mean that 2𝑛−𝑛−1 conflict resolving deltas would
be required to clean up the mess — one for each combination. The codebase
would contain 2𝑛 − 1 similar —but different!— versions of Editor.init()
provided by 2𝑛 − 1 deltas (Figure 3.6).

And there is still another problem with the solution shown in Figure 3.6.
Each conflict resolving delta is forced to decide on a specific textual order in
which to run the initialization methods of a, b and c. This is so common in
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..

..
rep init(m: Model) {

a.init(m);
}

..
rep init(m: Model) {

b.init(m);
}

..
rep init(m: Model) {

c.init(m);
}

..
rep init(m: Model) {

a.init(m);
b.init(m);

}

..
rep init(m: Model) {

a.init(m);
c.init(m);

}

..
rep init(m: Model) {

b.init(m);
c.init(m);

}

. ..
rep init(m: Model) {

a.init(m);
b.init(m);
c.init(m);

}

.

.......

Figure 3.6: A delta model showing the initialization problem on a small scale.

imperative languages —in which sequential composition is ubiquitous— that
most programmers wouldn’t look twice. But recall that this kind of overspec-
ification is the reason we found annotative variability approaches lacking. If
a.init(), b.init() and c.init() are not as independent as we thought,
and one of them accidentally overwrites or otherwise damages the work of an-
other, it is theoretically impossible for an interpreter or compiler to detect
this, since it may very well have been intentional. As we are working with a
compositional approach, we can do better.

3.4.1 Fine-grained Software Deltas

We now have the machinery to properly model and reason about fine-grained
software deltas. As mentioned, previous literature [31, 52, 161] accomplishes
some semblance of fine granularity through the super (or original()) con-
struct, which enables a module to add new code to the beginning or end of an
existing method body, somewhat like around advice in AOP [113]. To model
this we’ll introduce the prepend and append delta operations which act on
the method level, similar to AOP before- and after advice. This only works for
single statements, but since those statements can be method calls, that does
not reduce expressiveness.

But this doesn’t solve the initialization problem; two deltas that each ap-
pend (or prepend) a statement to an existing method still do not commute.

If 𝑛 pieces of initialization code are truly independent, we won’t care in
which order they appear in init(), since all orders would be semantically
equivalent. So we introduce a third method-level delta operation insert,
which inserts a statement in a nondeterministically chosen position inside a
method body. Why does this help? Because the composition of 𝑛 deltas, each
inserting a statement at an arbitrary position, is the same as a single delta
which inserts 𝑛 statements in an arbitrary position. Moreover, all 𝑛 deltas will
commute (Figure 3.7).
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..

..
a.init(m);

..
◂▸ b.init(m);

a.init(m);

..
◂▸ c.init(m);

a.init(m);
b.init(m);

..
◂▸ c.init(m);

b.init(m);
a.init(m);

. ..
a.init(m);

◂▸ b.init(m);

..
a.init(m);

◂▸ c.init(m);
b.init(m);

..
b.init(m);

◂▸ c.init(m);
a.init(m);

. . ..
a.init(m);
b.init(m);

◂▸ c.init(m);

..
b.init(m);
a.init(m);

◂▸ c.init(m);

.
insert
b.init(m); .

insert
c.init(m);

Figure 3.7: The effect of subsequent insert operations on a method body.
The number of possible output products increases with every insertion. Re-
versing the order between the two insertions would not affect the final result.

There is a caveat: It is still the responsibility of the developers to ensure that
an inserted statement is indeed independent to the other statements that
may be in the method. It is not trivial to automatically check such a semantic
constraint. However, at least the proper intention can now be expressed, so in
cases where an inadvertent dependency can be detected, it is possible to issue
an error message about it.

▹ 3.21. Definition (Fine-grained Software Deltas): Fine-grained software deltas
are mostly the same as the software deltas from Definition 2.16 (page 39), but
with some additional operations at the method level. This definition only
specifies those additions, but implicitly adapts the original sets 𝒟pkg, 𝒪𝒫pkg,
𝒟cl and 𝒪𝒫cl accordingly, and renames them to 𝒟pkg+, 𝒪𝒫pkg+, 𝒟cl+ and 𝒪𝒫cl+.

Statement deltas are sequences of statement-level operations:

𝒟st+ ≝ 𝒪𝒫∗
st+

There are no identifiers at the statement level. Instead, statement operations
are performed in the order in which they are sequenced. A statement operation
is defined as follows:

𝒪𝒫st+ ≝ ⎛⎜⎜
⎝

{pre } × 𝒮𝒯 ∪
{app } × 𝒮𝒯 ∪
{ins } × 𝒮𝒯

⎞⎟⎟
⎠

A pre (prepend) operation adds a new statement to the beginning of a
method. An app (append) operation adds one at the end. An ins (insert)
operation adds a statement at an arbitrary position inside a method: at the
beginning, the end, or between two existing statements.

Finally, we add a class-level mod operation to descend to the method level:

𝒪𝒫cl+ ≝ 𝒪𝒫cl ∪ ( {mod } × 𝒟st+ ) ⌟
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And here is how method-level operations are evaluated:

▹ 3.22. Definition (Fine-grained Software Deltoid): The fine-grained software
deltoid (FgSD) is a deltoid 𝐷𝑡pkg+ ≝ (𝒫𝒦𝒢, 𝒟pkg+, ⟦ ⟧) with product set 𝒫𝒦𝒢
from Definition 2.5, delta set 𝒟pkg+ from Definition 3.21 and evaluation oper-
ator ⟦ ⟧: 𝒟pkg+ → Pow(𝒫𝒦𝒢 × 𝒫𝒦𝒢) as in Definition 2.18, but with additional
inference rules: (a) rules for the new statement-level operations pre, app and
ins, (b) rules for statement-level deltas, and (c) a mod rule to descend from
the class-level to the statement-level.

a. Statement Level Operations

First, the meaning of the three statement-level operations is as follows, for
all method types 𝑡𝑝 ∈ 𝒯𝒫, all statement sequences 𝑠𝑡, 𝑠𝑡1, 𝑠𝑡2 ∈ 𝒮𝒯∗ and all
statements 𝑠𝑡′ ∈ 𝒮𝒯 (recall Definition 2.3, page 31):

(𝑡𝑝, 𝑠𝑡) ⟦pre 𝑠𝑡′ ⟧ ( 𝑡𝑝, 𝑠𝑡′ ⌢ 𝑠𝑡 )
statement prepension

(𝑡𝑝, 𝑠𝑡) ⟦app 𝑠𝑡′ ⟧ ( 𝑡𝑝, 𝑠𝑡 ⌢ 𝑠𝑡′ )
statement appension

(𝑡𝑝, 𝑠𝑡1
⌢ 𝑠𝑡2) ⟦ins 𝑠𝑡′ ⟧ ( 𝑡𝑝, 𝑠𝑡1

⌢ 𝑠𝑡′ ⌢ 𝑠𝑡2 )
statement insertion

The pre and app operations are deterministic, placing the new statement
squarely at the beginning or end of the method. But the ins operation is
non-deterministic. It can produce a method with the new statement at the
very beginning or end, or at any position in between, depending on how the
original sequence of statements is apportioned between 𝑠𝑡1 and 𝑠𝑡2. Also, note
that none of them change the type of the method. Software deltas have no
way of doing so without replacing the entire method. (Though, as mentioned
before, this is an intentional simplification.)

b. Statement Deltas

A statement delta applies its operations in sequence. For all methods 𝑚𝑡𝑑, 𝑚𝑡𝑑′ ∈
ℳ𝑡𝑑, all statement operations 𝑜𝑝 ∈ 𝒪𝒫st+ and all trailing sequences of statement
operations 𝑜𝑝′ ∈ 𝒪𝒫∗

st+:

𝑚𝑡𝑑 ⟦ 𝑜𝑝′ ⟧ ∘ ⟦ 𝑜𝑝 ⟧ 𝑚𝑡𝑑′

𝑚𝑡𝑑 ⟦ 𝑜𝑝 ⌢ 𝑜𝑝′ ⟧ 𝑚𝑡𝑑′
statement delta application (non-empty)

𝑚𝑡𝑑 ⟦ () ⟧ 𝑚𝑡𝑑 statement delta application (empty)

Pay close attention to the ordering, because sequence concatenation is read
from left to right (Definition 1.9, page 19), whereas relation composition is
read from right to left (Definition 1.11, page 20).
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c. Class Level Operations

Finally, a method modification operation at the class level delegates the work
to the statement level delta and then maps to the new result. For all classes
𝑐𝑙 ∈ 𝒞ℒ, all identifiers 𝑖𝑑 ∈ ℐ𝒟, all statement level deltas 𝑑st+ ∈ 𝒟st+ and all
methods 𝑚𝑡𝑑 ∈ ℳ𝑡𝑑:

𝑐𝑙(𝑖𝑑) ∈ ℳ𝑡𝑑 𝑐𝑙(𝑖𝑑) ⟦ 𝑑st+ ⟧ 𝑚𝑡𝑑
𝑐𝑙 ⟦ 𝑖𝑑 ↦ mod 𝑑st+ ⟧ 𝑐𝑙[𝑖𝑑 ↦ 𝑚𝑡𝑑]

method modification ⌟

▹ 3.23. Lemma: The software deltoid of Definition 2.18 (page 41) refines the fine-
grained software deltoid, as per Definition 2.63 (page 58):

𝐷𝑡pkg ⊒ 𝐷𝑡pkg+

Proof: This is trivial by the deltoid homomorphism id𝒫𝒦𝒢×𝒫𝒦𝒢. Every software
delta is also a fine-grained software delta, with the same semantics. ◻

There are adapted definitions of the algebraic operators to go with this new del-
toid, but their full formulation wouldn’t add much to the story. Composition
of two deltas modifying the same method simply concatenates their corre-
sponding lists of statement-level operations. More interesting is the syntactic
refinement relation, which can be used to define both equivalence and con-
sensus (Definitions 2.42 and 2.43, page 52). The following is how refinement
works on the statement level.

▹ 3.24. Definition (Syntactic FgSD Refinement): We define syntactic FgSD re-
finement ≲ ⊆ 𝒟2

pkg+ ∪ 𝒟2
cl+ ∪ 𝒟2

st+ as the smallest preorder satisfying the the
conditions of Definition 2.46 (page 54), as well as the following:

(ins 𝑠𝑡1) ⌢ (ins 𝑠𝑡2) ⌢ 𝑜𝑝 ≲ (ins 𝑠𝑡2) ⌢ (ins 𝑠𝑡1) ⌢ 𝑜𝑝
by commu-
tative ins

This rule represents the fact that the order between two insertions does not
matter (Figure 3.7). The next two are more interesting:

(ins 𝑠𝑡1) ⌢ (pre 𝑠𝑡2) ⌢ 𝑜𝑝 ≲ (pre 𝑠𝑡2) ⌢ (ins 𝑠𝑡1) ⌢ 𝑜𝑝
by late
prepension

(ins 𝑠𝑡1) ⌢ (app 𝑠𝑡2) ⌢ 𝑜𝑝 ≲ (app 𝑠𝑡2) ⌢ (ins 𝑠𝑡1) ⌢ 𝑜𝑝
by late
appension

The idea is that after a pre or app (Figure 3.8a), there are more potential
places to insert a new statement than before (Figure 3.8b). So a delta is more
refined the earlier its insert operations occur. ⌟
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..

..
a.init(m);

..
◂▸ b.init(m);

a.init(m);

..
◂▸ c.init(m);

b.init(m);
a.init(m);

.

. . ..
b.init(m);

◂▸ c.init(m);
a.init(m);

..
b.init(m);
a.init(m);

◂▸ c.init(m);

.

prepend
b.init(m);

.

insert
c.init(m);

..

(a) A prepend followed by an insert.

..

..
a.init(m);

..
◂▸ c.init(m);

a.init(m);

..
◂▸ b.init(m);

c.init(m);
a.init(m);

..
◂▸ b.init(m);

a.init(m);
c.init(m);

. ..
a.init(m);

◂▸ c.init(m);

. .
.

insert
c.init(m);

.

prepend
b.init(m);

..

(b) An insert followed by a prepend.

Figure 3.8: The interaction between a prepend and an insert. The thick
borders in the third column indicate the result of their consensus.

..

..
a.init(m);

..
◂▸ b.init(m);

a.init(m);

..
◂▸ c.init(m);

b.init(m);
a.init(m);

.

prepend
b.init(m);

.

prepend
c.init(m);

(a) prepending first b, then c

..

..
a.init(m);

..
◂▸ c.init(m);

a.init(m);

..
◂▸ b.init(m);

c.init(m);
a.init(m);

.

prepend
c.init(m);

.

prepend
b.init(m);

(b) prepending first c, then b

Figure 3.9: The interaction between two prepend operations. As the two are
incompatible (and deterministic), they have an empty consensus.
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3.5 Ambiguous Delta Models

In Section 3.3 we explored techniques for ensuring a unique derivation in a
delta model. However, there are legitimate cases for the use of delta models
with multiple derivations. To that end, this section proposes two semantics
that are more flexible than the sole derivation semantics of Definition 3.5.

In previous work [1–3], we gave delta models disjunctive semantics, in
which a non-deterministic choice is made between available derivations. We
describe this semantics in Section 3.5.1. An alternative semantics is proposed
in Section 3.5.2: conjunctive semantics, which we believe to be a more natural
interpretation.

3.5.1 Disjunctive Semantics
In disjunctive semantics, a delta model is seen as providing a source of non-
determinism, just like deltas themselves can. This would lead to the following
delta model semantics, which applies regardless of the number of derivations:

▸ 3.25. Definition (Disjunctive Semantics): The disjunctive semantics of a delta
model 𝑑𝑚 ∈ 𝒟ℳ with derv(𝑑𝑚) = { 𝑑1, …, 𝑑𝑛 } are defined as follows:

⟦ 𝑑𝑚 ⟧⊍ ≝ ⟦𝑑1⟧ ∪ ⋯ ∪ ⟦𝑑𝑛⟧

Just take the union of the semantic deltas, i.e., a union of the product relations
(see Definitions 1.2 and 3.3 and Notation 2.13). ⌟

This semantics was used in the original ADM papers [1–3], though not by the
same distinctive name, as alternative semantics were not considered at the time.

Disjunctive semantics is the most flexible of the three delta model semantics
we present in this chapter, and the easiest to employ, as it simply requires that
any applicable derivation be applied. No special constructions or proofs of un-
ambiguity are necessary. For that reason, this semantics is best used to tolerate
ambiguity during development until stricter standards can be established.

3.5.2 Conjunctive Semantics
While disjunctive semantics certainly has its uses, it does not, perhaps, prop-
erly correspond to a developer’s likely intentions. As a means for introducing
nondeterminism, delta models are quite limited. Nondeterminism is much more
flexibly introduced by deltas themselves (Sections 2.4 and 3.4). So would it not
be better for delta model semantics to instead play a supporting rôle?

Conjunctive semantics is the dual of disjunctive semantics, and has a delta
model perform a modification that all derivations agree upon:

▸ 3.26. Definition (Conjunctive Semantics): The conjunctive semantics of a delta
model 𝑑𝑚 ∈ 𝒟ℳ with derv(𝑑𝑚) = { 𝑑1, …, 𝑑𝑛 } are defined as follows:

⟦ 𝑑𝑚 ⟧⩀ ≝ ⟦𝑑1⟧ ∩ ⋯ ∩ ⟦𝑑𝑛⟧

So, take the intersection of the product relations (see Definitions 1.2 and 3.3
and Notation 2.13). ⌟
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Note, at this point, that both disjunctive and conjunctive semantics are com-
patible with the sole derivation semantics of Definition 3.5 in the case that a
unique derivation exists:

3.27. Lemma: For all delta models 𝑑𝑚 ∈ 𝒟ℳ we have:

𝖴𝖣(𝑑𝑚) ⟹ ⟦ 𝑑𝑚 ⟧⊍ = ⟦ 𝑑𝑚 ⟧⩀ = ⟦ 𝑑𝑚 ⟧ ◻

Conjunctive semantics is less tolerant to mistakes but offers stronger guaran-
tees. Applying a delta model to a product under conjunctive semantics always
results in an end product that might also have resulted from the application of
any individual derivation. In other words, a developer may consider a specific
derivation 𝑑 ∈ derv(𝑑𝑚) and work under the assumption that 𝑑 is the deriva-
tion that will be chosen to generate the final product, without this leading to
contradiction:

3.28. Lemma: For any delta model 𝑑𝑚 ∈ 𝒟ℳ, any derivation 𝑑 ∈ derv(𝑑𝑚) and
any specification 𝑠 ∈ 𝒮, we have:

𝑑 ⊨ 𝑠 ⟹ ⟦ 𝑑𝑚 ⟧⩀ ⊆ 𝑠 ◻

The same thing is not true for disjunctive semantics.
That being said, this semantics takes more effort to implement. Disjunctive

semantics requires only that single derivations are tried until one is found that
is applicable to the product at hand (recall that deltas may be partially defined).
Conjunctive semantics, on the other hand, permits no such approach. There is
no general procedure for generating all possible outputs of a nondeterministic
delta in order to produce the required intersection; in fact, such a set may
well be infinite. So implementing delta model application under conjunctive
semantics requires a greater understanding of the domain. In particular, it
requires an implementation of the consensus operator (Definition 1.34):

▸ 3.29. Lemma: For any deltoid (𝒫, 𝒟, ⊓, ·, 𝜀, ⟦ ⟧) and delta model 𝑑𝑚 ∈ 𝒟ℳ𝒟, we
can characterize conjunctive semantics as follows:

⟦ 𝑑𝑚 ⟧⩀ = ⟦ ⨅ derv(𝑑𝑚) ⟧

Proof: This is easily derived from Definitions 2.38 and 3.26. ◻

So if we have an effective procedure for delta consensus of a specific deltoid,
delta models based on that deltoid can exhibit conjunctive semantics. This
can be worth the effort. A conflict model based on delta commutativity, as
introduced in Section 3.3, is useful, but can be too strict in the presence of more
sophisticated interaction. The concept of conjunctive semantics allows separate
developers to express intentions that would otherwise be flagged as a conflict,
but can now be reconciled without the need for manual onflict resolution.

For example, imagine two unordered software deltas modifying the same
method. One of them inserts a statement “c.init(m)”. The other one, hav-
ing stricter requirements, prepends a statement “b.init(m)” (Figure 3.8).
Composing them in two different orders results in two different derivations, but
intuitively there should be no conflict. As long as “b.init(m)” becomes the
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first statement of the method, and “c.init(m)” is inserted anywhere else,
the intentions of both developers are satisfied. And indeed, this is the result
of the consensus between Figure 3.8a and Figure 3.8b, as it should be.

In contrast, two deltas each wanting their own statement to appear first
in the method is recognized as a legitimate conflict by the empty consensus
between Figure 3.9a and Figure 3.9b.

3.6 Nested Delta Models

This section explores the possibility of deltas that are delta models. We then
take a particular look at the implications of nested delta models. There are a
number of reasons we might want delta models to act as deltas inside other
delta models, chief among them being the isolated/atomic application of a
collection of deltas within a delta model, making sure that any delta outside
that collection is applied before or after the entire collection — but not in
between.

Let us first establish some terminology:

▸ 3.30. Definition: A nesting delta model is a delta model that contains another delta
model. A simple delta is a delta that is not a delta model. A flat delta model is
a delta model that contains only simple deltas. A nested delta model is a delta
model contained within another delta model. ⌟

Nesting delta models have several uses in the area of modularization:
• Recall from Definitions 3.7 and 3.10 that a conflict is uniquely identified

by two conflicting deltas, and that each requires a single delta to resolve
it. But a conflict may have several causes. For example, two software
deltas may disagree on the implementation of more than one method.
Resolution for each of those methods could be modularized as a delta
inside a conflict resolving delta model.

• They may also be used for refactoring a single delta into two deltas. Nest-
ing the two together avoids the inadvertent introduction of new conflicts,
because the two deltas would still be treated as one (Figure 3.10).

• It may be generally beneficial to structure variability as a hierarchy, i.e.,
to implement a modification in terms of smaller modifications, in the best
traditions of computer programming. Nesting delta models can do this.

As an example of using a nested delta model for refactoring purposes consider
Figure 3.10. In this figure, delta 𝑑𝑆𝐻 from the Editor product line is being
refactored into two deltas 𝑑1

𝑆𝐻 and 𝑑2
𝑆𝐻, the first handling the fields and ini-

tialization of the feature in the Editor class and the second handling the
actual functionality of configuring the font. To avoid having to introduce extra
ordering into the delta model to preserve the original semantics, the two deltas
are placed in a nesting delta model which replaces the original 𝑑𝑆𝐻.

3.6.1 Semantics Independent Definitions
Let us first look at a way to syntactically extend a set of deltas to include all
delta models that could be built from that set:
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..
mod Editor

.add m_syntaxhl: SyntaxHL;.
mod init(m: Model): void
rep font(c: int): Font

.

add SyntaxHL

.

m_model: Model;

.

init(m: Model): void
font(c: int): Font

.....

⟿
.

mod Editor

.
add m_syntaxhl: SyntaxHL;

.
mod init(m: Model): void

..
mod Editor

..

rep font(c: int): Font

.

add SyntaxHL

.

m_model: Model;

.

init(m: Model): void
font(c: int): Font

.....

Figure 3.10: Refactoring 𝑑𝑆𝐻 from Figure 1.3 (page 9) into a nested delta
model containing deltas 𝑑1

𝑆𝐻 and 𝑑2
𝑆𝐻.

▸ 3.31. Definition (Delta Model Closure): Given a delta set 𝒟, we define the fol-
lowing family of delta sets for all natural numbers 𝑛 ∈ ℕ:

𝒟◬,0 ≝ 𝒟
𝒟◬,𝑛+1 ≝ 𝒟◬,𝑛 ∪ 𝒟ℳ𝒟◬,𝑛

We then define the delta model closure of 𝒟 as follows:

𝒟◬ ≝ ⋃
𝑛∈ℕ

𝒟◬,𝑛

We require that 𝒟 did not contain any delta models to begin with. ⌟

This definition allows delta models nested at unbounded —but finite— depth.
Note that 𝒟◬ can be partitioned into the set of simple deltas 𝒟 and the set
of delta models 𝒟ℳ𝒟◬

.
We can then define a nesting aware derivation function, first requiring a

straightforward extension of the composition operator to sets of deltas:

▸ 3.32. Notation: We extend · to sets as follows, for all delta sets 𝐷1, 𝐷2 ⊆ 𝒟:

𝐷2 · 𝐷1 ≝ { 𝑑2 · 𝑑1 | 𝑑1 ∈ 𝐷1 ∧ 𝑑2 ∈ 𝐷2 } ⌟

▸ 3.33. Definition (Nesting-aware Derivation): Define the nesting-aware deriva-
tion function derv◬: 𝒟◬ → Pow(𝒟) as follows, for any simple delta 𝑑 ∈ 𝒟 and
delta model 𝑑𝑚 = (𝐷, ≺) ∈ 𝒟ℳ𝒟◬

:

derv◬(𝑑) ≝ { 𝑑 }
derv◬(𝑑𝑚) ≝ ⋃

𝐷={ 𝑑1,…,𝑑𝑛 } ∧
∀𝑖,𝑗 ∈ { 1,…,𝑛 }:
𝑑𝑖≺𝑑𝑗 ⇒ 𝑖<𝑗

derv◬(𝑑𝑛) · … · derv◬(𝑑1) ⌟
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The algebraic interpretation of a delta model closed deltoid is quite simple. It
is a matter of setting up one of the following equivalences:

𝑑𝑚 ≃ ⨆ derv(𝑑𝑚) (under disjunctive semantics)
𝑑𝑚 ≃ ⨅ derv(𝑑𝑚) (under conjunctive semantics)

and then to ‘flatten’ delta models to delta expressions containing only sim-
ple deltas. A very similar technique is used in Chapter 6 in order to reduce
modalities to simple forms.

3.6.2 Expressiveness of Nested Delta Models
The semantics of nesting cannot be captured with flat delta models. Nesting
delta models are syntactically more expressive in the following sense:

▸ 3.34. Theorem: There are nesting delta models 𝑛𝑑𝑚 = (𝐷, ≺) ∈ 𝒟ℳ𝒟◬
that have

a derivation set derv◬(𝑛𝑑𝑚) which is inexpressible with any flat delta model
𝑑𝑚′ = (𝐷′, ≺′) containing the same simple deltas.

Proof: Consider the following nesting delta model 𝑛𝑑𝑚:

..𝑥.

𝑦

..

𝑧

𝑛𝑑𝑚 = ( { ({𝑥, 𝑦}, { (𝑥, 𝑦) }), 𝑧 },∅ )
derv◬(𝑛𝑑𝑚) = { 𝑧 · 𝑦 · 𝑥, 𝑦 · 𝑥 · 𝑧 }

simple deltas: 𝑥, 𝑦, 𝑧

To find a flat delta model 𝑑𝑚′ = ({𝑥, 𝑦, 𝑧}, ≺′) s.t. derv(𝑑𝑚′) = derv◬(𝑛𝑑𝑚),
consider all possible strict partial orders ≺′ over 3 elements:

≺′ = ∅ ⇒ |derv(𝑑𝑚′) | = 6
≺′ = {(𝑒, 𝑔)} s.t. {𝑒, 𝑔} ⊆ {𝑥, 𝑦, 𝑧} ⇒ |derv(𝑑𝑚′) | = 3
≺′ = {(𝑒, 𝑔), (𝑔, ℎ)} s.t. {𝑒, 𝑔, ℎ} = {𝑥, 𝑦, 𝑧} ⇒ |derv(𝑑𝑚′) | = 1
≺′ = {(𝑒, 𝑔), (𝑒, ℎ)} s.t. {𝑒, 𝑔, ℎ} = {𝑥, 𝑦, 𝑧} ⇒ derv(𝑑𝑚′) = {ℎ · 𝑔 · 𝑒, 𝑔 · ℎ · 𝑒}
≺′ = {(𝑒, ℎ), (𝑔, ℎ)} s.t. {𝑒, 𝑔, ℎ} = {𝑥, 𝑦, 𝑧} ⇒ derv(𝑑𝑚′) = {ℎ · 𝑔 · 𝑒, ℎ · 𝑒 · 𝑔}

As 𝑛𝑑𝑚 has two nesting-aware derivations, only the last two cases are relevant. If
𝑛𝑑𝑚 were expressible via a flat delta model, there would exist a bijection between
{ 𝑒, 𝑔, ℎ } and { 𝑥, 𝑦, 𝑧 } such that either { ℎ · 𝑔 · 𝑒, 𝑔 · ℎ · 𝑒 } = { 𝑧 · 𝑦 · 𝑥, 𝑦 · 𝑥 · 𝑧 }
or { ℎ · 𝑔 · 𝑒, ℎ · 𝑒 · 𝑔 } = { 𝑧 · 𝑦 · 𝑥, 𝑦 · 𝑥 · 𝑧 }. But no such bijection exists. Hence,
there exists no flat delta model 𝑑𝑚′ such that derv(𝑑𝑚′) = derv◬(𝑛𝑑𝑚). ◻
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3.7 Conclusion

In some ways, this chapter describes the most fundamentally novel contribution
of ADM: delta models, which organize deltas into a partial application order.
One delta may be dominant over another, or two deltas may be unrelated by the
order. This helps developers express their design intentions, and contain the
complexity of large system. If two deltas are unrelated, it is still possible that
both need access to the same resource, causing a conflict if both are applied
together, even if each works fine in isolation. To solve this problem and still
maintain separation of concerns, conflict resolving deltas are introduced.

The chapter then extends the software deltoid to allow fine-grained modifi-
cations, i.e., manipulating individual statements in methods. This is often ne-
glected in compositional approaches like delta modeling, because unlike classes,
methods and fields, statements have no names by which a delta can target
their position. Conjunctive delta model semantics are introduced to take ad-
vantage of fine-grained modifications. The operation of inserting a statement
in a non-deterministically chosen location avoids another type of overspecifi-
cation, representing the intention: “this method should run this statement at
some point; I don’t care when”. This reduces the likelihood that two changes
to the same method are seen as a conflict.

Finally, the chapter introduces nested delta models, which increase expres-
siveness of a deltoid and offer a new modularization technique.

3.8 Related Work

We now summarize related work that was not mentioned earlier in this chapter,
among which some of the advances since we started our work on ADM.

3.8.1 Delta-Oriented Programming

Originally, a delta oriented product line consisted of a single core and a set of
incomparable product deltas [160, 163]. Conflicts between deltas applicable for
the same feature configuration were prohibited. In order to express all possi-
ble products, an additional delta covering the combination of the potentially
conflicting deltas had to be specified, leading to code duplication.

Since the work on ADM, Schaefer et al. [162, 164] also introduced a partial
order between delta modules. However, it was required that conflicts were
removed by changing the deltas or by specifying some linear order (Actions 3.8
and 3.9). They were not allowed to exist and then resolved.

Later work [81, 161, 169] moved away from the partial order in favor of a
linearly ordered partition. Delta modules could be freely reordered within a
part, but the parts themselves had to be applied in a fixed total order. It is
easily proved that this is at least as expressive as Schaefer et al.’s earlier un-
ordered structure as well as the total ordering of AHEAD, as those correspond
to the two trivial partitions of the module set. But it is not as expressive as an
arbitrary partial order, which can be shown with the following simple example,
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inexpressable with a linearly ordered partition:

..𝑥.

𝑦

..

𝑧
𝑑𝑚 = ( { 𝑥, 𝑦, 𝑧 } , { (𝑥, 𝑦) } )

derv(𝑑𝑚) = { 𝑧 · 𝑦 · 𝑥, 𝑦 · 𝑧 · 𝑥, 𝑦 · 𝑥 · 𝑧 }

3.8.2 Feature Interaction Algebra
Two recent papers by Batory et al. [29, 33] describe a new algebraic treatment of
feature interaction. This treatment takes place in the setting of CIDE (Colored
IDE) [108], a variability tool based on code painting — each feature has an
associated color, which is used for the annotation of code. When code is painted
in more than one color, it is ‘interaction composition code’, similar in function
to conflict resolving deltas. The algebra introduces a notation # for interaction.

A rather confusing aspect of this work is the fact that # is presented as a
operator: if A and B are feature implementations, then A#B is also a feature
implementation; their resolution. The operator is commutative, associative,
and obeys such distributive laws as A#(B+ C) = (A#B) + (A#C), where + is
feature composition. But since the interaction between two features is a design
decision, it cannot be ‘computed’. And there is almost always more than one
way to do it. The operator’s exact meaning and purpose are therefore unclear.

Recently, Apel et al. [18] also refer to the # notation, but they use it only
as a shorthand for the corresponding coordination code; not as an operator.

3.8.3 Other Related Work
Our distinction between feature interaction and implementational conflicts
(Section 3.3) is also described by Kästner et al. [109] in a discussion paper on fea-
ture modularity. Mosser et al. [140] —in an otherwise fascinating contribution—
missed this distinction in their analysis of our original paper on ADM [1].

Our notion of conflict, based on a lack of commutativity, has already been
discussed in a number of publications. Mens et al. [132], for instance, describe
this phenomenon in the context of refactoring [71]. Their notion of conflict is
very similar to ours, though their solution —based on graph transformation
and critical pair analysis— is quite different. Apel et al. [14] and Oldevik
et al. [145] observe similar notions of conflict, respectively in aspect oriented
programming and model transformations. Apel et al. propose that the aspects
involved be refactored following a particular scheme — a measure which falls
under our Action 3.8. Oldevik et al. analyze the effect of ordering constraints
to resolve conflicts — quite like our Action 3.9.

Interestingly, while Darcs patch theory [97] has quite a different purpose
from ADM and the aforementioned literature, they deal with a very similar

—and naturally occurring— partially ordered structure: that of branches and
commits in a version control system. The most significant similarity is that
they deal with conflictors (entities for resolving conflicts), which are similar
to conflict-resolving deltas. Patch theory could certainly offer inspiration to
guide future research (Chapter 9).
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4.1 Introduction

A product line is usually defined as a set of systems, called products, each of
which is characterized by the set of features it provides. This allows common-
ality and variability between these products to be well-defined and amenable
to formal analysis. Products were introduced in Chapter 2. Delta models, the
tools we use for generating new products, were introduced in Chapter 3. We
now introduce the final ingredient to ADM-based product line models: features.

Many different definitions of the term “feature” have been given in literature.
Griss [75] defines features as follows:

“A feature is a product characteristic that users and customers
view as important in describing and distinguishing members of
[a] product-line.”

Classen et al. [53] gathered a number of definitions from literature in order
to compare them. The above definition is what they would call problem-
oriented. They also talk about definitions such as “a logical unit of behavior”
by Bosch [45] and “an increment in product functionality” by Batory et al. [27],
which are geared more towards implementation.

Griss’ definition is especially suitable for us, as our “logical unit of behavior”
or “increment in product functionality” is, of course, the delta. We see features
more as specifications of product requirements. Deltas and features should
not be restricted to a one-to-one relationship; a sentiment first expressed by
Schaefer et al. [163].

We are mainly interested in using features as a means of identifying specific
products in a product line, allowing us to use features

• to characterize the set of available products through a feature model,
which determines the possible feature configurations, i.e., the set of feature
combinations supported by the product line;

• to formulate product line implementations by linking feature symbols to
deltas through application conditions, allowing us to select the proper
deltas for deriving the implementation of a specific product; and

• to formulate product line specifications by associating requirements with
each feature.

Product generation is still a time consuming and expensive activity [65]. Ideally,
it should be a fully mechanical process, since any manual adjustments after
feature selection would need to be repeated whenever the main code-base is
changed in some way. This brings us to the main goal of this chapter:

Goal: Develop a technique for organizing a product line code-base in
such a way that product generation can be a mechanical process.

Such generation process is generally known as automated product derivation [1,
2, 65, 84, 163] (Figure 1.1, page 5).

When it comes to automated product derivation, annotative variablitity
techniques are undeniably popular. The idea is to take the full code-base and
to annotate the code with feature conditions without otherwise altering its
structure. For example, take a look at the following annotative implementation
of Syntax Highlighting and Error Checking in the Editor product line:
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▹ 4.1. Example: A Delta Editor product annotated with the 𝑆𝐻 and 𝐸𝐶 features.
The if-conditions are typically resolved at compile-time:

1 package DeltaEditor {
2 class Editor {
3 m_model : Model;
4.. if (𝑆𝐻) { m_syntaxhl : SyntaxHL; }
5.. if (𝐸𝐶) { m_errorch : ErrorChecker; }
6

7 init(m : Model) : void {
8 m_model = m;
9.. if (𝑆𝐻) { m_syntaxhl = new SyntaxHL(m); }

10.. if (𝐸𝐶) { m_errorch = new ErrorChecker(m); }
11 };
12

13 model() : Model { return m_model; };
14

15 font(c : int) : Font {
16 Font result = new Font();
17.. if (𝑆𝐻) { result.setColor(m_syntaxhl.font(c)); }
18.. if (𝐸𝐶) { result.setUnderlined(m_errorch.errorOn(c)); }
19 return result;
20 };
21

22 onMouseOver(c : int) : void {
23.. if (𝐸𝐶) {
24.. if (m_errorch.errorOn(c)) {
25.. super.showTooltip(m_errorch.errorText(c));
26.. }
27.. }
28 };
29 };
30

31.. if (𝑆𝐻) {
32.. class SyntaxHL {
33.. m_model : Model;
34..
35.. init(m : Model) { m_model = m; };
36..
37.. font(c : int) : Font { /* something complicated */; };
38.. };
39.. }
40

41.. if (𝐸𝐶) {
42.. class ErrorChecker {
43.. m_model : Model;
44..
45.. init(m : Model) { m_model = m; };
46..
47.. errorOn(c : int) : bool { /* some code */; };
48..
49.. errorText(c : int) : string { /* more code */; };
50.. };
51.. }
52 };
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As these annotations are essentially if-statements, this is a technique all pro-
grammers will understand, and one that is relatively effortless to set up. A
prominent example of the annotative technique in practice is the Linux kernel,
an immense collection of C code annotated by #ifdef preprocessor directives,
which allow conditional compilation [171].

But as discussed before, there are several disadvantages to this approach.
There is a notable lack of modularity and separation of concerns. In Exam-
ple 4.1, the implementations of 𝑆𝐻 and 𝐸𝐶 are mixed together and spread
across the core implementation, making it difficult to get a good overview of
the structure. Additionally, there is overspecification because of the linear na-
ture of program code, discussed at length in Chapter 3. In this chapter we
build on the concept of delta models in an effort to achieve automated product
derivation without neglecting these other goals. We also discuss product line
level specifications, allowing us to consider product line correctness.

Goal: Develop a formal concept of product line specification, to be
used both in verifying product line correctness and in guiding
the implementation process.

This chapter is organized as follows: Section 4.2 reviews feature modeling, the
discipline of describing product line variability on the high abstraction level
of feature symbols. In Section 4.3 we tie features to deltas using application
conditions and explore a formulation of product line implementations based on
delta models. Section 4.4 then introduces product line specifications. In Sec-
tion 4.5 we recognize a possible problem with purely compositional techniques
and propose the solution of parametric deltas in order to gain some of the ben-
efits of the annotative approach. Finally, Sections 4.7 and 4.8 offer concluding
remarks and discuss related work.

4.2 Feature Modeling

Feature-oriented Domain Analysis (FODA) was developed in 1990 in order to
study possible features of a system to enhance reuse in a particular application
domain. Feature Models were among its most useful tools, characterized as
“the greatest contribution of domain engineering to software engineering” [105],
and are still ubiquitous in Software Product Line Engineering today.

Feature models are not concerned with implementation, but with modeling
product line commonality and variability on a high level. What kind of features
are (should be) available, and what are the relationships between them? The
answers to these questions inform both specification and implementation of
delta-based product lines. Section 4.2.1 discusses the formal concept of feature.
Section 4.2.2 then formalizes feature models.

4.2.1 Features
We first introduce a formal representation for features:

▸ 4.2. Notation (Features): We denote features by the symbols 𝑓 , 𝑔 and ℎ. Finite
sets of features are denoted by 𝐹 , 𝐺 or ℱ. ⌟
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These features are just symbols [56], with no inherent meaning. It is what we
do with features next that gives them their semantics. They will play several
rôles in our formalism, which will be extended in Chapters 6 to 8.

We assume that each feature represents a discrete Boolean value, i.e., some-
thing that can be either on or off. This is a simplification. Czarnecki et al. [58,
59], for example, have worked on cardinality-based and attributed feature mod-
els. These allow a product to contain a specific feature more than once, or to
contain variations of a feature parametrized with arbitrary data-types. We
won’t discuss them in detail, though in subsequent chapters we’ll occasionally
dip our toe in the water. Using the simpler Boolean notion will make this
chapter easier to follow, without sacrificing generality.

There are two ways in which we give features meaning in this chapter. First,
product line implementations (Section 4.3) conditionally select deltas based
on a chosen selection of features — linking features to code. Then, product
line specifications (Section 4.4) impose requirements on products that claim to
implement given features — linking features to code specifications. This will
lead to notions of correctness and refinement for product lines.

4.2.2 Feature Models
Features represent the variability and commonality of the products in a prod-
uct line: the ways in which they can differ from each other. This is often
expressed in terms of a feature model [66, 105, 166], which expresses the rela-
tions between features and decides which combinations of them are considered
valid or conceptually feasible. Such feature combinations are more commonly
called feature configurations, a term that is appropriate for simple as well as
cardinality-based and attributed feature models.

Many formal descriptions [66, 91, 105] agree that, at the very least, a feature
model determines a set of valid feature configurations. And for the moment,
that is the only aspect of feature models we are interested in, which motivates
the following definition:

▸ 4.3. Definition (Feature Model): Given a set of features ℱ, a feature model
𝛷 ⊆ Pow(ℱ) is a set of sets of features from ℱ. Each 𝐹 ∈ 𝛷 is a feature
set corresponding to a valid feature configuration. ⌟

Though this is formally a useful notion, it lacks the intuition provided by
more diagrammatic descriptions. The most common representation for feature
models is the feature diagram [35, 60, 166, 167]. We’ve already seen one in
Figure 1.2 (page 8). Their semantics was described extensively by Czarnecki
et al. [60] in the aptly named paper “Feature Diagrams and Logics: There and
Back Again”. Though they take the concept further, for us it suffices to view a
feature diagram as specifying a system of propositional constraints as described
in Table 4.1. The corresponding feature model (Definition 4.3) is simply the
set of propositional models satisfying those constraints.

▹ 4.4. Example: Figure 1.2 represents the following propositional constraints:
𝐸𝑑 𝐸𝑑 ⇐ 𝑃𝑟 𝐸𝑑 ⇐ 𝑆𝐻
𝐸𝑑 ⇐ 𝐸𝐶 𝐸𝑑 ⇐ 𝑇𝐼 𝐸𝐶 ⇐ 𝑆𝐴

𝐸𝑑 ⇒ (𝐸𝐶 ∧ ¬𝑇𝐼) ∨ (¬𝐸𝐶 ∧ 𝑇𝐼)
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Notation Meaning

..𝑓
root feature 𝑓 is mandatory

𝑓

..𝑓.

𝑔1

.

𝑔𝑛

.

⋯

𝑓 selects at least one branch out of 𝑔1, …, 𝑔𝑛

𝑓 ⇔ (𝑔1 ∨ ⋯ ∨ 𝑔𝑛)

..𝑓.

𝑔1

.

𝑔𝑛

.

⋯

𝑓 selects exactly one branch out of 𝑔1, …, 𝑔𝑛

𝑓 ⇐ (𝑔1 ∨ ⋯ ∨ 𝑔𝑛)
𝑓 ⇒ (𝑔1 ∧ ¬𝑔2 ∧ ⋯ ∧ ¬𝑔𝑛) ∨

⋮ ∨
(¬𝑔1 ∧ ⋯ ∧ ¬𝑔𝑛−1 ∧ 𝑔𝑛)

..𝑔.

ℎ

ℎ is a mandatory subfeature on branch 𝑔

𝑔 ⇔ ℎ

..𝑔.

ℎ

ℎ is an optional subfeature on branch 𝑔

𝑔 ⇐ ℎ

..𝑓. ℎ. requires feature 𝑓 requires feature ℎ

𝑓 ⇒ ℎ

..𝑓. ℎ. excludes feature 𝑓 excludes feature ℎ

𝑓 ⇒ ¬ℎ

Table 4.1: Compositional semantics for the most common feature diagram
notations. More complex feature diagrams are built out of these ingredients
by unifying certain features (𝑓, ℎ) and branches (𝑔) without forming directed
cycles. A feature can be either a root feature, a mandatory subfeature . or
an optional subfeature . . A given feature can branch out into subfeatures
through any number of groups. Groups can also contain a single branch, in
which case exclusive semantics . and inclusive semantics . coincide.
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This, in turn, yields the following feature model:

𝛷Editor =

⎧{{{
⎨{{{⎩

{ 𝐸𝑑 } , { 𝐸𝑑, 𝑇𝐼 } , { 𝐸𝑑, 𝐸𝐶 } , { 𝐸𝑑, 𝐸𝐶, 𝑆𝐴 } ,
{ 𝐸𝑑, 𝑆𝐻 } , { 𝐸𝑑, 𝑆𝐻, 𝑇𝐼 } , { 𝐸𝑑, 𝑆𝐻, 𝐸𝐶 } ,
{ 𝐸𝑑, 𝑆𝐻, 𝐸𝐶, 𝑆𝐴 } , { 𝐸𝑑, 𝑃𝑟 } , { 𝐸𝑑, 𝑃𝑟, 𝑇𝐼 } ,
{ 𝐸𝑑, 𝑃𝑟, 𝐸𝐶 } , { 𝐸𝑑, 𝑃𝑟, 𝐸𝐶, 𝑆𝐴 } ,
{ 𝐸𝑑, 𝑃𝑟, 𝑆𝐻 } , { 𝐸𝑑, 𝑃𝑟, 𝑆𝐻, 𝑇𝐼 } ,
{ 𝐸𝑑, 𝑃𝑟, 𝑆𝐻, 𝐸𝐶 } , { 𝐸𝑑, 𝑃𝑟, 𝑆𝐻, 𝐸𝐶, 𝑆𝐴 }

⎫}}}
⎬}}}⎭ ⌟

We do lose some information in this representation; namely, we can’t distin-
guish a feature from any of its mandatory subfeatures. This distinction is not
important for the validity of feature configurations, but it does hold intuitive
value for developers, and informs the design of the product line architecture.
We can represent this extra information by keeping track of a subfeature rela-
tion ⇴ ⊆ ℱ × ℱ. But we won’t have any use for this until Chapter 7.

4.3 Product Line Implementation
During the remainder of this chapter we assume a deltoid
𝐷𝑡 = ( 𝒫, 𝒟, ·, 𝜀, ⟦ ⟧ ) and a finite set ℱ of features, unless spec-
ified otherwise.

Our goal now is to set up a model for a product line code base with the ability
to generate different products for different feature configurations, i.e., with
support for automated product derivation.

4.3.1 Product Line Ingredients
To link feature symbols to the implementation layer, each delta in a product
line is equipped with an application condition, specifying the feature selections
for which it should be applied. We map deltas to their application conditions
through an application function:

▸ 4.5. Definition (Application Function): Given a delta set 𝐷 ⊆ 𝒟, an applica-
tion function 𝛾: 𝐷 → Pow(Pow(ℱ)) expresses, for each delta 𝑑 ∈ 𝐷, the set
of feature selections it is applicable to. Thus, 𝐹 ∈ 𝛾(𝑑) denotes that delta
𝑑 is applicable to feature selection 𝐹 . The set 𝛾(𝑑) ⊆ Pow(ℱ) is called the
application condition of delta 𝑑. ⌟

In Figure 1.3 (page 9), application conditions are displayed as propositional
logic formulas to the bottom right of each delta. While sets of feature con-
figurations are convenient for formal reasoning, the original practice of using
propositional formulas [163] is better for developers, as they allow deltas to be
annotated with an open world assumption:

▹ 4.6. Example: Delta 𝑑𝑃𝑟∧𝑆𝐻 is annotated with 𝑃𝑟 ∧ 𝑆𝐻, the features with which
it is concerned. Its application condition is as follows:

𝛾(𝑑𝑃𝑟∧𝑆𝐻) = { { 𝐸𝑑, 𝑃𝑟, 𝑆𝐻 } , { 𝐸𝑑, 𝑃𝑟, 𝑆𝐻, 𝐸𝐶, 𝑆𝐴 } ,
{ 𝐸𝑑, 𝑃𝑟, 𝑆𝐻, 𝑇𝐼 } , { 𝐸𝑑, 𝑃𝑟, 𝑆𝐻, 𝐸𝐶 } } ⌟
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The advantage of the annotation 𝑃𝑟 ∧ 𝑆𝐻 is that the developer doesn’t have
to know about the features 𝐸𝐶, 𝑆𝐴 and 𝑇𝐼 . The propositional annotation
continues to be valid even when additional features are added to the feature
model; the corresponding set of feature configurations will simply grow with it.

A delta model equipped with an application condition is called annotated:

▸ 4.7. Definition (Annotated Delta Model): An annotated delta model is a tuple
𝑎𝑑𝑚 = (𝐷, ≺, 𝛾), where (𝐷, ≺) is a delta model and 𝛾: 𝐷→22ℱis an application
function. The set of all annotated delta models is denoted as a𝒟ℳ. If the delta
set or feature set is not clear from context, we attach a subscript as in a𝒟ℳ𝒟,ℱ.⌟

From an annotated delta model we can extract the deltas we need using the
chosen feature selection, resulting in the selected delta model:

▸ 4.8. Definition (Selected Delta Model): Given annotated delta model 𝑎𝑑𝑚 =
(𝐷, ≺, 𝛾) the delta model selected by feature selection 𝐹 ∈ Pow(ℱ) is defined:

𝑎𝑑𝑚 ↾ 𝐹 ≝ (𝐷𝐹 , ≺𝐹 )

where the set 𝐷𝐹 = { 𝑑 ∈ 𝐷 | 𝐹 ∈ 𝛾(𝑑) } contains all applicable deltas, and
≺𝐹 = (≺ ∩ 𝐷𝐹 ×𝐷𝐹 ) is the partial order, restricted accordingly. ⌟

A selected delta model can then be applied to a product as described in
Chapter 3 using either sole-derivation, disjunctive or conjunctive semantics
(Definitions 3.5, 3.25 and 3.26) to arrive at a target product.

This is the foundation of a product line implementation. Each contains a
feature model specifying the implemented variations, an annotated delta model
containing the modifications necessary to obtain them and a core product to
apply those deltas to:

▸ 4.9. Definition (Product Line Implementation): A product line implementa-
tion is a tuple 𝑃𝐿𝐼 = ( 𝛷, 𝑐, 𝐷, ≺, 𝛾 ), where 𝛷 ⊆ Pow(ℱ) is a feature model,
𝑐 ∈ 𝒫 is the core product, and 𝑎𝑑𝑚 = (𝐷, ≺, 𝛾) is an annotated delta model.
It is required that the following axioms hold:

a. All application conditions are valid: ∀𝑑 ∈ 𝐷: 𝛾(𝑑) ⊆ 𝛷
b. All selected delta models are applicable: ∀𝐹 ∈ 𝛷: 𝑐 ∈ pre ⟦ 𝑎𝑑𝑚 ↾ 𝐹 ⟧

The set of all product line implementations is denoted 𝒫ℒℐ. If the delta-,
product- or featureset is not clear from context, we attach a subscript as in
𝒫ℒℐ𝒟,𝒫,ℱ. ⌟

So Figures 1.2 and 1.3 (pages 8 and 9) together offer an overview of the whole
editor product line implementation, if we take into account that the core prod-
uct 𝑐 = ∅ is just the empty program.

Given a product line implementation, we can generate the end product(s)
corresponding to some chosen feature configuration by selecting the correct
delta model and applying the result to the core product. We consolidate this
in a new notion of semantic evaluation of product line implementations:
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▸ 4.10. Definition (Product Line Evaluation): product line evaluationProduct line
evaluation is a function ⟦ ⟧: 𝒫ℒℐ → Pow(Pow(ℱ) × 𝒫) that associates with a
given product line implementation 𝑃𝐿𝐼 a relation ⟦ 𝑃𝐿𝐼 ⟧ ⊆ Pow(ℱ) × 𝒫 map-
ping feature selections 𝐹 ⊆ ℱ to the products that may be generated by
𝑃𝐿𝐼 when given 𝐹 as input. For all product line implementations 𝑃𝐿𝐼 =
( 𝛷, 𝑐, 𝑎𝑑𝑚 ):

𝐹 ⟦ 𝑃𝐿𝐼 ⟧ 𝑝 ⟺≝ 𝐹 ∈ 𝛷 ∧ 𝑐 ⟦ 𝑎𝑑𝑚 ↾ 𝐹 ⟧ 𝑝

The above definition is for sole derivation semantics. Corresponding evaluation
functions ⟦ ⟧⊍ and ⟦ ⟧⩀ for disjunctive and conjunctive semantics (Section 3.5,
page 88) are defined analogously. ⌟

An effective procedure prd: 𝒫ℒℐ × Pow(ℱ) → Pow(𝒫) corresponding to these
semantics —responsible for actually producing specific members of the product
line— can be mechanically derived from the delta and delta model application
procedures (Sections 3.2 and 3.5).

4.3.2 Unambiguity of Product Lines
Recall that even if deltas are deterministic, a delta model can have multiple
distinct derivations, so without any further restrictions we are not guaranteed a
unique product for a given feature configuration. When employing sole deriva-
tion semantics, it is up to the developers to make sure that all selected delta
models are unambiguous (Section 3.3), leading to a unique derivation. We now
lift conflict resolution and unambiguity to the product line level.

A product line implementation is unambiguous if every selected delta model
is unambiguous. Since not all features are necessarily supposed to work to-
gether, we only care about the feature configurations from the embedded
feature model:

▸ 4.11. Definition (Product Line Unambiguity): A product line implementation
𝑃𝐿𝐼 = ( 𝛷, 𝑐, 𝑎𝑑𝑚 ) is unambiguous iff:

𝖴𝖠(𝑃𝐿𝐼) ⟺≝ ∀𝐹 ∈ 𝛷: 𝖴𝖠(𝑎𝑑𝑚 ↾ 𝐹)

Recall the 𝖴𝖠 predicate for delta models from Definition 3.12 (page 79). ⌟

We can write out and simplify this condition, which first requires the following
definition:

▸ 4.12. Definition (Joint Application Condition): Given a set of deltas 𝐷′ and
an application function 𝛾, the set of feature configurations for which all deltas
in 𝐷′ ⊆ dom(𝛾) are applicable, known as their joint application condition, is
denoted as follows:

𝛾∩(𝐷′) ≝ ⋂
𝑑∈𝐷′

𝛾(𝑑) ⌟

▸ 4.13. Lemma: Written out and simplified, the unambiguity condition is as follows
for a given product line implementation 𝑃𝐿𝐼 = ( 𝛷, 𝑐, 𝐷, ≺, 𝛾 )

∀𝑥, 𝑦 ∈ 𝐷: 𝑥 ↯ 𝑦
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

a

⇒ ∀𝐹 ∈ 𝛾∩({𝑥, 𝑦})
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

b

: ∃𝑧 ∈ 𝐷: 𝐹 ∈ 𝛾(𝑧) ∧ (𝑥, 𝑦) ◃ 𝑧
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

c
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..
mod Editor

..
rep font(c: int):

Font { ⋯ 𝐴 ⋯ }

.
mod Editor

..
rep font(c: int):

Font { ⋯ 𝐵 ⋯ }

..

mod Editor

..

rep font(c: int):
Font { ⋯ 𝐶 ⋯ }

..

𝑆𝐻

..

𝐸𝐶

..

𝑆𝐻 ∧ 𝐸𝐶

Figure 4.2: We simplify and zoom in on the 𝑑𝑆𝐻 ↯ 𝑑𝐸𝐶 conflict of Figure 1.3
(page 9). The method body 𝐶 can be found in Example 3.1 (page 71).

This means the unambiguity of a product line implementation can be decided
by checking whether (a) for all conflicting deltas 𝑥 ↯ 𝑦, (b) and all feature
configurations for which both 𝑥 and 𝑦 are selected, (c) that there is a conflict
resolving delta 𝑧 which is also selected for 𝐹 .

Proof: 𝖴𝖠(𝑃𝐿𝐼)
1⇐⇒ ∀𝐹 ∈ 𝛷: 𝖴𝖠 ( (𝐷, ≺, 𝛾) ↾ 𝐹 )
2⇐⇒ ∀𝐹 ∈ 𝛷: ∀𝑥, 𝑦 ∈ 𝐷𝐹 : 𝑥 ↯ 𝑦 ⇒ ∃𝑧 ∈ 𝐷𝐹 : (𝑥, 𝑦) ◃ 𝑧
3⇐⇒ ∀𝑥, 𝑦 ∈ 𝐷: ∀𝐹 ∈ 𝛾∩({𝑥, 𝑦}): 𝑥 ↯ 𝑦 ⇒ ∃𝑧 ∈ 𝐷𝐹 : (𝑥, 𝑦) ◃ 𝑧
4⇐⇒ ∀𝑥, 𝑦 ∈ 𝐷: ∀𝐹 ∈ 𝛾∩({𝑥, 𝑦}): 𝑥 ↯ 𝑦 ⇒ ∃𝑧 ∈ 𝐷: 𝐹 ∈ 𝛾(𝑧) ∧ (𝑥, 𝑦) ◃ 𝑧
5⇐⇒ ∀𝑥, 𝑦 ∈ 𝐷: 𝑥 ↯ 𝑦 ⇒ ∀𝐹 ∈ 𝛾∩({𝑥, 𝑦}): ∃𝑧 ∈ 𝐷: 𝐹 ∈ 𝛾(𝑧) ∧ (𝑥, 𝑦) ◃ 𝑧

Steps 1 and 2 apply Definitions 3.12 and 4.11. Step 3 is valid because both
before and after the ‘swap’, the second universal quantification is restricted so
as to end up with two deltas and a feature configuration for which they are
applicable. Step 4 pushes the applicability of 𝑧 inward by similar justification.
Finally, in step 5 the conflict condition 𝑥 ↯ 𝑦 can be pulled out because it is
independent from the choice of 𝐹 . ◻

As the set of feature configurations can be exponential in the number of fea-
tures, this check could be rather expensive. As an alternative, we propose
the notion of a globally unambiguous product line implementation, a property
which implies unambiguity:

▸ 4.14. Definition (Global Unambiguity): A product line implementation 𝑃𝐿𝐼 =
( 𝛷, 𝑐, 𝐷, ≺, 𝛾 ) is globally unambiguous iff the following holds:

𝖦𝖴𝖠(𝑃𝐿𝐼) ⟺≝ ∀𝑥, 𝑦 ∈ 𝐷: ( 𝑥 ↯ 𝑦 ∧ 𝛾∩({𝑥, 𝑦}) ≠ ∅ ) ⇒
∃𝑧 ∈ 𝐷: 𝛾∩({𝑥, 𝑦}) ⊆ 𝛾(𝑧) ∧ (𝑥, 𝑦) ◃ 𝑧 ⌟

So a product line implementation is globally unambiguous iff for every pair
of conflicting deltas applied together, there is also one conflict resolving delta
applied for at least the same feature configurations.
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▹ 4.15. Theorem: The Editor product line implementation of Section 1.4 is globally
unambiguous.

Proof: The only two potential conflicts are 𝑑𝑆𝐻 ↯ 𝑑𝐸𝐶 and 𝑑𝐸𝐶 ↯ 𝑑𝑇𝐼. The for-
mer is resolved by (𝑑𝑆𝐻, 𝑑𝐸𝐶) ◃ 𝑑𝑆𝐻∧𝐸𝐶, with 𝛾∩({𝑑𝑆𝐻, 𝑑𝐸𝐶}) = 𝛾(𝑑𝑆𝐻∧𝐸𝐶),
as illustrated in Figure 4.2. The latter does not need to be resolved, as
𝛾∩({𝑑𝐸𝐶, 𝑑𝑇𝐼}) = ∅; those two deltas are never selected together. ◻

Global unambiguity can be checked by inspecting the product line implemen-
tation once and does not require any selected delta models to be generated.
The following theorem states that any globally unambiguous product line im-
plementation is also unambiguous:

▸ 4.16. Theorem: A product line implementation that is globally unambiguous is also
guaranteed to be unambiguous.

Proof: In the following proof, 𝛾𝑥
𝑦 is used as an abbreviation for 𝛾∩({𝑥, 𝑦}):

𝖦𝖴𝖠(𝑃𝐿𝐼)
1⇐⇒ ∀𝑥, 𝑦 ∈ 𝐷: (𝑥 ↯ 𝑦 ∧ 𝛾𝑥

𝑦 ≠ ∅ ) ⇒ ∃𝑧 ∈ 𝐷: 𝛾𝑥
𝑦 ⊆ 𝛾(𝑧) ∧ (𝑥, 𝑦) ◃ 𝑧

2⇐⇒ ∀𝑥, 𝑦 ∈ 𝐷: (𝑥 ↯ 𝑦 ∧ 𝛾𝑥
𝑦 ≠ ∅ ) ⇒ ∃𝑧 ∈ 𝐷: ∀𝐹 ∈ 𝛾𝑥

𝑦 : 𝐹 ∈ 𝛾(𝑧) ∧ (𝑥, 𝑦) ◃ 𝑧
3⟹ ∀𝑥, 𝑦 ∈ 𝐷: (𝑥 ↯ 𝑦 ∧ 𝛾𝑥

𝑦 ≠ ∅ ) ⇒ ∀𝐹 ∈ 𝛾𝑥
𝑦 : ∃𝑧 ∈ 𝐷: 𝐹 ∈ 𝛾(𝑧) ∧ (𝑥, 𝑦) ◃ 𝑧

4⇐⇒ ∀𝑥, 𝑦 ∈ 𝐷: 𝑥 ↯ 𝑦 ⇒ ∀𝐹 ∈ 𝛾𝑥
𝑦 : ∃𝑧 ∈ 𝐷: 𝐹 ∈ 𝛾(𝑧) ∧ (𝑥, 𝑦) ◃ 𝑧

5⇐⇒ 𝖴𝖠(𝑃𝐿𝐼)

Steps 1 and 5 apply Definition 4.14 and Lemma 4.13. Step 2 is justified because
it is performed in a context where it is known that 𝛾𝑥

𝑦 ≠ ∅. In step 4 that
condition has become redundant, so it can be removed.

More interesting is the implication of step 3, which clarifies the difference
between global unambiguity and general unambiguity. An implementation can
be unambiguous without being globally unambiguous if some of its conflicts
are resolved by different deltas 𝑧 for different feature configurations 𝐹 . ◻

It seems to be rare that a practical situation calls for different conflict resolvers
for different feature configurations. Global unambiguity is easier to establish.
In the delta modeling workflow described in Chapter 7, for example, it is guar-
anteed by construction.

4.4 Product Line Specification

We now define the concept of a product line specification: an abstraction of
the desired semantics of a product line. Such a specification can be used both
to guide the implementation process (further discussed in Chapter 7) and to
verify the correctness of a given implementation.

A product line specification has two ingredients. The first is a feature model,
as introduced in Section 4.2, which expresses the set of feature configurations
that should be supported by the product line. The second ingredient is a
valuation function, an abstract representation of the desired semantics for every
feature. Note, in particular, that deltas don’t play a rôle, so we can model
specifications for any product line implementation technique.
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4.4.1 Valuation Functions
A valuation function is a semantic interpretation of the requirements imposed
on a product when it should support certain features. It maps a feature selec-
tion to the set of products deemed to implement those features correctly:

▸ 4.17. Definition (Valuation Function): A valuation function V: Pow(ℱ)→Pow(𝒫)
is a function taking a feature selection and returning the set of products that
satisfy the required semantics of that feature selection. The following axiom
needs to hold for all valuation functions V:

a. Compositionality: ∀𝐹, 𝐺 ⊆ ℱ: V(𝐹 ∪ 𝐺) ⊆ V(𝐹) ∩ V(𝐺) ⌟

Valuation functions are a concept originally from modal logic , a context in
which we shall revisit them in Chapter 6. Axiom 4.17a represents a reasonably
intuitive concept: if a product supports some combination of features, it also
supports each feature individually — and every combination in between. The
reverse is not generally true. A product can support a number of features indi-
vidually without properly implementing the requirements of their combination.

▹ 4.18. Example: For example, the Editor product 𝑝 = ( 𝑑𝑆𝐻 · 𝑑𝑃𝑟 ) (𝑐) may imple-
ment both Printing and Syntax Highlighting, i.e., 𝑝 ∈ V({ 𝑆𝐻 }) ∩ V({ 𝑃𝑟 }),
but does not implement the combined functionality that we intended; namely,
syntax highlighting on the printout: 𝑝 ∉ V({ 𝑃𝑟, 𝑆𝐻 }). However, the product
𝑞 = ( 𝑑𝑃𝑟∧𝑆𝐻 · 𝑑𝑆𝐻 · 𝑑𝑃𝑟 ) (𝑐) does implement the combination: 𝑞 ∈ V({ 𝑃𝑟, 𝑆𝐻 }).
This is what we call desired feature interaction. ⌟

Even in an abstract setting, we can use the valuation function to express some
useful properties. For instance,

V(𝐹 ∪ 𝐺) ≠ V(𝐹) ∩ V(𝐺)
means that special interaction is desired between the features of 𝐹 and 𝐺. And

∀𝐹 ⊆ ℱ: V(𝐹) = V ( 𝐹 ∪ 𝐺 )
indicates that features in 𝐺 have no semantics. This sometimes happens when
features are used purely to categorize their subfeatures. Chapter 7 includes an
example of this in an industrial case study.

We intend a valuation function to be represented syntactically, though this
is difficult to demonstrate in an abstract setting. The following is an incomplete
list of possible representations for the valuation function:

• In an object oriented setting, such as that of our running example, it
might contain formal specifications regarding the presence and behavior
of packages, classes and methods, to be verified statically. Alas, exploring
this option is outside the scope of the thesis.

• In an industrial setting it may be used to support test driven development
of software product lines. It would be represented as a collection of
test cases 𝑇 annotated with application conditions. The set V(𝐹) would
contain the products that pass all test-cases that are annotated with 𝐹 .

Taking this one step further, it would suggest the practice of maintain-
ing test cases as a delta-based product line implementation, in parallel
to the main software product line, and with roughly the same shape. It
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would be based on a deltoid such as ( Pow(𝑇 ), Pow(𝑇 ), ∪ ), where prod-
ucts are sets of test-cases that the corresponding software product needs
to pass, and deltas can augment them with additional test-cases.

4.4.2 Product Line Specifications
A product line specification contains a feature model and a valuation function:

▸ 4.19. Definition (Product Line Specification): A product line specification is a
pair 𝑃𝐿𝑆 = ( 𝛷, V ) where 𝛷 ⊆ Pow(ℱ) is a feature model (Definition 4.3) and
V: Pow(ℱ)→Pow(𝒫) is a valuation function (Definition 4.17). We require that
the following axiom holds:

a. No contradictory requirements: ∀𝐹 ∈ 𝛷: V(𝐹) ≠ ∅

The set of all product line specifications is denoted 𝒫ℒ𝒮. If the deltoid or
feature set is not clear from context, we attach a subscript as in 𝒫ℒ𝒮𝐷𝑡,ℱ. ⌟

Semantically speaking, a product line implementation can be seen as a (partial)
function performing automated product derivation, taking a feature configura-
tion and returning the corresponding product (Figure 1.1). A specification,
then, can be seen as the pre- and postcondition for that function. The feature
model is the precondition; the valuation function is the postcondition.

This allows us to define a formal notion of product line correctness. That
is, correctness of a product line implementation, both partial and total, with
regard to a product line specification:

▸ 4.20. Definition (Product Line Correctness): A product line implementation
𝑃𝐿𝐼 is partially correct or totally correct w.r.t. a product line specification
𝑃𝐿𝑆 = (𝛷S, V) respectively iff:

𝑃𝐿𝐼 ⊨ 𝑃𝐿𝑆 ⟺≝ ∀𝐹 ∈ 𝛷S: 𝐹 ∈ pre ⟦𝑃𝐿𝐼⟧ ⇒ ⟦𝑃𝐿𝐼⟧(𝐹) ⊆ V(𝐹)
𝑃𝐿𝐼 ⊨tot 𝑃𝐿𝑆 ⟺≝ ∀𝐹 ∈ 𝛷S⏟⏟⏟⏟⏟

a

: 𝐹 ∈ pre ⟦𝑃𝐿𝐼⟧
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

b

∧ ⟦𝑃𝐿𝐼⟧(𝐹) ⊆ V(𝐹)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

c
Correctness for disjunctive and conjunctive semantics are defined analogously
(Section 3.5). ⌟

Note its similarity to Definition 2.29 (page 45): (a) for all feature configurations
of the specification, (b) if 𝑃𝐿𝐼 implements that feature configuration, (c) then
any product it might generate is valid according to the valuation function.

The following formulation is equivalent, but may offer more insight because
it is at a lower level:

4.21. Lemma: For product line implementation 𝑃𝐿𝐼 = (𝛷I, 𝑐, 𝑎𝑑𝑚) and product
line specification 𝑃𝐿𝑆 = (𝛷S, V) we have:

𝑃𝐿𝐼 ⊨ 𝑃𝐿𝑆 ⟺ ∀𝐹 ∈ 𝛷S: ( 𝐹 ∈ 𝛷I ⇒ ⟦ 𝑎𝑑𝑚 ↾ 𝐹 ⟧ (𝑐) ⊆ V(𝐹) )

𝑃𝐿𝐼 ⊨tot 𝑃𝐿𝑆 ⟺ ∀𝐹 ∈ 𝛷S: ( 𝐹 ∈ 𝛷I ∧ ⟦ 𝑎𝑑𝑚 ↾ 𝐹 ⟧ (𝑐) ⊆ V(𝐹) )
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..

..
mod Editor

..
rep font(c: int):

Font { ⋯ 𝐴 ⋯ }

..
mod Editor

..
rep font(c: int):

Font { ⋯ 𝐵 ⋯ }

..
mod Editor

..
rep font(c: int):

Font { ⋯ 𝐷 ⋯ }

..
mod Editor

..
rep font(c: int):

Font { ⋯ 𝐶 ⋯ }

..
mod Editor

..
rep font(c: int):

Font { ⋯ 𝐸 ⋯ }

..
mod Editor

..
rep font(c: int):

Font { ⋯ 𝐹 ⋯ }

. ..
mod Editor

..
rep font(c: int):

Font { ⋯ 𝐺 ⋯ }

.

..

𝑆𝐻

..

𝐸𝐶

..

𝐾𝑀

..

𝑆𝐻 ∧ 𝐸𝐶

..

𝑆𝐻 ∧ 𝐾𝑀

..

𝐸𝐶 ∧ 𝐾𝑀

..

𝑆𝐻 ∧ 𝐸𝐶 ∧ 𝐾𝑀

Figure 4.3: An extended version of Figure 4.2, explained in Example 4.22.

Proof: It is a relatively direct translation using Definition 4.10. Just note that

𝐹 ∈ pre ⟦𝑃𝐿𝐼⟧ ⟺ 𝐹 ∈ 𝛷I

is a valid equivalence because of Axiom 4.9b. ◻

4.5 Parametric Deltas

Now that the foundation for delta-based product lines is in place, we explore a
problem with the approach. Conflict resolving deltas may be flexible, but they
are also bulky. Section 4.5.1 considers a situation in the Editor product line
where three independent deltas are all in conflict with each other, requiring a
number of conflict resolving deltas exponential to the number of features.

To accomodate a more lightweight approach, Section 4.5.2 introduces para-
metric deltas, which can pass a chosen feature configuration on to the language
of the underlying deltoid. This can give us some of the convenience of an-
notative variability techniques inside deltas. Parametric deltas do have their
downsides, however. To offer some contrast, Section 4.5.3 presents an alterna-
tive solution for the Editor problem, based on fine-grained deltas.

Section 4.6 builds on the potential of parametric deltas and uses them
to formalize nested product lines: product line implementations using nesting
annotated delta models as their base.

4.5.1 Combinatorial Explosion of Conflict Resolvers
A potential problem with “a resolver for every conflict” is that an exponential
number of them is required if many deltas mutually conflict:

▹ 4.22. Example: Let’s revisit the conflict in the Editor product line.
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The two deltas 𝑑𝑆𝐻 and 𝑑𝐸𝐶 are each responsible for implementing a fea-
ture: 𝛾(𝑑𝑆𝐻) = {𝐹 ∈ 𝛷 | 𝑆𝐻 ∈ 𝐹} and 𝛾(𝑑𝐸𝐶) = {𝐹 ∈ 𝛷 | 𝐸𝐶 ∈ 𝐹}. They are
in conflict: 𝑑𝑆𝐻 ↯ 𝑑𝐸𝐶, and we want to maintain global unambiguity. The idea
is to develop a conflict resolving delta 𝑑𝑆𝐻∧𝐸𝐶, applicable when both of those
features are selected (Definition 4.14): 𝛾(𝑑𝑆𝐻∧𝐸𝐶) = {𝐹 ∈ 𝛷 | 𝑆𝐻, 𝐸𝐶 ∈ 𝐹}.
So far so good.

Now what if a new feature is implemented: Keyword Marking (𝐾𝑀). It
is similar to Syntax Highlighting, but responsible for giving keywords a bold
typeface. To realize this feature, an additional delta is designed: 𝑑𝐾𝑀. The
problem is, 𝑑𝐾𝑀 has to redefine font(int) just like its siblings, so it is in
conflict with both of them. Moreover, by the new feature model, all three
features are independently selectable.

In order to regain global unambiguity and ensure the proper semantics
for each feature configuration, we need to create at least two more conflict
resolving deltas. Namely, 𝑑𝑆𝐻∧𝐾𝑀 and 𝑑𝐸𝐶∧𝐾𝑀, resolving 𝑑𝑆𝐻 ↯ 𝑑𝐾𝑀 and
𝑑𝐸𝐶 ↯ 𝑑𝐾𝑀. But it doesn’t end there. The three conflict resolving deltas are
now in conflict with each other. Thankfully, it does end eventually: if any two
of the conflict resolving deltas are selected, the third will always be selected
too. For example, we have 𝛾(𝑑𝑆𝐻∧𝐸𝐶) ∩ 𝛾(𝑑𝐸𝐶∧𝐾𝑀) ⊆ 𝛾(𝑑𝑆𝐻∧𝐾𝑀). So to
wrap up this three-way conflict, one final conflict resolving delta 𝑑𝑆𝐻∧𝐸𝐶∧𝐾𝑀
is needed.

Figure 4.3 illustrates that we need four conflict resolving deltas to fully
resolve the conflicts arising from three features. The following is method body
𝐶, resolving 𝑑𝑆𝐻 ↯ 𝑑𝐸𝐶 (recall the @ notation from page 71):

1(𝐶) Font result = new Font();
2 result.setColor (font@𝑑𝑆𝐻(c).color());
3 result.setUnderlined(font@𝑑𝐸𝐶(c).underlined());
4 return result;

The following is method body 𝐸, resolving 𝑑𝑆𝐻 ↯ 𝑑𝐾𝑀:

1(𝐸) Font result = new Font();
2 result.setColor(font@𝑑𝑆𝐻 (c).color());
3 result.setBold (font@𝑑𝐾𝑀(c).bold());
4 return result;

The following is method body 𝐹 , resolving 𝑑𝐸𝐶 ↯ 𝑑𝐾𝑀:

1(𝐹) Font result = new Font();
2 result.setUnderlined(font@𝑑𝐸𝐶 (c).underlined());
3 result.setBold (font@𝑑𝐾𝑀(c).bold());
4 return result;

The following is method body 𝐺, resolving the three-way conflict:

1(𝐺) Font result = new Font();
2 result.setColor (font@𝑑𝑆𝐻 (c).color());
3 result.setUnderlined(font@𝑑𝐸𝐶 (c).underlined());
4 result.setBold (font@𝑑𝐾𝑀(c).bold());
5 return result; ⌟
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These deltas are not duplicating behavior, as such. They only combine behav-
iors by referring to the deltas that originally implement them. But they are
duplicating code; boilerplate code, if you will. In the worst case, 𝑛 independent
features with conflicting implementations require 2𝑛 − 1 deltas, 2𝑛 − 𝑛 − 1 of
which are conflict resolvers.

It is possible that each of those feature combinations actually requires a
distinct implementation, depending on the product line specification. In that
case, this exponential complexity is inherent in the problem and delta models
like the one in Figure 4.3 are precisely what we need for full control. But this is
obviously not the case for the three-way conflict of the Editor. Indeed, in many
practical scenarios such as this one, the glue code follows a uniform pattern
which may be much more conveniently expressed in the underlying language.

4.5.2 Parametric Deltas
The way to accomplish the goal as described above is to allow the underlying
structure of the delta access to the chosen feature configuration. We first
define the abstract notion of such a parametric delta. We then instantiate it to
software deltas. Finally we show how this solves our three-way conflict problem.

Abstract Parametric Deltas

Intuitively, we want every parametric delta to represent a partial function,
accepting a feature selection as parameter and returning a traditional delta. In
previous work [5] this was literally the case. But the strict separation of syntax
and semantics in this thesis requires a different formulation. A partial function
is a semantic concept, and we want to leave the representation of parametric
deltas open to be decided for each concrete domain:

▸ 4.23. Definition (Parametric Deltoid): A parametric deltoid is a deltoid (𝒫, 𝑝𝒟×
Pow(ℱ), ⟦ , ⟧) with some set 𝑝𝒟 of what we call parametric deltas and a se-
mantic evaluation function ⟦ , ⟧: 𝑝𝒟 × Pow(ℱ) → Pow(𝒫 × 𝒫). ⌟

This does not change the basic concept of deltoid (Definition 2.11, page 37); we
simply make the set of deltas 𝒟 = 𝑝𝒟 × Pow(ℱ) a set of pairs, each containing
a parametric delta and a feature selection (its ‘parameter’). The behavior of a
semantic delta ⟦ 𝑝𝑑, 𝐹 ⟧ ⊆ 𝒫 × 𝒫 is based on both.

However, when working with a parametric deltoid, delta models and prod-
uct lines will be based on 𝑝𝒟 rather than 𝒟. We need to adapt their respective
semantic evaluation functions to pass on and supply the feature configuration
at selection time:

▸ 4.24. Definition (Parametric Delta Model Evaluation): Given a parametric del-
toid (𝒫, 𝑝𝒟×Pow(ℱ), ⟦ , ⟧), parametric delta model evaluation ⟦ , ⟧: 𝒟ℳ𝑝𝒟×
Pow(ℱ) → Pow(𝒫 × 𝒫) is defined as follows for all parametric delta models
𝑝𝑑𝑚 ∈ 𝒟ℳ𝑝𝒟 with a unique derivation derv(𝑝𝑑𝑚) = { 𝑝𝑑 }, and all feature
selections 𝐹 ⊆ ℱ:

⟦𝑝𝑑𝑚, 𝐹⟧ ≝ ⟦𝑝𝑑, 𝐹⟧
Corresponding evaluation functions ⟦ , ⟧⊍ and ⟦ , ⟧⩀ for disjunctive and con-
junctive semantics are defined analogously. ⌟
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▸ 4.25. Definition (Parametric Product Line Evaluation): Given a parametric
deltoid (𝒫, 𝑝𝒟×Pow(ℱ), ⟦ , ⟧), parametric product line evaluation ⟦ ⟧: 𝒫ℒℐ𝑝𝒟→
Pow(Pow(ℱ) × 𝒫) is defined as follows for all parametric product line imple-
mentations 𝑝𝑃𝐿𝐼 = (𝛷, 𝑐, 𝑝𝑎𝑑𝑚) ∈ 𝒫ℒℐ𝑝𝒟:

𝐹 ⟦ 𝑝𝑃𝐿𝐼 ⟧ 𝑝 ⟺≝ 𝐹 ∈ 𝛷 ∧ 𝑐 ⟦ 𝑝𝑎𝑑𝑚 ↾ 𝐹 , 𝐹 ⟧ 𝑝

Corresponding evaluation functions ⟦ ⟧⊍ and ⟦ ⟧⩀ for disjunctive and conjunc-
tive semantics are defined analogously. ⌟

Parametric Software Deltas

Concrete parametric deltas can be realized in any number of ways. For software
deltas it would feel most natural to expose the available feature symbols 𝑓 ∈ ℱ
as boolean constants in the underlying programming language:

▹ 4.26. Definition (Parametric Software Deltas): The set of parametric software
deltas 𝑝𝒟pkg+ is like the set of fine-grained software deltas 𝒟pkg+, but can
contain feature symbols 𝑓 ∈ ℱ in any Boolean context. ⌟

Semantic evaluation will substitute truth-values for the feature symbols to get
back to the fine-grained software deltoid situation of Definition 3.22:

▹ 4.27. Definition (Parametric Software Delta Evaluation): Semantic evaluation
for parametric software deltas ⟦ , ⟧: 𝑝𝒟pkg+ × Pow(ℱ) → Pow(𝒫𝒦𝒢 × 𝒫𝒦𝒢) is
defined as follows. For all products 𝑝, 𝑞 ∈ 𝒫𝒦𝒢, deltas 𝑝𝑑 ∈ 𝑝𝒟pkg+ and feature
configurations 𝐹 ⊆ ℱ:

𝑝 ⟦ 𝑝𝑑, 𝐹 ⟧ 𝑞 ⟺≝ 𝑝 ⦅𝑑⦆ 𝑞

where ⦅ ⦆ is fine-grained software delta evaluation (Definition 3.22) and 𝑑 ∈
𝒟pkg+ is the software delta obtained by replacing every occurrence of 𝑓 ∈ 𝐹 in
𝑝𝑑 with true and every occurrence of 𝑓 ∈ (ℱ ∖ 𝐹) in 𝑝𝑑 with false. ⌟

A Parametric Editor Product Line

The following example, illustrates a possible way to solve the three-way con-
flict problem of the Editor product line. The four conflict resolving deltas of
Example 4.22 are so similar, it would be more sensible to use a single para-
metric delta:

▹ 4.28. Example: The parametric solution to the three-way conflict problem in the
Editor product line is shown in Figure 4.4. The following is method body 𝐻,
combining the three features:

1(𝐻) Font result = new Font();
2 if (𝑆𝐻 ) result.setColor (font@𝑑𝑆𝐻 (c).color());
3 if (𝐸𝐶 ) result.setUnderlined(font@𝑑𝐸𝐶 (c).underlined());
4 if (𝐾𝑀) result.setBold (font@𝑑𝐾𝑀(c).bold());
5 return result; ⌟

During the process of automated product derivation, the feature symbols in the
implementation are replaced with the proper truth values (Definition 4.27):
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..

..
mod Editor

..
rep font(c: int):

Font { ⋯ 𝐴 ⋯ }

..
mod Editor

..
rep font(c: int):

Font { ⋯ 𝐵 ⋯ }

..
mod Editor

..
rep font(c: int):

Font { ⋯ 𝐷 ⋯ }

. ..
mod Editor

..
rep font(c: int):

Font { ⋯ 𝐻 ⋯ }

.

..𝑆𝐻 .. 𝐸𝐶.. 𝐾𝑀..

𝑆𝐻 ∨ 𝐸𝐶 ∨ 𝐾𝑀

Figure 4.4: A version of Figure 4.3 using a parametric delta. Method body 𝐻
can be found in Example 4.29.

▹ 4.29. Example: Given a feature configuration of 𝐹 = { 𝑆𝐻, 𝐾𝑀 }, the method body
𝐻 from Example 4.28 would become the following:

1(𝐻′) Font result = new Font();
2 if (true ) result.setColor (font@𝑑𝑆𝐻 (c).color());
3 if (false) result.setUnderlined(font@𝑑𝐸𝐶 (c).underlined());
4 if (true ) result.setBold (font@𝑑𝐾𝑀(c).bold());
5 return result;

We assume that these if constructs are resolved at compile-time, so that Line 3
can be discarded. ⌟

Note that the Example 4.28 method body is basically using an annotative
variability technique. Parametric deltas offer a mix of the annotative and
compositional approaches [108]. A powerful combination.

But with great power comes great responsibility [174]. In principle, a whole
product line could be encoded in a single parameteric delta, in which the code
is annotated with feature conditions to handle all cases. But, as discussed in
Section 1.2.3, annotative approaches do not benefit from modularity or sepa-
ration of concerns, which were among our main goals. Therefore, parametric
deltas are recommended only for resolving multi-way conflicts or feature inter-
actions, and then only when this significantly reduces the amount of code or
effort required. Parametric deltas are a double-edged sword.

4.5.3 Interlude: A Fine-grained Software Delta Solution
For the three-way conflict problem in the Editor product line, there is actually
an alternative solution using only the facilities of fine-grained software deltas:

▹ 4.30. Example: The three-way conflict can be avoided altogether by using the fine-
grained software delta insert operation as shown in Figure 4.5. The following
is statement delta 𝐼 , which inserts the behavior of 𝑆𝐻:

(𝐼) insert { result.setColor(SHfont.color()); };

The following is statement delta 𝐽 , which inserts the behavior of 𝐸𝐶:
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..

. ..
mod Editor

..
rep font(c: int):
Font { /*empty*/ }

.

..
mod Editor

..add SHfont(c: int):
Font { ⋯ 𝐴 ⋯ }

mod font { ⋯ 𝐼 ⋯ }

..
mod Editor

..add ECfont(c: int):
Font { ⋯ 𝐵 ⋯ }

mod font { ⋯ 𝐽 ⋯ }

..
mod Editor

..add KMfont(c: int):
Font { ⋯ 𝐷 ⋯ }

mod font { ⋯ 𝐾 ⋯ }

. ..mod Editor..
mod font { ⋯ 𝐿 ⋯ }

.

..

𝑆𝐻 ∨ 𝐸𝐶 ∨ 𝐾𝑀

..

𝑆𝐻

..

𝐸𝐶

..

𝐾𝑀

..

𝑆𝐻 ∨ 𝐸𝐶 ∨ 𝐾𝑀

Figure 4.5: An alternative to Example 4.28, explained in Example 4.30.

(𝐽) insert { result.setUnderlined(ECfont.underlined()); };

The following is statement delta 𝐾, which inserts the behavior of 𝐾𝑀 :

(𝐾) insert { result.setBold(KMfont.bold()); };

The following is statement delta 𝐿, which adds the surrounding statements:

1(𝐿) prepend { Font result = new Font(); };
2 append { return result; }; ⌟

This is more modular, but it is also more bulky, and the nondeterministic
nature of insert needs to be understood well enough to avoid potential pitfalls.
Parametric software deltas are based on more generally familiar annotative
techniques, and may be preferable in certain situations.

4.6 Nested Product Lines

Section 3.6 discussed nested delta models. At this point the next logical step
is to extend them to nested annotated delta models, in order to get nested
product lines.

There is a way we can achieve something along those lines already, just
by applying previously defined concepts. We can equip a product line im-
plementation with an annotated delta model (𝐷, ≺, 𝛾) based on a delta set
𝐷 ⊆ 𝒟◬ (Definition 3.31). This results in a nesting delta model of which only
the outermost deltas are annotated with an application condition, something
we might call a shallow annotation (Figure 4.6a).

But if we want to achieve a deep annotation, parametric deltas provide
a way:
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..

..𝑤 ..𝑦

..𝑥1 ..𝑥2

...

𝑧

.

⋯

.

⋯

(a) shallow annotation

..

..𝑤 ..𝑦

..𝑥1 ..𝑥2

...

𝑧

.

⋯

.

⋯

.
⋯

.
⋯

.

⋯

.

⋯

.

⋯

(b) deep annotation

Figure 4.6: The difference between a shallow and a deep annotation.

▸ 4.31. Definition (Annotated Delta Model Closure): Define the following fam-
ily of parametric delta sets for all natural numbers 𝑛 ∈ ℕ:

a𝒟◬,0 ≝ 𝒟
a𝒟◬,𝑛+1 ≝ a𝒟◬,𝑛 ∪ a𝒟ℳa𝒟◬,𝑛

We then define the annotated delta model closure of 𝒟 as follows:

a𝒟◬ ≝ ⋃
𝑛∈ℕ

a𝒟◬,𝑛

We require that 𝒟 didn’t contain any annotated delta models to begin with.⌟

Finally, we define an appropriate evaluation function, just as we did for para-
metric software deltas before (Definition 4.27):

▹ 4.32. Definition (Deeply Annotated Delta Evaluation): Given a deltoid 𝐷𝑡 =
(𝒫, 𝒟, ⦅ ⦆) and parametric deltoid 𝑝𝐷𝑡 = (𝒫, a𝒟◬ × Pow(ℱ), ⟦ , ⟧), we define
deeply annotated delta model evaluation ⟦ , ⟧: a𝒟◬ × Pow(ℱ) → Pow(𝒫 × 𝒫)
as follows for all simple deltas 𝑑 ∈ 𝒟, annotated delta models 𝑎𝑑𝑚 ∈ a𝒟ℳa𝒟◬
and feature configurations 𝐹 ⊆ ℱ:

⟦ 𝑎𝑑𝑚, 𝐹 ⟧ ≝ ⟦ 𝑎𝑑𝑚 ↾ 𝐹 , 𝐹 ⟧
⟦ 𝑑, 𝐹 ⟧ ≝ ⦅ 𝑑 ⦆

Corresponding evaluation functions ⟦ , ⟧⊍ and ⟦ , ⟧⩀ for disjunctive and con-
junctive semantics are defined analogously. ⌟

A nested product line implementation is then simply a parametric product line
implementation (Definition 4.25) based on a deeply annotated deltoid (Defini-
tion 4.32). A resulting annotated delta diagram would look like Figure 4.6b.
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4.7 Conclusion

We’ve spoken of features before now, but this chapter is where the concept
of feature is formally introduced and integrated into ADM. These features
are merely labels, but play a prominent rôle throughout the rest of the story.
They are traditionally used in a feature model as a way to identify the possible
products of a product line.

In ADM, producing the product corresponding to a specific feature selection
is done by preparing a large delta model, and annotating each delta with an ap-
plication condition. Specifications may be prepared for each significant feature
combination; feature combination —not feature— because often, two features
that are otherwise independent need to satisfy additional requirements when
they are selected together.

Apart from providing a characterisation of product line correctness, this
chapter lifts a number of concepts from Chapter 3 to the product line level,
such as unambiguity and nesting, and introduces a number of other useful
concepts, such as parametrized deltas.

4.8 Related Work

Much work related to ADM-based product lines has been discussed in earlier
chapters. But there are a number of interesting comparisons left to make with
regard to feature modeling and product derivation.

4.8.1 Feature Modeling
Feature-Oriented Domain Analysis (FODA) as a way to model the commonal-
ity and the variability of a set of systems on a specification level has been in use
since the early 1980’s [105]. In this thesis, as in its corresponding publications,
feature models are used (Section 4.2) to express this variability. But feature
modeling is not the only studied approach for characterizing different products
in a product line. Czarnecki et al. [61] compare feature modeling with decision
modeling, which is based on setting values for specific Boolean, numerical and
enumerated variables. It is interesting to note that if a feature model is sim-
plified to a set of feature configurations, as we do in Definition 4.3, it becomes
very similar to a decision model, e.g., one with a set of Boolean variables. Ac-
cording to Czarnecki et al., most of the differences between the two approaches
are historical and the two are converging. The biggest remaining difference
is that feature modeling has specific support for expressing commonality as
well as variability.

4.8.2 Product Derivation
First, we should note that our definition of ‘product’ deviates somewhat from
existing literature in feature modeling [26, 27, 53, 66], in which a product is usu-
ally uniquely defined for a given feature configuration. For us, the term refers
to a specific implementation, multiple of which may be potential candidates
for a given selection of features (Definition 4.10).



4.8. RELATED WORK 117

Automated product derivation has been widely recognized to improve qual-
ity and reduce time to market for large software systems [57, 65]. Perrouin et
al. [150] note a dichotomy in the way variability approaches support product
derivation. On the one hand, they say, approaches that support fully auto-
mated product derivation lack the flexibility to adapt to the needs of specific
customers. On the other hand, approaches that focus on flexibility lack au-
tomation. They propose an approach where a feature configuration directs the
composition of core assets, the result of which is then transformed to obtain
a target product.

We would suggest that ADM is fully capable of modeling this approach, as
composition and transformation are much the same for ADM. The transforma-
tion required to implement ‘special wishes’ for a specific feature configuration
can be encoded in a delta. It is then a simple matter to annotate this delta
with a specific (i.e., narrow) application condition (Definition 4.5), and make
it a maximal element in the application order (Definitions 1.23 and 3.2).

Existing compositional approaches to automated product derivation have
been discussed exhaustively in previous chapters. Existing annotative ap-
proaches include conditional compilation [171], frames [181] and Colored
Featherweight Java (CFJ) [106]. Another noteworthy existing project is
CIDE (Colored IDE) [108], a tool which displays annotated code in different
colors —each representing a feature— and achieves a kind of visual separation
of concerns this way, gaining some of the benefits of compositional techniques.
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5.1 Introduction

In this chapter we take a small break from the Editor example, and discuss the
contributions of delta modeling to LATEX, the typesetting language [118].

It has been have mentioned before that ADM, being an abstract formalism,
applies to a domain wider than just software. Indeed, the principles of ADM
may prove quite valuable for preparing families of technical documents. For
example, it is often wise to tailor your curriculum vitæ (or résumé, if you
prefer) to the position that you are applying for. A university course may ask
students to buy a textbook, but then only use a small part of it; in fact, many
textbooks include course outlines or annotations for level of difficulty [21, 36,
116, 155], already assuming that only a part of it will be perused, basically
wasting paper. Save the planet — use delta modeling!

Goal: Implement delta modeling for the LATEX language.

LATEX makes a particularly suitable language to showcase delta modeling. The
TEX language [115], upon which LATEX is based, is a domain specific language
meant for preparing technical documents, but it also happens to be Turing
complete. At its core it is a macro language capable of manipulating arbi-
trary strings (more accurately called token lists). The relatively recent LATEX3
programming layer [137, 176] includes what is essentially a while-language
supporting various data-structures.

Moreover, most of the TEX language can be redefined from within the
language itself, giving programmers an inordinate amount of control; a fact
famously demonstrated by Carlisle [49] when he wrote the following TEX pro-
gram which generates the full lyrics to “The Twelve Days of Christmas”:

1 \let~\catcode~`76~`A13~`F1~`j00~`P2jdefA71F~`7113jdefPALLF
2 PA''FwPA;;FPAZZFLaLPA//71F71iPAHHFLPAzzFenPASSFthP;A$$FevP
3 A@@FfPARR717273F737271P;ADDFRgniPAWW71FPATTFvePA**FstRsamP
4 AGGFRruoPAqq71.72.F717271PAYY7172F727171PA??Fi*LmPA&&71jfi
5 Fjfi71PAVVFjbigskipRPWGAUU71727374 75,76Fjpar71727375Djifx
6 :76jelse&U76jfiPLAKK7172F71l7271PAXX71FVLnOSeL71SLRyadR@oL
7 RrhC?yLRurtKFeLPFovPgaTLtReRomL;PABB71 72,73:Fjif.73.jelse
8 B73:jfiXF71PU71 72,73:PWs;AMM71F71diPAJJFRdriPAQQFRsreLPAI
9 I71Fo71dPA!!FRgiePBt'el@ lTLqdrYmu.Q.,Ke;vz vzLqpip.Q.,tz;

10 ;Lql.IrsZ.eap,qn.i. i.eLlMaesLdRcna,;!;h htLqm.MRasZ.ilk,%
11 s$;z zLqs'.ansZ.Ymi,/sx ;LYegseZRyal,@i;@ TLRlogdLrDsW,@;G
12 LcYlaDLbJsW,SWXJW ree @rzchLhzsW,;WERcesInW qt.'oL.Rtrul;e
13 doTsW,Wk;Rri@stW aHAHHFndZPpqar.tridgeLinZpe.LtYer.W,:jbye

Because of the great expressiveness of the language, LATEX delta modeling
can be implemented from within LATEX itself —a practice known as monkey-
patching [138]— though the operating domain for the deltas will need to be
limited to specific subsets of the language.

This great expressiveness can also be a problem at times. Since LATEX has
no encapsulation or formal namespacing, LATEX packages written by different
people often conflict with each other — a well-known problem with the LATEX
ecosystem. Luckily, we know how to deal with conflicts.

Goal: Use ADM principles to manage dependencies and conflicts be-
tween independent LATEX packages.
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In accordance with the two goals described above, this chapter introduces two
LATEX packages. We first look at the delta-modules package in Section 5.2,
which can be used to specify families of technical documents and includes
an implementation of automated document generation. As a case-study we
use this very PhD thesis, a member of what we shall call the Thesis product
line. Other documents belonging to this product line skip certain topics for a
selective reading experience. The source and the members of the Thesis product
line can be dynamically generated and downloaded from the following URL:

http://www.mhelvens.net/phd-thesis

Section 5.3 describes the ADM-based package manager pkgloader, thereby
addressing the package management problem. Finally, Section 5.4 offers con-
cluding remarks and Section 5.5 briefly discusses related work.

5.2 delta-modules: Deltas for Document Generation

We now introduce the LATEX delta modeling functionality that was used to
organize the content of this thesis. This functionality is provided by the LATEX
package called delta-modules. The following subsections describe the pro-
cess of building a LATEX product line implementation (Section 4.3) using this
package, with the structure of this thesis as an example. The underlying deltoid
is implied by the available LATEX commands, rather than defined formally.

5.2.1 Building the Feature Model
Users of the package declare a feature model using the \DeclareFeature
command:

▹ 5.1. Definition (\DeclareFeature): The \DeclareFeature command offers
the following syntax for the declaration of features and feature-relations:

⟨𝑑𝑒𝑐𝑙𝑎𝑟𝑒‐𝑓 ⟩ : : = \DeclareFeature [ * ] { ⟨𝑓𝑖𝑑⟩ } { ⟨𝑓‐𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛⟩ }
⟨𝑓‐𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛⟩ : : = extends { ⟨𝑓𝑖𝑑⟩ { , ⟨𝑓𝑖𝑑⟩ } }

| requires { ⟨𝑓𝑖𝑑⟩ { , ⟨𝑓𝑖𝑑⟩ } }
| excludes { ⟨𝑓𝑖𝑑⟩ { , ⟨𝑓𝑖𝑑⟩ } }

where ⟨𝑓𝑖𝑑⟩ represents a feature name, which can be an arbitrary string, apart
from some LATEX-specific exceptions. ⌟

Each use of the command declares a feature and its relation to other features.
extends indicates that the left-hand feature is a subfeature of the right-hand
feature. requires and excludes take their respective meanings from feature
diagram terminology (Table 4.1). The optional asterisk to the right of the
command name indicates that the declared feature is mandatory, relative to
its superfeatures, if any.

▹ 5.2. Example (Thesis Feature Model): The following was used to specify the
feature model of the thesis:

http://www.mhelvens.net/phd-thesis
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..Thesis.

Algebraic DM

.

Introduction

.

Conclusion

.

Delta Models

.

Product Lines

.

Workflow

.

Delta Logic

.

Dynamic DM

.

LaTeX Deltas

..

DL for DMW

Figure 5.1: The feature model of the Thesis product line.

1 \DeclareFeature*{Thesis}
2 \DeclareFeature*{Introduction} extends {Thesis}
3 \DeclareFeature*{Algebraic DM} extends {Thesis}
4 \DeclareFeature {Delta Models} extends {Algebraic DM}
5 \DeclareFeature {Product Lines} extends {Delta Models}
6 \DeclareFeature {LaTeX Deltas} extends {Product Lines}
7 \DeclareFeature {Delta Logic} extends {Product Lines}
8 \DeclareFeature {Workflow} extends {Product Lines}
9 \DeclareFeature {Dynamic DM} extends {Product Lines}

10 \DeclareFeature*{Conclusion} extends {Thesis}
11 \DeclareFeature {DL for DMW} extends {Delta Logic,
12 Workflow} ⌟

The mandatory Thesis feature represents the basic document structure, spec-
ified outside of any delta, i.e., in the core product. The Introduction and
Conclusion features represent their respective chapters, both also manda-
tory. All other features except DL for DMW represent research topics, each
of which also has a chapter to itself, but the selection of which also influences
the content of other chapters. DL for DMW represents the option of using
Delta Logic (Chapter 6) in the formalization of the Delta Modeling Workflow
(Appendix A). It is the first feature we have seen with more than one direct
superfeature. Altogether, the thesis product line supports 22 products.
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The corresponding feature diagram is shown in Figure 5.1. Note that it
closely follows the suggested reading order on Page 14. But the conclusion,
while being last in the narrative structure, should be included regardless of
which other features are selected.

5.2.2 Building the Delta Modules
Deltas take the form of a LATEX environment. This means that their main
content is delimited by a \begin and an \end:

▹ 5.3. Definition (DeltaModule): LATEX delta modules have the following syntax:

⟨𝑑‐𝑚𝑜𝑑𝑢𝑙𝑒⟩ : : = \begin{DeltaModule} {⟨𝑑𝑖𝑑⟩}
{ ⟨𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ | ⟨𝑜𝑟𝑑𝑒𝑟⟩ }
{ ⟨𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛⟩ }

\end{DeltaModule}

⟨𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ : : = if { ⟨𝜙⟩ }

⟨𝜙⟩ : : = ⟨𝑓𝑖𝑑⟩ | ⟨𝜙⟩ && ⟨𝜙⟩ | ⟨𝜙⟩ || ⟨𝜙⟩ | ! ⟨𝜙⟩ | ( ⟨𝜙⟩)

⟨𝑜𝑟𝑑𝑒𝑟⟩ : : = before { ⟨𝑑𝑖𝑑⟩ { , ⟨𝑑𝑖𝑑⟩ } }
| after { ⟨𝑑𝑖𝑑⟩ { , ⟨𝑑𝑖𝑑⟩ } }

where ⟨𝑑𝑖𝑑⟩ represents a delta name. Deltas occupy a separate namespace from
features, so a delta and a feature can share the same name. ⌟

Every delta has a unique name ⟨𝑑𝑖𝑑⟩. An application condition is specified
through the ⟨𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ clause. Its Boolean expressions use the syntax estab-
lished by LATEX3 [176], which is the same as for the C language. If multiple
⟨𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ clauses are used for a single delta, their disjunction is used. The
application order is specified through the ⟨𝑜𝑟𝑑𝑒𝑟⟩ clause, using before and
after to indicate the delta order. An error message is displayed if the even-
tual application order is not a strict partial order, i.e., if it contains a cycle.

5.2.3 LATEX Delta Operations
We now specify the possible ⟨𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛⟩s. What can a LATEX delta module do?
The answer is: anything LATEX can do. The full language is available within a
delta module, though no content should be typeset directly, since delta modules
are usually specified in the document preamble (before \begin{document}).
Rather, they should modify commands that are later used to typeset content.

Even so, if we want to be able to reason about delta commutativity (Def-
inition 2.40) —to perform conflict analysis— or take a delta consensus (Sec-
tion 2.6.2), the full LATEX language is too rich and unpredictable. We would
need to restrict delta modules to simpler operations with more predictable be-
havior. Since LATEX processes token lists (which can contain both code and
data), the package introduces some delta-aware token list operations, similar
to the method- and statement-level operations of fine-grained software-deltas
(Section 3.4):
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▹ 5.4. Definition (Delta Aware Operations): The delta-aware operations avail-
able as of writing this are the following:

⟨𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛⟩ : : = \Replace ⟨𝑐𝑜𝑚𝑚𝑎𝑛𝑑⟩ with { ⟨𝑡𝑜𝑘𝑒𝑛𝑙𝑖𝑠𝑡⟩ }
| \Prepend { ⟨𝑡𝑜𝑘𝑒𝑛𝑙𝑖𝑠𝑡⟩ } to ⟨𝑐𝑜𝑚𝑚𝑎𝑛𝑑⟩

| \Append { ⟨𝑡𝑜𝑘𝑒𝑛𝑙𝑖𝑠𝑡⟩ } to ⟨𝑐𝑜𝑚𝑚𝑎𝑛𝑑⟩

| \Insert { ⟨𝑡𝑜𝑘𝑒𝑛𝑙𝑖𝑠𝑡⟩ } into ⟨𝑐𝑜𝑚𝑚𝑎𝑛𝑑⟩

A ⟨𝑡𝑜𝑘𝑒𝑛𝑙𝑖𝑠𝑡⟩ is a fragment of LATEX code, which can later be interpreted as
either code or data. A ⟨𝑐𝑜𝑚𝑚𝑎𝑛𝑑⟩ is not delimited by braces and is of the form
\⟨commandname⟩. (\Replace, \Prepend, etc. are themselves commands,
but they are prohibited from modifying themselves to safeguard the consistency
of the running package.) ⌟

Even though the delta-modules package currently employs disjunctive se-
mantics (Definition 3.25), the \Insert command is already provided for when
conjunctive semantics (Definition 3.26) is implemented in the future.

Apart from tracking modifications for conflict analysis, the first three oper-
ations map quite directly to LATEX3 token list commands. \Insert, however,
needs some special attention. It would not be useful to insert new material
between two arbitrary tokens; every letter and command constitutes a token.
Instead, \Insert interprets the content of ⟨𝑐𝑜𝑚𝑚𝑎𝑛𝑑⟩ as a comma-separated
list, and inserts the given material at an arbitrary position in that list (includ-
ing an extra comma). If a comma should not be interpreted as a separator, it
can be protected with braces: {,}.

▹ 5.5. Example: Each of the nine deltas implementing a specific thesis chapter look
something like this:

1 \begin{DeltaModule} {⟨𝑓𝑖𝑑⟩ Delta} if {⟨𝑓𝑖𝑑⟩} after { ⋯ }
2 \Insert {⟨𝑓𝑖𝑑⟩} into \vpFeatureList
3 ⋮
4 \end{DeltaModule} ⌟

The \Insert operation above is how we can say that the document you are
reading was generated with the features Thesis, Introduction, Algebraic DM,
Delta Models, Product Lines, LaTeX, Delta Logic, Workflow, Dynamic DM,
and Conclusion. The previous sentence was generated using the following code:

1 \FormatSequence \vpFeatureList { and } {, } {, and }

which interprets the given token list as a comma separated sequence, discards
redundant commas, then joins the list together using the specified separators.

▹ 5.6. Example: This is the delta module integrating the LaTeX Deltas feature:

1 \begin{DeltaModule} {LaTeX Deltas} if {LaTeX Deltas}
2 after {Product Lines}
3 \Insert {LaTeX Deltas} into \vpFeatureList
4 \Insert {\include{chap:latex-deltas}} into \vpChapters
5 \Insert {
6 \DescribeChapter{chap:latex-deltas}
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7 This chapter demonstrates the \LaTeX\
8 implementation of delta modeling by
9 documenting two new \LaTeX-packages.

10 ⋮
11 } into \vpChapterSummaries
12 \Insert {
13 \ChapterSummarySubsection{chap:latex-deltas}
14 Several publications on ADM make the claim
15 that deltas can be used to modularize any
16 kind of artefact — not just source code.
17 ⋮
18 } into \vpConclusionSections
19 \Insert {
20 \subsection {\LaTeX\ Deltas}
21 Future work related to the \LaTeX\ packages is
22 likely to be of a \emph{development-} rather than
23 a research nature. As the code is open source,
24 ⋮
25 } into \vpFutureWorkSections
26 ⋮
27 \end{DeltaModule}

The \vpChapters command on line 4, as one of the most coarse-grained
variation points, inserts the actual chapters into the thesis structure. The
\vpChapterSummaries command (line 11) inserts the chapter summaries of
Section 1.5.3. \vpConclusionSections and \vpFutureWorkSections
(lines 19 and 12) contain subsections for Chapter 9. ⌟

5.2.4 Parametrized Delta Modules
LATEX delta modules are parametrized, as described in Section 4.5. Anywhere
in the document, the \IfFeatureSelected(TF) commands can be used:

▹ 5.7. Definition (\IfFeatureSelected(TF)): The following commands allow
inline branching based on the feature selection:

⟨𝑖𝑓‐𝑓‐𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑⟩ : : = \IfFeatureSelectedTF {⟨𝜙⟩} {⟨𝑡𝑟𝑢𝑒⟩} {⟨𝑓𝑎𝑙𝑠𝑒⟩}
\IfFeatureSelectedT {⟨𝜙⟩} {⟨𝑡𝑟𝑢𝑒⟩}
\IfFeatureSelectedF {⟨𝜙⟩} {⟨𝑓𝑎𝑙𝑠𝑒⟩}

⌟

For the thesis, this is used for the odd crossreference to an optional chapter. It
provides more clarity than using an abstractly named variation point.

5.2.5 Choosing a Feature Configuration and Generating
the Document

The final delta-related command in the document preamble should be the
\SelectFeatures command, making the final selection:



5.2. DELTA-MODULES: DELTAS FOR DOCUMENT GENERATION 125

▹ 5.8. Definition (\SelectFeatures): The feature selection is made with the fol-
lowing syntax:

⟨𝑠𝑒𝑙𝑒𝑐𝑡‐𝑓 ⟩ : : = \SelectFeatures { ⟨𝑓𝑖𝑑⟩ { , ⟨𝑓𝑖𝑑⟩ } } ⌟

Similar commands are provided for reading the feature selection from a file or
to request it by standard input from the command-line.

At this point an error message is displayed if the given selection is not
a valid feature configuration or if there is no acyclic delta derivation. If no
problems arise, the applicable deltas are executed in the proper order. After
this, the normal LATEX compilation process can resume.

▹ 5.9. Example: The following command was used in the generation of this thesis:

1 \SelectFeatures {Thesis, Introduction,
2 Algebraic DM, Delta Models,
3 Product Lines, LaTeX,
4 Delta Logic, Workflow,
5 Dynamic DM, Conclusion}

The code above is also different for each thesis product (besides possibly not
being numbered 5.9, which is handled by LATEX natively). Making sure the
code sample is generated with nice formatting for all feature configurations took
some effort. Future versions of the package will be equipped with commands
specifically meant to make that sort of task easier. ⌟

The application of delta modeling to document preparation may offer a number
of practical benefits. The introduction to this chapter introduced the idea of
a line of textbooks, each tailored to a specific curriculum or level of difficulty,
as well as the idea of maintaining a number of specifically targeted versions
of ones CV. Another is the preparation of technical manuals that come with
many consumer products. The dominant practice right now is to include the
same manual for a range of products, confusing customers as to the features
of their new purchase. The preparation of the various versions of this thesis is
meant as a proof-of-concept for such use-cases.
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5.3 pkgloader: An ADM-based Package Manager

LATEX can be extended by loading packages, which can add new definitions, and
remove and modify existing ones. The delta-modules package described in
Section 5.2 is one example. Packages can implement domain specific languages,
monkey-patch the core language to hook into existing commands, and even
change the meaning of individual symbols. Put simply, LATEX packages have
free rein. This power can be quite useful, but makes it too easy for independent
package authors to step on each others’ toes. CTAN (the Comprehensive TEX
Archive Network [168]) is full of conceptually independent packages that cannot
be loaded together, or break if they are not loaded in a specific order.

This problem sounds familiar. Let us look at it from a delta modeling per-
spective. We can see the runtime state of the LATEX language as a product,
package-names as features and package implementations as deltas.1 From this
new perspective, we can describe the problem in more familiar terms. The
LATEX eco-system is suffering from the optional feature problem [111]. But
there is no automated package management to speak of. Document authors
are told to avoid certain package combinations, or to load packages in some
specific order (Action 3.9, page 77). Some of the larger packages are designed
to test for the presence of other packages in order to circumvent known con-
flicts (Action 3.8, page 77). But solving these problems on a case-by-case basis
takes time and effort for both document and package authors. It pollutes the
code, makes maintenance more difficult, and confuses new users. This is an
opportunity for delta modeling to shine. Enter pkgloader.

5.3.1 Package Description
LATEX packages are generally loaded with either the \usepackage command
or the \RequirePackage command. Similarly, document classes are loaded
with \documentclass or \LoadClass. Normally when such a command is
reached, the corresponding file is loaded right away. The idea behind pkgloader
is to make it the very first file you load: before the document class, and before
any other package. It can then intercept all document class and package loading
requests, treat them as a feature selection and load them in the proper order.

▹ 5.10. Example: The main file for a LATEX document using pkgloader:

1 \RequirePackage{pkgloader}
2 ⋮
3 \documentclass{article}
4 ⋮
5 \usepackage{algorithm}
6 \usepackage{hyperref}

⎫}
⎬}⎭

any order
7 \usepackage{float}
8 ⋮
9 \begin{document}

10 ⋮
11 \end{document} ⌟

1The analogy goes further. Both plain TEX and LATEX are really extensions of the prim-
itive language INITEX, the initial product (Definition 2.58). LATEX packages are loaded after
the main language extension, which we could reflect in the application order (Definition 3.2).



5.3. PKGLOADER: AN ADM-BASED PACKAGE MANAGER 127

The area between lines 1 and 9 is called the pkgloader area. Inside this area,
the loading of all packages and document classes is postponed. It may also be
closed explicitly with the \LoadPackagesNow command, so that additional
code can be run in the preamble. At line 9, a selected delta model is generated
(Definition 4.8) and everything is loaded in some valid order, during which con-
flict resolving code may also be run. If the Example 5.10 code were compiled
without pkgloader, the given order between algorithm, hyperref and
float would cause an error. The main advantage to this approach is that the
complexity of dealing with package conflicts is moved to the pkgloader pack-
age and handled in a systematic manner, taking this burden off the shoulders
of the average user. If the package becomes well-used, package authors will be
able to develop in a more modular fashion.

5.3.2 Conflict Analysis

Here is the main difficulty: in Section 5.2 we were able to depend on the delta
operations of Definition 5.4, safe in the knowledge that there are no primitive
TEX commands that might mess things up. But package authors are not delta
authors. They can make use of the full TEX language. So the pkgloader
package does not analyze the actual code of each package in order to detect
conflicts. Package conflicts are technically what we would call bad interactions
(Section 3.3), so they cannot be detected automatically.

The package manager is backed by a database of rules for recognizing and
resolving known conflicts.

▹ 5.11. Example: The following are examples of such rules:

1 \Load {float} before {hyperref}
2 \Load {algorithm} after {hyperref}
3 \Load {fixltx2e} always early
4 because {it fixes some imperfections in LaTeX2e}
5 \Load error if {algorithms && pseudocode}
6 because {they provide the same functionality
7 and conflict on many command names} ⌟

The first two rules encode some workarounds for the hyperref package, which
is notorious for causing conflicts. The first one says that float must be loaded
before hyperref. The second rule ensures that hyperref is loaded before
algorithm. These are the rules that would allow the code of Example 5.10 to
compile without problems. Note that neither rule actually loads any packages.
They simply tell the package manager how to treat certain pairs of packages,
should they ever be requested together in a single document.

The third rule states that fixltx2e must always be loaded, and must be
loaded early. The fourth rule states that the algorithms and pseudocode
packages should never be loaded together. These two rules also include a
textual reason, to document the rule, and to include in certain error messages.
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5.3.3 \Load Rules
The feature model, partial order and application function for the collective set
of packages are built up manually through the \Load command. Each invo-
cation sets up a rule. All rules together form the product line implementation
(Section 4.3). In contrast to LATEX delta modules, these rules can come from
any number of different sources. A central registry will be maintained by the
community, specifying well-known conflicts and resolutions. Individual pack-
age authors can supply their own rules, as can document authors. Though
ideally, for the average document author, things should ‘just work’.

▹ 5.12. Definition (\Load): The \Load command expects the following syntax, some
of which inherits from Definition 5.3:

⟨𝑙𝑜𝑎𝑑‐𝑝𝑘𝑔⟩ : : = \Load ( ⟨𝑝𝑎𝑐𝑘𝑎𝑔𝑒⟩ | ⟨𝑒𝑟𝑟𝑜𝑟⟩ ) [ ⟨𝑟𝑒𝑎𝑠𝑜𝑛⟩ ]
⟨𝑝𝑎𝑐𝑘𝑎𝑔𝑒⟩ : : = [ class ] { ⟨𝑖𝑑⟩ } { ⟨𝑝‐𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ | ⟨𝑝‐𝑜𝑟𝑑𝑒𝑟⟩ }

⟨𝑒𝑟𝑟𝑜𝑟⟩ : : = error { ⟨𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ }
⟨𝑝‐𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ : : = if { ⟨𝜙⟩ } | always | if loaded

⟨𝑝‐𝑜𝑟𝑑𝑒𝑟⟩ : : = ⟨𝑜𝑟𝑑𝑒𝑟⟩ | early | late

⟨𝑟𝑒𝑎𝑠𝑜𝑛⟩ : : = because { ⟨𝑡𝑒𝑥𝑡⟩ }

Package names play the rôle of both features and deltas (⟨𝑓𝑖𝑑⟩ and ⟨𝑑𝑖𝑑⟩ in
Definition 5.3). ⌟

We look at each of the clauses of the \Load command one by one.
It usually contains a package description, consisting of a name, a set of

options and a minimal version, just like the \usepackage command.

1 \Load [options] {package-name} [version]

The application condition of every delta 𝑖𝑑 is a propositional disjunction which
is initialized to 𝑖𝑑, i.e., a package is loaded if it is selected. (To decide otherwise
would contradict the expected behavior of \usepackage.) The disjunction
can be extended by the condition clause:

1 \Load {pkgA} if {pkgB pkgC && !pkgD}

Alternatively, the condition clause can be always, indicating that the rule
should be applied under any conditions. Finally, the keywords if loaded can
be used to apply the rule only if the package named in the package description
is requested anyway. This is the default behavior, but the keywords can be
included to make it explicit.

There is one exception to the structure described above. Instead of a pack-
age description, a rule can contain the error keyword, followed by a condition
clause, to describe conditions that should never occur — usually invalid package
combinations. This refines the feature model. Initially all package combina-
tions are viable. But if two packages are irredeemably incompatible, their
combination can be made to generate an error message as follows:

1 \Load error if {pkgA && pkgB}
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Figure 5.2: A delta diagram showing an example package-loading order.
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Figure 5.3: A global delta-diagram view of the pkgloader package loading
order. it shows the two placeholder packages used to impose order between
early and late packages.

A non-error rule may contain an order clause, which forms the application order
of the delta model. The before and after keywords come from Definition 5.3
and have the same meaning as they do there.

1 \Load {pkgA} after {pkgB,pkgC} before {pkgD}

This particular rule ensures that if package pkgA is ever loaded, it is never
loaded before pkgB or pkgC, and never after pkgD, as illustrated in Figure 5.2.

That can take care of specific known package ordering conflicts. But the set
of LATEX packages is constantly growing, and it appears that some big packages
should almost always be loaded early in the process, and others should almost
always be loaded late. Therefore the early and late stages are provided as
a fallback mechanism. If two packages are not related by the application order,
their loading order may still be decided by their relative stages: early before
‘normal’ before late. That way, conflicts are avoided in a majority of cases.

▹ 5.13. Example: A typical example is the hyperref package, which should almost
always be loaded late in the run:

1 \Load {hyperref} late ⌟

The early and late clauses work by ordering the package relative to one of
two placeholder packages in the loading order (Figure 5.3).

These two nodes are always present in the graph. Ordering a package
early is intuitively the same as ordering it ‘before {1}’. And ordering it
late is the same as ordering it ‘after {2}’. All packages that are, after con-
sidering all rules, not (indirectly) ordered ‘before {1}’ or ‘after {2}’ are
automatically ordered ‘after {1} before {2}’. A rule can have any num-
ber of order clauses, and all are taken into account when one of the conditions
of the rule is satisfied.

Finally, a rule can be annotated with the reason it was created. This text
should be semantically and grammatically correct when following the words
“This rule was created because …”. It can also be used for citing relevant sources.
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▹ 5.14. Example: The reason clause can be used as follows:

1 \Load {comicsans} always because {that font is awesome!} ⌟

This does not have any effect on the behavior of the rule. It is meant for
human consumption, though should not be formatted in any way. It is used
in certain pkgloader error messages (Section 5.3.5) and may eventually be
used to generate documentation.

5.3.4 Rulesets
Rules can be placed directly inside the pkgloader area, but they can also be
bundled in a file. By default, pkgloader loads a recommended set of rules,
allowing the average user to get started without any hassle. But this behavior
can be overwritten using package options:

1 \RequirePackage[recommended=false,
2 my-better-rules=true]{pkgloader}
3 ⋮
4 \LoadPackagesNow

This means: the recommended rules that are usually preloaded by default
should not be loaded for this document. Instead, load the my-better-rules
rule-set. Any user can create rules for their own documents, or distribute
custom rulesets, e.g., through CTAN. But primarily, we expect two groups of
people to author pkgloader rules:

The LATEX community: The recommended ruleset would, ideally, be pop-
ulated further through the efforts of anyone who diagnoses and solves
package conflicts.

Package authors: pkgloader will eventually be directly usable for package
authors just as for document authors, to include their own rules from
right inside their packages. Rather than manually scanning for and fixing
potential conflicts, they could leverage pkgloader.

5.3.5 Error messages
There are two types of error messages that may be generated by pkgloader.

The first type of error message happens when an error rule is triggered.
It looks like this:

A combination of packages fitting the
following condition was requested:

⟨𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩

This is an error because ⟨𝑟𝑒𝑎𝑠𝑜𝑛⟩.

The second type of error message is a bit more interesting. Since rules can
effectively come from any source, the package loading order may not be an
order at all; it may be an arbitrary transitive relation (Section 1.7.6).

▹ 5.15. Example: A cycle can occur when contradictory ordering rules are specified:



5.4. CONCLUSION 131

1 \Load {pkgX} always before {pkgY}
2 because {pkgX is better}
3 \Load {pkgY} always before {pkgX}
4 because {pkgY is better}

In practice this could happen if the authors of pkg1 and pkg2 independently
discover a conflict, and both try to solve it by patching their code and having
their own package be loaded last. ⌟

A potential circular ordering is not necessarily a problem, so long as both rules
are never applied in the same run. But taken literally, Example 5.15 generates
the following error message:

There is a cycle in the requested
package loading order:

pkgX
--1--> pkgY
--2--> pkgX

The circular reasoning is as follows:
(1) 'pkgX' is to be loaded before

'pkgY' because pkgX is better.
(2) 'pkgY' is to be loaded before

'pkgX' because pkgY is better.

Whenever this happens, the user may want to reconsider one of their included
rulesets, or file a bug-report to the responsible party or parties — especially if
the circularity comes from the recommended ruleset.

5.3.6 Obtaining these Packages
The two main TEX distributions, TeXlive and MikTeX, only come out with
new versions periodically. The delta-modules and pkgloader packages
can be downloaded from CTAN with full documentation. They are dependent
on two other new packages: withargs and lt3graph.

5.4 Conclusion

Several publications on ADM make the claim that deltas can be used to mod-
ularize any kind of artefact — not just source code. An example occasionally
brought up is documentation. Indeed, the abstract nature of ADM should
allow this, but it had not yet been demonstrated.

So what better language to implement and demonstrate deltas for than the
one used to write this very thesis? TEX is a fascinating language; functional by
nature, but with the unusual characteristic that practically the entire language
can be redefined from within. This brings two opportunities. First, it is a
way for deltas to hook into document generation without requiring outside
tools: deltas can just be defined in a LATEX package. Second, the power of the
language has caused a number of problems in the LATEX ecosystem: conflicts
between independent packages that access the same resources. The conflict and
dependency model of ADM can be adapted to mediate between such packages
and, hopefully, alleviate much frustration in the LATEX community.
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This chapter described the LATEX packages implementing these ideas. The
first part of the chapter introduced delta-modules, used to modularize the
development of technical documents. The second part introduced pkgloader,
which manages the LATEX package loading process to resolve conflicts.

5.5 Related Work

The TEXbook by Knuth [115] is a fantastic resource for a grounding in the
basics of TEX as a language. The standard book on LATEX is Lamport’s [118],
though it does not go much beyond the basics.

As far as we have been able to discover, this is the first time any sort
of product line principles have been applied to these languages. There are,
however, some packages that attempt to make specific other packages work
together. An example is interfaces [70], which also provides a consistent
interface across the packages it supports. However, none attempt to provide
a general solution.

The ability to selectively include certain chapters is offered by the core
LATEX command \includeonly. But this command is meant purely to save
compilation time during development —cross-references to excluded chapters
and page numbers are preserved— and \include operates on a very coarse-
grained level — it forcibly starts a new page in the document and is meant
for full chapters.

The delta-modules and pkgloader packages depend on two other pack-
ages I have written: withargs [87] and lt3graph [86]. The former provides
a construct for anonymous functions, providing more convenient access to the
LATEX3 argument parcing facilities. The latter implements a graph datastruc-
ture for LATEX3, supporting cycle detection, transitive and reflexive closure
generation and vertex iteration in topological order. This is particularly im-
portant for the implementation of delta models.
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6.1 Introduction
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Figure 6.1: Example view of a delta
frame with products 𝑝, 𝑞, 𝑟 and deltas
𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧 currently visible.

At its core, ADM is about deltas
that can transform one product
into another product. But the al-
gebraic notation of the previous
chapters is not ideal for specifying
and reasoning about the semantics
of deltas, and what effect they have
on the properties of a product. We
want to be able to specify that
a delta implements a specific new
feature or that a delta refrains from breaking some existing feature, without
talking about products. Similarly, we want to prove that certain local con-
straints on deltas ensure desirable global properties. This chapter introduces
a modal logic tailored to this goal. For a brief introduction to modal logic, see
Section 1.7.10 (page 25).

Goal: Create a modal logic for reasoning syntactically about the se-
mantics of deltas and their effects on product properties.

Basically, we take the set of products as the set of worlds in a frame (Figure 6.1).
We then model deltas as binary relations on this set by applying semantic
evaluation. The result is something very similar to dynamic logic [69]. In this
logic, we want to be able to make judgments such as

⊩ ⟨ 𝑑 ⟩ 𝑘 ⊩ [ 𝑑 ] 𝑘,

meaning “delta 𝑑 may implement property 𝑘” (left) and “delta 𝑑 definitely
implements property 𝑘” (right). Or perhaps, if stated for all formulas 𝜓,

⊩ ⟨ 𝑑 ⟩ 𝜓 → [ 𝑑 ] 𝜓 ⊩ [ 𝑑 ] 𝜓 → ⟨ 𝑑 ⟩ 𝜓,

meaning “delta 𝑑 is deterministic” (left) and “delta 𝑑 is fully defined” (right).
These formulas implicitly quantify over all products that 𝑑 may be applied
to, but such judgments may also be made with regard to specific products
or models. We will also use delta models as modalities, in order to make
judgments such as

⊩ [𝑑𝑚](𝑓 ∧ 𝑔 ∧ ℎ),

meaning that, if it applies, delta model 𝑑𝑚 implements features 𝑓 , 𝑔 and ℎ
in all possible products. To that purpose, we allow the possibility of nested
delta models (Section 3.6).

Section 6.2 specifies the modal language. Section 6.3 explores the modal
logic on a Kripke frame level, specifying the proof theory, proving its com-
pleteness and extending it to a proof system for delta correctness. Section 6.4
explores the logic on a Kripke model level, addressing a problem in proving
judgments about specific propositions. Finally, Sections 6.5 and 6.6 offer con-
cluding remarks and discuss related work.
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6.2 A Multimodal Language

One of the primary goals of this chapter is to reason about abstract delta mod-
eling using the language and techniques of modal logic. A necessary starting
point, before moving on to an axiomatic characterization (in which we are
concerned with issues such as completeness), is to describe a modal language.

The first pair of example formulas on page 135 reference a property 𝑘. It
comes from a set of propositional variables:

▸ 6.1. Notation (Propositional Variables): We denote propositional variables by
the symbols 𝑘, 𝑙, 𝑚. Sets of propositional variables are denoted by 𝑃𝑅𝑂𝑃 . ⌟

We then define the language that will form the basis of our logic. The inten-
tion is to describe properties of (sets of) products in a syntactic manner, by the
propositions that hold there, or those that hold in products reachable through
the application of certain deltas. The language is a multimodal language (Def-
inition 1.36) based on the specific artefacts of ADM:

▸ 6.2. Definition (Product Formulas): Given a set of deltas (or delta models) 𝒟◬
(Section 3.6) and a set of propositional variables 𝑃𝑅𝑂𝑃 , we define a multimodal
language of product formulas with the following grammar:

𝛹 ∋ 𝜑 : : = ⊤ | 𝑘 | ¬𝜑 | 𝜑 ∨ 𝜑 | ⟨ 𝑑 ⟩ 𝜑

where 𝑘 ∈ 𝑃𝑅𝑂𝑃 is a propositional variable and 𝑑 ∈ 𝒟◬ is an expression
resolving to a delta (model) (Sections 2.6 and 3.6). We introduce the following
formulas as abbreviations, so we need only be concerned with the minimal
grammar above in further analysis. For all formulas 𝜑, 𝜓 ∈ 𝛹 :

⊥ ≝ ¬⊤
[ 𝑑 ] 𝜑 ≝ ¬⟨ 𝑑 ⟩ ¬𝜑
𝜑 ∧ 𝜓 ≝ ¬(¬𝜑 ∨ ¬𝜓)

𝜑 → 𝜓 ≝ ¬𝜑 ∨ 𝜓
𝜑 ↔ 𝜓 ≝ (𝜑 → 𝜓) ∧ (𝜓 → 𝜑)

To resolve ambiguity we assume the traditional set of precedence rules (e.g.
∧ binds stronger than ∨) and allow parentheses to override those rules.

If the set of deltas or propositional variables is not clear from context, we
attach a subscript as in 𝛹𝒟,𝑃𝑅𝑂𝑃 . ⌟

6.3 Kripke Frames

This section defines the ‘delta version’ of Kripke frames and models (Defini-
tions 1.37 and 1.39), and discusses proof theory on the frame level.

6.3.1 Kripke Semantics
Defining the Kripke semantics for a given deltoid is not difficult, because a
deltoid (Definition 2.11) is already a Kripke frame (Definition 1.37). To work
with delta models, a delta model closed deltoid (Definition 3.31) is assumed:
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▸ 6.3. Notation (Delta Kripke Frame): A delta Kripke frame 𝔉 is a deltoid 𝐷𝑡 =
(𝒫, 𝒟◬, ⟦ ⟧), where the set of products 𝒫 is the set of worlds, the set of deltas 𝒟◬
is the set of modal labels and the semantic evaluation operator ⟦ ⟧: 𝒟◬ →
Pow(𝒫 × 𝒫) maps each delta to a corresponding accessability relation.

For the sake of brevity, we will just write 𝐷𝑡 or (𝒫, 𝒟◬, ⟦ ⟧) when a delta
Kripke frame is expected.

The class of all disjunctive delta Kripke frames is denoted Δ⊍𝖥. The class of
all conjunctive delta Kripke frames is denoted Δ⩀𝖥. Both are classes of frames
with an underlying set of delta (model) expressions as modalities, following
their respective policies for delta model semantics (Section 3.5). ⌟

Figure 6.1 shows part of an infinite deltoid Kripke frame.
To reason about product properties, we need a valuation function (Defini-

tion 1.38), mapping proposition letters to the set of worlds in which they are
true. A delta Kripke model is a delta Kripke frame with a valuation function:

▸ 6.4. Notation (Delta Kripke Model): A delta Kripke model is a tuple 𝔐 =
(𝐷𝑡, V) = (𝒫, 𝒟◬, ⟦ ⟧, V) — a deltoid Kripke frame equipped with a valuation
function V: 𝑃𝑅𝑂𝑃 → Pow(𝑊). ⌟

The semantics of product formulas (Definition 6.2) can, of course, be given in
the traditional manner for modal formulas: by defining a forcing relation ⊩
(Definition 1.40). But in the trend set by the previous chapters, we do it in-
stead by extending the semantic evaluation operator ⟦ ⟧ so it can map product
formulas (a syntactic notion) to sets of products (a semantic notion), which
is quite compact and intuitive:

▸ 6.5. Definition (Formula Semantics): Given a Kripke model 𝔐 = (𝒫, 𝒟◬, ⟦ ⟧, V),
we extend semantic evaluation to product formulas as follows. For all propo-
sitional variables 𝑘 ∈ 𝑃𝑅𝑂𝑃 , formulas 𝜑, 𝜓 ∈ 𝛹 and deltas 𝑑 ∈ 𝒟◬ we define
⟦ ⟧: 𝛹 → Pow(𝒫) by induction on the shape of the formula:

⟦⊤⟧ ≝ 𝒫
⟦ 𝑘 ⟧ ≝ V(𝑘)

⟦ 𝜑 ∨ 𝜓 ⟧ ≝ ⟦ 𝜑 ⟧ ∪ ⟦ 𝜓 ⟧
⟦ ¬𝜑 ⟧ ≝ ⟦⊤⟧ ∖ ⟦ 𝜑 ⟧

⟦ ⟨𝑑⟩𝜑 ⟧ ≝ ⟦ 𝑑 ⟧ −1( ⟦ 𝜑 ⟧ )
As always, the proper subscripts can be added to disambiguate between dis-
junctive and conjunctive semantics. ⌟

This essentially gives us a way to describe sets of products by which proper-
ties they satisfy, including properties of which products could result if certain
deltas are applied. We could reintroduce the traditional forcing relation ⊩
(Definition 1.40, page 26) as follows:

6.6. Lemma: Given a deltoid Kripke model 𝔐 = (𝒫, 𝒟◬, ⟦ ⟧, V), product 𝑝 ∈ 𝒫
and formula 𝜑 ∈ 𝛹 , we have:

𝔐, 𝑝 ⊩ 𝜑 ⟺ 𝑝 ∈ ⟦ 𝜑 ⟧
In other words, Definition 6.5 corresponds to traditional modal semantics. ◻
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6.3.2 Proof Theory
Now that we have a multimodal language with Kripke semantics, we define the
logic that can be used to reason purely in that language, and prove that this
logic is sound and complete. This then allows us to reason about the effects of
deltas without resorting to semantic evaluation.

▸ 6.7. Definition (Delta Logic): The delta logics 𝐊𝚫⊍ and 𝐊𝚫⩀ are normal modal
logics1 (Definition 1.43) generated by the following axiom schemas, which en-
code the laws of our algebraic operators.2 For all delta (model) expressions
𝑥, 𝑦 ∈ 𝒟◬ and all formulas 𝜑 ∈ 𝛹 :

• the composition axiom: ⟨𝑦 · 𝑥⟩𝜑 ↔ ⟨𝑥⟩⟨𝑦⟩𝜑 ∈ 𝐊𝚫⊍, 𝐊𝚫⩀
• the choice axiom: ⟨𝑥 ⊔ 𝑦⟩𝜑 ↔ (⟨𝑥⟩𝜑 ∨ ⟨𝑦⟩𝜑) ∈ 𝐊𝚫⊍, 𝐊𝚫⩀
• the consensus axiom: ⟨𝑥 ⊓ 𝑦⟩𝜑 ↔ (⟨𝑥⟩𝜑 ∧ ⟨𝑦⟩𝜑) ∈ 𝐊𝚫⊍, 𝐊𝚫⩀
• the neutral delta axiom: 𝜑 ↔ ⟨𝜀⟩𝜑 ∈ 𝐊𝚫⊍, 𝐊𝚫⩀
• the empty delta axiom: [⊥] 𝜑 ∈ 𝐊𝚫⊍, 𝐊𝚫⩀

Then, depending on policy regarding delta model semantics, one of the follow-
ing axiom schemas should be added:

• the delta model axiom Δ⊍: ⟨𝑑𝑚⟩𝜑 ↔ ⋁
𝑑∈derv(𝑑𝑚)

⟨ 𝑑 ⟩ 𝜑 ∈ 𝐊𝚫⊍

• the delta model axiom Δ⩀: ⟨𝑑𝑚⟩𝜑 ↔ ⋀
𝑑∈derv(𝑑𝑚)

⟨ 𝑑 ⟩ 𝜑 ∈ 𝐊𝚫⩀ ⌟

For disjunctive semantics, a different formulation for the disjunctive delta
model axiom follows straightforwardly from Definition 3.25:

▸ 6.8. Theorem: For nonempty delta model 𝑑𝑚 = (𝐷, ≺) and all formulas 𝜑:

⊩∆⊍𝖥 ⟨(∅,∅)⟩𝜑 ↔ 𝜑
⊩∆⊍𝖥 ⟨𝑑𝑚⟩𝜑 ↔ ⋁

𝑑 ⊁
⟨ 𝑑 ⟩ ⟨𝑑𝑚 ∖ { 𝑑 }⟩𝜑

where 𝑑 ⊁ quantifies over all minimal deltas in 𝑑𝑚 (Notation 1.12, page 20;
and Definition 1.23, page 22).

Proof: Induction on the size of 𝐷. ◻

▸ 6.9. Corollary: For nonempty delta model 𝑑𝑚 = (𝐷, ≺) and all formulas 𝜑:

⊩∆⊍𝖥 [ (∅,∅) ] 𝜑 ↔ 𝜑
⊩∆⊍𝖥 [𝑑𝑚]𝜑 ↔ ⋀

𝑑 ⊁
[ 𝑑 ] [ 𝑑𝑚 ∖ { 𝑑 } ] 𝜑

by taking the inverse of Theorem 6.8. ◻
1The original paper [3], which did not consider conjunctive semantics, presented 𝐊𝚫⊍

under the name 𝐊𝚫.
2From the available relation algebra operators (Section 2.6), the original paper [3] in-

cluded only axioms for composition · and choice ⊔. We have added axioms for the other
operators fundamental to this thesis. This does not include negation −, the full delta⊤or
converse .̆ Defining converse as a modal operator is rather involved [74], though interesting,
and deserves more than a hasty treatment in a small part of this chapter. The other two are
simply not that important for us, as well as not constructive (Section 2.6.2).
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It is worthwhile to note that the above theorem and corollary are similar to
what is known as the expansion law of the process algebra CCS [136]. The
fact that it works explains why a delta model under disjunctive semantics can
be applied to a product simply by applying its deltas in an arbitrary order
compatible with ≺. A similar law does not exist for conjunctive semantics.

Next, we’ll use the delta logics as proof systems by looking at their provabil-
ity relations ⊢𝐊𝚫⊍ and ⊢𝐊𝚫⩀ (Definition 1.44), and prove their completeness.

6.3.3 Completeness
It is not hard to see that the delta logics are sound with respect to their
respective frames (Definition 1.45, page 27). More interesting is the issue of
their completeness (Definition 1.46). It turns out they are strongly complete.
Except for the delta model axioms, the presented logic is a subset of dynamic
logic [69]; one without iteration. Because there is no iteration axiom, and
because delta models are finite and do not contain cycles, modalities can be
completely reduced to simple deltas. We define a translation function ‘kt’:

▸ 6.10. Definition: Given a set of simple deltas 𝒟 and a set of propositional variables
𝑃𝑅𝑂𝑃 , we define a translation function kt: 𝛹 →𝛹 such that for all propositional
variables 𝑘 ∈ 𝑃𝑅𝑂𝑃 , all simple deltas 𝑑 ∈ 𝒟, all delta models 𝑑𝑚 ∈ 𝒟ℳ𝒟◬

, all
delta (model) expressions 𝑥, 𝑦 ∈ 𝒟◬ and all formulas 𝜑, 𝜓 ∈ 𝛹 :

kt( 𝑘 ) ≝ 𝑘
kt( ¬𝜑 ) ≝ ¬kt( 𝜑 )
kt( 𝜑 ∨ 𝜓 ) ≝ kt( 𝜑 ) ∨ kt( 𝜓 )
kt( ⟨𝑦 · 𝑥⟩𝜑 ) ≝ kt( ⟨𝑥⟩⟨𝑦⟩𝜑 )
kt( ⟨𝑥 ⊔ 𝑦⟩𝜑 ) ≝ kt( ⟨𝑥⟩𝜑 ∨ ⟨𝑦⟩𝜑 )
kt( ⟨𝑥 ⊓ 𝑦⟩𝜑 ) ≝ kt( ⟨𝑥⟩𝜑 ∧ ⟨𝑦⟩𝜑 )
kt( ⟨𝜀⟩𝜑 ) ≝ kt( 𝜑 )
kt( ⟨⊥⟩𝜑 ) ≝ ⊥

kt( ⟨ 𝑑 ⟩ 𝜑 ) ≝ ⟨ 𝑑 ⟩ kt( 𝜑 )

With one of the following depending on delta model semantics:

kt( ⟨𝑑𝑚⟩𝜑 ) ≝ ⋁𝑑∈derv(𝑑𝑚) ⟨ 𝑑 ⟩ 𝜑 (disjunctive semantics)

kt( ⟨𝑑𝑚⟩𝜑 ) ≝ ⋀𝑑∈derv(𝑑𝑚) ⟨ 𝑑 ⟩ 𝜑 (conjunctive semantics) ⌟

The idea behind this function is to translate any formula into an equivalent
formula in which all unary modalities are labeled only by simple deltas. This
enables us to forget about arbitrary algebraic expressions and delta models,
and to construct our completeness proof in terms of the completeness of 𝐊
with regard to the class of all frames (Theorem 1.47, page 27).
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▸ 6.11. Lemma: For all sets of formulas Γ and all formulas 𝜑, we have:
a. Γ ⊢𝐊𝚫⊍ 𝜑 ⟺ Γ ⊢𝐊𝚫⊍ kt(𝜑)
b. Γ ⊩∆⊍𝖥 𝜑 ⟺ Γ ⊩∆⊍𝖥 kt(𝜑)
c. Γ ⊩∆⊍𝖥 kt(𝜑) ⟺ Γ ⊩ kt(𝜑)

as well as the same for 𝐊𝚫⩀ and Δ⩀𝖥.

Proof: (a) and (b) can be proved by induction (on the complexity of formulas
as well as that of delta terms); (c) follows from the observation that for any
translated formula, only the relations corresponding to simple deltas are used:
hence, we are simply treating our delta frame as a regular frame. ◻

▸ 6.12. Theorem: 𝐊𝚫⊍ (resp. 𝐊𝚫⩀) is strongly complete w.r.t. the class of delta
kripke frames Δ⊍𝖥 (resp. Δ⩀𝖥).

Proof: This amounts to saying that, for any Γ and 𝜑, if Γ ⊩∆⊍𝖥 𝜑, then
Γ ⊢𝐊𝚫⊍ 𝜑. If Γ ⊩∆⊍𝖥 𝜑 then, by Lemma 6.11b, we have Γ ⊩∆⊍𝖥 kt(𝜑) and
by Lemma 6.11c, we have Γ ⊩ kt(𝜑). Completeness of 𝐊 now gives Γ ⊢𝐊 kt(𝜑)
and, because 𝐊 ⊆ 𝐊𝚫⊍, we also get Γ ⊢𝐊𝚫⊍ kt(𝜑). Finally, Lemma 6.11a
yields Γ ⊢𝐊𝚫⊍ 𝜑. ◻

It is possible to extend this completeness result in simple and straightforward
ways, because any formula in 𝐊 yields a complete axiomatization for the class
of frames it defines [42].

6.13. Example: Consider the class of deterministic deltoid Kripke frames Δ⊍𝖽𝖥
(resp. Δ⩀𝖽𝖥), in which all simple deltas are deterministic (Definition 2.26).
This class of frames can be characterized by the following axiom schema. For
all simple deltas 𝑑 and formulas 𝜑:

⟨ 𝑑 ⟩ 𝜑 → [ 𝑑 ] 𝜑

We call the delta logic generated by that axiom schema 𝐊𝚫⊍𝐝 (resp. 𝐊𝚫⩀𝐝).⌟

6.14. Theorem: The logic 𝐊𝚫⊍𝐝 (resp. 𝐊𝚫⩀𝐝) is strongly complete with regard
to the class of deterministic delta frames Δ⊍𝖽𝖥 (resp. Δ⩀𝖽𝖥). ◻

6.3.4 Delta Contracts
Our modal product formulas are essentially syntactic representations of product
sets. But they also allow us to syntactically characterize deltas based on their
effect on such product sets. We can formulate delta contracts reminiscent of
Hoare triples:

▸ 6.15. Definition (Delta Contracts): A delta contract is a pair of product formu-
las (𝜑, 𝜓) ∈ 𝛹 × 𝛹 , where 𝜑 is the precondition and 𝜓 is the postcondition. ⌟

The following is a way to prove, in a fully syntactic manner, that a specific
delta satisfies a specific delta contract:
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▸ 6.16. Definition (Contract Provability): A given delta 𝑑 ∈ 𝒟◬ is provably cor-
rect with regard to delta contract (𝜑, 𝜓) ∈ 𝛹 × 𝛹 iff the folowing holds:

𝑑 ⊢ (𝜑, 𝜓) ⟺≝ 𝜑 ⊢𝐊𝚫⊍ [ 𝑑 ] 𝜓
𝑑 ⊢tot (𝜑, 𝜓) ⟺≝ 𝜑

⏟
a

⊢𝐊𝚫⊍ ⟨ 𝑑 ⟩⊤
⏟

b

∧ [ 𝑑 ] 𝜓
⏟

c
An analogous definition can be given for conjunctive semantics. ⌟

Basically, a delta 𝑑 is said to be provably correct with regard to a contract
(𝜑, 𝜓) iff (a) given a product satisfying the premise 𝜑, (b) delta 𝑑 is applicable
to that product (for total correctness), and (c) all products resulting from the
application of delta 𝑑 satisfy 𝜓.

This simple proof system is sound and complete in the following sense:

▸ 6.17. Theorem: The way of using the 𝐊𝚫⊍ proof system from Definition 6.16 is
sound and complete —with regard to all delta frames— in the following sense:

𝑑 ⊢ (𝜑, 𝜓) ⟺ 𝑑 ⊨ ⟦ 𝜑 ⟧ × ⟦ 𝜓 ⟧
𝑑 ⊢tot (𝜑, 𝜓) ⟺ 𝑑 ⊨tot ⟦ 𝜑 ⟧ × ⟦ 𝜓 ⟧

where ⊨ and ⊨tot represent delta correctness (Definition 2.29, page 45).

Proof: The following proves the total correctness version:

𝑑 ⊢tot (𝜑, 𝜓)
1⇐⇒ 𝜑 ⊢𝐊𝚫⊍ ⟨ 𝑑 ⟩⊤ ∧ [ 𝑑 ] 𝜓
2⇐⇒ 𝜑 ⊩∆⊍𝖥 ⟨ 𝑑 ⟩⊤ ∧ [ 𝑑 ] 𝜓
3⇐⇒ ∀𝑝 ∈ 𝒫: ( 𝑝 ⊩ 𝜑 ) ⟹ ( 𝑝 ⊩ ⟨ 𝑑 ⟩⊤ ∧ [ 𝑑 ] 𝜓 )
4⇐⇒ ∀𝑝 ∈ 𝒫: 𝑝 ∈ ⟦ 𝜑 ⟧ ⟹ 𝑝 ∈ ⟦ ⟨ 𝑑 ⟩⊤ ∧ [ 𝑑 ] 𝜓 ⟧
5⇐⇒ ∀𝑝 ∈ 𝒫: 𝑝 ∈ ⟦ 𝜑 ⟧ ⟹ 𝑝 ∈ ⟦ ⟨ 𝑑 ⟩⊤⟧ ∩ ⟦ [ 𝑑 ] 𝜓 ⟧
6⇐⇒ ∀𝑝 ∈ 𝒫: 𝑝 ∈ ⟦ 𝜑 ⟧ ⟹ ( 𝑝 ∈ pre ⟦ 𝑑 ⟧ ) ∧ ( ⟦ 𝑑 ⟧(𝑝) ⊆ ⟦ 𝜓 ⟧ )
7⇐⇒ ∀𝑝 ∈ ⟦ 𝜑 ⟧: ∅ ⊂ ⟦ 𝑑 ⟧(𝑝) ⊆ ⟦ 𝜓 ⟧
8⇐⇒ 𝑑 ∈ ( ⟦ 𝜑 ⟧ ⤇tot ⟦ 𝜓 ⟧ )
9⇐⇒ 𝑑 ⊨tot ⟦ 𝜑 ⟧ × ⟦ 𝜓 ⟧

Step 1 applies Definition 6.16. Step 2 applies the completeness result of Theo-
rem 6.12. Step 3 applies Definition 1.42 (page 26) of local consequence. Step 4
twice applies Lemma 6.6. Steps 5 and 6 apply Definition 6.5 (though some
steps are skipped). Step 7 applies a number of general simplifications.

Steps 8 and 9 apply Definition 2.31 and Lemma 2.32, confirming what
the reader possibly already suspected after seeing the use of the Cartesian
product in the theorem: delta contracts are syntactic representations of delta
derivations (Section 2.4.3). ◻

This tells us something about the power of the delta logics presented in this
chapter. Though they give us valuable insight into the behavior of deltas, they
are actually rather limited when it comes specifying the behavior of ‘practical’
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deltas. For example, while they would be able to specify that software delta
(remove class C ) only accepts products that have a class C, and that it is
guaranteed to yield a product without such a class, they are unable to express
that the delta leaves all other artefacts the way they are.

One way to express this would be to use a modal language that can refer
back to the original world in the frame: a hybrid language [22, 40]. This is
presented as future work in Chapter 9.

6.4 Kripke Models

As we can now reason on the frame level with the proof system of Section 6.3,
we would also like to reason on the level of models.

Recall that a Kripke model is a Kripke frame augmented with a valuation
function, which maps propositional variables to the set of worlds in which
they are true. Our worlds are products from 𝒫. What we’d actually like to
reason about is the features that are implemented by those products; or more
accurately, the feature combinations. We want to prove properties about the
effects deltas can have on products that satisfy specific feature combinations.
So we state that Pow(ℱ) ⊆ 𝑃𝑅𝑂𝑃 . This is in line with Definition 4.17 on
page 107, where it is also explained why we need to handle feature combinations
explicitly: it is possible to implement multiple features without implementing
their combination.

6.4.1 Proof System Soundness
The ultimate goal here is to formulate some axioms about specific features (i.e.,
propositional variables in a Kripke model), and then to prove properties about
the effects of deltas on those features. However, the proof system for the frame
level Definition 1.44 is not sound with respect to global semantic entailment
on models. For example, consider the following ‘proof’:

(1) 𝐹 → ⟨ 𝑑 ⟩ 𝐺 axiom
(2) 𝐹 → ⟨ 𝑑 ⟩ ¬𝐺 uniform substitution on 𝐺

So we have 𝐹 → ⟨ 𝑑 ⟩ 𝐺 ⊢𝐊𝚫⊍ 𝐹 → ⟨ 𝑑 ⟩ ¬𝐺, but at the same time the (global)
semantic consequence

𝐹 → ⟨ 𝑑 ⟩ 𝐺 ⊩𝑔
∆⊍𝖥 𝐹 → ⟨ 𝑑 ⟩ ¬𝐺

is easily seen to be false. The culprit is our use of uniform substitution. The
initial axiom in our false proof is not meant to be a tautology that is “true
for all 𝐺”. It is meant as a statement about the feature 𝐺 specifically. We
can’t take away the uniform substitution rule, however. We still need it to
prove such truths as:

(1) 𝑘 ∨ ¬𝑘 propositional tautology
(2) [ 𝑑 ] 𝐹 ∨ ¬[ 𝑑 ] 𝐹 uniform substitution on 𝑘
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The trick is to allow uniform substitution only on newly produced proposition-
letters, but not on the original features in our axioms. This is accomplished
by first transforming all propositions in our axioms and formulas to nullary
modalities [41], on which uniform substitution does not apply. We can then
prove valid formulas in the system of frames.

So we now introduce nullary modalities, which may be seen as propositional
constants, into the modal language (Definition 1.36). A nullary modality la-
beled with a propositional variable 𝑘 is denoted ..𝑘 . This extend frames with
a set of predicates on worlds. A nullary modality ..𝑘 corresponds to a predi-
cate 𝖯𝑘 in a frame:

▸ 6.18. Definition (Nullary Modality Semantics): Given a Kripke frame 𝔉 =
(𝑊, 𝑀, U, R) —which now includes a function U: 𝑃𝑅𝑂𝑃 → Pow(𝑊), mapping
each propositional variable 𝑘 ∈ 𝑃𝑅𝑂𝑃 to a corresponding predicate 𝖯𝑘 ⊆ 𝑊—,
a nullary modality ..𝑘 has the following semantics:

𝔐, 𝑝 ⊩ ..𝑘 ⟺≝ 𝑝 ∈ U(𝑘)

Or equivalently, as an extension to Definition 6.5:

⟦ ..𝑘 ⟧ ≝ U(𝑘) ⌟

We define the following function to translate propositional variables to corre-
sponding nullary modalities:

▸ 6.19. Definition: Define the function u: 𝛹 → 𝛹 , which transforms all propositional
variables in a formula into nullary modalities. For all propositional variables
𝑘 ∈ 𝑃𝑅𝑂𝑃 and all formulas 𝜑 ∈ 𝛹 :

u(𝑘) ≝ ..𝑘

u(¬𝜑) ≝ ¬u(𝜑)
⋮

For the other shapes of formulas the ‘u’ translation is simply propagated down
to the propositional variables, leaving everything else unchanged. We also lift
the function ‘u’ to sets of formulas in the expected manner. ⌟

We extend this function to translate from models to frames (overloading the
name ‘u’):

▸ 6.20. Definition: Extend translation function ‘u’ to take a model 𝔐 = (𝑊, 𝑀, R, V)
and return a frame:

u(𝔐) ≝ (𝑊, 𝑀, U, R)

Where U maps propositional variables to the set of worlds in which they are
true. So essentially we take U ≝ V. ⌟

The following translation lemma holds:
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▸ 6.21. Lemma: For all models 𝔐, worlds 𝑤 and sets of formulas Γ, we have:

a. 𝔐, 𝑤 ⊩ Γ ⟺ u(𝔐), 𝑤 ⊩ u(Γ)
b. 𝔐 ⊩ Γ ⟺ u(𝔐) ⊩ u(Γ)

Proof: Proof of (a) is by induction on the complexity of (sets of) formulas. The
base case trivially follows from our construction of nullary modalities in terms
of propositional variables. (b) follows trivially from (a). ◻

This lemma enables us to prove the following soundness result with regard to
global truth on the model level:

▸ 6.22. Theorem: For all sets of formulas Γ and all formulas 𝜑:

u(Γ) ⊢ u(𝜑) ⟹ Γ ⊩𝑔 𝜑

Proof: Assume u(Γ) ⊢ u(𝜑). Let 𝔐 be a model (based on a delta frame) such
that 𝔐 ⊩ Γ. Then, by Lemma 6.21b, we have u(𝔐) ⊩ u(Γ). Now let Λ be the
logic of the class of delta frames

{ 𝔉 | 𝔉 ⊩ u(Γ) } .

Because Λ is a normal modal logic, it is closed under proof rules, and hence it
follows from u(Γ) ⊢ u(𝜑) combined with the fact that u(Γ) ⊆ Λ, that u(𝜑) ∈ Λ.
It follows that u(𝜑) is valid on this class of frames, so we have:

u(𝔐) ⊩ u(𝜑).

Lemma 6.21b now gives us 𝔐 ⊩ 𝜑 and hence Γ ⊩𝑔 𝜑. ◻

Note that this result is valid for all normal modal logics and corresponding
frames. It is not specific to delta logics. But we’ll now demonstrate it by
proving a delta modeling result.

6.4.2 Example
We now illustrate the use of 𝐊𝚫⊍ through an example proof. Say we have
the feature model as shown in Figure 6.2. The features 𝐹 , 𝐺 and 𝐻 are
implemented by the delta model 𝑑𝑚 in Figure 6.3. The feature 𝑇 is satisfied
in some empty core product, on which we’d like to apply those deltas.

We now introduce a set of basic axioms valid in this model:

6.23. Axiom (Delta Model Axioms): The following are assumed to hold:

(1) 𝐹 ↔ 𝑇
(2) 𝐺 ↔ 𝐹
(3) 𝐻 ↔ 𝐹
(4) 𝐺 ↔ [𝑦] 𝐺
(5) 𝐻 ↔ [𝑥] 𝐻

(6) 𝑇 ↔ [𝑤] 𝐹
(7) 𝐹 ↔ [𝑥] 𝐺
(8) 𝐹 ↔ [𝑦] 𝐻
(9) 𝐺 ↔ [𝑧] 𝐺

(10) 𝐻 ↔ [𝑧] 𝐻 ⌟
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..𝐺. 𝐻..

𝐹

.

𝑇

Figure 6.2: Example feature model

..𝑥. 𝑦..

𝑤

.

𝑧

Figure 6.3: Example delta model 𝑑𝑚

Axioms (1), (2) and (3) are due to the feature model shown in Figure 6.2. It
is generally the case that when a subfeature is implemented its superfeature is
implemented as well. (4) and (5) are due to a property we assume the under-
lying deltoid to have, called non-interference [5], which states that commuting
deltas cannot interfere with each others features. (6) to (10) are by design of
the deltas: they were developed such that 𝑤, 𝑥 and 𝑦 implement the features
𝐹 , 𝐺 and 𝐻 (6, 7 and 8), taking into account only the deltas ‘above’ them,
and that conflict resolving delta 𝑧 does not break the features implemented by
the previous deltas (9 and 10).

Axioms (6) to (10) are enforced by the developers of the product line if they
follow the workflow to be described in Chapter 7. It ensures desirable global
properties by design if local constraints such as axioms (6) to (10) are met.
Now say we have a core product 𝑐 ∈ 𝒫 with 𝑐 ⊩ 𝑇 . For our example, we’d like
to prove the following global property about delta model 𝑑𝑚:

6.24. Lemma: 𝑐 ⊩ [𝑑𝑚](𝑇 ∧ 𝐹 ∧ 𝐺 ∧ 𝐻)

In order to prove this property more succinctly, we introduce the following
auxiliary proof rules:

6.25. Lemma: For all formulas 𝜑, 𝜓 and 𝜒, and for all box modalities [𝑑1], …, [𝑑𝑛],
we have:

𝜑 → [𝑑1]⋯[𝑑𝑛]𝜓, 𝜓 → 𝜒 ⊢ 𝜑 → [𝑑1]⋯[𝑑𝑛]𝜒

Proof: By induction on 𝑛. ◻

6.26. Lemma: For all formulas 𝜑 and 𝜓 and all box modalities [ 𝑑 ] , we have:

⊢ ([ 𝑑 ] 𝜑 ∧ [ 𝑑 ] 𝜓) ↔ [ 𝑑 ] (𝜑 ∧ 𝜓)

Proof: See [42, Example 1.40]. ◻

The numbers 1 to 10 in the proof of Lemma 6.24 refer to the ‘u’ translation
of the corresponding item from Axiom 6.23.
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Proof of Lemma 6.24:

(11) ..𝑇 ↔ [𝑤][𝑥] ..𝐺 lem 6.25: 6, 7
(12) ..𝑇 ↔ [𝑤][𝑥]( ..𝐹 ∧ ..𝐺 ) lem 6.25: 11, 2
(13) ..𝑇 ↔ [𝑤][𝑥]( ..𝐹 ∧ ..𝐺 ∧ [𝑦] ..𝐻 ) lem 6.25: 12, 8
(14) ..𝑇 ↔ [𝑤][𝑥]( ..𝐺 ∧ [𝑦] ..𝐻 ) lem 6.25: 13, 2
(15) ..𝑇 ↔ [𝑤][𝑥]([𝑦] ..𝐺 ∧ [𝑦] ..𝐻 ) lem 6.25: 14, 4
(16) ..𝑇 ↔ [𝑤][𝑥][𝑦]( ..𝐺 ∧ ..𝐻 ) lem 6.26: 15
(17) ..𝑇 ↔ [𝑤][𝑥][𝑦]([𝑧] ..𝐺 ∧ ..𝐻 ) lem 6.25: 16, 9
(18) ..𝑇 ↔ [𝑤][𝑥][𝑦]([𝑧] ..𝐺 ∧ [𝑧] ..𝐻 ) lem 6.25: 17,10
(19) ..𝑇 ↔ [𝑤][𝑥][𝑦][𝑧]( ..𝐺 ∧ ..𝐻 ) lem 6.26: 18
(20) ..𝑇 ↔ [𝑤][𝑥][𝑦][𝑧]( ..𝐹 ∧ ..𝐺 ∧ ..𝐻 ) lem 6.25: 19, 2
(21) ..𝑇 ↔ [𝑤][𝑥][𝑦][𝑧]( ..𝑇 ∧ ..𝐹 ∧ ..𝐺 ∧ ..𝐻 ) lem 6.25: 20, 1
(22) ..𝑇 ↔ [𝑤][𝑥][𝑦][𝑑𝑚1]( ..𝑇 ∧ ..𝐹 ∧ ..𝐺 ∧ ..𝐻 ) lem 6.25: 21, Δ⊍
(23) ..𝑇 ↔ [𝑤][𝑥][𝑑𝑚2]( ..𝑇 ∧ ..𝐹 ∧ ..𝐺 ∧ ..𝐻 ) lem 6.25: 22, Δ⊍

Formula (24) is derived in a manner symmetric to formula (23).

(24) ..𝑇 ↔ [𝑤][𝑦][𝑑𝑚3]( ..𝑇 ∧ ..𝐹 ∧ ..𝐺 ∧ ..𝐻 ) symmetric
(25) ..𝑇 ↔ [𝑤][𝑥][𝑑𝑚2]( ..𝑇 ∧ ..𝐹 ∧ ..𝐺 ∧ ..𝐻 )

∧ [𝑤][𝑦][𝑑𝑚3]( ..𝑇 ∧ ..𝐹 ∧ ..𝐺 ∧ ..𝐻 ) 𝐼∧: 23,24

(26) ..𝑇 ↔ [𝑤]( [𝑥][𝑑𝑚2]( ..𝑇 ∧ ..𝐹 ∧ ..𝐺 ∧ ..𝐻 )
∧ [𝑦][𝑑𝑚3]( ..𝑇 ∧ ..𝐹 ∧ ..𝐺 ∧ ..𝐻 ) ) lem 6.26: 25

(27) ..𝑇 ↔ [𝑤][𝑑𝑚4]( ..𝑇 ∧ ..𝐹 ∧ ..𝐺 ∧ ..𝐻 ) lem 6.25: 26, Δ⊍
(28) ..𝑇 ↔ [𝑑𝑚]( ..𝑇 ∧ ..𝐹 ∧ ..𝐺 ∧ ..𝐻 ) lem 6.25: 27, Δ⊍

where

𝑑𝑚1 = 𝑑𝑚 ∖ { 𝑤, 𝑥, 𝑦 } 𝑑𝑚3 = 𝑑𝑚 ∖ { 𝑤, 𝑦 }
𝑑𝑚2 = 𝑑𝑚 ∖ { 𝑤, 𝑥 } 𝑑𝑚4 = 𝑑𝑚 ∖ { 𝑤 }

Then, by 𝑐 ⊩ ..𝑇 , we have our result. ◻

Many steps are skipped in this proof, mostly those concerned with invoking
propositional tautologies and applying modus ponens. We have kept only the
more interesting steps — those that directly use our axioms.

Since satisfiability for the normal multimodal logic is decidable (in fact, it
is PSPACE-complete [41]), and the special modal operators of delta logic can
be trivially translated away (Definition 6.10), proofs such as this one can be
automated.
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6.5 Conclusion

Much of ADM is dedicated to the goal of developing syntactic languages and
techniques for semantic concepts. Deltas are syntactic. But products (from
the ADM point of view) are semantic concepts. Consequently, reasoning about
the semantics of deltas requires semantic proof machinery.

This chapter describes how modal logic can solve this problem. Given any
kind of decidable specification language for the product domain, wrapping a
multi-modal logic around it enables us to prove that certain deltas implement
certain features, that they do not break existing features, and so on. The
result is a language reminiscent of dynamic logic, but lacking a construct for
iteration, making the logic decidable.

The chapter shows that the modal proof system can be used to prove certain
kinds of delta correctness, but in Section 6.3.4 we discover that it cannot be used
in delta postconditions to refer back to the original product. They are there-
fore unable, for instance, to specify that software delta (remove class C )
does not modify any classes other than C. Chapter 9 briefly discusses how an
extension to hybrid logic [22, 40] may be used to overcome this without losing
decidability.

6.6 Related Work

Completeness proofs in modal logic have a long-standing history, closely tied to
the history of relational semantics based on Kripke frames. A comprehensive
survey of this history can be found in e.g. [42, Section 1.8].

The modal logic presented in this chapter has a flavour very reminiscent
of dynamic logics such as PDL [42, 69]. A crucial difference, however, is that
the logic presented here is simpler (and hence, easier to work with) due to the
absence of iteration. Due to this simplicity, complex modalities can be easily
unraveled into simpler ones, enabling the main results from Sections 6.3 and 6.4.

Partial motivation for the presented delta logics is to make formal properties
in the Delta Modeling Workflow (Chapter 7) more transparent. The proof of
Lemma 6.24 is just an example of a proof of product line completeness for a
specific case.

Finally, it is worth noting that the typesystem described by Lienhardt and
Clarke [120], unlike the logic of this chapter, is able to specify that deltas in
an object oriented setting do not modify unmentioned artefacts, by regarding
them as polymorphic functions.
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7.1 Introduction

Until now we have seen what is possible with Abstract Delta Modeling; what
the various formal artefacts look like and what they mean. But it may still not
be clear how they should actually be used in practice. If a team of developers
started out with only a product line specification, how would they actually
build and organize the product line implementation? How should the deltas
be ordered and what should be their application conditions and content, for
maximal reuse of code and isolated, concurrent development of features?

Goal: Describe how delta-based product lines might be built.

This chapter proposes a specific development workflow for ADM, dubbed Delta
Modeling Workflow (DMW). The structured and flexible nature of ADM lends
itself quite naturally to a systematic approach to building product lines. This
chapter stays at the same level of abstraction as before, but approaches the
topic from the other side. It describes, step-by-step, how to build a product
line from scratch. At the moment, it is far from a practical guide, as it requires a
fully defined product line specification in advance — an unrealistic requirement
in modern engineering practices. But it is the first step in guiding the proper
use of the delta modeling concepts introduced in previous chapters.

Of course, there may be many ways to use delta modeling to good effect.
Indeed, many tools are eventually put to innovative uses that were initially
unintended. Let’s just say that ADM lends itself naturally to a certain way of
working which happens to exhibit favorable properties. Following it leads to a
well-structured product line that automatically exhibits two desirable proper-
ties: global unambiguity (Definition 4.14, page 105) and total correctness with
regard to the specification (Definition 4.20, page 108). The work is split up
into well-defined jobs derived from that specification.

Most importantly, the workflow naturally supports concurrent development.
Multiple developers can work on parts of a non-trivial product line implementa-
tion at the same time and in isolation without breaking global unambiguity or
correctness. An important reason for this is the concept of delta model locality:
any delta under development need only take into account the existing deltas
that occupy subordinate positions in the delta model.

Of course, a development workflow, of all things, should be evaluated in
practice. Formal proofs, while valuable, are not enough to guarantee a good
practical experience. Therefore, the DMW should be evaluated based on its
application to an industrial scale system.

Goal: Test the delta modeling workflow on an industrial scale system
in order to evaluate its practical applicability.

To that end, the workflow was used to model the replication system of the
Fredhopper Access Server (FAS) product line, in one of the industrial scale
case studies of the HATS project. This was done using the Abstract Behavioral
Specification (ABS) language of the HATS project, in which delta modeling is
an integrated component.
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Figure 7.1: Two different feature diagrams representing the same Definition 4.3
style feature model 𝛷 = { { 𝑓, 𝑔 } , { 𝑓, 𝑔, ℎ } }.

The chapter is organized as follows: Section 7.2 enriches the specification
of product lines to include a subfeature relation. Section 7.3 introduces the
fundamental notion of locality, setting the stage for Section 7.4 to describe
the workflow itself. Section 7.5 describes the ABS language and provides a
succinct DMW description in concrete ABS terms. Following that, Section 7.6
discusses its application to the replication system product line of FAS. Finally,
Sections 7.7 and 7.8 offer concluding remarks and discuss related work.

In Appendix A (page 210), the beneficial properties of DMW are proved for-
mally. It includes a formulation of the workflow using operational semantics.

7.2 The Subfeature Relation
From this point on, assume that a deltoid (𝒫, 𝒟, ·, 𝜀, ⟦ ⟧) and a
feature set ℱ are given. Assume also that the deltoid exhibits
consistent conflict resolution (Definition 3.18).

Feature models as formalized in Section 4.2 are not as useful for developers as
they could be. When we view a feature model as the set of all possible fea-
ture configurations, we disregard the intended hierarchical structure between
features. Compared to a traditional feature model [66, 105, 166], the “𝛷” rep-
resentation from Definition 4.3 (page 100) lacks some useful information. For
instance, we lose the distinction between the two feature models in Figure 7.1,
which would both have 𝛷 = { { 𝑓, 𝑔 } , { 𝑓, 𝑔, ℎ } }.

Since the feature diagram notation is quite common in product line engi-
neering [166], it is a sensible structure to base the workflow on. To capture the
hierarchy represented by feature diagrams, we introduce the following binary
relation into the product line specification tuple (Definition 4.19, page 108):

▸ 7.1. Definition (Subfeature): The binary subfeature relation is a strict partial
order ⇴ ⊆ ℱ × ℱ. Write 𝑓 ⇴ 𝑔 when 𝑔 is a subfeature of 𝑓 and 𝑓 is a
superfeature of 𝑔. ⌟

Note that this definition allows one feature to have multiple direct superfeatures
(a ‘join’ in the feature diagram), something that is not standard in feature
modeling, but useful, as you may remember from Section 5.2 (page 120).

The subfeature relation recognizes both mandatory and optional subfea-
tures. We only use it to formally introduce the feature diagram structure.
Information on optionality, grouping, implication, exclusion and more can be
derived from the combination of 𝛷 and ⇴. For example, if 𝑓 ⇴ 𝑔 and there
exists a feature configuration that includes 𝑓 but not 𝑔, we know that 𝑔 must
be an optional subfeature rather than a mandatory one.
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Figure 7.2: The local delta model of 𝑧 in the context of a larger delta model.

7.3 Locality

When developing a specific delta in the (annotated) delta model of a product
line, it would be inconvenient if we had to consider all other deltas to make sure
the combined whole works properly — this would defeat the purpose of using
delta modeling for modularity and separation of concerns in the first place.
Thus the workflow should only require that local constraints are met, and then
guarantee beneficial properties for the entire product line implementation by
construction. But what does ‘local’ mean in the context of ADM?

▸ 7.2. Definition (Local Delta Model): Given a delta model 𝑑𝑚 = (𝐷, ≺), the
local delta model of a given delta 𝑑 ∈ 𝐷 is defined as follows:

↓𝑑 ≝ ( 𝐷′, ≺ ∩ 𝐷′×𝐷′ )
where 𝐷′ = { 𝑥 ∈ 𝐷 | 𝑥 ≼ 𝑑 } (known as the principal ideal of 𝑑 in ≺). If the
delta model is not clear from context, we attach a subscript as in ↓𝑑𝑚. ⌟

This concept embodies a basic principle of the DMW: when engaging in the
implementation of a new delta 𝑧, you already know which position in the delta
model it will occupy. During development and maintenance you only have to
know about the deltas that are to be applied earlier —those that 𝑧 has control
over (Figure 7.2)— and you need to establish certain correctness properties
only over this local delta model.

Conversely, during long term maintenance, when any delta 𝑥 is changed, it
will always be clear which other deltas may now be out-of-date and in need of
attention: all deltas 𝑧 ≻ 𝑥, which have 𝑥 in their local delta model.

But in order for this to be enough to guarantee global properties, we need
to place one restriction regarding the balance between the deltoid and the val-
uation function. Namely, we need to ensure that deltas that are not related
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through the application order, and are therefore not in each others local delta
model, cannot influence each others semantic effects on the final product; or,
if they do, that this can be automatically detected by them being in conflict
(Definition 3.7, page 76). We now assume this property of non-interference
(formally described in Definition A.2, page 211). It is independent of any spe-
cific product line, though does depend on the kind of features that need to
be implemented. Systems that break this restriction might include deltas that
can add advice in aspect-oriented languages [114] that have effects beyond the
entities they overwrite, or features with mutually exclusive specifications.

7.4 Workflow Description

The goal of the workflow is to start with a product line specification and im-
plement from this a product line, by implementing all features, resolving all
conflicts and implementing all desired feature interaction in an iterative process,
maximally exploiting parallelism in the development.

7.4.1 Input
The input to the workflow is a product line specification and subfeature rela-
tion. The feature model 𝛷 indicates which feature configurations need to be
derivable. The order of the workflow steps is guided by the subfeature relation
⇴. The valuation function V, in a sense, guides the implementation of each
individual delta.

7.4.2 Output
The output of the DMW is a product line implementation ( 𝛷, 𝑐, 𝐷, ≺, 𝛾 ). The
goal is for this implementation to be totally correct with regard to the specifi-
cation (Definition 4.20, page 108). One of the ways we make this easier is by
ensuring global unambiguity. This means we’ll be able to work with sole deriva-
tion semantics for delta models (Definition 3.5, page 75). Taking advantage of
ambiguous semantics (Section 3.5, page 88) is planned as future work.

The feature model 𝛷 of the implementation will be the same as that of the
specification. While it is true that a product line implementation is allowed to
implement more feature selections than are specified —while maintaining total
correctness—, that is not the goal of this workflow.

We make the core product an initial product 𝑐 = 0 (Definition 2.58, page 57)
and do everything with deltas, a practice that has been dubbed pure delta
oriented programming [162], or, in this case, pure delta modeling. While this
is not required —i.e., it is possible to implement mandatory features in the
core product— the choice simplifies the workflow description. Note, however,
that optional features should never be implemented in the core product (with
the intention of selectively ‘removing’ them with deltas) as this is incompatible
with the workflow and can be said to be less flexible and robust.

The annotated delta model (𝐷, ≺, 𝛾) is initialized as empty and built up
during the workflow.
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Figure 7.3: An intuitive overview of the development workflow.

7.4.3 A Sequential View
An overview of the workflow process is shown in Figure 7.3. Regard it as the
flowgraph that a single developer would follow to implement a product line:

1. Is there a feature 𝑓 that still needs to be implemented?
If not, go to step 7.

2. Implement feature 𝑓 with new feature implementation delta 𝑑𝑓.
3. Is there a required interaction between a set of implemented features 𝐹

with 𝑓 ∈ 𝐹 that still needs to be implemented? If not, skip to step 5.
4. Implement this interaction with a new feature interaction delta 𝑑𝐹 .

Then go back to step 3.
5. Is there an unresolved conflict 𝑥 ↯ 𝑦 involving any of the deltas introduced

in this iteration? If not, go back to step 1.
6. Resolve the conflict with a new conflict resolving delta 𝑑{𝑥,𝑦}.

Then go back to step 5.
7. The product line implementation is fininshed.

This was the workflow description used in the first DMW papers [5, 7]. It
gives a good intuition as to what the workflow is all about. But it is not
ideal for describing concurrent development by multiple engineers. Therefore,
we break up this flowgraph into its constituent steps, and set up a proper
dependency model.

7.4.4 Jobs
We now introduce the higher-level concept of jobs, each of which involve the
development of a specific delta to place into the annotated delta model in
progress. We distinguish between two kinds of job, each with a specific purpose:

• Feature implementation jobs, identified by a feature set 𝐹 ⊆ ℱ, are to
develop a delta responsible for either the implementation of a single fea-
ture —when 𝐹 = {𝑓} for some 𝑓— or the interaction between a set of
features. Conceptually these two cases are really the same, so it is more
elegant to drop the distinction.
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Figure 7.4: How the subfeature relation ⇴ informs the job order and how that,
in turn, informs the delta application order ≺. In this example, features 𝑓 and
𝑔 require additional implementation effort, and their mutual subfeature ℎ is
implemented last.

• Conflict resolution jobs, identified by a finite set of already developed
deltas 𝐶 ⊆ 𝒟, implement a delta to resolve the conflict(s) between the
deltas in 𝐶.

Both the old and new workflow descriptions resemble an algorithm [116], but
fail to be one for a simple reason: neither type of job can generally be auto-
mated. Both feature implementation and conflict resolution require creativity
and domain-knowledge. So rather than provide well-defined instructions, a job
imposes requirements on the local delta model of the new delta (Definition 7.2).
The delta needs to be developed in a way that satisfies those requirements.

Although there are many jobs that can be performed concurrently, there
are some that need to be performed in a specific order. Characterizing this
order is one of the main contributions of this chapter. It is a strict partial
order, and it is reflected in the following ways (Figure 7.4):

• the ⇴ relation, strict partial order of the feature diagram,
• the order in which the jobs are to be performed, and
• the ≺ relation, strict partial order of the delta model under development.

Simply put: the feature order ⇴ informs the job order which, in turn, informs
the application order ≺.

Let’s first discuss how feature implementation jobs are ordered, and forget
about conflict resolving jobs for now. The main idea is that individual features
𝑓 and 𝑔 are implemented in the strict partial order of the subfeature relation ⇴.
That is, if 𝑓 ⇴ 𝑔, then 𝑓 (the superfeature) will be implemented before 𝑔 (the
subfeature). This is reasonable; as base functionality should naturally be in
place before it is extended by subfeatures.

But in the general case, feature implementation jobs are feature sets, some-
times larger than one. We extend the subfeature relation ⇴ to sets of features,
so we can use it to order all such jobs:
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Figure 7.5: How conflicts between existing deltas introduce new jobs.

▸ 7.3. Definition (Feature Combination Order): We extend subfeature relation
⇴ to sets of features. The resulting feature combination order is the smallest
strict partial order ⇴ ⊆ Pow(ℱ) × Pow(ℱ) such that, for all features 𝑓, 𝑔 ∈ ℱ
and feature combinations 𝐹, 𝐺 ⊆ ℱ with 𝑓, 𝑔 ∉ 𝐹 ∪ 𝐺, the following axioms
hold:

a. 𝐹 ⊂ 𝐺 ⟹ 𝐹 ⇴ 𝐺
b. 𝑓 ⇴ 𝑔 ⟹ 𝐹 ∪ {𝑓} ⇴ 𝐺 ∪ {𝑔}

When 𝐹 ⇴ 𝐺 we say that 𝐹 is weaker and that 𝐺 is stronger. ⌟

▸ 7.4. Example: Figure 7.4 illustrates how the subfeature relation guides the order
in which the job transitions are allowed to take place. For example, the features
𝑒, 𝑓, 𝑔, ℎ ∈ ℱ have 𝑒 ⇴ 𝑓,𝑔 ⇴ ℎ. So, with regard to feature combinations,
we have {𝑒} ⇴ {𝑓},{𝑔} ⇴ {𝑓, 𝑔} ⇴ { ℎ }, as shown in Figure 7.4b. ⌟

Conflict resolving deltas are implemented through conflict jobs 𝐶 ⊆ 𝐷. Such
jobs are introduced from analysis on the current state of the product line imple-
mentation, rather than from analysis of the specification. This is illustrated in
Figure 7.5. When existing deltas are in conflict (Figure 7.5c), a conflict job can
be introduced (Figure 7.5b) for the implementation of a new delta to resolve
the conflict (back to Figure 7.5c).

7.5 The Abstract Behavioral Specification Language

The Abstract Behavioral Specification (ABS) language [8, 52, 100] was devel-
oped within the FP7 EU project HATS, the project that started and guided
my PhD research [80]. This is one of the only languages with delta modeling
integrated into its core design (if not the only). As a member of the HATS
project, I collaborated on the implementation of delta modeling in ABS and
described the delta modeling workflow in terms of ABS constructs.

Section 7.5.1 provides a short background on the ABS language. Sec-
tion 7.5.2 describes the concrete ‘ABS delta modeling workflow manual’ [8].
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Figure 7.6: Layered Architecture of ABS1

The ABS language is de-
signed for formal modeling
and specification of concur-
rent, component-based systems
at a high level, though is
perfectly capable of producing
executable programs. Particu-
larly, it is targeted at complex
software systems that exhibit a
high degree of variation, such
as software product lines.

Figure 7.6 describes the lay-
ered architecture of the ABS
language. At its most funda-
mental levels, it provides pure
functional programming con-
structs, algebraic data types,
an object model and impera-
tive language constructs. The
main contributions of the HATS project are built on top: concurrency con-
structs based on the concept of COGs, a language layer for behavioral
specification as well as module and component structures.

The top left layer is of interest to us. Delta modeling in ABS consists of
four languages: 𝜇TVL, DML, CL and PSL.

𝜇TVL is a feature description language based on a subset of TVL [46]. It
is used to describe the variability of a product line in terms of (attributed)
feature models (Section 4.2).

The delta modeling language DML is used to develop the delta modules
containing modifications of a core ABS model. A delta module in ABS is similar
to the software deltas of Section 2.3, and can modify classes, methods and fields
on a course-grained level. The previous implementation of a method in the
derivation can be invoked by using the original() call (similar to the super
keyword of AHEAD [31]), though it is not possible to invoke specific method
verions through the name of the delta.2 As a bonus, delta modules can be
parametrized by specific values as well as the ‘feature Booleans’ (Section 4.5).

The configuration language CL links 𝜇TVL feature models with the DML
delta modules that implement the corresponding behavioral modifications, and
also specifies the order in which those delta modules should be applied. There-
fore, CL specifications fulfil the role of annotated delta models (Definition 4.7).
The language provides when and after keywords, which work the same
way as their equivalents if and after in the LATEX packages of Section 5.2
(page 120).

Finally, the product selection language PSL is used to give names to specific
feature configurations, by which the corresponding products of an ABS product
line implementation can then be generated. A PSL script contains a feature
selection, a set of values for the relevant attributes, and an initialization block,

1This figure was designed by Reiner Hähnle for the joint Architecture paper [8].
2Actually, in Section 7.5.2, we’ll pretend that it is.
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which is often just a call to an appropriate main method, though it may also
contain configuration code. After the extraction of the proper selected delta
model (Definition 4.8) and its application to the core program, the initialization
block is added to the result to be the first code to run.

A more detailed account of these languages may be found in the second
report on ABS [52]. The content of this section is based on my work in the
third report [8].

7.5.2 DMW for ABS
The following workflow description gives step-by-step instructions for develop-
ment of an ABS software product line, specifying the proper code templates
to use for each of the steps of Figure 7.3.

It often makes sense to put basic code common to all products into the core
product directly. In the case of ABS, this means at least the following:

1 class Main { Unit run() {} } { new Main(); }

We start with a Main class with an empty run method. We then create a new
Main instance, implicitly calling the run method, which will later be modified
by deltas. It is possible to put mandatory features into the core product. But,
as mentioned, it is recommended that all features are implemented with deltas,
as this makes the product line more robust to evolution, and promotes the
separation of concerns.

Also, we begin with a minimal ABS product line configuration: the list of
features and the list of desired products. The latter can be empty.

1 productline ⟨𝑛𝑎𝑚𝑒⟩ { features 𝑓1, 𝑓2, …, 𝑓𝑛; }

In the following workflow description, we’ll use a subset of the Editor product
line example of Section 1.4, one containing only the 𝐸𝑑, 𝑃𝑅, 𝑆𝐻 and 𝐸𝐶
features. Now we specify each step of the flowchart from Figure 7.3.

Step 1: Feature left unimplemented?

In this stage of the workflow, we choose the next feature to implement. Es-
sentially we walk through the subfeature hierarchy of the feature model in a
topological order, i.e., base features first, subfeatures later. If all features have
been implemented, we are finished.

For the example, we would have to start with the Editor (Ed) feature. Any
of the three features on the second level may be chosen next.

Step 2: Implement feature with new delta

Having chosen a feature 𝑓 , we now write a “feature delta” 𝑑𝑓 to implement it:

1 delta 𝑑𝑓 { … }

The delta may add, remove or modify any classes and methods necessary to
realize the functionality of 𝑓 , while preserving the functionality of all super-
features. The developer only has to consider the local delta model: the core
product and the deltas implementing superfeatures of 𝑓 . The following four
feature deltas implement the four individual features of the Editor product line
(some details are left out for the sake of brevity):
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1 delta D_Ed { // Editor Delta
2 adds class Model { … }
3 adds class Font { … }
4 adds class Editor (Model m) {
5 Model m_model;
6 Font m_plain_font;
7 { init(m); }
8 Unit init(Model m) {
9 m_model = m;

10 m_plain_font = new Font();
11 }
12 Model model() { return m_model; }
13 Font font(int c) { return m_plain_font; }
14 Unit onMouseOver(int c) { /* nothing */ }
15 }
16 modifies class Main {
17 modifies Unit run() { new Editor(new Model()); }
18 } }

1 delta D_Pr { // Printing Delta
2 modifies class Editor {
3 adds Printer m_printer;
4 modifies Unit init(m: Model) {
5 original(m);
6 m_printer = new Printer();
7 }
8 adds Unit print() { /* print the plain text */ }
9 } }

1 delta D_SH { // Syntax Highlighting Delta
2 adds class SyntaxHL (Model m) {
3 Model m_model;
4 { m_model = m; }
5 Color color(int c) { … }
6 }
7 modifies class Editor {
8 adds SyntaxHL m_syntaxhl;
9 modifies init(Model m) {

10 original(m);
11 m_syntaxhl = new SyntaxHL( model() );
12 }
13 modifies font(int c) {
14 Font f = D_Ed.original(c);
15 f.setColor( m_syntaxhl.color(c) );
16 return f;
17 } } }

1 delta D_EC { // Error Checking Delta
2 adds class ErrorCh (Model m) {
3 Model m_model;
4 { m_model = m; }
5 Bool errorOn(int c) { … }
6 String errorText(int c) { … }
7 }
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8 modifies class Editor {
9 adds ErrorCh m_errorch;

10 modifies init(Model m) {
11 original(m);
12 m_errorch = new ErrorCh( model() );
13 }
14 modifies Font font(int c) {
15 Font f = D_Ed.original(c);
16 f.setUnderlined( getModel().isError(c) );
17 return f;
18 }
19 modifies onMouseOver(int c) { … }
20 } }

Finally, we add the following line to the ABS product line configuration:

1 delta 𝑑𝑓 when 𝑓 after 𝑑s;

where 𝑑s is the delta implementing the superfeature of 𝑓 . If 𝑓 has no superfea-
ture, the after clause may be omitted. Our example requires the following
product line configuration:

1 productline PL_Editor {
2 features Ed, Pr, SH, EC;
3 delta D_Ed when Ed;
4 delta D_Pr when Pr after D_Ed;
5 delta D_SH when SH after D_Ed;
6 delta D_EC when EC after D_Ed;
7 }

Step 3: Interaction to implement?

At the feature modeling and specification level, two features 𝑓 and 𝑔 may be
independently realizable, but require extra functionality when both are selected.
This behavior is not implemented by the feature deltas, so a new delta needs
to be created. In our example, this is the case for the features Printing and
Syntax Highlighting. When printing, we would like the syntax highlighting
colors to be used.

Step 4: Implement interaction with new delta

The new delta 𝑑𝑓,𝑔 must implement the required interaction without breaking
the features 𝑓 and 𝑔 or their superfeatures. It may change anything introduced
by feature deltas 𝑑𝑓 and 𝑑𝑔. When overwriting methods, it may also access
the original methods using the syntax 𝑑𝑓.original() and 𝑑𝑔.original().
In our example:

1 delta D_Pr_SH { // Pr + SH Interaction Delta
2 modifies class Editor {
3 modifies Unit print() {
4 // print as before, but use
5 // colors of D_SH.font(c)
6 } } }
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Then we add the following to the ABS product line specification:

1 delta 𝑑𝑓,𝑔 when 𝑓 && 𝑔 after 𝑑𝑓, 𝑑𝑔;

In our example:

1 delta D_Pr_SH when Pr && SH after D_Pr, D_SH;

This may be generalized to interaction between more than two features.

Step 5: Conflict to resolve?

By adding new deltas, we may have introduced an implementation conflict
between two deltas 𝑑1 and 𝑑2 that are independent, but modify the same
method in a different way. In our example, this is the case for D_SH and D_EC,
as they both modify the font(int) method in a different way, and are not
ordered in the product line configuration. For each such conflict, we write a
delta to resolve it.

Step 6: Resolve conflict with new delta

The conflict resolving delta 𝑑1,2 must overwrite the methods causing the con-
flict, while not breaking the features implemented by 𝑑1 or 𝑑2, or their super-
features. Typically, 𝑑1,2 invokes 𝑑1.original() and 𝑑2.original() to
combine the functionality of the conflicting deltas. In our example:

1 delta D_SH_EC { // SH + EC Conflict Resolving Delta
2 modifies class Editor {
3 modifies Font font(int c) {
4 Font result = D_Ed.original(c);
5 result.setColor(D_SH.original(c).color());
6 result.setU…lined(D_EC.original(c).u…lined());
7 return result;
8 } } }

We then add the following to the ABS product line specification:

1 delta 𝑑1,2 when ( 𝛾(𝑑1) ) && ( 𝛾(𝑑2) ) after 𝑑1, 𝑑2;

where 𝛾(𝑑) is the when clause of delta 𝑑. In our example:

1 delta D_SH_EC when (SH) && (EC) after D_SH, D_EC;

Step 7: Done ✓This means the product line implementation is finished, and it enjoys
total correctness by construction.
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Figure 7.7: Feature diagram of the FAS replication system

7.6 The Fredhopper Access Server

This section discusses the use of the delta modeling workflow for modeling
the industrial case study of the Fredhopper Access Server (FAS) product line.
FAS, developed by Fredhopper B.V.3, is a distributed service-oriented software
system for Internet search and merchandising. In 2012, we used the workflow
to model FAS’s replication system, which ensures data consistency across a
FAS deployment. The FAS product line is modeled using the ABS language
(Section 7.5).

First, Section 7.6.1 briefly describes the FAS case study. Then we discuss
the results of our modeling efforts in Section 7.6.2. We don’t discuss the imple-
mentation itself in this thesis, as this would duplicate quite some information.
Details can be found in the corresponding paper [7].

7.6.1 FAS Overview
The Fredhopper Access Server (FAS) is a component-based and service-oriented
distributed software system. It provides search and merchandising services to
e-Commerce companies such as large catalogue traders and travel agencies.
Without going into too much detail: FAS tries to provide full throughput of
data across many different clients by cleverly replicating data across a network
of nodes. As part of the FAS product line, there are several variants of this
replication system. We’ve implemented these variants in ABS using the delta
modeling workflow.

We let the product line specification be that of the replication system. The
feature model, also shown in Figure 7.7, is expressed in 𝜇TVL as follows:

1 root RS {
2 group allof {
3 JobProcessing { … },
4 ReplicationItem { … },
5 opt Load {
6 group [1..3] {
7 Client { Int c in [1..20]; Seq -> c < 10; },
8 CheckPoint { … },

3http://www.fredhopper.com

http://www.fredhopper.com
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Metrics Java ABS
Number of lines of code ~6400 5000
Number of classes 44 40
Number of interfaces 2 43
Number of user-defined functions n/a 80
Number of user-defined data types n/a 17
Number of features n/a 15
Number of deltas n/a 10 (7)
Number of products n/a 12108 (96)

Table 7.8: Metrics on the FAS replication system code

9 Schedule {
10 group [1..3] {
11 DSched { Int s in [1..5]; },
12 FSched { Int f in [1..5]; require: File; },
13 JSched { Int l in [1..5]; require: Journal; }
14 } } } } } }

For reasons of space and to focus on the application of the workflow, rather
than the replication system itself, we considered only the modeling of the fea-
tures RS, Load, Client, Schedule, DSched, FSched and JSched as the
representative parts of the replication system variability. These are the fea-
tures that are shaded in Figure 7.7. The other features are also omitted from
the 𝜇TVL code above.

7.6.2 Results

The existing FAS product line was implemented in Java, and had over 150,000
lines of code. Table 7.8 shows some metrics about the existing implemen-
tation and the ABS model of the replication system only. In particular, if
parametrized deltas are used to resolve the three-way conflict between DSched,
FSched and JSched, the number of deltas reduces from 10 to 7. If feature
attributes are ignored, the number of possible feature configurations reduces
from 12108 to 96.

We now discuss our experiences while applying the DMW to the implemen-
tation of the FAS case study. This case study not only raised discussion points
about the pros and cons of the DMW, but also guided the development of
DMW while its practical applicability was put to the test.

Correctness Following the DMW we were able to systematically implement
all features in the feature model in a top-down fashion to obtain a prod-
uct line implementation of the replication system. We were also able
to systematically implement all necessary feature interaction and resolve
implementation conflicts between deltas, since the workflow directed us
to consider every situation. So we avoid accidentally forgetting to imple-
ment some functionality from a complex feature model.
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Collaboration During the case study, the workflow description of the original
paper [5] was used, which did not yet focus on concurrent development.
We were therefore unsure how to apply DMW in a collaborative devel-
opment environment. Feedback from this case study has lead to the
new job-based description and the formalization found in Appendix A,
in which concurrent development is an explicit benefit.

Evolution The original DMW description assumed the core product to be the
empty program. In the case study we relaxed this assumption to facilitate
product line evolution. In practice it is often the case that a product line
will not be implemented from scratch, but will be built on legacy code,
which lends itself to be incorporated as the core product. As a result, the
formal DMW description no longer requires an empty core.

Overall, the conclusion was that DMW offers a useful guideline for systemat-
ically traversing the feature model and implementing its features to arrive at
a software product line which is globally unambiguous and correct. And in
retrospect, I can add that the feedback gathered during this experience was an
invaluable tool in improving the workflow description.

7.7 Conclusion

The formalisation of ADM thus far had been descriptive, describing what deltas
are, how they work and how they are selected. The other side of the story is
prescriptive. This chapter describes useful patterns for the implementation
of product lines. It delineates a workflow to show insight in how the delta
modeling constructs may be used to good effect.

The main contribution is insight in how independent features can be im-
plemented concurrently and in isolation. Important to this is the concept of
locality. Any delta under development need only take into account the existing
deltas that occupy subordinate positions in the delta model — the ones the
new delta has control over. In effect, the product line specification is split up
and localized. If each delta is developed to satisfy local constraints, the result-
ing product line will exhibit total correctness. In Appendix A, the workflow is
formalized with an operational semantics, and this is proved as a theorem.

Finally, the chapter describes the delta modeling workflow for the Abstract
Behavioral Specification (ABS) language, which was developed for the HATS
project. Then, its application to the Fredhopper Access Server is discussed —
the results, and the lessons we learned. This industrial scale case study helped
validate and improve the workflow.

7.8 Related Work

Software product lines have existed in industry for quite a while, and many
useful lessons have been learned from this experience [54, 65, 117, 122, 155].
Reuse in software as a way to improve quality and time to market has been an
important theme since the 1960s [65], and software product lines in particular
see their origins in the early 1980s, though not yet by that name [65].

However, it has been a predominantly empirical field; it is only recently
that formal methods have started being applied, with initiatives such as the
HATS project [80]. As such, though various building blocks and algebras of
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software composition have been thoroughly formalized over the last decade or
so (Sections 2.10, 3.8 and 4.8), We have been unable to find much previous work
applying a similar level of formalism to the development process itself, though
a number have recently emerged [62, 142]. The work on the delta modeling
workflow [5, 7, 8, ⌛2] —and therefore this thesis chapter— are, in part, an effort
to fill this gap. But they are also a way to tell a part of the delta modeling
story that didn’t fit in the original ADM papers.

Our formalization of feature models (Definition 4.3) is actually quite close
to the practice of decision modeling, as, for example, described by Czarnecki et
al. [61]. They note that an essential ingredient of feature modeling, in contrast
to decision modeling, is the subfeature hierarchy. And indeed, this information
seems to express design intentions essential for the development of a properly
modular product line. The addition of the subfeature relation in Section 7.2
and its use in guiding the development workflow is in recognition of this.

In a short survey paper, Krueger [117] makes a lot of points relevant to
this chapter. For one, he stressed the importance of mass customization over
application engineering: the practice of working on all product line members at
once rather than on one at a time. This is done through the feature-oriented
development style of DMW. It is set up so that every product that needs
a certain feature gets this feature from the same delta. He also notes the
importance of encapsulation among the various implementation artefacts: “[If]
any feature can impact any core asset and any core asset many be impacted by
any feature, [this] has all of the software engineering comprehension drawbacks
as global variables in conventional programming languages.” ADM addresses
this problem with its partially ordered module structure and conflict resolution
model (Chapter 3). The notions of locality and non-interference introduced in
Section 7.3 aim to complement these, in order to reduce the combinatorial
complexity of software product lines.

Finally, he makes the following point in which DMW still falls short: it
is rare that product lines are developed from scratch. Usually, legacy code
is already in place, and discarding it to start over is too disruptive to project
schedules. Similarly, with the rising popularity of agile development methodolo-
gies [130], it is now considered unwise to demand a full specification in advance,
prefering short cycles of development and adaptation, making that aspect of
the workflow description decidedly non-agile. However, the core principles of
the workflow do have great potential in that regard. This is discussed in more
detail in Chapter 9.
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8.1 Introduction

Traditionally, a feature configuration (Section 4.2.2, page 100) is chosen once
at build-time. Its corresponding product is then generated and deployed, after
which the chosen feature configuration can no longer change. That is some-
times limiting, as it could be advantageous for products to be able to adapt to
dynamic conditions at runtime [24]. Dynamic software product lines [82] are
product lines for which the feature configuration is not fixed. It can be changed
dynamically in order to meet changing requirements for continuously running
systems, upon which the running product can adapt accordingly.

Damiani et al. have discussed delta-based dynamic software product lines
before [63, 64]. As a way of offering additional insight, the motivation of
this chapter is based on their work. They explore several of the problems
encountered in an object-oriented setting. In particular, they introduce a
reconfigure statement to the programming language, which, when reached
at runtime, offers the system the opportunity to adapt the running product to
the newest feature configuration. A developer places this statement wherever
it is deemed safe for the system to do so without creating inconsistencies —
a sensible precaution. However, the semantics of reconfigure is never for-
malized. From the perspective of structural operational semantics [153], the
corresponding inference rule might take the following shape:

⟨𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠⟩

⟨𝑝, 𝐻, reconfigure;𝑠𝑡, 𝜎 ⟩ ⟶ ⟨ 𝑝′, 𝐻′, 𝑠𝑡, 𝜎 ⟩

The next statement 𝑠𝑡 and current state 𝜎 are classical in structural operational
semantics. The current product (code) 𝑝 and current heap 𝐻 are needed to
capture the meaning of the reconfigure statement, because both need to
be modified during reconfiguration.

The work of Damiani et al. focuses specifically on the modification of the
heap, but does not discuss modification of the product. It is true; if func-
tional correctness is the only concern, the product can simply be generated
from scratch each time, using existing techniques (Chapter 4). But if efficiency
is a factor, this approach won’t suffice. Nor is it feasible to store every possi-
ble configuration of the code; this number can be exponential in the number
of features, and the approach can’t ever scale to the more complex require-
ment of adaptation to unanticipated change [146]. This chapter explores some
strategies that are potentially better:

Goal: Formulate efficient strategies for reconfiguration of the running
product in an ADM-based dynamic product line.

The strategies explored in this chapter are based on the assumption that the
difference between two subsequent running products will be small, relative to
their individual size. So rather than build them from scratch every time, light-
weight deltas can be derived at build-time, which can then be used to perform
the proper transformation at runtime.

To reason about the correctness and efficiency of this approach to dynamic
reconfiguration, we introduce a new operational semantics. We develop models
to represent dynamic product lines in an abstract context and explore different



168 CHAPTER 8. DYNAMIC PRODUCT LINES

strategies for ‘running’ them. These models are defined in terms of Mealy
machines [131]: finite state machines with an input symbol and an output
symbol on each transition. In our case, the input symbol corresponds to a
feature (or features) that has been turned on or off by external events and the
output symbol corresponds to the delta that has to be applied to bring the
current product up to date.

Besides being inherently more efficient than the naive approach, it affords
us the opportunity to apply a particular kind of optimization. We assume
that monitoring specific features for change has a certain cost —different for
each feature— such as powering a sensor or polling a server. We introduce
a cost model to express these costs, and optimize dynamic product lines by
disregarding costly features until they become relevant. This is modeled by
selectively removing transitions from the Mealy machine.

As this chapter does not offer any contributions regarding the heap or
control flow issues of dynamic software product lines, it uses an alternative
domain so as not to distract from the main contribution. A novel case-study
is presented: the development of a mobile application for automated profile
management, which is used as a running example throughout the chapter. By
monitoring personal data such as time, location and schedule, a smartphone
can automatically adjust its internal settings based on user defined rules, essen-
tially operating as a dynamic product line. This allows us to explore strategies
for reconfiguring running products without having to consider software-specific
issues.

Goal: Develop a profile management app for Android based on the
dynamic product line strategies explored in this chapter.

The rest of the chapter is structured as follows: Section 8.2 introduces the
case study that will be used to illustrate the theory of the chapter. We then
develop the operational semantics and Mealy machine model in Section 8.3 —
the main section of the chapter— and introduce the feature-based cost-model
and optimization techniques in Section 8.4. Section 8.5 ties up loose ends
by showing how the new operational semantics may be integrated with the
classical programming language semantics and, finally, Sections 8.5 and 8.6
offer concluding remarks and discuss related work.

8.2 Automated Profile Management

The running example of this chapter is a mechanism for automated profile
management on modern mobile devices. Smartphones and tablets, such as
those based on Android [11], iOS [20] or Windows Phone [134], have access
to a great variety of data concerning the current circumstances of their user:
the current time and physical location, their scheduled appointments, which
application is currently running, and so on. Privacy issues aside, that sort of
information can be used to automatically adjust the devices settings based on
user defined rules, such as: “when I’m at the movies, mute all sound” or “when
my battery is running low, turn down screen brightness”.
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This example addresses a real practical need. Smartphones are ubiquitous
these days, and a number of applications already provide automated profile
management. However, they suffer from various limitations, and are often so
complex that one has to be a programmer to use them. I felt I could improve
upon this.

The theory in this chapter has lead to the development of a new profile
management application for Android [85]. Besides offering a great deal of power
with an intuitive user experience, the application also serves to illustrate the
versatility of ADM and the theory of its dynamic counterpart.

8.2.1 A Mobile Device
We start by introducing a simplified model of a mobile device. We are interested
in two distinct aspects: quantities and settings. Quantities are what we want a
device to monitor, such as ‘location’, ‘schedule’, ‘weather forecast’ and ‘battery
level’. Settings are all aspects of the device that the user has control over, such
as ‘volume’, ‘brightness’, ‘chat status’, ‘alarm’, and so on.

▹ 8.1. Definition (Device): First, assume a universal set of identifiers ℐ𝒟 and a
universal set of values 𝒱. A device is a triple (𝐼𝐷q, 𝐼𝐷s, type) where:

• 𝐼𝐷q ⊆ ℐ𝒟 is a finite set of names for all quantities the device can monitor.
• 𝐼𝐷s ⊆ ℐ𝒟 is a finite set of names for all settings the device can modify.

The names of quantities and the names of settings are disjoint: 𝐼𝐷q ∩ 𝐼𝐷s = ∅.
• The function type: 𝐼𝐷q ∪ 𝐼𝐷s → Pow(𝒱) maps a quantity or setting to

its set of possible values. For example, we’d have type(battery level) =
{ 0%, …, 100% } and type(chat status) = { available, busy, offline }. ⌟

From this point on, for the rest of the chapter, assume that
some device 𝐷𝐸𝑉 = (𝐼𝐷q, 𝐼𝐷s, type) is given.

We call a complete mapping of quantity values a device’s environment, and
a collection of its current settings its profile. The environment is ‘read-only’.
Through user-defined rules, specific environmental conditions can trigger a
modification to the profile. We define the notion of profile explicitly:

▹ 8.2. Definition (Profile): Define the set of profiles 𝒫𝐷𝐸𝑉 as a map of all of a
device’s settings to values of the proper type:

𝒫𝐷𝐸𝑉 ≝ 𝐼𝐷s → 𝒱

such that 𝑝(𝑖𝑑) ∈ type(𝑖𝑑) for all 𝑝 ∈ 𝒫𝐷𝐸𝑉 and all 𝑖𝑑 ∈ 𝐼𝐷s. ⌟

▹ 8.3. Example: The following is a profile 𝑝x ∈ 𝒫𝐷𝐸𝑉 :

𝑝x =

⎧{{
⎨{{⎩

volume ↦ 10,
bluetooth ↦ on,
brightness ↦ 3,

foreground app ↦ clock,
⋮

⎫}}
⎬}}⎭

Since the number of settings is usually quite large, we show only relevant ones.⌟
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.....

(a) Editing the meta-information:

.

name, icon, description and priority.

.

(b) Editing the condition: drag and

.

drop constraints from the list.

.

(c) Editing the effects; add more using

.

the ⊕ button in the action bar.

Figure 8.1: Screenshots of the Android interface. These controls are used for
editing profile management rules.

Profiles play the rôle of products (Notation 2.9, page 36) in a device specific
deltoid which will be defined shortly.

8.2.2 Rules
The idea behind the profile manager application is that the user manually
inputs a set of rules using the graphical interface (Figure 8.1). A rule consists
of an environmental condition and an effect specification, which contains new
settings. A condition is entered as a formula containing constraints on specific
quantities (Figure 8.1b). A constraint is formally defined as follows:

▹ 8.4. Definition (Constraint): A constraint is a dependent pair ⟨𝑖𝑑, 𝑉𝐴𝐿⟩ where
𝑖𝑑 ∈ 𝐼𝐷q is the name of a quantity and 𝑉𝐴𝐿 ⊆ type(𝑖𝑑) is the set of values to
which 𝑖𝑑 is constrained. The set of all possible constraints is denoted 𝐶𝐷𝐸𝑉 .⌟

Constraints play the rôle of features (Notation 4.2), since environmental con-
straints ultimately decide what the current profile should be.

An effect specification is formally similar to a profile (Definition 8.2), as
both map settings to values. But profiles are total functions, whereas effect
specifications are partial; they represent only the changes to a profile:
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▹ 8.5. Definition (Effect Specification): Define the set of effect specifications 𝒟𝐷𝐸𝑉
as a map of some settings to new values:

𝒟𝐷𝐸𝑉 ≝ 𝐼𝐷s ⇀ 𝒱
such that 𝑑(𝑖𝑑) ∈ type(𝑖𝑑) for all 𝑑 ∈ 𝒟𝐷𝐸𝑉 and all 𝑖𝑑 ∈ 𝐼𝐷s. Settings that are
not to be modified are not mapped. ⌟

▹ 8.6. Example: The following is an effect specification 𝑑x:

𝑑x = { volume ↦ 5,
foreground app ↦ calendar }

Settings that are not mentioned are not mapped. ⌟

Effect specifications, of course, play the rôle of deltas (Notation 2.10, page 36).
They form a monoid:

▹ 8.7. Definition (Profile Delta Monoid): The profile delta monoid (𝒟𝐷𝐸𝑉 , ·, 𝜀)
has a composition operator ·: 𝒟𝐷𝐸𝑉 × 𝒟𝐷𝐸𝑉 → 𝒟𝐷𝐸𝑉 defined as follows, for
all deltas 𝑥, 𝑦 ∈ 𝒟𝐷𝐸𝑉 and identifiers 𝑖𝑑 ∈ ℐ𝒟:

(𝑦 · 𝑥)(𝑖𝑑) ≝
⎧{
⎨{⎩

𝑦(𝑖𝑑) if 𝑖𝑑 ∈ pre(𝑦)
𝑥(𝑖𝑑) if 𝑖𝑑 ∈ pre(𝑥)
⊥ otherwise

The neutral profile delta 𝜀 = ∅ is the “everything undefined” function, mapping
no identifiers at all. ⌟

The profile deltoid is functional (Definition 2.66, page 59). As such, we’ll sim-
plify the type of the evaluation operator:

▹ 8.8. Definition (Profile Deltoid): The profile deltoid for a device 𝐷𝐸𝑉 is a del-
toid 𝐷𝑡𝐷𝐸𝑉 ≝ (𝒫𝐷𝐸𝑉 , 𝒟𝐷𝐸𝑉 , ·, 𝜀, ⟦ ⟧), with product set 𝒫𝐷𝐸𝑉 from Defini-
tion 8.2, delta monoid (𝒟𝐷𝐸𝑉 , ·, 𝜀) from Definitions 8.5 and 8.7 and semantic
evaluation operator ⟦ ⟧: 𝒟𝐷𝐸𝑉 → (𝒫𝐷𝐸𝑉 → 𝒫𝐷𝐸𝑉 ) defined as follows, for all
profile deltas 𝑑 ∈ 𝒟𝐷𝐸𝑉 , profiles 𝑝 ∈ 𝒫𝐷𝐸𝑉 and identifiers 𝑖𝑑 ∈ 𝐼𝐷s:

⟦ 𝑑 ⟧(𝑝)(𝑖𝑑) ≝ {𝑑(𝑖𝑑) if 𝑖𝑑 ∈ pre(𝑑)
𝑝(𝑖𝑑) otherwise ⌟

▹ 8.9. Example: For example, applying delta 𝑑x from Example 8.6 to profile 𝑝x from
Example 8.3 results in the following profile:

⟦ 𝑑x ⟧(𝑝x) =

⎧{{
⎨{{⎩

volume ↦ 5,
bluetooth ↦ on,
brightness ↦ 3,

foreground app ↦ calendar,
⋮

⎫}}
⎬}}⎭ ⌟

In conclusion, the domain of profile management gives rise to many deltoids
— one for every device 𝐷𝐸𝑉 .

Based on such a deltoid, a set of user-defined rules is defined as follows:
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▹ 8.10. Definition (Rule-set): A rule-set is a triple (𝐷, ≺, 𝛾) where 𝐷 ⊆ 𝒟𝐷𝐸𝑉 is a
set of profile deltas representing the effects of the rules, ≺ ⊆ 𝐷×𝐷 is a strict par-
tial order representing rule-priority and the function 𝛾: 𝐷 → Pow(Pow(𝐶𝐷𝐸𝑉 ))
maps effect specifications to the condition under which they should be applied.⌟

Rule-sets, then, play the rôle of annotated delta models (Definition 4.7, page 103).
Intuitively, a rule is an instruction to the profile manager: “Whenever 𝛾(𝑑)
holds, ensure that the device is set to the values in 𝑑.” A condition 𝛾(𝑑) ⊆
Pow(𝐶𝐷𝐸𝑉 ) is a set of sets of constraints, but should be thought of as a formula
in disjunctive normal form, i.e., a disjunction of conjunctions of constraints
(Figure 8.1b).

8.2.3 Defining Rules
I now present a typical scenario of a user entering some new rules, resulting
in an example rule-set (𝐷x, ≺x, 𝛾x). We use these rules as a running example
throughout the remainder of the chapter. We first specify each rule in an
informal manner and follow up with their formalization.

The user enters the first rule:

▹ 8.11. Rule (At Work): Whenever I am within 1 km of the Leiden University com-
puter science building between 9:00 and 17: 00, I want volume set to 5:

𝛾x(𝑥x) ≝ ⟨ time, between 9:00 and 17:00 ⟩ ∧
⟨ location, < 1 km of +52° 10’ 10”,

+4° 27’ 24”
⟩

⎫}
⎬}⎭

condition

𝑥x ≝ { volume ↦ 5 } }−effect ⌟

The user then proceeds to enter the second rule:

▹ 8.12. Rule (In a Meeting): During a scheduled meeting, I want the volume set
to 0 and the ‘meeting minutes’ app brought to the foreground:

𝛾x(𝑦x) ≝ ⟨ meeting, {true} ⟩
𝑦x ≝ { volume ↦ 0,

foreground app ↦ ‘meeting minutes’ } ⌟

...

Figure 8.2: I found a conflict.

Both rules are entered through the in-
terface shown in Figure 8.1. A name,
description and icon can be associated
with each rule, but those are not rele-
vant to the formalism.

Upon entering the second rule, the
user receives a warning from the appli-
cation (Figure 8.2). The two rules have
overlapping conditions —which means
both can be true at the same time— but
they disagree about the proper volume
setting. So if the user ever attends a scheduled meeting at work during the des-
ignated working hours, the profile manager will not know whether the volume
should be set to 0 or to 5. To break the tie, the user is given a choice:
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1. “always grant priority to the first rule (i.e., set the volume to 5)”,
2. “always grant priority to the second rule (i.e., set the volume to 0)”,
3. “use a third value, specifically for the combination 𝛾(𝑥x) ∧ 𝛾(𝑦x)”, or
4. “deactivate the rule-set for now; I’ll correct the problem later”.

In this case, the user chooses option 2 to give the second rule priority:

𝑥x ≺x 𝑦x

In a different situation, an alternative resolution might have been more ap-
propriate. Perhaps a combination of two or more conditions requires specific
consideration, and rather than give priority to either rule, a third alternative is
required. Option 3 would automatically create a rule 𝑧x such that 𝑥x, 𝑦x ≺x 𝑧x
with a preset default value for the volume setting to override the conflict. Op-
tion 4 gives the user the opportunity to manually correct the problem at leisure;
perhaps by editing one or both rules. These options correspond roughly to Ac-
tions 3.9, 3.11 and 3.8 (pages 77 and 78).

8.2.4 Rule-sets as Product Line Implementations
Next, we create a dynamic product line from a given rule-set. ‘Profile features’,
as noted earlier, are environmental constraints (Definition 8.4). We name the
constraints of the running example above as follows:

▹ 8.13. Example (Profile Features): The set of features ℱx ⊆ 𝐶𝐷𝐸𝑉 relevant to
the example rule-set of Section 8.2.3 is { 𝑡, 𝑙, 𝑚 }, where:

𝑡 ≝ ⟨ time, between 9:00 and 17:00 ⟩
𝑙 ≝ ⟨ location, < 1 km of +52° 10’ 10”, +4° 27’ 24” ⟩

𝑚 ≝ ⟨ meeting, {true} ⟩ ⌟

A constraint ⟨𝑖𝑑, 𝑉𝐴𝐿⟩ is essentially a predicate over quantity 𝑖𝑑, and represents
a single feature; features are no longer just symbols. One could argue that
reasoning in terms of ‘on-or-off’ features at all is impractical here, and a more
flexible model should be used; perhaps a simple mapping between quantities
and values. However, a feature model gives us a discrete and finite state-
space, just expressive enough to distinguish the conditions provided by the
user. A more realistic representation might well involve continuous and infinite
domains, depending on the environmental quantities involved.

Mapping predicates to propositional symbols, as we are doing now, is a
trick from SMT (SAT Modulo Theory) [143], allowing us to reason about them
propositionally. This technique requires us to impose some restrictions on pos-
sible feature configurations, because some combinations of constraints will —by
their very nature— exclude or imply others. For instance, ⟨ time, between 9:00
and 12:00 ⟩ and ⟨ time, between 13:00 and 17:00 ⟩ would never appear in the
same feature configuration. But the presence of either would also ensure the
presence of 𝑡 (Example 8.13). We can encode such restrictions in a feature
model. For a source-code based product line, a feature model is set up man-
ually, based on which features ‘make sense’ together, and which conceptually
exclude or include each other (Section 4.2). A ‘profile feature model’ is fixed
for a given set of constraints, derived from their respective theories (the T
in SMT). We give the following definition for interests sake, but we will not
require these details further in the chapter:
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..𝑥x.

𝑡 ∧ 𝑙

. 𝑦x.

𝑚

Figure 8.3: The Section 8.2.3 rule-set diagram.

8.14. Definition (Profile Feature Model): Given a set of profile features ℱ, the
corresponding feature model 𝛷 contains exactly all sets 𝐹 ⊆ ℱ such that

∀𝑖𝑑 ∈ 𝐼𝐷q:

included constraints are satisfiable

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∅ ⊂

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

and implied constraints are not excluded.

( type(𝑖𝑑) ∩ ⋂
⟨𝑖𝑑,𝑉𝐴𝐿⟩

∈ 𝐹

𝑉𝐴𝐿 ) ⊈ ( ⋃
⟨𝑖𝑑,𝑉𝐴𝐿⟩

∈ ℱ∖𝐹

𝑉𝐴𝐿 )

⌟

The only thing missing from our product line implementation now is a core
product (Definition 4.9). To determine what a ‘core profile’ is, we first realize
a simple truth: a smartphone application never has full control over the settings.
The user can also manipulate them manually. So the core profile can basically
be anything. There are a number of ways to capture this in the formalism, but
we go for the simplest approach:

▹ 8.15. Definition (Manual Profile): Introduce the value ‘manual’ ∈ 𝒱, which is
included in all types, i.e., we have ‘manual’ ∈ type(𝑖𝑑) for all settings 𝑖𝑑 ∈
𝐼𝐷s. Then define the manual profile 𝑐 ∈ 𝒫𝐷𝐸𝑉 as the constant that maps all
identifiers to ‘manual’. ⌟

▹ 8.16. Definition (Rule-set Implementation): A rule-set implementation is a prod-
uct line implementation ( 𝛷, 𝑐, 𝐷, ≺, 𝛾 ), fully defined by Definitions 8.10, 8.14
and 8.15. ⌟

The implementation of the Section 8.2.3 ruleset is depicted in Figure 8.3.

8.2.5 Product Line Specifications
Now what of product line specifications (Section 4.4)? They are a valuable
concept in this chapter too. Just as static product line implementations were
validated against them in Chapter 4 (page 96), so will dynamic product line
implementations be validated against them in the next section.

However, since users of the profile manager express their requirements di-
rectly in the form of delta models, the static notion of product line correctness
(Section 4.4.2) loses some meaning. The valuation function is defined directly
in terms of the implementation —V(𝐹) = ⟦𝑃𝐿𝐼⟧(𝐹)— making rule-set imple-
mentations correct by definition. But things become more interesting as we
consider the correctness of dynamic product lines instead.
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8.3 An Operational Semantics
For the remainder of the chapter we assume that some product
line specification 𝑃𝐿𝑆 = ( 𝛷, V ) is given.

In this section we work on defining the structure and semantics of ADM-based
dynamic product line implementations. We start by stating the problem we
need to solve. We then proceed step-by-step as we explore possible solutions,
using the profile management application as an example.

8.3.1 The Problem
The problem is as follows: Say we are running a dynamic product line. It is
currently ‘occupying’ feature configuration 𝐹𝑒 ∈ 𝛷, as imposed by the environ-
ment, and exhibiting the behavior of a product 𝑝 ∈ V(𝐹𝑒). In other words,
the product we are running is correct with regard to the environmental feature
configuration. So far so good.

The environment could then impose a new feature configuration 𝐹𝑒
′. This

triggers our reconfiguration process, which is then responsible for updating the
product 𝑝 to some product 𝑝′ ∈ V(𝐹𝑒

′). Our goal is to find the best possible
strategy for doing so; preferably one that is (potentially) efficient, since we are
now in a runtime setting, where time and space matter.

For the Section 8.2 profile manager, the environmental feature configuration
would change whenever the truth value of a constraint is ‘flipped’ by an envi-
ronmental quantity receiving a new value. For example, in the Section 8.2.3
rule-set, if we have 𝐹𝑒 = ∅ and it becomes 9:00, we would switch to feature
configuration 𝐹𝑒

′ = { 𝑡 }.

8.3.2 An Operational Semantics
In order to reason about different strategies for updating the running product,
we develop an operational semantics; one that might be ‘inserted’ at the point
where an imperative program reaches the reconfigure statement described
in the Introduction. However, we’ll develop the semantics in the abstract set-
ting of ADM, so we will not track memory state or control flow.

We first need to choose a configuration space, as this choice will determine
the kind of properties we can express about the dynamic system. If not mem-
ory and control flow, what do we need to track? It might make sense if our
configurations were feature configurations. After all, a dynamic product line
is all about moving from one feature configuration to another. But then we
would not be able to express the property that the running product is con-
tinually correct with regard to that feature configuration. The configurations
need, at least, to contain that product too. So a minimal configuration space
would be as follows:

8.17. Definition (Minimal Configurations): A minimal configuration is a pair
⟨ 𝐹𝑒, 𝑝 ⟩ ∈ 𝛷 × 𝒫 representing a dynamic product line state. 𝐹𝑒 is the
environmental feature configuration and 𝑝 is the current product. ⌟
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Side-note: The lack of a ▸ marker to the left of this definition indicates that it is
not part of our final solution. We purposely explore a number of approaches in
this section that turn out to be impractical. Doing so allows us to demonstrate
useful concepts to build upon, and motivates the work that follows.

Do not let the term ‘configuration’ confuse you. The product 𝑝 represents the
actual running code (or, as the case may be, the actual running profile).

We make a distinction between stable and unstable configurations:

8.18. Definition (Configuration Stability): If a given configuration ⟨ 𝐹𝑒, 𝑝 ⟩ has
the property that 𝑝 ∈ V(𝐹𝑒), we call that configuration stable. Otherwise we
call it unstable. ⌟

Recall that for the profile manager, this is the same as stating that a
configuration is stable iff 𝐹𝑒 ⟦𝑃𝐿𝐼⟧ 𝑝, because rule-set specifications are
defined directly in terms of rule-set implementations (Section 8.2.5).

▹ 8.19. Example: An example of a stable configuration would be

⟨ { 𝑡, 𝑙 } , { volume ↦ 5, … } ⟩

and an example of an unstable configuration would be

⟨ { 𝑡, 𝑙, 𝑚 } , { volume ↦ 1, … } ⟩

because all profiles in V({ 𝑡, 𝑙, 𝑚 }) need volume set to 0. ⌟

To define a transition relation, we introduce inference rules (Notation 1.15,
page 21). They are important reference points in the chapter, so we distinguish
them typographically by printing their names in - and placing them
inside a solid box where they are defined.

We distinguish between two different ‘kinds’ of transitions. There are
environmental transitions 𝑒−−→, in which the environment switches to a
new feature configuration, and local transitions 𝓁−−→, in which the product is
updated in an attempt to regain a correct state. The full transition relation ⟶
is defined as the smallest relation satisfying both an environmental inference
rule and a local inference rule.

After an environmental transition, we will generally end up in an unstable
configuration and will need to update the product:

8.20. Definition (Environmental Inference Rule): -

𝑝 ∈ V(𝐹𝑒)
⟨𝐹𝑒, 𝑝 ⟩ 𝑒−−→ ⟨ 𝐹𝑒

′, 𝑝 ⟩ ⌟

Note that before we allow any environmental transition, we require that the
current configuration is stable. This assumption simplifies the formalism,
and is reasonable because we can expect to reach local stability in relatively
short amounts of time. It allows us to think about the entire process as an
alternation between two distinct phases. In the first phase the environmental
feature configuration changes; this always takes one environmental transition.
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In the second phase we update the product, using zero or more local transitions
to achieve stability. We know that a local phase will not be interrupted
by environmental transitions:

environmental

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⟨𝐹𝑒, 𝑝 ⟩ 𝑒−−→ ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

local

⟨ 𝐹𝑒
′, 𝑝 ⟩ 𝓁−−→∗ ⟨ 𝐹𝑒

′, 𝑝′ ⟩ 𝑒−−→ ⟨ 𝐹𝑒
″, 𝑝′ ⟩ 𝓁−−→∗ ⟨ 𝐹𝑒

″, 𝑝″ ⟩ 𝑒−−→ ⋯

8.3.3 Correctness
So let us now restate our goal more formally: we need to find a local inference
rule. We know that we have a good one if it leads to a stable configuration
in finite time. We call such a local inference rule correct with regard to the
product line specification. This is the dynamic counterpart of ‘static’ product
line correctness (Definition 4.20).

We distinguish between two levels of correctness, as we do for static product
lines (Section 4.4.2). Partial correctness means that if the local transition
relation ever gets stuck, it will be in a stable configuration (so an environmental
transition can take place). Total correctness means that a local transition is
guaranteed to get stuck in a stable configuration within finite steps.

▸ 8.21. Definition (Partial Correctness): A given local inference rule is partially
correct iff, for all configurations ⟨ 𝑐𝑛 ⟩, we have:

⟨ 𝑐𝑛 ⟩ 𝓁−−→/ ⟹ ⟨ 𝑐𝑛 ⟩ is stable ⌟

We could also state Definition 8.21 as follows:
“a local inference rule is partially correct iff the transition
relation 𝑒−−→ ∪ 𝓁−−→ never gets stuck”

but the current formulation is closer to the traditional meaning of partial
correctness, and it allows us to refrain from referring to -.

▸ 8.22. Definition (Total Correctness): A local inference rule is totally correct iff it
is partially correct and there is no infinite local transition path (Definition 1.50,
page 28):

⟨ 𝑐𝑛 ⟩ 𝓁−−→/ ∞ ⌟

8.3.4 A Local Inference Rule: -
We now try to find a correct local inference rule. Let us first get an obvious
(but naive) idea out of the way. We could use the same process we used to
generate a product statically. We would assume that a static product line
implementation 𝑃𝐿𝐼 is given (Definition 4.10), totally correct with respect to
𝑃𝐿𝑆 (Definition 4.20), and define a local inference rule as follows:
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8.23. Definition (Local Inference Rule): -

a
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑝 ∉ V(𝐹𝑒)

b
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐹𝑒 ⟦𝑃𝐿𝐼⟧ 𝑝′

⟨𝐹𝑒, 𝑝 ⟩ 𝓁−−→ ⟨ 𝐹𝑒, 𝑝′ ⟩ ⌟

This local transition can take place (a) from any unstable configuration
(b) to a configuration with a product 𝑝′ built from scratch to correspond
with feature configuration 𝐹𝑒. We can prove that this rule is totally correct
(Definitions 8.21 and 8.22):

8.24. Theorem: The - rule is totally correct.

Proof: First, assume that a given configuration ⟨ 𝐹𝑒, 𝑝 ⟩ is locally stuck.
This means we have the negation of -’s premise: 𝑝 ∈ V(𝐹𝑒) or
∃𝑝′: 𝐹𝑒 ⟦𝑃𝐿𝐼⟧ 𝑝′. The latter is untrue by our static correctness assumption.
By the former, all configurations that are locally stuck must also be stable.
This gives us partial correctness.

If it is not stable, and therefore not stuck, we have ⟨𝐹𝑒, 𝑝 ⟩ 𝓁−−→ ⟨ 𝐹𝑒, 𝑝′ ⟩
with 𝐹𝑒 ⟦𝑃𝐿𝐼⟧ 𝑝′ by -. By the assumed correctness of 𝑃𝐿𝐼 we can
conclude 𝑝′ ∈ ⟦𝑃𝐿𝐼⟧(𝐹𝑒) ⊆ V(𝐹𝑒). Since we use at most one transition to gain
this stability, there is clearly no infinite local transition path, which gives us
total correctness. ◻

But generating a new product on the fly this way will turn out to be too
inefficient for non-trivial product lines. Recall that we need local transitions
to be fast. Storing all possible products in memory beforehand and then
dynamically switching to the correct one is also infeasible. In general the
number of products will be exponential in the number of features. If we want
to model industrial-scale dynamic product lines, we need to do better.

8.3.5 Difference-based Configurations
An alternative approach is to take the current product and transform it into
a new one incrementally. This may be a lot more efficient, since we would be
reusing the parts of the product that do not need to change. A transformation
of a product is, of course, a delta. But how do we decide which delta to apply
at every change? We are currently rather limited by the information in our
configuration tuples. If we want to do this we need to add some bookkeeping.
In particular, if we want to keep track of what changed in the environment,
we’ll need to store a local feature configuration. We can compare it to the
environmental feature configuration and use their ‘difference’ to determine the
delta or deltas that need to be applied (Figure 8.4):

▸ 8.25. Definition (Difference-based Configurations): Difference-based configura-
tions are triples ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ ∈ 𝛷 × 𝛷 × 𝒫 with an environmental feature
configuration 𝐹𝑒, a local feature configuration 𝐹𝓁 and a current product 𝑝. ⌟
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..𝐹𝓁

.... 𝐹𝑒.

..𝑝 ..⟦ ⟧ ..𝑝′ ..⟦ ⟧ ..⋯ ..⟦ ⟧ ..𝑝″

.

𝑑

.

𝑑′

.

𝑑″

..

strategy

Figure 8.4: Illustrating the rôle of the local feature configuration in ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝 ⟩.
If 𝑝 ∉ V(𝐹𝑒), one or more deltas are derived from the difference between 𝐹𝑒
and 𝐹𝓁. These deltas are then used to transform the running product into
valid product 𝑝″. This is presumably faster than building 𝑝″ from scratch.
How to derive the proper sequence of deltas depends on our strategy.

Damiani et al. [63, 64] have a similar concept. They call the local fea-
ture configuration CurrentConfiguration and the environmental feature
configuration NextConfiguration.

The difference between two feature configurations is their set-theoretic
symmetric difference (Definition 1.1). We use it to measure their distance and
how far we have progressed from one to the other:

▸ 8.26. Example (Symmetric Difference): Take, as an example, two feature con-
figurations {𝑡}, {𝑚} ∈ 𝛷x. If we currently occupy 𝐹𝓁 = {𝑡} and intend to
reach 𝐹𝑒 = {𝑚}, we need to ‘remove’ feature 𝑡 and ‘add’ feature 𝑚 in the
implementation of the current product. We represent this required work with
𝐹𝓁 ⊖ 𝐹𝑒 = {𝑡, 𝑚}. (We preserve the distinction between adding and removing
by remembering the context of the operation.)

Conversely, if we start at 𝐹𝓁 = {𝑡} and perform the work described by
𝐹Δ = {𝑡, 𝑙}, we reach the state 𝐹𝓁 ⊖ 𝐹Δ = {𝑙}. The symmetric difference
operator has the interesting property that 𝐹 ⊖ (𝐹 ⊖ 𝐺) = 𝐺, so we can use it
for both types of operation. ⌟

Before we try to translate such a difference to a delta, we need to restate
Definitions 8.18 and 8.20 to work with our new configurations. They are
trivial changes, just adding and disregarding the additional element:

▸ 8.27. Definition (Configuration Stability): If a given configuration ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝 ⟩
has the property that 𝑝 ∈ V(𝐹𝑒) then we call that configuration stable.
Otherwise we call it unstable. ⌟

▸ 8.28. Definition (Environmental Inference Rule): -

𝑝 ∈ V(𝐹𝑒)
⟨𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ 𝑒−−→ ⟨ 𝐹𝑒

′, 𝐹𝓁, 𝑝 ⟩ ⌟

When it comes to stability and environmental transitions, we do not care
about our new bookkeeping element; it is left alone. Note that we do not
need to redefine Definitions 8.21 and 8.22 because they were presented in
a sufficiently general manner.
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8.3.6 Dynamic Product Lines as Mealy Machines
We now need to decide, given a feature configuration difference, how to
derive the delta or deltas that can transform the current product into a valid
target product. We call this a strategy (Figure 8.4). We describe different
strategies with a new model based on Mealy machines. Please have a look
at Definition 1.52 (page 28) for the formal definition. This representation
will be quite useful for describing as well as visualizing different strategies
for running dynamic product lines.

It is worth noting that this type of graph (Figure 1.6, page 29) offers a
completely different view of a product line than a delta diagram does. A delta
diagram can be said to represent the design space, whereas Mealy machines
represent the dynamic state-space.

We define local transitions of the operational semantics in terms of
Mealy machine transitions. For this we use the following syntax for the
Mealy-machine transition relation, so we need not use T and O directly:

▸ 8.29. Notation (Mealy Machine Transition Relation): A Mealy machine tu-
ple (𝑆, 𝛴, 𝛬, T, O) induces a quaternary Mealy machine transition relation

/−−−→ ⊆ 𝑆 × 𝛴 × 𝛬 × 𝑆 as follows. For all states 𝑠, 𝑠′ ∈ 𝑆, input symbols
𝑖 ∈ 𝛴 and output symbols 𝑜 ∈ 𝛬:

𝑠 𝑖/𝑜−−−→ 𝑠′ ⟺≝ T(𝑠, 𝑖) = 𝑠′ ∧ O(𝑠, 𝑖) = 𝑜 ⌟

We can now define a local inference rule in terms of the 𝑖/𝑜−−−→ relation of a
Mealy machine. But how do we define such a DPL Mealy machine? The tuple
has five ingredients. The first three are simple enough:

• 𝑆 = 𝛷: The states of our machine are feature configurations. The
local feature configuration 𝐹𝓁 is the current state. 𝐹𝑒 is
the target state. In a diagram we annotate these two
states as in Figure 8.5.

• 𝛴 = Pow(ℱ): The input we want to process at each transition is the
difference —or part of the difference— between feature
configurations 𝐹𝓁 and 𝐹𝑒. We denote such a difference by
𝐹Δ ⊆ ℱ.

• 𝛬 = 𝒟: As we move 𝐹𝓁 towards 𝐹𝑒 in the machine, we’d like to
get, as output, a light-weight delta (or deltas) to update
the product.

The output function O requires some thought. Given a current product and
feature difference, which delta do we use to update the product?

Since a delta 𝑑 can be non-deterministic, its application to the current
product 𝑝 could result in more than one possible next product 𝑝′ ∈ ⟦ 𝑑 ⟧(𝑝).
We at least need all of those to be be correct: ⟦ 𝑑 ⟧(𝑝) ⊆ V(𝐹𝑒). But at
build time we can’t be sure what product 𝑝 is. It could itself be any of the
products generated by the previous transition, and so on. In other words, if we
want to reason locally, we’ll need to choose an invariant on our configurations
⟨ 𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ to give us more information about our current product. The
invariant will need to hold in the initial configuration and every transition will
need to maintain it. We will use the local consistency invariant:
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Figure 8.5: Local and environmental marking of states in a DPL Mealy
machine diagram. Local feature configuration 𝐹𝓁 is shaded and environmental
feature configuration 𝐹𝑒 has a ring around it. During a local transition,
imagine our general strategy as the local state trying to reach the ring by
taking any direct path that leads in the right direction.

▸ 8.30. Definition (Local Consistency): A difference-based configuration ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝 ⟩
is locally consistent iff 𝑝 ∈ V(𝐹𝓁). ⌟

For specific systems there may be stronger invariants that are more appropriate,
but in general, local consistency is the best we can do. We know now that
every configuration has a product consistent with 𝐹𝓁 and we can use that to
choose the right delta. We need to derive one that transforms any product
from a locally consistent configuration to a correct target product, i.e., we
need an effective procedure for delta derivation (Section 2.4.3):

▸ 8.31. Definition (Derived Delta Operator): A derived delta operator is a binary
operator ↦: Pow(𝒫) × Pow(𝒫) → 𝒟 that returns a derived delta for all product
sets 𝑃 , 𝑃 ′ ⊆ 𝒫:

( 𝑃 ↦ 𝑃 ′ ) ∈ ( 𝑃 ⤇tot 𝑃 ′ )
where ⤇tot specifies a set of derived deltas (Definition 2.31). ⌟

From now on we assume that such a procedure is implemented for the given
deltoid. We can define one for the profile deltoid as follows:

▹ 8.32. Definition (Derived Profile Delta Operator): The derived profile delta
operator ↦𝐷𝐸𝑉 : Pow(𝒫𝐷𝐸𝑉 )×Pow(𝒫𝐷𝐸𝑉 )→𝒟𝐷𝐸𝑉 takes a finite set of source
profiles and a nonempty finite set of target profiles and produces a profile
delta that transforms any profile from the source set into an arbitrary profile
from the target set. For all product sets 𝑃 ⊆ 𝒫𝐷𝐸𝑉 , products 𝑝′ ∈ 𝒫𝐷𝐸𝑉 and
identifiers 𝑖𝑑 ∈ 𝐼𝐷s:

(𝑃 ↦𝐷𝐸𝑉 { 𝑝′, … })(𝑖𝑑) ≝ {
𝑝′(𝑖𝑑) if ∃𝑝 ∈ 𝑃 : 𝑝(𝑖𝑑) ≠ 𝑝′(𝑖𝑑)
⊥ otherwise

The resulting delta remains undefined for the settings on which 𝑃 and 𝑝′
agree, and favors 𝑝′ for the rest. The product 𝑝′ is chosen arbitrarily from the
right-hand operand. ⌟
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Generally, given such a procedure, we can define an output function O that
produces an appropriately derived delta O(𝐹𝓁, 𝐹Δ) = V(𝐹𝓁) ↦ V(T(𝐹𝓁, 𝐹Δ)).
We assume that this is done at build-time for all relevant feature differences,
so they can simply be looked up at run-time.

As for our final ingredient: the definition of the transition function T is
what determines our further strategy. The output function O will remain
fixed, though its preimage will adapt to correspond with T. So we can now
define the concept of a DPL Mealy machine parametrized on T:

▸ 8.33. Definition (DPL Mealy Machine): Given a transition function T: 𝛷 ×
Pow(ℱ) ⇀ 𝛷, we define the corresponding DPL Mealy machine

MM(T) ≝ (𝛷, Pow(ℱ), 𝒟, T, O)

where O: 𝛷 × Pow(ℱ) ⇀ 𝒟 is defined as

O(𝐹𝓁, 𝐹Δ) ≝ {
V(𝐹𝓁) ↦ V(T(𝐹𝓁, 𝐹Δ)) if (𝐹𝓁, 𝐹Δ) ∈ pre(T)
⊥ otherwise ⌟

And finally, we define a local inference rule in terms of a DPL Mealy machine,
also parametrized on T:

▸ 8.34. Definition (Local Inference Rule): -(T)
a

⏞⏞⏞⏞⏞⏞⏞
𝑝 ∉ V(𝐹𝑒)

b
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∅ ⊂ 𝐹Δ ⊆ 𝐹𝓁 ⊖ 𝐹𝑒

c
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐹𝓁

𝐹Δ / 𝑑−−−−−→ 𝐹𝓁
′

d
⏞⏞⏞⏞⏞
𝑝 ⟦ 𝑑 ⟧ 𝑝′

⟨𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ 𝓁−−→ ⟨ 𝐹𝑒, 𝐹𝓁
′, 𝑝′ ⟩

with 𝑖/𝑜−−−→ from Mealy machine MM(T) (Definition 8.33). ⌟

(a) Starting from an unstable configuration ⟨𝐹𝑒, 𝐹𝓁, 𝑝⟩, (b) some nonempty
subset of 𝐹𝓁 ⊖ 𝐹𝑒 is chosen as input symbol 𝐹Δ. (c) Given that input symbol
from current state 𝐹𝓁, the DPL Mealy machine reaches a state 𝐹𝓁

′ ∈ 𝛷 and
generates a delta 𝑑 ∈ 𝒟 as output symbol. (d) This delta can transform
product 𝑝 into product 𝑝′, forming a possible next configuration ⟨𝐹𝑒, 𝐹𝓁

′, 𝑝′⟩.
At this point a general recapitulation is in order: The behavior of a

dynamic product line is modeled by a configuration space and a transition
relation on that space (Notations 1.48 and 1.49). We define the transition
relation based on environmental inference rule - and local inference rule
-(T) (Definitions 8.28 and 8.34). The local inference rule is based on
a Mealy machine, parametrized on its transition function T (Definition 8.33).
The remaining sections will be spent trying to find the optimal function T.

Before we explore the first candidate, we prove a number of useful
properties about the local inference rule, which will help us in the upcoming
correctness proofs. First, we prove that it maintains local consistency, purely
by our fixed choice of output function:

▸ 8.35. Lemma (Local Consistency by -): Given any transition function
T, the transition relation defined by -(T) maintains the local consistency
invariant (Definition 8.30).
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Proof: Assume that ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ is locally consistent, so 𝑝 ∈ V(𝐹𝓁). Take any
transition ⟨𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ 𝓁−−→ ⟨ 𝐹𝑒, 𝐹𝓁

′, 𝑝′ ⟩. We know from Definition 8.33 that
𝑝 ⟦ 𝑑 ⟧ 𝑝′ for some delta 𝑑 ∈ V(𝐹𝓁)⤇tot V(𝐹𝓁

′). So by our assumption 𝑝 ∈ V(𝐹𝓁)
and by Definition 8.31, we have 𝑝′ ∈ V(𝐹𝓁

′). That means ⟨𝐹𝑒, 𝐹𝓁
′, 𝑝′ ⟩ is also

locally consistent. ◻

Next, there is a certain property all our choices of transition function should
exhibit. They will all take a direct path from the local to the environmental
feature configurations. This means that the difference between the two sets
strictly decreases in size from one configuration to the next:

▸ 8.36. Definition (Direct Path): A transition function T: 𝛷 × Pow(ℱ) ⇀ 𝛷 takes
a direct path iff, for all configurations ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ and a transition relation 𝓁−−→
defined by -(T), we have:

⟨𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ 𝓁−−→ ⟨ 𝐹𝑒, 𝐹𝓁
′, 𝑝′ ⟩ ⟹ 𝐹𝑒 ⊖ 𝐹𝓁 ⊃ 𝐹𝑒 ⊖ 𝐹𝓁

′ ⌟

This will help us prove total correctness by use of the following lemma:

▸ 8.37. Lemma (Direct Path Convergence): Any transition function that takes
a direct path (Definition 8.36), allows no infinite local transition path:

∄ ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ 𝓁−−→∞

Proof: By wellfoundedness of ⊂. The finite set 𝐹𝑒 ⊖ 𝐹𝓁 can only shrink until
it is empty. ◻

So basically, for any partially correct local inference rule that takes a direct
path, we get total correctness for free.

8.3.7 A Local Inference Rule: -(Tf)
The first obvious strategy is to take the difference between the local and
environmental feature configurations 𝐹Δ = 𝐹𝑒 ⊖ 𝐹𝓁 directly as input symbol
for the Mealy machine. So, if 𝐹𝓁 = { 𝑡 } and 𝐹𝑒 = { 𝑚 } we take a single
transition with input symbol 𝐹Δ = { 𝑡, 𝑚 }:

8.38. Definition: A local inference rule -′(T) is the same as rule -(T)
(Definition 8.34), but with the additional premise that 𝐹Δ = 𝐹𝑒 ⊖ 𝐹𝓁. ⌟

This premise is only temporary, because the strategy will turn out to be
impractical. Nonetheless, a brief exploration of it will be instructive. We
can define the transition function as follows:

8.39. Definition (Full Difference Transition Function): Define the full differ-
ence transition function Tf : 𝛷 × Pow(ℱ) ⇀ 𝛷 as follows, for all 𝐹𝓁 ∈ 𝛷 and
𝐹Δ ⊆ ℱ:

Tf(𝐹𝓁, 𝐹Δ) ≝ 𝐹𝓁 ⊖ 𝐹Δ

pre(Tf) ≝ { (𝐹𝓁, 𝐹Δ) | 𝐹𝓁 ⊖ 𝐹Δ ∈ 𝛷 }
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⌟

There are two almost separate aspects to defining a transition function:
defining its output and defining its preimage. The output specified above
makes it clear that the new local transition rule -′(Tf) (Definitions 8.38
and 8.42) moves from 𝐹𝓁 to 𝐹𝑒 in a single step after every environment change.
We chose the preimage so that the output is guaranteed to be a valid feature
configuration, rather than some arbitrary feature set.

8.40. Lemma (Direct Path by -′(Tf)): The inference rule -′(Tf)
takes a direct path (Definition 8.36).

Proof: The difference 𝐹Δ provided as an input symbol is a nonempty set
(Definition 8.34b). By Definition 8.39 the new local feature configuration is
𝐹𝓁

′ = 𝐹𝓁 ⊖ 𝐹Δ = 𝐹𝓁 ⊖ (𝐹𝓁 ⊖ 𝐹𝑒) = (𝐹𝓁 ⊖ 𝐹𝓁) ⊖ 𝐹𝑒 = 𝐹𝑒. In short, 𝐹𝓁
′ = 𝐹𝑒, so

the new difference 𝐹𝑒 ⊖ 𝐹𝓁
′ = ∅ is empty, making it strictly smaller than 𝐹Δ.◻

With this results we prove total correctness as defined by Definitions 8.21
and 8.22:

8.41. Theorem: The rule -′(Tf) is totally correct.

Proof: Assume that a given configuration ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ is stuck. Since
-′(Tf) (Definitions 8.38 and 8.39) is our only local inference rule,
we have the negation of one of its premises. So we have one of the following:

a. The configuration is already stable: 𝑝 ∈ V(𝐹𝑒),
b. there is no 𝐹Δ, because 𝐹𝓁 = 𝐹𝑒,
c. the Tf function accepts none: ∄∅ ⊂ 𝐹Δ ⊆ 𝐹𝓁 ⊖ 𝐹𝑒: (𝐹𝓁, 𝐹Δ) ∈ pre(Tf), or
d. the generated delta does not accept the current product: ⟦ 𝑑 ⟧(𝑝) = ∅.

By Definition 8.39 it cannot be (c), and by Definition 8.33 it cannot be (d).
So by the process of elimination we have 𝑝 ∈ V(𝐹𝑒) ∨ 𝐹𝓁 = 𝐹𝑒. The former
would give us our result directly. Given the latter, we have 𝑝 ∈ V(𝐹𝓁) by local
consistency (Lemma 8.35), and therefore 𝑝 ∈ V(𝐹𝑒). So we know that when
-′(Tf) is stuck on a configuration, that configuration must be stable,
giving us partial correctness.

We have total correctness by the direct path property (Lemmas 8.37
and 8.40). ◻

This is a pattern of proof we will use more often:
• Prove that a stuck configuration is stable by invoking local consistency

and the negation of one of the premises of Definition 8.34. This gives us
partial correctness.

• Prove that the transition function takes a direct path (Definition 8.36),
giving us total correctness.

A Mealy machine diagram for -(Tf) would be quite unreadable. It
has an excessive number of transitions: |pre(Tf)| = |𝛷|2 − |𝛷| = 22|ℱ| − 2|ℱ|,
quadratic in the number of feature configurations, so exponential in the
number of features. This is not surprising, given that the input alphabet
we chose is Pow(ℱ). This also means that we would have to store a lot
of deltas. Too many.
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Figure 8.6: The DPL Mealy machine MM(Ts) for the Section 8.2.3 example.

The key insight here is that we do not need to reach the target product in
a single transition. We can use multiple local transitions to get there. And
with the concepts introduced up to this point, it will be relatively simple
to define a new rule for that.

8.3.8 A Local Inference Rule: --(Ts)
We now reduce the number of Mealy-machine transitions by taking one local
transition per feature rather than one per feature-set. This is at the cost of
using multiple local transitions during a single phase if necessary. It will bring
the number of transitions in the Mealy machine down from ( 22|ℱ| − 2|ℱ| )
to ( |ℱ| × 2|ℱ| ), a significant difference in practice, even though it is still
exponential. So for the profile manager, if 𝐹𝓁 = { 𝑡 } and 𝐹𝑒 = { 𝑚 } we take
one local transition for ‘it became 17:00’ and one for ‘a meeting has started’,
even if both occur simultaneously.

To maintain consistency, we do not change the input alphabet to ℱ, but
will simply use singleton sets. The transition function is otherwise similar to Tf :

8.42. Definition (Singleton Transition Function): Define the singleton transi-
tion function Ts: 𝛷 × Pow(ℱ) ⇀ 𝛷 as follows, for all 𝐹𝓁 ∈ 𝛷 and 𝑓Δ ∈ ℱ:

Ts(𝐹𝓁, {𝑓Δ}) ≝ 𝐹𝓁 ⊖ {𝑓Δ}
pre(Ts) ≝ { (𝐹𝓁, {𝑓Δ}) | 𝐹𝓁 ⊖ {𝑓Δ} ∈ 𝛷 } ⌟

The DPL Mealy machine MM(Ts) (Definitions 8.33 and 8.42) for our running
example is shown in Figure 8.6. Observe that the features 𝑡, 𝑙, 𝑚 each represent
one ‘dimension’ in the diagram. For readability we omited the ‘set braces’,
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Figure 8.7: A DPL Mealy machine MM(Ts) based on an some unrestricted
feature model. Note that 𝐹𝑒 = {𝑡, 𝑚} cannot be reached from 𝐹𝓁 = ∅.

since we only use singleton input sets for Ts. Three known deltas are used in
this machine: 𝜀, 𝑥x and 𝑦x (Section 8.2.3). The new deltas 𝑥x′, 𝑦x′ and 𝑦x″ are:

𝑥x′ = { ‘volume’ ↦ ‘manual’ } ,

𝑦x′ = { ‘volume’ ↦ ‘manual’,
‘foreground app’ ↦ ‘manual’ } ,

𝑦x″ = { ‘volume’ ↦ 5,
‘foreground app’ ↦ ‘manual’ } .

They reverse the effects of their counterparts. Since semantic profile deltas
are not surjective —they just overwrite any value that was there before—,
they do not have an inverse without taking their context into account. That’s
why we need both 𝑦x′ and 𝑦x″.

Let’s investigate local inference rule -(Ts) (Definitions 8.34
and 8.42). As it turns out, there is a problem with it: it is not cor-
rect for arbitrary feature models. Now that we are taking small ‘feature-sized’
steps through the Mealy machine, it is no longer certain all states are reachable.
If 𝛷 ≠ Pow(ℱ) we would be missing some intermediate states we need to
land on. We cannot allow Mealy machines such as the one in Figure 8.7,
for example. So for this strategy we need to restrict the feature model to
𝛷 = Pow(ℱ). The transition function does take direct path:

8.43. Lemma (Direct Path by -(Ts)): The inference rule -(Ts)
takes a direct path (Definition 8.36).

Proof: The difference {𝑓Δ} provided as an input symbol is obviously a
nonempty set. By Definition 8.42 we have 𝐹𝓁

′ = 𝐹𝓁 ⊖ {𝑓Δ}, so the
new difference is 𝐹𝑒 ⊖ 𝐹𝓁

′ = 𝐹𝑒 ⊖ (𝐹𝓁 ⊖ {𝑓Δ}) = (𝐹𝑒 ⊖ 𝐹𝓁) ⊖ {𝑓Δ}. Since
{𝑓Δ} ⊆ 𝐹𝑒 ⊖ 𝐹𝓁, we have (𝐹𝑒 ⊖ 𝐹𝓁) ⊖ {𝑓Δ} = (𝐹𝑒 ⊖ 𝐹𝓁) ∖ {𝑓Δ}, strictly smaller
than 𝐹𝑒 ⊖ 𝐹𝓁. ◻
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And this leads to total correctness, much as before, as long as we restrict
the feature model as described above:

8.44. Theorem: For feature model 𝛷 = Pow(ℱ), the rule -(Ts) is totally
correct.

Proof: This proof proceeds much as the one for Theorem 8.41, so we leave
some simple steps out. Assume that a given configuration ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ is stuck.
By negating the premises, we have either of the following:

a. The configuration is already stable: 𝑝 ∈ V(𝐹𝑒),
b. there is no 𝐹Δ because 𝐹𝓁 = 𝐹𝑒, or
c. the Ts function accepts none: ∄𝑓Δ ∈ 𝐹𝓁 ⊖ 𝐹𝑒: (𝐹𝓁, {𝑓Δ}) ∈ pre(Ts).

It cannot be (c), because even though T accepts only singleton sets, we are
assuming a complete feature model 𝛷, so all singleton sets are valid input
symbols (Definition 8.42). We therefore have 𝑝 ∈ V(𝐹𝑒) ∨ 𝐹𝓁 = 𝐹𝑒, giving us
partial correctness as before.

And as before, we get total correctness from Lemmas 8.37 and 8.43. ◻

We also know that any local transition-path starting from ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ will
always reach a configuration ⟨𝐹𝑒, 𝐹𝑒, 𝑝′ ⟩ in exactly |𝐹𝑒 ⊖ 𝐹𝓁| steps.

8.3.9 A Local Inference Rule: -(Tm)
Our next goal is to drop the restriction on the feature model imposed in
Section 8.3.8. So we want to go from 𝐹𝓁 to 𝐹𝑒, but somewhere on an
otherwise direct path we are missing an intermediate state we need to pass
through to reach the target state. We are going to add extra transitions
to solve this problem — just enough to regain reachability. Those extra
transitions will have |𝐹𝑒 ⊖ 𝐹𝓁| > 1.

We are entitled to ask, however: can we still keep using singleton sets
as input symbols? As long as a single feature unambiguously determines
the right direction, we could always define T to jump any additional
distance required, i.e., so that 𝐹𝓁

{𝑓Δ}/𝑑−−−−−→ 𝐹𝓁
′ with {𝑓Δ} ⊂ 𝐹𝓁 ⊖ 𝐹𝓁

′. But
the answer is no. There are situations where a single feature cannot
unambiguously determine a transition. Take, for example, a feature model
𝛷x

′ = {∅, { 𝑡, 𝑙 } , { 𝑡, 𝑚 } , { 𝑙, 𝑚 } , { 𝑡, 𝑙, 𝑚 } } with the Mealy machine from
Figure 8.7. With 𝐹𝓁 = ∅ and 𝐹𝑒 = { 𝑡, 𝑚 }, choosing either of 𝑡, 𝑚 ∈ (𝐹𝓁 ⊖ 𝐹𝑒)
as the sole input symbol would not be enough to determine the next state.
We need the full information { 𝑡, 𝑚 } for that.

The following transition function has a preimage that is minimal, unique
and preserves reachability:

▸ 8.45. Definition (Minimal Transition Function): Define the minimal transi-
tion function Tm: 𝛷 × Pow(ℱ) ⇀ 𝛷 as follows, for all 𝐹𝓁 ∈ 𝛷 and 𝐹Δ ⊆ ℱ:

Tm(𝐹𝓁, 𝐹Δ) ≝ 𝐹𝓁 ⊖ 𝐹Δ

pre(Tm) ≝ { (𝐹𝓁, 𝐹Δ) ∣ 𝐹𝓁 ⊖ 𝐹Δ ∈ 𝛷 ∧
∄ ∅ ⊂ 𝐹Δ

′ ⊂ 𝐹Δ: 𝐹𝓁 ⊖ 𝐹Δ
′ ∈ 𝛷 }
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⌟

The additional restriction, when compared to Definition 8.39, ensures that
the only transitions that are preserved are those that the feature model does
not allow taking in smaller steps. If there are smaller steps, those will
become transitions themselves. So Definition 8.45 covers the ‘one feature
difference’ transitions we had before, as well as new transitions required to
bridge larger gaps.

We lift the restrictions from our input symbols as well as our feature model
by using local inference ruleset -(Tm) (Definitions 8.33 and 8.45). Now
for the necessary correctness proofs:

▸ 8.46. Lemma (Direct Path by -(Tm)): The inference rule -(Tm)
takes a direct path (Definition 8.36).

Proof: Almost identical to the Lemma 8.43 proof; just replace {𝑓Δ} with 𝐹Δ.◻

▸ 8.47. Theorem: The --(MM(Tm)) rule is totally correct.

Proof: Again, this proof is quite similar to those for Theorems 8.41 and 8.44. To
summarize, if Tm can always accept some non-empty input symbol 𝐹Δ ⊆ 𝐹𝓁⊖𝐹𝑒
(Definition 8.34c), then a stuck state is also stable (Definition 8.34a and 8.34b),
giving us partial correctness. We then get total correctness from the direct
path property as before.

In this case, Definition 8.45 only excludes an input symbol if an equivalent
string of smaller ones is also available. So there is always at least one. This
gives us our desired result. ◻

We also know that any local transition-path starting from ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ will
always reach a configuration ⟨𝐹𝑒, 𝐹𝑒, 𝑝′ ⟩ in at most |𝐹𝑒 ⊖ 𝐹𝓁| steps.

The Mealy machine from Figure 8.7 would now be constructed as in
Figure 8.8. Note that Tm gives us the necessary transitions to bridge the
distance. If we want to get from 𝐹𝓁 = ∅ to 𝐹𝑒 = { 𝑡, 𝑙, 𝑚 }, any of the three
possible local transition paths will take us there properly:

⟨ 𝐹𝑒,∅, 𝑝 ⟩
⎧{{
⎨{{⎩

𝓁−−→ ⟨ 𝐹𝑒, {𝑡, 𝑙}, ⟦𝑥x⟧(𝑝) ⟩ 𝓁−−→ ⟨ 𝐹𝑒, {𝑡, 𝑙, 𝑚}, ⟦𝑦x · 𝑥x⟧(𝑝) ⟩
𝓁−−→ ⟨ 𝐹𝑒, {𝑡, 𝑚}, ⟦𝑦x⟧(𝑝) ⟩ 𝓁−−→ ⟨ 𝐹𝑒, {𝑡, 𝑙, 𝑚}, ⟦𝜀 · 𝑦x⟧(𝑝) ⟩
𝓁−−→ ⟨ 𝐹𝑒, {𝑙, 𝑚}, ⟦𝑦x⟧(𝑝) ⟩ 𝓁−−→ ⟨ 𝐹𝑒, {𝑡, 𝑙, 𝑚}, ⟦𝜀 · 𝑦x⟧(𝑝) ⟩

Note that 𝑦x · 𝑥x = 𝑦x = 𝜀 · 𝑦x (Section 8.2.3), so we reach the same
result regardless.

8.4 Cost and Optimization

We now allow an unrestricted feature model and have reduced the number of
transitions to a reasonable amount. In this section, we examine a technique
for optimizing the Mealy machine even further, in a way that is particularly
effective when the activity of ‘monitoring’ the environment for change carries
with it a certain cost that needs to be minimized.
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Figure 8.8: The DPL Mealy machine MM(Tm) based on the same feature
model as MM(Ts) from Figure 8.7. We now have full reachability.

8.4.1 Cost
The cost of occupying a state in a DPL Mealy machine is that of monitoring the
features from the accepted input-symbols for change. I posit that monitoring
some features can be more expensive than monitoring others.

For example, it is more draining to the battery of a smartphone to
constantly monitor GPS location (𝑙) than it is to intermittently check the
calendar for meetings (𝑚), since the GPS receiver needs to constantly receive
signals and the calendar is internal. But checking the calendar is still more
costly keeping track of the time (𝑡). The operating system does that anyway,
and can notify our app through an alarm-subscription service.

▸ 8.48. Definition (Cost): Assume some cost domain 𝐶 measured over time, with an
additive neutral element 0. Given DPL Mealy machine (𝛷, Pow(ℱ), 𝒟, T, O)
we introduce a function cost: 𝛷 × ℱ → 𝐶. The value cost(𝐹𝓁, 𝑓) represents the
cost of monitoring feature 𝑓 from state 𝐹𝓁. A feature is only monitored from
a state if that state has an outgoing transition with 𝑓 in its input symbol. So
if the current state does not have such a transition, the cost is 0:

∄𝐹Δ ⊆ ℱ: 𝑓 ∈ 𝐹Δ ∧ (𝐹𝓁, 𝐹Δ) ∈ pre(T) ⟹ cost(𝐹𝓁, 𝑓) = 0 ⌟

We want to maintain generality in the definition, but for the profile manager,
the cost-domain is usually power in watt, i.e. joules per second. It is also
likely that the cost of monitoring a profile feature depends solely on which
quantity is being constrained (Definition 8.4), and is independent from the
local feature configuration 𝐹𝓁 and the set of values of the constraint. When
that is the case we can use a shorter notation:

▹ 8.49. Notation (Cost of Monitoring Quantities): For all device constraints
⟨𝑖𝑑q, 𝑉𝐴𝐿⟩ ∈ 𝐶𝐷𝐸𝑉 = ℱ and feature configurations 𝐹 ∈ 𝛷:

cost(𝑖𝑑q) ≝ cost(𝐹 , ⟨𝑖𝑑q, 𝑉𝐴𝐿⟩) ⌟



190 CHAPTER 8. DYNAMIC PRODUCT LINES

We minimize the cost of running a dynamic product line by removing costly
transitions from our Mealy machine through additional restrictions on pre(T),
but only so far as we can maintain partial correctness (i.e., so far as we can
avoid getting stuck in unstable configurations). Features only need to be
monitored when they become relevant.

In our example product line (Figure 8.6) we need to apply delta 𝑥x only
when we are both in a certain GPS location (𝑙) and at a certain time (𝑡).
Either constraint satisfied on its own does not modify the profile. So it makes
sense to only start monitoring GPS (the more costly quantity), when it is
already the right time. For this to work, we just have to check the GPS
immediately when we reach the proper time, since the transition event may
have occurred without the device observing it.

8.4.2 Optimization through Refinement
The trick to optimization is to realize that we do not need to reach a
configuration where 𝐹𝓁 = 𝐹𝑒, even though that has always been our goal in
Section 8.3. There is another way to get a stable configuration. It is sufficient
if we occupy a locally consistent configuration ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ with V(𝐹𝓁) ⊆ V(𝐹𝑒).
Such an 𝐹𝓁 is a state from which we might have 𝐹𝓁

𝐹Δ/𝜀−−−−→ 𝐹𝑒, i.e. get the
neutral delta 𝜀 as an output symbol if we actually did make the transition
to 𝐹𝑒. Applying 𝜀 to a product does not change it, so we can sometimes
remove transitions like that to avoid having to monitor the features in 𝐹Δ.

In general, V(𝐹𝓁) ⊆ V(𝐹𝑒) does not imply V(𝐹𝑒) ⊆ V(𝐹𝓁). However, for a
device rule-set that yields an unambiguous static product line implementation,
it does. For every feature configuration there is only one profile that satisfies
it, so we can set up an equivalence relation between feature configurations:

▹ 8.50. Definition (Equivalence): Two feature configurations 𝐹, 𝐺 ∈ 𝛷 are equiva-
lent, denoted 𝐹 ≡ 𝐺, iff V(𝐹) = V(𝐺). ⌟

This equivalence can be decided at build-time and is represented in diagrams
by a gray background which marks equivalence classes (Figure 8.9). This
makes optimization through refinement more intuitive: the system only needs
to reach a state in the same equivalence class as 𝐹𝑒.

8.4.3 Optimization through Redundancy
There is another kind of transition we could eliminate. Recall that we
explained in Definition 4.10 why we could not go back to using singleton sets
as input symbols. Sometimes we simply need all information in 𝐹𝓁 ⊖ 𝐹𝓁

′

to unambiguously find the next state in the Mealy machine. So we kept
defining T to expect the full difference as an input symbol, i.e., for every
𝐹𝓁

𝐹Δ/𝑑−−−−→ 𝐹𝓁
′ we had 𝐹Δ = 𝐹𝓁 ⊖ 𝐹𝓁

′.
But that is not required. It would be enough if the input symbol was

included in the state-difference: 𝐹Δ ⊆ 𝐹𝓁 ⊖ 𝐹𝓁
′. This is another opportunity

to reduce the cost of a Mealy machine, because we may only need to monitor
some of the features in 𝐹𝓁 ⊖ 𝐹𝓁

′ to trigger the full transition.
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Figure 8.9: A DPL Mealy machine with a transition function To. Equivalence
classes are marked: ∅ ≡ {𝑡} ≡ {𝑙} and {𝑚} ≡ {𝑡, 𝑚} ≡ {𝑙, 𝑚} ≡ {𝑡, 𝑙, 𝑚}.

8.4.4 A Local Inference Rule -(To)
But this is where we hit a roadblock, because in an abstract setting there is
not just one transition function to find. Finding the best To is an optimization
problem. The goal is to choose one that minimizes the cost of running the
dynamic product line, while preserving the property that -(To) only
gets stuck on configurations ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ with V(𝐹𝓁) ⊆ V(𝐹𝑒).

The correctness-proof of such a transition rule will be very similar to those
already covered, except that this time, the usual process of elimination will
leave us with only the negation of Definition 8.34a: 𝑝 ∈ V(𝐹𝑒).

For the more specific domain of the profile manager, we can provide an
example of To. Let us make a couple of assumptions:

• The cost of monitoring 𝑓 depends solely on the quantity being monitored.
• During the average lifetime of the dynamic product line, all states are

occupied for roughly the same amount of time.
• The following holds for our device (Notation 8.49):

cost(time) < cost(meeting) < cost(gps)

So to define To, we start with Tm. We first remove 𝑙/𝜀 transitions, then
𝑚/𝜀 transitions, then 𝑡/𝜀 transitions, so long as the To reachability between
equivalence classes is preserved.

As you can see in Figure 8.9, we are able to remove ten transitions as
compared to Figure 8.6, significantly reducing the overall monitoring cost.
Intuitively, the transitions between ∅ and 𝑙 could be removed because the
GPS position does not become relevant until it is the right time. The other
eight transitions could be removed because 𝑦x completely overwrites the effect
of 𝑥x, so it does not matter what happens with 𝑡 and 𝑙 during a meeting.
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▹ 8.51. Example: We show this with an example walk through Figure 8.9:

⟨∅, ∅, 𝑝 ⟩ 𝑒,1−−−→ ⟨{𝑙} , ∅, 𝑝 ⟩ 𝑒,2−−−→
⟨{𝑙, 𝑚} , ∅, 𝑝 ⟩ 𝑙,3−−→ ⟨{𝑙, 𝑚} , { 𝑚 } , 𝑝𝑚 ⟩ 𝑒,4−−−→
⟨{𝑡, 𝑙, 𝑚} , { 𝑚 } , 𝑝𝑚 ⟩ 𝑒,5−−−→ ⟨{𝑡, 𝑙} , { 𝑚 } , 𝑝𝑚 ⟩ 𝑙,6−−→
⟨{𝑡, 𝑙} , ∅, 𝑝 ⟩ 𝑙,7−−→ ⟨{𝑡, 𝑙} , { 𝑡 } , 𝑝 ⟩ 𝑙,8−−→
⟨{𝑡, 𝑙} , { 𝑡, 𝑙 } , 𝑝𝑡,𝑙 ⟩

This is the story:

1. We arrive at work before 9:00 for an early meeting. Nothing changes.
2. The meeting starts. We have an unstable configuration.
3. 𝑝𝑚 = ⟦𝑦x⟧(𝑝). Our phone is automatically muted and the meeting

minutes app is put on the screen.
4. It turns 9:00 during the meeting, but our phone does not have to respond.

(This is the configuration marked in Figure 8.9.)
5. The meeting ends. We have another unstable configuration.
6. … updating (𝑝 = ⟦𝑦x′⟧(𝑝𝑚)) …
7. … updating …
8. … done. 𝑝𝑡,𝑙 = ⟦𝑥x⟧(𝑝). The phone is set to volume 5.

Note how the GPS module was not required until transition 8. When we
physically arrived at work (𝐹𝑒), our phone (𝐹𝓁) was unaware of it. Still, our
phone was always operating with a proper profile without requiring a large
drain on the battery. ⌟

8.5 Conclusion

This chapter developed, step by step, an operational semantics for the
reconfiguration of a running product in a dynamic product line. There has
been some previous effort towards keeping objects in the heap up to date
with the latest feature configuration. There has been a noticable lack of
work, however, in coming up with strategies for keeping the running product
itself up to date. By tracking both the local and environmental feature
configurations, a set of light-weight deltas can apply just enough changes
to the running product to bring it up to date without having to regenerate
it from scratch. The number of necessary deltas has been reduced to a
minimal level, and we have proof that the system maintains correctness of the
product before and after every reconfiguration. The software deltoid defined
for the main example of this thesis was intended for structural modification,
not to reason about running programs. It has no syntax defined below the
statement level, let alone a memory model. Instead, this chapter introduced
a new deltoid based on profile management. The main case study is a mobile
application for managing the settings of a smartphone based on user-defined
rules and input from its sensors.

That being said, we can now get a clearer picture of what the concrete
operational semantics may look like around the reconfigure inference rule
of page 167. Recall, this statement was introduced by by Damiani et al. [63,
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64] so that developers can indicate when it is safe to reconfigure the product.
That means the entire process described in this chapter will have to occur
while the control flow waits on that statement.

We’ll describe a new operational semantics; a hybrid of the classical
imperative program semantics and the semantics developed in this chapter,
embodied by a new transition relation ⟶↠. We’ll also include reconfiguration
of the heap, as explored by Damiani et al. They describe reconfiguration
translations, modeled by an automaton much like our Mealy machines.
We’ll abstract from the details, and encapsulate their technique into a
function rh: 𝛷×𝛷×ℋ→ℋ, representing an effective procedure that performs
those translations. It takes a local feature configuration, an environmental
feature configuration and a heap, and returns a reconfigured heap. The
hybrid configurations ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝, 𝐻, 𝑠𝑡, 𝜎 ⟩ contain the environmental feature
configuration 𝐹𝑒, the local feature configuration 𝐹𝓁, the current product 𝑝, the
current heap 𝐻, the next statement 𝑠𝑡 and the current state 𝜎.

The inference rules of the hybrid system would be as follows. First,
environmental transitions can happen at any time during normal execution,
but not while reconfiguration is taking place:

𝑝 ∈ V(𝐹𝑒) ⟨𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ 𝑒−−→ ⟨ 𝐹𝑒
′, 𝐹𝓁, 𝑝 ⟩

⟨ 𝐹𝑒, 𝐹𝓁, 𝑝, 𝐻, 𝑠𝑡, 𝜎 ⟩ ⟶↠ ⟨ 𝐹𝑒
′, 𝐹𝓁, 𝑝, 𝐻, 𝑠𝑡, 𝜎 ⟩

Until a reconfigure statement is encountered, the program just runs like
it normally would, following the imperative semantics:

𝑠𝑡 ≠ reconfigure;𝑠𝑡″ ⟨𝑠𝑡, 𝐻, 𝜎 ⟩ ⟶ ⟨ 𝑠𝑡′, 𝐻′, 𝜎′ ⟩
⟨𝐹𝑒, 𝐹𝓁, 𝑝, 𝐻, 𝑠𝑡, 𝜎 ⟩ ⟶↠ ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝, 𝐻′, 𝑠𝑡′, 𝜎′ ⟩

When control flow reaches a reconfigure statement, what happens next
depends on whether the running product is out-of-date. If so, control is
released to the dynamic product line semantics:

𝑝 ∉ V(𝐹𝑒) ⟨𝐹𝑒, 𝐹𝓁, 𝑝 ⟩ 𝓁−−→ ⟨ 𝐹𝑒, 𝐹𝓁
′, 𝑝′ ⟩ rh(𝐹𝓁, 𝐹𝓁

′, 𝐻) = 𝐻′

⟨𝐹𝑒, 𝐹𝓁, 𝑝, 𝐻, reconfigure;𝑠𝑡, 𝜎 ⟩ ⟶↠ ⟨ 𝐹𝑒, 𝐹𝓁
′, 𝑝′, 𝐻′, reconfigure;𝑠𝑡, 𝜎 ⟩

Note that the heap is updated along with the product at every step.
If/when the product is up to date, a reconfigure statement can be

discarded and control released to the (now modified) program:

𝑝 ∈ V(𝐹𝑒)
⟨ 𝐹𝑒, 𝐹𝓁, 𝑝, 𝐻, reconfigure;𝑠𝑡, 𝜎 ⟩ ⟶↠ ⟨ 𝐹𝑒, 𝐹𝓁, 𝑝, 𝐻′, 𝑠𝑡, 𝜎 ⟩

Further formalization —and implementation— of this idea would be a
fascinating topic for future research.
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8.6 Related Work

Hallsteinsen et al. [82] describe several properties that constitute a dynamic
software product line. The approach presented in this chapter, and the papers
on DDM [6, ⌛1], allow several of these, such as ‘dynamic variability’, ‘changes
binding several times over lifetime’ and ‘context awareness’, but does not yet
model others, such as ‘variation point change during runtime’ and ‘deals with
unexpected changes during runtime’. In approach of this chapter, even though
the environmental feature configuration can change during runtime, the set of
available feature configurations is still fixed at build time.

Though ADM was designed from a software product line engineering
perspective, the profile management case study of Section 8.2 is, of course,
not a software product line, as it does not model the variability of software.
It does, however, bear resemblance to a Context-aware Program [38, 103] or
a Self Adaptive System [50, 146, 180]. Self-adaptive systems in particular
have been linked with software product lines in recent literature. A number
of papers aim to implement self-adaptive systems with dynamic software
product line techniques [73, 170].

In self-adaptivity terms, DDM is closed-adaptive, as it is not able to
cope with unexpected changes, in contrast to open-adaptive systems [146].
According to a recent survey by Weyns et al. [180], the vast majority of
papers on these topics do focus specifically on development of flexible and
reliable self-adaptive software. In comparison, the profile management model
is relatively simplistic. As such, to call the profile management app a self-
adaptive system would do the field (which has been concerned with self-driving
cars and unmanned air vehicles behind enemy lines) a disservice. It is safe to
say that DDM has not yet proved itself in those terms.

A number of recent publications, though, have explored dynamic software
product lines in terms of delta modeling. Damiani et al. [63, 64] apply
delta oriented programming to the problem, and focus on control flow, heap
reconfiguration and type safety, as explained in the introduction to this
chapter. Additionally, Muschevici et al. [141] recently extended the ABS
language (Section 7.5) for the implementation of dynamic systems. They
do mention the issue of dynamic product reconfiguration, and propose that
certain deltas not already present in the original delta model (e.g., deltas
𝑥x′, 𝑦x′ and 𝑦x″ in Figure 8.6) should be manually developed. One of the
messages of Section 8.3.6 is that this may in fact be automated, given a
correctly implemented delta derivation procedure, something Muschevici et
al. have proposed as future work.

Interestingly, both groups mention the unanticipated runtime evolution
necessary for open-adaptive systems. The idea is that adding, removing and
modifying deltas while the product is still running is valid, so long as those
changes have no impact on the deltas used in generating the currently running
product. In particular, Muschevici et al. discuss MetaABS, an API based
on reflection used for this very purpose.
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9.1 A Look Back

This is the final chapter. It is time to reflect on what has been achieved and to
determine the best way to go forward from here. We first revisit the goals and
contributions of Chapters 2 to 8. This section stays away from formalization
and focuses instead on motivation and summary.

Chapter 2: Algebraic Delta Modeling
This chapter introduced the basic building blocks of delta modeling. One of
those building blocks is the product. This rather abstract concept represents
the kind of artefact that needs to be manufactured. In practice, a product
is built up out of many smaller artefacts. Common examples are packages,
classes, methods and fields, in an object oriented programming language,
together forming a program. Since this is the original motivation behind delta
modeling, and a concept well understood by the target audience of this thesis,
the running example of the thesis is based upon this sort of product.

The problem is that the artefacts in such a product almost never map
directly to the higher level concept of ‘feature’. Indeed, a feature can relate
to many classes, and a class can relate to many features. This brings us
to the goal of feature modularity:

Goal: Find a way to ‘group together’ code related to the same feature.

To accomplish feature modularity, deltas are introduced. Deltas are an abstract
concept embodying the changes to a product —necessary to implement certain
functionality— that a developer might make. When a developer needs to
implement a feature in a product, he or she is able to modify any number of
artefacts in order to do so. Similarly, deltas, too, should be able to specify
modifications that break encapsulation and artefact boundaries.

That way, all code related to a feature can be gathered in one place: the
delta. In this vision, the rôle of the human developer would change from
making changes to the product to writing deltas that do. A separate but
related goal is separation of concerns:

Goal: Find a way to ‘separate’ code belonging to different features.

Deltas are to be true units of functionality, in that they should not implement
more than one piece of functionality; that is, they would ideally contain
the smallest set of changes that make sense in isolation —and do something
useful— but no more, and this way achieve a separation of concerns. This
carefully phrased ideal allows for scenarios in which some features extend or
depend on others, or are conceptually independent but require access to the
same resource. Chapter 3 was dedicated to these kinds of issues.

This chapter thoroughly explores the interaction between deltas and
the interaction between a delta and a product, thereby introducing the
fundamentals of Abstract Delta Modeling (ADM), built upon by chapters to
follow. The notion of deltoid is introduced, which contains the full sets of
products and deltas representing a specific domain, as well as the semantics
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of deltas: how they modify products. By working abstractly, ADM is ready
to encode any domain, not limited to any specific programming language,
nor even to software itself.

To jumpstart the running example introduced in Section 1.4 —the Editor
product line— a concrete deltoid was defined based on an object oriented
programming domain. Many subsequent concepts were illustrated through
this example.

Various aspects of delta semantics were discussed, such as partial defined-
ness, non-determinism and correctness with regard to a relational specification.
A number of algebraic operations —such as composition, choice and consensus—
are introduced in order to allow syntactic reasoning over deltas. Certain ex-
pressiveness properties and a refinement relation are then introduced in order
to classify deltoids by what they can do. Finally, it is shown how deltas can
encode quarks, a similar concept introduced in related literature.

Chapter 3: Delta Models
In some ways, this chapter described the most fundamentally novel contribution
of ADM: delta models, which organize deltas into a strict partial application
order. One delta may be dominant over another, or two deltas may be
unrelated by the order. This helps developers express their design intentions,
and to contain the complexity of large system.

Goal: Find a way to mediate between non-commuting feature modules.

Let’s say there are two feature modules (the more general term for what we
call deltas), each implementing a different feature in a way that preserves
modularity and separates concerns. It is possible that both need access to the
same artefact, causing a conflict if both are applied together, even if each works
fine in isolation. It is for this reason that separation of concerns is not easy to
achieve. This chapter proposes three possible ways of mediating such a conflict:

1. Make (minimal) changes to one or both deltas.
2. Impose an application order between the two deltas. The ‘dominant’

delta is applied last so it can override some of the changes. It should be
designed to expect the other delta to go first.

3. Write a conflict resolving delta, ordered last so it can make the
appropriate changes allowing the original two deltas to work together.

Each is applicable in different situations. For instance, if the conflict is merely
an accidental name-collision caused by a lack of communication, the issue is
quickly solved by making minimal changes.

Perhaps one of the two features is really a subfeature of the other, and it
rightly should override modifications performed by the other. In that case
the deltas should be ordered.

But often enough, neither applies. In this case a conflict-resolving delta
is the only way to resolve a conflict properly. It allows the original deltas to
remain as they are, and introduces the necessary ‘glue code’ to facilitate their
coexistence. How exactly this is done is a design choice. Development of a
conflict resolving delta cannot generally be automated.
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Goal: Find a way to avoid overspecification of the structural organi-
zation between feature modules.

Many features in a system can be conceptually independent. This means
that they make sense —and should work— in isolation. Ideally, these
are even developed in isolation (more on this in Chapter 7). When the
implementations of two such features are in conflict, this is known as the
optional feature problem.

Unfortunately, a number of existing systems and formalisms do not have
a partially ordered structure between modules, but a linearly ordered one:
between any two modules, one can override the changes of the other. If two
features are conceptually independent, one of their modules overwriting the
changes of the other is most likely a bug. Forcing such modules into a linear
order is called overspecification, and can obscure such bugs. After all, an
automated system assembling these feature modules can hardly be expected
to know the difference between an accidental overwrite and an intentional one.

By allowing two deltas to be unordered, it becomes possible to express
that they implement conceptualy independent functionality. If there is ever
a conflict, developers can be warned.

Goal: Find a way to avoid code duplication through the structural
organization between feature modules.

Other existing systems, perhaps in an effort to avoid the overspecification
problem, take the opposite approach and do not allow any feature module
to interfere with any other.

The way to resolve a conflict in such a system is to completely extract
the artefacts that clash, and put them into a dedicated module, in such
a way that both features work. But in doing so, both modularity and
separation of concerns are violated. And when creating a product line, code
needs to be duplicated between modules that implement the same artefact
for different configurations. Because delta models allow deltas to be ordered
when necessary, they do not share this problem.

Apart from introducing the general concepts of delta model, conflict and
conflict resolver, this chapter introduced conditions based on these concepts
to ensure unambiguous product generation.

It then extends the software deltoid to allow fine-grained modifications,
i.e., manipulating individual statements in methods. This is often neglected in
compositional approaches like delta modeling, because unlike classes, methods
and fields, statements have no names by which a delta can target their position.
Conjunctive delta model semantics are then introduced to take advantage of
fine-grained modifications. The operation of inserting a statement in a
non-deterministically chosen location avoids another type of overspecification
by representing the intention: “this method should run this statement at
some point; I don’t care when”. It reduces the likelihood that two changes
to the same method are seen as a conflict. Finally, the chapter introduced
nested delta models, which increase expressiveness of a deltoid and offer a
useful new modularization technique.
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Chapter 4: Product Lines
We’ve spoken of features before now, but this chapter is where the concept
of feature is formally introduced and integrated in ADM. These features are
merely labels, but play a prominent rôle throughout the rest of the story.
They are traditionally used in a feature model as a way to identify the
possible products of a product line, which is defined as a set of products with
well-defined commonalities and variabilities. Ideally, a product line should be
able to produce any of these products, given only the desired feature selection.

Goal: Develop a technique for organizing a product line code-base in
such a way that product generation can be a mechanical process.

Given that deltas are our feature modules, producing the product correspond-
ing to a specific feature selection is really just a matter of applying the
right set of deltas. In ADM, this is done by annotating each delta with an
application condition: a propositional formula representing the set of feature
selections for which it is applicable.

The main challenge here is that each delta must be able to deal gracefully
with the presence and absence of other deltas. So developing a product line
in which every product behaves properly is the ultimate test of modularity
and separation of concerns, because if those principles are adhered to, robust
deltas should be an automatic consequence. This does beg the question: what
does ‘behave properly’ even mean?

Goal: Develop a formal concept of product line specification, to be
used both in verifying product line correctness and in guiding
the implementation process.

The naive way of giving a product line specification would be to give a separate
specification for each of its products. But specifications should be modular
and compositional, just like deltas. It is better to write a separate specification
for each feature. However, an important observation made in this chapter
is that it is more realistic to write specifications for feature combinations
instead. Often, two features that are otherwise independent need to satisfy
additional requirements when they are selected together. This is not about
conflicts; those are purely an implementation issue. This is about features
that inherently interact but shouldn’t, or don’t inherently interact but should.
(Formally speaking there is little difference between the two.)

Apart from providing a characterisation of product line correctness, this
chapter lifted a number of concepts from Chapter 3 to the product line level,
such as unambiguity and nesting, and introduced a number of other useful
concepts. Of particular note is that of parametric deltas. Sometimes the delta
language is much better at resolving conflicts and implementing interaction
than the delta model structure. For those eventualities, deltas can be given
access to the feature symbols to be used as Boolean constants. This brings
some of the power of annotative variability approaches to the compositional
technique of delta modeling. However, caution is adviced in using this
technique, as annotative techniques have their disadvantages.
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Chapter 5: LATEX Meets Delta Modeling
Several publications on ADM make the claim that deltas can be used to
modularize any kind of artefact — not just source code. An example
occasionally brought up is documentation. Indeed, the abstract nature of
ADM should allow this, but it had not yet been demonstrated. So what better
language for which to implement and demonstrate deltas than the one used
to write this very thesis? TEX is a fascinating language; functional by nature,
but with the unusual characteristic that practically the entire language can
be redefined from within. This brings two opportunities. First, it is a way
for deltas to hook into document generation without requiring outside tools;
deltas can just be defined in a LATEX package. Second, the power of the
language has caused a number of problems in the LATEX ecosystem: conflicts
between independent packages that access the same resources. The conflict
and dependency model of ADM can be adapted to mediate between such
packages and, hopefully, alleviate much frustration in the LATEX community.

Goal: Implement delta modeling for the LATEX language.

The first part of the chapter introduced delta-modules, a new LATEX
package that brings the main ADM concepts —deltas, partial application
orders, feature models— to the LATEX language, and supports operations quite
similar to those of fine-grained software deltas. The package is introduced in a
software documentation style, with crosslinks to the relevant formal concepts
of the thesis. And what better case study than the thesis itself? (I am a fan of
self-reference. [95]) In practice, the package may become useful for preparing
families of text-books, tech manuals and résumé.

Goal: Use ADM principles to manage dependencies and conflicts be-
tween independent LATEX packages.

The solution to this problem also takes the form of a package. It is called
pkgloader, and is similar to delta-modules in many respects. But this
package has two additional challenges to overcome. First, package authors
are not delta authors. We cannot rely on the fact that packages in the
wild will limit their tampering to specialized delta operations. And with
the full power of a Turing complete language behind them, this means that
the problem of detecting conflicts is undecidable. Second, document authors
should not be bothered with product line concepts. Ideally, they would just
load pkgloader… and that’s it; things should just work.

To address the first challenge, a centralized knowledge-base is maintained
with known package conflicts and resolutions. LATEX has an active community
that can be relied upon to keep such a database up to date. To address the
second challenge, the package takes control of the ubiquitous \usepackage
and \RequirePackage commands. Document authors are already familiar
with those, and use them to load packages. When they do, this will be
interpreted as selecting a feature. By default, this just loads the package. But
with a well-maintained database, the loading order between packages may be
changed, and specific glue-code inserted where necessary.
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Chapter 6: Delta Logic
Much of ADM is dedicated to the goal of developing syntactic languages and
techniques for semantic concepts. Deltas are syntactic. But products (from
an ADM point of view) are semantic concepts. Consequently, reasoning about
the semantics of deltas requires semantic proof machinery.

Goal: Create a modal logic for reasoning syntactically about the se-
mantics of deltas and their effects on product properties.

Modal logic fits this problem like a glove. Given any kind of decidable
specification language for the product domain, wrapping a multi-modal logic
around it enables us to prove that certain deltas implement certain features,
that they do not break existing features, and so on. Modal logic was invented
specifically to reason about labeled relations, and deltas fit the bill. It is also
possible to reason about the algebraic delta operators introduced in Chapter 2.
The result is a language reminiscent of dynamic logic, but lacking a construct
for iteration. This turns out to be a great advantage, because it keeps the logic
decidable. A proof of strong completeness is given based on a straightforward
translation to a plain multi-modal language, allowing us to simply invoke the
completeness of 𝐊 with regard to the class of all frames.

The other two contributions of the chapter are these: First, a proof system
for delta correctness with regard to modal formulas in the form of Hoare
triples, including a proof of its soundness and strong completeness. Second,
a proof system for reasoning about specific features on the level of Kripke
models. The proof system on the Kripke frame level cannot be used because of
uniform substitution. We solve this with a translation to nullary modalities.

Chapter 7: Delta Modeling Workflow
The formalisation of ADM thus far has been descriptive, describing what
deltas are, how they work and how they are selected. The other side of the
story is prescriptive: how are delta models intended to be used? In what
way and in which order should a product line be developed so that the full
advantage of delta modeling is exploited?

Goal: Describe how delta-based product lines might be built.

There may be many ways to use delta modeling to good effect. Indeed, many
tools are eventually put to innovative uses that were initially unintended.
Let’s just say that ADM lends itself naturally to a certain way of working
which happens to exhibit favorable properties. This chapter presents that
workflow under the moniker of delta modeling workflow (DMW). It is split up
into well-defined jobs derived from the product line specification.

This formulation makes it explicit that independent features can be
developed concurrently and in isolation, allowing for maximal throughput.
This way of working counts on the eventual collaborative development of
conflict resolving deltas and feature interaction deltas to integrate these
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individual efforts. If local constraints are respected, two properties are
guaranteed to hold by construction: global unambiguity (i.e., all conflicts are
resolved) and total correctness with regard to the specification.

An important concept of the chapter is that of locality. Any delta under
development need only take into account the existing deltas that occupy
subordinate positions in the delta model. Those are the ones the new delta has
control over and no other knowledge is required to satisfy local constraints.

In Appendix A, the states and progression of the workflow are represented
with a structural operational semantics. This is used to prove its beneficial
properties.

Goal: Test the delta modeling workflow on an industrial scale system
in order to evaluate its practical applicability.

As a member of the HATS project, I had the opportunity to describe the delta
modeling workflow for the Abstract Behavioral Specification (ABS) language.
I was also in a position to work together with Fredhopper on the Fredhopper
Access Server, an industrial scale case study which helped validate and improve
the workflow. Lessons learned from the case study include a confidence in
the thoroughness of the workflow — no features, conflicts or interactions
fell through the cracks. Collaboration was possible with the workflow, but
this was not yet apparent from the formalism, which was revised accordingly.
Flexibility is still a problem. Therefore, adaptation to a more agile approach
is planned as future work.

Chapter 8: Dynamic Product Lines
The penultimate chapter of the thesis takes ADM to runtime, as deltas
are used to update a product to new feature configurations while it is still
running. This had already been discussed in previous work. In particular,
there has been some effort towards keeping objects in the heap up to date
with the latest feature configuration. There has been a noticable lack of work,
however, in coming up with strategies for keeping the running product itself
up to date. Doing it in the ‘static way’, applying all deltas every time the
feature configuration changes, is too slow. And storing every possible product
in advance would require too much memory, as the number of products is
generally exponential in the number of features.

Goal: Formulate efficient strategies for reconfiguration of the running
product in an ADM-based dynamic product line.

First, an operational semantics is set up as a framework in which to discuss
possible strategies. The abovementioned ‘static-style’ strategy is formulated
and proved correct as an example. A case is made for keeping track of the
differences between subsequent feature configurations, allowing the system to
figure out the minimal delta that needs to be applied to bring the product
up to date. However, this still leaves a lot of possibilities. A Mealy machine
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model is introduced to compare the pros and cons between various ‘difference-
based’ strategies. In this model, each state represents a feature configuration
and each transition represents both a feature configuration difference and a
corresponding delta to be applied to the running product.

Eventually, this leads to a strategy that balances the number of stored
deltas with the desired runtime efficiency. This strategy is subsequently proved
correct using a number of techniques introduced step-by-step throughout the
chapter.

Finally, a specialized optimization opportunity is presented. In order to
detect feature configuration changes, the environment needs to be monitored.
This is naturally modeled with the Mealy machine, in which each feature
configuration difference (represented as an input symbol on certain transitions)
represents a set of ‘sensors’ that need to be engaged when occupying certain
states. The optimization technique consists of discarding certain transitions
from the Mealy machine that are irrelevant, saving energy for the average
state occupation of the model. This allows us to segue into the final goal:

Goal: Develop a profile management app for Android based on the
dynamic product line strategies explored in this chapter.

The software product model defined for the running example of the thesis were
intended for structural modification, not to reason about running programs.
It has no syntax defined below the statement level, let alone a memory model.
It is therefore not a useful example in this chapter. Additionally, the main
contribution of the chapter is separate from any issues specific to software.
Such issues were already explored by other researchers. In the trend set by the
rest of the thesis, the dynamic delta modeling formalism is abstract by nature
and can potentially support any domain. I therefore chose a model that is
formally simple, yet able to directly illustrate the practical use of the theory.

The case study used to illustrate the formal concepts in this chapter is a
mobile application for managing the settings of a smartphone based on any
kind of sensory input. While somewhat untraditional as an example of a
product line, it actually fits the mold quite readily. Features are represented by
predicates over specific environmental quantities, such as GPS location, battery
level and calendar appointments. Products are represented by the possible
configurations (or profiles) of the settings on the phone, such as volume, screen
brightness and chat status. By having deltas applying changes to the running
profile based on specific environmental conditions (i.e., feature configurations)
specified by the user, we essentially have a simple dynamic product line
running on the smartphone, as well as a case study with actual practical value:
the idea was developed into a working Android application. The ‘energy
saving’ optimization techniques are employed to preserve battery life.
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9.2 A Look Forward

This thesis, rather than focusing deeply on any one topic, covers a broad area
of research and application. As such there is a great deal of potential for
future work. This section shares a glimpse of the possibilities.

9.2.1 Darcs Patch Theory
There is a lot of similarity between delta modeling and Darcs patch theory [97],
yet they have very different purposes.

Deltoids can be designed with smart, domain specific operations tailored
to the product domain, allowing deltas to be more robust under changing
circumstances. This approach might add something to patch theory and
version control systems. Conversely, a fundamental aspect of patch theory is
that the application of any patch can be reversed. This relates to one algebraic
operator that wasn’t well-covered in Section 2.6: the converse operator .̆
Studying the impact of this idea on delta modeling could yield useful results.

Additionally, Darcs patch theory deals with a naturally occurring, partially
ordered structure very similar to delta models: that of branches and merges in
a version control system. The most significant similarity is that it deals with
conflictors, which are entities for resolving conflicts. They are quite similar
to conflict-resolving deltas, though they seem to have a more complex set of
properties due to the added structure of their core setting.

All in all, making a more detailed comparison promises to be a worthwhile
persuit.

9.2.2 A Constructive Relation Algebra
Section 2.6.2 briefly discussed the constructivism of the algebraic operators
of the relation algebra pioneered by Tarski [101, 102, 175]. Relation
algebras (Definition 1.35, page 24) are not constructive, because they contain
Boolean algebras (Definition 1.34), which, in turn, contain a non-constructive
axiomatisation for the negation operator − and the full element⊤.

Slightly weaker than Boolean algebras, and widely known to be constructive,
are Heyting algebras [92]. They still have a negation operator and a top
element, but not as fundamental ingredients. They contain an implication
operator ⇒: 𝑆 × 𝑆 → 𝑆 instead. The semantics of − and ⊤ are weakened to
what may be deduced from the axioms 𝑒 ⇒ 𝑔 = 𝑒− ⊔ 𝑔 and⊥− =⊤.

For delta modeling, however, we suspect that a different approach would
be more useful. Rather than use an implication operator as a fundamental
ingredient, a difference operator −: 𝑆 × 𝑆 → 𝑆 could be used. This structure is
called a co-Heyting algebra (or Brouwer lattice) [34, 177]. Co-Heyting algebras
are the dual of Heyting algebras, and employ the axiom 𝑒 − 𝑔 = 𝑒 ⊓ 𝑔−.
The difference operator seems to have an intuitive interpretation for deltas,
semantically corresponding to set difference ∖.

We have not been able to discover any work applying this idea to full
relation algebras, i.e., forming ‘co-Heyting relation algebras’ and exploring
the implications, particularly with regard to the converse operator .̆ Such
research would have a direct and potentially large impact on delta modeling.
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9.2.3 Deltas and Traits
Section 2.10 compares deltas with traits as a means of implementing product
line features. The conclusion was reached that traits are not suitable for the
task, at least not in and of themselves. They were designed to enhance code
reuse as an alternative to the (inappropriate) use of class inheritance.

Software deltas, on the other hand, were designed to contain the code
implementing a specific feature (combination). They were not meant for code
reuse — at least not in the same sense (sharing code across different products
in a product line might also be called reuse). It may be valuable to look at
traits and deltas as solving orthogonal goals, and to consider combining them,
e.g., to allow deltas to manipulate and insert traits.

9.2.4 A General Development Framework
Now follows one of the more ambitious future work proposals: the implementa-
tion of a general development framework for building and analyzing delta-based
software. This framework should address two problems in particular.

The first problem is that in a compositional approach such as delta
modeling, a lot of code will need to be written outside the context where
it is eventually applied. This decoupling is a great advantage in the fight
against complexity, but programmers are not used to going back and forth
between various modules to understand the behavior of a single class or
method. They require tool-support to help them reason about a modification
in any desired context.

The second problem is that many existing AOP and compositional SPL
variability tools only work on a single programming language at a time.
Many software features, however, are expressed in multiple languages. For
example: HTML for the logical structure of an interface, CSS for its styling
and Javascript for its behavior. But current approaches to feature-based
modularity require a team to either restrict themselves to one language
(per feature) or to manage the variability for each language separately —
a maintenance nightmare.

The development framework would likely take the form of a plugin for an
existing IDE, such as Eclipse [139] or IntelliJ IDEA [99]. It should include the
feature of code views: when editing a delta, the programmer would be able
to edit it as a whole (as it is stored) or to edit fragments of it directly in
the context where they apply. This would bring one of the main benefits of
annotative variability techniques, and address the first problem. This concept
of code views is reminiscent of CIDE [108] as well as of ‘hyperplanes’ [148]. But
we expect the concept to be much more powerful when applied to the more
expressive structure of ADM, leveraged to implement features, coordinate
interaction and resolve implementation conflicts in a way more intuitive than
has been possible before.

Figure 9.1 shows a mockup of what an Eclipse interface for code views
might look like. The controls marked “Delta” show which code artifact is
currently being edited (in this case, the RulePriorities delta). If it is
a delta, a “Code View” can also be chosen, indicating the context in which
to edit that delta, consisting of the ‘core’ code artifact (in this case the
EditGeneralFragment class) already modified by a chosen set of deltas
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from its local delta model (a concept described in Chapter 7; in this case, 3
other deltas). A code view is visible in the editor. The editable fragments of
the delta appear in white blocks nested in their proper context.

A development effort like this is likely be the most valuable contribution
to delta modeling that could be made right now.

9.2.5 LATEX Deltas
Future work related to the LATEX packages is likely to be of a development-
rather than a research nature. As the code is open source, anyone and
everyone is encouraged to contribute. One idea is to implement conjunctive
semantics (Definition 3.26) for the delta-modules package.

The pkgloader package is still quite limited and there is much that
can be done to improve it, though little having to do with delta modeling.
But if pkgloader becomes widely used in the future, it would become
worthwhile to start thinking about the creation of delta-aware commands for
package authors to use.

9.2.6 Delta Logic
As explained in Section 6.3.4, the delta logics of Chapter 6 are too limited
for practical use because the postcondition in a delta contract is not able
to refer back to the original product, leaving delta contracts at the level of
expressiveness of delta derivation (Section 2.4.3, page 46).

One way to solve this would be a hybrid language [22, 40]. Hybrid logics
rely on a set of nominals, which are propositional variables that are true
in exactly one world. They also offer one or more hybrid operators. For
instance, the best known hybrid logic is ℋ(@, ↓), which offers a satisfaction
operator @𝑛𝑜𝑚 for each nominal 𝑛𝑜𝑚, acting as a sort of modality to travel to
the world characterized by 𝑛𝑜𝑚, and an operator ↓𝑛𝑜𝑚, which can dynamically
bind a nominal symbol 𝑛𝑜𝑚 to the current world. We could use a nominal
to characterize the original world, then travel back to it from the resulting
world to make certain comparisons.

It turns out that ℋ(@, ↓) is undecidable [43] (though still weaker than first
order logic). Fortunately, we wouldn’t need to dynamically bind nominals to
worlds. For our purpose it would be sufficient that nominals are under implicit
universal quantification, as all propositional variables are. The logic ℋ(@) is
decidable [39, 72, 149], making it a perfect candidate to explore in future work.

Additionally, a more concrete exploration of the concept is called for; one
that applies delta logic techniques to the verification of actual software product
lines. This will illuminate the challenges ahead in embedding other logics into
the modal logic, to specify specific software properties.

9.2.7 Delta Modeling Workflow
The delta modeling workflow is really just a first step in defining good
development practices for delta modeling. The creation of a development
framework as discussed above would help enormously. But in the mean time
there are a few improvements that can be made to the formalism.
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The workflow assumes a sole-derivation semantics right now. A possibility
for future work is to define a good workflow taking advantage of conjunctive
semantics (Section 3.5).

Section 7.8 points out that the DMW does not yet conform to the
modern practices of agile development [130]. In particular, demanding a
full specification in advance is now considered unwise. Even so, a number
of the core principles of ADM and DMW have great potential for an agile
development workflow. The fact that features are isolated and modularized in
the first place makes it easy to try new things —start on new features— while
confident that it cannot have permanent impact on the code base. Deltas can
simply remain inactive until they are deemed ready for production (without
the hassle of branching and merging in a text-centric version control system).
Moreover, features can be thoroughly developed and tested individually before
developers have to worry about testing their interaction, making it easier to
divide the work into clear steps. Recall the test driven development scenario
described on page 108. As for DMW principles: enforcement of delta locality
(Section 7.3) ensures that developers are warned automatically when one of
the modules needs to be updated because of changes higher up the delta
model, making delta models a safe environment for experimentation.

Creating solid refinement and refactoring theory for delta models is
probably the best place to start in adopting agile values and principles into
the DMW. This would also help in converting legacy code bases into delta
models through a gradual process.

9.2.8 Dynamic Delta Modeling
The hybrid operational semantics for dynamic software product lines presented
in Section 8.5 should be much more thoroughly explored. At the moment,
the work of Damiani et al. [63, 64] addresses the heap without addressing
the product, and DDM addresses the product without addressing the heap.
And a good comparison with the work of Muschevici et al. [141] has not
yet been made either. Another interesting direction is to develop DDM
support for open-adaptivity.

Finally, generation of the Mealy machine based on the static product
line implementation is still done in a very roundabout way, assuming an
implemented delta derivation operator. A more promising approach, perhaps,
is to implement the delta converse operator .̆ This may help in effectively
‘navigating’ the product line delta model at runtime.
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Figure 9.1: A mockup of a possible Eclipse interface for delta modeling with
code views. (Incidentally, the code displayed here is part of the Android
profile management application from Chapter 8.)



A
DMW Operational Semantics

Formalization of the Workflow and Proofs of its Properties

A.1 The Subfeature Relation
From here on, assume a deltoid ( 𝒫, 𝒟, ·, 𝜀, ⟦ ⟧ ) that exhibits consis-
tent conflict resolution (Definition 3.18) and a feature set ℱ.

Based on the subfeature relation defined in Section 7.2 (page 150), we extend
the specification of a product line as follows:

▸ A.1. Definition (Structured Product Line Specification): A structured prod-
uct line specification is a triple 𝑠𝑃𝐿𝑆 = ( 𝛷, ⇴, V ) where ( 𝛷, V ) is a product
line specification (Definition 4.19) and ⇴ ⊆ ℱ × ℱ is a direct subfeature
relation. For all such specifications we require the following two properties to
hold for all features 𝑓, 𝑔 ∈ ℱ, all feature configurations 𝐹 ∈ 𝛷:

a. 𝑓 ⇴ 𝑔 ⟹ ( 𝑔 ∈ 𝐹 ⟹ 𝑓 ∈ 𝐹 )
b. 𝑓 ⇴ 𝑔 ⟹ ( V({ 𝑔 }) ⊆ V({ 𝑓 }) )

Namely, (a) that the selection of any feature implies the selection of its
superfeatures and (b) a product’s support for any feature implies support
for its superfeatures. The set of all structured product line specifications is
denoted 𝑠𝒫ℒ𝒮. If the deltoid or feature set is not clear from context, we attach
a subscript as in 𝑠𝒫ℒ𝒮𝐷𝑡,ℱ. ⌟

210
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A.2 Non-interference

The non-interference property described in Section 7.3 (page 151) is formally
defined as follows:

▸ A.2. Definition (Non-Interference): A given deltoid 𝐷𝑡 = ( 𝒫, 𝒟, ·, 𝜀, ⟦ ⟧ ) and
valuation function V: Pow(ℱ) → Pow(𝒫) jointly exhibit the property of non-
interference iff for all deltas 𝑥, 𝑦, 𝑧 ∈ 𝒟, products 𝑝 and feature selections 𝐹 :

𝑧 · 𝑦 · 𝑥 = 𝑧 · 𝑥 · 𝑦
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

a

⟹ ⟦𝑧 · 𝑥⟧(𝑝) ⊆ V(𝐹) ⇒ ⟦𝑧 · 𝑦 · 𝑥⟧(𝑝) ⊆ V(𝐹)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

b

⌟

So we can make use of locality if (a) for all delta-pairs 𝑥, 𝑦 that commute in
some context 𝑧 (which may or may not be resolving a conflict between them),
(b) in that same context, any property introduced to the final product by 𝑥
cannot be broken by the presence or absence of 𝑦.

From this point on, we assume a structured product line
specification 𝑠𝑃𝐿𝑆 = ( 𝛷, ⇴, V ) which exhibits non-interfere
with the earlier assumed deltoid 𝐷𝑡 (Definition A.2).

A.3 An Operational Semantics

The job-based model introduced in Section 7.4.4 (page 153) is now described
as an operational semantics (Section 1.7.11), in which the steps are transitions
(Notation 1.49).

A.3.1 Job Status
A job can be in one of three stages. We define a type of mapping to keep
track of the status of all jobs:

▸ A.3. Definition (Job Status Map): Given some set of already developed deltas
𝐷 ⊆ 𝒟, a job status map J: ( Pow(ℱ) ∪ Pow(𝐷) ) ⇀ ( {av, ip} ∪ 𝐷 ) is a finite
partial function (Definition 1.17) mapping each job 𝑗 ∈ Pow(ℱ) ∪ Pow(𝐷) to
its current status. Either:

• it is not recognized as a viable job (yet): J(𝑗) =⊥,
• it is available: J(𝑗) = av,
• it is in progress: J(𝑗) = ip, or
• it is finished, and has resulted in delta 𝑑 ∈ 𝐷: J(𝑗) = 𝑑 ⌟

A.3.2 Configurations
Each state of the workflow is represented by a configuration as follows:

▸ A.4. Definition (Workflow States): A workflow state is a configuration:

𝑤𝑠 = ⟨ 𝑎𝑑𝑚, J ⟩
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where 𝑎𝑑𝑚 = (𝐷, ≺, 𝛾) is the annotated delta model in progress and the
function J: ( Pow(ℱ) ∪ Pow(𝐷) ) ⇀ ( {av, ip} ∪ 𝐷 ) is a job status map (Defi-
nition A.3) used for bookkeeping. The whole configuration space is denoted
𝑊𝑆. ⌟

The initial state of the workflow is simple. The annotated delta model is still
empty and no jobs have been formulated yet:

▸ A.5. Definition (Initial State): The initial state of the workflow is defined as
follows:

𝑤𝑠0 ≝ ⟨ 𝑎𝑑𝑚0, J0 ⟩ = ⟨∅, ∅, ∅, ∅ ⟩

with an empty annotated delta model (∅,∅,∅ ) —parentheses are omitted—,
and an empty set of initial jobs ∅. ⌟

Steps 1 to 6 of the workflow description in Section 7.4.3 are each represented
as inference rules (Notation 1.15), which define valid state transitions
⟶ ⊆ 𝑊𝑆 × 𝑊𝑆. The whole development process can then be represented
as a chain of 𝑛 transitions:

⟨ 𝑎𝑑𝑚0, J0 ⟩ ⟶ … ⟶ ⟨ 𝑎𝑑𝑚𝑛, J𝑛 ⟩

The workflow is finished after 1
3 𝑛 jobs 𝑗 ∈ Pow(ℱ) ∪ Pow(𝐷), each of which

goes through 3 transitions:
1. Identifying the job (steps 1, 3 and 5), which inserts it into the job status

map J with status ‘available’ (av),
2. starting a job, which gives it the status ‘in progress’ (ip), and
3. finishing a job, which results in a new delta (steps 2, 4 and 6).

▸ A.6. Notation: We identify each specific transition 𝑡 by its job and transition
number, e.g., 𝑡 = {𝑓}3 is the transition that takes place upon finishing the
implementation of feature 𝑓 . We sometimes annotate the transition arrow
with this information: {𝑓}3−−−→. ⌟

By splitting each job up this way, we explicitly allow interleaving its transitions
with the transitions of other jobs, while keeping important updates as atomic
operations. This makes it clear which jobs can be performed concurrently.

A.3.3 Inference Rules
The job order described in Section 7.4.4 (page 153) is formally encoded in the
inference rules of the operational semantics. We now define these inference
rules. Together they define the transition relation ⟶. We need to make
sure that the workflow eventually terminates at the configuration representing
a correct product line (𝛷, 0, 𝑎𝑑𝑚𝑛).
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Identifying New Jobs

First, define the inference rule for introducing a new feature implementation
job. But to do so, we first have to determine exactly which feature
combinations will (eventually) get a specific delta to implement them:

▸ A.7. Definition (Viable Feature Combination): A viable feature combination
is a feature set 𝐹 ⊆ ℱ such that:

𝗏𝖿(𝐹) ⟺≝ ∃𝐹 ′ ∈ 𝛷: 𝐹 ⊆ 𝐹 ′
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

a

∧ V(𝐹) ≠ ⋂
𝐸⇴𝐹

V(𝐸)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

b

⌟

A feature combination is viable as a feature implementation job iff (a) all
of its features can be selected together and, (b) when selected, present
requirements that are not already presented by some combination of weaker
subsets. If not for these conditions, we would have to ‘implement’ many
deltas that do nothing.

Next, we’ll define a much used shorthand notation:

A.8. Notation: The viable feature combination order ⇴v ⊆ ℱ × ℱ is the feature
combination order (Definition 7.3) restricted to viable feature combinations:
⇴v ≝ ⇴ ∩ 𝗏𝖿2 ⌟

Now for the inference rule itself:

▸ A.9. Definition (Workflow Inference Rule): --

a
⏞⏞⏞
𝗏𝖿(𝐹)

b
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∀𝐸 ⇴v 𝐹: J(𝐸) ∈ 𝐷

⟨𝐷, ≺, 𝛾, J [ 𝐹 ↦⊥] ⟩ 𝐹1−−→ ⟨ 𝐷, ≺, 𝛾, J [ 𝐹 ↦ av ] ⟩ ⌟

To recognize 𝐹 as a valid job from the current state, it needs (a) to be viable,
and (b) any weaker viable feature combinations must be already implemented.
That way, functionality is implemented in the proper order.

We need this particular ordering because deltas implementing stronger
feature combinations should have knowledge and control over deltas imple-
menting weaker ones. After writing deltas to implement the features 𝑆𝐻, 𝐸𝐶
and 𝐾𝑀 from Section 4.5.1, for example, we would like the resultant annotated
delta model to look like the one in Figure 4.3. We need the { 𝑆𝐻, 𝐸𝐶, 𝐾𝑀 }
job to be available only after the ‘smaller’ jobs are finished. This is assuming
the general case that each combination needs special consideration. In simpler
cases, parametric deltas may be used (which were the topic of Section 4.5),
but that is out of scope for the workflow description of this chapter.

Now to define an inference rule for identifying conflict resolution jobs.
Formally, a conflict occurs between two deltas, as discussed in Section 3.3.
However, when a there is a set of deltas with many (related) conflicts, we
will also want to introduce conflict-resolving deltas for some larger sets, if
they have a non-empty joint application condition, in order to cover all
combinations. We again define a predicate to help us:
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▸ A.10. Definition (Viable Conflict Set): Given an annotated delta model 𝑎𝑑𝑚 =
(𝐷, ≺, 𝛾), a set 𝐶 ⊆ 𝐷 is a viable conflict set iff:

𝗏𝖼(𝐶) ⟺≝ 𝛾∩(𝐶) ≠ ∅
⏟⏟⏟⏟⏟⏟⏟

a

∧ ∀𝑥 ∈ 𝐶: ∃𝑦 ∈ 𝐶: 𝑥 ↯ 𝑦 ∧
∄𝑧 ∈ 𝐷: 𝛾∩({𝑥, 𝑦}) ⊆ 𝛾(𝑧) ∧ (𝑥, 𝑦) ◃ 𝑧⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

b

If the delta model is not clear from context, we attach a subscript as in
𝗏𝖼adm or 𝗏𝖼≺. ⌟

A delta set is a viable as a conflict resolution job iff (a) all of its deltas can be
selected together (Definition 4.12), and (b) all are in unresolved conflict with
at least one other delta in the set. Now, the inference rule itself:

▸ A.11. Definition (Workflow Inference Rule): --

a
⏞⏞⏞
𝗏𝖼(𝐶) 𝗏𝖼(𝐶′) ⟹

b
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛾∩(𝐶′) ⊅ 𝛾∩(𝐶) ∧

c
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛾∩(𝐶′) = 𝛾∩(𝐶) ⇒ 𝐶′ ⊆ 𝐶

⟨𝐷, ≺, 𝛾, J [ 𝐶 ↦⊥] ⟩ 𝐶1−−→ ⟨ 𝐷, ≺, 𝛾, J [ 𝐶 ↦ av ] ⟩
⌟

To recognize 𝐶 as a valid new job, it (a) needs to be viable, (b) may not have
a stronger joint application condition than any other viable set and (c) must
be the largest of all viable sets that share the same joint application condition.
Condition (b) ensures that more generally applicable conflict resolvers are
developed first. Condition (c) ensures that no duplicate work is performed,
and that the workflow eventually terminates (Appendix A.4.1).

Starting a Job

Starting a job is the simplest inference rule, but having it is important to
make the possibility of concurrent development explicit, i.e., that more than
one job can be in progress at the same time.

▸ A.12. Definition (Workflow Inference Rule): -

⟨𝑎𝑑𝑚, J [ 𝑗 ↦ av ] ⟩ 𝑗2−−→ ⟨ 𝑎𝑑𝑚, J [ 𝑗 ↦ ip ] ⟩ ⌟

When a job is started, its status is simply set from ‘available’ to ‘in progress’,
to prevent a job from being started more than once.

Finishing a Job

We now present the final two inference rules, responsible for validating the
correctness of a developed delta and integrating it into the annotated delta
model. First, the rule for finishing a feature implementation job:
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▸ A.13. Definition (Workflow Inference Rule): --

a
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

≺∆ = { ( J(𝐸), 𝑑 ) ∣ 𝐸 ⇴v 𝐹 }

c
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
( ∀𝐸 ⇴v 𝐹: ⟦ ↓J(𝐸) ⟧ (𝑐) ⊆ V(𝐸) )

⇒ ⟦ ↓𝑑 ⟧ (𝑐) ⊆ V(𝐹)
⟨ 𝐷 ∖ {𝑑}, ≺, 𝛾, J [ 𝐹 ↦ ip ] ⟩ 𝐹3−−→
⟨ 𝐷 ∪ {𝑑}

⏟⏟⏟
b

, ≺ ∪ ≺∆⏟⏟⏟
a

, 𝛾[ 𝑑 ↦ {𝐹 ′ ∈ 𝛷 | 𝐹 ⊆ 𝐹 ′}]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

d

, J [ 𝐹 ↦ 𝑑 ]
⏟⏟⏟⏟⏟⏟⏟

e

⟩
⌟

To implement a feature or feature interaction, a new delta 𝑑 is developed
(a) to be applied later than the deltas that implement weaker viable feature
combinations. (b) It is added to the delta set. (c) It needs to have a local
delta model that satisfies the requirements of 𝐹 , with the assumption that all
weaker viable feature combinations similarly satisfy their own requirements.
(d) It is applied whenever all features in 𝐹 are selected. Finally, (e) we map
the job 𝐹 to the delta 𝑑 that implements it. (As you can see, we may use this
mapping later to (a) order subsequent feature implementation deltas.)

And last but not least, the rule for finishing a conflict resolution job:

▸ A.14. Definition (Workflow Inference Rule): --

a
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∀𝑥, 𝑦 ∈ 𝐶: 𝑧 · 𝑦 · 𝑥 = 𝑧 · 𝑥 · 𝑦

b
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∀𝑥 ∈ 𝐶: ⟦ ↓𝑧 ⟧ (𝑐) ⊆ ⟦ ↓𝑥 ⟧ (𝑐)

⟨𝐷 ∖ {𝑧}, ≺, 𝛾, J [ 𝐶 ↦ ip ] ⟩ 𝐶3−−→
⟨𝐷 ∪ {𝑧}
⏟⏟⏟

c

, ≺ ∪ { ( 𝑑, 𝑧 ) ∣ 𝑥 ≼ 𝑑 ∨ 𝑦 ≼ 𝑑 }
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

d

, 𝛾 [ 𝑧 ↦ 𝛾(𝐶) ]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

e

, J [ 𝐶 ↦ 𝑧 ]
⏟⏟⏟⏟⏟⏟⏟

f

⟩ ⌟

To properly resolve the conflict between all deltas in 𝐶, a new delta 𝑧 is
developed that (a) allows all deltas in 𝐶 to commute and (b) has a resulting
local delta model that preserves the requirements that were preserved by each
individual delta in 𝐶. It is (c) added to the delta set, (d) to be applied later
than the conflicting deltas, (e) whenever those are applied too. Finally, (f) we
map the job 𝐶 to the delta 𝑧 that implements it.

The Full Transition Relation

And that concludes the formulation of the abstract delta modeling workflow:

▸ A.15. Definition (DMW Transition Relation): The transition relation of the
delta modeling workflow operational semantics is the smallest relation ⟶ ⊆
𝑊𝑆 × 𝑊𝑆 characterized by Definitions A.9, A.11, A.12, A.13 and A.14. ⌟
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A.4 Analysis

This section presents proofs of three main theorems about the workflow. First,
Appendix A.4.1 proves termination. Then, Appendices A.4.2 and A.4.3 prove
that any product line created through the workflow is unambiguous and totally
correct with respect to the product line specification that was used as input.

A.4.1 Termination
First, we show that the workflow eventually terminates. This being an
operational semantics, the workflow is finished when we reach a configuration
that is stuck, i.e., from which there are no valid transitions left to take.

▸ A.16. Theorem: The workflow is guaranteed to terminate, i.e., starting from initial
state 𝑤𝑠0 (Definition A.5), there is no infinite transition path: 𝑤𝑠0 ⟶/ ∞

(Definition 1.50, page 28).

Proof: Two kinds of job exist. Feature implementation jobs are identified by
sets of features, and generated directly from the product line specification
(Figure 7.4). Since there are only a finite number of features in a feature
model (Notation 4.2 and Definition 4.3), these jobs can never be a source of
divergence, even if every possible combination would require a separate delta.

Conflict resolution jobs, however, are generated not from the specification,
but from the implementation itself. They add a new conflict resolution delta
to the set 𝐷. Conflict resolution deltas may cause new conflicts themselves,
so there is a potentially infinite source of new conflicts. Figure 7.5 shows the
feedback loop in question.

To prove termination we show that ⟶ is well-founded, but for simplicity
we’ll only consider conflict resolution jobs:

⟨ 𝐷, ≺, 𝛾, J ⟩ 𝐶1−−→ ⟨𝐷, ≺, 𝛾, J [ 𝐶 ↦ av ] ⟩
𝐶2−−→ ⟨𝐷, ≺, 𝛾, J [ 𝐶 ↦ ip ] ⟩
𝐶3−−→ ⟨𝐷′, ≺′, 𝛾′, J [ 𝐶 ↦ 𝑧 ] ⟩

In particular, we assign a value from a well-founded set to each delta 𝑑, and
show that the value assigned to 𝑧 is strictly smaller than that assigned to the
deltas 𝑥 ∈ 𝐶 of the conflict-set it resolves. This value is the pair ( 𝛾(𝑑), ≸(𝑑) ),
where

𝑑 ≸ 𝑑′ ⟺ 𝛾(𝑑) = 𝛾(𝑑′) ∧ 𝑑 ⊀ 𝑑′ ∧ 𝑑′ ⊀ 𝑑
is a symmetric relation between deltas that share the same application
condition and can potentially be in conflict with each other. The pair reduces
lexicographically from 𝑥 to 𝑧 if either:

• 𝛾(𝑧) ⊂ 𝛾(𝑥), i.e., 𝑧 has a stronger application condition than 𝑥, or
• 𝛾(𝑧) = 𝛾(𝑥) ∧ ≸(𝑧) ⊂ ≸(𝑥), i.e., 𝑧 has an application condition equal to

𝑥, but there are strictly fewer deltas it can potentially conflict with.
By Definition A.14, we have 𝛾(𝑧) = 𝛾∩(𝐶), so the application condition of
𝑧 is always equal to or stronger than that of 𝑥 ∈ 𝐶 (Definition 4.12). If
𝛾(𝑧) ⊂ 𝛾(𝑥), we are done. If 𝛾(𝑧) = 𝛾(𝑥), then we can show that ≸(𝑧) ⊂ ≸(𝑥):

• Take a delta 𝑑 ≸ 𝑧.
(a) We have 𝛾(𝑑) = 𝛾(𝑧) = 𝛾(𝑥).
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(b) Because 𝑑 ⊀ 𝑧 and 𝑥 ≺ 𝑧 we also have 𝑑 ⊀ 𝑥.
(c) Assume 𝑥 ≺ 𝑑. Without loss of generality we can assume 𝑑 was the

result of a conflict resolution job 𝐶′ with 𝑥 ∈ 𝐶′ (it may in fact be
a feature implementation delta, but this can only happen finitely
often, so we dismiss it as a source of divergence). This leads to
contradiction, as by Definition A.11, 𝐶′ would be largest conflict
set with the same joint application condition, so we’d have 𝐶 ⊆ 𝐶′,
and by Definition A.14, 𝑑 would have resolved all conflicts in 𝐶
already, making it inviable as the current job. So we have 𝑥 ⊀ 𝑑.

(d) From (a), (b) and (c) we conclude that ≸(𝑧) ⊆ ≸(𝑥).
• By Definition A.11, we have |𝐶| > 1, so there is clearly at least one delta

𝑦 ≸ 𝑥 with ¬(𝑦 ≸ 𝑧). So ≸(𝑧) ≠ ≸(𝑥), and therefore ≸(𝑧) ⊂ ≸(𝑥).
So by this measure, ( 𝛾(𝑧), ≸(𝑧) ) is strictly smaller than ( 𝛾(𝑥), ≸(𝑥) ). As
there is clearly a smallest value (∅,∅), the described relation is well-founded,
and there cannot be an infinite decreasing chain of conflict resolutions. ◻

In short, if any conflict resolving delta is in conflict itself, it requires a new
conflict resolving delta with a lower ‘value’, and this can only happen a finite
number of times. As an extreme example, there could be one conflict resolving
delta 𝑧, with 𝑑 ≺ 𝑧 for all other deltas 𝑑 ∈ 𝐷, giving ≸(𝑧) = ∅.

A.4.2 Unambiguity
The product line implementation 𝑃𝐿𝐼 resulting from the workflow is supposed
to be totally correct with regard to the specification 𝑠𝑃𝐿𝑆. This is proved
in Appendix A.4.3. But first, we need an intermediate result: unambiguity
(Definition 4.11, page 104). We prove that every feature configuration gives
rise to an unambiguous selected delta model.

▸ A.17. Theorem: Given a stuck configuration of the workflow ⟨ 𝐷, ≺, 𝛾, J ⟩, the corre-
sponding product line implementation 𝑃𝐿𝐼 = ( 𝛷, 𝑐, 𝐷, ≺, 𝛾 ) is unambiguous.

Proof: We’ll prove by contradiction that 𝑃𝐿𝐼 is globally unambiguous, which
implies that it is generally unambiguous (Theorem 4.16, page 106).

Assume that 𝑃𝐿𝐼 is not globally unambiguous. This means that there
exists a pair of deltas 𝑥, 𝑦 ∈ 𝐷 with all of the following properties:

• They are in conflict: 𝑥 ↯ 𝑦,
• They have a non-empty joint application condition: 𝛾∩({𝑥, 𝑦}) ≠ ∅
• There is no delta 𝑧 ∈ 𝐷 such that 𝛾∩({𝑥, 𝑦}) ⊆ 𝛾(𝑧) and (𝑥, 𝑦) ◃ 𝑧

Then by Definition A.10, {𝑥, 𝑦} is a viable conflict set. Therefore, the
inference rule -- (Definition A.11) is applicable to configuration
⟨ 𝐷, ≺, 𝛾, J ⟩, meaning it is not stuck and the workflow is not finished.

This contradiction proves the original statement: a stuck configuration
yields a product line implementation that is globally unambiguous, and,
therefore, unambiguous as per Definition 4.11. ◻

A.4.3 Total Correctness
Finally, we prove that the resulting product line implementation is totally
correct w.r.t. the given structured product line specification as defined in
Definition 4.20 (page 108):
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▸ A.18. Theorem: Given a final (stuck) configuration of the workflow ⟨ 𝐷, ≺, 𝛾, J ⟩,
the corresponding product line implementation 𝑃𝐿𝐼 = ( 𝛷, 𝑐, 𝐷, ≺, 𝛾 ) is totally
correct with regard to the given product line specification 𝑠𝑃𝐿𝑆 = ( 𝛷, ⇴, V ).

Proof: Call the annotated delta model 𝑎𝑑𝑚 = (𝐷, ≺, 𝛾).
Take an arbitrary feature configuration 𝐹 ∈ 𝛷. We name the selected

delta model 𝑑𝑚𝐹 = (𝐷𝐹 , ≺𝐹 ) = 𝑎𝑑𝑚 ↾ 𝐹 . We then name the set 𝑉𝐹 =
{ 𝐺 ⊆ 𝐹 | 𝗏𝖿(𝐺) } of viable feature combinations that are a subset of 𝐹
(Definition A.7).

By Definition A.9, each 𝐺 ∈ 𝑉𝐹 becomes a new feature job. Moreover, by
Definition A.13a, the job map J is a homomorphism from (𝑉𝐹 , ⇴v ∩ 𝑉𝐹 2) to
(𝐷𝐹 , ≺𝐹 ), i.e., for all feature combinations 𝐺1, 𝐺2 ⊆ 𝐹 :

𝐺1 ⇴v 𝐺2 ⟺ J(𝐺1) ≺𝐹 J(𝐺2)

This is also illustrated in Figures 7.4 and 7.5.
We can prove that V(𝐹) = ⋃𝐺∈𝑉𝐹 V ( 𝐺 ). While this is not true in the

general case (as stated in Section 4.4.1), it is now true by construction. If it
were not, there would need to still be a feature combination 𝐸 ⊆ 𝐹 with 𝗏𝖿(𝐸)
and 𝐸 ∉ 𝑉𝐹 . But if there was, -- would still apply, and our
‘final’ configuration would not be stuck. But it is.

We can prove that for all 𝐺 ∈ 𝑉𝐹 , we have ⟦ ↓J(𝐺) ⟧ (𝑐) ⊆ V(𝐺), by
induction on the strength of 𝐺. Both the base and inductive case are proved
rather straightforwardly by using Definition A.13c.

That being true, we have ⟦ 𝑑𝑚𝐹 ⟧ (𝑐) ⊆ V(𝐹) if none of the deltas outside
of the local delta model ↓J(𝐺) break the introduced functionality. There
are two kinds of such deltas: deltas 𝑑 with J(𝐺) ≺𝐹 𝑑 and deltas unordered
with J(𝐺). The former type cannot interfere: because of Definitions A.14b
and A.13c, developers have to obey local constraints not to break features
of delta’s before them. The latter type also cannot interfere: because 𝑃𝐿𝐼
is unambiguous (Theorem A.17), all pairs of deltas 𝑥, 𝑦 ∈ 𝐷𝐹 are either
ordered by ≺𝐹 , or they commute in the context of the full derivation
𝑑1 · 𝑦 · 𝑥 · 𝑑2 = 𝑑1 · 𝑥 · 𝑦 · 𝑑2 ∈ derv(𝑑𝑚𝐹 ), and we assumed a deltoid with
non-interference (Definition A.2).

This leads to our desired result:

∀𝐹 ∈ 𝛷: ⟦ 𝑎𝑑𝑚 ↾ 𝐹 ⟧ (𝑐) ⊆ V(𝐹) ◻





Summary

Programming is an activity very prone to human error. As more and more
features are implemented in a software system by different programmers,
progress will often slow to a crawl. It is all too easy for programmers to lose
overview of what their code is doing when it is spread across the code base
surrounded by the code of others. This can result in bugs and, inevitably,
much time will need to be spent on maintenance. This, in turn, results in
more expensive software that takes longer to reach the user.

To prevent a large software system from collapsing under its own complexity,
its code needs to be well-structured. Manny Lehman (remembered as the
Father of Software Evolution) stated the following as his second law of
software evolution:

“As a program is evolved its complexity increases unless work
is done to maintain or reduce it.”

Ideally we want all code related to a certain feature (sometimes called concern)
to be grouped together in one module —which is called feature modularization—
and code belonging to different features not be mixed together — which is
called separation of concerns. But many concerns cannot be easily captured
by existing abstractions. They are known as cross-cutting concerns. By their
very nature their implementation needs to be spread around the code base, so
modularization and separation of concerns are still elusive.

This thesis is about Abstract Delta Modeling (ADM), a formal framework
developed to achieve modularity and separation of concerns in software.

The software engineering discipline that has the most to gain from those
properties is Software Product Line Engineering (SPLE), a relatively new
development. To quote van der Linden, Schmid and Rommes:

“Software product lines represent perhaps the most exciting
paradigm shift in software development since the advent of
high-level programming languages.”

SPLE is concerned with the development and maintenance of multiple software
systems at the same time, each possessing a different (but often overlapping)
set of features — a form of mass customisation. This gives rise to an
additional need. It is no longer enough that the code for a given feature
is separated and modular; it also need to be composable and able to deal
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gracefully with the presence or absence of other features. We need to be able
to make a selection from a set of available features and have the corresponding
software mechanically generated for us — a process known as automated
product derivation. This is another area where ADM can help out.

This thesis is a product of the European HATS project. It presents
a formal foundation for the techniques of delta modeling, which was the
main approach to variability used by HATS. To do this, it employs (among
other things) abstract algebra, modal logic, operational semantics and Mealy
machines, and lays the bridges between the different disciplines as we go. Its
chapters provide a broad overview of the ADM framework and its possibilities,
as well as a number of existing practical applications, laying a foundation
for further research and development.



Samenvatting

Programmeren is een zeer foutgevoelige activiteit. Naarmate er in een software
systeem meer en meer features geimplementeerd worden, zal de vooruitgang
van dat systeem steeds langzamer worden. Programmeurs verliezen snel het
overzicht als hun code over het hele project verspreid is, en omringd door
de code van anderen. Hierdoor worden sneller fouten gemaakt, en is het
onvermijdelijk dat de meeste programmeertijd in onderhoud gaat zitten. Dit
leidt tot duurdere software die later op de markt komt.

Om te voorkomen dat een software systeem bezwijkt onder zijn eigen
complexiteit, zal de code een duidelijke structuur moeten volgen. Manny
Lehman (herinnerd als de Vader van Software-evolutie) gaf het volgende als
zijn tweede wet van software-evolutie:

“Naarmate een programma evolueert zal de complexiteit ervan
toenemen, tenzij deze actief gehandhaafd of verminderd wordt.”

Idealiter willen we alle code met betrekking tot een bepaalde feature (ook
wel concern genoemd) samenvoegen tot één module —genaamd feature
modularizatie— en code die tot verschillende features behoort van elkaar
scheiden — genaamd separation of concerns. Maar vele features kunnen niet
makkelijk uitgedrukt worden in bestaande programmeer-abstracties. Zulke
features noemen we cross-cutting concerns. Hun implementatie moet nu
eenmaal tot naar verschillende locaties in het project verspreid worden.
Modularisatie en ‘separation of concerns’ zijn dus niet makkelijk tot stand
te brengen.

Dit proefschrift gaat over Abstract Delta Modeling (ADM), een formele
beschrijving die ons helpt deze eigenschappen in software te behalen.

De software engineering discipline die hier het meest bij te winnen heeft is
Software Product Line Engineering (SPLE), een relatief nieuwe ontwikkeling.
Ik citeer van der Linden, Schmid en Rommes:

“Software product lines vertegenwoordigen misschien wel de
spannendste paradigmaverschuiving in de software-ontwikkeling
sinds de komst van ‘high-level’ programmeertalen.”

SPLE houdt zich bezig met de ontwikkeling en het onderhoud van meerdere
software systemen tegelijk, elk in bezit van een andere (maar vaak overlap-
pende) verzameling van features — een vorm van mass customization. Aan
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de implementatie van een product line stellen we wel extra eisen. Het voldoet
niet meer dat de code van een feature gescheiden en modulair is; het moet
ook componeerbaar zijn, en goed omgaan met de aanwezigheid of afwezigheid
van van andere features. We moeten uit een verzameling beschikbare features
een selectie kunnen maken, en de bijbehorende software mechanisch voor
ons kunnen laten genereren. Dit proces staat bekend als automated product
derivation. Dit is een ander gebied waarin ADM van dienst kan zijn.

Dit proefschrift komt uit het Europese HATS project. Het representeert
een formele basis voor delta modeling, de techniek die gekozen was door HATS
voor het uitdrukken van software variabiliteit. Voor dit doel gebruikt het
(onder andere) abstracte algebra, modale logica, operationele semantiek en
Mealy machines, en legt het geleidelijk de bruggen tussen deze verschillende
disciplines. De hoofdstukken van het proefschrift geven een breed overzicht
van het ADM framework, zowel als de mogelijkheden van dit framework en
verscheidene praktische applicaties, en legt hiermee een fundering voor verder
onderzoek en ontwikkeling.
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nesting-aware, 91
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expansion law, 139
extension, 23

F
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feature combination order, 155
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190
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feature implementation delta, 153
feature implementation job, 153
feature initialization problem, 82
feature interaction, 75
feature interaction delta, 153
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fine-grained software delta, 84
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flat delta model, 90
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main Analysis
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ware Development
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Fredhopper Access Server product
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full difference transition function,
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full quark, 62
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fully defined delta, 44
fully expressive deltoid, 56
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functional deltoid, 59
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G
generalization, 26
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global quark, 62
global unambiguity, 105
glue code, 78
granularity, 40

H
hard delta conflict, 79
Heyting algebra, 205
hybrid language, 207

I
idempotency, 23
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identity modification, 61
identity relation, 20
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inclusive order, 22
incremental application, 37
inference rule, 21
infinite transition path, 28
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introduction, 61
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introduction sum, 61
invalid delta, see undefined delta
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modification, 61
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modification product, 61
modus ponens, 26



230 INDEX
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idempotent, 23
𝑛-ary, 23

operator, see operation
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parametric deltoid, 111
parametric product line evaluation,
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tation, 112
parametric software delta, 112
parametric software delta evalua-
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partially defined delta, 44
partially functional deltoid, 59
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preorder, 22
principal ideal, 151
product, 36

core, 103
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product acceptance, 44
product family, see product line
product formula, 136
product formula evaluation, 137
product line, 97
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product line correctness, 108
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profile deltoid, 171
profile feature model, 174
program delta, 65
proper relation algebra, 49
propositional variable, 25
provability relation, 27
pure delta modeling, 152
pure delta oriented programming,

152
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quantification and weaving, 60
quantity, 169
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simple, 62

quark deltoid, 63
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well defined, 21
relation algebra, 24

proper, 49
relation algebra semantics, 49
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rule-set implementation, 174
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selected delta model, 103
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semantic delta equivalence, 48
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singleton transition function, 185
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superset, 18
surjectivity, 21
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syntactic delta equivalence, 53
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test driven development, 107
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transition, 28
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transition function, 182
full difference, 183
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DMW, 215
Mealy machine, 180
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undefined, 22
undefined delta, 44
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